mzuriCh ETH Library

Evaluation of NTP/PTP fine-grain
synchronization performance in
HPC clusters

Conference Paper

Author(s):
Libri, Antonio; Bartolini, Andrea; Cesarini, Daniele {); Benini, Luca

Publication date:
2018-11-04

Permanent link:
https://doi.org/10.3929/ethz-b-000306928

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
ACM International Conference Proceeding Series, https://doi.org/10.1145/3295816.3295819

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-1294-372X
https://orcid.org/0000-0001-8068-3806
https://doi.org/10.3929/ethz-b-000306928
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1145/3295816.3295819
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Evaluation of NTP/PTP Fine-Grain Synchronization
Performance in HPC Clusters

Andrea Bartolini
DE], University of Bologna
Bologna, Italy
a.bartolini@unibo.it

Antonio Libri
IS, ETH Zurich
Zurich, Switzerland
alibri@iis.ee.ethz.ch

ABSTRACT

Fine-grain time synchronization is important to address several
challenges in today and future High Performance Computing (HPC)
centers. Among the many, (i) co-scheduling techniques in parallel
applications with sensitive bulk synchronous workloads, (ii) per-
formance analysis tools and (iii) autotuning strategies that want to
exploit State-of-the-Art (SoA) high resolution monitoring systems,
are three examples where synchronization of few microseconds
is required. Previous works report custom solutions to reach this
performance without incurring in extra cost of dedicated hardware.
On the other hand, the benefits to use robust standards which are
widely supported by the community, such as Network Time Pro-
tocol (NTP) and Precision Time Protocol (PTP), are evident. With
today’s software and hardware improvements of these two proto-
cols and off-the-shelf integration in SoA HPC servers no expensive
extra hardware is required anymore, but an evaluation of their per-
formance in supercomputing clusters is needed. Our results show
NTP can reach on computing nodes an accuracy of 2.6 us and a
precision below 2.7 us, with negligible overhead. These values can
be bounded below microseconds, with PTP and low-cost switches
(no needs of GPS antenna). Both protocols are also suitable for
data time-stamping in SoA HPC monitoring infrastructures. We
validate their performance with two real use-cases, and quantify
scalability and CPU overhead. Finally, we report software settings
and low-cost network configuration to reach these high precision
synchronization results.

KEYWORDS

NTP, PTP, HPC Clusters, MPI, Fine Grain Synchronization, Power
and Performance Monitoring

1 INTRODUCTION

Time synchronization is a key factor for any distributed system [13].
This is especially true for High Performance Computing (HPC) clus-
ters, considering the trend toward increasing the node count to
exploit application concurrency and parallelism. In this context, it
becomes crucial to ensure a tight level of time agreement [5, 13, 14].
As reported in [13], this is needed for several reasons, with the
ultimate goal to improve the application execution time and energy
efficiency of the system (i.e., Time-to-Solution - TtS - and Energy-to-
Solution - EtS). As example, a fine-grain synchronization (order of
few ps) is fundamental in (i) wall-clock runtime of parallel applica-
tions that exploit the Bulk Synchronous Parallelism (BSP), which is
a parallel programming model where the progress of concurrent
processes is driven by synchronization points (synchronization
barriers). As shown in [13], by mean of a coordinated scheduling
(co-scheduling) strategy it is possible to achieve a speedup of 285 %

Luca Benini
IIS, ETH Zurich
Zurich, Switzerland
Ibenini@iis.ee.ethz.ch

Daniele Cesarini
DE], University of Bologna
Bologna, Italy
daniele.cesarini@unibo.it

for sensitive bulk synchronous workloads (i.e., with frequent syn-
chronizing collectives based on Message Parallel Interface - MPI -,
such as MPI_Barrier or MPI_Alltoall).

Other examples are (ii) code development/debugging and (iii)
allow autotuning techniques to exploit new generation of high res-
olution monitoring systems [12, 13, 16]. Works in [4-6] show that
synchronization performance in the order of few microseconds is a
must to carry out an efficient analysis of applications’ performance,
as otherwise would not be possible to achieve a correct ordering
of the events in concurrent processes running on multiple nodes.
Moreover, SoA high resolution monitoring systems for HPC (e.g.,
DiG, HAEC [12, 16]) require a synchronization at least comparable
to their sampling rate, to be able to correlate the measurements
with application phases, and therefore to get a detailed profiling
picture over time needed for a better usage of the resources.

Time agreement in distributed systems is normally supported
by network synchronization protocols. In these protocols all the
nodes are kept synchronized against a time reference assumed as
true time. In this context, accuracy refers to the amount of shift
between the time reference and the mean of the measurements
of time (u), and precision to the standard deviation (o). Over the
past years two standards have emerged and are widely adopted:
Network Time Protocol (NTP) [7] and Precision Time Protocol
(PTP) [1] (aka IEEE 1588). The former targets Wide Area Networks
(WANSs), where it typically achieves accuracy of milliseconds, but -
as documented in the standard [7] - can reach better performance
within Local Area Networks (LANs). PTP targets LANs and can
synchronize devices with sub-microsecond performance, thanks to
dedicated hardware support for synchronization.

In particular, within the context of HPC systems and data-centers,
NTP is today the most used protocol [13], but - as reported in a
recent survey on leadership class supercomputing centers [13] - is
usually set with default configurations, obtaining a synchroniza-
tion accuracy that does not meet acceptable uncertainty require-
ments for many potential applications (jitter of tens/ hundreds of
milliseconds). To achieve microseconds synchronization without
incurring in extra cost for dedicated hardware support, such as with
PTP, several works in literature proposed alternative software solu-
tions [4-6, 14]. However, the advantages to use robust standards
that are widely supported by the community - like NTP and PTP -
are evident. In addition, (i) today’s software / hardware implemen-
tation improvements of these two protocols (e.g., enhancements on
software deamons, high stability of commodity oscillators), along
with (ii) off-the-shelf integration of PTP hardware support in State-
of-the-Art (SoA) HPC servers and IoT platforms commonly used for
embedded monitoring solutions, give a motivation for our work.

In this paper we focus on the evaluation of NTP and PTP synchro-
nization performance in a SoA HPC Cluster - i.e, D.AVID.E. [2]
(18 in Green500 November 2017) - and its out-of-band monitoring

infrastructure, namely DiG and Examon [3, 16]. A key concept in
our study is that synchronization is performed within the LAN of
the HPC infrastructure. This allows to work in a corner-case for
NTP, where it can achieve its best performance. Moreover, it is not
necessary to achieve high accuracy with respect to the absolute
time reference (e.g., by mean of an atomic clock or a Global Posi-
tioning System - GPS - antenna), but instead that all devices are
highly synchronized between them.
Major contributions of this paper are:

(1) the proof that with a proper configuration both NTP and PTP
can achieve the target synchronization of sub-milliseconds
needed for many potential applications in today’s super-
computers. This is done through extensive measurements of
synchronization’s performance in a SoA HPC cluster and its
out-of-band monitoring infrastructure. Moreover, we carry
out a validation of the results in two real use-case scenario.
We will show that NTP can achieve in HPC nodes an accu-
racy below 2.6 us and a precision below 2.7 ps. Regarding
PTP, these values are bounded below microseconds. It is
noteworthy that is possible to achieve these performance
with low-cost COTS hardware, which generally is already
built-in in new supercomputers (no extra cost is required).
Finally, we observed that the synchronization performance
achievable in the IoT devices used in DiG (i.e., best-in-class
HPC high resolution monitoring) is below their sampling
period (20 ps), thus is suitable to correlate the monitored
metrics with applications running in the computing nodes;

(2) a detailed investigation of scalability and CPU overhead of
the protocols’ SW daemons distributed in the cluster devices;

(3) a comprehensive description of the network topology and
SW configuration used to achieve our performance, with the
goal to be helpful for other leadership class supercomputers.

Organization of the paper: we introduce in Section 2 an overview
of D.AVID.E. and its out-of-band monitoring system, and the
importance of a fine grain synchronization in HPC clusters (together
with some background information of the two evaluated protocols).
We outline the related work in Section 3. Section 4 reports our
performance measurement results and a how-to guide that outlines
our network topology and configuration. Finally, we conclude the
discussion in Section 5.

2 HPC CLUSTERS AND FINE GRAIN SYNCH

On the race toward exascale computing, HPC systems are facing
crucial challenges which limit their efficiency. Among the many,
power and energy consumption, bounded by the end of Dennard
scaling, start to show their impact on limiting supercomputers
peak performance and cost effectiveness [2, 12]. This is evident
by looking at the latest Top500 list (June 2018): the most powerful
supercomputer - i.e, Summit - has an improvement in energy effi-
ciency of 2.3 X over the previous one - i.e., Sunway TaihuLight -,
but only an improvement in performance of 30 %. We are clearly in
an era of power limited HPC evolution, driven by new hardware
technologies along with a better usage of the resources.

At the basis of a better usage of the resources, techniques for
exploiting more efficient concurrency on applications that run on
many cores per chips (i.e., CPUs/ Accelerators) and multiple nodes
per clusters are of crucial importance [13, 14]. Already several

works in literature show that an efficient concurrency, which ulti-
mately leads to improvements in TtS and EtS, can be achieved by (i)
co-scheduling techniques [13], (ii) optimized coding, which requires
application’s performance analysis tools for debugging [6, 13], and
(iii) runtime autotuning techniques, based on power and perfor-
mance monitoring, to promptly react to workloads changing and
events (e.g., by mean of Power Capping and Dynamic Voltage and
Frequency Scaling - DVFS; Approximate Computing; advanced cool-
ing control policies) [9, 20]. All these strategies require a proper
level of synchronization within the HPC cluster. In particular, co-
scheduling and performance analysis tools demand a synchroniza-
tion accuracy in the order of few microseconds (4-7 ps [4-6]), while
runtime autotuning, based on power and performance measure-
ments, needs a synchronization accuracy lower than the sampling
period of the monitoring, to be able to correlate application phases
and events with physical and architectural metrics.

Parallel

Several) Application
Metrics PO ..-:
Pn)
Time
Cache Bl Arp MPI } synch Node n

Miss

Power Node1 ~

N
f————p
""“’: N\ Node n ‘
N

rime > \)
Node 1 (©) Q /’ e
\Clock cpy;
é’ = \ /;7/’7?\\ Cold air/water
888n L .
C\ockQ /“555:::"- _ e

8881/
‘ CRAC
oy |i -
node1 |

|

HPCcluster Hot air/water

Power @ EC‘

Perf
GPU counters

Figure 1: Overview of D.A.VI.D.E. and DiG, as example of
SoA green HPC cluster.

Figure 1 shows an example of a SoA energy efficient HPC clus-
ter, namely D.AV.I.D.E. [2, 3], and its monitoring infrastructure,
DiG [16]. The cluster consists of 45 IBM OpenPOWER computing
nodes, plus 2 management nodes, grouped in 3 racks. Each node
includes 4 NVIDIA Tesla P100 and a dedicated embedded device (i.e.,
Beaglebone Black - BBB - which is part of DiG) for an out-of-band
monitoring up to 20 ps of sampling resolution and hardware sup-
port for PTP. Moreover, the system is liquid cooled and all the nodes
exploit an EDR InfiniBand connection (100 Gbit/s). As depicted in
Figure 1, to meet the accuracy synchronization constraints required
by the aforementioned optimization strategies, it is important that
the clocks within HPC nodes and embedded devices are tightly syn-
chronized. These clocks are then used for co-scheduling strategies
in applications running on multiple nodes, and to time stamp and
correlate both (a) application phases/ events and (b) measurements
acquired by the monitoring devices.

Focusing on NTP and PTP, both use a client-server model, where
each client regularly polls a cluster of servers to synchronize their
clock [1, 7]. According to the standard nomenclature, the terms
client / server are used for NTP, while slave / master for PTP. How-
ever, there is no conceptual difference between them (master cor-
responds to server and slave to client), and we will often use in

this paper the terms master/slave for both protocols. The main
difference between these protocols is the timestamp method to
synchronize the clocks: while NTP can use only the so called sofi-
ware timestamp, which is taken at user-space and thus with more
jitter (noise) that affects the synchronization, PTP can benefit of the
hardware timestamp which is taken by dedicated hardware devices
(i.e, PTP Hardware Clock - PHC) with higher levels of accuracy
and precision. In our target scenario, HPC nodes and embedded
monitoring devices run the slaves clocks, while dedicated servers
run the masters that provide the time reference for the whole net-
work. In particular, the ultimate goal is to synchronize the system
clocks of all the involved devices (each device has more than one
clock, and the system clock is basically the main clock that provides
the time for all other applications running in the device - e.g., to
carry out co-scheduling techniques).

In Linux systems, NTP is usually implemented by the ntpd dae-
mon, while PTP by two user-space applications, namely ptp4l and
phc2sys. In particular, ptp4l is the actual implementation of PTP
(i.e., it synchronizes all PHCs within the network), while phc2sys is
used to synchronize the PHC of each device with its system clock.

3 RELATED WORK

Widely used approaches to address time agreement in distributed
systems consist of network synchronization protocols, such as NTP
and PTP [1, 7]. The former is commonly used over WANs, where
it can reach an accuracy of milliseconds, while the latter within
LANsS, for applications where higher synchronization performance
is needed. However, PTP requires dedicated hardware which only
recently started to be integrated off-the-shelf in common servers
and embedded computers.

To achieve in the past years sub-millisecond synchronization
without incurring in extra cost for dedicated hardware, prior works
proposed alternative solutions. One technique which targets events
synchronization in HPC parallel applications consist of post-mortem
ordering [4-6]. This approach is useful for event tracing where ap-
plication phases and the monitored metrics can be retroactively syn-
chronized. However, it is not suitable for real-time synchronization,
which is crucial to improve TtS and EtS of HPC applications [13].

To address this problem, Jones et al. [14] worked on a NTP-
based synchronization scheme for MPI applications that provides
an accuracy of 2.29 ps (min —-32.0 ps, max 32.1 ys, span 64.1 ps). This
solution is suitable for runtime synchronization of MPI applica-
tions, but not to timestamp and correlate measurements coming
from monitoring systems. Another solution was proposed in [18],
which consists of a software-based scheme called TSCclock that
delivers up to ten microseconds of accuracy within a LAN. Even if
this solution is suitable for several applications within distributed
systems, this accuracy is still not enough for HPC synchroniza-
tion constraints (i.e., few microseconds). A more recent solution
that provides higher synchronization performance is White Rabbit
(WR) [19], which extends PTP with dedicated hardware, firmware
and software, and can synchronize nodes with sub-nanosecond
accuracy. However, as it is over requirements for the target con-
straints, considering also the extra hardware needed, we focus our
analysis only on NTP and PTP.

To the best of our knowledge, only work in [10] carried out a
similar evaluation, but exclusively for PTP and targeting different
requirements. In particular, they focused on distributed systems

where high performance synchronization against the absolute time
reference was required. This is not needed to address HPC chal-
lenges (such as improving energy efficiency and execution time of
applications) and at the same time can be an obstacle for supercom-
puting centers to carefully install a GPS antenna or an atomic clock.
It should be noted that under these assumptions we performed
in [15] an early evaluation of NTP/PTP performance, but only on
IoT platforms (i.e., BBB) and assuming point-to-point links between
them (i.e., no use of switches), thus measurements in a whole HPC
cluster - i.e., computing nodes, BBB and switches - are still missing.

4 EXPERIMENTAL RESULTS

In this section we evaluate the performance of NTP and PTP on a
SoA HPC cluster, namely D.AV.ID.E. [2], in terms of (i) accuracy, (ii)
precision, (iii) worst-case bound and (iv) scalability. Measurements
are performed both on the computing nodes and on the out-of-
band monitoring system of the cluster (DiG [3, 16], depicted in
Figure 1). To interconnect all devices we used the CISCO IE 3000 [8],
a low-cost COTS switch, suitable for industrial installations and
PTP HW-enabled.

HPC Synchronization Testbed

@ Trigger

@ Trigger @ TS Master
Switch - A
,,,,,, #2) e () ‘: ¢ f\{sflctkj
~ — phc2sys
hc2
Slave n pheésys PTP4I NTPd Master

Slave 1

A. Computing Nodes B. Embedded Monitoring Devices (BBB)

—

MPI Slave n MPI Master Oscilloscope
0 (1) \
TS Sn MPI Slave 1 Trigger TS Master L
L) External TS Master

Trigger TSS1 TSSn

TSS1

Figure 2: Testbed used for NTP/PTP performance evalua-
tion on computing nodes of D.A.V.LLD.E. and its out-of-band
monitoring system (DiG).

Figure 2 (top) illustrates testbed and synchronization flow of the
SW daemons. Regarding NTP, we used ntpd to synchronize the
system clock of the slaves directly to the system clock of the master
node (ntp server), while for PTP we used ptp4l to adjust the PHC of
the slaves to the master PHC and exploited phc2sys to constantly
update the respective system clocks (on both master and slaves).
Basing on the results obtained in our previous work [15] (focus of
the paper was to find the optimal polling rate of NTP / PTP daemons
to achieve best synchronization performance in a point-to-point
link), we tuned their polling rate to the optimal operating point,
which corresponds to 0.125 Hz (8 s) for NTP, and 1 Hz and 12 Hz for
ptp4l and phc2sys, respectively. Moreover, we set the PTP switch
in transparent mode to obtain higher levels of accuracy [8].

In the following, we will first evaluate (a) the synchronization
between computing nodes, showing also an example with a parallel
application, and then (b) the synchronization among monitoring
devices, where we also verify the correlation performance between
the out-of-band measurements and an application running on the
computing nodes. Finally, for both protocols we will (c) quantify
their scalability and CPU load on the devices, and (d) report a short
how-to guide to setup the SW daemons and build the synchroniza-
tion network to reach the performance reported in this paper.

4.1 Synch among HPC computing nodes

To measure the synchronization between computing nodes, we
developed a synthetic benchmark based on OpenMPI, with one MPI
process per node, as depicted in Figure 2.a. Goal is to generate
timestamps on a set of queried nodes after a triggering event, and
observe the clock’s skew of the clients from the time reference.
The benchmark first gets the hostname of the machine where is
executed, then waits for an MPI_Barrier to align the timestamps gen-
eration events between nodes, and finally produces the timestamp
using the clock_gettime function. As in common supercomputer
installations the MPI inter-node latency for small messages is in
the order of few microseconds (i.e., accuracy within 4-7 ps [4-6]),
it is crucial that clock synchronization of computing nodes is in
this range or below.

[EEEINTP Slavel: p=-16us, 0=2.4us
[EEEEINTP Slave2: p=-2.6us, 0=2.7us
INTP Slave3: p=-2us, 0=2.2us
[EEPTP Slavel: u=0.0004us, 0=0.8us
PTP Slave2: i=-0.22us, 0=0.79us
[IPTP Slave3: u=0.007us, 0=0.81us
Ref.Ck

J
$

Time [ms]

/ IREREETE

NTPSlavel 3.3us 5.5ps 7.6us
NTPSlave2 4.4ps 6.7us 8.9us

NTPSlave3 3.2us 6.5us 8.3us
——NTP Slavel

/ |[——nNTPsiave2 | PTPSlavel 0.88us 1.61ps 2.14ps
/ NTP Siaved

—PTPSiavet | PTPSlave2 0.89us 1.63us 2.17ps
e | PPSlaved 088us 165us 2.28us

Number of occurences (normalized)

|

10 12 14 16 1€

45 0 5 2 4 6 8
x=abs("Master-Slave Offset") [us]

Master-Slave Offset [us]

Figure 3: NTP/PTP performance on computing nodes.

We run the benchmark to generate 10 thousand timestamps over
several hours on the nodes of D.AVID.E. synchronized first with
NTP and then with PTP. Figure 3 (top) shows the histogram of
the obtained master-slave offset, where the green line on the zero
represents the time reference (i.e., NTP / PTP server), and the y-axis
reports the relative number of occurrences (number of observations
in bin/ total number of observations). Results show a clear Gauss-
ian trend, for both NTP and PTP. In particular, accuracy (¢) and
precision (o) are below 2.6 us and 2.7 ps in NTP, respectively, and
below 0.2 ps and 0.8 pus in PTP. To observe how the percentage of
samples skews from the reference time, we report in Figure 3 (bot-
tom) the Cumulative Distribution Function (CDF). NTP bounds 75 %
of the samples within 4.4 ps, while PTP within 0.8 ps. These values
increase up to a maximum of 8.9 us and 2.2 us for 99 % of the sam-
ples. It should be noted that D.AV.ID.E. exploits an EDR InfiniBand
connection (100 Gbit/s) between nodes with a minimal latency of
around 0.5 ps [17]. As this latency affects the MPI triggering event
to generate timestamps on the nodes, both synchronization proto-
cols would perform even better than what we measured (we are
providing worst-case bounds). In light of these results, the time
agreement provided by both protocols (i.e., 2.6 ps of NTP accuracy,
and 0.2 ps of PTP accuracy) is suitable to appreciate and correlate
parallel application phases running on different nodes, as well as
to correlate them with in-band system performance metrics times-
tamped up to few microseconds granularity.

In particular, the accuracy provided by NTP on computing nodes
is an important off-the-shelf achievement for HPC supercomputing
centers, researchers and developers, as it can push the boundaries
of SoA techniques for profiling, debugging, scheduling and mainte-
nance, and thus for improvements on HPC systems and applications
performance [4-6, 13, 14]. To show one of the benefits of such a

fine grain synchronization, we report a common scenario that can
be found by HPC application’s developers and users, when they
have to balance the workload among MPI processes. The exam-
ple consists of a scientific parallel application, namely Quantum
Espresso (QE) [11], which involves several MPI_Alltoall. Let’s as-
sume the user wants to evaluate the unbalance in the application
communication. QE involves several MPI_Alltoall on which all MPI
processes wait on a barrier for the other processes to end their
computation. We want to compute the time each MPI process takes
to exit the barrier after the last process reaches it. We run QE on
two computing nodes - one executing an MPI root and one an MPI
slave - both synchronized to a time reference on a third node (i.e.,
NTP server).

175 — NTP1024s
— NTP 1024s - Inv
— NTP8s

NTP 85 - Inv

0.75 Lapuet

10000 20000 30000 40000 50000 60000
Number of MPI_Alltoall() [#]

Figure 4: Master-slave MPI_Alltoall offset with NTP polling
rate set at 1024 s and at 8s.

Figure 4 shows the offset of the MPI processes at the exit of the
barrier, for each MPI_Alltoall call in the application. In particular,
the blue curve reports the offset when the nodes are synchronized
with the default NTP polling rate (i.e, 1024s, which is the one
commonly used): the offset is in the order of few milliseconds and
is linearly improving over time up to 0.75ms. This result can be
misleading, as it could mean there is an increasing communication
unbalance (i.e., MPI slave always leaves the barrier first) and latency
for which it would be worst to tweak the code to alleviate its cost.

However, this is not the case, as if we keep the same workload but
invert the nodes that are executing QE (green trace in Figure 4), we
obtain exactly the opposite behaviour, where MPI root always leaves
the barrier first. This is a clear problem of clock’s synchronization
and is much more challenging to understand when facing with
thousands / millions of processes in large-scale supercomputing
centers. In particular, the clock of a node is ahead of time in respect
to the other node and the linear improvement of the offset is due to
the NTP adjustments over time (jitter in the order of milliseconds
because we are using the default polling rate). As shown by the two
curves NTP 8 sand NTP 8s - Inv, when we repeat the previous tests
synchronizing the nodes with best settings (i.e., NTP polling rate of
8's), MPI processes exit the barrier with an offset roughly bounded
within 80 ps. Due to the microseconds granularity of MPI processes,
this fine grain synchronization - that can be obtained off-the-shelf
- can easily and drastically improve application’s debugging and
tuning, crucial to increase efficiency of HPC systems.

4.2 Synch of the out-of-band monitoring

An accurate synchronization of the D.A.V.I.D.E. out-of-band moni-
toring infrastructure (DiG) is crucial to get a high quality profiling

over time of the whole HPC system and running applications. As
the maximum sampling period of DiG is 20 ys, it is important that
its synchronization accuracy is in this range or below to be able to
correlate out-of-band measurements between them (i.e., the mea-
surements acquired for each server would be perfectly aligned) and
with application phases running on computing nodes. To evaluate
the DiG synchronization performance we used the same testbed
of before - same switch and software daemons on the embedded
monitoring devices -, but with an external source of interrupts in
order to get the same triggering event on all BBB (i.e., computing
platforms on which DiG is built upon). In particular, we used a
square wave signal connected to the General Purpose Input/Output
(GPIO) pins of the BBB. The GPIOs are handled by a custom device
driver: as soon as the square wave goes high, an Interrupt Service
Routine (ISR) in each BBB catches the event and generates a times-
tamp. To take into account the jitter related to the ISR processing
time, we used another GPIO connected to an oscilloscope (Keysight
DS0X3054T, depicted in Figure 2.b). After the timestamp is gener-
ated, we raise up the second GPIO and compare the ISR’s jitter of
the BBB master with the one of each BBB slave, obtaining the Aygg,
as outlined in Figure 5. Thus, to evaluate the master-slave offset
(MSoff), we used the following formula:

Msoff =TSs — (TSm + Arsr) (1)

where TS and TS, correspond to the system clock timestamps of
the BBB slave and master, respectively. Moreover, the offset Arsg is
always referred to the master and can be either positive or negative
depending on which clock is ahead of time.

Bit-state
(0-1) Delay_ISR_1 ISR

Delay_ISR_2

Triggering

TS_Master TS_Slavel
Event T

GPIO_Slavel
GPIO_Master
Input_wave

12 3 4 5 6 7 8 9 10 1 12 13 14 15 Time

Figure 5: Oscilloscope’s window showing the delays between
the triggering event and ISR processing time of each BBB
(i.e., Delay_ISR_1 and Delay_ISR_2).

For the scope of this test, we synchronized 2 BBB slaves to a
BBB Master, used as time reference, and generated 30 thousand
timestamps. Figure 6 (top) shows the master-slave offset, where as
before the green line on the zero represents the time reference and
the y-axis the relative number of occurrences. Results of NTP show
an almost Gaussian trend with an accuracy within 14 ps and a preci-
sion below 10.7 ps. The Gaussian curve becomes much more tighter
for PTP, where we see an accuracy below 0.1 pus and a precision
within 0.68 ps. To observe how the percentage of slaves’ timestamps
skew from the master, we report the CDF in Figure 6 (bottom): 75 %
of the occurrences stay within 20 us for NTP and 0.64 ps for PTP.
These values increase up to a maximum of 36 us (NTP) and 2.23 s
(PTP) for 99 % of the samples. Comparing these results with those
obtained in the computing nodes, we can observe that PTP slightly

improves its performance, while NTP is slightly worse (probably
due to a cheaper built-in oscillator). However, we can state that
both protocols are suitable to keep aligned the out-of-band power
and performance measurements of D.AVID.E..

01 1 T T T T T T —

—— NTP Slavet
NTP Slave2

g PTP Slavet
06 y / —— PP Slave2

/o
/|
/ NTPSlavel 20us 32us 36us
/ NTPSlave2 18us 25us 28us
PTPSlavel 0.6dus 1.52us 2.10us
// PTPSlave2 0.59us 1.43us 2.23us

[C1PTP Slave2: p=-0.097us, 0=0.645us
Ref. Clk

Number of occurences (normalized)

40 5 10 15 20 % 30 ¥
x = abs("Master-Slave Offset") [us]

Figure 6: NTP/PTP performance on BBB.

To verify the correlation performance of the DiG’s measurements
with an application running on computing nodes, we developed a
custom benchmark based on OpenMP. The benchmark simply get
a timestamp and stresses all CPU cores, while the nodes and the
embedded monitoring devices are synchronized with NTP (same
testbed of before, see Figure 2). The result is visible in Figure 7,
where the blue curve corresponds to the power consumption moni-
tored by DiG (sampling period of 20 ps, represented by the stars)
and the red line to the timestamp generated by the application,
which highlights the instant of rising edge: if we look at it, we
can see it is well aligned with the power consumption trace. With
this test we can finally validate both synchronization protocols to
achieve a fine-grain synchronization in SoA HPC clusters.

Stress CPU node1

—#— Dig Monitoring
w0 Ts nodet /\f

o/
= 600 f
B ¥
] \ ;/*\/
3 580 ¥
& /
¥
560 | J (*/*w*
X 'l
¥
540 L \ \ \ \ \ \ \
100 200 300 400 500 600 700 80 100
Time [yis]

Figure 7: OpenMP synthetic benchmark to validate the cor-
relation performance between D.A.V.I.D.E. nodes and DiG.

4.3 Scalability and CPU load

Scalability. Looking at the message synchronization pattern of both
protocols [1, 7], we can quantify how the master (bottleneck) scales
with the number of connected devices. Regarding NTP, considering
N clients, the master has to deal with 2N packets (a pair query-reply)
per clock’s time update: with a polling period of 8 s this corresponds
corresponds to 23 B/s per client. About PTP, using the Multicast
communication model and only transparent clocks [1], the master
has to handle 2 + 2N packets per clock’s time update. In other
words, setting a polling period of 1s we have a fixed component
of 180 B/s and a scalable component of 186 B/s per slave [1, 15].
Accordingly to these data rates, both protocols are not critical in
terms of scalability. As example, considering a Fast Ethernet with

a bit rate of 100 Mbit/s (e.g., 10/100 RJ45 on BBB), an NTP server
would use only 0.000 184 % of the network bandwidth per slave,
and a PTP master only 0.001 488 %. In theory, using only 10 % of the
bandwidth an NTP server could handle up to 54k nodes, while each
PTP master up to 6.7k nodes. Moreover, using a Gigabit Ethernet
these values improve of an order of magnitude (e.g., 540k nodes for
each NTP server and 67k nodes for each PTP master).

CPU load. In order to do not impact on the HPC computing
resources, it is important that the proposed configuration makes
use of a low percentage of CPU. To evaluate the CPU load we
exploited the Linux Top program, which provides a dynamic real-
time view of the running processes and system’s resources usage.
Results show that both ntpd slaves and PTP daemons (ptp4l and
phc2sys) require a negligible overhead (i.e., close to 0 %).

4.4 How-To Guide - NTP/PTP Settings

Network Topology NTP / PTP software settings
TN Daemon _ Masters Slaves
¢ PoolNTP ! External World
o G < ntpd - Synch to pool of servers - Synch to LAN Masters
Absolute @ Y, (Default 1024 s): (rate 8s):
Time Ref . pool IP-S0 iburst server IP-MO maxpoll 3

NTF

pool IP-Sn iburst

- Set Node as LAN Master:

server IP-Mn maxpoll 3

NTRpTe HPC-LAN :%81277.12277'1.0
ge 127.127.1.0 stratum 1
Relative \@%ervers, /
Time Ref . tpdl - Default settings - Default settings
. ptp g g
) (rate 15) (rate 1s)
P o phc2sys - Rate 12Hz - Rate 12Hz
[NPT S (G - use -w, to wait until - use -w, to wait until
@ Slave1 @ SlaveN ptpdl is synchronized ptpdl is synchronized

Figure 8: Proposed network and software configuration.

In this final section we report a short “how-to” guide, based
on the experience gained in this work to achieve the presented
synchronization performance. Figure 8 (left) shows the network
configuration with the respective polling rates of NTP and PTP.
As in the target scenario (HPC systems) is only important that all
devices within the LAN are highly synchronized between them, and
we can accept a lower accuracy to the absolute time (external world),
we use few internal NTP servers that synchronize their system clock
to a pool of external NTP servers (standard configuration of NTP)
with the default polling rate of 1024 s. It must be noted that we use
more than one internal server synchronized to the external world
to achieve a more resilient configuration. All slave devices within
the LAN are then synchronized with NTP polling rate of 8 s or PTP
rate of 1s. Figure 8 (right) summarizes our software settings.

5 CONCLUSION

High synchronization performance is required to address several
key challenges in today and future leadership-class computing cen-
ters. In this paper we evaluated the two widely used network syn-
chronization protocols, NTP and PTP, in a SoA HPC Cluster, namely
D.AVID.E.. Our results show that NTP can reach an accuracy
of 2.6 us and a precision below 2.7 us on computing nodes, while
maintaining a negligible overhead. Such values can be bounded to
sub-microseconds when using PTP and low-cost COTS switches.
We then tested these protocols on embedded devices (i.e., BBB)
which are part of a SoA (best-in-class) out-of-band power and per-
formance monitoring infrastructures, namely DiG, and results show
they are also suitable for data timestamping and correlation. Fi-
nally, we quantified their scalability and CPU overhead. In light of

the obtained results, we can state that both protocols can provide
the target synchronization of sub-milliseconds needed for many
potential applications in today’s supercomputers.

ACKNOWLEDGMENTS

This work is partially funded by the EC under program grant H2020
FET-HPC ANTAREX 671623 and by E4 Computer Engineering SpA.
The authors would like to thank the Italian supercomputing center
CINECA and all the team of E4 Computer Engineering SpA for their
valuable help and support.

REFERENCES

[1] 2008. IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems. https://doi.org/10.1109/IEEESTD.2008.4579760

[2] W. Abu Ahmad et al. 2017. Design of an Energy Aware Petaflops Class High
Performance Cluster Based on Power Architecture. In 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). 964-973.
https://doi.org/10.1109/IPDPSW.2017.22

[3] A.Bartolini et al. 2018. The D.A.V.LD.E. Big-Data-Powered Fine-Grain Power and
Performance Monitoring Support. In ACM International Conference on Computing
Frontiers 2018. https://doi.org/10.1145/3203217.3205863

[4] D.Becker et al. 2008. Implications of non-constant clock drifts for the timestamps
of concurrent events. In 2008 IEEE International Conference on Cluster Computing.
59-68. https://doi.org/10.1109/CLUSTR.2008.4663756

[5] D. Becker et al. 2009. Scalable timestamp synchronization for event traces of
message-passing applications. Parallel Comput. 35, 12 (2009), 595 - 607. https:
//doi.org/10.1016/j.parco.2008.12.012 Selected papers from the 14th European
PVM/MPI Users Group Meeting.

[6] D.Becker et al. 2010. Synchronizing the Timestamps of Concurrent Events in
Traces of Hybrid MPI/OpenMP Applications. In 2010 IEEE International Conference
on Cluster Computing. https://doi.org/10.1109/CLUSTER.2010.13

[7] J.Burbank et al. 2015. Network Time Protocol Version 4: Protocol and Algorithms
Specification. IETF RFC 5905. https://doi.org/10.17487/1fc5905

[8] CISCO Systems, Inc. 2016. Cisco Industrial Ethernet 3000 Layer 2/Layer 3 Series
Switches. Datasheet.

[9] C. Conficoni et al. 2015. Energy-aware cooling for hot-water cooled supercom-
puters. In 2015 Design, Automation Test in Europe Conference Exhibition (DATE).
1353-1358.

[10] B. Ferencz et al. 2013. Hardware assisted COTS IEEE 1588 solution for x86
Linux and its performance evaluation. In 2013 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control and Communication
(ISPCS) Proceedings. https://doi.org/10.1109/ISPCS.2013.6644762

[11] P. Giannozzi et al. 2009. QUANTUM ESPRESSO: a modular and open-source soft-

ware project for quantum simulations of materials. Journal of Physics: Condensed

Matter 21, 39 (2009), 395502.

T. lsche et al. 2018. Power measurement techniques for energy-efficient comput-

ing: reconciling scalability, resolution, and accuracy. Computer Science - Research

and Development (Apr 2018). https://doi.org/10.1007/s00450-018-0392-9

[13] T. Jones et al. 2017. An evaluation of the state of time synchronization on

leadership class supercomputers. Concurrency and Computation: Practice and

Experience 30, 4 (2017), e4341. https://doi.org/10.1002/cpe.4341 e4341 cpe.4341.

T. Jones and G. A. Koenig. 2012. Clock synchronization in high-end computing

environments: a strategy for minimizing clock variance at runtime. Concurrency

and Computation: Practice and Experience 25, 6 (2012), 881-897. https://doi.org/
10.1002/cpe.2868

A. Libri et al. 2016. Evaluation of synchronization protocols for fine-grain HPC

sensor data time-stamping and collection. In 2016 International Conference on

High Performance Computing Simulation (HPCS). 818-825. https://doi.org/10.

1109/HPCSim.2016.7568419

A. Libri et al. 2018. Dwarf in a Giant: Enabling Scalable, High-Resolution HPC

Energy Monitoring for Real-Time Profiling and Analytics. ArXiv e-prints (June

2018). arXiv:cs.DC/1806.02698

[17] Mellanox Technologies. 2015. EDR InfiniBand. OFA UM 2015, OpenFabrics
Software User Group Workshop.

[18] J. Ridoux and D. Veitch. 2009. Ten Microseconds Over LAN, for Free (Extended).
IEEE Transactions on Instrumentation and Measurement 58, 6 (June 2009), 1841-
1848. https://doi.org/10.1109/TIM.2009.2013653

[19] J. Serrano et al. 2013. THE WHITE RABBIT PROJECT. In Proceedings of IBIC2013,
Oxford, UK. http://cds.cern.ch/record/1743073

[20] C. Silvano et al. 2017. The ANTAREX Tool Flow for Monitoring and Autotuning
Energy Efficient HPC Systems. In SAMOS 2017 - International Conference on
Embedded Computer Systems: Architecture, Modeling and Simulation. Pythagorion,
Greece. https://hal.inria.fr/hal-01615945

[12

(14

[15

[16

https://doi.org/10.1109/IEEESTD.2008.4579760
https://doi.org/10.1109/IPDPSW.2017.22
https://doi.org/10.1145/3203217.3205863
https://doi.org/10.1109/CLUSTR.2008.4663756
https://doi.org/10.1016/j.parco.2008.12.012
https://doi.org/10.1016/j.parco.2008.12.012
https://doi.org/10.1109/CLUSTER.2010.13
https://doi.org/10.17487/rfc5905
https://doi.org/10.1109/ISPCS.2013.6644762
https://doi.org/10.1007/s00450-018-0392-9
https://doi.org/10.1002/cpe.4341
https://doi.org/10.1002/cpe.2868
https://doi.org/10.1002/cpe.2868
https://doi.org/10.1109/HPCSim.2016.7568419
https://doi.org/10.1109/HPCSim.2016.7568419
http://arxiv.org/abs/cs.DC/1806.02698
https://doi.org/10.1109/TIM.2009.2013653
http://cds.cern.ch/record/1743073
https://hal.inria.fr/hal-01615945

