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Abstract

Technological advances have transformed the scientific landscape by enabling comprehen-
sive quantitative measurements, thereby increasingly facilitating data-driven research. This
includes genome biology, where many data sets nowadays comprise a collection of heteroge-
neous high-dimensional data modalities, collected from different assays, tissues, organisms,
time points or conditions. An important example are multi-omics data, i. e. data combin-
ing measurements from multiple biological layers. Jointly, such data promise to provide a
better and more comprehensive understanding of biological processes and complex traits.
A critical step to realize these promises is the development of statistical and computational
methods that facilitate moving from the data to sound conclusions and biological insights.
For this purpose, an integrative analysis that combines information from different data
modalities is essential.
In this thesis, we propose novel methods that provide a multivariate approach to data

integration, and we apply them in the context of multi-omics studies in precision medicine
and single cell biology. Given a collection of different data modalities on a set of samples,
we aim at addressing two main questions: First, how can we obtain an (unbiased) overview
of the main structures that are present in the data, both within and across data modalities?
And second, how can we use all data to predict a response of interest and identify relevant
features, whilst taking the heterogeneity of the features into account?
The first question is important in all exploratory data analysis and leads us to unsu-

pervised methods for data integration. Finding hidden structures in the data can give im-
portant insights into biological and technical sources of variation and yield an informative
low-dimensional data representation. To this end, we introduce multi-table methods and
latent factor models that can capture main axes of variation and co-variation in the data.
Based on this, we present a novel factor method, multi-omics factor analysis (MOFA), to
integrate information from different data modalities. By sparsity assumptions on the factor
loadings, MOFA decomposes variation into axes present in all, some, or single modalities
and promotes interpretable factors with a direct link to molecular drivers. MOFA com-
bines a statistical model that accommodates different data types and missing data with a
scalable inference algorithm, thereby ensuring a broad applicability. Once learnt, the fac-
tors enable a range of downstream analyses, including identification of sample subgroups,
outlier detection and data imputation. We demonstrate its flexibility and potential to gen-
erate biological insight by applying MOFA to a multi-omics study on chronic lymphocytic
leukaemia as well as a multi-omics single cell data set.
The second question leads us to supervised methods that enable building predictive

models and selecting features relevant for a response of interest. Reliable methods for this
purpose would have far-reaching consequences in many applications. For example, it would
be extremely useful for decisions in clinical care if treatment outcome or disease progression
could be predicted from available molecular or clinical data. Furthermore, the identification
of important molecular markers could give insights into underlying biological mechanisms
and eventually open up new treatment options. For this purpose, we turn to penalized re-
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gression methods and, based on this, develop a method for penalized regression that takes
into account additional information on the features to adapt the relative strength of penal-
ization in a data-driven manner. Such additional information in form of external covariates
is available in many applications and can for example encode structural knowledge on the
data, e. g. different assay types, or provide information on a feature’s variance, frequency
or signal-to-noise ratio. We show that incorporating informative covariates can improve
prediction performance in penalized regression, and we investigate the use of important
covariates in genome biology such as the omics or tissue type.
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Zusammenfassung

Dank technologischer Fortschritte haben Wissenschaftler inzwischen in vielen Bereichen
Zugang zu umfangreichen quantitativen Messungen, wodurch daten-getriebene Ansätze
in der Forschung immer wichtiger werden. Das trifft insbesondere auf die Genombiologie
zu. Hier bestehen Datensätze heutzutage oft aus mehreren hoch-dimensionalen hetero-
genen Merkmalsgruppen, die mit verschiedenen Verfahren, in unterschiedlichen Geweben
und Organismen, zu mehreren Zeitpunkten oder unter verschiedenen Bedingungen erho-
ben wurden. Ein wichtiges Beispiel sind multi-omische Daten, d.h. Daten, die Messungen
verschiedener Arten von Biomolekülen kombinieren. Gemeinsam können solche Daten ein
besseres und umfassenderes Verständnis von biologischen Prozessen und komplexen Merk-
malen vermitteln. Dabei ist ein entscheidender Schritt jedoch die Entwicklung von statis-
tischen und rechnerischen Methoden, die es uns ermöglichen, von den Daten zu fundierten
Schlussfolgerungen und biologischen Einsichten zu gelangen. Hierbei sind integrative An-
sätze wichtig, die Informationen aus verschiedenen Merkmalsgruppen kombinieren.
Diese Arbeit enthält neue Methoden für multivariate Ansätze zur integrativen Datenana-

lyse und wendet sie im Rahmen von multi-omischen Studien in der Präzisionsmedizin und
Einzelzellbiologie an. Ausgehend von einer Sammlung verschiedener molekularer Daten für
eine Reihe von Stichproben wollen wir insbesondere zwei Fragen aufwerfen: Erstens, wie
können wir uns einen (unvoreingenommenen) Überblick über die wichtigsten Strukturen
in den Daten verschaffen, die innerhalb einer Merkmalsgruppe oder gruppen-übergreifend
vorliegen? Und zweitens, wie können wir auf Basis aller Daten eine Zielgröße von Interesse
vorhersagen und relevante Merkmale identifizieren - unter Berücksichtigung der Heteroge-
nität der Merkmale?
Die erste Frage ist ein wichtiger Schritt in jeder explorativen Datenanalyse und führt uns

zu unüberwachten Methoden der Datenanalyse. Das Auffinden verborgener Strukturen in
den Daten kann wichtige Erkenntnisse zu biologischen und technischen Ursachen liefern,
die Variationen in den Daten zugrunde liegen. Zudem ermöglicht es oft eine informative
niedrig-dimensionale Darstellung der Daten. Daher führen wir ‘Multi-table’ Methoden und
latenten Variablenmodelle ein, die es ermöglichen, die wichtigsten Achsen der Variation
und Kovariation in den Daten zu erfassen. Basierend darauf stellen wir eine neue Methode,
multi-omische Faktoranalyse (MOFA), zur Integration von Informationen aus verschiede-
nen Merkmalsgruppen vor. Mittels Sparsamkeitsannahmen an die Faktorladungen zerlegt
MOFA die Variation in den Daten in Faktoren, die in allen, mehreren oder einer einzelnen
Merkmalsgruppe eine Rolle spielen, und begünstigt interpretierbare Faktoren, die direkt
mit molekularen Markern in Verbindung gebracht werden können. Um MOFA vielseitig
anwendbar zu machen, entwickeln wir ein statisches Modell, das mit verschiedenen Daten-
typen und fehlenden Werten umgehen kann, und kombinieren es mit einem skalierbarem
Algorithmus zur Inferenz. Nachdem die Faktoren extrahiert wurden, können sie für eine
Reihe nachfolgender Analysen genutzt werden, z.B. zur Identifizierung von Untergruppen
oder Ausreißern in den Stichproben oder zur Imputation fehlender Werte. Wir zeigen in An-
wendungen auf eine multi-omische Studie zur chronischen lymphatischen Leukämie sowie
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auf einen multi-omischen Einzelzell-Datensatz, dass MOFA wichtige biologische Einsichten
vermitteln kann und nützliche weiterführende Analysen eröffnet.
Die zweite Frage führt uns zu überwachten Methoden, die es ermöglichen, prädiktive

Modelle für eine Zielgröße zu erstellen und relevante Merkmale auszuwählen. Verlässli-
che Verfahren zur Vorhersage und Variablenselektion hätten in vielen Bereichen weitge-
hende Konsequenzen. Zum Beispiel wäre es für Entscheidungen in der klinischen Praxis
äußerst nützlich, wenn wir ein Behandlungsergebnis oder einen Krankheitsverlauf mithil-
fe verfügbarer molekularer oder klinischer Daten vorhersagen könnten. Zudem könnten
Einsichten in relevante molekulare Marker wichtige biologische Zusammenhänge herstel-
len und letztlich neue Therapieansätze oder diagnostische Tests eröffnen. Daher wenden
wir uns penalisierten Regressionsmethoden zu und entwickeln darauf aufbauend eine Me-
thode, die zusätzliche Informationen über die Merkmale berücksichtigt, um die relative
Stärke der Penalisierung daten-getrieben anzupassen. Solche zusätzlichen Informationen
in Form von externen Kovariaten sind in vielen Anwendungen verfügbar: Sie können bei-
spielsweise strukturelles Wissen über die Daten kodieren, wie z.B. welche Messpunkte mit
welchem Verfahren gemessen wurden, oder Informationen über die Varianz, Frequenz oder
das Signal-Rausch-Verhältnis eines Merkmals geben. Wir zeigen, dass die Einbeziehung in-
formativer Kovariaten die Vorhersageleistung der penalisierten Regression verbessern kann.
In Anwendungen untersuchen wir wichtige Kovariaten in der Genombiologie wie das zur
Messung verwendete molekulare Verfahren oder den Gewebetyp.
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CHAPTER 1
Introduction: Premises, promises and challenges of

heterogeneous data in genome biology

Homogeneous data are all alike; all
heterogeneous data are heterogeneous in their
own way.

The Anna Karenina principle

Over the last decades, technological advances have transformed the way how research is
conducted in many disciplines. Scientists nowadays have access to unseen amounts of data,
making data-driven approaches in research increasingly common. Prominent examples are
physics or astronomy where petabytes of data are generated and stored each year, e.g. by
particle detectors at CERN or telescopes around the globe. Likewise, many other disci-
plines have undergone a similar ‘data revolution’. This includes genome biology, where the
transition from scarce and qualitative data to vast amounts of quantitative data has been
game-changing and set biology on an equal footing with particle physics or astronomy in
terms of data resources [177].
While this development promises to lead to new insights and enhance our understanding

of a given system or process, it also entails plenty of challenges and pitfalls. Apart from
the infrastructural demands to store and process petabytes of data, their analysis opens
up new statistical challenges and opportunities. Critical to unlock the potential of modern
data collections is the development of statistical and computational methods that enable
to move from the data to sound conclusions and scientific discoveries. In particular, such
methods have to be reliable, powerful and adaptive. To arrive there, it is essential to take
properties of the data into account, and interdisciplinary approaches become important
that bring together statisticians, computer scientists and domain experts.
In this thesis, we present novel computational and statistical methods motivated by

applications in genome biology. A particular goal is the integrative analysis of multiple
high-dimensional data sets, e. g. comprising measurements from different assays. These
two properties - high-dimensionality and heterogeneity - are common to many modern
data collections, both in genome biology and elsewhere. Data is increasingly collected by
combining different (high-throughput) technologies and joining collaborative efforts, where
measurements are obtained from various labs or locations. In this chapter, we will introduce
some motivating examples from genome biology with major focus on multi-omics studies
and discuss the statistical challenges arising from integrative approaches to such data.
Based on this, we provide an outline of the thesis at the end of the chapter.
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1 Introduction

1.1 The omics revolution in genome biology

Genome biology aims at understanding the genetic and molecular mechanisms underly-
ing the functioning of an organism. For this purpose, a rich resource of high-dimensional
heterogeneous data is nowadays generated by so-called (multi-)omics technologies. These
technologies enable scientists to study biological processes and systems at unprecedented
detail and can provide a comprehensive picture of multiple molecular layers. For the re-
sulting data, it is of particular importance to take an integrative approach in the analysis,
as the different molecular layers are inherently linked and play together in the regulation
of biological processes. In this section, we will introduce some basic molecular layers and
their interplay, starting from the ‘central dogma of biology’ as postulated by Crick in 1958
[41], and then turn to omics technologies and multi-omics approaches as important tools
to study these layers. Using examples from precision medicine and single cell biology, we
discuss some of the promises such data hold.

1.1.1 The central dogma of molecular biology

All organisms consist of cells as basic units, that each contain a ‘construction plan’ in their
genetic information. This information is stored in the DNA (deoxyribonucleic acid), which
consists of the four ‘letters’ A, G, C and T, encoded by the bases adenine (A), guanine
(G), cytosine (C) and thymine (T). Importantly, this information can be inherited: In a
process called replication the information in the DNA is copied, producing two identical
DNA molecules that can be passed on to daughter cells. In order to give rise to a living
organism with all its observable and measurable characteristics (also referred to as phe-
notypic traits), the DNA needs to be decoded. The central dogma describes the flow of
the genetic information from nucleic acids to proteins (Figure 1.1). In most organisms,
DNA is transcribed into RNA (ribonucleic acid), which is composed of the four letters A,
U, C and G, using the base uracil (U) instead of thymine. RNA is then translated into
proteins, composed of different amino acids. Proteins are the cells’ building blocks and
execute a range of functions, e. g. they are essential regulators, messengers, transporters
and structural components of the cell.
Jointly, the genome (i. e., the complete set of DNA molecules), transcriptome (i. e., the

complete set of RNA molecules) and proteome (i. e., the complete set of proteins) thus
form the basic molecular layers in the cell. While still the central dogma remains the uni-
fying principle of molecular biology, information flow between these layers is subject to
many regulatory processes that have been discovered in the past 50 years. Therefore, the
abundance of proteins, transcripts, and other molecular species cannot be expected to be
well correlated, creating a need for multi-layered measurements. In particular, only a small
percentage of the DNA directly encodes proteins and many elements have regulatory func-
tions instead. Different types of RNA molecules exist that are not translated and, amongst
others, act as catalytically active components of the translation machinery and regulators
of gene expression. Furthermore, changes in how the DNA is packed or chemically modified
determine the way in which genes are transcribed (or expressed). As this information can
be inherited among multiple generations of cells or even organisms, it is also referred to as
‘epigenetic’ information or ‘epigenome’.
Together, these mechanisms provide the necessary flexibility to give rise to various dif-

ferent cell types and tissues (starting from the same genetic code) and to react to environ-
mental influences. At the same time, defects in any of these layers and regulatory processes
can give rise to disorders and diseases. Investigating the interplay of the different layers
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1.1 The omics revolution in genome biology

DNA RNA protein
transcription translation

replication

reverse
transcription

RNA
replication

genome
epigenome

transcriptome proteome

Figure 1.1: The central dogma of molecular biology. The genetic information that is
stored in the DNA is transcribed into RNA, which then in turn is translated into proteins.
In a process called replication the information in the DNA is copied, yielding two identical
DNA molecules. In some viruses, different processes have been discovered, i.e. the reverse
transcription from RNA to DNA and the direct replication of the RNA. The central dogma
states that there is no information transfer from proteins to nucleic acids (i. e. no arrow
back from the right-hand side).

is thus essential to understand the biological mechanisms underlying the development and
functioning of an organism in health and disease.

1.1.2 What is (multi-)omics?

The advent of next-generation sequencing enabled researchers in genome biology to study
the different biological layers at unprecedented detail. Nowadays, it is possible to measure
the abundances and activities of thousands of biomolecules at a reasonable cost and effort.
The term ‘omics’ is typically used for the comprehensive quantitative description of a
class of molecules in a given sample that is obtained by these technologies. Important
examples are genomics, epigenomics, transcriptomics and proteomics, which investigate the
basic components introduced in context of the central dogma. In addition, metabolomics,
microbiomics and approaches based on imaging, perturbation studies or other types of
phenotypic profiling (phenomics) can contribute to the variety of omics (Table 1.1).
After some preprocessing, omics data can often be represented by a matrix Y ∈ Rn×p

containing p molecular features measured on n samples, e. g. cell lines or tissue samples.
Frequently, p is of the order of several ten or hundred thousand (e. g. expression levels of
20,000 genes, methylation marks at 500,000 CpG sites in the genome or the mutational
status at a million genomic sites). The number of samples is often comparatively small
and commonly ranges in the hundreds or less, with some exceptions (especially in the field
of single-cell biology (see Section 1.1.4), where the number of samples can reach up to a
million cells).
By now, large scale research initiatives, such as the Human Genome Project [98], the

Cancer Genome Atlas [201] or the Human Microbiome Project [140], as well as individual
groups have generated rich data resources of various omics types across different organisms
and conditions. Several platforms provide the infrastructure to deposit and access such
data including for example Ensemble [212], ArrayExpress [115], Gene Expression Omnibus
[53], UniProt [193], Reactome [106] or EMPIAR [100].
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Table 1.1: Short overview of common omics types

Genomics study of DNA sequences and genetic variants, e. g. using
whole genome or targeted sequencing

Epigenomics study of structural and chemical modifications of the DNA
such as methylation or histone modifications, e. g. using
Chip-Seq, bisulfite sequencing, ATAC-seq or related meth-
ods

Transcriptomics study of gene expression by measuring the relative abun-
dances of RNA molecules, e. g. using micro-arrays or RNA
sequencing

Proteomics study of protein levels, modifications and structures, e. g.
using mass spectrometry

Metabolomics study of metabolite levels, e. g. using mass spectrometry
Microbiomics study of presences and abundances of microorganisms, e. g.

using 16S or shotgun sequencing
Phenomics study of observable characteristics and traits, e.g. using high-

throughput imaging or perturbation experiments

While many studies focus on a particular molecular layer, or omics type, technological
advances enable nowadays to simultaneously profile different layers in high-throughput on
the same samples, resulting in so-called multi-omics data. These can often be represented as
a collection of matrices Y(m) ∈ Rn×pm , one for each omics type m, with (usually distinct)
molecular features in columns and (common) samples in rows. Multi-omics approaches are
important, as biological processes and complex traits typically arise from interactions of
many molecular layers. Hence, it is essential to take multiple biological layers into account
in order to gain a comprehensive understanding of the underlying biology [85, 107, 162].
Therefore, with decreasing costs and increasing automation, multi-omics studies become
more and more common across domains, including medicine [29, 47, 77, 99, 139], microbi-
ology [110] and, most recently, single-cell biology [40].
In addition to the combination of various omics technologies, data is often collected

from different time points, species, tissues, locations, batches, conditions or perturbations,
adding to the complexity of the data. For example, gene expression data in different human
tissues were collected by the GTEx consortium [126] and recent projects generated single
cell expression data from various tissues of mice [83, 157].

1.1.3 Multi-omics approaches for precision medicine

A major challenge in clinical care is the heterogeneity of treatment outcome and disease
progression across patients. Often it is unclear, why some patients respond well to a certain
treatment while others do not; or why for some patients a disease is much more aggressive
than for others. Precision medicine aims to find better patient stratifications and eventu-
ally arrive at molecularly informed personalized treatment decisions for individual patients
(Figure 1.2). To achieve this goal, the key is a better understanding of the molecular
sources and characteristic markers that underlie the observed variability between patients.
Here, multi-omics data provide a rich resource: By combination of different technologies,
researchers hope to tackle the complexity of human diseases [4, 35, 82, 108]. This has moti-
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vated comprehensive omics profiling on large patient cohorts to study disease heterogeneity.
For example, we and others aimed at finding better disease stratification and molecular
markers of drug sensitivity in cancer by combining molecular profiling with drug response
screens on cell lines [12, 74, 99] or primary cancer cells from individual patients [6, 47, 68].

1.1.4 Multi-omics approaches at single cell resolution

Up to now, most omics measurements originate from bulk samples, i. e. they start from a
mix of heterogeneous cells taken from a tissue or cell culture of interest. This was necessary
as a substantial amount of starting material is required for most omics technologies to be
applicable. However, recent technological advances have made it possible to explore many
common omics types at the level of individual cells [169], including the transcriptome
[114, 132, 153], genome [60, 147], epigenome [23, 172] or protein abundances [11]. For a
multi-omics approach several of these techniques have to be applied to the exact same
cell. While challenging, such protocols have been developed over the last four years, e. g.
based on the isolation and physical separation of different biomolecules in a cell (e. g.
[7, 38]) or by advanced molecular biology strategies (e. g. [46, 178]). This now enables
researchers to jointly apply up to three different omics technologies at single-cell resolution
[40], facilitating e. g. joint profiling of transcriptome and genome [46, 130], epigenome and
transcriptome [7, 36, 38, 81] or transcriptome and surface proteins [178].
Gaining single-cell resolution provides valuable additional information compared to bulk

measurements. While latter can only reveal the average of a molecular feature in an often
heterogeneous cell population, single cell resolution enables to study the feature’s distri-
bution across cells and deconvolve the contribution of different cell types. For example,
differences in gene expression between tumour samples can often be largely explained by
different degrees of immune cell infiltration, which may mask tumour-cell specific effects
[166]. Multi-omics approaches at single cell level thus enable to explore the regulation and
interplay of different biological layers in cell fate decisions, e. g. in disease formation or
development, or cell-cell interactions.

1.2 Statistical challenges

Despite the increasing availability of large data collections, such as multi-omics studies,
their full potential has not yet been realized. A bottleneck is the integrative analysis of all
data. Different data types, such as binary, count or continuous data, as well as different
data qualities come along with each technology. Integrative approaches need to combine the
different sources of information and uncover their relationships whilst taking this hetero-
geneity into account. Currently, many analyses are based on marginal associations between
individual features such as in genome-wide association studies (GWAS) [13] or quantitative
trait loci (QTL) studies [34, 79]. While this can lead to important insights, it ignores much
of the available information. A multivariate approach could empower the analyses and
provide a global picture beyond pairwise, and often spurious, associations. However, it
also encounters additional statistical and computational challenges, and we will discuss
important examples in this section.
By now, different strategies have been developed for integrating all data into a joint sta-

tistical model [18, 85, 162]. Depending on the aim of the analysis, we can broadly distinguish
unsupervised and supervised integration. Unsupervised integration aims at identifying the
major structures in the data in an unbiased way without guidance by labels or response
variables. Supervised integration aims at finding the relation of the measured features to
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Figure 1.2: Illustration of multi-omics approaches to personalized medicine.
Treatment outcome varies from one patient to another. Molecular profiling could enable
clinicians to arrive at a better disease stratification and take molecularly informed treat-
ment decisions for the individual patient.

a specific response variable. Both approaches need to deal with the high-dimensionality of
the data set, its heterogeneity as well as other common properties such as missing values
or complex correlation structures.

1.2.1 High-dimensionality

In a statistical sense, high-dimensional data refers to a setting where the number of sam-
ples n is much smaller than the number of features p (n� p). It might seem favourable to
have a comprehensive set of features providing information. However, as not all features
are necessarily informative, separating signal from noise can be challenging. Importantly,
the large feature space brings along the curse of dimensionality, implying that the observa-
tions become very sparse. This leads to non-identifiability of traditional estimates, results
in an increased multiple-testing burden in marginal approaches and renders multivariate
methods prone to over-fitting, i. e. yielding estimates with large variance and bad predic-
tion performance on new data. Furthermore, due to the sparsity of observations reliable
estimates of covariances are difficult to obtain.
To tackle these problems it is important to employ some sort of regularization on the

model complexity in order to obtain identifiable, generalizable and interpretable mod-
els. Common tools to restrict the model complexity include regularization via penalized
likelihood approaches or Bayesian priors as well as dimensionality reduction and feature se-
lection. Often, regularization is based on the assumption that the data can be explained by
a sparse model, where only a relatively small number of features play a role. Alternatively,
the data can often be reasonably assumed to lie on a much lower dimensional manifold
embedded in the high-dimensional space that encodes the most fundamental structures
in the data, yielding a model that is sparse after a suitable transformation of the feature
space. In addition, regularization can also be useful to incorporate known properties of the
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data, such as smoothness along time or space or functional relationships. Apart from the
need for regularization, the increasing size of data also makes the computational scalability
of the algorithms an important pre-requisite for the applicability of a method.
Despite these challenges, the increasing dimensions of the data also open up new oppor-

tunities for statistical modelling by adaptive and data-driven approaches. An example is
Empirical Bayes [54], where suitable Bayesian priors are learnt from the data itself, sharing
information across different features or data sets.

1.2.2 Heterogeneity

With the term heterogeneity we describe a data collection, whose features differ in their
statistical properties. For example, they might be of different data types (e. g. categori-
cal or continuous) or display distinct correlation and noise structures. As exemplified by
multi-omics data, modern data sets often consist of such heterogeneous modalities due the
availability of diverse technologies and increasingly collaborative efforts. They can provide
both complementary and redundant information on the samples, and their integration can
be the key to reconstruct a more complete picture of the underlying system by re-assembling
the parts accessible by a single technology or sensor. In addition, their integration can help
to mitigate the noise of each single source. In order to benefit from the data as a whole, it
is therefore strongly advisable to adopt a proper integration strategy instead of analysing
each data modality in isolation from the rest. For this, however, methods need to be able
to jointly model measurements that may follow very different statistical distributions and
uncover relations of heterogeneous feature sets collected from different sources. This mo-
tivates the development of new methods in several fields such as multi-table analysis in
statistics, multi-view learning in the machine learning community or multi-way analysis in
the case of matching features across all modalities.

1.2.3 Correlation structures and missing values

Besides high-dimensionality and heterogeneity, other properties of the data often need
to be taken into account in the analysis such as incompleteness of the data or complex
correlation structures.
Missing values are present in most real data sets and can occur both missing at random

or with some (usually unknown or vaguely known) pattern. Their presence can reduce
the power of an analysis and bias the results. To cope with missing values, it is therefore
important to understand potential causes for the incompleteness of the data at hand and
adopt a suitable imputation approach or an explicit model of the missing data points.
Strong correlations are very common in real data, both between samples and between

features. This can be problematic, as many commonly applied statistical methods assume
independence or only allow for limited dependency structures. As a result, analyses of
such data can lead to invalid conclusions, if based on methods whose assumptions on the
(in)dependence are not met. To alleviate this problem, it is often helpful to analyse the
major factors underlying the correlation structures, which can then be accounted for in
the statistical analysis. Furthermore, correlations between features can result in unstable
feature selection and reduced power in multivariate approaches. Here, approaches based
on clusters or hierarchies of the features can become necessary.
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1.3 Outline of the thesis

The thesis encompasses two novel methods, that we developed for the integrative analysis of
high-dimensional heterogeneous data in genome biology in an unsupervised (Chapter 4) as
well as in a supervised context (Chapter 5). We demonstrate these methods in applications
to omics studies with main focus on personalized medicine and single cell biology. To lay
the ground for this work the following two introductory chapters will outline existing
strategies to integrate high-dimensional data both in an unsupervised manner using factor
models (Chapter 2) and in a supervised manner in the framework of penalized regression
(Chapter 3).

8



CHAPTER 2
Factor models for unsupervised data integration

Finding latent structures in data is an essential step in order to make sense of one’s data,
obtain meaningful visualizations and uncover major sources of variation, which can orig-
inate both from technical factors such as batch effects as well as from biological factors
such as different disease states or cell types. While originally samples are profiled in very
high-dimensional feature spaces, the core underlying biology can often be represented by
much lower dimensional manifolds, which we aim to reconstruct. Already with a single data
modality, an unsupervised analysis can provide important insights into these underlying
structures. When multiple data modalities are available on the same samples, each can
provide its own ‘view’ onto this manifold and their integration can help to identify the
most important latent structures in a more accurate and complete manner. Thereby, we
can eventually gain a better understanding of the samples’ distribution and the connections
of different features or data types.
In this chapter, we will introduce some major techniques with the aim of recovering

latent structures. Our main focus lies on factor models that uncover latent structures in
form of continuous axes or factors. Starting with methods for a single data modality we will
then investigate their extensions to multiple data modalities. This introduction will lay the
grounds for Chapter 4, where we propose a novel method for the unsupervised integration
of multi-omics data. Following the terminology in the field of multi-view learning or multi-
table analysis we will also refer to the different data modalities as views or tables.

2.1 Identifying latent structures from a single data modality

Due to omni-presence of high-dimensional datasets nowadays, a large collection of meth-
ods has been developed that aim to find a meaningful low-dimensional data representation
starting from a single data matrix Y ∈ Rn×p. A first class of methods are linear methods
based on matrix factorization such as principal component analysis (PCA) [93], factor anal-
ysis or non-negative matrix factorization [149]. In addition, there are non-linear methods
including principal curves [86], Gaussian process latent variable models [117], auto-encoders
[89] as well as graph-based approaches. Prominent examples of the latter are Isomap [180],
diffusion maps [39], t-distributed stochastic neighbour embedding (t-SNE) [129], locally
linear embedding [164], Hessian eigenmaps [49], or uniform manifold approximation and
projection (UMAP) [135], which all try to preserve either global or local properties of the
data encoded in a neighbourhood graph.
Here, we will focus on linear factor models, which have proven powerful tools in genomics.

There are of course examples where non-linear techniques are required to capture structures
present in the data. However, in many applications to real data, non-linear counterparts do
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not outperform linear methods such as PCA [194], and linear methods can already provide
important insights and a meaningful data representation. Furthermore, they provide a
direct link from the factors to the features via the weight matrices, which can enhance
interpretability of the model.
In essence, we will look into models that share the basic form

Y = ZWT , (2.1)

where the data Y ∈ Rn×p is decomposed into a set of continuous factors Z ∈ Rn×k and
weights W ∈ Rp×k. Here, k is typically much smaller than p resulting in dimensionality
reduction. Depending on the absence or presence as well as the nature of a probabilistic
model in the decomposition (2.1) this includes as special cases factor analysis, PCA and
probabilistic or Bayesian PCA which we will introduce below.

2.1.1 Principal component analysis

One of the most commonly used methods for dimensionality reduction is principal com-
ponent analysis (PCA), which was introduced by Hotelling in 1933 [93]. PCA is a linear
method that performs an orthogonal transformation of the measured variables into a set of
linearly uncorrelated variables. Each of these principal component axes is defined such that
the projection onto the axis maximizes the variance under the constraint of orthogonality
with respect to the previous components. Suppose we are given a data matrix Y ∈ Rn×p
with samples in rows, features in columns and column-wise zero means. Then the principal
axes can iteratively be determined by the following maximization problems

u1 = arg max
||u||=1

uTYTYu (2.2)

and for r = 2, . . . ,min(n− 1, p)

ur = arg max
||u||=1

uTYT
r Yru (2.3)

with Yr denoting the deflated data matrix Yr = Y −∑r−1
s=1 Yusu

T
s . The complete set of

principal components can be obtained as

T = YU, (2.4)

where the principal axes U are given by the eigenvectors of the sample covariance ma-
trix S = 1

nY
TY and T contains the component scores. Hence, the solution can be found

by an eigenvalue problem on the sample covariance matrix S or a singular-value decom-
position (SVD) of the data matrix Y. The first k principal components are equivalently
characterized as the data representation in reduced dimensions that minimizes the to-
tal squared reconstruction error to the original data. I. e., the projection Yk = YUkU

T
k

with Uk = [u1, . . . , uk] minimizes the Frobenius norm ||Y − Ŷ||F among all matrices
Ŷ ∈ {M ∈ Rn×p|rank(M) ≤ k} [52]. Importantly, the solution of principal component
analysis depends on the scaling of the individual variables: Variables with a higher vari-
ance will have stronger contributions to the direction of maximal variance. Extensions of
PCA have been proposed which replace the covariance matrix with an arbitrary kernel
matrix resulting in non-linear versions of PCA [167]. Depending on the choice of the kernel
these have close relationships to some of the non-linear graph-based techniques mentioned
above [194].
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2.1.2 Sparse PCA

Motivated by improving interpretability of the principal axes, sparse variants of PCA have
been developed. Here, only a small set of features has non-zero weights in the principal
axes U. This can make it easier to identify the relevant features contributing most to the
variation in the data. For this purpose, the optimization problems solved by PCA, such as
the maximal variance problem or the minimal reconstruction error, are modified with an
L1-constraint on the principal axes [104, 205, 217]. Apart from interpretability, constraints
towards sparsity can also improve the properties of PCA in high-dimensions, where ordinary
PCA yields an inconsistent estimator of the subspace with maximal variance [103].

2.1.3 Probabilistic interpretation of PCA

PCA itself is not based on an explicit probability model. However, a probabilistic formu-
lation could give access to likelihood measures and a generative model or open up mixture
model extensions and applications of Bayesian inference. Motivated by this, Tipping &
Bishop suggested in 1999 a probabilistic interpretation of PCA, probabilistic principal
component analysis (pPCA) [187]. In particular, they studied the factor model given by

yi = Wzi + µ+ εi, (2.5)

where yi ∈ Rp denotes the ith sample (corresponding to the ith row of Y), µ ∈ Rp the
intercept, W ∈ Rp×k the weight matrix, εi

iid∼ N (0, σ21p) an isotropic Gaussian noise term
and zi

iid∼ N (0,1k) the latent factors, or components, for i = 1, . . . n. From the resulting
marginal model,

yi
iid∼ N (µ,WWT + σ21p), (2.6)

the maximum likelihood estimator (MLE) of the p× k matrix W can be obtained as

ŴMLE = U(Λ− σ21k)
1
2R. (2.7)

Here, U ∈ Rp×k are the k principal eigenvectors of the sample covariance matrix S, Λ =
diag(λ1, . . . , λk) contains the corresponding eigenvalues of S on the diagonal and R ∈ Rk×k
denotes an arbitrary orthogonal rotation matrix. In particular, the maximum likelihood
solution spans the k-dimensional principal subspace of the data. The individual weight
vectors in ŴMLE do not directly correspond to the principal axes but are scaled by σ2 andΛ
as well as arbitrarily rotated. In contrast to the PCA solution, they are thus not necessarily
orthogonal and are non-identifiable with respect to rotations (rotational ambiguity). In
practice, an expectation-maximization (EM) algorithm [45] was suggested to derive the
parameters in Equation (2.5) and avoid working with the full covariance matrix in high
dimensions [187]. Here, the posterior mean for the latent factors is given by

E[zi|yi] = (WTW + σ21k)
−1WT (yi − µ), (2.8)

which can be interpreted as a ridge estimate (see Chapter 3).
Based on this probabilistic model, several Bayesian versions of PCA have been for-

mulated. They impose regularizing priors such as the automatic relevance determina-
tion (ARD) prior [131] or sparsity promoting priors on the components in order to auto-
matically determine the dimensionality of the latent space [19] or to obtain sparse solutions
[80].
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2.1.4 Factor analysis

Strongly related to PCA is factor analysis, which dates back to 1904 [174]. Factor analysis
is based on a probabilistic model that allows, in contrast to the pPCA model, for non-
isotropic covariance matrices of the noise term. Introductions to factor analysis can be
found in most textbooks on multivariate analysis, e. g. [161]. The basic model of factor
analysis is given by

yi = Wzi + µ+ εi, (2.9)

where as above yi ∈ Rp denotes the observation vector from the ith sample, W ∈ Rp×k the
weights and zi ∈ Rk the factors’ scores for i = 1, . . . , n. One assumes that the error terms
fulfil E εi = 0, Var εi = Ψ = diag(ψ1, . . . , ψp), that the factors obey E zi = 0, Var zi = 1k
and that the factors and errors are uncorrelated. The variance Var(yij) is thus decomposed
as
∑k

l=1w
2
jl+ψj , where the first term is referred to as communality and the second term as

the uniqueness or specific variance [84]. Due to the non-isotropic covariance structure of the
error term, factor analysis focusses on capturing variation that is shared between features,
trying to best reproduce correlations between features. This is in contrast to PCA, where
also variation unique to a single feature is modelled via the principal components.
There are several methods for estimating the parameters in the factor analysis model.

We will again focus on the maximum likelihood solution, similar to pPCA. Here, it is
common to assume εi ∼ N (0,Ψ) with Ψ = diag(ψ1, . . . , ψp) and zi ∼ N (0,1k) yielding
the marginal model

yi
iid∼ N (µ,WWT + Ψ). (2.10)

In particular, due to the non-isotropic covariance structure, the maximum likelihood so-
lution is invariant with respect to scaling of the individual features. As no closed form
solution is available, the estimation requires an iterative algorithm. For example, an EM-
algorithm as in the pPCA model can be used [20], but here with a weighted ridge estimate
in the E-step, i. e.

E[zi|yi] = (1k +WTΨ−1W)−1WTΨ−1(yi − µ). (2.11)

Per se the factor analysis model is non-identifiable: It is invariant under orthogonal
transformations and different choices of rotations have been suggested to obtain more
interpretable factors. An example is the varimax rotation, that maximizes the variance of
squared loadings for each factor, thereby resulting in a clearer distinction between large
and small loadings on a factor.
Another important choice is the number of factors to be included into the model. While in

PCA higher-order principal component models will always include the lower-order principal
components due to the isotropic noise model, in factor analysis the model with two factors
can be very different from a model with a single factor [187].
As for pPCA, a Bayesian treatment of factor analysis with priors on the loading ma-

trices can provide tools for determining the number of factors and to impose sparsity or
other constraints, thereby in parts alleviating the problem of rotational ambiguity and
model selection. In addition, this opens up the use of Bayesian inference methods based on
Markov chain Monte Carlo (MCMC) methods such as Gibbs sampling [76] or deterministic
approximate inference methods such as the Laplace approximation, variational Bayes [21,
105] or expectation propagation [142].

2.1.5 The role of factor models in genome biology

In genome biology, principal components and factor models are widely used, both for ex-
ploratory data analysis and down-stream analyses. PCA is the standard tool to obtain

12



2.2 Identifying latent structures from multiple data modalities

a low-dimensional visualization of the data. This initial exploration can already reveal
possible batch effects or biological drivers of variation. In addition, the top principal com-
ponents are heavily used for various downstream analyses, including clustering (e. g. [132]),
regression or classification tasks (e. g. [77]) or further non-linear dimensionality reduction
(e. g. [129]). This enables working in a much lower dimensional space, that is hoped to
retain most of the biological signal but less of the technical noise, and thus can reduce
computational costs or over-fitting. The number of principal components to keep in such
downstream analyses can be picked based on resampling procedures and scree-plots of the
variance explained by each component.
While PCA provides an important generic tool, the flexibility of factor models has also

led to many adaptations and extensions for specific applications in genome biology. For
example, models to incorporate known covariates [24, 72, 120, 176], non-Gaussian data
types [24, 154], known feature annotations [24, 61] or sample relationships [71] have been
suggested. Their applications range from the detection and modelling of confounding fac-
tors such as batch effects [72, 120] or population structure in genetic data [57, 152, 156]
to decompositions of large data sets in order to define biological reference signatures, e. g.
using somatic mutation data to define signatures of mutational processes [3].
Apart from their flexibility, the popularity of linear factor models is also due to the fact

that they can provide a direct link from the factors to the molecular features via the weight
matrices, thereby enabling to uncover the molecular underpinnings of the major sources of
variation. To further improve interpretability, sparsity constraints have been imposed on
the weights in many applications resulting in a small set of active features [24, 57].

2.2 Identifying latent structures from multiple data modalities

Suppose we are given multiple data tables or views on the same set of samples Y(m) ∈
Rn×pm for m = 1, . . . ,M . In this setting, we can distinguish between latent structures that
are present in several or all of the modalities and those unique to a single data modality. The
methods discussed in the previous section therefore need to be adapted to explore not only
variation within a modality and relationships of individual features but also covariation
across modalities and relationships between whole data tables.
A first starting point to analyse such a data collection could be concatenating all data

to a single data matrix Y = (Y(1), . . . ,Y(M)) ∈ Rn×
∑
m pm and apply single-view methods

such as PCA. By this, we can arrive at a low-dimensional representation of the samples and
study relationships between individual features. However, this approach does not directly
provide us with information of relationships between the data modalities. In addition, data
modalities might come along with different data types, e. g. continuous or categorical data,
and can be of different quality or dimension. To account for this, methods tailored towards
multiple data modalities have been proposed. While some methods, such as canonical corre-
lation analysis [92], focus on the shared patterns of variation, other methods consider both
shared and unique structures such as inter-battery factor models or group factor analysis
[113, 197]. Here, we will introduce such methods, again with main focus on linear method
based on matrix factorizations. We note, however, that non-linear dimensionality reduction
techniques can also been extended to multiple views [43] and might be advantageous in
the presence of strongly non-linear relationships in the data. We will start with introduc-
ing two important examples of multi-table analyses, i. e. canonical correlation analysis and
co-inertia analysis, and then turn again to probabilistic interpretations as latent variable
models.
In the following, we suppose we are given Y(m) ∈ Rn×pm for m = 1, . . . ,M with
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column-wise mean zero, and we denote the empirical variance and covariances with S(r,s) =
1
nY

(r)TY(s).

2.2.1 Canonical correlation analysis

Given two data tables, canonical correlation analysis (CCA) [92] aims at finding axes for
each table such that correlation between the projections of the data tables onto its axis
is maximized. As in PCA, subsequent axes are found by the same maximization problem
under the constraint of orthogonality with respect to the previous components. The kth

canonical vectors are hence given by

uk, vk ∈ argmax
u,v

cor(Y(1)u,Y(2)v) = argmax
uTS(1,2)v√

uTS(1,1)u
√
vTS(2,2)v

,

s.t. Y(1)u ⊥ Y(1)uk′ , Y
(2)v ⊥ Y(2)vk′ ∀k′ < k.

(2.12)

The solutions can again be found by an eigenvalue problem that is given by

S−1(1,1)S(1,2)S
−1
(2,2)S(2,1)u = ρ2u, (2.13)

S−1(2,2)S(2,1)S
−1
(1,1)S(1,2)v = ρ2v, (2.14)

where ρ are the canonical correlations and u, v the canonical directions. From this, the
canonical variables are obtained as a = Y(1)u, b = Y(2)v ∈ Rn.

Like for PCA, sparse formulations of CCA have been suggested with the aim to im-
prove interpretability of canonical vectors and enable applications to high-dimensional
data, where the empirical covariance matrix is singular and canonical vectors are not
unique [151, 205]. CCA and sparse CCA have been widely used in genomic studies both
for relating features from different (omics) technologies [118, 151, 204] and for relating
samples from different batches [28]. However, per se it is limited to two data tables. Ex-
tensions to multiple data tables have been proposed, that maximize a (weighted) sum of
pairwise correlations. The weighting needs to be chosen based on assumptions which tables
are connected [182, 204].

2.2.2 Co-inertia analysis

Co-inertia analysis (CIA) is an alternative to CCA that looks at the co-inertia of two data
tables and has received particular interest in ecological studies [37, 50, 183]. Inertia and
co-inertia are commonly defined in the duality diagram framework [44], where in addition
to the data tables distance metrics in the feature space (Q) and sample weights (D) are
considered. The inertia is then defined as

I = trace(YQYTD). (2.15)

Representing Y as a cloud of n points in the feature space, the inertia thus measures the
sum of squared distances of the points to the origin. Introduction of D enables to up- or
down-weight specific points, and Q determines the importance of different directions in
the feature space. The co-inertia of two tables is then defined as

CoI = trace(Y(1)Q(1)Y(1)TDY(2)Q(2)Y(2)TD), (2.16)

which provides a measure of the angle between the two inertia matrices according to the
inner product given by 〈A,B〉 = trace(ATB). As a special case, the inertia equals the
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2.2 Identifying latent structures from multiple data modalities

sum of variances, and the co-inertia the sum of co-variances for centered Y, diagonal D
with entries 1/n and Euclidean metric. In this case, the axes that maximize the projected
co-inertia are given by

u1, u2 ∈ argmax cov(Y(1)u1,Y
(2)u2) = uT1 Y

(1)TY(2)u2. (2.17)

Solutions can be found by a singular value decomposition of Y(1)TY(2). In contrast to
CCA, which aims at maximizing correlation, CIA focuses on covariance and thereby finds
a balance between the correlation and the variance in two data tables. Subsequent compo-
nents are found by the same optimization problem with constraints on the orthogonality
to previous components, as in CCA.
While less common than CCA, CIA has been applied for omics integration or cross-

platform comparisons [42, 119, 137]. Here, often an extension to more than two tables is
necessary, and, like for CCA, weights need to be chosen for each table, i. e.

u1, . . . , uM , v ∈ argmax
M∑
m=1

wmcov
2(Y(m)um, v), (2.18)

where v ∈ Rn is the reference score and wm ∈ R the weight of table m. Motivated by
improved interpretability, further extensions of CIA have been proposed that employ L1-
penalties to obtain sparse weight vectors [141].

2.2.3 Probabilistic interpretation of CCA

Like for PCA, factor models can provide a probabilistic interpretation of CCA. To this
end, Bach & Jordan considered in 2005 [10] the following factor model

zi
iid∼ N (0,1k), (2.19)

y
(m)
i |zi

iid∼ N
(
µ
(m)
i +W(m)zi,Σ

(m)
)

m = 1, 2, (2.20)

with arbitrary positive definite Σ(m) ∈ Rpm×pm and k ≤ min(p1, p2). As the residual
covariance can take arbitrary forms, the factors z focus on modelling only variation that is
shared across the views, corresponding to the focus on correlation in CCA. Bach & Jordan
showed that the maximum likelihood estimates for the weights W in this model are linked
to the canonical directions via

Ŵ
(m)
MLE = S(m,m)U

(m)M(m), m = 1, 2, (2.21)

and that the posterior expectations of z are given by

E
[
zi|y(m)

i

]
= M(m)TU(m)T

(
y
(m)
i − µ(m)

i

)
, m = 1, 2. (2.22)

Here,U(m) ∈ Rpm×k contain the first k canonical directions andM(m) ∈ Rk×k are arbitrary
matrices such that M(1)M(2)T yields a diagonal matrix with first k canonical correlations
on the diagonal. In particular, the posterior expectations of z span the same subspace as
the canonical correlation axes. To infer the parameters in the model an EM-algorithm was
proposed.
Based on this probabilistic interpretation, Bayesian models of CCA have been con-

structed that employ priors on the model parameters [111, 112, 200]. A common choice
is an inverse-Wishart prior for the covariance matrices and an ARD prior [131] on the
weights that shrinks weights of inactive factors to zero, thereby enabling to determine the
number of components in an automated manner. Inference can for example be based on
Gibbs sampling [111] or variational methods [200].
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2 Factor models for unsupervised data integration

2.2.4 Inter-battery factor analysis

The probabilistic CCA model is strongly related to inter-battery factor analysis (IBFA)
[192]. Here, not only shared factors but also view-specific factors are included into the
model, which is given by

y
(m)
i = A(m)zi +B(m)z

(m)
i + ε

(m)
i , for m = 1, 2, (2.23)

with ε(m)
i ∼ N (0,Ψ (m)) and Ψ (m) = diag(ψ

(m)
1 , . . . , ψ

(m)
pm ). Here, A(m) ∈ Rpm×k denote the

weight matrices of the shared factors zi ∈ Rk, and B(m) ∈ Rpm×km the weight matrices of
the view-specific factors z(m)

i ∈ Rkm . This model can also be extended to more than two
data modalities as in multi-battery factor analysis or the strongly related JIVE model [125],
which both decompose variation into common structures present in all data modalities and
individual structures.
The probabilistic CCA can be obtained from Equation (2.23) with z

(m)
i ∼ N (0,1km)

when marginalising the view-specific factors out, i. e.

y
(m)
i |zi ∼ N

(
A

(m)
i zi,B

(m)B(m)T + Ψ (m)
)
, (2.24)

as long as all view-specific variation (given by Σ(m) in Equation (2.20)) is modelled by the
view-specific factors.
In its basic formulation in Equation (2.23), IBFA is unidentifiable, as allocation to shared

and common factors can be exchanged without changing the likelihood of the model. This
can in parts be alleviated by appropriate sparsity assumptions on the joint weight matrix
in the concatenated model. For this, we re-write the model as[

y
(1)
i

y
(2)
i

]
∼ N (Wz̃i,Ψ) , Ψ =

[
Ψ (1) 0

0 Ψ (2)

]
, (2.25)

with latent factors z̃i = [zi, z
(1)
i , z

(2)
i ] ∼ N (0,1k̃) for k̃ = k + k1 + k2 and weight matrix

W =

[
W(1)

W(2)

]
=

[
A(1) B(1) 0

A(2) 0 B(2)

]
∈ R(p1+p2)×k̃. (2.26)

Without the structural constraints on W, this model would reduce to a probabilistic PCA
or factor analysis model, depending on the restrictions of the diagonal entries in Ψ . How-
ever, the specific pattern in W can be enforced via structured regularization. For example,
in the Bayesian setting priors promoting group sparsity on W can be employed. In [112],
the authors suggest using a view-wise ARD prior on the columns of W to achieve this, i. e.
the prior on the kth column of W(m) is given as

W
(m)
·,k ∼ N

(
0,

1

α
(m)
k

1p

)
. (2.27)

By allowing for different values for α(m)
k in each view m, the kth component can be specif-

ically inactivated in both, a single or no view as illustrated in Figure 2.1: A small α(m)
k

for both m = 1, 2 allows for shared components, view-specific components are obtained by
learning large values α(m)

k for the inactive view and small values in the active view, and
non-essential components are inactivated by learning large values for α(m)

k in both views
m = 1, 2. In order to make inference on the posterior distributions, we can for example
resort to variational methods or Gibbs sampling as in [112].
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Figure 2.1: Illustration of the ARD prior in Bayesian IBFA. The figure illustrates
the effect of the ARD prior on the weight vector W(m)

·,k for factor k. A small value of α(m)
k

leads to an active component k (left) as the flat prior poses little constraints on the size of
the elements in W

(m)
·,k . On the other hand, large values of α(m)

k inactivate a component in
view m (right), as they result in a very concentrated prior distribution restricting values
in W

(m)
·,k to lie close to zero.

2.2.5 Group factor analysis

The ideas from the Bayesian IBFA model were extended in the group factor analysis (GFA)
framework [197] to multiple views. Here, arbitrary combinations of view-specific factors,
fully shared factors and partly shared factors are considered in order to model variation
that is present in an arbitrary subset of views, including view-specific and joint variation as
special cases. For this purpose, GFA uses the same view-wise regularization on the weight
matrix as Bayesian IBFA. By the same principle as above, this can inactivate factors in a
subset of views to model variation that is only present in some views. Several extension
have been suggest within this framework [27, 113, 122, 160, 214], which differ in the form
of Ψ (heteroscedastic or homoscedastic noise), the use of additional low-rank constraints
on the factor specificity pattern encoded in α = (α

(m)
k )m,k [113], the addition of feature-

wise sparsity-promoting priors for improved interpretability of the components [27, 122,
214] and the inference scheme (e. g. Gibbs sampling or variational methods). The GFA
framework will be the essential building block for our work in Chapter 4, where we also
discuss relationships to different variants of GFA in more detail.

2.3 A glimpse at our contribution

In Chapter 4 we will present a novel method for unsupervised integration of multi-view data
tailored to multi-omics data, multi-omics factor analysis (MOFA). This method enables to
find the main (shared and unique) sources of variation across samples and gain insights into
which axis of variation is important in which omics as well as which molecular processes and
markers are underlying the variation. MOFA is part of the GFA framework and adapts
it for applications to multi-omics data. In particular, we extended GFA by combining
a scalable inference scheme based on variational Bayes (VB), non-Gaussian likelihoods,
handling of missing values as well as sparse factor weights. Furthermore, we developed and
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2 Factor models for unsupervised data integration

implemented several downstream analyses tools and demonstrated its application on data
from a multi-omics study on leukaemia as well as a single-cell multi-omics data set.
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CHAPTER 3
Penalized regression for supervised data integration

Complementary to unsupervised analysis, we are often interested in directly associating the
high-dimensional data modalities to a response of interest, such as a phenotypic outcome
or trait, by learning a relationship of the form

Y = f(X),

given a response variable Y ∈ R and a vector of predictors X ∈ Rp. Learning such a
relationship can be useful both for prediction of Y based on a new observation of X and
to identify which components of X are most relevant for Y . For example, in personalized
medicine X could be a vector of molecular markers that we would like to use in order to
predict a patient’s survival, treatment response or disease risk given by Y . In particular,
we again aim at integrative multivariate approaches, which consider all features jointly, as
this can be advantageous in order to rule out spurious associations, reduce residual vari-
ances and obtain a good predictive model. For this purpose, we consider here (generalized)
linear models as a simple yet useful class of models, where f depends on X via a linear
combination of the features.
To make it explicit, that X can comprise features from multiple sources of information,

such as different omics types, which we want to use jointly for the prediction of Y , we
could write

Y = f(X(1), . . . , X(M)),

with X(m) ∈ Rpm for m = 1, . . . ,M . In contrast to the setting of unsupervised data
integration, Y can now guide the integration and the primary focus is on relationships
of Y to the different components of X. Therefore, a straightforward approach to this
problem is the application of standard regression techniques on the concatenated vector
X = (X(1), . . . , X(M)) ∈ R

∑
l pl . This approach typically leads to a very high-dimensional

design matrix and thus requires appropriate regularization techniques. In this chapter, we
will introduce some commonly applied methods for penalized regression and eventually
discuss ways to account for the heterogeneity of the features in X, which motivates our
work in Chapter 5.

3.1 The concepts of penalized regression

Suppose we are given observations (x1, y1), . . . , (xn, yn) with yi ∈ R, xi ∈ Rp and denote
with X = (x1, . . . , xn)

T ∈ Rn×p and y = (yi)
n
i=1 ∈ Rn. We assume that, given xi, yi are

independent and identically distributed (iid), following a distribution in the exponential
family with mean µi = E(yi|xi) described by

g(µi) = xTi β,
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3 Penalized regression for supervised data integration

with a parameter vector β ∈ Rp. This model encompasses both linear regression and
logistic regression as special cases. A common way to estimate the coefficients uses a
maximum likelihood approach. Here, the coefficients are found by minimizing the negative
log-likelihood ` of the model, i. e.

β̂ ∈ argmin
β
`(β). (3.1)

For example, in the case of a linear model with normal likelihood this leads to the least-
squares approach, which yields an unbiased estimator for β.

Maximum likelihood estimation, however, can encounter several problems with increasing
number of predictors. This includes high variance of the estimator, non-identifiability in the
high-dimensional setting (p > n) and, possibly, the lack of interpretability due to many non-
zero coefficients. To alleviate these problems, penalization can be used to reduce the model
complexity. At the cost of introducing a bias on the estimator, penalization can decrease
the estimator’s mean squared error via a reduction in its variance. For this purpose, an
additional penalty term is added to the optimization problem in Equation (3.1), i. e.

β̂ ∈ argmin
β
`(β) + λpen(β) (3.2)

Here, pen(·) is a penalty function that restricts the size of the model coefficients. Common
examples are of the form pen(β) =

∑
j |βj |q for some q ≥ 0. Two prominent choices of q

result in ridge regression (q = 2) and Lasso (q = 1), which we will discuss in more detail
below.
The tuning parameter λ allows to vary the degree of penalization and by this modulates

the bias-variance trade-off. With λ = 0 we recover the maximum likelihood solution, while
for λ→∞ all coefficients vanish. Determining a suitable value for λ is important in prac-
tice. A very small λ yields a complex model with low bias but highly variable estimators,
resulting in over-fitting of the data. On the other hand, a very large λ yields a very simple
model, whose estimators have little variance but a strong bias resulting in under-fitting of
the data. The relationship of model complexity with the test error and train error is illus-
trated in Figure 3.1. As the test error is generally not available, in practice cross-validation
is commonly used to approximate the test error and to determine a suitable value for λ.
For this, the samples are split randomly into k folds of (near) equal size. Then, the model
is trained for different values of λ on all except one fold and evaluated on the left-out fold
in terms of prediction error. The value with the best average performance across the folds
is chosen for λ. Alternatively, it has been suggested to increase this value by one standard
error of the cross-validation in order to give preference to the slightly less complex model
with comparable performance [66]. While cross-validation provides a useful approach in
practice, it is however important to note, that the best model complexity for prediction
performance might not be the optimal value for recovery of the true model, e. g. in the
context of feature selection [136].

3.2 Ridge regression

Ridge regression was introduced in 1970 by Hoerl & Kennard in order to address the
problem of instability in least-squares estimation with non-orthogonal design and the sin-
gularity of XTX [90]. With high-dimensional data, ridge regression provides a way to solve
the problem of non-identifiability and can lead to an (in terms of mean squared error)
improved, albeit biased, estimator with reduced variance. The penalty is given by the Eu-
clidean norm of the coefficients, thus shrinking all coefficients towards zero as illustrated
in Figure 3.2.
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Figure 3.1: Choosing a good model complexity. Red lines indicate the test error,
blue lines the training error for varying model complexities. A model with a high model
complexity fits the training data perfectly, but has high variance resulting in high prediction
error on test data (over-fitting). On the other hand, a low model complexity has high
prediction error on both the test and training data as it has a large bias and under-fits
the data. An optimal model complexity for prediction purposes would be the point with
minimal test error, which can be approximated using cross-validation.

In particular, in case of a linear model the estimate is given by

β̂ridge ∈ argmin
β
||y −Xβ||22 + λ||β||22, (3.3)

or, equivalently,
β̂ridge ∈ argmin

β
||y −Xβ||22 s.t. ||β||22 ≤ s. (3.4)

This optimization problem has a closed-form solution given by

β̂ridge = (XTX+ λ1)−1XT y =: WXT y, (3.5)

and, under the assumption of normal errors with variance σ2, the distribution of the esti-
mator can easily be found to be

β̂ridge ∼ N (WXTXβ, σ2WXTXW). (3.6)

For large p the estimate can be calculated making use of singular value decomposition
of X [87] or the Woodbury matrix identity [206] to avoid the direct inversion of a p × p
matrix and instead work with n × n matrices. In general, the solution for different types
of likelihoods ` can be found using a cyclical coordinate descent algorithm to efficiently
calculate the solution path for a sequence of λ values [65].

3.3 Lasso

In 1996, Tibshirani introduced the Lasso [184] which uses an L1-penalty instead of an
L2-penalty on the model coefficients. Due to the shape of the L1-norm, the Lasso penalty
forces many coefficients to be exactly zero, as illustrated in Figure 3.2. Thereby, the Lasso
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2

Figure 3.2: Geometry of Lasso and ridge penalties. The figure illustrates in red the
contours of the negative log-likelihood and in green the shapes of the constraints implied
by the penalty function in Lasso (left) or ridge regression (right). The maximum likelihood
estimate is shrunken towards zero to lie within the constrained region.

combines shrinkage with feature selection. A good overview on the theory of the estimator
and its application can be found in [26]. The estimate for a linear model is given by

β̂Lasso ∈ argmin
β
||y −Xβ||22 + λ||β||1, (3.7)

or, equivalently,
β̂Lasso ∈ argmin

β
||y −Xβ||22 s.t. ||β||1 ≤ s. (3.8)

In contrast to penalties of the form p(β) =
∑

j |βj |q with q < 1, this estimate with q = 1
can still be found by a convex optimization problem. However, other than for ridge regres-
sion, no closed-form solution is available and the distribution of the estimator is complex.
Quadratic programming techniques can be employed to solve the convex minimization
problem given by the Lasso. By now, efficient ways have been developed to compute the
whole Lasso path over a sequence of penalization parameters λ, which in case of a linear
model is a piece-wise linear function in λ: In 2004, Efron et al. proposed least angle re-
gression [55], whose complexity is linear in the features in high-dimensional settings, i. e.
O(npmin(n, p)). A more generally applicable and often faster method is based on a cyclical
coordinate-wise descent algorithm proposed in [65].
The Lasso is based on the assumption that the data can be well described by a sparse

model, involving only a much smaller number of features than p. If s0 denotes the number of
non-zero coefficients in the model, the prediction error of the Lasso is of order s0 log pn (under
the so-called compatibility condition on X [26]). In particular, compared the ordinary least
squares estimator, whose prediction error is of order p

n , we are paying a price of log p for
not knowing the truly active variables a priori.
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3.4 Extensions of the Lasso

Thanks to its variable selection property, the Lasso method has gained popularity in many
applications. However, some potential drawbacks in applications are the following: (i) In
case of strongly correlated features the Lasso picks one essentially at random, which can
mislead interpretation, (ii) Lasso chooses at most n predictors, (iii) with λ chosen by cross-
validation, Lasso aims for best prediction performance and is not consistent for feature
selection and (iv) Lasso does not respect group structures in its selection, which might be
desirable, e. g. in the presence of categorical predictors.
To address these points, variations on the Lasso penalty have been introduced including

elastic net [216], adaptive Lasso [215] or group Lasso [210]. Many other variants have been
developed, for details and a comprehensive overview refer e. g. to [26, 66].

3.4.1 Elastic net

To address the first two points Zou & Hastie proposed the elastic net [216], which combines
the ridge and the Lasso penalty to maintain the feature selection property of the Lasso,
while improving performance in case of correlated features and allowing for a higher number
of active predictors. The estimate is given by

β̂eNet ∈ argmin
β
`(β) + λ

(
1− α
2
||β||22 + α||β||1

)
, (3.9)

where α ∈ [0, 1] provides the balance between the L1- and L2-penalty. In particular, α = 0
yields the ridge estimate and α = 1 the Lasso. Solution paths in λ can again be found
using cyclical coordinate descent [65]. Using a 2-dimensional tuning approach for the two
parameters λ and α this method was shown to perform as well as the better of Lasso and
ridge approaches in applications to genomic data [198].

3.4.2 Adaptive Lasso

To obtain a version of Lasso that is consistent for feature selection, Zou proposed the
adaptive Lasso [215], which consists of a two-step procedure. In a first step, an initial
estimate b of the model coefficients is derived, using for example ordinary least squares,
Lasso or ridge regression. In a second step, each feature is attributed a penalty factor given
by the inverse of its absolute coefficient from the first step, i.e.

β̂ada ∈ argmin
β
`(β) + λ

∑
j

1

|bj |
|βj |. (3.10)

This gives preference to the features that have obtained a high absolute coefficient in the
first step, while it penalizes features with a small initial estimate more.

3.4.3 Group Lasso and sparse group Lasso

To account for known groups in the data that should be selected or discarded jointly, Yuan
& Lin introduced the group Lasso [210]. Denoting with Gg the set of indices of all features
belonging to a group g, the group Lasso estimate is given by

β̂group ∈ argmin
β
`(β) + λ

∑
g

mg||βGg ||2. (3.11)

23



3 Penalized regression for supervised data integration

The factor mg usually balances different group sizes and is typically chosen asmg =
√
|Gg|.

Thus, the penalty is given by the sum of Euclidean norms of the coefficients within each
group Gg. As a consequence, the penalization acts like a ridge penalty within groups and
like a Lasso penalty at the group level, thereby choosing either all variables within a group
or none. For groups of size one, we would recover the ordinary Lasso.
In order to introduce sparsity also within the selected groups, Friedman et al. put an

additional L1-penalty on the coefficients, resulting in a method called sparse group Lasso
[67]. Here, the estimate is given by

β̂sgl ∈ argmin
β
`(β) + λ1

∑
g

mg||βGg ||2 + λ2||β||1. (3.12)

3.4.4 Fused Lasso

The fused Lasso [185] is another way to incorporate structural constraints into the penaliza-
tion. In addition to the usual L1-penalty, it employs another L1-penalty on the coefficient
differences to enforce piece-wise constant values for neighbouring coefficients, i. e.

β̂fused ∈ argmin
β
`(β) + λ1

p∑
j=2

|βj − βj−1|+ λ2||β||1. (3.13)

This can be useful in applications where a natural ordering of the features exists and we
believe that nearby features will have a similar effect. For example, it has been applied for
change point detection in copy number profiles from comparative genomic hybridization
data [186]. Similar ideas have been applied if features are connected by a known network
and smoothness along the graph is assumed [124].

3.5 A Bayesian view on penalized regression

In parallel to penalized regression methods, Bayesian regression methods have been de-
veloped to cope with high-dimensional data. These use prior distributions on the model
coefficients as a form of regularization. This approach shows clear parallels to the fre-
quentist methods above. For example, the Lasso or ridge estimate can be equivalently
characterized as a maximum posterior estimate in a Bayesian model:

Proposition 1 Given (x1, y1), . . . , (xn, yn) ∈ Rp+1 and assume yi ∼ N (xTi β, σ
2) with σ2

known. If the priors on β are chosen as

βj
iid∼ N

(
0,
σ2

λ

)
or βj

iid∼ Laplace

(
0,
σ2

λ

)
∀ j = 1, . . . , p,

the maximum-a-posterior estimate β̂MAP ∈ argmaxβ p(β|y) corresponds to the ridge and
Lasso estimate in a linear regression model with penalty parameter λ, respectively.

Methods using a normal or Laplace prior are therefore also referred to as Bayesian ridge
regression [95] or Bayesian Lasso [150]. In practice, the error variance it typically unknown
and additional priors are used for σ2, e. g. a conjugate inverse-Gamma prior.
In a Bayesian approach the parameters of the prior distribution determine the model

complexity, corresponding to the penalty parameter λ in penalized regression. As examples,
let’s consider the case of a normal or Laplace prior on β, i. e. β ∼ N (0, λ−1) or β ∼
Laplace(0, λ−1). Here, the variance or scale parameter λ−1 determines the width of the prior
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distribution, as already illustrated in the context of unsupervised methods in Figure 2.1.
For a high value of λ−1 the prior distribution is very wide and the regularization is weak,
resulting in higher model complexity. On the other hand, a very low value of λ−1 leads to a
very narrow prior distribution and hence a strong regularization. By employing hyper-priors
on the parameter λ, the Bayesian setting opens up alternative ways to choose a suitable
model complexity in an adaptive manner, without the need to refer to cross-validation. A
common choice is a conjugate Gamma prior on λ (in Bayesian ridge regression) or λ2 (in
the Bayesian Lasso).
Apart from the priors used in Bayesian ridge regression or Bayesian Lasso, many alter-

native choices have been suggested. Examples include the spike-and-slab prior [143], the
automatic relevance determination (ARD) prior [131] or the Horseshoe prior [33]. Further-
more, structural information can naturally be incorporated into the priors, in a similar
spirit to the group or fused Lasso. Examples include temporal or spatial relationships and
group dependencies (e.g. [5, 56, 88, 159, 163, 207, 208] and references therein), which are
incorporated via multivariate or non-exchangeable priors on the coefficients.
Although the correspondence in Proposition 1 is based on the maximum-a-posterior es-

timate, Bayesian inference is usually based on the whole posterior distribution and point
estimates are often obtained by the posterior mean. In simple examples, the posterior can
be derived analytically, but typically one needs to refer to sampling-based or deterministic
approximations such as Markov chain Monte Carlo (MCMC) methods, Laplace’s method
or Integrated Nested Laplace Approximations (INLA) [165], Variational Bayes [21] or Ex-
pectation Propagation [142]. In addition to point estimates, the posterior distribution can
yield uncertainty measures, predictive distributions and feature inclusion probabilities.

3.6 Penalized regression with heterogeneous data modalities

Up to here, we have mainly considered the general regression setting given a single design
matrix. In our original problem, however, the independent variableX had components from
very different data modalities. While the penalization accounts for the high-dimensionality
of X, we so far have not explicitly addressed its heterogeneity and simply concatenated all
features. This enabled us to investigate the relationships of individual features to the re-
sponse in a joint model including features from all data modalities. However, concatenation
makes it harder to find relationships between whole data modalities and the response. For
example, often we are interested in which modalities are most important for an accurate
prediction of Y , which might not be obvious from the concatenated regression model. In
addition, concatenation ignores all available information on the source of the features in
X, which could help to make the regression more powerful, e. g., if two data modalities
are of very different quality. For these reasons, it can be desirable to take the structure of
X into account. Here, we outline some possible avenues based on the methods introduced
above.

Using the group Lasso We have already seen one way to account for the heterogeneity
with the group Lasso in Section 3.4. By taking data modalities as groups, we can select
or discard entire modalities from the regression problem. As typically we do not want to
include a complete modality as a whole, the sparse group Lasso can provide a means of
selection both at the level of data modalities and individual features. While useful in many
applications, drawbacks of this approach include that the amount of regularization towards
sparsity is the same for all groups and that in many applications a hard in- or exclusion of
modalities might be too drastic, calling for a softer weighting scheme of different modalities.
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3 Penalized regression for supervised data integration

Combining modality-wise models Another way of dealing with multiple data modalities
consists in fitting separate models to each single modality in a first step and combining them
in a second step. This can provide a softer means of down- and up-weighting modalities
in the joint regression model. For example, the first step could be used to select a set of
features from each data modality, e. g. using Lasso, and the second step could consider
a joint regression model with all selected features, as e. g. in [213]. Other approaches are
based on model averaging in the second step. A drawback of such approaches is that the
selection or model obtained from the first step can be misleading or sub-optimal, because
it cannot take into account the variables from other modalities. Collaborative regression
[78] shares a similar idea to two-step approaches by making individual predictions for each
modality. Other than two-step approaches, this methods simultaneously minimizes the sum
of modality-wise prediction errors and the discrepancies between modality-wise predictions.
However, this was seen to be unsuited for prediction tasks and mainly focused on finding
common patterns [78].

Based on latent components Instead of directly using the features as predictors, data
modalities can be summarized into latent factors, which can then be used in the regression
model. Many approaches in this context are based on two separate steps. First, an unsu-
pervised dimensionality reduction is employed as discussed in Chapter 2, e.g. using PCA
per modality or multi-table methods. In a second step, the inferred components are then
jointly used in a regression model. In practice, such approaches can help to reduce the di-
mensionality and noise in the joint model and - if multi-table methods are applied - borrow
strength across modalities. However, as the selection of latent factors is de-coupled from
the response variable, this can be underpowered as the major axes of (co-)variation might
not correspond to the most relevant predictors for the response. Therefore, approaches
have been developed that simultaneously construct the latent factors explaining variation
in each modality and optimize them for explaining the response Y , e. g. based on partial
least squares (PLS) [171] or sparse factor models [179]. This can provide a compromise
between discovery of biologically relevant connections between data modalities and the
prediction or classification performance. However, such approaches often seem to be less
powerful compared to concatenation based regression approaches in terms of prediction
performance [171].

Differential penalization using penalty factors Differential penalization provides an al-
ternative way to account for heterogeneity of the features. This can provide a softer weight-
ing scheme of different feature groups compared to the group Lasso. In the most general
form, we can allow for a different penalty factor sj ∈ R≥0 per feature, i. e.

β̂ ∈ argmin
β
`(β) + λ

p∑
j=1

sjq(βj), (3.14)

e. g. with q(βj) = |βj | or q(βj) = β2j . By using a common s(l) = sj for all features j from
a modality l, we jointly up- or down-weight features from the same data modality. While
this provides a very general approach, the main problem here consists in finding a good
set of penalty factors adaptively. For example, cross-validation soon becomes prohibitive
as it would require re-fitting the model over a grid exponential in the number of distinct
penalty factors. Therefore, alternative approaches are required, and we will come back to
this problem in Chapter 5.
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3.7 A glimpse at our contribution

Using Bayesian approaches Taking a Bayesian view on penalized regression, feature het-
erogeneity can be incorporated via the prior on the model coefficients. For example, the in-
troduction of differential penalization in Equation (3.14) corresponds to non-exchangeable
coefficients with univariate priors that have different scale parameters. As mentioned in
Section 3.5, multivariate or non-exchangeable priors can be employed to account for known
structure in the design matrix (e. g. [5, 56, 88, 159, 163, 207, 208]), including Bayesian ver-
sions of the group Lasso. This provides a flexible way of taking heterogeneities of the
features into account. A major challenge that is critical for the applicability of Bayesian
methods are scalable inference schemes.

3.7 A glimpse at our contribution

In Chapter 5 we will follow up on the idea of using differential penalization of features
to account for feature heterogeneity in penalized regression. In particular, we want to use
additional information on the features in order to guide the relative strength of penaliza-
tion across different feature groups in a scalable and adaptive manner. Such additional
information is available in most applications: While the setting of different data modalities
is one motivating example, other types of annotations could provide useful information on
a feature. Examples include quality metrics, insights from prior studies and the features’
empirical variance or frequency. We developed a method to incorporate such information
by adapting the relative strength of penalization across features in a data-driven manner
and demonstrated performance gains on simulated data. Furthermore, we investigated the
use of important covariates in applications to data from genome biology, such as the omics
or tissue type.
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CHAPTER 4
Multi-Omics Factor Analysis - a framework for unsupervised

integration of multi-omics data sets

This chapter is a slightly modified version of the peer-reviewed article published under [8].
The original paper is based on joint work with Ricard Argelaguet, who is shared first-author
on this paper. The manuscript was jointly written by Ricard Argelaguet, Florian Buettner,
Oliver Stegle, Wolfgang Huber and me. All the analyses were carried out by Ricard and
me with focus on the CLL study on my side and the simulation and single cell study on
Ricard’s side but contributions vice-versa. The method was implemented by Ricard, Damien
Arnold and me, where I in particular contributed updates for non-Gaussian likelihoods and
methods for down-stream analyses.

Multi-omics studies promise the improved characterization of biological processes across
molecular layers. However, methods for the unsupervised integration of the resulting het-
erogeneous datasets are lacking. We present Multi-Omics Factor Analysis (MOFA), a com-
putational method for discovering the principal sources of variation in multi-omics datasets.
MOFA infers a set of (hidden) factors that capture biological and technical sources of vari-
ability. It disentangles axes of heterogeneity that are shared across multiple modalities and
those specific to individual data modalities. The learnt factors enable a variety of down-
stream analyses, including identification of sample subgroups, data imputation, and the
detection of outlier samples. We applied MOFA to a cohort of 200 patient samples of chronic
lymphocytic leukaemia, profiled for somatic mutations, RNA expression, DNA methylation
and ex-vivo drug responses. MOFA identified major dimensions of disease heterogeneity,
including immunoglobulin heavy chain variable region status, trisomy of chromosome 12
and previously underappreciated drivers, such as response to oxidative stress. In a second
application, we used MOFA to analyse single-cell multi-omics data, identifying coordinated
transcriptional and epigenetic changes along cell differentiation.
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4 Multi-Omics Factor Analysis

4.1 Introduction

Technological advances increasingly enable multiple biological layers to be probed in par-
allel, ranging from genome, epigenome, transcriptome, proteome and metabolome to phe-
nome profiling [85]. Integrative analyses that use information across these data modalities
promise to deliver more comprehensive insights into the biological systems under study.
Motivated by this, multi-omics profiling is increasingly applied across biological domains,
including cancer biology [29, 77, 99, 139], regulatory genomics [34], microbiology [110] or
host-pathogen biology [173]. Most recent technological advances have also enabled per-
forming multi-omics analyses at the single cell level [7, 38, 40, 81, 130]. A common aim of
such applications is to characterize heterogeneity between samples, as manifested in one
or several of the omics data types [162]. Multi-omics profiling is particularly appealing if
the relevant axes of variation are not known a priori, and hence may be missed by studies
that consider a single data modality or targeted approaches.
A basic strategy for the integration of omics data is testing for marginal associations

between different data modalities. A prominent example is molecular quantitative trait
locus mapping, where large numbers of association tests are performed between individual
genetic variants and gene expression levels [79] or epigenetic marks [34]. While eminently
useful for variant annotation, such association studies are inherently local and do not
provide a coherent global map of the molecular differences between samples. A second
strategy is the use of kernel- or graph-based methods to combine different data types into
a common similarity network between samples [116, 199]; however, it is difficult to pinpoint
the molecular determinants of the resulting graph structure. Related to this, there exist
generalizations of other clustering methods to reconstruct discrete groups of samples based
on multiple data modalities [144, 170].
A key challenge that is not sufficiently addressed by these approaches is interpretability.

In particular, it would be desirable to reconstruct the underlying factors that drive the
observed variation across samples. These could be continuous gradients, discrete clusters, or
combinations thereof. Such factors would also help in establishing or explaining associations
with external data such as phenotypes or clinical covariates. Although factor models that
aim to address this have previously been proposed, e.g., [137, 138, 171, 181], these methods
either lack sparsity, which can reduce interpretability, or they require a substantial number
of parameters to be determined using computationally demanding cross-validation or post
hoc. Further challenges faced by existing methods are computational scalability to larger
datasets, handling of missing values and non-Gaussian data modalities, such as binary
readouts or count-based traits.

4.2 Results

We present MOFA, a statistical method for integrating multiple modalities of omics data
in an unsupervised fashion. Intuitively, MOFA can be viewed as a versatile and statisti-
cally rigorous generalization of PCA to multi-omics data. Given several data matrices with
measurements of multiple omics data types on the same or on partially overlapping sets
of samples, MOFA infers an interpretable low-dimensional data representation in terms
of (hidden) factors (Figure 4.1a). These learnt factors capture major sources of variation
across data modalities, thus facilitating the identification of continuous molecular gradi-
ents or discrete subgroups of samples. The inferred factor loadings can be sparse, thereby
facilitating the linkage between the factors and the most relevant molecular features. Impor-
tantly, MOFA disentangles to what extent each factor is unique to a single data modality
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4.2 Results

Figure 4.1: Multi-Omics Factor Analysis: model overview and downstream anal-
yses. (a) Model overview: MOFA takes an arbitrary number of M data matrices as input
(Y1, . . . ,YM ), one or more from each data modality, with co-occurrent samples but fea-
tures that are in general unrelated and that differ in numbers. MOFA decomposes these
matrices into a matrix of factors, Z, with samples in columns and M weight matrices, one
for each data modality (loadings W1, . . . ,WM ). White cells in the weight matrices corre-
spond to zeros, i.e. inactive features, whereas the cross symbol in the data matrices denote
missing values. (b) The fitted MOFA model can be queried for different downstream anal-
yses, including (i) variance decomposition, assessing the proportion of variance explained
by each factor in each data modality, (ii) semi-automated factor annotation based on the
inspection of loadings and gene set enrichment analysis, (iii) visualization of the samples
in the factor space and (iv) imputation of missing values, including missing assays.

or is manifested in multiple modalities (Figure 4.1b), thereby revealing shared axes of vari-
ation between the different omics layers. Once trained, the model output can be used for a
range of downstream analyses, including visualisation, clustering and classification of sam-
ples in the low-dimensional space(s) spanned by the factors, as well as the identification of
outlier samples and the imputation of missing values (Figure 4.1b).
Technically, MOFA builds upon the statistical framework of group factor analysis [27,

109, 113, 122, 197, 214], which we have adapted to the requirements of multi-omics studies
by combining: (i) fast inference based on a variational approximation, (ii) inference of
sparse solutions facilitating interpretation, (iii) efficient handling of missing values, and (iv)
flexible combination of different likelihood models for each data modality, which enables
integrating diverse data types such as binary-, count- and continuous-valued data. The
relationship of MOFA to previous approaches is discussed in Methods Section 4.4.5 and
Appendix Table 4.A.3.
MOFA is implemented as well-documented open-source software and comes with tu-

torials and example workflows for different application domains (Methods Section 4.4.9).
Taken together, these functionalities provide a powerful and versatile tool for disentangling
sources of variation in multi-omics studies.
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Figure 4.2: Scalability of MOFA, GFA and iCluster. Time required for model train-
ing for GFA (red), MOFA (blue) and iCluster (green) as a function of number of factors
K, number of features D, number of samples N and number of views M . Baseline param-
eters were M = 3, K = 10, D = 1000 and N = 100 and 5% missing values. Shown are
average time across 10 trials, error bars denote standard deviation. iCluster is only shown
for the lowest M value as all other settings required on average more than 200 minutes for
training.

4.2.1 Model validation and comparison on simulated data

First, to validate MOFA, we simulated data from its generative model, varying the number
of views, the likelihood models, the number of latent factors and other parameters (Meth-
ods Section 4.4.6, Appendix Table 4.A.1). We found that MOFA was able to accurately
reconstruct the latent dimension, except in settings with large numbers of factors or high
proportions of missing values (Appendix Figure 4.A.1). We also found that models that
account for non-Gaussian observations improved the fit when simulating binary or count
data (Appendix Figures 4.A.2 and 4.A.3).
We also compared MOFA to two previously reported latent variable models for multi-

omics integration: GFA [122] and iCluster [144]. Over a range of simulations, we observed
that GFA and iCluster tended to infer redundant factors (Appendix Figure 4.A.4) and
were less accurate in recovering patterns of shared factor activity across views (Appendix
Figure 4.A.5). MOFA is also computationally more efficient than these existing methods
(Figure 4.2). For example, the training on the chronic lymphocytic leukaemia (CLL) data,
which we consider next, required 45 minutes using MOFA vs. 34 hours with GFA and 5-6
days with iCluster.
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4.2 Results

4.2.2 Application to chronic lymphocytic leukaemia

We applied MOFA to a study of chronic lymphocytic leukaemia (CLL), which combined
ex-vivo drug response measurements with somatic mutation status, transcriptome profiling
and DNA methylation assays [47] (Figure 4.3a). Notably, nearly 40% of the 200 samples
were profiled with some but not all omics types; such a missing value scenario is not
uncommon in large cohort studies, and MOFA is designed to cope with it (Appendix Sec-
tion 4.A.4; Appendix Figure 4.A.1). MOFA was configured to combine different likelihood
models in order to accommodate the combination of continuous and discrete data types in
this study.
MOFA identified 10 factors (minimum explained variance 2% in at least one data type;

Methods Section 4.4.7). These were robust to algorithm initialisation as well as subsam-
pling of the data (Appendix Figures 4.A.6, 4.A.7). The factors were largely orthogonal,
capturing independent sources of variation (Appendix Figure 4.A.6). Among these, Fac-
tors 1 and 2 were active in most assays, indicating broad roles in multiple molecular layers
(Figure 4.3b). In contrast, other factors such as Factor 3 or Factor 5 were specific to two
data modalities, and Factor 4 was active in a single data modality only. Cumulatively, the
10 factors explained 41% of variation in the drug response data, 38% in the mRNA data,
24% in the DNA methylation data and 24% in the mutation data (Figure 4.3c).
We also trained MOFA when excluding individual data modalities to probe their re-

dundancy, finding that factors that were active in multiple data modalities could still be
recovered, while the identification of others was dependent on a specific data type (Ap-
pendix Figure 4.A.8). In comparison to GFA [122] and iCluster [144], MOFA was more
consistent in identifying factors across multiple model instances (Appendix Figure 4.A.9).

MOFA identifies important clinical markers in CLL and reveals an underappreciated
axis of variation attributed to oxidative stress.

As part of the downstream pipeline, MOFA provides different strategies to use the loadings
of the features on each factor to identify their aetiology (Figure 4.1b). For example, based
on the top weights in the mutation data, Factor 1 was aligned with the somatic mutation
status of the immunoglobulin heavy chain variable region gene (IGHV), while Factor 2
aligned with trisomy of chromosome 12 (Figure 4.3d,e). Thus, MOFA correctly identified
two major axes of molecular disease heterogeneity and aligned them with two of the most
important clinical markers in CLL [58, 211] (Figure 4.3d,e).
IGHV status, the marker associated with Factor 1, is a surrogate of the differentiation

state of the tumour’s cell of origin and the level of activation of the B-cell receptor. While
in clinical practice this axis of variation is generally considered binary [58], our results
indicate a more complex substructure (Figure 4.4a, Appendix Figure 4.A.10). At the cur-
rent resolution, this factor was consistent with three subgroup models such as proposed
by [148, 158] (Appendix Figure 4.A.11), although there is suggestive evidence for an un-
derlying continuum. MOFA connected this factor to multiple molecular layers (Appendix
Figures 4.A.12, 4.A.13), including changes in the expression of genes previously linked to
IGHV status [51, 133, 146, 155, 190, 195] (Figure 4.4b,c) and with drugs that target kinases
in or downstream of the B-cell receptor pathway (Figure 4.4d,e).
Despite their clinical importance, the IGHV and the trisomy 12 factors accounted for less

than 20% of the variance explained by MOFA, suggesting the existence of other sources of
heterogeneity. One example is Factor 5, which was active in the mRNA and drug response
data. Analysis of the weights in the mRNA revealed that this factor tagged a set of genes
enriched for oxidative stress and senescence pathways (Figure 4.3f, Figure 4.5), with the
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(b) Proportion of total variance explained (R2) by individual factors for each assay and
(c) cumulative proportion of total variance explained. (d) Absolute loadings of the top
features of Factors 1 and 2 in the mutations data. (e) Visualisation of samples using Factors
1 and 2. The colours denote the IGHV status of the tumours; symbol shape and colour
tone indicate chromosome 12 trisomy status. (f) Number of enriched Reactome gene sets
per factor based on the gene expression data (FDR < 1%). The colours denote categories
of related pathways defined as in Appendix Table 4.A.2.
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4.2 Results

top weights corresponding to heat shock proteins (HSPs) (Figure 4.5b,c), genes that are
essential for protein folding and are up-regulated upon stress conditions [2, 175]. Although
genes in HSP pathways are up-regulated in some cancers and have known roles in tumour
cell survival [189], thus far this gene family has received little attention in the context of
CLL. Consistent with this annotation based on the mRNA data, we observed that the
drugs with the strongest weights on Factor 5 were associated with response to oxidative
stress, such as target reactive oxygen species (ROS), DNA damage response and apoptosis
(Figure 4.5d,e).
Factor 4 captured 9% of variation in the mRNA data, and gene set enrichment analysis

on the mRNA loadings suggested aetiologies related to immune response pathways and
T-cell receptor signalling (Figure 4.3f), likely due to differences in cell type composition
between samples: While the samples are comprised mainly of B-cells, Factor 4 revealed
a possible contamination with other cell types such as T-cells and monocytes (Appendix
Figure 4.A.14). Factor 3 explained 11% of variation in the drug response data, capturing
heterogeneity in the samples’ general level of drug sensitivity [75] (Appendix Figure 4.A.15).

MOFA identifies outlier samples and accurately imputes missing values

Next, we explored the relationship between inferred factors and clinical annotations, which
can be missing, mis-annotated or inaccurate, since they are frequently based on single
markers or imperfect surrogates [202]. Since IGHV status is the major biomarker impact-
ing on clinical care, we assessed the consistency between the inferred continuous Factor 1
and this binary marker. For 176 out of 200 patients, the MOFA factor was in agreement
with the clinical IGHV status, and MOFA further allowed for classifying 12 patients that
lacked clinically measured IGHV status (Figure 4.6a,b). Interestingly, MOFA assigned 12
patients to a different group than suggested by their clinical IGHV label. Upon inspection
of the underlying molecular data, nine of these cases showed intermediate molecular signa-
tures, suggesting that they are borderline cases that are not well captured by the binary
classification; the remaining three cases were clearly discordant (Figure 4.6c,d). Additional
independent drug response assays as well as whole exome sequencing data confirmed that
these cases are outliers within their IGHV group (Figure 4.6e,f).
As incomplete data is a common problem in studies that combine multiple high-throughput

assays, we assessed the ability of MOFA to fill in missing values within assays as well as
when entire data modalities are missing for some of the samples. For both imputation
tasks, MOFA yielded more accurate predictions than other established imputation strate-
gies, including imputation by feature-wise mean, SoftImpute [134] and a k-nearest neigh-
bour (kNN) method [191] (Figure 4.7, Appendix Figure 4.A.16), and MOFA was more
robust than GFA, especially in the case of missing assays (Appendix Figure 4.A.17).

Latent factors inferred by MOFA are predictive of clinical outcomes

Finally, we explored the utility of the latent factors inferred by MOFA as predictors in
models of clinical outcomes. Three of the 10 factors identified by MOFA were significantly
associated with time to next treatment (Cox regression, Methods Section 4.4.7, FDR <
1%, Figure 4.8a,b): Factor 1, related to the B cell of origin, and two Factors, 7 and 8,
associated with chemo-immunotherapy treatment prior to sample collection (P < 0.01,
t-test). In particular, Factor 7 captured del17p and TP53 mutations as well as differences
in methylation patterns of oncogenes [64, 73] (Appendix Figure 4.A.18), while Factor 8
was associated with WNT signalling (Appendix Figure 4.A.19).
We also assessed the prediction performance when combining the 10 MOFA factors in a
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sample correlation matrix based on drug response data. (d) Sample-to-sample correlation
matrix based on methylation data. (e) Drug response to ONO-4509 (not included in the
training data): Boxplots for the viability values in response to ONO-4509. The three outlier
samples are shown in the middle, on the left and right the viabilities of the other M-CLL
and U-CLL samples are shown, respectively. The panels show different drug concentrations
tested. (f) Whole exome sequencing data on IGHV genes (not included in the training
data): the number of mutations found on IGHV genes using whole exome sequencing is
shown on the y-axis, separately for U-CLL and M-CLL samples. The three outlier samples
are labelled.
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Figure 4.7: Imputation of missing values in the drug response assay of the CLL
data. Considered were MOFA, SoftImpute, imputation by feature-wise mean (Mean) and
k-nearest neighbour (kNN). Shown are averages of the mean squared error (MSE) across
15 imputation experiments for increasing fractions of missing data, considering (a) values
missing at random and (b) entire assay missing for samples at random. Error bars denote
plus or minus two standard error.

multivariate Cox regression model. Notably, this model yielded higher prediction accuracy
than models using components derived from conventional PCA (Figure 4.8c), individual
molecular features (Appendix Figure 4.A.20) or MOFA factors derived from only a subset of
the available data modalities (Appendix Figure 4.A.8b,d) (assessed using cross-validation,
Methods Section 4.4.7). The predictive value of MOFA factors was similar to clinical co-
variates (such as lymphocyte doubling time) that are used to guide treatment decisions
(Appendix Figure 4.A.21).

4.2.3 Application to a single-cell multi-omics study

As multi-omics approaches are also beginning to emerge in single cell biology [7, 38, 40, 81,
130], we investigated the potential of MOFA to disentangle the heterogeneity observed in
such studies. We applied MOFA to a data set of 87 mouse embryonic stem cells (mESCs),
comprising of 16 cells cultured in ‘2i’ media, which induces a naive pluripotency state, and
71 serum-grown cells, which commits cells to a primed pluripotency state poised for cellular
differentiation [7]. All cells were profiled using single-cell methylation and transcriptome
sequencing, which provides parallel information of these two molecular layers (Figure 4.9a).
We applied MOFA to disentangle the observed heterogeneity in the transcriptome and
the CpG methylation at three different genomic contexts: promoters, CpG islands and
enhancers.
MOFA identified three major factors driving cell-cell heterogeneity (minimum explained

variance of 2%, Methods Section 4.4.8): While Factor 1 is shared across all data modalities
(7% variance explained in the RNA data and between 53% and 72% in the methylation data
sets), Factors 2 and 3 are active primarily in the RNA data (Figure 4.9b,c). Gene loadings
revealed that Factor 1 captured the cells’ transition from naive to primed pluripotent
states, pinpointing pluripotency markers such as Rex1/Zpf42, Tbx3, Fbxo15 and Essrb
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Figure 4.8: Relationship between clinical data and latent factors. (a) Association
of MOFA factors to time to next treatment using univariate Cox models. Error bars denote
95% confidence intervals. Numbers on the right denote p-values for each predictor. (b)
Kaplan-Meier plots measuring time to next treatment for the individual MOFA factors.
The cut-points on each factor were chosen using maximally selected rank statistics [94],
and p-values were calculated using a log-rank test on the resulting groups. (c) Prediction
accuracy of time to treatment using multivariate Cox regression trained using the 10 factors
derived using MOFA, as well using the first 10 components obtained from PCA applied
to the corresponding single data modalities and the full dataset (assessed on hold-out
data). Shown are average values of Harrell’s C-index from 5-fold cross-validation. Error
bars denote standard error of the mean.
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[145] (Figure 4.9d and Figure 4.10a). MOFA connected these transcriptomic changes to
coordinated changes of the genome-wide DNA methylation rate across all genomic contexts
(Figure 4.10b), as previously described both in vitro [7] and in vivo [9]. Factor 2 captured
a second axis of differentiation from the primed pluripotency state to a differentiated state
with highest RNA loadings for known differentiation markers such as keratins and annexins
[70] (Figure 4.9d and Figure 4.10c). Finally, Factor 3 captured the cellular detection rate, a
known technical covariate associated with cell quality and mRNA content [63] (Appendix
Figure 4.A.22).
Jointly, Factors 1 and 2 captured the entire differentiation trajectory from naive pluripo-

tent cells via primed pluripotent cells to differentiated cells (Figure 4.9e), illustrating the
importance of learning continuous latent factors rather than discrete sample assignments.
Multi-omics clustering algorithms such as similarity network fusion (SNF) [199] or iCluster
[144, 170] were only capable of distinguishing cellular subpopulations, but not of recovering
continuous processes such as cell differentiation (Appendix Figure 4.A.23).

4.3 Discussion

Multi-Omics Factor Analysis (MOFA) is an unsupervised method for decomposing the
sources of heterogeneity in multi-omics data sets. We applied MOFA to high-dimensional
and incomplete multi-omics profiles collected from patient-derived tumour samples and to
a single-cell study of mESCs.
First, in the CLL study, we demonstrated that our method is able to identify major

drivers of variation in a clinically and biologically heterogeneous disease. Most notably,
our model identified previously known clinical markers as well as novel putative molecular
drivers of heterogeneity, some of which were predictive of clinical outcome. Additionally,
since MOFA factors capture variations of multiple features and data modalities, inferred
factors can help to mitigate assay noise, thereby increasing the sensitivity for identifying
molecular signatures compared to using individual features or assays. Our results also
demonstrate that MOFA can leverage information from multiple omics layers to accurately
impute missing values from sparse profiling datasets and guide the detection of outliers,
e.g. due to mislabelled samples or sample swaps.
In a second application, we used MOFA for the analysis of single-cell multi-omics data.

This use case illustrates the advantage of learning continuous factors, rather than discrete
groups, enabling MOFA to recover a differentiation trajectory by combining information
from two sparsely profiled molecular layers.
While applications of factor models for integrating different data types were reported

previously [1, 116, 144, 170], MOFA provides unique features (Methods Section 4.4.5, Ap-
pendix Table 4.A.3) that enable the interpretable reconstruction of the underlying factors
and accommodating different data types as well as different patterns of missing data.
MOFA is available as open source software and includes semi-automated analysis pipelines
allowing for in-depth characterisations of inferred factors. Taken together, this will foster
the accessibility of interpretable factor models for a wide range of multi-omics studies.
Although we have addressed important challenges for multi-omics applications, MOFA

is not free of limitations. The model is linear, which means that it can miss strongly non-
linear relationships between features within and across assays [25]. Non-linear extensions
of MOFA may address this, although, as with any models in high-dimensional spaces, there
will be trade-offs between model complexity, computational efficiency and interpretability
[43]. A related area of work is to incorporate prior information on the relationships between
individual features. For example, future extensions could make use of pathway databases
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within each omics type [24] or priors that reflect relationships given by the ‘dogma of
molecular biology’. In addition, new likelihoods and noise models could expand the value
of MOFA in data sets with specific statistical properties that hamper the application of
traditional statistical methods, including zero-inflated data (i.e. scRNA-seq [154]) or bino-
mial distributed data (i.e. splicing events [96]). Finally, while here we focus our attention
on the point estimates of inferred factors, future extensions could attempt a more compre-
hensive Bayesian treatment that propagates evidence strength and estimation uncertainties
to diagnostics and downstream analyses.

4.4 Methods

4.4.1 Multi-Omic Factor Analysis model

Starting from M data matrices Y1, ..,YM of dimensions N ×Dm, where N is the number
of samples and Dm the number of features in data matrix m, MOFA decomposes these
matrices as

Ym = ZWmT + εm m = 1, . . . ,M. (4.1)

Here, Z denotes the factor matrix (common for all data matrices) and Wm denote the
weight matrices for each data matrix m (also referred to as view m in the following). εm

denotes the view-specific residual noise term, with its form depending on the specifics of
the data-type (see Noise model).
The model is formulated in a probabilistic Bayesian framework, where we place prior

distributions on all unobserved variables of the model (see plate diagram in Figure 4.11),
i.e. the factors Z, the weight matrices Wm and the parameters of the residual noise term.
In particular, we use a standard normal (or Gaussian) prior for the factors Z and employ
sparsity priors for the weight matrices as described next.

Model regularization

An appropriate regularization of the weight matrices is essential for the model’s ability
to disentangle variation across data sets and to yield interpretable factors. MOFA uses a
two-level regularization: The first level encourages view- and factor-wise sparsity, thereby
allowing to directly identify which factor is active in which view. The second level en-
courages feature-wise sparsity, thereby typically resulting in a small number of features
with active weights. To encode these sparsity levels we combine an ARD prior for the first
type of the sparsity with a spike-and-slab prior for the second. For amenable inference we
model the spike-and-slab prior by parametrizing the weights as a product of a Bernoulli
random variable and a Gaussian random variable: Wm = SmŴm, where smdk ∼ Ber(θmk )
and ŵmdk ∼ N (0, 1

αmk
). To automatically learn the appropriate level of regularization for

each factor and view, we use uninformative conjugate priors on αmk , which controls the
strength of factor k in view m, and on θmk , which determines the feature-wise sparsity level
of factor k in view m (see Appendix Section 4.A.1 for details).

Noise model

MOFA supports the combination of different noise models to integrate diverse data types,
including continuous, binary and count data. A standard noise model for continuous data is
the Gaussian noise model assuming independent and identically distributed (iid) residuals
εm that are heteroscedastic across features, i.e. εmnd ∼ N (0, 1

τmd
), with a gamma prior on the

44



4.4 Methods

n=1…N 

m=1…M 

d=1…Dm 

k=1…K 

Znk
Ym

nd
⌧m
d

↵m
k✓m

k

(S�Ŵ)m
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Figure 4.11: Graphical model representation of MOFA. Grey-filled nodes denote
observed variables whereas white-filled nodes denote unobserved variables that are inferred
by the model. Y denotes the observed data matrices, Z denotes latent factors and SŴ
denotes the model weights with a spike-and-slab prior, implemented as the product of a
Bernoulli variable S and a Gaussian variable Ŵ. θ represents the sparsity parameters of
the spike-and-slab prior and α corresponds to the view- and factor-wise parameters of the
automatic relevance determination prior. τ represents the precision of the Gaussian noise.
N is the number of samples, M is the number of views, Dm is the number of features in
the mth view and K is the number of latent factors.

precision parameters τmd . MOFA further supports noise models for binary and count data
that are not appropriately modelled using a Gaussian likelihood. In the current version,
MOFA models count data using a Poisson model and binary data using a Bernoulli model.
Here, the model likelihood is given by ymnd ∼ Poi(λ(zn:wTd:)) and ymnd ∼ Ber(σ(zn:wTd:)),
respectively, where λ(x) = log(1 + ex) and σ denotes the logistic function σ(x) = (1 +
e−x)−1.

4.4.2 Parameter inference

For scalability, we make use of a variational Bayesian framework, which uses a mean field
approximation for inference [21]. The key idea is to approximate the intractable posterior
distribution using a simpler class of distributions by minimizing the Kullback-Leibler diver-
gence to the exact posterior, or equivalently, maximizing the evidence lower bound (ELBO).
Convergence of the algorithm can be monitored based on the ELBO. An overview of vari-
ational inference and details on the specific implementation for MOFA can be found in
Appendix Section 4.A.2. To enable an efficient inference for non-Gaussian likelihoods we
employ variational lower bounds on the likelihood [101, 168] (see Appendix Section 4.A.3
for details).
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4.4.3 Model selection

An important part of the training is the determination of the number of factors. Factors
are automatically inactivated by the ARD prior of the model as described in Model regu-
larization in Section 4.4.1. In practice, factors are pruned during training using a minimum
fraction of variance explained threshold that needs to be specified by the user. Alternatively,
the user can fix the number of factors and the minimum variance criterion is ignored. In
the analyses presented we initialised the models with K = 25 factors and they were pruned
during training using a threshold of variance explained of 2%. For details on the implemen-
tation as well as practical considerations for training and choice of the threshold parameter
refer to Appendix Section 4.A.4.
While the inferred factors are robust under different initializations (e.g. Appendix Fig-

ure 4.A.6c,d) the optimization landscape is non-convex and hence the algorithm is not
guaranteed to converge to a global optimum. Results presented here are based on 10-25
random restarts, selecting the model with the highest ELBO (e.g. Appendix Figure 4.A.6b).

4.4.4 Downstream analysis for factor interpretation and annotation

As part of MOFA we provide the R package MOFAtools, which provides a semi-automated
pipeline for the characterisation and interpretation of the latent factors. In all downstream
analyses we use the expectations of the model variables under the posterior distributions
inferred by the variational framework.
The first step, after a model has been trained, is to disentangle the variation explained

by each factor in each view. To this end, we compute the fraction of the variance explained
(R2) by factor k in view m as

R2
m,k = 1−

∑
n,d(y

m
nd − znkwmkd − µmd )2∑
n,d(y

m
nd − µmd )2

(4.2)

as well as the fraction of variance explained per view taking into account all factors

R2
m = 1−

∑
n,d(y

m
nd −

∑
k znkw

m
kd − µmd )2∑

n,d(y
m
nd − µmd )2

. (4.3)

Here, µmd denotes the feature-wise mean. Subsequently, each factor is characterised by
three complementary analyses:

1. Ordination of the samples in factor space: Visualise a low-dimensional representation
of the main drivers of sample heterogeneity.

2. Inspection of top features with largest weight: The loadings can give insights into
the biological process underlying the heterogeneity captured by a latent factor. Due
to scale differences between assays, the weights of different views are not directly
comparable. For simplicity, we scale each weight vector by its maximal absolute
value.

3. Feature set enrichment analysis: We combine the signal from functionally related sets
of features (e.g., gene sets) to derive a feature-set based annotation. By default, we
use a parametric t-test comparing the means of the foreground set (the weights of
features that belong to a set G) and the background set (the weights of features that
do not belong to the set G), similar to the approach described in [69].
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4.4.5 Relationship to existing methods

MOFA builds upon the statistical framework of group factor analysis [27, 109, 113, 122,
197, 214] and is in part also related to the iCluster methods [144, 170] as shown in Appendix
Table 4.A.3. Here we describe these connections in further detail:

(i) iCluster: In contrast to MOFA, iCluster uses in each view the same extent of reg-
ularization for all factors, which may be sufficient for the purpose of clustering (the
primary application of iCluster), however it results in a reduced ability for distinguish-
ing factors that drive variation in distinct subsets of views (Appendix Figure 4.A.5).
Additionally, unlike MOFA and GFA, iCluster does not handle missing values and
is computationally demanding (Figure 4.2), as it requires re-fitting the model for a
large range of different penalty parameters and choices of the model dimension.

(ii) Group factor analysis: While the underlying model of MOFA is closely connected
to the most recent GFA implementation [122], GFA is restricted to Gaussian ob-
servation noise. In terms of the algorithmic implementation, MOFA uses an addi-
tional burn-in period during training in which the sparsity constraints are deactivated
(θ = 1) to avoid early splitting of a common signal onto distinct factors to meet spar-
sity assumptions, and it actively drops factors below a predefined variance threshold
(see Section 4.4.3). In contrast, GFA directly uses sparsity constraints throughout
training and also maintains factors that have near-zero relevance. In terms of in-
ference, MOFA is implemented using a variational approximate Bayesian inference,
whereas GFA is based on a Gibbs sampler. In terms of computational scalability
(Figure 4.2), both methods are linear in the model’s parameters, although GFA is
computationally more expensive in absolute terms. This difference is particularly
pronounced for datasets with missing data. This, together with the inability to de-
activate factors during inference (Appendix Figure 4.A.4) renders GFA considerably
slower in applications to real data.

4.4.6 Details on the simulation studies

Model validation

To validate MOFA we simulated data from the generative model for a varying number of
views (M = 1, 3, . . . , 21), features (D = 100, 500, . . . , 10000), factors (K = 5, 10, . . . , 60),
missing values (from 0% to 90%) as well as for non-Gaussian likelihoods (Poisson, Bernoulli)
(see Appendix Table 4.A.1 for simulation parameters). We assessed the ability of MOFA to
recover the true simulated number of factors in the different settings, where we considered
10 repeat experiments for every configuration. All trials were started with a high number
of factors (K = 100), and inactive factors were pruned as described in Section 4.4.3.

Model comparison

To compare MOFA to GFA, we simulated data from the underlying generative model with
Ktrue = 10 factors, M = 3 views, N = 100 samples, D = 5, 000 features per view and
5% missing values (missing at random). For each of the three views we used a different
likelihood model: continuous data was simulated with a Gaussian distribution, binary data
with a Bernoulli distribution and count data with a Poisson distribution. Except for the
non-Gaussian likelihood extension, both methods share the same underlying generative
model, thus allowing for a meaningful comparison. We fit ten realizations of the MOFA
and GFA models with Kinitial = 20 factors and let the method determine the most likely
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number of factors. To assess scalability, we considered the same base parameter settings,
varying one of the simulation parameters at a time (number of factors K, number of
features D, number of samples N and number of views M , all Gaussian). To assess the
ability to reconstruct factor activity patterns we simulated data from the generative model
for Ktrue = 10 and Ktrue = 15 factors (M,N,D as before, no missing values, only Gaussian
views), where factors were set to either active or inactive in a specific view by sampling the
parameter αmk from {1, 103}. Appendix Table 4.A.1 shows in more detail the simulation
parameters used in each setting.

4.4.7 Details on the CLL analysis

Data processing

The data were taken from [47], where details on the data generation and processing can
be found. Briefly, this dataset consists of somatic mutations (combination of targeted and
whole exome sequencing), RNA expression (RNA-Seq), DNA methylation (Illumina arrays)
and ex-vivo drug response screens (ATP-based CellTiter Glo assay). For the training of
MOFA we included 62 drug response measurements (excluding NSC 74859 and bortezomib
due to bad quality) at five concentrations each (D = 310) with a threshold at 1.1 to
remove outliers. Mutations were considered if present in at least 3 samples (D = 69).
Low counts from RNAseq data were filtered out and the data were normalized using the
estimateSizeFactors and varianceStabilizingTransformation function of DESeq2 [127]. For
training we considered the top D = 5, 000 most variable mRNAs after exclusion of genes
from the Y chromosome. Methylation data were transformed to M-values and we extracted
the top 1% most variable CpG sites excluding sex chromosomes (D = 4, 248). We included
patients diagnosed with CLL and having data in at least two views into the MOFA model
leading to a total of N = 200 samples.

Model training and selection

We trained MOFA using 25 random initializations with a variance threshold of 2% and
selected the model with the best fit for downstream analysis (see Section 4.4.3).

Gene set enrichment analysis

Gene set enrichment analysis was performed based on Reactome gene sets [59] as de-
scribed above. Resulting p-values were adjusted for multiple testing for each factor using
the Benjamini-Hochberg procedure [16]. Significant enrichments were at a false discovery
rate of 1%.

Imputation

To compare imputation performance, we trained MOFA on the subset of samples with all
measurements (N = 121) and masked at random either single values or all measurements
for random samples in the drug response. After model training the masked values were
imputed directly from the model equation (4.1) and the accuracy was assessed in terms of
mean squared error on the true (masked) values. For both settings we fixed the number of
factors in MOFA to K = 10. To investigate the dependence on K for imputation and to
compare MOFA to GFA we re-ran the same masking experiments varying K = 1, . . . , 20
(Appendix Figure 4.A.17).
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Survival Analysis

Associations between the inferred factors and clinical covariates were assessed using the
patients’ time to next treatment as response variable in a Cox model (N = 174 samples
with treatment information, 96 of which were uncensored cases). For univariate association
tests (as shown in Figure 4.8, Appendix Figure 4.A.21) we scaled all predictors to ensure
comparability of the hazard ratios and we rotated factors, which are rotational invariant,
such that their hazard ratio is greater or equal to 1. To investigate the predictive power
of different datasets, we used a multivariate Cox model and compared Harrell’s C-index
of predictions in a stratified 5-fold cross-validation scheme. As predictors we included the
top 10 principal components calculated on the data for each single view, a concatenated
data set (’all’) as well as the ten MOFA factors. Missing values in a view were set to the
feature-wise mean. In a second set of models we used the complete set of all features in a
view with a ridge penalty in the Cox model as implemented in the R package glmnet. For
the Kaplan-Meier plots an optimal cut-point on each factor was determined to define the
two groups using the maximally selected rank statistics as implemented in the R package
survminer with p-values based on a log-rank test between the resulting groups.

4.4.8 Details on the single cell analysis

The data were obtained from [7], where details on the data generation and pre-processing
can be found. Briefly, for each CpG site we calculated a binary methylation rate from the
ratio of methylated read counts to total read counts. RNA expression data were normalized
following [128]. To fit MOFA, we considered the top 5,000 most variable genes with a
maximum dropout of 90%, and the top 5,000 most variable CpG sites with a minimum
coverage of 10% across cells. Model selection was performed as described for the CLL data
and factors were inactivated below a minimum explained variance of 2%. For the clustering
analysis using SNF and iCluster, the optimal number of clusters was selected using the
Bayesian information criterion (BIC) criterion.

4.4.9 Software and data availability

An open source implementation of MOFA in R and Python is available from https:
//github.com/bioFAM/MOFA. Code to reproduce all the analyses presented is available
at https://github.com/bioFAM/MOFA_analysis.
The CLL data were obtained from [47] and are available at the European Genome-

phenome Archive under accession EGAS00001001746 and data tables as R objects can be
downloaded from http://pace.embl.de/. The single-cell data were obtained from [7] and
are available in the Gene Expression Omnibus under accession GSE74535. All data used
are contained within the MOFA vignettes and can be downloaded from https://github.
com/bioFAM/MOFA.
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4 Multi-Omics Factor Analysis

4.A Appendix

Multi-Omics Factor Analysis (MOFA) is a statistical model aimed at disentangling sources
of variation in multi-omics data. Here, we introduce the statistical model (Section 4.A.1)
and its inference procedure in more detail, both in case of Gaussian data (Section 4.A.2)
and non-Gaussian data (Section 4.A.3). In addition, we provide practical considerations
for training (Section 4.A.4).

Mathematical notation

– Matrices are denoted with bold capital letters, e. g. W.
– Vectors are denoted with bold non-capital letters. If the vector comes from a matrix,

two indices separated by a comma will always be shown at the bottom: the first one
corresponding to the row and the second one to the column. The symbol ’:’ denotes
the entire row/column. For instance, wj,: refers to the entire jth row of a matrix W.

– Scalars are denoted with non-bold non-capital letters. If the value comes from a
matrix, two indices will always be shown at the bottom: the first one corresponding
to the row and the second one to the column. For instance, wjk refers to the value
coming from the jth row and the kth column of a matrix W.

– Eq[x] denotes the expectation of x under the distribution q. Sometimes, when the
expectations are taken with respect to the same distribution many times, we will use
〈x〉 to avoid cluttered notation.

– F(x|a) denotes the probability density function of a distribution F in x with pa-
rameters a. For example, N

(
x |µ, σ2

)
denotes the density of a univariate normal

(or Gaussian) distribution with mean µ and variance σ2, and Gamma (x | a, b) the
density of a gamma distribution with parameters a and b.

– B(a, b) denotes the beta function.
– Γ (a) denotes the gamma function.

4.A.1 Details on the Multi-Omics Factor Analysis model

Factor analysis models, also called latent variable models, are a probabilistic modelling
approach which aim to reduce the dimensionality of a (big) dataset into a small set of
variables which are easier to interpret and visualise. More formally, given a dataset Y of N
samples and D features, latent variable models attempt to explain dependencies between
the features by means of a potentially smaller set of K unobserved (latent) factors. MOFA
is a generalisation of traditional factor analysis where the input data consists ofM matrices
Ym = [ymnd] ∈ RN×Dm where each matrix m is called a view. Each view consists of non-
overlapping features which usually, but not necessarily, represent different assays. The input
data is then factorised as

Ym = ZWmT + εm, (4.4)

where Z = [znk] ∈ RN×K is a single matrix that contains the low-dimensional latent
variables, Wm = [wmdk] ∈ RDm×K are loading matrices that relate the high-dimensional
space to the low dimensional representation, and εm = [εmnd] ∈ RN×Dm denotes residual
noise. We start by assuming independent Gaussian residuals εm, similar to standard (group)
factor analysis models, while allowing for heteroscedasticity across features, i. e. for n =
1, . . . , N

p(εmnd|τmd ) = N (εmnd | 0, 1/τmd ) . (4.5)
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This results in the following Gaussian likelihood (for extensions to non-Gaussian settings
see Section 4.A.3):

p(ymnd|zn,:,wm
d,:, τ

m
d ) = N

(
ymnd | zn,:wmT

d,: , 1/τ
m
d

)
, (4.6)

where wm
d,: denotes the dth row of the loading matrix Wm and zn,: the nth row of the

latent factor matrix Z. For a fully probabilistic treatment we place prior distributions on
the weights Wm, the latent variables Z as well as on the precision of the noise τm. We use
a standard Gaussian prior on the latent variables and a conjugate Gamma prior for the
precision, i. e.

p(znk) = N (znk | 0, 1) , (4.7)
p(τmd ) = Gamma (τmd | aτ0 , bτ0) , (4.8)

with aτ0 , bτ0 = 10−14 to obtain uninformative priors.
A key determinant of the model is the regularization used on the weights Wm. MOFA

encodes two levels of sparsity: a view- and factor-wise sparsity and a feature-wise sparsity.
The aim of the factor- and view-wise sparsity is to identify which factors are active in
which view, such that the weight vector wm

:,k is shrunk to zero if the factor k does not drive
any variation in view m. This is the general property that allows the model to disentangle
the sources of variability between different assays.
In addition, we place a second layer of feature-wise sparsity which puts zero weights

on individual features from active factors. This relies on the assumption that biological
sources of variability are typically sparse, i.e. only a small number of features are ‘active’,
i. e., have non-zero weight. We achieve both levels of sparsity by placing appropriate priors
on the weight matrices.
Specifically, we combine an automatic relevance determination (ARD) prior [131] for

the view- and factor-wise sparsity with a spike-and-slab prior [143] for the feature-wise
sparsity, similar to [109]. However, as the spike-and-slab prior

p(w) = (1− θ)10(w) + θN (w | 0, 1/α) (4.9)

contains a Dirac delta function, which makes the inference troublesome, here we use a
re-parametrization of the weights w as a product of a Gaussian random variable ŵ and a
Bernoulli random variable s [24, 188], resulting in the following prior:

p(ŵmdk, s
m
dk|θmk , αmk ) = N (ŵmdk | 0, 1/αmk )Ber(smdk | θmk ) (4.10)

In this formulation αmk controls the strength of factor k in view m and θmk controls the
degree of contribution from the spike term, determining the overall feature-wise sparsity
levels of factor k in view m. In order to automatically learn these parameters we use the
following conjugate priors

p(θmk ) = Beta
(
θmk | aθ0, bθ0

)
, (4.11)

p(αmk ) = Gamma (αmk | aα0 , bα0 ) , (4.12)

with hyper-parameters aθ0, bθ0 = 1 and aα0 , bα0 = 10−14 to get uninformative priors. A value
of θmk close to 0 implies that most of the weights of factor k in view m are shrunk to
0, yielding a sparse factor. In contrast, a value of θmk close to 1 implies that most of the
weights are non-zero, yielding a non-sparse factor.
In practice, the ARD prior yields a matrix α ∈ RM×K that defines four different types

of factors:
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4 Multi-Omics Factor Analysis

• Factors that do not explain variation in any data set (inactive factors): all values in
the corresponding columns of α are large. These factors are actively removed from
the model during training.

• Factors that explain variation in all data sets (fully shared factors): all M values in
the corresponding columns of α are small.

• Factors that explain variation in a single data set (unique factors): all values in the
corresponding columns of α are very large, except one.

• Factors that explain variation in a subset of data sets (partially shared factors): some
values in the corresponding columns of α are very large whereas others are small.

Using these prior distributions, the joint probability density function is given by

p(Y,Z,Ŵ,S,θ,α, τ ) =
M∏
m=1

N∏
n=1

Dm∏
d=1

N
(
ymnd |

K∑
k=1

smdkŵ
m
dkznk, 1/τd

)
N∏
n=1

K∏
k=1

N (znk | 0, 1)

M∏
m=1

Dm∏
d=1

K∏
k=1

N (ŵmdk | 0, 1/αmk )Ber(smdk|θmk )

M∏
m=1

K∏
k=1

Beta
(
θmk | aθ0, bθ0

)
M∏
m=1

K∏
k=1

Gamma (αmk | aα0 , bα0 )

M∏
m=1

Dm∏
d=1

Gamma (τmd | aτ0 , bτ0) .

(4.13)

This completes the definition of the model, which is graphically in Figure 4.11.

4.A.2 Details on model inference

4.A.2.1 Introduction to variational Bayes inference

To ensure scalable inference we use a variational approach with a mean-field approxima-
tion [20]. Briefly, in variational inference the true intractable posterior distribution of the
unobserved variables p(X|Y) is approximated by a simpler distribution of factorized form
q(X) =

∏
i q(Xi) that leads to an efficient inference scheme. Here, X denotes all the hidden

variables (including parameters) and Y denotes all the observed variables.
Under this approximation, the true log marginal likelihood log p(Y) is lower bounded

by

L(X) =

∫
q(X)

(
log

p(X|Y)

q(X)
+ log p(Y)

)
dX

= log p(Y)−DKL(q(X)||p(X|Y))

≤ log p(Y),

(4.14)

where DKL denotes the Kullback-Leibler (KL) divergence.
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L(X) is called the evidence lower bound (ELBO), which is equal to the sum of the
model evidence and the negative KL-divergence between the true posterior and the varia-
tional distribution. The key observation here is that increasing the ELBO is equivalent to
decreasing the KL-divergence between the two distributions.
Variational learning involves optimising the functional L(X) with respect to the dis-

tribution q(X). If we allow any possible choice of q(X), then the maximum of the lower
bound L(X) will occur when the KL-divergence vanishes, which occurs when q(X) equals
the true posterior distribution p(X|Y). Nevertheless, since the true posterior is intractable,
this does not lead to any simplification of the problem. Instead, it is necessary to consider
a restricted family of variational distributions that are tractable to compute and then seek
the member of this family for which the KL-divergence is minimised [15].

Mean-field approximation The most common type of variational Bayes, known as mean-
field approach, assumes that the variational distribution factorises over L disjoint groups
of variables, i. e.

q(X) =

L∏
i=1

q(Xi).

Evidently, this family of distributions does not usually contain the true posterior because
the unobserved variables have dependencies, but this assumption allows the derivation of an
analytical inference scheme [15]. It follows that the optimal distribution q∗i that maximises
the lower bound L(X), for each variable Xi, can be calculated as

log q∗i (Xi) = E−i[log p(Y,X)] + const, (4.15)

where E−i denotes an expectation with respect to the q distributions over all variables Xj

except for Xi. The additive constant is set by normalizing the distribution q∗i (Xi), i. e.

q∗i (Xi) =
exp(E−i[log p(Y,X)])∫
exp(E−i[log p(Y,X)])dXi

.

This provides the general expression which yields the set of variational distributions that
maximise the lower bound of the log marginal likelihood, subject to the factorisation con-
straint. Or equivalently, the set of distributions that minimise the KL-divergence between
the q(X) distribution and the true posterior p(X|Y). For MOFA we adopt the following
mean field approximation, which factorizes in all model variables except for ŵmdk, s

m
dk, which

are strongly connected by the re-parametrization wmdk = ŵmdks
m
dk, i. e. we assume

q(Z,Ŵ,S,θ,α, τ ) = q(Z)q(Ŵ,S)q(θ)q(α)q(τ )

=
N∏
n=1

K∏
k=1

q(znk)
M∏
m=1

Dm∏
d=1

K∏
k=1

q(ŵmdk, s
m
dk)

M∏
m=1

K∏
k=1

q(θmk )q(αmk )
M∏
m=1

Dm∏
d=1

q(τmd ).

Variational Bayes expectation maximization algorithm Note that in Equation (4.15),
for a given variable Xi, the expectation on the right-hand side is taken with respect to
the other variables’ variational distribution qj(Xj) for j 6= i. Therefore, there are circular
dependencies between the different equations and there is no analytical solution for the
parameters of the variational distribution. This naturally suggests an iterative algorithm
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4 Multi-Omics Factor Analysis

similar to the expectation-maximization (EM) algorithm. In each step we update the mo-
ments and parameters of the variational distribution of the latent variables qj(Xj) using
the current estimates of the variational distributions of the parameters q−j(X−j) [15]. The
algorithm is stopped when the change in the ELBO is small enough.

4.A.2.2 Update equations for Gaussian data

Latent variables (Z) The variational distribution of Z is given by

q(Z) =

K∏
k=1

N∏
n=1

q(znk) =

K∏
k=1

N∏
n=1

N
(
znk |µznk , σ2znk

)
,

where

σ2znk =
( M∑
m=1

Dm∑
d=1

〈τmd 〉〈(smdkŵmdk)2〉+ 1
)−1

,

µznk = σ2znk

M∑
m=1

Dm∑
d=1

〈τmd 〉〈smdkŵmdk〉
(
ymnd −

∑
j 6=k
〈smdjŵmdj 〉〈znj〉

)
.

Spike and slab weights (W = ŴS) The variational distribution of Ŵ, S is given by

q(Ŵ,S) =

M∏
m=1

Dm∏
d=1

K∏
k=1

q(ŵmdk, s
m
dk) =

M∏
m=1

Dm∏
d=1

K∏
k=1

q(ŵmdk|smdk)q(smdk).

The update for q(smdk) is obtained from

γmdk = q(sdk = 1) =
1

1 + exp(−λmdk)
,

where

λmdk = 〈log
θmk

1− θmk
〉+ 0.5 log

〈αmk 〉
〈τmd 〉

− 0.5 log
( N∑
n=1

〈z2nk〉+
〈αmk 〉
〈τmd 〉

)

+
〈τmd 〉
2

(∑N
n=1 y

m
nd〈znk〉 −

∑
j 6=k〈smdjŵmdj 〉

∑N
n=1〈znk〉〈znj〉

)2
∑N

n=1〈z2nk〉+
〈αmk 〉
〈τmd 〉

,

and the update for q(ŵmdk|smdk) as
q(ŵmdk|smdk = 0) = N (ŵmdk | 0, 1/αmk ) ,
q(ŵmdk|smdk = 1) = N

(
ŵmdk |µwmdk , σ

2
wmdk

)
,

where

µwmdk =

∑N
n=1 y

m
nd〈znk〉 −

∑
j 6=k〈smdjŵmdj 〉

∑N
n=1〈znk〉〈znj〉∑N

n=1〈z2nk〉+
〈αmk 〉
〈τmd 〉

,

σwmdk =
〈τmd 〉−1∑N

n=1〈z2nk〉+
〈αmk 〉
〈τmd 〉

.

Taken together this means that we can update q(ŵmdk, s
m
dk) using

q(ŵmdk|smdk)q(smdk) =N
(
ŵmdk | smdkµwmdk , s

m
dkσ

2
wmdk

+ (1− smdk)/αmk
)

(γmdk)
smdk(1− γmdk)1−sdk .
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ARD precision (α) The variational distribution of α is given by

q(α) =
M∏
m=1

K∏
k=1

Gamma(αmk |âαmk, b̂αmk),

where

âαmk = aα0 +
Dm

2
,

b̂αmk = bα0 +

∑Dm
d=1〈(ŵmdk)2〉

2
.

Noise precision (τ ) The variational distribution of τ is given by

q(τ ) =

M∏
m=1

Dm∏
d=1

q(τmd ) =

M∏
m=1

Dm∏
d=1

Gamma(τmd |âτmd, b̂τmd),

where

âτmd = aτ0 +
N

2
,

b̂τmd = bτ0 +
1

2

N∑
n=1

〈(ymnd −
K∑
k

ŵmdks
m
dkznk)

2〉.

Spike and slab sparsity parameter (θ) The variational distribution of θ is given by

q(θ) =

M∏
m=1

K∏
k=1

Beta(θmk |âθmk, b̂θmk),

where

âθmk =

Dm∑
d=1

〈smdk〉+ aθ0,

b̂θmk = bθ0 −
Dm∑
d=1

〈smdk〉+Dm.

Evidence lower bound (ELBO) In order to monitor training and assess convergence we
calculate the ELBO alongside with the other updates. The ELBO can be decomposed into
a likelihood term and terms for each model variable Xi as

L(X) =

∫
q(X)

(
log

p(X,Y)

q(X)

)
dX

= Eq log p(Y|X)〉+
∑
i

(Eq log p(Xi)− Eq log q(Xi)) ,

where the expectation is under the variational distribution of the current step. Each of the
terms from the above is computed as follows:
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◦ Likelihood term: If using the Gaussian likelihood, this is given by

−
M∑
m=1

(
NDm

2
log(2π) +

N

2

Dm∑
d=1

log(〈τmd 〉)−
Dm∑
d=1

〈τmd 〉
2

N∑
n=1

(
ymnd −

K∑
k=1

〈smdkŵmdk〉〈znk〉
)2)

Otherwise, this expression is replaced by the corresponding likelihood or bound.

◦ Ŵ and S terms:

Eq[log p(Ŵ,S)] =−
M∑
m=1

(
KDm

2
log(2π) +

Dm

2

K∑
k=1

log(αmk )−
αmk
2

Dm∑
d=1

K∑
k=1

〈(ŵmdk)2〉

+

Dm∑
d=1

K∑
k=1

〈log(θmk )〉〈smdk〉+
Dm∑
d=1

K∑
k=1

〈log(1− θmk )〉(1− 〈smdk〉)
)

Eq[log q(Ŵ,S)] =−
M∑
m=1

(
KDm

2
log(2π) +

1

2

Dm∑
d=1

K∑
k=1

log

(
〈smdk〉σ2wmdk +

1− 〈smdk〉
αmk

)

+

Dm∑
d=1

K∑
k=1

(1− 〈smdk〉) log(1− 〈smdk〉)− 〈smdk〉 log〈smdk〉
)

◦ Z terms:

Eq[log p(Z)] = −
NK

2
log(2π)− 1

2

N∑
n=1

〈z2nk〉

Eq[log q(Z)] = −
NK

2
(1 + log(2π))− 1

2

N∑
n=1

K∑
k=1

log(σ2znk)

◦ α terms:

Eq[log p(α)] =

M∑
m=1

K∑
k=1

(
aα0 log b

α
0 + (aα0 − 1)〈logαk〉 − bα0 〈αk〉 − logΓ (aα0 )

)
Eq[log q(α)] =

M∑
m=1

K∑
k=1

(
âαmk log b̂

α
mk + (âαmk − 1)〈logαk〉 − b̂αmk〈αk〉 − logΓ (âαmk)

)
◦ τ terms:

Eq[log p(τ)] =
M∑
m=1

(
Dma

τ
0 log b

τ
0 +

Dm∑
d=1

(aτ0 − 1)〈log τmd 〉

−
Dm∑
d=1

bτ0〈τmd 〉 −Dm logΓ (aτ0)
)

Eq[log q(τ )] =
M∑
m=1

Dm∑
d=1

(
âτmd log b̂

τ
md + (âτmd − 1)〈log τmd 〉 − b̂τmd〈τmd 〉

− log Γ (âτmd)
)
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◦ θ terms:

Eq [log p(θ)] =
M∑
m=1

K∑
k=1

(
(aθ0 − 1)〈log(θmk )〉+ (bθ0 − 1)〈log(1− θmk )〉

− log(B(aθ0, b
θ
0))
)

Eq [log q(θ)] =
M∑
m=1

K∑
k=1

(
(âθmk − 1)〈log(θmk )〉+ (b̂θmk − 1)〈log(1− θmk )〉

− log(B(âθmk, b̂
θ
mk))

)
4.A.3 Modelling and inference with non-Gaussian data

To implement efficient variational inference in conjunction with a non-Gaussian likelihood
we adapt prior work from [168] using local variational bounds. The key idea is to dynam-
ically approximate non-Gaussian data by Gaussian pseudo-data based on a second-order
Taylor expansion. To make the approximation justifiable we need to introduce variational
parameters that are adjusted alongside the updates to improve the fit. Denoting the pa-
rameters in the MOFA model as X = (Z,W,θ,α, τ ), recall that the variational framework
approximates the posterior p(X|Y) with a distribution q(X), which is indirectly optimised
by optimising a lower bound of the log model evidence. The resulting optimization problem
can be re-written from Equation (4.14) as

min
q(X)
−L(X) = min

q(X)
Eq
[
− log p(Y|X)

]
+DKL[q(X)||p(X)].

Expanding the MOFA model to non-Gaussian likelihoods we now assume a general
likelihood of the form p(Y|X) = p(Y|C) with C = ZWT , that can be written as

− log p(Y|X) =
N∑
n=1

D∑
d=1

fnd(cnd),

with fnd(cnd) = − log p(ynd|cnd). Note that we dropped the view index m to keep notation
uncluttered.
Extending [168] to our heteroscedastic noise model, we require fnd(cnd) to be twice

differentiable and bounded by κd, such that f ′′nd(cnd) ≤ κd ∀n, d. This holds true in many
important models as for example the Bernoulli and Poisson case. Under this assumption a
lower bound on the log likelihood can be constructed using Taylor expansion,

fnd(cnd) ≤
κd
2
(cnd − ζnd)2 + f ′(ζnd)(cnd − ζnd) + fnd(ζnd) =: qnd(cnd, ζnd),

where ζ = ζnd are additional variational parameters that determine the location of the
Taylor expansion and have to be optimised to make the lower bound as tight as possible.
Plugging the bounds into above optimization problem, we obtain

min
q(X),ζ

D∑
d=1

N∑
n=1

Eq[qnd(cnd, ζnd)] +DKL[q(X)||p(X)].

The algorithm proposed in [168] then alternates between updates of ζ and q(X). The
update for ζ is given by

ζ ← E[W]E[Z]T ,

57



4 Multi-Omics Factor Analysis

where the expectations are taken with respect to the corresponding q distributions. On the
other hand, the updates for q(X) can be shown to be identical to the variational Bayesian
updates with a conjugate Gaussian likelihood when replacing the observed data Y by a
pseudo-data Ŷ and the precisions τnd (which were treated as random variables) by the
constant terms κd introduced above. The pseudo-data is given by

ŷnd = ζnd − f ′(ζnd)/κd.

Depending on the log likelihood f(·), different κd are used resulting in different pseudo-data
updates. Two special cases implemented in MOFA are the Poisson and Bernoulli likelihood
described in the following.

4.A.3.1 Bernoulli likelihood for binary data

When the observations are binary, y ∈ {0, 1}, they can be modelled using a Bernoulli
likelihood, i. e.

Y|Z,W ∼ Ber(σ(ZWT )),

where σ(a) = (1 + e−a)−1 is the logistic link function and Z and W are the latent factors
and weights in our model, respectively. In order to make the variational inference efficient
and explicit as in the Gaussian case, we aim to approximate the Bernoulli data by a
Gaussian pseudo-data as proposed in [168] and described above. This allows to recycle all
the updates from the model with Gaussian views. While [168] assumes a homoscedastic
approximation with a spherical Gaussian, we adopt an approach following [101], which
allows for heteroscedasticity and provides a tighter bound on the Bernoulli likelihood.
Denoting cnd = (ZWT )nd the Jaakkola upper bound [101] on the negative log-likelihood

is given by

− log (p(ynd|cnd)) = − log (σ ((2ynd − 1)cnd))

≤ − log(ζnd)−
(2ynd − 1)cnd − ζnd)

2
+ λ(ζnd)

(
c2nd − ζ2nd

)
=: bJ(ζnd, cnd, ynd)

with λ given by λ(ζ) = 1
4ζ tanh

(
ζ
2

)
. This can be derived from a first-order Taylor expansion

on the function f(x) = − log(e
x
2 + e−

x
2 ) = x

2 − log(σ(x)) in x2 and by the convexity of f
in x2 this bound is global as discussed in [101].
In order to make use of this tighter bound but still be able to re-use the variational

updates from the Gaussian case we re-formulate the bound as a Gaussian likelihood on
pseudo-data Ŷ.
As above we can plug this bound on the negative log-likelihood into the variational

optimization problem to obtain

min
q(X),ζ

D∑
d=1

N∑
n=1

EqbJ(ζnd, cnd, ynd) +DKL[q(X)||p(X)].

This is minimized iteratively in the variational parameter ζnd and the variational distri-
bution of Z,W: Minimizing in the variational parameter ζ leads to the updates given
by

ζ2nd = E[c2nd]
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as described in [101], [20]. For the variational distribution q(Z,W) we observe that the
Jaakkola bound can be re-written as

bJ(ζnd, cnd, ynd) = − log

(
ϕ

(
ŷnd; cnd,

1

2λ(ζnd)

))
+ γ(ζnd),

where ϕ(·;µ, σ2) denotes the density function of a normal distribution with mean µ and
variance σ2 and γ is a term only depending on ζ. This allows us to re-use the updates for Z
and W from a setting with Gaussian likelihood by considering the Gaussian pseudo-data

ŷnd =
2ynd − 1

4λ(ζnd)
,

updating the data precision as τnd = 2λ(ζnd) using updates generalized for sample- and
feature-wise precision parameters on the data.

4.A.3.2 Poisson likelihood for count data

When observations are natural numbers, such as count data y ∈ N0, they can be modelled
using a Poisson likelihood, i. e.

p(y|c) = λ(c)ye−λ(c),

where λ(c) > 0 is the rate function and has to be convex and log-concave in order to ensure
that the likelihood is log-concave. Following [168], here we choose the rate function

λ(c) = log(1 + ec).

Then, an upper bound of the second derivative of the log-likelihood is given by

f ′′nd(cnd) ≤ κd = 1/4 + 0.17max(y:,d),

and the pseudo-data updates are given by

ŷnd = ζnd −
σ(ζnd)(1− ynd/λ(ζnd))

κd
.

4.A.4 Implementation and practical considerations for training

4.A.4.1 Monitoring convergence

In contrast to sampling methods, variational approximations have the appealing property
that convergence is easily monitored by changes in the ELBO, which is required to increase
monotonically [20]. In practice, we set a default threshold for convergence corresponding
to a change in ELBO smaller than 0.1%.

4.A.4.2 Handling of missing values

The model naturally accounts for missing values and no prior imputation is required. Non-
observed data points do not intervene in the likelihood and are ignored in the update
equations. In practice, we use a binary mask Om ∈ RN×Dm for each view m, such that
On,d = 1 when feature d is observed for sample n, 0 otherwise.
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4.A.4.3 Data pre-processing

MOFA does not require the data to be centered or scaled. The first property is achieved by
incorporating a constant factor of ones that will capture any feature-wise intercept effect.
This ensures that the rest of the factors capture variation independent of the feature-wise
means. The second property is achieved by the factor- and view-wise ARD prior, which
allows different scales of the weights for each view. However, when using the Gaussian
noise model, it is recommended to use methods for normalization and variance stabilisation
(e.g. as implemented in [127] for RNAseq data) prior to model training. This makes the
normality assumption of the model residuals more appropriate.

4.A.4.4 Consistency across random initializations

The variational Bayes algorithm is not guaranteed to find the optimal solution [20] and
the estimates will depend on the parameter initialization. We suggest to adopt common
practice [91] and assess the consistency of factors by running MOFA multiple times (e.g. 10
trials) under different initialisations. Subsequently, a single model with the highest ELBO
should be selected for downstream analysis. Appropriate functions for model selection are
provided in the R package MOFAtools.

4.A.4.5 Determining the number of factors

The model can automatically learn the number of factors by removing inactive factors
during training if they do not explain significant variation in any view. This is achieved by
the view- and factor-wise ARD prior (Eq. (4.10)). In practice, factors are pruned during
training using a minimum fraction of variance explained threshold that needs to be specified
by the user. Alternatively, the user can fix the number of factors and the minimum variance
criterion is ignored.

4.A.4.6 Rotational invariance

An important consequence of the definition of MOFA (and most factor analysis models
[14, 197]) is their unidentifiability due to rotational and scaling invariance. This means
that the factors and corresponding loadings can only be identified up to an orthogonal
rotation. In practice, this property implies that the actual factor and weight values need
to be interpreted in a relative manner, always within the same model instance.
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4.A.5 Supplementary Figures
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Figure 4.A.1: Model validation of MOFA using simulated data. (a) Comparison
of the number of simulated and estimated factors. Boxplots show the distribution across
10 model instances. (b-d) Recovery of the true number of latent factors (K = 10) under
different number of (b) features, (c) views and (d) fraction of missing values. Individual
bars correspond to different model instances.
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Figure 4.A.2: Validation of the Bernoulli likelihood model. On simulated binary
data 25 instances of a MOFA model were trained considering a Bernoulli (red) or Gaus-
sian (blue) likelihood, respectively. (a) Variational evidence lower bound (ELBO) for each
model instance. (b) Reconstruction error for each model instance. (c) Number of estimated
factors. The horizontal line denotes the true number of factors (K = 10). Individual model
instances are coloured based on their respective ELBO value. The arrows mark the models
with the highest ELBO that would be selected for downstream analysis. (d) Distribution
of the reconstructed data, with the Bernoulli (red) or Gaussian (blue) likelihood model,
respectively.
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Figure 4.A.3: Validation of the Poisson likelihood model. On simulated count
data 25 instances of a MOFA model were trained considering a Poisson (red) or Gaus-
sian (blue) likelihood, respectively. (a) Variational evidence lower bound (ELBO) for each
model instance. (b) Reconstruction error for each model instance. (c) Number of estimated
factors. The horizontal line denotes the true number of factors (K = 10). Individual model
instances are coloured based on their respective ELBO value. The arrows mark the models
with the highest ELBO that would be selected for downstream analysis. (d) Distribution
of the reconstructed data, with the Poisson (red) or Gaussian (blue) likelihood model,
respectively.
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Figure 4.A.4: Comparison of MOFA, GFA and iCluster on simulated data. (a)
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correlation coefficient between the factors. Each block in the diagonal captures a latent
factor consistently learnt across multiple trials.
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of samples. Shown is (a) the number of factors and (b) the absolute Pearson correlation
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Figure 4.A.8: MOFA trained on a subset of the available assays. (a) Absolute
correlation between the MOFA factors recovered on the full data sets (x-axis) with the
most associated factor recovered when using only one data modality (y-axis). Correlation
is calculated on the N = 121 samples that were profiled in all assays. (b) Harrell’s C-
index for prediction of time to next treatment for the N = 121 samples with data in all
modalities using 10 factors obtained from MOFA on each single data modality as well as
the full data. (c) Same as in (a) for MOFA trained on all assays except one. (d) Same as
in (b) for MOFA trained on all assays except one.
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Figure 4.A.9: Performance of MOFA, GFA and iCluster on the CLL data.
(a) Consistency of inferred factors across multiple trials. Shown are absolute Pearson
correlation coefficients between pairs of factors in different trials. Each diagonal block
captures a factor that is consistently learnt across multiple trials. For the first trial of each
model, we show: (b) Fraction of variance explained (R2) by individual factors for each
view. No variance measure can be estimated in the (binary) mutation data by the iCluster
method. (c) Negative log FDR-adjusted p-values from the association analysis (t-test)
between individual factors and IGHV status. The line denotes the statistical significance
threshold of 1% FDR.
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Figure 4.A.12: Correlation between the continuous IGHV state inferred by
MOFA (Factor 1) and individual molecular features. Scatterplots showing the cor-
relation between the continuous Factor 1 inferred by MOFA and molecular features. To
avoid circularity, models were re-trained holding out different data modalities in turn:
(a) drug response, (b) gene expression and (c) methylation. Colours denote cluster as-
signments using the factor obtained from the full data set. Displayed are representative
features with high absolute loading on the Factor 1 from the full model.
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Figure 4.A.13: Correlation between the continuous IGHV state inferred by
MOFA (Factor 1) trained on different subset of data modalities. Scatterplots on
the lower panels show the pairwise correlation between the continuous Factor 1 inferred
by MOFA when training on all assays, without the drug response assay, mRNA assay
and methylation assay, respectively. Colours are based on the clusters on Factor 1 inferred
by the full model (trained on all data modalities). The panels on the diagonal show the
densities of factor values of the 3 different clusters in each setting and the upper panels
denote the overall and within-cluster correlation.
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Figure 4.A.14: Characterization of Factor 4 in the CLL data. (a) Gene sets of
the Reactome pathways enriched in the loadings of the mRNA data in Factor 4 (t-test,
Methods Section 4.4.4, dashed line represents a FDR of 1%). (b) Heatmap of the mRNA
data in the top ten features for Factor 4. Samples are ordered along their value on Factor 4
as shown on top of the heatmap. (c) Scatterplot of the normalized expression of important
surface markers of T-cells (CD8A, CD8B, CD3D) and monocytes (CD300E) versus the
values on Factor 4.
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Figure 4.A.15: Characterization of Factor 3 in the CLL data. (a) Loadings of
all drugs and concentrations on Factor 3. (b) Scatterplot of Factor 3 versus a general
level of drug sensitivity calculated as the mean viability of a sample across all drugs and
concentrations.
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Figure 4.A.16: Prediction of drug response curves in the CLL data. Prediction
of drug response curves for two samples clinically annotated as M-CLL (M-IGHV, H050,
dashed line) and U-CLL (U-IGHV, H052, solid line), respectively, for four representative
drugs known to be affected by IGHV status. Scatterplots show the predicted drug response
curve as cellular viability versus concentration when training a MOFA model removing all
drugs from the corresponding patients (red) and removing only the four drugs (green). The
true response curve is shown in blue.
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Figure 4.A.17: Comparison of the accuracy of MOFA and GFA for imputing
missing values in the drug response assay of the CLL data. GFA and MOFA
models were trained with different numbers of factors. Shown are averages of the mean
squared error (MSE) across 5 imputation experiments for different fractions of missing
data, considering (a) values missing at random (top panel: 5%; bottom panel: 50%) and
(b) entire assay missing for samples at random (top panel:N = 10; bottom panel:N = 50).
Error bars denote plus or minus two standard error.
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Figure 4.A.18: Characterisation of Factor 7 in the CLL data. (a) Beeswarm plot
with Factor 7 values for each sample. Colours denote the presence or absence of the deletion
del17p13. (b) Heatmap of methylation (M-value) for CpG sites with the largest absolute
loading (matched to overlapping genes). (c) Absolute loadings of top features in the somatic
mutation data. (d) Absolute loadings of the top features in the drug response data.
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Figure 4.A.19: Characterization of Factor 8 in the CLL data. (a) Variance ex-
plained by Factor 8 in the four assays. (b) Gene sets enriched for the Reactome pathways
in the loadings of the mRNA data at a FDR of 1% (t-test, Methods Section 4.4.4). (c)
Absolute values for the weights of top 20 genes in the mRNA data, sign indicating the
direction of their effect. (d) Heatmap of the normalized expression values for the genes
shown in (c), samples are ordered along their values on Factor 8.
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Figure 4.A.20: Prediction accuracy of time to next treatment using MOFA
factors and individual features of the assays in the CLL data. Considered are L2-
penalized Cox models trained on the features of individual assays as well as their superset
(all). For comparison the result using a Cox model trained on the 10 MOFA factors is shown
as in Figure 4.8. The y-axis shows Harrell’s C-index as a measure of prediction performance.
The average value over 5-fold cross-validation is shown, with error bars indicating the
standard error. Assays with missing values were imputed using the feature-wise mean.
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Figure 4.A.21: Comparison of MOFA factors with clinical covariates in the CLL
data. (a) Association of MOFA factors and clinical covariates with time to next treat-
ment using a univariate Cox models for N = 76 samples, for which the clinical information
was available. Error bars denote 95% confidence intervals. Numbers on the right denote
p-values for each predictor. ‘Doubling times’ refers to the clinically measured doubling time
of lymphocytes, ‘pretreated’ to whether the patient was treated by chemo-immunotherapy
prior to sample collection and ‘MethylationCluster’ to the previously described CLL sub-
groups as in Figure 4.A.11. (b) Prediction accuracy of time to treatment using multivariate
Cox regression trained using the 10 factors derived using MOFA as well as the selected
clinical predictors in panel (a). Shown are average values of Harrell’s C-index from 5-fold
cross-validation. Error bars denote standard error of the mean.
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Figure 4.A.22: Characterisation of Factor 3 in the single cell data. Scatterplot
depicting the correlation between Factor 3 and the cellular detection rate, a known technical
factor in single-cell RNA-seq data that corresponds to the fraction of expressed genes.
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Figure 4.A.23: Multi-omics clustering applied to the single cell data. (a) Sim-
ilarity matrix and dendrogram obtained using Similarity Network Fusion [199]. (b) Den-
drogram obtained using iClusterPlus [144] with two clusters (K = 1, model selection by
optimal BIC). The cells at the leaves are coloured by culture condition.
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4.A.6 Supplementary Tables

Table 4.A.1: Parameters for simulation settings
(a) Simulation settings to validate the ability to learn the number of active factors
(Appendix Figure 4.A.1)
likelihood # factors # features # views # samples % missing

Gaussian 5,10,. . . ,60 5000 3 100 0

Gaussian 10 100,500,. . . ,10000 3 100 0

Gaussian 10 5000 1,3,. . . ,21 100 0

Gaussian 10 5000 3 100 0,5,. . . ,90

(b) Simulation settings to validate non-Gaussian likelihoods (Appendix Figures 4.A.2 and
4.A.3)
likelihood # factors # features # views # samples % missing

Bernoulli 10 5000 3 100 0

Poisson 10 5000 3 100 0

(c) Simulations settings for the GFA and iCluster comparison (Appendix Figures 4.A.4
and 4.A.5)
likelihood # factors # features # views # samples % missing

Gaussian,
Bernoulli, 10 5000 3 100 5
Poisson
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Table 4.A.2: Coarse-grain categories of gene sets used in Figure 4.3
Immune Response

Interleukin-6 signalling
Interleukin-7 signalling
Cytokine Signalling in Immune system
Adaptive Immune System
Innate Immune System
Immune System
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell
TCR signalling
Downstream TCR signalling
Phosphorylation of CD3 and TCR zeta chains
Translocation of ZAP-70 to Immunological synapse
Interleukin-1 signalling
Signalling by Interleukins
Interleukin-2 signalling
Interleukin-3, 5 and GM-CSF signalling
Diseases of Immune System
Interleukin-6 family signalling
Interleukin-10 signalling
Interleukin-4 and 13 signalling
IL-6-type cytokine receptor ligand interactions
Interleukin receptor SHC signalling

Cellular Stress/Senescence

Telomere Maintenance
Packaging Of Telomere Ends
Polymerase switching on the C-strand of the telomere
Processive synthesis on the C-strand of the telomere
Telomere C-strand (Lagging Strand) Synthesis
Activation of ATR in response to replication stress
Extension of Telomeres
Cellular responses to stress
Oxidative Stress Induced Senescence
Senescence-Associated Secretory Phenotype (SASP)
Cellular Senescence
Formation of Senescence-Associated Heterochromatin Foci (SAHF)
Oncogene Induced Senescence
DNA Damage/Telomere Stress Induced Senescence
Regulation of HSF1-mediated heat shock response
HSF1 activation
Cellular response to heat stress
Attenuation phase
HSF1-dependent transactivation

RNA regulation

RNA Polymerase II HIV Promoter Escape
SIRT1 negatively regulates rRNA Expression
ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression
NoRC negatively regulates rRNA expression
Regulation of mRNA stability by proteins that bind AU-rich elements
RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription
Positive epigenetic regulation of rRNA expression
B-WICH complex positively regulates rRNA expression
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4 Multi-Omics Factor Analysis

Negative epigenetic regulation of rRNA expression
Transcriptional regulation by small RNAs
RNA Polymerase II Pre-transcription Events
RNA Polymerase I Promoter Opening
RNA Polymerase I Transcription Initiation
RNA Polymerase I Promoter Escape
RNA Polymerase II Promoter Escape
RNA Polymerase I Chain Elongation
RNA Polymerase II Transcription Pre-Initiation And Promoter Opening
RNA Polymerase III Chain Elongation
RNA Polymerase I Promoter Clearance
RNA Polymerase II Transcription Termination
RNA Polymerase II Transcription
RNA Polymerase I Transcription Termination
RNA Polymerase I Transcription
RNA Polymerase III Transcription Termination
RNA Polymerase III Transcription
RNA Polymerase III Abortive And Retractive Initiation
RNA Polymerase II Transcription Initiation
RNA Polymerase II Transcription Elongation
RNA Polymerase II Transcription Initiation And Promoter Clearance
RNA Polymerase III Transcription Initiation
RNA Polymerase III Transcription Initiation From Type 1 Promoter
RNA Polymerase III Transcription Initiation From Type 2 Promoter
RNA Polymerase III Transcription Initiation From Type 3 Promoter
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Table 4.A.3: Overview of GFA and iCluster methods.
Abbreviations used in the table: variational Bayes (VB), Gibbs (Gibbs sampling), auto-
matic relevance determination (ARD), expectation-maximization (EM)

Publi-
cation

Infer-
ence

Group-
sparsity

Feature-
sparsity

Missing
values

Likeli-
hood

Noise
model

Shen
et al. 2009
[170]

EM, grid
search

different
L1-
penalties

L1-
penalty

No Gaussian Hetero-
scedastic

Mo et al.
2013
[144]

EM, grid
search

different
L1-
penalties

L1-
penalty

No Gaussian,
Poisson,
Bernoulli,
Multino-
mial

Hetero-
scedastic

Virtanen
et al. 2012
[197]

VB ARD None No Gaussian Homo-
scedastic

Klami
et al. 2015
[113]

VB ARD None No Gaussian Homo-
scedastic

Bunte
et al.
2016 [27]

Gibbs ARD Spike &
Slab

No Gaussian Homo-
scedastic

Hore
et al.
2016 [91]

VB None Spike &
Slab

Yes Gaussian Hetero-
scedastic

Remes
et al. 2015
[160]

VB ARD None No Gaussian Homo-
scedastic

Zhao
et al. 2016
[214]

Gibbs ARD Three-
parameter
beta prior

No Gaussian Hetero-
scedastic

Leppäaho
et al. 2017
[122]

Gibbs ARD Spike &
Slab

Yes Gaussian Homo-
scedastic

MOFA VB ARD Spike &
Slab

Yes Gaussian,
Poisson,
Bernoulli

Hetero-
scedastic
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CHAPTER 5
Adaptive penalization in high-dimensional regression and

classification with external covariates

This chapter is a slightly modified version of a pre-print available under https: // arxiv.
org/ abs/ 1811. 02962 .

Penalization schemes like Lasso or ridge regression are routinely used to regress a re-
sponse of interest on a high-dimensional set of potential predictors. Despite being decisive,
the question of the relative strength of penalization is often glossed over and only implicitly
determined by the scale of individual predictors. At the same time, additional information
on the predictors is available in many applications but left unused. Here, we propose to
make use of such external covariates to adapt the penalization in a data-driven manner.
We present a method that differentially penalizes feature groups defined by the covariates
and adapts the relative strength of penalization to the information content of each group.
Using techniques from the Bayesian tool-set our procedure combines shrinkage with feature
selection and provides a scalable optimization scheme.
We demonstrate in simulations that the method accurately recovers the true effect sizes

and sparsity patterns per feature group. Furthermore, it leads to an improved prediction
performance in situations where the groups have strong differences in dynamic range.
In applications to data from high-throughput biology, the method enables re-weighting
the importance of feature groups from different assays. Overall, using available covariates
extends the range of applications of penalized regression, improves model interpretability
and can improve prediction performance.
Code Availability The software is freely available as an R package https://git.

embl.de/bvelten/graper, scripts for the analyses contained in this paper can be found
at https://git.embl.de/bvelten/graper_analyses.

89

https://arxiv.org/abs/1811.02962
https://arxiv.org/abs/1811.02962
https://git.embl.de/bvelten/graper
https://git.embl.de/bvelten/graper
https://git.embl.de/bvelten/graper_analyses


5 Adaptive penalization in regression using external covariates

5.1 Introduction

We are interested in the setup where we observe a continuous or categorical response Y
together with a vector of potential predictors, or features, X ∈ Rp and aim to find a
relationship of the form

Y = f(X).

Two main questions are of potential interest in this setting. First, we want to obtain an f
that yields good predictions for Y given a new observation X. Second, we aim at finding
which components in X are the ‘important ones’ for the prediction.
A common and useful approach to this end are (generalized) linear regression methods,

which assume that the distribution of Y |X depends on X via a linear term XTβ. In
order to cope with high-dimensionality of X and avoid over-fitting, penalization on β is
employed, e.g. in ridge regression [90], Lasso [184] or elastic net [216]. By constraining the
values of β, the complexity of the model is restricted, resulting in biased but less variable
estimates and improved prediction performance. In addition, some choices of the penalty
yield estimates with a relatively small number of non-zero components, thereby facilitating
feature selection. An example is the L1-penalty employed in Lasso or elastic net.
Commonly, penalization methods apply a penalty that is symmetric in the model coef-

ficients. Real data, however, often consists of a collection of heterogeneous features, which
such an approach does not account for. In particular, it ignores any additional informa-
tion or structural differences that may be present in the features. Often we encounter X
whose components comprise multiple data modalities and data qualities, e.g., measurement
values from different assays. Other side-information on individual features could include
temporal or spatial information, quality metrics associated to each measurement or the
features’ sample variance, frequency or signal-to-noise ratio. It has already been observed
in multiple testing that the power of the analysis can be improved by making use of such
external information (e.g. [48, 62, 97, 121, 123]). However, in current penalized regression
models this information is frequently ignored. Making use of it could on one hand improve
prediction performance. On the other hand, it might yield important insight into the re-
lationship of external covariates to the features’ importance. For example, if the covariate
encodes different data modalities, insights into their relative importance could help cutting
costs by reducing future assays to the essential data modalities.
As a motivating example we consider applications in molecular biology and precision

medicine. Here, the aim is to predict phenotypic outcomes, such as treatment response,
and identify reliable disease markers based on molecular data. Nowadays, different high-
throughput technologies can be combined to jointly measure thousands of molecular fea-
tures from different biological layers [85, 162]. Examples include genetic alterations, gene
expression, methylation patterns, protein abundances or microbiome occurrences. How-
ever, despite the increasing availability of molecular and clinical data, outcome prediction
remains challenging [4, 35, 82]. Common applications of penalized regression only make use
of parts of the available data. For example, different assay types are simply concatenated
or analysed separately. In addition, available annotations on individual features are left
unused, such as their chromosomal location or gene set and pathway membership. Incor-
porating side-information on the assay type and spatial or functional annotations could
help to improve prediction performance. Furthermore, it could help prioritizing feature
groups, such as different assays or gene sets.
Here, we propose a method that incorporates external covariates in order to guide pe-

nalization and can learn relationships of the covariate to the feature’s effect size in a
data-driven way. We introduce the method for linear models and extend it to classifica-

90



5.2 Methods

tion purposes. We demonstrate that this can improve prediction performance and yields
insights into the relative importance of different feature sets, both on simulated data and
applications in high-throughput biology.

5.2 Methods

5.2.1 Problem statement

Assume we are given observations (x1, y1), . . . , (xn, yn) with yi ∈ Y ⊆ R, xi ∈ Rp (possibly
n� p) from a linear model, i.e.

yi = xTi β + εi (5.1)

with εi
iid∼ N (0, σ2). In addition, we suppose that we have access to a covariate ζj ∈ Z ⊆ Rk

for each predictor j = 1, . . . , p. We hope, loosely speaking, that ζj contains some sort of
information on the magnitude of βj . The question we want to address is: Can we use the
information from ζ to improve upon estimation of β and prediction of Y ?

In order to estimate β from a finite sample y = (yi)
n
i=1 ∈ Rn and X = (x1, . . . , xn)

T ∈
Rn×p we can employ penalization on the negative log-likelihood of the model, i.e.

β̂(λ) ∈ argmin
β

1

n
||y −Xβ||22 + λpen(β), (5.2)

where pen(·) denotes a penalty function on the model coefficients. For example, the choice
pen(β) =

∑
j |βj |q leads to Lasso (q = 1) or ridge regression (q = 2). The parameter λ

controls the amount of penalization and thereby the model complexity. Ideally, we would
like to choose an optimal λ. For estimation this means minimizing the mean squared error
MSE(β̂(λ)) = E||β̂(λ)−β||22; for prediction this means minimizing the expected prediction
error. In practice, λ is often chosen to minimize the cross-validated error.

In most applications, the penalization is symmetric, i.e. for any permutation π we have
λpen(β1, . . . , βp) = λpen(βπ(1), . . . , βπ(p)). However, as we have external information on
each feature given by ζ we want to allow for differential penalization guided by ζ. For this,
we will consider the following non-symmetric generalization, which still leads to a convex
optimization problem in β for a convex penalty, such as pen(x) = |x| or pen(x) = x2:

β̂(λ) ∈ argmin
β

1

n
||y −Xβ||22 +

∑
j

λ(ζj)pen(βj). (5.3)

Instead of a constant λ, here λ : Z → R≥0 provides a mapping from the covariate ζ to a
non-negative penalty factor λ(ζ). This additional flexibility compared to a single penalty
parameter can be helpful if ζ contains information on β. For example, in the simple case
of ridge regression with deterministic orthonormal design matrix, known noise variance σ2

and ‘oracle covariate’ ζj = βj the optimal λ is seen to be λ∗(ζj) = σ2

ζ2j
. However, in practice

the information in ζ is not that explicit and hence we do not know which λ is optimal.
If λ takes values in a small set of discrete values, e.g. for categorical covariates ζ, cross-

validation could be used to determine a suitable set of function values. This approach is em-
ployed in the IPF-Lasso [22], where categorical covariates encode different data modalities.
However, cross-validation soon becomes prohibitive, as it requires a grid search exponential
in the number of categories defined by ζ. Similarly, cross-validation can be employed with
λ parametrized by a small number of tuning parameters using domain knowledge to come
up with a suitable parametric form for λ [17, 196]. However, such an explicit form is often
not available. In many situations it is a major problem itself to come up with a helpful
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relationship between ζ and β and thereby knowledge of which values of a covariate would
require more or less penalization. Therefore, we aim at finding λ in a data-driven manner
and with improved scalability compared to cross-validation.

5.2.2 Problem statement from a Bayesian perspective

There is a direct correspondence between estimates obtained from penalized regression
and a Bayesian estimate with penalization via corresponding priors on the coefficients. For
example, the ridge estimate corresponds to the maximum a posterior estimate (MAP) in a
Bayesian regression model with normal prior on β and the Lasso estimate to a MAP with
a Laplace prior on β. This correspondence opens up alternative strategies using tools from
the Bayesian mindset to approach the problem outlined above: Differential penalization
translates to introducing different priors on the components of β. Our belief that ζ carries
information on β can be incorporated by using prior distributions whose parameters depend
on ζ. In GRridge [203], the authors used this idea to derive an Empirical Bayes approach
for finding group-wise penalty parameters in ridge regression. However, this approach does
not obviously generalize to other penalties such as the Lasso.
Moving completely into the Bayesian mindset we instead turn to explicit specification

of priors to implement the penalization task. Different priors have been suggested [33, 131,
143, 150] and structural knowledge was incorporated into the penalization by employing
multivariate priors that encode the structure in the covariance or non-exchangeable priors
with different hyper-parameters (e.g. [5, 56, 88, 163, 207, 208] and references therein).
Despite the possible gains in prediction performance when incorporating such structural
knowledge, these methods have not been widely applied. A limiting factor has often been
the lack of scalability to large data sets.

5.2.3 Setup and notation

From the linear model assumption we have

yi = xTi β + εi, εi
iid∼ N (0, τ−1), (5.4)

where τ denotes the precision of the noise. Based on the external covariate ζ we define a
partition of the p predictors into G groups:

gζ = g : {1, . . . , p} → {1, . . . , G}. (5.5)

For instance, categorical covariates ζ, such as different assay types, naturally define such
a partition. For continuous covariates gζ can be defined based on suitable binning or clus-
tering.
To achieve penalization in dependence of ζ we consider a spike and slab prior [143] on

the model coefficients β with a different slab precision γ and mixing parameter π for each
group. We re-parametrize β as βj = sjbj with

bj |γgζ(j) ∼ N
(
0, γ−1gζ(j)

)
, (5.6)

sj |πgζ(j) ∼ Ber(πgζ(j)). (5.7)

In the special case of π = 1 this yields a normal prior as in [131] corresponding to ridge
regression. With π < 1 we additionally promote sparsity on the coefficients, and the value of
π controls the number of active predictors in each group. The value of γ controls the overall
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shrinkage per group. To learn the model hyperparameters γ, π and the noise precision τ ,
we choose the following conjugate priors

τ ∼ Gamma(rτ , dτ ), (5.8)

and for each group k ∈ {1, . . . , G}

γk ∼ Gamma(rγ , dγ), (5.9)
πk ∼ Beta(dπ, rπ), (5.10)

with dτ , rτ , dγ , rγ = 0.001 and rπ, dπ = 1. Hence, the joint probability of the model is given
by

p(y, b, s, γ, π, τ) = p(y|b, s, τ)p(b, s|π, γ)p(γ)p(π)p(τ). (5.11)

5.2.4 Inference using variational Bayes

The challenge now lies in inferring the posterior of the model parameters from the observed
data X, y and the covariate ζ. While Markov chain Monte Carlo methods are frequently
used for this purpose they do not scale well to large data sets. Here, we adopt a variational
inference framework [20, 21] that has been used (in combination with importance sam-
pling) for variable selection with exchangeable priors (e. g. varbvs [31, 32]). Denoting all
unobserved model components by θ = (b, s, γ, π, τ), we approximate the posterior p(θ|X, y)
by a distribution q(θ) from a restricted class of distributions Q, where the goodness of the
approximation is measured in terms of the Kullback-Leibler (KL) divergence, i.e.

q ∈ argmin
q∈Q

DKL(q || p(θ|X, y)). (5.12)

A common and useful choice for distributions in class Q is the mean-field approximation,
i.e. assuming that a distribution in Q factorizes in its parameters. We consider

q(θ) = q(b, s, γ, π, τ) =

p∏
j=1

q(bj , sj)q(γ)q(π)q(τ), (5.13)

where bj and sj are not factorised due to their strong dependencies [188].
The variational approach leads to an iterative inference algorithm [21] by observing that

minimizing the KL-divergence is equivalent to maximizing the evidence lower bound L
defined by

log(p(y)) = L(q) +DKL(q || p(θ |X, y)). (5.14)

From this, we have

L(q) =
∫

log
p(y, θ)

q(θ)
q(θ) dθ (5.15)

=

∫
log p(y, θ) q(θ) dθ +H(q(θ)), (5.16)

with H(q) =
∫
−q(θ) log q(θ) dθ denoting the differential entropy.

Variational methods are based on maximisation of the functional L with respect to q
in order to obtain a tight lower bound on the log model evidence and minimize the KL-
distance between the density q and the true (intractable) posterior. Under a mean-field
assumption q(θ) =

∏
j q(θj), the optimal qj keeping all other factors fixed is given by

log(q∗j )(θj) = E−j(log(p(y, θ)))− const. (5.17)
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Iterative optimization of each factor results in Algorithm 1. Details on the variational
inference and the updates can be found in Appendix 5.A.1 and 5.A.2. The method is
implemented in the freely available R package graper. From the obtained approximation
q of the posterior distribution, we obtain point estimates for the model parameters. In
particular, we will use the posterior means β̂ =

∫
β q(β) dβ, γ̂ =

∫
γ q(γ) dγ and π̂ =∫

π q(π) dπ.

Algorithm 1 Inference algorithm
1: Input: X, y,

⊔G
k=1 Gk = {1, . . . , p}

2: Initialize Esj = 1, Eβj sampled from N (0, 1), Eτ = Eγk = 1
3: while L(q) has not converged do:
4: for k = 1, . . . G do
5: Set q(πk) = Beta(πk|απk , βπk ) with

απk = dπ +
∑
j∈Gk

Esj and βπk = rπ +
∑
j∈Gk

(1− Esj)

6: for j = 1, . . . p do
7: Set q(sj) = Ber(sj |ψj), q(bj |sj = 1) = N (bj |µj , σ2j ) and

q(bj |sj = 0) = N (bj |0, (Eγg(j))−1) with
σ2j = (Eτ ||X·,j ||22 + Eγg(j))−1

µj = σ2jEτ

− n∑
i=1

p∑
l 6=j

XijXilE(βl) +XT
·,jy


logit(ψj) = E log

πg(j)

1− πg(j)
+

1

2
log(Eγg(j)) +

1

2
log(σ2j ) +

1

2

µ2j
σ2j

8: Set q(τ) = Gamma(τ |ατ , βτ ) with

ατ = rτ +
n

2
and βτ = dτ +

1

2
E||y −Xβ||22

9: for k = 1, . . . G do
10: Set q(γk) = Gamma(γk|αγk , β

γ
k ) with

αγk = rγ +
1

2
|Gk| and βγk = dγ +

1

2

∑
j∈Gk

Eb2j

11: Calculate L(q) = E log p(y, b, s, γ, π, τ) +H(q)

Notes: The expectations are taken under the current variational distribution q, and H(q) =∫
−q(θ) log q(θ)dθ denotes the differential entropy. We use F(x|a) to denote the probability

density function in x of a distribution F with parameters a, e.g. Beta(x|α, β). In step 7 it is
important to keep track of v = XEβ in the implementation to obtain linear computational
complexity in p. We set rτ = rγ = dτ = dγ = 0.001 and dπ = rπ = 1.

Remark on the choice of the mean-field assumption An interesting deviation from the
standard fully factorized mean-field assumption in Equation (5.13) is taking a multivariate
variational distribution for the model coefficients. This is easily possible for the dense model

94



5.3 Results

(π = 1, s = 1, b = β), where we can consider the factorization

q(β, γ, τ) = q(β)q(γ)q(τ).

In particular, a multivariate distribution is kept for the model coefficients β instead of fac-
torizing q(β) =

∏
j q(βj). Thereby, this approach allows to capture dependencies between

model coefficients in the inferred posterior and is less approximative. We will show below
that this can improve the prediction results. However, a drawback of this approach is its
computational complexity, as it requires the calculation and inversion of a p×p covariance
matrix in each step. While this can be reduced to a quadratic complexity as described in
Appendix 5.A.2.1, this is still prohibitive for many applications. Therefore, we concentrate
in the following on the fully factorized mean-field assumption but include comparisons to
the multivariate approach in the Results section.

5.2.5 Extension to logistic regression

The model of Section 5.2.3 can be flexibly adapted to other types of generalised linear re-
gression setups with suitable link functions and likelihoods. However, the inference frame-
work needs to be adapted due to loss of conjugacy. Here, we extend the model to the
framework of logistic regression with a binary response variable, where we assume that the
response follows a Bernoulli likelihood with a logistic link function

yi|β ∼ Ber(σ(xTi β)) with σ(z) =
1

1 + exp(−z) . (5.18)

While the prior structure and core of the variational inference are identical to the case of a
linear model, additional approximations are necessary. For this purpose we adopt [101] and
approximate the likelihood using a lower bound on the logistic function. For an arbitrary
ξ ∈ R we have

σ(z) ≥ σ(ξ) exp
(
1

2
(z − ξ)− η(ξ)(z2 − ξ2)

)
(5.19)

with η(ξ) = 1
2ξ

(
σ(ξ)− 1

2

)
. With this, log p(y|β) =

∑n
i=1 log(σ((2yi − 1)xTi β)) can be

bounded by

log p(y|β) ≥ 1

2

∑
i

(2yi − 1)xTi β −
∑
i

η(ξi)(x
T
i β)

2

+
∑
i

(
log(σ(ξi))−

1

2
ξi + η(ξi)ξ

2
i

)
.

(5.20)

As this approximation restores a quadratic form in β, the remaining updates can be adopted
from the case of a linear model above with the additional variational parameter ξ (see
Appendix 5.A.2.2 for details).

5.3 Results

5.3.1 Results on simulated data

First, we evaluated the method on simulated data to test its ability to recover the model
coefficients and hyper-parameters per group. For this, a random X matrix was generated
from a multivariate normal distribution with mean zero and a Toeplitz covariance structure
Σij = ρ|i−j|, and the response was simulated from a linear model with normal error. The
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p predictors were split into G = 6 groups of equal size, and the coefficients were simulated
from the model as described in Equations (5.6) and (5.7) with fixed πk and γk for each
group. In particular, we set γk = 0.01 for k = 1, 2, γk = 1 for k = 3, 4 and γk = 100
for k = 5, 6. For each pair of groups with same γ-value the sparsity level πk was varied
between ν and min(1, 1.5ν) for a certain value of ν determining the sparsity level from 0
(sparse) to 1 (dense). We then varied the number of features p, the number of samples
n, the correlation strength ρ, the noise precision τ and the sparsity level ν (Table 5.1)
and generated for each setting ten independent data sets. We evaluated the recovery of
the hyper-parameter γ and π for each group and compared the predictive performance
and computational complexity to those of related methods including ridge regression [90],
Lasso [184], elastic net [216], adaptive Lasso [215], sparse group Lasso, group Lasso [67],
GRridge [203], varbvs [32] and IPF-Lasso [22]. Here, ridge regression, Lasso, elastic net
and varbvs are covariate-agnostic methods, i. e. they ignore the group annotations of the
features. The group Lasso methods account for the group structure but use a joint penalty
parameter, and GRridge, IPF-Lasso and graper are covariate-aware and adapt the relative
strength of the penalty to the groups.

Table 5.1: Simulation parameters
Here, p denotes the number of features, n the number of samples, ρ the correlation
strength in X, τ the noise precision and ν the sparsity level.

p n ρ τ ν

60, 120,. . . ,1200 100 0 1 0.2
300 20, 40,. . . ,500 0 1 0.2
300 100 0, 0.1,. . . ,0.9 1 0.2
300 100 0 0.01, 0.1,. . . ,100 0.2
300 100 0 1 0.001, 0.01, 0.05,. . . ,1

5.3.1.1 Recovery of hyper-parameters

The algorithm accurately recovered the relative importance of different groups (encoded
by γk) and the group-wise sparsity level (encoded by πk) across a large range of settings as
shown in Figure 5.1. The method failed to recover those parameters accurately only if the
ratio between sample size and number of features was too small or the sparsity parameter
ν was too close to 1. These settings were challenging for all methods as can be seen in
Section 5.3.1.2, where we evaluated estimation and prediction performance in comparison
to other methods. In addition, the groups had to contain sufficiently many predictors to
reliably estimate group-wise parameters, as seen in Figure 5.1b. We also noted that a low
signal-to-noise ratio could impede the estimation of hyperparameters as can be seen from
the group with a very large γ value (meaning low coefficient amplitudes as in group 5 and
6) and low precision values (τ) of the noise term.

5.3.1.2 Prediction and estimation performance

Next, we compared the estimation of the true model coefficients and the prediction ac-
curacy on an independent test set of n = 1, 000. Overall, the method showed improved
performance for a large range of sample sizes, correlations, numbers of features, noise vari-
ances and active features, both in terms of the root mean squared error on y as well as for
estimation of β (Figure 5.2). Among the non-sparse methods graper with a non-factorized
mean-field assumption clearly outperformed the factorized mean-field assumption as well
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Figure 5.1: Recovery of hyperparameters on simulated data. Estimated values
of the hyperparameter γ (left column) and π (right column) when varying each of the
model parameters (a-e) while keeping the other four parameters fixed as described in
Table 5.1. The line denotes the mean recovered hyperparameter across 10 random instances
of simulated data, while points represent single instances. Colours denote the different
groups (k = 1, . . . , 6) and the black line indicates the true value of γ (left) and π (right)
used in the simulation. Each panel displays groups with the same value of γ (left) and π
(right).
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as GRridge and group Lasso. The covariate-agnostic ridge regression performed worst in
most cases. Sparse methods performed in general better in this simulation example, as the
underlying model had a large fraction of zero coefficients. Here, we observed that graper
was comparable to IPF-Lasso, which is the most closely related method. Only in settings
with a very high number of active predictors or strong correlations between the predictors
(ρ close to one) the method was outperformed by the IPF-Lasso.

5.3.1.3 Scalability

While the additional group-wise optimization comes at a computational cost, the vari-
ational approach runs inference in time complexity linear in the number of features p,
samples n and groups G. Only in the case of a multivariate variational distribution, the
complexity is quadratic in the larger of n and p and cubic in the smaller of the two. When
varying the number of samples n, features p and groups G we observed comparable run
times as for Lasso (Figure 5.3). Differences were mainly observed for p: For larger p, graper
required slightly longer times than Lasso. This difference was more pronounced when using
a sparsity promoting spike and slab prior, where additional parameters need to be inferred.
As expected, the multivariate approach of graper became considerably slower for large p
and showed comparable run times to the sparse group Lasso. The number of groups mainly
influenced the computation times of IPF-Lasso, which scales exponentially in the number
of groups. Here, graper provided a by far more scalable approach.

5.3.2 Application to data from high-throughput biology

5.3.2.1 Drug response prediction in leukaemia samples

Next, we exemplify the method’s performance on real data by considering an application
to biological data, where predictors were obtained from different assays. Using assay type
as external covariates we used the method to integrate data from the different assays
(also referred to as omics types) in a study on chronic lymphocytic leukaemia (CLL) [47].
This study combined drug response measurements with molecular profiling including gene
expression and methylation. Briefly, we used normalized RNA-Seq expression values of
the 5, 000 most variable genes, the DNA methylation M-values at the 1% most variable
CpG sites as well as the ex-vivo cell viability after exposure to 61 drugs at 5 different
concentrations as predictors for the response to a drug (ibrutinib) that was not included
into the set of predictors. In total, this resulted in a model with n = 121 patient samples
and p = 9, 553 predictors.
We first applied the different regression methods to the data on their original scale. Since

the features have different scales (e.g., the drug responses vary from around 1 (neutral) to
0 (completely toxic), the normalized expression values from 0 to 20 and the methylation
M-values from -10 to 8), this ensures that the omics type information is an informative
covariate: It results in larger effect sizes of the drug response data and smaller effect sizes of
the methylation and expression data compared to scaled predictors. In this setting, incorpo-
rating knowledge on the assay type into the penalized regression showed clear advantages
in terms of prediction performance: The covariate-aware methods (GRridge, IPF-Lasso
and graper) all improved upon the covariate-agnostic Lasso, ridge regression or elastic net
(Figure 5.4a). Also the group Lasso methods, which incorporate the group information but
apply a single penalty parameter, could not adapt to the scale differences. The inferred
hyper-parameters γ of graper highlighted the larger effect sizes of the drug response feature
group, which was strongly favoured by the penalization (Figure 5.4b).
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Figure 5.2: Prediction and estimation performance on simulated data. Shown
are the root mean squared error (RMSE) of the predicted response Ŷ = XT β̂ (left) and
the estimate β̂ (right) for different methods when varying one of the simulation parameters
(a-e) as described in Table 5.1. The prediction error is assessed on n = 1, 000 test samples.
The line denotes the mean RMSE across 10 random instances of simulated data with bars
denoting standard errors. The two panels separate methods with sparse estimates of β
(right) from non-sparse methods (left). (Group Lasso is counted as non-sparse method as
it is not sparse within groups.)
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Figure 5.3: Comparison of run times. Shown are average run time (in minutes) for
different methods when varying the number of samples n, features p and groups G. Each
parameter is varied at a time while holding the others fixed to n = 100, p = 300 or G = 6.
Shown are the average times across 50 random instances of simulated data with error bars
denoting one standard error.

To address differences in feature scale, a common choice made by many implementations
of penalized regression (e.g., glmnet [65]) is to scale all features to unit variance. Indeed,
for the data at hand, this transformation was particularly beneficial for the covariate-
agnostic methods, and their prediction performances became more similar to those of the
covariate-aware methods. However, for dense methods such as ridge regression the covariate
information on the omics type remained important (Figure 5.5a). Sparse methods in general
resulted in very good predictions as the response to ibrutinib can be well explained by a
very sparse model containing only few drugs with related mode of action. By learning
weights for each omics type graper directly highlighted the importance of the drug data as
predictors (Figure 5.5b).
In general, standardization of all features is unlikely to be an optimal choice, since in

many applications there is a relation between information content and amplitude. Here,
standardization would drown informative high-amplitude features and ‘blow up’ noisy low-
amplitude features (see Appendix 5.A.3.1).

5.3.2.2 Age prediction from multi-tissue gene expression data

As a second example for a covariate in genomics we considered the tissue type. Using
data from the GTEx consortium [126] we asked whether the tissue type is an informative
covariate in the prediction of a person’s age from gene expression. Briefly, we chose five
tissues that were available for the largest number of donors and from each tissue considered
the top 50 principal components on the RNA-Seq data after normalization and variance
stabilization [127]. In total, this gave us p = 250 predictors from G = 5 tissues for n = 251
donors.
We observed a small advantage for methods that incorporate the tissue type as a co-

variate (Figure 5.6a): GRridge, IPF-Lasso and graper all had a smaller prediction error
compared to covariate-agnostic methods. In particular, graper resulted in comparable pre-
diction performance to IPF-Lasso whilst requiring less than a second for training compared
to 40 minutes for IPF-Lasso. The learnt relative penalization strength and sparsity levels
of graper can again provide insights into the relative importance of the different tissue
types. In particular, we found lower penalization for blood vessel and muscle and higher
penalization for blood and skin (Figure 5.6b). This is consistent with previous studies on
a per-tissue basis, where gene expression in blood vessel has been found to be a good
predictor for age, while blood was found to be less predictive [209].
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Figure 5.4: Application to the CLL data with scale differences between assays.
(a) Comparison of the root mean-squared error (RMSE) for the prediction of samples’
viability after treatment with ibrutinib. Performance was evaluated in a 10-fold cross-
validation scheme, the points denote the individual RMSE for each fold. (b) Inferred
hyperparameters by graper (sparse) in the different folds for the three different omics
types (γ on the left and π on the right).
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Figure 5.5: Application to the CLL data with standardized predictors. (a) Com-
parison of the root mean-squared error (RMSE) for the prediction of samples’ viability after
treatment with ibrutinib. Performance was evaluated in a 10-fold cross-validation scheme,
the points denote the individual RMSE for each fold. (b) Inferred hyperparameters by
graper (sparse) in the different folds for the three different omics types (γ on the left and
π on the right).
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Figure 5.6: Application to the GTEx data. (a) Comparison of root mean-squared
error (RMSE) for the prediction of donor age (in years). Performance is evaluated in a
10-fold cross-validation scheme, the points denote the individual RMSE for each fold. (b)
Inferred hyperparameters by graper (sparse) in the different folds for the five tissues (γ on
the left and π on the right).
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5.4 Discussion

We propose a method that can use information from external covariates to guide pe-
nalization in regression tasks and that can provide a flexible and scalable alternative to
approaches that were proposed recently [22, 203]. We illustrated in simulations and data
from biological applications that if the covariate is informative of the effect sizes in the
model, these approaches can improve upon commonly used penalized regression methods
that are agnostic to such information. We investigated the use of important covariates in
genomics such as omics type or tissue. The performance of our approach is in many cases
comparable to the IPF-Lasso method [22], while scalability is highly improved in terms of
the number of feature groups, thereby extending the range of possible applications.
The variational inference framework provides improved scalability compared to Bayesian

methods that are based on sampling strategies. Variational Bayes methods have already
been employed in the setting of Bayesian regression with spike and slab priors [31, 32]. How-
ever, these methods do not incorporate information from external covariates. A drawback
of variational methods are too concentrated approximations to the posterior distribution.
Nevertheless, they have been shown to provide reasonable point estimates in regression
tasks [31], which we focused on here. Due to the mean-field assumption strong correlations
between active predictors can lead to suboptimal results of graper. Here, a multivariate
mean-field assumption in the variational Bayes approach can be of advantage, suggested as
an alternative above. However, it comes at the price of higher computational costs. What
is not addressed in our current implementation is the common problem of missing values
in the data; if extant, they would need to be imputed beforehand.
While our approach is related to methods that adapt the penalty function in order to

incorporate structural knowledge, such as the group Lasso [210], sparse group Lasso [67] or
fused Lasso [185], these approaches apply the same penalty parameter to all the different
groups and perform hard in- or exclusion of groups instead of the softer weighting proposed
here. Alternatively, the loss function can be modified to incorporate prior knowledge based
on a known set of ‘high-confidence predictors’ as in [102]. The existence and identity of
such ‘high-confidence predictors’, however, is often not clear.
In contrast to frequentist regression methods, the Bayesian approach provides direct

posterior-inclusion probabilities for each feature that can be useful for model selection. To
obtain frequentist guarantees on the selected features it could be promising to combine the
approach with recently developed methods for controlling the false discovery rate (FDR),
such as the knockoffs [30]. For this, feature statistics can be constructed based on the
estimated coefficients or inclusion probabilities from our model as long as the knockoffs
obtain the same covariate information as their true counterpart.
An interesting question that we have not addressed is the quest for rigorous criteria

when the inclusion of a covariate by differential penalization is of advantage. This question
is not limited to the framework of penalised regression but affects the general setting of
shrinkage estimation. While joint shrinkage of a set of estimates can be very powerful in
producing more stable estimates with reduced variance, care needs to be taken on which
measurements to combine in such a shrinkage approach. As in the case of coefficients in
the linear model setting, external covariates could be helpful for this decision and facilitate
a more informed shrinkage. However, allowing for differential shrinkage will re-introduce
some degrees of freedom into the model and can only be advantageous if the covariate
provides ‘sufficient’ information to balance this. For future work, it would be of interest to
find general conditions for when this is the case, thereby enabling an informed choice of
covariates in practice.
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5.4 Discussion

We provide an open-source implementation of our method in the R package graper. In
addition, vignettes and scripts are made available that facilitate the comparison of graper
with various related regression methods and can be used to reproduce all results contained
in this work.
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5.A Appendix

Here we provide details on the variational inference scheme (Section 5.A.1), the updates
in our model (Section 5.A.2) and practical considerations for training (Section 5.A.3). As
before, X denotes the n× p matrix of observed predictors and y the n-vector of observed
response values. With Xij we denote the (i, j)th element of the matrix X and with X·,j its
jth column. Furthermore, yi ∈ R denotes the ith response value and xi ∈ Rp the ith predictor
vector, corresponding to the ith row in X. We will use E = Eq to denote expectations
with respect to the variational distribution q. As before, g denotes the function defined
in Equation (5.5) that maps an index j ∈ {1, . . . , p} to a group g(j) ∈ {1, . . . , G} and Gk
denotes the set of indices in a group k, i. e. Gk = {j ∈ {1, . . . , p}|g(j) = k}.

5.A.1 Variational inference

To arrive at a simple iterative algorithm, we make use of the following lemma, which
provides an update rule for each factor in the variational distribution [21].

Lemma 1 Under the mean-field assumption and for a fixed j the evidence lower bound
defined in Equation (5.14) is maximised by

log(q∗j (θj)) = E−j(log(p(y, θ)))− const,

where the expectation is taken under the current variational distribution
∏
l 6=j q(θl).

This can be easily seen by writing

L(q) = Eq
(
log

p(y, θ)

q(θ)

)
=

∫
q(θ)(log p(y, θ)− log q(θ))dθ

=

∫
qj(θj)

∫
(log p(y, β, γ, τ)− log q(θj))

∏
i 6=j

q(θi)dθ−jdθj

−
∫ ∑

i 6=j
log q(θi)

∏
i 6=j

q(θi)

∫
q(θj)dθjdθ−j

=

∫
qj(θj)(E−j(log p(y, θ))− log q(θj))dθj − const

=

∫
qj(θj) log

(
expE−j(log p(y, θ))

q(θj)

)
dθj − const

= −DKL(qj || expE−j(log p(y, θ))).

Hence, after normalising, the distribution q∗j (θj) is given by

q∗j (θj) =
exp(E−j [log p(y, θ)])∫
exp(E−j [log p(y, θ)])dθj

.

5.A.2 Update equations for the variational inference

5.A.2.1 Linear regression model

In the linear model we assume that the likelihood is given by

y|β, τ ∼ N
(
Xβ,

1

τ
1

)
.
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With the priors as described in Section 5.2.3 and again denoting β = sb the joint distribu-
tion is given by

p(y, b, s, γ, π, τ) = p(y|b, s, τ)p(b, s|π, γ)p(γ)p(π)p(τ).

Hence,

log p(y, b, s, γ, π, τ) = const+
n

2
log(τ)− τ

2
||y −X(b� s)||22

+

p∑
j=1

{
log(πg(j))sj + log(1− πg(j))(1− sj)

}
+

p∑
j=1

{
1

2
log(γg(j))−

γg(j)

2
b2j

}

+
G∑
k=1

{(rγ − 1) log(γk)− dγγk}

+
G∑
k=1

{(dπ − 1) log(πk) + (rπ − 1) log(1− πk)− log(B(dπ, rπ)}

+ (rτ − 1) log(τ)− dττ,

where � denotes the Hadamard-product. The dense model without the spike and slab
component arises as a special case when dropping π and s from the model and setting
β = b.
For the start we will make a full mean-field assumption, i.e.

q(b, s, γ, π, τ) =

p∏
j=1

q(bj , sj)q(γ)q(π)q(τ),

allowing only a joint distribution for (bj , sj) due to their strong dependencies [188].
Denoting with θ all individual parameter components in the mean-field assumption, the

updates are given by

log(qj(θj)) = E−j log(p(y, θ)),

as shown above (Lemma 1). Thanks to conjugacy between the chosen priors and the like-
lihood these updates maintain the distributional family of θj reducing the inference to
updates of their parameters in each step. Explicitly, this leads to the following updates in
step l:

Updates for β (b and s) For β one notes

log(q(bj , sj))

=− E
τ

2
E−j ||y −X(b� s)||22 + E log

πg(j)

1− πg(j)
sj −

Eγg(j)
2

b2j + const

=− E
τ

2

bjsj∑
k

−2ykXkj + 2
∑
l 6=j

XklXkjE(slbl)

+ sjb
2
j

∑
k

X2
kj


+ E log

πg(j)

1− πg(j)
sj −

Eγg(j)
2

b2j + const.
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This can be written as

q(bj , sj) = q(sj = 0)q(bj |sj = 0) + q(sj = 1)q(bj |sj = 1),

where

bj |sj = 0 ∼ N (0, (Eγg(j))−1),

bj |sj = 1 ∼ N (µ
(l)
j , σ

(l)2
j ),

with

σ
(l)2
j = (Eτ ||X·,j ||22 + Eγg(j))−1,

µ
(l)
j = σ

(l)2
j Eτ

− n∑
k=1

p∑
l 6=j

XkjXklE(βl) +XT
·,jy

 .

To make this scale linearly in p in the inner loop we follow [31] and keep track of v = Xµ

and update this only in the new component v ← v + (µ
(new)
j − µj)X·,j .

The marginal distribution of sj is given by sj ∼ Ber(ψ(l)
j ) with ψ(l)

j obtained from

logit(ψ(l)
j ) = E log

πg(j)

1− πg(j)
− 1

2
log(Eτ ||X·,j ||22 + Eγg(j)) +

1

2
log(Eγg(j))

+
(Eτ)2

(
XT
·,jy −

∑n
k=1

∑p
l 6=j XkjXklE(blsl)

)2
2(Eτ ||X·,j ||22 + Eγg(j))−1

= E log
πg(j)

1− πg(j)
+

1

2
log(Eγg(j)) +

1

2
log(σ2j ) +

1

2

µ2j
σ2j
.

This is derived by integrating the joint density of q(bj , sj) to obtain the marginal density
of sj . Denoting the normal density with ϕ(·;µ, σ2) we have

q(sj) =

∫
q(bj , sj)dbj

∝ exp

(
E log

πg(j)

1− πg(j)
sj

)
∫

exp

(
−Eτ

2
E−j ||y −X(b� s)||22 −

Eγg(j)
2

b2j

)
dbj

∝ exp

(
E log

πg(j)

1− πg(j)
sj

)
∫
ϕ(bj ;µj(sj), σ

2
j (sj))

√
2πσ2j (sj) exp

(
µj(sj)

2

2σ2j (sj)

)
dbj

∝ exp

(
E log

πg(j)

1− πg(j)
sj

)√
σ2j (sj) exp

(
µj(sj)

2

2σ2j (sj)

)
· 1

= exp

(
E log

πg(j)

1− πg(j)
sj +

1

2
log σ2j (sj) +

µj(sj)
2

2σ2j (sj)

)
.
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Hence,

log q(sj) = const+ E log
πg(j)

1− πg(j)
sj +

1

2
log σ2j (sj) +

µj(sj)
2

2σ2j (sj)

= const+ sjE log
πg(j)

1− πg(j)
− 1

2
log(sjEτ ||X·,j ||22 + Eγg(j))

+
s2j (Eτ)2

(
XT
·,jy −

∑n
k=1

∑p
l 6=j XkjXklE(blsl)

)2
2(sjEτ ||X·,j ||22 + Eγg(j))−1

= const+ sj

{
E log

πg(j)

1− πg(j)
− 1

2
log(Eτ ||X·,j ||22 + Eγg(j))

+
1

2
log(Eγg(j)) +

(Eτ)2
(
XT
·,jy −

∑n
k=1

∑p
l 6=j XkjXklE(blsl)

)2
2(Eτ ||X·,j ||22 + Eγg(j))−1

 .

In the last steps note s ∈ {0, 1}. Comparing this to s ∼ Ber(ψ) where log(q(s)) = const+
s logit(ψ) we get the above formula for ψ(l).

Taken together, βj = sjbj ∼ δ0(1− ψ(l)
j ) + ψ

(l)
j N (µ

(l)
j , σ

(l)2
j ).

Updates for γ = (γ1, . . . , γG)

log q(γ) = const+
p∑
j=1

{
1

2
log(γg(j))−

γg(j)

2
Eb2j
}

+

G∑
k=1

{(rγ − 1) log(γk)− dγγk}

= const+
G∑
k=1

log(γk)(rγ − 1 +
1

2
|Gk|)− γk(dγ +

1

2

∑
j∈Gk

Eb2j )


Thus, γk ∼ Gamma(αγ,(l)k , β

γ,(l)
k ) are independent gamma distributions with parameters in

step l given by

α
γ,(l)
k = rγ +

1

2
|Gk|,

β
γ,(l)
k = dγ +

1

2

∑
j∈Gk

Eb2j .

Updates for τ

log q(τ) = const+
n

2
log(τ)− τ

2
E||y −Xβ||22 + (rτ − 1) log(τ)− dττ

Thus, τ ∼ Gamma(ατ,(l), βτ,(l)) is a gamma distribution with parameters in step l given
by

ατ,(l) = rτ +
n

2
,

βτ,(l) = dτ +
1

2
Eβ||y −Xβ||22.
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Updates for π = (π1, . . . , πG)

log q(π) = const+
p∑
j=1

{log(πg(j))Esj + log(1− πg(j))(1− Esj)}

+
G∑
k=1

{(dπ − 1) log(πk) + (rπ − 1) log(1− πk)− log(B(dπ, rπ)}

=
G∑
k=1

{log(πk)(dπ − 1 +
∑
j∈Gk

Esj) + log(1− πk)(rπ − 1 +
∑
j∈Gk

(1− Esj))}

Thus, πk ∼ Beta(απ,(l)k , β
π,(l)
k ) are independent beta distributions with parameters in step

l given by

α
π,(l)
k = dπ +

∑
j∈Gk

Esj ,

β
π,(l)
k = rπ +

∑
j∈Gk

(1− Esj).

Expected values required The updates above involve the calculation of expected values
under the current variational distribution q. These are given by

Eτ =
ατ

βτ
,

Eγk =
αγk
βγk
,

E log
πk

1− πk
= ψ(απk )− ψ(βπk ),

Esj = ψj ,

E||y −Xβ||22 = yT y − 2yTXµβ +
∑
i,j

(XTX)ij(Σ
β
ij + µβi µ

β
j ),

Ebj = ψjµj ,

Eb2j = (1− ψj)
(
Eγ−1g(j)

)
+ ψj

(
µ2j + σ2j

)
,

Eβj = Ebjsj = µjψj ,

Eβ2j = Eb2jsj = (µ2j + σ2j )ψj .

Here, ψ denotes the digamma function ψ(x) = Γ ′(x)
Γ (x) and

µβ = (Eβj)pj=1 = (Ebjsj)pj=1,

Σβ = diag(Var(βj)
p
j=1) = diag((Eβ2j − (Eβj)2)pj=1).

Note that here and in the following we dropped the step index (l) of all parameters from
the notation for simplicity.
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Calculation of the evidence lower bound The evidence lower bound bounds the log
model evidence from below and can be calculated in each step to monitor convergence.
Recall

log(y) = L(q) +DKL(q || p)
with

L(q) = Eq
(
log

p(y, b, s, γ, π, τ)

q(b, s, γ, π, τ)

)
= Eq (log p(y, b, s, γ, π, τ)) +H(q(b, s, γ, π, τ))

= Eq (log p(y, b, s, γ, π, τ)) +
p∑
j=1

H(q(bj , sj))

+H(q(γ)) +H(q(π)) +H(q(τ)),

where H(q) =
∫
−q(θ) log q(θ)dθ denotes the differential entropy. The terms from the joint

model density are given by

Eq log p(y, b, s, γ, τ) = Eq log p(y|b, s, τ) + Eq log p(b|γ) + Eq log p(s|π)
+ Eq log p(γ) + Eq log p(π) + Eq log p(τ)

with

Eq log p(y|β, τ) =
n

2
E log(τ)− 1

2
Eτ ||y −X(b� s)||22 −

n

2
log(2π),

Eq log p(b|γ) =
∑
j

(
1

2
E log(γg(j))−

1

2
Eγg(j)b2j −

1

2
log(2π)

)
,

Eq log p(s|π) =
∑
j

(
Esj log(πg(j)) + E(1− sj) log(1− πg(j))

)
,

Eq log p(γ) =
∑
k

((rγ − 1)E log(γk)− dγEγk − log(Γ (rγ)) + rγ log(dγ)) ,

Eq log p(π) =
∑
k

((dπ − 1)E log(πk) + (rπ − 1)E log(1− πk)− logB(dπ, rπ)) ,

Eq log p(τ) = (rτ − 1)E log(τ)− dτEτ − log(Γ (rτ )) + rγ log(dτ ).

Here,B(a, b) = Γ (a)Γ (b)
Γ (a+b) denoted the beta function. The required expectations in addition to

those used in the updates are easily obtained using the known distributions and parameters
of the variational density in each iteration and the fact that q factorizes, i.e.

E log(τ) = ψ(ατ )− log(βτ ),

Eτ ||y −X(b� s)||22 = EτE||y −X(b� s)||22,
E log(γk) = ψ(αγk)− log(βγk )

Eγg(j)β2j = Eγg(j)Eβ2j ,
E log(πk) = ψ(απk )− ψ(απk + βπk ),

E(1− log(πk)) = ψ(βπk )− ψ(απk + βπk ).
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5 Adaptive penalization in regression using external covariates

The entropies are derived from the known expression for the entropy of the gamma, beta,
Bernoulli and normal distribution, i.e.

H(q(bj , sj)) = H(q(bj |sj)) +H(q(sj))

H(q(bj |sj)) =
1

2
(log(2π) + 1)− 1

2
log(sjEτ ||X·,j ||22 + γg(j))

H(q(sj)) = −(1− ψj) log(1− ψj)− ψj log(ψj)
H(q(γ)) =

∑
k

(
αγk − log(βγk ) + log(Γ (αγk)) + (1− αγk)ψ(α

γ
k)
)

H(q(π)) =
∑
k

(log B(απk , β
π
k )− (απk − 1)ψ(απk )− (βπk − 1)ψ(βπk )

+ (απk + βπk − 2)ψ(απk + βπk ))

H(q(τ)) = ατ − log(βτ ) + log(Γ (ατ )) + (1− ατ )ψ(ατ ).

Multivariate mean-field approximation for β The assumption that the variational distri-
bution q(β) factorizes across all predictors can be very strong. Therefore, a more accurate
approximation of the true posterior can be obtained by allowing for a p-variate distribution
for β.
For s = 1, i.e. no spike term in the model, and hence β = b the joint distribution in the

updates is then given by

log q(β) = const− E(τ)
2
||y −Xβ||22 +

p∑
j=1

{
−
E(γg(j))

2
β2j

}

Thus, β ∼ N (µ(l), Σ(l)) is a normal distribution with parameters

µ(l) = E(τ)Σ(l)XT y,

Σ(l) = (E(τ)XTX+D)−1 with D = diag((E(γg(j)))
p
j=1).

The other updates stay the same, where the covariance matrix Σ is now no longer diagonal
as previously. As this update requires the inversion of a p× p matrix, a limiting factor for
applying the multivariate mean-field approximation is its computational complexity. When
n is small compared to p a better solution is to employ the Woodbury-Matrix identity [206],
i.e.

Σ(l) = D −DXT ((E(τ))−11n +XDXT )−1XD,

which requires the inversion of a n× n matrix only. This multivariate assumption can be
useful in the presence of strong correlations between the predictors. In the case where XTX
is diagonal we obtain a similar form than for a fully factorized variational distribution.
The evidence lower bound is obtained analogous to the fully factorized case with a

multivariate normal distribution and dropping the terms involving s and π. In particular

L(q) = Eq (log p(y, β, γ, τ)) +H(q(β)) +H(q(γ)) +H(q(τ)),

with

H(q(β)) =
p

2
(log(2π) + 1) +

1

2
log(|Σ|).
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5.A.2.2 Logistic regression model

In order to adapt the model to binary data, we change the likelihood of Y to a Bernoulli
distribution and consider a generalized linear model with logistic link function, i.e.

yi|β ∼ Ber(σ(xTi β)) with σ(z) =
1

1 + exp(−z) .

The priors on the model coefficients β remain the same as in the linear model, the noise
variance τ is dropped from the model. While the model is strongly related to the case of
the normal response variable, the challenge here lies in the fact that with the Bernoulli
distribution for Y we loose the conjugacy of the prior from the linear model. To solve
this and still obtain a fast and explicit inference scheme, we use an approximation of the
sigmoid function by an exponential of a quadratic term, thus restoring conjugacy.
As σ(−a) = 1− σ(a) we can write

P(yi = 1|β) = σ(xTi β),

P(yi = 0|β) = σ(−xTi β),
and hence the likelihood is given by

p(yi|β) = σ((2yi − 1)xTi β).

Following [101] we use the following lower bound on the sigmoid

σ(z) ≥ σ(ξ) exp
(
1

2
(z − ξ)− η(ξ)(z2 − ξ2)

)
, η(ξ) =

1

2ξ

(
σ(ξ)− 1

2

)
.

This introduces an additional variational parameter ξ, which we update alongside the other
updates to improve this approximation in each iteration.
Using this approximation we can bound the joint density of the model by

p(y, β, γ) = p(y|β)p(β|γ, π)p(γ)p(π)
≥ h(β, ξ)p(β|γ, π)p(γ)p(π),

with

log h(β, ξ) =
1

2

∑
i

(2yi − 1)xTi β −
∑
i

η(ξi)(x
T
i β)

2

+
∑
i

(
log(σ(ξi))−

1

2
ξi + η(ξi)ξ

2
i

)
.

(5.21)

With the fully factorised mean-field assumption we get the following updates:

log(q(bj , sj)) = const+ log h(β, ξ)−
E(γg(j))

2
b2j + E log

πg(j)

1− πg(j)
sj

= const+
1

2

∑
i

(2yi − 1)xTi β −
∑
i

η(ξi)(x
T
i β)

2

−
E(γg(j))

2
b2j + E log

πg(j)

1− πg(j)
sj

= const+

(∑
i

(yi −
1

2
)Xij

)
bjsj − sjb2j

n∑
i=1

η(ξi)X
2
ij

− 2bjsj

n∑
i=1

η(ξi)
∑
l 6=j

XilXijEβl −
E(γg(j))

2
b2j + E log

πg(j)

1− πg(j)
sj .
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Analogous to the linear model we can derive the following updates for the coefficients:
bj |sj = 0 ∼ N (0,Eγ−1g(j)) and bj |sj = 1 ∼ N (µj , σ

2
j ) with

σ2j =

(
2

n∑
i=1

η(ξi)X
2
ij + Eγg(j)

)−1
,

µj = σ2j

−2 n∑
i=1

η(ξi)

p∑
l 6=j

XijXilEβl +XT
·,j(y −

1

2
)

 .

The probability for sj = 1 is given by

logit(ψ(l)
j ) = E log

πg(j)

1− πg(j)
− 1

2
log(Eγ−1g(j)) +

1

2
log(σ2j ) +

1

2

µ2j
σ2j
,

as in the linear model.
In the case of a multivariate mean-field assumption on β we obtain

log q(β) = const+ log h(β, ξ) +

p∑
j=1

{
−
E(γg(j))

2
β2j

}

= const+
1

2

n∑
i=1

(2yi − 1)xTi β −
n∑
i=1

η(ξi)(x
T
i β)

2 +

p∑
j=1

{
−
E(γg(j))

2
β2j

}

= const+

(
n∑
i=1

(yi −
1

2
)xTi

)
β − βT

(
n∑
i=1

η(ξi)xix
T
i

)
β

+

p∑
j=1

{
−
E(γg(j))

2
β2j

}
.

Thus, β ∼ N (µ,Σ) with parameters

µ = Σ
n∑
i=1

(
yi −

1

2

)
xi,

Σ =

(
2

n∑
i=1

{η(ξi)xixTi }+D

)−1
with D = diag((Eγg(j))

p
j=1).

Relationship to the linear model Note that the analogy to the linear update becomes
explicit, when interpreting Equation (5.21) as a normal density on pseudo-data [168] defined
by

ỹi =
2yi − 1

4η(ξi)
.

Then it can be easily seen that

log h(β, ξ) = log p(ỹ|β) + c(ξ),

where
ỹi|β ∼ N (xTi β, (2η(ξi))

−1).

Replacing the precision parameter τ in the linear case with the precision of the pseudo-data
(which is now sample-specific) can give us above updates directly from the linear model.
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Update for the variational parameter ξ The update of the variational parameter ξ is
given following [101] by

ξ2i = xTi (Σ + µlµ
T
l )xi,

which can be restricted to non-negative values of ξ due to the symmetry.

Evidence lower bound As before

L(q) = Eq (log p(y, b, s, γ, π)) +
p∑
j=1

H(q(bj , sj)) +H(q(γ)) +H(q(π)).

The entropies can be calculated as in the linear model with the respective parameters of
the variational distributions. The terms from the joint model density only differ in the first
term

Eq log p(y, b, s, γ, π) = Eq log p(y|b, s) + Eq log p(b|γ)
+ Eq log p(s|π) + Eq log p(γ) + Eq log p(π),

which here is given by

Eq log p(y|β) = Eq log σ((2y − 1)Xβ)

≥ Eq

(
1

2

∑
i

(2yi − 1)xTi µ−
∑
i

η(ξi)(x
T
i β)

2

+
∑
i

(
log(σ(ξi))−

1

2
ξi + η(ξi)ξ

2
i

))

=
1

2

∑
i

log(2η(ξi))−
1

2

∑
i

2η(ξi)(ỹi − xTi µ)2 + const.

This provides a lower bound on the evidence lower bound in analogy to the linear model
that is used to monitor convergence.

5.A.3 Practical considerations

5.A.3.1 Standardization of the predictors

In penalised regression a common preprocessing step is the standardization of all predictors
to unit variance to ensure a presumably ‘fair’ penalty. This scaling is in 1:1 correspondence
to differential penalty factors. Without standardization features on a larger scale would
be preferred as they need a smaller coefficient relative to a feature with the same effect
but measured on a smaller scale. However, standardization can be suboptimal as it does
not distinguish between meaningful differences in variance (e.g. features that differ between
two disease groups) and differences in variance due to the scale. While removal of the latter
would be desirable, meaningful differences should be retained. For example, in many appli-
cations we measure high-amplitude signals that are informative jointly with low-amplitude
features that originate mainly from technical noise. Here, standardization can be harmful
(Figure 5.A.1). Hence, the question of whether to scale the predictors or not, is related to
the question of whether the variance of a feature is an informative covariate.
By default, our method standardizes all features. However, if we want to maintain the

difference of variances within each assay, our method can adaptively learn scale differences
between assays by γ, thereby removing the need to standardize for adjustment between
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Figure 5.A.1: Simulation example illustrating the effect of standardization in settings
with informative high-amplitude features and uninformative low-amplitude features. A
number of p = 600 features was simulated from a standard normal distribution and mul-
tiplied by 10 (high-amplitude features, p = 300) or 1 (low-amplitude features, p = 300).
The response was simulated from a normal model with coefficients given by 1 for the high-
amplitude features and 0 otherwise. Lasso and ridge regression were fitted on a training
set of n = 500 samples using either standardized predictors (blue) or predictors on the
original scale (green). The resulting fits were evaluated in terms of the root mean squared
error (RMSE) on an independent test set of n = 500 samples. The boxplots were obtained
from ten independent instances of simulated data.

assays as seen in the CLL application. This could help to retain meaningful differences in the
features’ variance within one assay. Alternatively, it is also possible to standardize features
but re-include information on their variance via the covariate, e.g., binning features based
on their variance. A recent study on RNA-Seq data found no strong effect of standardization
compared to no standardization [218]. Depending on the data set at hand it might, however,
make sense to retain the original scale. For example with binary mutation data, where
features are all on the same scale, standardization would favour mutations with lower
frequencies.

5.A.3.2 Modelling an intercept

To include an intercept into the model, we apply centering of X and y before model fitting
in the case of a linear model. For the logistic model this is not as straightforward and we
follow [31] in the implementation, i.e. the intercept β0 is assumed to have a normal prior
N (0, σ20) but considering the limiting case for σ0 to infinity yielding an improper prior
(essentially not penalizing the intercept).
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CHAPTER 6
Conclusions and perspectives

With the growing number of studies involving multiple platforms, conditions, tissues, or-
ganisms, time points or locations, integrative approaches and joint analyses of heteroge-
neous data sets will remain essential. Potential promises to be gained from such studies
are far reaching, both for basic research as well as for society as a whole. Improved health
care based on molecular information of individuals is only one example. Now it is up
to the scientific community at the interface of statistics, computer science, biology and
medicine to turn this data into useful information and eventually (actionable) knowledge.
In this thesis we have contributed methods for an integrative multivariate analysis of data
that is comprised of heterogeneous modalities, taking multi-omics data as a motivating
example. In particular, we have addressed the questions, how to use heterogeneous data
jointly to uncover main structures in an unbiased manner, and how to relate heterogeneous
features to a response of interest. Both questions are essential along the way of realizing
the potential of the available data, and in Chapters 4 and 5, respectively, we have pro-
posed possible answers. Importantly, the methods that are contained in this thesis are
available as open-source software packages (i. e. MOFAtools, mofa and graper) that are
accompanied by detailed documentation and vignettes containing example workflows. We
hope that thereby we could improve the accessibility of multivariate integrative methods
to researchers in genome biology as well as ensure reproducibility of our results. For the
unsupervised method, MOFA, we have already encountered broad interest from the re-
search community, highlighting the need for exploratory tools that combine information
from different omics data sets.
Looking back at the statistical tool set that we have employed, we can first highlight the

importance of structured regularization, which enabled us to account for the heterogeneity
and high-dimensionality of the data in multivariate approaches. We focused here on feature
groups with distinct properties, such as different data modalities. However, other types of
structure can likewise be exploited using similar approaches, such as temporal, spatial
or functional relationships between features. Second, we note, that at several points in
this thesis, we have made transitions between frequentist and Bayesian perspectives on a
statistical model. While historically these two paradigms were strongly opposed, a more
pragmatic thinking has emerged by now and the two paradigms start to cross-fertilize
one another, especially in the field of data science. While the concepts of inference and
uncertainty quantification are still distinct, Bayesian estimates can be investigated for their
frequentist properties, or frequentist estimates can be given Bayesian interpretations, and
intermediate frameworks emerge. This can foster the development of powerful, adaptive
and flexible methods.
While this thesis has enlarged the tool set available to integrate data from diverse sources,
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6 Conclusions and perspectives

still many promising findings lie hidden in the data, and as the technological developments
continuously progress and new data types emerge, we will also steadily encounter novel
statistical challenges and opportunities. Currently, this is clearly visible in the field of single
cell biology. Here, new characteristics of the data emerge such as a strong heterogeneity of
the samples, a vast number of missing values and much larger sample sizes compared to
bulk studies, which open up novel statistical approaches of modelling and inference, that
hopefully in parts can draw upon ideas and methods presented in this thesis.

118



References

1. Akavia, U. D., Litvin, O., Kim, J., Sanchez-Garcia, F., Kotliar, D., Causton, H. C.,
Pochanard, P., Mozes, E., Garraway, L. A. & Pe’er, D. An integrated approach to
uncover drivers of cancer. Cell 143, 1005–1017 (2010).

2. Åkerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators of cell
stress, development and lifespan. Nature Reviews Molecular Cell Biology 11, 545
(2010).

3. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin,
A. V., Bignell, G. R., Bolli, N., Borg, A., Børresen-Dale, A.-L., et al. Signatures of
mutational processes in human cancer. Nature 500, 415 (2013).

4. Alyass, A., Turcotte, M. &Meyre, D. From big data analysis to personalized medicine
for all: challenges and opportunities. BMC Medical Genomics 8, 33 (2015).

5. Andersen, M. R., Vehtari, A., Winther, O. & Hansen, L. K. Bayesian inference for
spatio-temporal spike and slab priors. arXiv preprint arXiv:1509.04752 (2015).

6. Andersson, E., Pützer, S., Yadav, B., Dufva, O., Khan, S., He, L., Sellner, L.,
Schrader, A., Crispatzu, G., Oleś, M., et al. Discovery of novel drug sensitivities in
T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia
32, 774 (2018).

7. Angermueller, C., Clark, S. J., Lee, H. J., Macaulay, I. C., Teng, M. J., Hu, T. X.,
Krueger, F., Smallwood, S. A., Ponting, C. P., Voet, T., et al. Parallel single-cell
sequencing links transcriptional and epigenetic heterogeneity. Nature Methods 13,
229 (2016).

8. Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J. C., Buet-
tner, F., Huber, W. & Stegle, O. Multi-Omics Factor Analysis - a framework for
unsupervised integration of multi-omic data sets. Molecular Systems Biology (2018).

9. Auclair, G., Guibert, S., Bender, A. & Weber, M. Ontogeny of CpG island methy-
lation and specificity of DNMT3 methyltransferases during embryonic development
in the mouse. Genome Biology 15, 545 (2014).

10. Bach, F. R. & Jordan, M. I. A probabilistic interpretation of canonical correlation
analysis. Technical Report 688, Department of Statistics, University of California,
Berkeley (2005).

11. Bandura, D. R., Baranov, V. I., Ornatsky, O. I., Antonov, A., Kinach, R., Lou, X.,
Pavlov, S., Vorobiev, S., Dick, J. E. & Tanner, S. D. Mass cytometry: technique for
real time single cell multitarget immunoassay based on inductively coupled plasma
time-of-flight mass spectrometry. Analytical Chemistry 81, 6813–6822 (2009).

119



References

12. Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim,
S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D., et al. The Cancer Cell Line
Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature
483, 603–607 (2012).

13. Barrett, J. C., Hansoul, S., Nicolae, D. L., Cho, J. H., Duerr, R. H., Rioux, J. D.,
Brant, S. R., Silverberg, M. S., Taylor, K. D., Barmada, M. M., et al. Genome-
wide association defines more than 30 distinct susceptibility loci for Crohn’s disease.
Nature Genetics 40, 955 (2008).

14. Basilevsky, A. T. Statistical factor analysis and related methods: theory and applica-
tions (John Wiley & Sons, 2009).

15. Beal, J. Variational algorithms for approximate Bayesian inference (University Col-
lege London, 2003).

16. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society. Series
B (Methodological), 289–300 (1995).

17. Bergersen, L. C., Glad, I. K. & Lyng, H. Weighted Lasso with data integration.
Statistical Applications in Genetics and Molecular Biology 10 (2011).

18. Bersanelli, M., Mosca, E., Remondini, D., Giampieri, E., Sala, C., Castellani, G. &
Milanesi, L. Methods for the integration of multi-omics data: mathematical aspects.
BMC Bioinformatics 17, 15 (2016).

19. Bishop, C. M. Bayesian PCA in Advances in Neural Information Processing Systems
(1999), 382–388.

20. Bishop, C. M. Pattern recognition. Machine Learning 128, 1–58 (2006).

21. Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: A review for
statisticians. Journal of the American Statistical Association 112, 859–877 (2017).

22. Boulesteix, A.-L., De Bin, R., Jiang, X. & Fuchs, M. IPF-LASSO: Integrative L1-
penalized regression with penalty factors for prediction based on multi-omics data.
Computational and Mathematical Methods in Medicine 2017 (2017).

23. Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder,
M. P., Chang, H. Y. & Greenleaf, W. J. Single-cell chromatin accessibility reveals
principles of regulatory variation. Nature 523, 486 (2015).

24. Buettner, F., Pratanwanich, N., McCarthy, D. J., Marioni, J. C. & Stegle, O. f-
scLVM: scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol-
ogy 18, 212 (2017).

25. Buettner, F. & Theis, F. J. A novel approach for resolving differences in single-cell
gene expression patterns from zygote to blastocyst. Bioinformatics 28, i626–i632
(2012).

26. Bühlmann, P. & Van De Geer, S. Statistics for high-dimensional data: methods,
theory and applications (Springer Science & Business Media, 2011).

27. Bunte, K., Leppäaho, E., Saarinen, I. & Kaski, S. Sparse group factor analysis for
biclustering of multiple data sources. Bioinformatics 32, 2457–2463 (2016).

28. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-
cell transcriptomic data across different conditions, technologies, and species. Nature
Biotechnology 36, 411 (2018).

120



References

29. Cancer Genome Atlas Research Network et al. Comprehensive and integrative ge-
nomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341 (2017).

30. Candes, E., Fan, Y., Janson, L. & Lv, J. Panning for gold: Model-free knockoffs
for high-dimensional controlled variable selection. arXiv preprint arXiv:1610.02351
(2016).

31. Carbonetto, P. & Stephens, M. Scalable variational inference for Bayesian variable
selection in regression, and its accuracy in genetic association studies. Bayesian
Analysis 7, 73–108 (2012).

32. Carbonetto, P., Zhou, X. & Stephens, M. varbvs: Fast variable selection for large-
scale regression. arXiv preprint arXiv:1709.06597 (2017).

33. Carvalho, C. M., Polson, N. G. & Scott, J. G. Handling sparsity via the horseshoe
in Artificial Intelligence and Statistics (2009), 73–80.

34. Chen, L., Ge, B., Casale, F. P., Vasquez, L., Kwan, T., Garrido-Martín, D., Watt, S.,
Yan, Y., Kundu, K., Ecker, S., et al. Genetic drivers of epigenetic and transcriptional
variation in human immune cells. Cell 167, 1398–1414 (2016).

35. Chen, R. & Snyder, M. Promise of personalized omics to precision medicine. Wiley
Interdisciplinary Reviews: Systems Biology and Medicine 5, 73–82 (2013).

36. Cheow, L. F., Courtois, E. T., Tan, Y., Viswanathan, R., Xing, Q., Tan, R. Z., Tan,
D. S., Robson, P., Loh, Y.-H., Quake, S. R., et al. Single-cell multimodal profiling
reveals cellular epigenetic heterogeneity. Nature Methods 13, 833 (2016).

37. Chessel, D. & Hanafi, M. Analyses de la co-inertie de K nuages de points. Revue de
Statistique Appliquée 44, 35–60 (1996).

38. Clark, S. J., Argelaguet, R., Kapourani, C.-A., Stubbs, T. M., Lee, H. J., Alda-
Catalinas, C., Krueger, F., Sanguinetti, G., Kelsey, G., Marioni, J. C., et al. scNMT-
seq enables joint profiling of chromatin accessibility DNA methylation and transcrip-
tion in single cells. Nature Communications 9, 781 (2018).

39. Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F. &
Zucker, S. W. Geometric diffusions as a tool for harmonic analysis and structure
definition of data: Diffusion maps. Proceedings of the National Academy of Sciences
102, 7426–7431 (2005).

40. Colomé-Tatché, M. & Theis, F. Statistical single cell multi-omics integration. Cur-
rent Opinion in Systems Biology 7, 54–59 (2018).

41. Crick, F. H. On protein synthesis in Symp Soc Exp Biol 12 (1958), 8.

42. Culhane, A. C., Perrière, G. & Higgins, D. G. Cross-platform comparison and visu-
alisation of gene expression data using co-inertia analysis. BMC Bioinformatics 4,
59 (2003).

43. Damianou, A., Lawrence, N. D. & Ek, C. H. Multi-view learning as a nonparametric
nonlinear inter-battery factor analysis. arXiv preprint arXiv:1604.04939 (2016).

44. De la Cruz, O. & Holmes, S. The duality diagram in data analysis: examples of
modern applications. The Annals of Applied Statistics 5, 2266 (2011).

45. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 1–38 (1977).

121



References

46. Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & Van Oudenaarden, A. Integrated
genome and transcriptome sequencing of the same cell. Nature Biotechnology 33,
285 (2015).

47. Dietrich, S., Oleś, M., Lu, J., Sellner, L., Anders, S., Velten, B., Wu, B., Hüllein, J.,
da Silva Liberio, M., Walther, T., et al. Drug-perturbation-based stratification of
blood cancer. The Journal of Clinical Investigation 128, 427–445 (2018).

48. Dobriban, E., Fortney, K., Kim, S. K. & Owen, A. B. Optimal multiple testing under
a Gaussian prior on the effect sizes. Biometrika 102, 753–766 (2015).

49. Donoho, D. L. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques
for high-dimensional data. Proceedings of the National Academy of Sciences 100,
5591–5596 (2003).

50. Dray, S., Chessel, D. & Thioulouse, J. Co-inertia analysis and the linking of ecological
data tables. Ecology 84, 3078–3089 (2003).

51. Duzkale, H., Schweighofer, C. D., Coombes, K. R., Barron, L. L., Ferrajoli, A.,
O’Brien, S., Wierda, W. G., Pfeifer, J., Majewski, T., Czerniak, B. A., et al. LDOC1
mRNA is differentially expressed in chronic lymphocytic leukemia and predicts over-
all survival in untreated patients. Blood (2011).

52. Eckart, C. & Young, G. The approximation of one matrix by another of lower rank.
Psychometrika 1, 211–218 (1936).

53. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Research 30, 207–
210 (2002).

54. Efron, B. Large-scale inference: empirical Bayes methods for estimation, testing, and
prediction (Cambridge University Press, 2012).

55. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. Least angle regression. The
Annals of Statistics 32, 407–499 (2004).

56. Engelhardt, B. E. & Adams, R. P. Bayesian structured sparsity from Gaussian fields.
arXiv preprint arXiv:1407.2235 (2014).

57. Engelhardt, B. E. & Stephens, M. Analysis of population structure: a unifying frame-
work and novel methods based on sparse factor analysis. PLoS Genetics 6, e1001117
(2010).

58. Fabbri, G. & Dalla-Favera, R. The molecular pathogenesis of chronic lymphocytic
leukaemia. Nature Reviews Cancer 16, 145 (2016).

59. Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw,
R., Jassal, B., Jupe, S., Korninger, F., McKay, S., et al. The reactome pathway
knowledgebase. Nucleic Acids Research 44, D481–D487 (2015).

60. Falconer, E., Hills, M., Naumann, U., Poon, S. S., Chavez, E. A., Sanders, A. D.,
Zhao, Y., Hirst, M. & Lansdorp, P. M. DNA template strand sequencing of single-
cells maps genomic rearrangements at high resolution. Nature Methods 9, 1107
(2012).

61. Fan, J., Salathia, N., Liu, R., Kaeser, G. E., Yung, Y. C., Herman, J. L., Kaper,
F., Fan, J.-B., Zhang, K., Chun, J., et al. Characterizing transcriptional heterogene-
ity through pathway and gene set overdispersion analysis. Nature Methods 13, 241
(2016).

122



References

62. Ferkingstad, E., Frigessi, A., Rue, H., Thorleifsson, G. & Kong, A. Unsupervised
empirical Bayesian multiple testing with external covariates. The Annals of Applied
Statistics, 714–735 (2008).

63. Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., Slichter,
C. K., Miller, H. W., McElrath, M. J., Prlic, M., et al. MAST: a flexible statistical
framework for assessing transcriptional changes and characterizing heterogeneity in
single-cell RNA sequencing data. Genome Biology 16, 278 (2015).

64. Fluhr, S., Boerries, M., Busch, H., Symeonidi, A., Witte, T., Lipka, D. B., Mücke,
O., Nöllke, P., Krombholz, C. F., Niemeyer, C. M., et al. CREBBP is a target
of epigenetic, but not genetic, modification in juvenile myelomonocytic leukemia.
Clinical Epigenetics 8, 50 (2016).

65. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software 33, 1 (2010).

66. Friedman, J., Hastie, T. & Tibshirani, R. The elements of statistical learning 10
(Springer series in statistics New York, NY, USA: 2001).

67. Friedman, J., Hastie, T. & Tibshirani, R. A note on the group Lasso and a sparse
group Lasso. arXiv preprint arXiv:1001.0736 (2010).

68. Frismantas, V., Dobay, M. P., Rinaldi, A., Tchinda, J., Dunn, S. H., Kunz, J.,
Richter-Pechanska, P., Marovca, B., Pail, O., Jenni, S., et al. Ex vivo drug response
profiling detects recurrent sensitivity patterns in drug resistant ALL. Blood, e26–e37
(2017).

69. Frost, H. R., Li, Z. &Moore, J. H. Principal component gene set enrichment (PCGSE).
BioData Mining 8, 25 (2015).

70. Fuchs, E. Keratins as biochemical markers of epithelial differentiation. Trends in
Genetics 4, 277–281 (1988).

71. Fukuyama, J. Adaptive gPCA: A method for structured dimensionality reduction.
arXiv preprint arXiv:1702.00501 (2017).

72. Gagnon-Bartsch, J. A., Jacob, L. & Speed, T. P. Removing unwanted variation from
high dimensional data with negative controls. Berkeley: Tech Reports from Dep Stat
Univ California, 1–112 (2013).

73. Garg, R., Benedetti, L. G., Abera, M. B., Wang, H., Abba, M. & Kazanietz, M. G.
Protein kinase C and cancer: what we know and what we do not. Oncogene 33, 5225
(2014).

74. Garnett, M. J., Edelman, E. J., Heidorn, S. J., Greenman, C. D., Dastur, A., Lau,
K. W., Greninger, P., Thompson, I. R., Luo, X., Soares, J., et al. Systematic identi-
fication of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575
(2012).

75. Geeleher, P., Cox, N. J. & Huang, R. S. Cancer biomarker discovery is improved by
accounting for variability in general levels of drug sensitivity in pre-clinical models.
Genome Biology 17, 190 (2016).

76. Geman, S. & Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on pattern analysis and machine intelli-
gence, 721–741 (1984).

123



References

77. Gerstung, M., Pellagatti, A., Malcovati, L., Giagounidis, A., Della Porta, M. G.,
Jädersten, M., Dolatshad, H., Verma, A., Cross, N. C., Vyas, P., et al. Combining
gene mutation with gene expression data improves outcome prediction in myelodys-
plastic syndromes. Nature Communications 6, 5901 (2015).

78. Gross, S. M. & Tibshirani, R. Collaborative regression. Biostatistics 16, 326–338
(2014).

79. GTEx Consortium et al. The Genotype-Tissue Expression (GTEx) pilot analysis:
multi-tissue gene regulation in humans. Science 348, 648–660 (2015).

80. Guan, Y. & Dy, J. Sparse probabilistic principal component analysis in Artificial
Intelligence and Statistics (2009), 185–192.

81. Guo, F., Li, L., Li, J., Wu, X., Hu, B., Zhu, P., Wen, L. & Tang, F. Single-cell multi-
omics sequencing of mouse early embryos and embryonic stem cells. Cell research
27, 967 (2017).

82. Hamburg, M. A. & Collins, F. S. The path to personalized medicine. New England
Journal of Medicine 2010, 301–304 (2010).

83. Han, X., Wang, R., Zhou, Y., Fei, L., Sun, H., Lai, S., Saadatpour, A., Zhou, Z.,
Chen, H., Ye, F., et al. Mapping the mouse cell atlas by Microwell-seq. Cell 172,
1091–1107 (2018).

84. Harman, H. H. Modern factor analysis (University of Chicago press, 1976).

85. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biology
18, 83 (2017).

86. Hastie, T. & Stuetzle, W. Principal curves. Journal of the American Statistical As-
sociation 84, 502–516 (1989).

87. Hastie, T. & Tibshirani, R. Efficient quadratic regularization for expression arrays.
Biostatistics 5, 329–340 (2004).

88. Hernández-Lobato, D., Hernández-Lobato, J. M. & Dupont, P. Generalized spike-
and-slab priors for Bayesian group feature selection using expectation propagation.
The Journal of Machine Learning Research 14, 1891–1945 (2013).

89. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with
neural networks. Science 313, 504–507 (2006).

90. Hoerl, A. E. & Kennard, R. W. Ridge regression: Biased estimation for nonorthog-
onal problems. Technometrics 12, 55–67 (1970).

91. Hore, V., Viñuela, A., Buil, A., Knight, J., McCarthy, M. I., Small, K. & Marchini,
J. Tensor decomposition for multiple-tissue gene expression experiments. Nature
Genetics 48, 1094 (2016).

92. Hotelling, H. Canonical correlation analysis (CCA). Journal of Educational Psychol-
ogy (1935).

93. Hotelling, H. Analysis of a complex of statistical variables into principal components.
Journal of educational psychology 24, 417 (1933).

94. Hothorn, T. & Lausen, B. On the exact distribution of maximally selected rank
statistics. Computational Statistics & Data Analysis 43, 121–137 (2003).

95. Hsiang, T. A Bayesian view on ridge regression. Journal of the Royal Statistical
Society. Series D (The Statistician) 24, 267–268 (1975).

124



References

96. Huang, Y. & Sanguinetti, G. BRIE: transcriptome-wide splicing quantification in
single cells. Genome Biology 18, 123 (2017).

97. Ignatiadis, N., Klaus, B., Zaugg, J. & Huber, W. Data-driven hypothesis weighting
increases detection power in genome-scale multiple testing. Nature Methods 13, 577
(2016).

98. International Human Genome Sequencing Consortium et al. Initial sequencing and
analysis of the human genome. Nature 409, 860 (2001).

99. Iorio, F., Knijnenburg, T. A., Vis, D. J., Bignell, G. R., Menden, M. P., Schubert,
M., Aben, N., Gonçalves, E., Barthorpe, S., Lightfoot, H., et al. A landscape of
pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).

100. Iudin, A., Korir, P. K., Salavert-Torres, J., Kleywegt, G. J. & Patwardhan, A. EM-
PIAR: a public archive for raw electron microscopy image data. Nature Methods 13,
387 (2016).

101. Jaakkola, T. S. & Jordan, M. I. Bayesian parameter estimation via variational meth-
ods. Statistics and Computing 10, 25–37 (2000).

102. Jiang, Y., He, Y. & Zhang, H. Variable selection with prior information for general-
ized linear models via the prior Lasso method. Journal of the American Statistical
Association 111, 355–376 (2016).

103. Johnstone, I. M. & Lu, A. Y. On consistency and sparsity for principal components
analysis in high dimensions. Journal of the American Statistical Association 104,
682–693 (2009).

104. Jolliffe, I. T., Trendafilov, N. T. & Uddin, M. A modified principal component tech-
nique based on the Lasso. Journal of Computational and Graphical Statistics 12,
531–547 (2003).

105. Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. & Saul, L. K. An introduction to
variational methods for graphical models. Machine Learning 37, 183–233 (1999).

106. Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B.,
Jassal, B., Gopinath, G., Wu, G., Matthews, L., et al. Reactome: a knowledgebase
of biological pathways. Nucleic Acids Research 33, D428–D432 (2005).

107. Joyce, A. R. & Palsson, B. Ø. The model organism as a system: integrating’omics’
data sets. Nature Reviews Molecular Cell Biology 7, 198 (2006).

108. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nature
Reviews Genetics 19, 299 (2018).

109. Khan, S. A., Virtanen, S., Kallioniemi, O. P., Wennerberg, K., Poso, A. & Kaski,
S. Identification of structural features in chemicals associated with cancer drug re-
sponse: a systematic data-driven analysis. Bioinformatics 30, i497–i504 (2014).

110. Kim, M., Rai, N., Zorraquino, V. & Tagkopoulos, I. Multi-omics integration accu-
rately predicts cellular state in unexplored conditions for Escherichia coli. Nature
Communications 7, 13090 (2016).

111. Klami, A. & Kaski, S. Local dependent components in Proceedings of the 24th Inter-
national Conference on Machine Learning (2007), 425–432.

112. Klami, A., Virtanen, S. & Kaski, S. Bayesian canonical correlation analysis. Journal
of Machine Learning Research 14, 965–1003 (2013).

125



References

113. Klami, A., Virtanen, S., Leppäaho, E. & Kaski, S. Group factor analysis. IEEE
Transactions on Neural Networks and Learning Systems 26, 2136–2147 (2015).

114. Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin,
L., Weitz, D. A. & Kirschner, M. W. Droplet barcoding for single-cell transcriptomics
applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

115. Kolesnikov, N., Hastings, E., Keays, M., Melnichuk, O., Tang, Y. A., Williams, E.,
Dylag, M., Kurbatova, N., Brandizi, M., Burdett, T., et al. ArrayExpress update -
simplifying data submissions. Nucleic Acids Research 43, D1113–D1116 (2014).

116. Lanckriet, G. R., De Bie, T., Cristianini, N., Jordan, M. I. & Noble, W. S. A statis-
tical framework for genomic data fusion. Bioinformatics 20, 2626–2635 (2004).

117. Lawrence, N. D. Gaussian process latent variable models for visualisation of high
dimensional data in Advances in Neural Information Processing Systems (2004),
329–336.

118. Lê Cao, K.-A., González, I. & Déjean, S. integrOmics: an R package to unravel
relationships between two omics datasets. Bioinformatics 25, 2855–2856 (2009).

119. Lê Cao, K.-A., Martin, P. G., Robert-Granié, C. & Besse, P. Sparse canonical meth-
ods for biological data integration: application to a cross-platform study. BMC
Bioinformatics 10, 34 (2009).

120. Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by
surrogate variable analysis. PLoS Genetics 3, e161 (2007).

121. Lei, L. & Fithian, W. AdaPT: an interactive procedure for multiple testing with side
information. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 80, 649–679 (2018).

122. Leppäaho, E., Ammad-ud-din, M. & Kaski, S. GFA: exploratory analysis of multiple
data sources with group factor analysis. The Journal of Machine Learning Research
18, 1294–1298 (2017).

123. Li, A. & Barber, R. F. Multiple testing with the structure adaptive Benjamini-
Hochberg algorithm. arXiv preprint arXiv:1606.07926 (2016).

124. Li, C. & Li, H. Variable selection and regression analysis for graph-structured co-
variates with an application to genomics. The Annals of Applied Statistics 4, 1498
(2010).

125. Lock, E. F., Hoadley, K. A., Marron, J. S. & Nobel, A. B. Joint and individual
variation explained (JIVE) for integrated analysis of multiple data types. The Annals
of Applied Statistics 7, 523 (2013).

126. Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., Hasz, R.,
Walters, G., Garcia, F., Young, N., et al. The genotype-tissue expression (GTEx)
project. Nature Genetics 45, 580 (2013).

127. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biology 15, 550 (2014).

128. Lun, A. T., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell
RNA sequencing data with many zero counts. Genome Biology 17, 75 (2016).

129. Maaten, L. v. d. & Hinton, G. Visualizing data using t-SNE. Journal of Machine
Learning Research 9, 2579–2605 (2008).

126



References

130. Macaulay, I. C., Haerty, W., Kumar, P., Li, Y. I., Hu, T. X., Teng, M. J., Goolam,
M., Saurat, N., Coupland, P., Shirley, L. M., et al. G&T-seq: parallel sequencing of
single-cell genomes and transcriptomes. Nature Methods 12, 519 (2015).

131. MacKay, D. J. Bayesian methods for backpropagation networks in Models of Neural
Networks III (Springer, 1996), 211–254.

132. Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh,
I., Bialas, A. R., Kamitaki, N., Martersteck, E. M., et al. Highly parallel genome-
wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–
1214 (2015).

133. Maloum, K., Settegrana, C., Chapiro, E., Cazin, B., Leprêtre, S., Delmer, A., Lepor-
rier, M., Dreyfus, B., Tournilhac, O., Mahe, B., et al. IGHV gene mutational status
and LPL/ADAM29 gene expression as clinical outcome predictors in CLL patients in
remission following treatment with oral fludarabine plus cyclophosphamide. Annals
of Hematology 88, 1215–1221 (2009).

134. Mazumder, R., Hastie, T. & Tibshirani, R. Spectral regularization algorithms for
learning large incomplete matrices. Journal of Machine Learning Research 11, 2287–
2322 (2010).

135. McInnes, L. & Healy, J. UMAP: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426 (2018).

136. Meinshausen, N., Bühlmann, P., et al. High-dimensional graphs and variable selec-
tion with the Lasso. The Annals of Statistics 34, 1436–1462 (2006).

137. Meng, C., Kuster, B., Culhane, A. C. & Gholami, A. M. A multivariate approach
to the integration of multi-omics datasets. BMC Bioinformatics 15, 162 (2014).

138. Meng, C., Zeleznik, O. A., Thallinger, G. G., Kuster, B., Gholami, A. M. & Culhane,
A. C. Dimension reduction techniques for the integrative analysis of multi-omics
data. Briefings in Bioinformatics 17, 628–641 (2016).

139. Mertins, P., Mani, D., Ruggles, K. V., Gillette, M. A., Clauser, K. R., Wang, P.,
Wang, X., Qiao, J. W., Cao, S., Petralia, F., et al. Proteogenomics connects somatic
mutations to signalling in breast cancer. Nature 534, 55 (2016).

140. Methé, B. A., Nelson, K. E., Pop, M., Creasy, H. H., Giglio, M. G., Huttenhower,
C., Gevers, D., Petrosino, J. F., Abubucker, S., Badger, J. H., et al. A framework
for human microbiome research. Nature 486, 215 (2012).

141. Min, E. J., Safo, S. E. & Long, Q. Penalized Co-Inertia Analysis with Applications
to -Omics Data. Bioinformatics (2018).

142. Minka, T. P. Expectation propagation for approximate Bayesian inference in Proceed-
ings of the Seventeenth conference on Uncertainty in Artificial Intelligence (2001),
362–369.

143. Mitchell, T. J. & Beauchamp, J. J. Bayesian variable selection in linear regression.
Journal of the American Statistical Association 83, 1023–1032 (1988).

144. Mo, Q., Wang, S., Seshan, V. E., Olshen, A. B., Schultz, N., Sander, C., Powers,
R. S., Ladanyi, M. & Shen, R. Pattern discovery and cancer gene identification in
integrated cancer genomic data. Proceedings of the National Academy of Sciences,
201208949 (2013).

127



References

145. Mohammed, H., Hernando-Herraez, I., Savino, A., Scialdone, A., Macaulay, I., Mu-
las, C., Chandra, T., Voet, T., Dean, W., Nichols, J., et al. Single-cell landscape of
transcriptional heterogeneity and cell fate decisions during mouse early gastrulation.
Cell Reports 20, 1215–1228 (2017).

146. Morabito, F., Cutrona, G., Mosca, L., D’Anca, M., Matis, S., Gentile, M., Vigna,
E., Colombo, M., Recchia, A. G., Bossio, S., et al. Surrogate molecular markers for
IGHV mutational status in chronic lymphocytic leukemia for predicting time to first
treatment. Leukemia Research 39, 840–845 (2015).

147. Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., Cook, K.,
Stepansky, A., Levy, D., Esposito, D., et al. Tumour evolution inferred by single-cell
sequencing. Nature 472, 90 (2011).

148. Oakes, C. C., Seifert, M., Assenov, Y., Gu, L., Przekopowitz, M., Ruppert, A. S.,
Wang, Q., Imbusch, C. D., Serva, A., Koser, S. D., et al. DNA methylation dynamics
during B cell maturation underlie a continuum of disease phenotypes in chronic
lymphocytic leukemia. Nature Genetics 48, 253 (2016).

149. Paatero, P. & Tapper, U. Positive matrix factorization: A non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics 5, 111–126
(1994).

150. Park, T. & Casella, G. The Bayesian Lasso. Journal of the American Statistical
Association 103, 681–686 (2008).

151. Parkhomenko, E., Tritchler, D. & Beyene, J. Sparse canonical correlation analysis
with application to genomic data integration. Statistical Applications in Genetics
and Molecular Biology 8, 1–34 (2009).

152. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS
Genetics 2, e190 (2006).

153. Picelli, S., Björklund, Å. K., Faridani, O. R., Sagasser, S., Winberg, G. & Sandberg,
R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature
Methods 10, 1096 (2013).

154. Pierson, E. & Yau, C. ZIFA: Dimensionality reduction for zero-inflated single-cell
gene expression analysis. Genome Biology 16, 241 (2015).

155. Plesingerova, H., Librova, Z., Plevova, K., Libra, A., Tichy, B., Skuhrova Francova,
H., Vrbacky, F., Smolej, L., Mayer, J., Bryja, V., et al. COBLL1, LPL and ZAP70 ex-
pression defines prognostic subgroups of chronic lymphocytic leukemia patients with
high accuracy and correlates with IGHV mutational status. Leukemia & Lymphoma
58, 70–79 (2017).

156. Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A. &
Reich, D. Principal components analysis corrects for stratification in genome-wide
association studies. Nature Genetics 38, 904 (2006).

157. Quake, S. R., Wyss-Coray, T., Darmanis, S., Tabula Muris Consortium, et al. Single-
cell transcriptomic characterization of 20 organs and tissues from individual mice
creates a Tabula Muris. bioRxiv, 237446 (2018).

158. Queirós, A. C., Villamor, N., Clot, G., Martinez-Trillos, A., Kulis, M., Navarro,
A., Penas, E. M. M., Jayne, S., Majid, A., Richter, J., et al. A B-cell epigenetic
signature defines three biologic subgroups of chronic lymphocytic leukemia with
clinical impact. Leukemia 29, 598 (2015).

128



References

159. Raman, S., Fuchs, T. J., Wild, P. J., Dahl, E. & Roth, V. The Bayesian group-Lasso
for analyzing contingency tables in Proceedings of the 26th Annual International
Conference on Machine Learning (2009), 881–888.

160. Remes, S., Mononen, T. & Kaski, S. Classification of weak multi-view signals by
sharing factors in a mixture of Bayesian group factor analyzers. arXiv preprint
arXiv:1512.05610 (2015).

161. Rencher, A. C. Methods of multivariate analysis (John Wiley & Sons, 2003).

162. Ritchie, M. D., Holzinger, E. R., Li, R., Pendergrass, S. A. & Kim, D. Methods
of integrating data to uncover genotype–phenotype interactions. Nature Reviews
Genetics 16, 85 (2015).

163. Rockova, V., Lesaffre, E., et al. Incorporating grouping information in Bayesian vari-
able selection with applications in genomics. Bayesian Analysis 9, 221–258 (2014).

164. Roweis, S. T. & Saul, L. K. Nonlinear dimensionality reduction by locally linear
embedding. Science 290, 2323–2326 (2000).

165. Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaus-
sian models by using integrated nested Laplace approximations. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 71, 319–392 (2009).

166. Schelker, M., Feau, S., Du, J., Ranu, N., Klipp, E., MacBeath, G., Schoeberl, B.
& Raue, A. Estimation of immune cell content in tumour tissue using single-cell
RNA-seq data. Nature Communications 8, 2032 (2017).

167. Schölkopf, B., Smola, A. & Müller, K.-R. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10, 1299–1319 (1998).

168. Seeger, M. & Bouchard, G. Fast variational Bayesian inference for non-conjugate
matrix factorization models in Artificial Intelligence and Statistics (2012), 1012–
1018.

169. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies
will revolutionize whole-organism science. Nature Reviews Genetics 14, 618 (2013).

170. Shen, R., Olshen, A. B. & Ladanyi, M. Integrative clustering of multiple genomic
data types using a joint latent variable model with application to breast and lung
cancer subtype analysis. Bioinformatics 25, 2906–2912 (2009).

171. Singh, A., Gautier, B., Shannon, C. P., Rohart, F., Vacher, M., Tebutt, S. J. & Le
Cao, K.-A. DIABLO: from multi-omics assays to biomarker discovery, an integrative
approach. bioRxiv, 067611 (2018).

172. Smallwood, S. A., Lee, H. J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J.,
Andrews, S. R., Stegle, O., Reik, W. & Kelsey, G. Single-cell genome-wide bisulfite
sequencing for assessing epigenetic heterogeneity. Nature Methods 11, 817 (2014).

173. Söderholm, S., Fu, Y., Gaelings, L., Belanov, S., Yetukuri, L., Berlinkov, M., Cheltsov,
A. V., Anders, S., Aittokallio, T., Nyman, T. A., et al. Multi-omics studies towards
novel modulators of influenza A virus–host interaction. Viruses 8, 269 (2016).

174. Spearman, C. General Intelligence, objectively determined and measured. The Amer-
ican Journal of Psychology 15, 201–292 (1904).

175. Srivastava, P. Roles of heat-shock proteins in innate and adaptive immunity. Nature
Reviews Immunology 2, 185 (2002).

129



References

176. Stegle, O., Parts, L., Durbin, R. & Winn, J. A Bayesian framework to account
for complex non-genetic factors in gene expression levels greatly increases power in
eQTL studies. PLoS Computational Biology 6, e1000770 (2010).

177. Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., Iyer,
R., Schatz, M. C., Sinha, S. & Robinson, G. E. Big data: astronomical or genomical?
PLoS Biology 13, e1002195 (2015).

178. Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay,
P. K., Swerdlow, H., Satija, R. & Smibert, P. Simultaneous epitope and transcrip-
tome measurement in single cells. Nature Methods 14, 865 (2017).

179. Tay, J. K. & Tibshirani, R. A latent factor approach for prediction from multiple
assays. arXiv preprint arXiv:1807.05675 (2018).

180. Tenenbaum, J. B., De Silva, V. & Langford, J. C. A global geometric framework for
nonlinear dimensionality reduction. Science 290, 2319–2323 (2000).

181. Tenenhaus, A., Philippe, C., Guillemot, V., Le Cao, K.-A., Grill, J. & Frouin, V.
Variable selection for generalized canonical correlation analysis. Biostatistics 15,
569–583 (2014).

182. Tenenhaus, A. & Tenenhaus, M. Regularized generalized canonical correlation anal-
ysis. Psychometrika 76, 257 (2011).

183. Thioulouse, J. et al. Simultaneous analysis of a sequence of paired ecological tables:
A comparison of several methods. The Annals of Applied Statistics 5, 2300–2325
(2011).

184. Tibshirani, R. Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 267–288 (1996).

185. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. & Knight, K. Sparsity and smooth-
ness via the fused Lasso. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 67, 91–108 (2005).

186. Tibshirani, R. & Wang, P. Spatial smoothing and hot spot detection for CGH data
using the fused Lasso. Biostatistics 9, 18–29 (2007).

187. Tipping, M. E. & Bishop, C. M. Probabilistic principal component analysis. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology) 61, 611–622
(1999).

188. Titsias, M. K. & Lázaro-Gredilla, M. Spike and slab variational inference for multi-
task and multiple kernel learning in Advances in Neural Information Processing Sys-
tems (2011), 2339–2347.

189. Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated
mechanisms: a radical therapeutic approach? Nature Reviews Drug Discovery 8, 579
(2009).

190. Trojani, A., Di Camillo, B., Tedeschi, A., Lodola, M., Montesano, S., Ricci, F.,
Vismara, E., Greco, A., Veronese, S., Orlacchio, A., et al. Gene expression profil-
ing identifies ARSD as a new marker of disease progression and the sphingolipid
metabolism as a potential novel metabolism in chronic lymphocytic leukemia. Can-
cer Biomarkers 11, 15–28 (2012).

191. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,
Botstein, D. & Altman, R. B. Missing value estimation methods for DNA microar-
rays. Bioinformatics 17, 520–525 (2001).

130



References

192. Tucker, L. R. An inter-battery method of factor analysis. Psychometrika 23, 111–
136 (1958).

193. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Research
43, D204–D212 (2014).

194. Van Der Maaten, L., Postma, E. & Van den Herik, J. Dimensionality reduction: a
comparative. Journal of Machine Learning Research 10, 66–71 (2009).

195. Vasconcelos, Y., De Vos, J., Vallat, L., Reme, T., Lalanne, A., Wanherdrick, K.,
Michel, A., Nguyen-Khac, F., Oppezzo, P., Magnac, C., et al. Gene expression pro-
filing of chronic lymphocytic leukemia can discriminate cases with stable disease
and mutated Ig genes from those with progressive disease and unmutated Ig genes.
Leukemia 19, 2002 (2005).

196. Verìssimo, A., Oliveira, A. L., Sagot, M.-F. & Vinga, S. DegreeCox – a network-based
regularization method for survival analysis. BMC Bioinformatics 17, 449 (2016).

197. Virtanen, S., Klami, A., Khan, S. & Kaski, S. Bayesian group factor analysis in
Artificial Intelligence and Statistics (2012), 1269–1277.

198. Waldron, L., Pintilie, M., Tsao, M.-S., Shepherd, F. A., Huttenhower, C. & Jurisica,
I. Optimized application of penalized regression methods to diverse genomic data.
Bioinformatics 27, 3399–3406 (2011).

199. Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., Haibe-Kains, B.
& Goldenberg, A. Similarity network fusion for aggregating data types on a genomic
scale. Nature Methods 11, 333 (2014).

200. Wang, C. Variational Bayesian approach to canonical correlation analysis. IEEE
Transactions on Neural Networks 18, 905–910 (2007).

201. Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A.,
Ellrott, K., Shmulevich, I., Sander, C., Stuart, J. M., Cancer Genome Atlas Research
Network, et al. The cancer genome atlas pan-cancer analysis project. Nature Genetics
45, 1113 (2013).

202. Westra, H.-J., Jansen, R. C., Fehrmann, R. S., te Meerman, G. J., Van Heel, D.,
Wijmenga, C. & Franke, L. MixupMapper: correcting sample mix-ups in genome-
wide datasets increases power to detect small genetic effects. Bioinformatics 27,
2104–2111 (2011).

203. Wiel, M. A., Lien, T. G., Verlaat, W., Wieringen, W. N. & Wilting, S. M. Better
prediction by use of co-data: adaptive group-regularized ridge regression. Statistics
in Medicine 35, 368–381 (2016).

204. Witten, D. M. & Tibshirani, R. J. Extensions of sparse canonical correlation analysis
with applications to genomic data. Statistical Applications in Genetics and Molecular
Biology 8, 1–27 (2009).

205. Witten, D. M., Tibshirani, R. & Hastie, T. A penalized matrix decomposition, with
applications to sparse principal components and canonical correlation analysis. Bio-
statistics 10, 515–534 (2009).

206. Woodbury, M. A. Inverting modified matrices, Memorandum Rept. 42. Statistical
Research Group, Princeton University, Princeton, NJ (1950).

207. Wu, A., Park, M., Koyejo, O. O. & Pillow, J. W. Sparse Bayesian structure learning
with dependent relevance determination priors in Advances in Neural Information
Processing Systems (2014), 1628–1636.

131



References

208. Xu, X., Ghosh, M., et al. Bayesian variable selection and estimation for group Lasso.
Bayesian Analysis 10, 909–936 (2015).

209. Yang, J., Huang, T., Petralia, F., Long, Q., Zhang, B., Argmann, C., Zhao, Y.,
Mobbs, C. V., Schadt, E. E., Zhu, J., et al. Synchronized age-related gene expression
changes across multiple tissues in human and the link to complex diseases. Scientific
Reports 5 (2015).

210. Yuan, M. & Lin, Y. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
68, 49–67 (2006).

211. Zenz, T., Mertens, D., Küppers, R., Döhner, H. & Stilgenbauer, S. From pathogen-
esis to treatment of chronic lymphocytic leukaemia. Nature Reviews Cancer 10, 37
(2010).

212. Zerbino, D. R., Achuthan, P., Akanni, W., Amode, M. R., Barrell, D., Bhai, J.,
Billis, K., Cummins, C., Gall, A., Girón, C. G., et al. Ensembl 2018. Nucleic Acids
Research 46, D754–D761 (2017).

213. Zhao, Q., Shi, X., Xie, Y., Huang, J., Shia, B. & Ma, S. Combining multidimensional
genomic measurements for predicting cancer prognosis: observations from TCGA.
Briefings in Bioinformatics 16, 291–303 (2014).

214. Zhao, S., Gao, C., Mukherjee, S. & Engelhardt, B. E. Bayesian group factor analysis
with structured sparsity. The Journal of Machine Learning Research 17, 6868–6914
(2016).

215. Zou, H. The adaptive Lasso and its oracle properties. Journal of the American sta-
tistical association 101, 1418–1429 (2006).

216. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 301–320
(2005).

217. Zou, H., Hastie, T. & Tibshirani, R. Sparse principal component analysis. Journal
of Computational and Graphical Statistics 15, 265–286 (2006).

218. Zwiener, I., Frisch, B. & Binder, H. Transforming RNA-Seq data to improve the
performance of prognostic gene signatures. PLoS One 9, e85150 (2014).

132



Acronyms

PCA principal component analysis

pPCA probabilistic principal component analysis

MOFA multi-omics factor analysis

FDR false discovery rate

ARD automatic relevance determination

ELBO evidence lower bound

SNF similarity network fusion

kNN k-nearest neighbour

BIC Bayesian information criterion

EM expectation-maximization

VB variational Bayes

SVD singular-value decomposition

MLE maximum likelihood estimator

GFA group factor analysis

CCA canonical correlation analysis

IBFA inter-battery factor analysis

CIA co-inertia analysis

MCMC Markov chain Monte Carlo

iid independent and identically distributed

KL Kullback-Leibler

CLL chronic lymphocytic leukaemia

IGHV immunoglobulin heavy chain variable region gene

HSP heat shock protein

ROS reactive oxygen species

mESC mouse embryonic stem cell

133



References

GWAS genome-wide association studies

QTL quantitative trait loci

134



Notation

Most mathematical notation is introduced within each chapter of this thesis, as the chapters
are self-contained and in part contain published articles. Here, we provide an overview of
some general notation as a reference:

Symbol Description

1r identity matrix of rank r; in some cases we simply use 1 if the rank
is clear from the context

N (µ, σ2) normal (or Gaussian) distribution with mean µ and variance σ2

Gamma(a, b) Gamma distribution with shape parameter a and rate parameter b

Laplace(µ, b) Laplace distribution with mean µ and scale b

Ber(p) Bernoulli distribution with success probability p

Beta(a, b) Beta distribution with shape parameters a, b

Poi(λ) Poisson distribution with rate parameter λ

B(a, b) Beta function in a, b

Γ (a) Gamma function in a

diag(x) diagonal matrix containing the vector x on the diagonal

diag(x1, . . . , xr) diagonal matrix containing x1, . . . , xr on the diagonal

Eq(x) expected value of x under the distribution q; in some cases we simply
use E(x) or 〈x〉 if the distribution is clear from the context

F(x|θ) probability density function of a distribution F in x with parameters
θ. For example, N

(
x |µ, σ2

)
denotes the density of a univariate nor-

mal distribution with mean µ and variance σ2, and Gamma (x | a, b)
the density of a gamma distribution with parameters a and b.

|S| cardinality of a set S

Furthermore, in general we use bold capital letters (e. g. X) to refer to a matrix. Elements
of the matrix X are represented as Xij or xij . The jth column of a matrix is referred
to using X·,j or x:,j and the ith row using Xi,· or xi,:. Random variable are represented
by capital non-bold letters (e. g. X) when describing their general properties, while finite
samples are denoted by non-capital letters (e. g. x1, . . . , xn).
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