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a b s t r a c t 

Multi-criteria decision analysis (MCDA) requires an accurate representation of the preferences of decision- 

makers, for instance in the form of a multi-attribute value function. Typically, additivity or other strin- 

gent assumptions about the preferences are made to facilitate elicitation by assuming a simple parametric 

form. When relaxing such assumptions, parameters cannot be elicited easily with standard methods. We 

present a novel approach for identifying multi-attribute value functions which can have any shape. As 

preference information indifference statements are used that can be elicited by trade-off questions. In- 

stead of asking one indifference statement for each pair of attributes, we ask for multiple trade-offs at 

different points in the attribute space. This allows inferring parameters of complex value functions de- 

spite the simplicity of the preference statements. Parameters are estimated by taking into account prefer- 

ence and elicitation uncertainty with a probabilistic model. Statistical inference supports identifying the 

most adequate preference model out of several candidate models through quantifying the uncertainty 

and assessing the need for non-additivity. The approach is elaborated for determining value functions by 

hierarchical aggregation. We apply it to an assessment of the ecological state of rivers, which is used 

to support environmental management decisions in Switzerland. Preference models of four experts were 

quantified, confirming the feasibility of the approach and the relevance of considering non-additive func- 

tions. The method suggests a promising direction for improving the representation of preferences. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Multi-criteria decision analysis requires evaluating decision al-

ernatives across multiple objectives. A multi-attribute value func-

ion (MAVF) can be used to determine the overall degree of

chievement across these objectives by evaluating this function at

he predicted outcomes of the alternatives [1] . 1 This kind of de-

ision support relies on constructing a MAVF as a model of the

ecision-makers’ preferences. 

Several methods to specify a MAVF and estimate its parameters

xist. Generally, they differ with regard to (a) which preference in-

ormation is used, (b) which a priori restrictions are put on the

reference model, i.e., what types of MAVF are considered, (c) how
� This manuscript was processed by Associate Editor C. Chen. 
∗ Corresponding author. 

E-mail addresses: fridolin.haag@eawag.ch (F. Haag), judit.lienert@eawag.ch 

J. Lienert), nele.schuwirth@eawag.ch (N. Schuwirth), peter.reichert@eawag.ch 

(P. Reichert). 
1 If decision outcomes are uncertain, a multi-attribute utility function should be 

sed. Since utility functions can be derived from value functions by adding the risk 

ttitude, identifying a value function is also useful for these cases [2,3] . 
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he MAVF is constructed or inferred, and (d) how uncertainty in

reference information is handled. 

Regarding (a) and (c), much progress has been made concern-

ng the flexibility in used preference information and the robust-

ess of methods to infer value functions [e.g., 4–6 ]. Regarding (b),

n most cases the additive model is assumed [e.g., 7 ]. A fundamen-

al property of additive value functions is the possibility for com-

ensation (substitutability): If the weights of objectives are equal,

 decrease in performance of one objective can be compensated by

he same increase in performance of another objective – if this is

ossible within the ranges. If weights are not equal, an analogous

tatement holds when including a correction for the weights. Ad-

itivity requires preferential independence [8] , i.e., the objectives’

valuations are not interacting. In practice, this does not necessar-

ly hold [e.g., 9–12 ], which has created interest in alternative pref-

rence models. For modeling interacting objectives, fuzzy integrals,

pecifically the Choquet integral, have been a focus in the last two

ecades [e.g., 13–16 ]. Uncertainty in preferences (d) is often dealt

ith a posteriori , for instance by using stochastic multiobjective ac-

eptability analysis [17] or sensitivity analysis [e.g., 18, 19 ]. 

Without questioning existing methods, shortcomings exist in

wo regards. Firstly, preference information of decision-makers is
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Proposed procedure for identifying multi-attribute value functions of any 

shape. 
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always uncertain due to the inherent uncertainty of personal pref-

erences and the uncertainty induced by the elicitation process. Yet,

this uncertainty is often not dealt with explicitly and consistently

in decision analysis. Secondly, preferences should not be forced to

adhere to one specific form of the MAVF. Yet, often strict restric-

tions are placed on the shapes of MAVF to facilitate elicitation and

estimation. We lack general methods for identifying MAVF that are

not bound to specific functional forms and are feasible in practice

regarding the elicitation process and the reliability of results. 

In this paper we address these issues. We present a novel ap-

proach for constructing MAVF based on ideas from statistical learn-

ing. The approach is characterized by an explicit treatment of un-

certainty and the usability with arbitrary forms of MAVF. Since

practical feasibility of elicitation and inference are essential con-

cerns, we illustrate the approach with a real-world assessment for

river management. 

In the following, we first introduce the general method for

identifying MAVF based on uncertain indifference statements

( Section 2 ). Subsequently, we specify this method for the hier-

archical construction of a MAVF by aggregation ( Section 3 ). We

demonstrate its practicability with a case study ( Section 4 ), be-

fore discussing implications ( Section 5 ) and drawing conclusions

( Section 6 ). 

2. Method for identifying value functions in a probabilistic 

framework 

A multi-attribute value function (MAVF) is a function that re-

turns the degree of achievement of an objective as a function of

attribute levels that characterize potential outcomes of decision al-

ternatives. In this sense the MAVF is a model of the preferences of

a decision-maker. If we know the MAVF and the consequences of

decision alternatives, we can easily assess alternatives by evaluat-

ing the MAVF at the predicted attribute levels and solve ranking

and choice problems. 

More formally, a finite set of alternatives A = { a, b, . . . } shall

be evaluated with regard to an objective o . In an objectives hier-

archy (see Section 3 ) this objective can be a higher-level objec-

tive with several sub-objectives. Each alternative a ∈ A is associ-

ated with predicted outcomes x a = ( x a, 1 , . . . , x a,n ) , with x a , i being

the level of an attribute i that measures a consequence of alter-

native a . Let X i = [ x lb 
i 

, x ub 
i 

] be the set of potential outcomes for

attribute i (interval bounded by a lower bound, lb, and an upper

bound, ub). Note that intervals and even measurement units for

different attributes usually differ as they quantify different aspects

of the outcome. Let X denote the set of all possible outcomes for

all attributes in a decision. We are interested in finding a MAVF

v : X → [0, 1] that represents the evaluation – or degree of achieve-

ment – of the objective o for potential outcomes of the decision

alternatives. To obtain such a MAVF, we propose a procedure based

on five steps ( Fig. 1 ), as detailed in Sections 2.1 –2.5 . 
.1. Using a parameterized function as value function 

In our context, a value function can be any parameterized func-

ion v (x 1 , . . . , x n , θ) with parameters θ, if it maps decision out-

omes to a value representing the decision-maker’s preferences

hen choosing appropriate parameter values. In the following,

nly interval scale (measurable) value functions [8] are considered.

 description of preferences by such a value function is possible

f the preference for alternatives’ outcomes and the preference for

ransitions between outcomes are complete and transitive order-

ngs [20] . 

The value function can be additive or non-additive. An addi-

ive value function has the form v (x 1 , . . . , x n , θ) = 

∑ n 
i =1 w i · v i (x i )

ith parameters θ = (w 1 , . . . , w n ) . It only is a valid representation

f preferences if mutual preferential independence of attributes is

iven and in the case of measurable value functions also differ-

nce independence [8] . If preferential independence is violated, i.e.,

here is interaction between objectives, non-additive value func-

ions should be used. A non-additive value function can have any

orm except the additive one, as long as it adequately describes the

references. 

Commonly, one particular preference model is assumed a priori

nd subsequently its parameters are estimated based on preference

nformation. We argue that this choice should not be made a priori

o avoid restricting the expression of preferences. Selecting an ap-

ropriate model should be based on how well alternative models

t to the preference statements, balanced with model complexity.

n this spirit, we explicitly start with several alternative preference

odels to then select the best. 

.2. Eliciting preference information 

.2.1. Indifference statements 

Various types of preference information can be used for con-

tructing value functions. These include holistic judgments or rank-

ngs of alternatives, pairwise comparisons of decision outcomes,

r inter-objective comparisons such as rankings of importance,

eights, or interaction between objectives [e.g., 4,5,14,21–23 ]. 

Indifference statements between pairs of decision outcomes ( a,

 ) are a further possibility [2] . Each of the outcomes is character-

zed by a vector of attribute levels x a = ( x a, 1 , . . . , x a,n ) . In a classical

rade-off question these levels are manipulated until indifference

etween the pair is reached: a ∼ b [1] . In comparison to statements

bout simple preference, such as a �b , indifference points provide

ore information [24] . This allows robust inference with fewer

uestions. A disadvantage is that trade-off questions are more dif-

cult to answer than statements about simple preference and are

hus more uncertain. 

Trade-offs have a strong axiomatic foundation and the advan-

age of directly representing a property of the MAVF: When a

ecision-maker is indifferent between two potential decision out-

omes, a measurable MAVF should have the same value for both.

rade-offs may change depending on the starting position in the

alue space [1] . This allows determining level-dependent interac-

ions (e.g., non-constant substitution rates). 

Behavioral aspects play a paramount role for eliciting meaning-

ul preference statements. Two important factors are task complex-

ty and task type. Task complexity here refers to the number of at-

ributes that need to be considered when making an indifference

tatement. For choice experiments it has been found that with in-

reasing numbers of attributes, non-attendance to (i.e., ignoring of)

ttributes increases [e.g., 25 ]. This is likely analogous for indiffer-

nce statements and limits the dimensionality of meaningful trade-

ff questions to few attributes – or a large number of uncertain an-

wers are needed for reliable parameter inference. However, with
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 hierarchical approach ( Section 3 ) larger decision problems can be

ackled. 

Repeated choice tasks (i.e., pairwise comparisons, deciding

hich outcome is preferable), matching tasks (i.e., adjusting one

utcome until it is equally good as the other), or combinations

such as letting the decision-maker suggest an indifference state

26] – can be used for eliciting indifference statements. Since pro-

edural invariance is not given, there is a long and ongoing de-

ate which type of task leads to more reliable, unbiased, and valid

reference statements [e.g., 27–29 ]. One phenomenon and poten-

ial bias is the prominence effect which suggests that in choices

he more important dimension looms larger than in matching

24,27] . Loss aversion – “losses loom larger than corresponding

ains” [30] – is another potential bias, but the dependence on the

ask type is still debated [e.g., 24,28,29,31 ]. 

Acknowledging the importance of behavior in elicitation, for the

ase study application we have decided to use matching tasks and

ompare a maximum of three attributes at once. 

.2.2. Determining an elicitation scheme 

To be sensitive to non-additivity, we need to ask trade-offs at

ifferent points in the attribute space for each attribute combina-

ion. As we can ask a decision-maker only a limited number of

uestions, the choice of questions becomes a key issue. The elici-

ation scheme should allow estimating the parameters of the pref-

rence model well for a feasible number of questions and allow

iscriminating between alternative models. 

The theory on experimental design makes it possible to formal-

ze such requirements as optimality criteria, which can be used for

nding an optimal elicitation scheme [see 32 for an overview]. Al-

ernatively, an adaptive or flexible approach to determining elicita-

ion questions is possible [e.g., 33–36 ]. 

Finding an optimal design for non-linear models which also al-

ows model discrimination is a non-trivial problem, as the optimal

esign depends on model parameters (which are not known a pri-

ri ) and maximizing model dissimilarity is an additional difficulty

37] . With many unresolved challenges remaining, e.g., concern-

ng the formulation of optimality criteria, algorithms, and compu-

ation, we decided for a pragmatic approach: We determined our

licitation scheme in a simulation study where we tested different

chemes with artificial answers (see Section 4.3.1 ). 

.3. Probabilistic framework for parameter estimation: Building an 

bservation model 

We propose to use a probabilistic framework for identifying a

AVF. Preference statements always contain uncertainty. Concep-

ually, this uncertainty can be separated into uncertainty of the

ecision-maker about her preferences and uncertainty due to the

licitation process (“observation error”), although empirically these

re usually mixed. Therefore, the preference statements are treated

s uncertain information rather than hard constraints. When for-

ulating the uncertainties probabilistically, standard frequentist or

ayesian statistical inference techniques can be applied for esti-

ating the parameters of the MAVF, their uncertainty, and the re-

ulting uncertainty of the value function. Quantifying the uncer-

ainty of the parameter estimates is important to assess the signif-

cance of aspects described by them, e.g., of non-additivity. 

.3.1. Formalizing indifference statements 

In each question we ask for an indifference statement between

wo potential outcomes which are each characterized by a vec-

or of attribute levels ( x 1 , . . . , x n ) . One of these potential out-

omes is completely specified and denoted by reference point,

 : x r = (x r 1 , . . . , x r n ) . The other potential outcome is denoted by

uestion point, q , and is missing the specification of the attribute
 : x 
q 
−i 

= ( x q 
1 
, . . . , x 

q 
i −1 

, x 
q 
i +1 

, . . . , x 
q 
n ) . The decision-maker is asked

o provide the level of the attribute i , x 
q 
i 
, for which indiffer-

nce in her preferences would be reached between the two po-

ential outcomes: ( x q 
1 
, . . . , x 

q 
i −1 

, x 
q 
i 
, x 

q 
i +1 

, . . . , x 
q 
n ) ∼ x r – or to ex-

ress the inability of reaching indifference within the range of

he attribute i . Assuming a MAVF v with parameters θ, this trans-

ates to v ( x q 
1 
, . . . , x 

q 
i −1 

, x 
q 
i 
, x 

q 
i +1 

, . . . , x 
q 
n , θ) 

! = v ( x r , θ) . Solving for x 
q 
i 

e obtain the “correct” attribute level according to the model as

 

q, v 
i 

( θ, x 
q 
−i 

, x r ) . If the decision-maker were perfectly consistent with

he preference model v and the parameter values θ, she would pro-

ide this answer for x 
q 
i 
. This model attribute level is thus defined

y the implicit equation 

x q, v 
i 

(
θ, x q −i 

, x r 
)

: v 
(
x q 

1 
, . . . , x q 

i −1 
, x q, v 

i 

(
θ, x q −i 

, x r 
)
, x q 

i +1 
, . . . , x q n , θ

)
= v 

(
x r , θ

)
(1) 

.3.2. Assumptions about the error model 

To account for the uncertainties in the preferences and the elic-

tation process, we assume the replies to be distributed normally

round the deterministic solution provided by Eq. (1) . We experi-

ented with other distributions (e.g., beta distributions) but found

hem dissatisfying as they do not allow answers to fall outside the

onsidered attribute ranges ( Section 2.3.3 ). However, other distri-

utions can be used by adapting the probabilistic model ( Eq. (2) ).

econdly, we assume the errors of the answers to different ques-

ions to be independent. Thirdly, we assume the variances σ i 
2 of

he replies regarding the attribute i to be constant in the whole

ttribute space. It is important to allow answers to be outside the

ounds [ x lb 
i 

, x ub 
i 

] . This also eliminates the need for a decreasing

ariance at the interval bounds, as would be the case if the an-

wers would be restricted to the interval. However, extension to

on-constant variance is possible. 

These assumptions seem very stringent. However, they lead to

he simplest probability model of the “observation process” and we

ould need empirical evidence for its rejection to justify a more

omplex approach. In our case study, we statistically tested the

ssumptions (see Section 4.4 ). However, due to the small sample

izes, these tests do not have a high power. 

.3.3. Dealing with situations with no indifference point within given 

ttribute ranges 

Attribute levels are restricted to certain ranges, X i = [ x lb 
i 

, x ub 
i 

] .

hese are either defined by the decision context (alternatives un-

er consideration will not lead to outcomes outside these ranges)

r represent natural bounds of the attribute (e.g., substance con-

entrations cannot be negative). MAVF are defined over this range.

owever, it may happen that the decision-maker cannot provide

n indifference point within the range. She would be indifferent

hen the attribute level is outside the bounds, or she cannot reach

ndifference at all when modifying this single attribute. Therefore,

ecision-makers were given the possibility to make such a state-

ent for every question. 

To use this preference information, we explicitly incorporated

t in our probabilistic model ( Eq. (2) ). Depending on the parameter

alues, we distinguish two cases: If Eq. (1) can be solved – whether

he model solution lies within or outside the range [ x lb 
i 

, x ub 
i 

] –

e calculate either the probability density of the response within

 x lb 
i 

, x ub 
i 

] or the probability for the response being above or below

his interval, depending on the observed value of the response i

t which the probabilistic model is evaluated. If Eq. (1) cannot be

olved, we reject the parameter values as inadequate. 

.3.4. Probabilistic model 

To formulate the probabilistic model for multiple questions, we

xtend our notation by introducing an index j to refer to the ques-

ion. Consequently, we denote the reference and question points
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2 When answers are outside the range, no residual can be calculated. In this case 

there are fewer residuals than model values. We drew from the empirical distribu- 

tion with replacement. If model values were outside the range, still a drawn resid- 

ual was added to them. 
for question j by x r ( j ) and x 
q ( j) 
−i ( j) 

, and the sets of all reference and

question points by x r and x 
q 
−i 

, respectively. Finally, we denote the

single reply to question j by x 
q ( j) 
i ( j) 

and the set of all replies by x 
q 
i 
. 

Given our assumptions about the error model and given the

preference model v , its parameters, the standard deviations σ i , and

the reference and question points, the probability distribution for

receiving the answers that the decision-maker gave can be written

as: 

L v 
(

x q 
i 

∣∣θ, σ, x q −i 
, x r 

)
= 

∏ 

j 

f 

(
x 

q ( j ) 
i ( j ) 

∣∣∣θ, σi ( j ) , x 
q ( j ) 
−i ( j ) 

, x r ( j ) 
)

(2)

with 

f 
(

x q 
i 

∣∣θ, σi , x 
q 
−i 

, x r 
)

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

σi 

√ 

2 π
· exp 

[ 

−
(
x q 

i 
− x q, v 

i 

(
θ, x q −i 

, x r 
))2 

2 σi 
2 

] 

for x lb i ≤ x q 
i 

≤ x ub 
i 

1 

σi 

√ 

2 π
·

x lb 
i ∫ 

−∞ 

exp 

[ 

−
(
t − x q, v 

i 

(
θ, x q −i 

, x r 
))2 

2 σi 
2 

] 

dt for x q 
i 

< x lb i 

1 − 1 

σi 

√ 

2 π
·

x ub 
i ∫ 

−∞ 

exp 

[ 

−
(
t − x q, v 

i 

(
θ, x q −i 

, x r 
))2 

2 σi 
2 

] 

dt for x q 
i 

> x ub
i 

This model depends on the value function v through the so-

lutions x 
q, v 
i 

of the implicit Eq. (1) . The three cases are needed

to account for answers outside the range, i.e., x 
q 
i ( j) 

< x lb 
i 

or > x ub 
i 

( Section 2.3.3 ). The probability of the answer being outside the

specified range is given by integrating the probability density func-

tion over the corresponding range (either ( −∞ , x lb 
i 
) or ( x ub 

i 
, ∞ ) ).

Eq. (2) becomes the likelihood function of our model parameters

once the replies, x 
q 
i 
, have been substituted into the expression. 

2.4. Inferring parameters of preference models 

Parameter estimation can be formulated as an optimization

problem under constraints. One important distinction between dif-

ferent approaches concerns the definition of the performance mea-

sure or optimality criterion. In Operations Research, such problems

are classically formulated as minimizing a cost or error term [e.g.,

14,22,23 ]. Within a probabilistic framework, we use a statistical

measure as optimality objective [e.g., 22 ]. 

Substituting the replies of the decision-makers (“observations”)

into the probabilistic model given by Eq. (2) leads to the likelihood

function that builds the basis for frequentist or Bayesian inference

of the parameters of the MAVF, θ, and the error model, σ . The

strength of frequentist techniques is to get parameter estimates

without the need of specifying prior knowledge (“prejudice”), but

they require sufficient data to achieve parameter identifiability. In

contrast, Bayesian techniques combine prior knowledge with the

information gained from (new) data. Which technique is favorable

depends on the availability and desire to use prior knowledge. In

our application case, we chose to estimate the parameters in a fre-

quentist context by maximum likelihood estimation. 

In this technique, the best set of parameters is obtained by

maximizing the likelihood function, i.e., the probability of the re-

sults evaluated at the elicited indifference levels. Parameter infer-

ence was implemented in R [38] . The problem was solved nu-

merically, using the Rsolnp package [39] for optimization. It im-

plements an augmented Lagrange barrier minimization algorithm

[40] which was used to minimize the negative log-likelihood of

our function under constraints. Constraints were that parameters

were kept in the domain of their definition. Uncertainty of the

parameter estimates can be inferred using bootstrapping [41,42] ,
ee Section 2.5.1 . Parameter inference was conducted separately for

ach competing model. 

.5. Evaluating results 

.5.1. Quality of parameter estimates 

A decisive advantage of the probabilistic framework is that we

an assess the uncertainty of our parameter estimates. This makes

t possible to evaluate the quality of parameter inference, using

ariance and bias in the estimate as measures of quality. Further-

ore, we can determine whether the parameters of the preference

odel make it significantly different from the additive model. 

In our application we used bootstrapping [42] for this pur-

ose and repeated the parameter estimation with different answer

amples. These answer samples were created by drawing with re-

lacement from the empirical distribution of the residuals of the

ecision-maker’s answers and the model values and then adding

he drawn residuals to the model values. 2 Variance in the parame-

er estimate can be determined by the standard error of the boot-

trap sample estimates (measure for random error in the estimate).

ias in the estimate can only be determined when the true value is

nown, as in a simulation study ( Section 4.3.1 ). Here, we calculated

ias of the parameter estimator as the deviation of the estimated

ean of the bootstrap sample from the true mean (measure for

ystematic deviation in the estimate). 

.5.2. Model selection 

Selecting the best preference model requires balancing model

t with model complexity. This can be captured by different selec-

ion criteria. Classical approaches are based on information crite-

ia such as the Akaike information criterion (AIC) or the Bayesian

nformation criterion (BIC). These criteria penalize high parame-

er numbers, as more parameters will usually lead to a better fit.

hen a more precise representation of model complexity is of in-

erest, more sophisticated criteria such as normalized maximum

ikelihood [43] should be used. The choice of a selection criterion

ill depend on the application case. 

In our application, we have chosen non-additive value functions

hat have the same parameters as the additive model (weights)

omplemented by one additional parameter that characterizes the

urvature of the iso-lines or iso-hyper-surfaces. Therefore, the

odel complexity penalty-term in the information criteria cancels

ut and we would choose the model with the best fit. Since the

onsidered models have a similar shape of the iso-lines or iso-

yper-surfaces, this argument is also valid when using a more so-

histicated model complexity quantification. 

Thus, we decided to select the model based on the estimated

tandard deviation, σ , and check for the significance of non-

dditivity using the uncertainty range of the curvature parameter.

s the models have similar complexity, the only remaining con-

ern is overfitting. The simulation study helped determining the

umber of replies needed to avoid overfitting. 

. Hierarchical construction of MAVF by aggregation 

The method presented in Section 2 is general and makes no as-

umptions about the problem structure. In this section we specify

ow a multi-attribute value function (MAVF) can be obtained when

he problem is structured by an objectives hierarchy. A hierarchi-

al structure has the advantage of requiring preference statements

nly for a subset of attributes at the same time. 



F. Haag et al. / Omega 85 (2019) 49–67 53 

3

 

c  

e  

c  

w  

b  

d  

c  

u  

l  

c  

h

 

p  

s  

d  

s  

I  

n  

m

3

 

f  

F  

e  

o  

t  

t  

c  

t  

t

 

l  

t  

r  

b  

o  

m  

t  

v

 

a  

a  

s

v

 

o  

t  

d  

t  

v  

d  

t  

s  

v  

j

 

t  

a  

c  

i  

 

l  

t  

l

 

a  

b  

t  

s

 

f  

r  

t  

S  

p  

t

3

 

v  

F  

a  

t  

c  

t  

s

 

e  

t  

v  

i  

t  

a  

p  

d  

t  

e  

f

 

s  

s  

e  

a  

g  

i  

d  

i  

d  

i  

a  

a  

b  

t  

t  

c  

d  

h

 

a  

m  

a  

m  

M  

t  
.1. Objectives hierarchies 

A MAVF returns an evaluation of decision outcomes. In the

ontext of value-focused thinking [44] , we are interested in an

valuation with respect to concrete decision objectives. In multi-

riteria problems, an overall goal is specified by several objectives

hich establish an objectives hierarchy. This hierarchy can be built

y two approaches, which in practice are often mixed. In a top-

own approach we start with a general objective which is further

haracterized by sub-objectives. In a bottom-up approach individ-

al objectives are clustered to become sub-objectives of higher-

evel concepts. It is not uncommon to have an objectives hierar-

hy with only one single level; this case is sometimes called “non-

ierarchical”. 

The decomposition of a decision problem with a hierarchy has

ractical advantages and is one solution to the “curse of dimen-

ionality”. The hierarchical structure represents independence con-

itions that help disassembling the identification of a MAVF into

maller parts and thus considerably simplifies its construction [2] .

nteractions are not considered between all objectives simulta-

eously, but only within the same branch and level, which also

akes elicitation more feasible. 

.2. Obtaining a MAVF by hierarchical aggregation 

Given an objectives hierarchy, the construction of the value

unction for the overall objective can be divided into two steps.

irstly, value functions for the lowest-level sub-objectives are

licited as functions of the attributes relevant for these sub-

bjectives. Typically, due to the narrow definition of these objec-

ives, they just need a single attribute or a small number of at-

ributes. Secondly, value functions for higher-level objectives are

onstructed by using an aggregation function which depends on

he values of the underlying sub-objectives and combining it with

he value functions of these sub-objectives. 

Formalizing this construction, elementary objectives (lowest-

evel objectives) o i are directly evaluated with respect to their at-

ributes { x k , . . . , x l } with a value function v i ( x k , . . . , x l , θi ) with pa-

ameters θi . This value function can be linear or non-linear and can

e single-attribute or multi-attribute. There are established meth-

ds for constructing single-attribute value functions, such as the

id-value splitting method, see [1] . For MAVF the procedure in-

roduced in Section 2 can be used as presented to determine this

alue function. 

Higher-level objectives are evaluated by aggregating the evalu-

tions of their respective sub-objectives and thus depend on the

ttributes indirectly. Such a MAVF over objectives { o p , . . . , o q } on a

pecific hierarchical level may generally be written as: 

 p,q 

(
x 1 , ..., x n , θ

)
= F 

(
v p 

(
x 1 , . . . , x n , θp 

)
, . . . , v q 

(
x 1 , . . . , x n , θq 

)
, θpq 

)
(3) 

In practice, each value function v i will only depend on a subset

f the attributes { x 1 , . . . . x n } . The function F is an aggregation func-

ion. Its form and parameters also depend on preferences of the

ecision-maker. The resulting MAVF over objectives { o p , . . . , o q } ,
herefore, is composed of lower-level (single- or multi-attribute)

alue functions v i and an aggregation function F . Value functions

epend on attributes, whereas aggregation functions depend on

he values of sub-objectives. Aggregation functions are not them-

elves value functions. Only their combination with lower-level

alue functions leads to a value function for the higher-level ob-

ective. 

If the parameters { θp , . . . , θq } of the underlying value func-

ions are known, we only need to determine the functional form

nd parameters θpq of F to construct the MAVF. In this case, we

an easily apply the parameter estimation procedure presented
n Section 2 only to the aggregation step. We replace attributes,

( x 1 , . . . , x n ) , in Eqs. (1) and (2) by values, ( v p , . . . v q ) , of the under-

ying objectives and then estimate the parameters of the aggrega-

ion function. This can be done at arbitrary hierarchical levels, as

ong as the lower-level value functions are known. 

For a multi-level hierarchy, evaluations are aggregated upwards

long the hierarchy in a step-wise manner (i.e., following each

ranch) until an overall evaluation is reached. In this case, mul-

iple aggregation functions are nested according to the hierarchical

tructure of the problem. 

Since the MAVF in Eq. (3) , v p,q (x 1 , . . . , x n , θ) , is a parameterized

unction as introduced in Section 2 , we could estimate all its pa-

ameters – both of the individual underlying value functions and

he aggregation function – at once by the method presented in

ection 2 . In practice, however, it is often sensible to determine

arameters of lowest-level value functions and aggregation func-

ions separately. 

.3. Aggregation functions 

An aggregation function maps an arbitrarily long list of input

alues on the same scale to one single representative output value.

or a real interval [0, 1] that contains the values to be aggregated,

n aggregation function in [0, 1] n is a function F ( n ) : [0, 1] n → [0, 1]

hat is nondecreasing in each argument and fulfills the boundary

onditions F (n ) ( 0 , 0 , . . . , 0 ) = 0 and F (n ) ( 1 , 1 , . . . , 1 ) = 1 [45] . In

he context of MAVF, aggregation functions operate on the value

pace, not the attribute space. 

For aggregation functions to be meaningful in preference mod-

ling, we consider certain properties useful: Aggregation func-

ions should be continuous and idempotent, meaning F ( v , . . . , v ) =
 , ∀ v ∈ [ 0 , 1 ] (if all input values are equal, the overall value is

dentical to these). Furthermore, they need to be meaningful for

he type of scales we operate on. For ordinal value functions, many

ggregation functions are not meaningful [11] . Lastly, behavioral

roperties of the functions are relevant, as we would like to model

ifferent preference structures. Also, they should make it possible

o incorporate varying sensitivities to different sub-objectives (for

xample by weighting). For an in-depth treatment of aggregation

unctions we refer to Grabisch et al. [46] and Beliakov et al. [45] . 

Aggregation functions with diverse behavior exist [45,46] . Ba-

ic behaviors are complementarity (synergy), independence (sub-

titutability), and redundancy. These extreme cases can be mod-

led by the minimum (Min), (weighted) arithmetic mean (AM),

nd maximum (Max) aggregation functions, respectively. The ag-

regation functions differ in how sensitive the result is to unequal

nput values. If all inputs are equal, they give the same result

ue to idempotency. Complementarity means punishing unequal

nputs, as the aggregated value is smaller than with the AM. Re-

undancy means favoring unequal inputs, as the aggregated value

s higher than with the AM. This can be formalized by measures of

ndness and orness which express how similar to Min and Max an

ggregation function behaves [46] . Aggregation functions can cover

ehaviors from complete andness (Min), over independence (AM),

o complete orness (Max). Interactions may depend on the level of

he values to be aggregated. For instance, there might be partial

omplementarity when values to be aggregated are low, indepen-

ence when values are medium, and redundancy when values are

igh. 

By choosing an appropriate aggregation function, we can model

ll kinds of interactions between objectives. In practice, most com-

only the additive model with the weighted arithmetic mean as

ggregation function is used. One often proposed alternative is

ultiplicative aggregation [1,8] which, however, is not idempotent.

ore recently, the Choquet integral has received increasing atten-

ion [e.g., 13,15,16 ]. Furthermore, minimum aggregation is applied
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Fig. 2. Objectives hierarchy for assessing the ecological state of rivers. Each of the 

objectives on the lowest level shown here consists of an assessment module (e.g., 

near-natural community of fish) that can be described as a branch of an objectives- 

hierarchy and includes several sub-objectives at lower levels (see Appendix B , Fig. 

B1 ). 
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in practice to account for strict legal thresholds or restriction levels

[47] . 

3.4. Eliciting preference statements in a hierarchy 

For inferring the parameters of aggregation functions at differ-

ent hierarchical levels, we need corresponding indifference state-

ments. A hierarchical problem structure has the great advantage

that preferences can be elicited for each subset of objectives

separately. This reduces cognitively demanding multi-dimensional

trade-offs, i.e., considering interactions between many objectives

simultaneously. 

However, there are drawbacks. Generally, decision-makers give

indifference statements between states characterized by attributes.

In hierarchical elicitation, communicating the attributes at higher

hierarchical levels becomes challenging, because more and more

attributes have to be considered and a certain value can be

achieved by different combinations of the levels of attributes. This

is a general drawback of a hierarchical elicitation procedure which

also affects the simpler elicitation of weights of the additive model

[e.g., 48 ]. In some cases, decision-makers are sufficiently famil-

iar with states leading to a certain degree of fulfillment of sub-

objectives so they can give indifference statements directly in the

value space. This applies to the case discussed in Section 4 , where

the decision-makers routinely assess rivers with value classes in

[0,1]. 

4. Application to river management 

Assessing the ecological state of rivers is a key management

issue for identifying and addressing perturbations and pressures

on these systems and for supporting decisions about rehabilita-

tion measures based on trade-offs with costs and ecosystem ser-

vices [49] . To obtain a comprehensive overview, multiple quality

elements are included covering biological, chemical, and physical

aspects of rivers [e.g., 50 ]. 

For Switzerland, a modular concept for stream assessment has

been established [51] . To allow an overall assessment based on sev-

eral existing assessment modules (quality elements), an approach

based on MAVT has been proposed [50,52] . However, aggregation

of the results from the individual assessment modules to an over-

all state has been based on direct judgment [12] , not explicitly on

elicited preferences (but see [9] ). 

With this case study, we illustrate the use of the presented

method for the step of identifying aggregation functions (as in

Section 3.2 ) for the upper hierarchical levels of this assessment,

as the value functions for the lower levels (assessment modules)

are already known. 3 The preferences of experts working in river

management were elicited and modeled. 

4.1. Case description 

The assessment of the ecological state of rivers can be struc-

tured in an objectives hierarchy covering the biological, physical,

and chemical state. Each of these branches is described by several

sub-objectives that cover the different assessment modules. For

example, the biological state is described by assessment modules

for the organism groups of fish, macroinvertebrates, and diatoms

( Fig. 2 ). 

Similarly to the European Water Framework Directive [49] , the

outcomes of all assessment modules are expressed by five color-

coded quality classes. Furthermore, the outcomes can be presented
in the form of a measurable value function on an absolute scale 

3 See http://www.modul- stufen- konzept.ch/index _ EN . 

 

etween 0 and 1 with equally distributed classes (poor state from

 to 0.2 in red; unsatisfactory from 0.2 to 0.4 in orange, moderate

rom 0.4 to 0.6 in yellow, good from 0.6 to 0.8 in green; very good

rom 0.8 to 1 in blue) [53] . The value functions have three well-

efined reference points on all hierarchical levels. A value of zero

epresents the worst possible state that is imaginable for a river

n Switzerland. A value of one represents the near-natural state in

he given anthropogenic influenced environment [51] . A value of

.6 or above, i.e., good or very good quality class, means that there

s no need for action while a value below 0.6 means that measures

hould be taken to improve the state. 

The full objectives hierarchy including the lower levels is pro-

ided in Fig. B1 ( Appendix B ). Examples for two value functions

n the lowest level are given for the nutrient assessment module

 Appendix B , Fig. B2 ). The full hierarchy and value functions can

e reproduced with the R package “ecoval” [54,55] . As they are not

ecisive for this application, not all lower-level value functions are

resented. 

The interviewed experts were familiar with the assessment

odules as part of their daily work and can thus link the quality

lasses and values to real-world outcomes. Since some assessment

odules are under development or in revision, we agreed with the

nterviewees to assume that a satisfying assessment module exists

or each sub-objective. 

Compared to the general approaches outlined in Sections 2 and

 , this case has specific characteristics which we could exploit.

hese are useful to ease the hierarchical elicitation: 

• The interviewed experts were well familiar with the assessment

modules and the value scales have a common and interpretable

meaning for all objectives on all levels. Thus, it was not nec-

essary to illustrate outcomes on a multi-dimensional attribute

scale. 
• Since we are only concerned with the upper part of the hier-

archy, we can consistently operate on the level of values which

are given by underlying value functions. 
• The hierarchical structure requires maximally three objectives

to be compared simultaneously. 

http://www.modul-stufen-konzept.ch/index_EN
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Table 1 

Aggregation functions considered in the river assessment application case. 

Function name Abbreviation Generating function f ( v i ) F f w (v ) Additive for 

Weighted arithmetic mean (additive model) WAM v 
n ∑ 

i =1 

w i v i always 

Weighted geometric mean with offset a GEO-OFF log ( v + δ) 

(
n ∏ 

i =1 

( v i + δ) 
w i 

)
− δ, with δ ∈ R̄ ≥0 δ = ∞ 

Mixture between WAM and minimum 

b WAM-Min ( 1 − γ ) ·
n ∑ 

i =1 

w i v i + γ · min (v ) , with γ ∈ [ 0 , 1 ] γ = 0 

Weighted power mean (root-mean-power) POW 

{
v γ if γ ∈ R̄ � =0 

log (v ) if γ = 0 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

( 
∑ n 

i =1 w i v 
γ
i 
) 

1 
γ if γ � = 0 ∏ n 

i =1 v 
w i 
i 

if γ = 0 

min (v ) if γ = −∞ 

max (v ) if γ = ∞ 

γ = 1 

Weighted exponential mean EXPM 

{
γ v if γ ∈ R > 0 \ 1 
v if γ = 1 

{
lo g γ ( 

∑ n 
i =1 w i · γ v i ) if γ ∈ R > 0 \ 1 ∑ n 

i =1 w i v i if γ = 1 
γ = 1 

a The geometric mean has the sometimes undesirable property of being zero if one element is zero. Adding an offset eliminates this. For δ = 0 , GEO-OFF 

reduces to the weighted geometric mean, for δ = Inf , it reduces to the weighted arithmetic mean. 
b The mixture between WAM and minimum is a composed aggregation function. Specifically, a weighted arithmetic mean of two quasi-arithmetic means. 

As it is a simple extension of the WAM that allows modeling veto effects [12] , it was included. 
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• As values by definition have the same range [0, 1], we could

further simplify the probabilistic model ( Eq. (2) ) by assuming

all the σ i to be equal per set of compared objectives. 

.2. Considered aggregation functions 

In the spirit of working with multiple competing preference

odels, we tested several aggregation functions as part of the

AVF. Relying on prior knowledge for this assessment [12] , we

onsidered several functions of the family of weighted quasi-

rithmetic means [46] to be suitable for this study ( Table 1 ). In

ther applications, other functions may be more sensible. A well

ounded account of useful aggregation functions is provided by

rabisch et al. [46] , Beliakov et al. [45] , or Langhans et al. [12] . 

For aggregating a vector v = ( v 1 , . . . , v n ) with n elements, quasi-

rithmetic means are defined as F f ( v , w ) := f −1 [ 
n ∑ 

i =1 

w i · f ( v i ) ] ,

ith f a continuous and strictly monotonic function (the gener-

ting function), f −1 its inverse, and w a vector of weights with
n ∑ 

 =1 

w i = 1 . 

All functions in Table 1 contain the additive model (the WAM)

s special case (last column). This allows us to address the ques-

ion how “non-additive” preferences are. Apart from weights, w ,

he functions have one additional parameter, which can be seen as

ndicative of the deviation from the additive model. In non-additive

odels weights can have a different meaning than in the additive

odel and can compensate or reinforce the effect of the additional

arameter. 

To make comparison easier, the functions were reparametrized:

he additional parameter, now called α for all functions, is zero

hen the model coincides with the additive model, one when it

s maximally different in direction of the minimum, and minus

ne when it is maximally different in direction of the maximum

 Appendix A , Table A1 ). The effect of a certain change in α depends

n the function. Therefore, the value of α is only indicative of the

eviation from the additive model and not an absolute measure. 

The chosen functions have a relatively simple form. However,

onsidered together, they are able to represent a wide range of

references between complementarity and redundancy and can

how behaviors from complete andness to independence to strong

rness, depending on the parameters. Level-dependent interactions

etween two and more objectives can also be modeled. 
.3. Preference elicitation 

.3.1. Determining an elicitation scheme 

To test our method before conducting the elicitation interviews

nd to find elicitation schemes (sets of questions) with a high sen-

itivity to the parameters, we conducted a simulation study. The

undamental idea was to generate artificial, noisy answer data for

ifferent elicitation schemes based on one preference model and

hen use these artificial answers to estimate the parameters of this

nd other models. 

The simulation allowed, firstly, determining how well the pa-

ameters of the model that generated the answer data could be re-

overed. Secondly, it allowed testing model discrimination between

he additive model and others. Thirdly, by fitting other preference

odels to these data, it allowed assessing the distinguishability be-

ween models. Fourthly, it helped estimating the number of ques-

ions needed for reaching an acceptable parameter uncertainty and

 reasonable model discrimination power as well as avoiding over-

tting. 

The ideal elicitation scheme depends on the goals of the pref-

rence modeling. In our case, important goals were discriminat-

ng between additive and non-additive preference models and es-

imating parameter uncertainty. The simulation helped us to find

 suitable set of questions for these goals. For instance, as we

anted to determine a generic value function applicable to all

idsized streams in Switzerland, our models should be accurate

n the whole value space. Therefore, we opted for a general elic-

tation scheme which was independent of the compared objec-

ives and alternatives. For other purposes, or when using pref-

rence models with a different number of parameters, the elic-

tation schemes and the required number of questions could be

ifferent. 

The simulations study was subdivided into several parts. We

escribe only the case with three objectives, but it worked anal-

gously for two objectives. 

First, a full factorial design was determined, based on the fac-

ors that can be varied when asking a trade-off question. These

re: (1) the values of objectives used as reference point, (2) which

bjective is varied in the question, (3) which is the response ob-

ective, (4) the magnitude of change of the values from the refer-

nce to the question situation, and (5) the direction of change, i.e.,

owering or increasing the varied value. Depending on the num-

er of factor levels, this leads to a large number of potential ques-

ions, here more than 11,0 0 0 ( Table 2 ). Of these, fewer than 60 0 0
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Table 2 

Factors for a full factorial design with three objectives. 

Factor Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Number of factor levels 

Value objective 1 0.1 0.2 0.3 0.5 0.7 0.9 6 

Value objective 2 0.1 0.2 0.3 0.5 0.7 0.9 6 

Value objective 3 0.1 0.2 0.3 0.5 0.7 0.9 6 

Question variable Obj. 1 Obj. 2 Obj. 3 3 

Response variable Obj. 1 Obj. 2 Obj. 3 3 

Step size 0.2 0.3 0.4 3 

Direction of change Up Down 2 ∏ = 11 , 664 

Table 3 

Criteria for reducing the full factorial design for the three objectives case. 

Criterion Description 

i) Focus on edges, as the differences between the models are smaller in the center due to the idempotency property: take out value levels of 

0.3 and 0.5 for all objectives. 

ii) Have room for answers: If the level of the response variable is 0.1 or 0.2 the direction of change is downwards, if the level of the response 

variable is 0.9 the direction of change is upwards. 

iii) Minimize cognitive burden: If the question variable has a value of 0.2 or 0.7, the response variable has the same value. 

iv) Minimize cognitive burden: level of the third (neutral variable) is fixed. If the level of the question or response variable is 0.1 or 0.9 it also 

has to be either 0.1 or 0.9; if the level of the question variable is 0.7 or 0.2, it also is 0.7 or 0.2, respectively. 

v) Step size either 0.2 or 0.4. 

vi) Further limit magnitude and direction of change: if the level of the question variable is 0.9, it is decreased by 0.4; if it is 0.1, increased by 

0.4; if 0.2, decreased by 0.2; if 0.7, the step size is always 0.2. 

Table 4 

Design sets to reduce the number of questions from a full factorial design for 

three objectives. 

Elicitation layout Applied reductions Resulting number of questions 

E1 None 5616 

E2 i) 1440 

E3 i), ii) 888 

E4 i), ii), iii) 288 

E5 i), ii), iii), iv) 108 

E6 i), ii), iii), iv), v), vi) 42 
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are within the required interval and lead to different reference and

question points (see top line in Table 4 ). 

Secondly, a list of criteria ( Table 3 ) was developed and itera-

tively refined to reduce the number of possible questions and the

cognitive burden for interviewees. For example, by criterion iv) the

value of the third variable, which is not directly involved in the

trade-off, was fixed. Based on these criteria, the number of po-

tential questions was narrowed down and more specific elicitation

layouts were created (E2–E6, Table 4 ). 

In a first simulation, we investigated how many questions

were necessary for acceptable parameter estimation when we used

these elicitation layouts. For this purpose we created concrete elici-

tation schemes with different numbers of questions (12, 18, 30, 42)

based on the layouts in Table 4 . As the desired number of ques-

tions is usually smaller than the number of possible questions, the

questions were selected by random or stratified random sampling.

To account for effects due to this selection, we created 10 instances

of each scheme. The more selection criteria had been applied, the

fewer questions are possible and the smaller is the variation in the

elicitation schemes. 

Next, artificial answers were calculated for the elicitation

schemes using the aggregation functions ( Table 1 ) and assumptions

about likely parameter values. We used six different parametriza-

tions with more equal and more unequal weights, and stronger and

weaker non-additivity. We calculated the answers that would be

given if these models were correct and added Gaussian noise with

mean 0 and standard deviation 0.05 to represent uncertainty. 

Subsequently, we performed parameter inference to see how

well the generating function and other functional forms could fit
hese artificial answers. To analyze the estimates, 100 bootstrap

amples were created and the inference was rerun with these an-

wer samples. Results were analyzed by exploratory data analysis

 Fig. 3 ). 

As expected, the goodness of the parameter estimate, approx-

mated by the standard error of the bootstrap sample, increased

ith the number of questions (decreasing lines in Fig. 3 ). The im-

rovement from 12 to 18 questions was often considerable, in con-

rast to minor further improvement when asking 30 or 42 ques-

ions. We judged these further improvements not to outweigh the

dditional elicitation effort, especially since judgments of decision-

akers might become more uncertain with fatigue. Therefore, we

ecided to use 18 questions. 

The overall performance for those elicitation layouts in which

here were fewer degrees of freedom for the question selection

layouts 5 and 6 in Fig. 3 ) was generally better than for random

ayouts (layouts 1 and 2). Therefore, we continued to work with

he layout with most restrictions (E6) with an overall good perfor-

ance across all cases for 18 questions. 

As layout E6 contains 42 questions, there are different possibil-

ties for drawing 18 questions out of these 42. In a second simu-

ation study, we tested four possible subsets and a random layout

gainst each other, using the same procedure as before. We exam-

ned the ability to recover parameters and to estimate other func-

ional forms. Focusing on the σ parameter as an estimator for the

oodness of fit, the differences between layouts 3–5 were gener-

lly small ( Fig. 4 ). As expected, all functions were able to estimate

he parameters of the additive model (panels in first column). Self-

ecovery worked well for all functions and question layouts 3–5

diagonal panels). Functions could generally be discriminated from

ach other (other panels) – with some exceptions, e.g., the geomet-

ic mean with offset and the exponential mean. As it is completely

eterministic, we decided to use variant 5 of elicitation layout 6

n the interviews, ( Appendix B , Table B1 ). If we interpolated this

licitation scheme with the same logic to cases with more objec-

ives, 32 questions would be necessary to compare four objectives

nd 50 questions for five objectives. However, the performance of

hese schemes cannot be deduced directly from the known perfor-

ance with three objectives. 

In a third simulation, we tested the influence of different

egrees of uncertainty on the inference. For this purpose, we
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Fig. 3. Number of questions plotted against median standard error of bootstrap sample (above zero line) and median absolute deviation from true parameter value (below 

zero line) for self-recovery of parameters with data generated by the same function. Split by parameter, aggregation function, and parameter sets subdivided between those 

close to and far away from the additive model. Each point represents the median of 30 bootstrap runs with 100 samples each. The runs differ in the parameter values and 

the sampling of random elements in the elicitation schemes. 
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Fig. 4. Comparing the performance of different preference models to fit answer data generated by another model and the ability for self-recovery (diagonal panels). Results 

for five different variants of elicitation layouts with 18 questions ( x -axis) are shown. The median bootstrap estimate of the σ parameter for different parameter combinations 

and 10 instantiations of each elicitation layout is shown. The dotted line is the value of sigma used in creating answer data (0.05). 
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created answers with different amounts of noise (standard devi-

ation of 0.025, 0.05, 0.1, and 0.2) for 20 instantiations of a random

layout and the layout used in interviews and performed inference.

Focusing again on the estimates of the σ parameter, all functions

were able to estimate the parameters of the additive model ( Fig. 5 ,
Fig. 5. Comparing the performance of different preference models to fit answer data gen

between a random question layout (left boxplots, red), and the layout used in the elicita

in data generation (x-axes). Boxplots of median bootstrap estimates of the σ parameter 

both elicitation layouts. Dotted black lines depict the value of sigma used in creating ans
anels in first column), as expected. For self-recovery ( Fig. 5 , di-

gonal panels) there was little difference between the elicitation

ayouts. However, for discriminating between preference models

columns) the layout used in the interviews outperformed a ran-

om layout. The fit of functions that had not been used to generate
erated by another model and the ability for self-recovery. Comparison of outcomes 

tion interviews (right boxplots, blue). Different values of sigma (noise) were used 

are shown, based on six different parameter combinations and 20 instantiations of 

wer data. 
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Fig. 6. Screenshot of the elicitation tool used in interviews. The text has been trans- 

lated from German. A value scale [0,100] was implemented to allow experts to re- 

spond in integer numbers instead of [0,1]. The reference situation is indicated by 

dotted lines, the question situation by solid lines. The level of the question point 

for the objective with background shading can be adjusted. The question points of 

the other two objectives remain fixed. The value classes used in river management 

are visualized by color coding. For a reading example, see text. 
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t  
he answers was much poorer for the interview layout ( σ is high).

his enhances the possibility for model discrimination. The value

f the standard deviation of the observation error, σ , was gener-

lly underestimated by about 20%. 

Overall, these results indicate that the models are identifiable

ith the used layouts and that the standard deviation, σ , can be

sed for discriminating among the non-additive models in our spe-

ific application (with models of the same complexity). 

.3.2. Eliciting indifference statements 

We elicited preferences from three experts working in Swiss

antonal authorities responsible for surface water protection and

ne scientist involved in developing the Swiss stream assessment

rocedure who is co-author of this paper. 

Preferences were elicited by computer aided personal inter-

iews. We have developed an interactive tool to aid the task. It

s implemented with shiny [56] , a framework for building R based

eb applications. The tool displays attribute levels or values nu-

erically and in bar plots, making explicit the ranges of attributes

nd the magnitude of trade-offs ( Fig. 6 ). 

Decision-makers were presented with a reference point and a

uestion point. For one of the objectives, the question point had

 different value than the reference point, i.e., it was either wors-

ned or improved. The value of another objective was left open, so

hat it could be adjusted according to the preference of the respon-

ent. If there was a third objective, it had the same value for both

oints. In a matching task, respondents were asked to adjust the

alue of the open objective of the question point until they were

ndifferent between the points. A possibility was to state that the

ndifference point was higher or lower than the given range and

o trade-off was possible. To check for consistency, the reference

oint and adjusted question point were reversed. Decision-makers

ere asked how this change of the previously open objective could

e compensated by now changing the other objective. If inconsis-

encies were detected, they were resolved by going back and forth

etween these directions of asking. 

In the example depicted in Fig. 6 , at the reference point (dot-

ed line) all objectives are set to a good state (value = 70). For

he question point, the objective on diatoms (middle panel) is im-

roved from a good state (70) to a very good one (90), the state

f fish (right panel) remains at 70. The respondent is asked to ad-

ust the level of the objective on macroinvertebrates (left panel,

haded) in such a way that this counterbalances the improvement

nd the reference point and question point have the same overall
alue. In this example, the respondent is indifferent between a ref-

rence point with equal values (70, 70, 70) and a question point

ith values (48, 90, 70). 

.4. Results 

From the indifference statements provided by the experts we

nferred parameters of different aggregation functions for each

igher-level objective. These are the weights for the sub-objectives

nd the α parameter. The model with the best representation of

he preferences was selected based on the σ term. The probabilis-

ic framework allowed us to determine the quality of our parame-

er estimates. 

The results can be illustrated with a plot showing two sub-

bjectives on the x- and y-axis and the value of the main objective

s iso-lines ( Fig. 7 ). For the two objectives case, we can also plot

he answers to trade-off questions as iso-lines (connected dots). As

 reading example, consider the answers of expert 1 for the chem-

cal state (left side, Fig. 7 ). In one question, both objectives were

et to a value of 0.7 as reference point (square symbol). For the

uestion point, the value of the assessment module micropollu-

ants was improved to a value of 0.9 and the expert was asked

y how much the objective nutrients would have to be lowered to

ounterbalance this improvement. The answer was 0.6, resulting in

he value 0.9/0.6 (dot to the upper-left). In a second question, the

utrient assessment was improved to a value of 0.9, which had to

e counterbalanced by worsening micropollutants to 0.63 (dot to

he lower-right) according to the expert. 

Since we treat the indifference statements as uncertain infor-

ation and not as constraints, the preference statements are ap-

roximated rather than exactly matched by the models. In Fig. 7 ,

he statements of expert 1 could best be approximated by a model

hich uses a mixture of the weighted arithmetic mean and min-

mum for aggregation. If the fit of the model were perfect, the

so-lines of the answers would be parallel to the iso-lines of the

odel. 

As the non-additive models have more parameters, they lead

o a lower estimate of the σ parameter and thus a better fit than

he additive model ( Table 5 ). The uncertainty range of the curva-

ure parameter, α, can now be used to assess whether the pref-

rences may nevertheless be indistinguishable from the additive

odel. Judged by the 98% interquantile range of the α estimates,

his was the case only once (expert 3, physical state; Table 5 ). For

ll experts the resulting models were convex ( α > 0), pointing to-

ards synergy or complementarity between objectives. Otherwise,

here was considerable variation between experts in the resulting

unctions and parameters. 

The magnitude of the error ( σ ) varied between experts and

odes from 0.02 to 0.14 ( Table 5 ). This is the random error due to

ncertainty in preferences, uncertainty due to elicitation, and de-

iation of the parameterized aggregation function from the “true”

odel. There are two lines of explanation which are indistinguish-

ble by relying on the data alone. Firstly, the selected models

ight be more or less suitable for representing the preferences.

econdly, uncertainty in the experts’ preferences or bias in the

licited preferences may differ. 

Such behavioral effects might, for instance, be related to loss-

version [30] . When there was a loss in one objective in compari-

on to the reference situation and the experts were asked by how

uch this had to be compensated, we have found indications that

his loss was overcompensated. Some experts compensated almost

ny loss by larger gains independent of the objective in question or

evels of the reference points, leading to inconsistent statements.

y asking consistency questions this could partly be mitigated. 

Where possible given the small number of answers, we tested

he assumptions of our error model based on the answers.
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Fig. 7. Aggregation for the objective chemical state. Aggregation function on the left: mixture of weighted arithmetic mean and minimum (WAM-Min) for expert 1; on the 

right: weighted exponential mean for expert 4. The axes show the values for the objectives “good state of nutrients” and “good state of micropollutants”. Color-coding on 

the panel indicates areas with “poor” to “very good” achievement of the objective chemical state, given the levels of the sub-objectives. Lines are iso-lines of equal value. 

Answers are given as connected dots: squares represent the reference points and dots the given answers. In case an iso-point was outside the range a dashed line is shown. 

For a reading example, see text. 

Table 5 

Parameters of the aggregation functions with best fit per aggregation node and expert. Standard devia- 

tion of bootstrap parameter estimation is given in brackets. 

Objective Parameter Expert 1 Expert 2 Expert 3 Expert 4 

Physical 

state 

Aggregation function POW EXPM POW 

b POW 

w morphology 0.54 ( ±0.03) 0.49 ( ±0.01) 0.53 ( ±0.03) 0.42 ( ±0.05) 

w hydrology 0.46 a 0.51 a 0.47 a 0.58 a 

α 0.30 ( ±0.02) 0.66 ( ±0.02) 0.01 ( ±0.05) 0.24 ( ±0.04) 

σ 0.08 ( ±0.02) 0.02 ( ±0.00) 0.08 ( ±0.01) 0.14 ( ±0.04) 

Chemical 

state 

Aggregation function WAM-Min POW EXPM POW 

w nutrients 0.24 ( ±0.05) 0.47 ( ±0.02) 0.48 ( ±0.02) 0.32 ( ±0.03) 

w micropollutants 0.76 a 0.53 a 0.52 a 0.68 a 

α 0.26 ( ±0.06) 0.11 ( ±0.02) 0.43 ( ±0.10) 0.35 ( ±0.01) 

σ 0.08 ( ±0.02) 0.05 ( ±0.01) 0.05 ( ±0.01) 0.12 ( ±0.03) 

Biological 

state 

Aggregation function WAM-Min EXPM WAM-Min POW 

w macroinvertebrates 0.35 ( ±0.02) 0.37 ( ±0.00) 0.34 ( ±0.01) 0.40 ( ±0.02) 

w diatoms 0.14 ( ±0.01) 0.22 ( ±0.00) 0.29 ( ±0.01) 0.19 ( ±0.01) 

w fish 0.50 a 0.41 a 0.38 a 0.41 a 

α 0.04 ( ±0.02) 0.33 ( ±0.02) 0.05 ( ±0.02) 0.28 ( ±0.03) 

σ 0.12 ( ±0.02) 0.02 ( ±0.00) 0.05 ( ±0.01) 0.14 ( ±0.02) 

Ecological 

state 

Aggregation function POW EXPM EXPM POW 

w physical 0.24 ( ±0.01) 0.32 ( ±0.01) 0.21 ( ±0.01) 0.28 ( ±0.01) 

w chemical 0.21 ( ±0.01) 0.32 ( ±0.01) 0.30 ( ±0.01) 0.28 ( ±0.01) 

w biologal 0.55 a 0.36 a 0.49 a 0.45 a 

α 0.09 ( ±0.02) 0.43 ( ±0.03) 0.38 ( ±0.12) 0.12 ( ±0.02) 

σ 0.07 ( ±0.01) 0.03 ( ±0.01) 0.10 ( ±0.01) 0.07 ( ±0.01) 

a As one of the weights is always given by normalization, it was not part of the parameter estimation 

and there is no estimate for its uncertainty. 
b The 98% interquantile range of the bootstrap sample contains zero. Therefore this model was judged 

indistinguishable from the additive model. 
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Concerning normality, a Kolmogorov-Smirnov test on the residu-

als for every expert and node indicated that the null hypothesis

of normality at the 0.05 significance level could never be rejected.

Concerning the independence of errors, we calculated the autocor-

relation of residuals. With a lag of one, we found autocorrelations

larger than 0.5 in 3 out of 16 cases. 

The results from the bootstrap method indicated that the pa-

rameter estimation led to acceptable uncertainties for the models

that turned out to be best ( Fig. 8 and Appendix B , Fig. B3 ). Usually,

the models could be distinguished from the additive model, i.e.,

the uncertainty range for α was not overlapping with zero ( Fig.

8 , panels headed by α as example). Discrimination between the

other models was sometimes difficult. The estimates for σ often

overlapped, which indicates that we cannot be sure which non-
dditive model has the best fit ( Fig. 8 , panels headed by σ as ex-

mple). As their functional forms can be alike in certain parame-

er regions, geometric mean with offset (GEO-OFF) and exponential

ean (EXPM) are often similar in their ability to fit the data. 

To explore the significance of the differences between the pref-

rence models of experts for the evaluation of real-world situa-

ions, we calculated how river sites would be evaluated by these

odels ( Fig. 9 ). The situations were archetypes, but based on

eal monitoring data for the Swiss plateau. Mostly, the differ-

nces between experts were not huge and decreased with higher

ierarchical level. For instance, for site 1 the maximum differ-

nce between the evaluations of the ecological state between ex-

erts 1–4 was only 0.015 ( Fig. 9 , top panel). However, for certain

odes differences were up to 0.1 and sometimes led to sites being
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Fig. 8. Excerpt of the bootstrap results of estimating the parameters of different aggregation functions for the nodes chemical state and ecological state. Boxplots of the 

bootstrap estimates as well as the result without bootstrapping (triangles) are shown. The upper panels correspond to the experts and objectives in Fig. 7 . The full results 

are given in Fig. B3 ( Appendix B ). 
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ssigned to different river quality classes (e.g. sites 2, 3, and 4;

ig. 9 ). This might have implications for site management, e.g., re-

arding prioritization of measures. We also compared the results

o two aggregation forms traditionally used in river management:

inimum (Min, “one out all out” [47] ) and arithmetic mean with

qual weights (AM). In comparison to the experts’ models, Min was

ery strict and often led to assignment of a different quality class

maximum difference to experts −0.35). The AM was closer to the

valuation of the experts. However, partly its evaluations were con-

iderably higher (maximum difference to experts + 0.12). 

. Discussion 

.1. Discussion of the case study 

The goal of the case study was to identify value functions of

xperts that adequately represent their preferences about an in-

egrated ecological assessment of river states. Together with cost

nd ecosystem services assessments, these valuations are intended

o be applied to support river management in Switzerland. 

The application showed that the suggested approach is in-

eed feasible and reliable. Multi-attribute value functions could

e identified based on the indifference statements and their pa-

ameters could be estimated with acceptable error. In addition,

he mean uncertainty in the replies, caused by the imprecision of

he preference, the uncertainty of the elicitation process, and the

tructural error of the value function parameterization, could be

stimated. 

The interviews took about two hours to elicit almost 60 indif-

erence statements. Clearly, this is more demanding than eliciting a

et of weights for the additive model, but the resulting preference

nformation is also much richer. If we just had wanted to infer pa-

ameters of one specific non-additive model over the objectives in

ur case study, ten trade-off statements would have been sufficient

o estimate all α and weight parameters. However, this would have

eft us with no information about the uncertainty and no possibil-

ty of discriminating between models. 

Preference statements are inherently uncertain, which was also

entioned by the interviewees. As with any elicitation, behavioral
spects are a crucial issue which deserves attention. While not sys-

ematically investigated, we suspect that loss aversion bias or cri-

eria conflict might have been influencing factors [31] . Behavioral

ffects and possible de-biasing strategies for trade-off questions

hould be explored more systematically in further studies. 

Despite the differences in the elicited preference models of the

ifferent experts, the evaluation of sites turned out similarly ( Fig.

 ). This indicates a good chance for finding a consensus solution

hat would be acceptable to all experts, e.g., by a group discussion

nd a joint fit to all answers. 

In most cases, the elicited non-additive preference models were

ignificantly different from the additive model. Sometimes, the

xperts’ replies indicated level-dependent interactions. When the

chievement of one objective was poor and of one objective good,

 decrease in the degree of fulfillment of the well-fulfilled objec-

ive could be compensated by a small improvement in the degree

f fulfillment of the other objective. However, when starting at a

ore balanced degree of fulfillment of both objectives, a larger im-

rovement in the degree of fulfillment of the objective was needed

o compensate for the same decrease in the other one ( Fig. 7 ). 

These findings add to a growing literature discussing the limi-

ations of the additive model and the need to build MAVF for more

omplex preference structures [e.g., 9,10,12 ]. In practice, the accu-

acy of preference models, the effort for elicitation, and the ease

f communication of results to decision-makers requires a delicate

alance. In many real-world cases, relatively simple models and

licitation efforts may be sufficient to find a good compromise so-

ution for a decision problem. However, we made the experience

hat in some cases also practitioners opt for non-additive models,

or example in lake shore assessment [57] . 

.2. Discussion of the method 

With the development of our method, we address two impor-

ant issues in preference modeling: uncertainty and non-additive

references. 

We propose to use a probabilistic framework for parameter in-

erence for MAVF. The advantage of the approach is that uncer-

ainty in elicitation and model fit can be explicitly considered and
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Fig. 9. Aggregation of evaluations along the hierarchy. We present four typical river situations (sites 1–4), based on real monitoring data from Switzerland. The evaluations 

according to the preference models of the four interviewed experts are shown. We also evaluated the data using two typical assumptions: Additive, equal weights: arithmetic 

mean using equal weights; Min: minimum aggregation. 
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quantified. It allows us to evaluate the uncertainty of the estimates

of model parameters and to assess the importance of preference

features described by these parameters (e.g., non-additivity). By

knowing about the uncertainty we can thus be more deliberate in

model selection and the interpretation of results. 

The method does not require a priori restrictions on the shape

of the MAVF. Thus, it can be used to infer parameters of a wide

range of preference models. This includes models like the Choquet

integral. However, we can go beyond these models and test new

ones to represent diverse interactions between objectives, for in-

stance level-dependent synergy and redundancy between the same

objectives. A further advantage is that the elicitation procedure is

independent of the form of the value function. This allows identi-

fying the best fitting function a posteriori without a need for new
licitation. The presented method is a general approach for identi-

ying MAVF and their parameters. As such it presents an alterna-

ive to other techniques suggested for identifying specific types of

on-additive MAVF [e.g., 13,14,21,58,59 ]. 

The concepts can be further developed concerning the error

odel, the type of preference information, and the parameter in-

erence. If there are empirical indications, we might want to re-

ax the assumptions of our error model and, e.g., allow for non-

onstant variance. Furthermore, uncertainty in value functions on

ower hierarchical levels could be propagated to higher levels when

valuating the MAVF. Instead of using indifference statements as

reference information, the ideas can be adapted to other types of

nformation, such as simple preference in pairwise comparisons of

lternatives’ outcomes. This merely requires a reformulation of the
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robabilistic model of the responses and leads to a different likeli-

ood function for the parameters. Lastly, if prior information exists,

 Bayesian framework to parameter estimation may be more suit-

ble than the frequentist approach we have chosen. 

Decision models with interacting objectives require more infor-

ation compared to the additive model to reliably estimate the

nteraction effects. Therefore, the development of feasible elicita-

ion schemes is a key research direction. Instead of using a simu-

ation study to identify question layouts, one could try to formally

ptimize elicitation schemes [32] or design an adaptive approach

o elicitation. In an adaptive elicitation scheme, previous answers

etermine the questions to be asked next. Most approaches so far

ssume the additive model [e.g., 33–36 ], but the idea of adaptive

licitation has also been used for the Choquet integral [60] . Such

n approach would also be well aligned with Bayesian parameter

stimation. When the purpose of the MAVF is to differentiate be-

ween alternatives that are specified in advance (or even to select

ne best alternative), a promising direction is to take the alterna-

ives more directly into account. When using an adaptive approach,

e can stop elicitation when differentiation between the alterna-

ives is possible. As the purpose of our case study was to develop a

eneric model that can be used to evaluate the ecological state of

lmost any midsized river in Switzerland – from very poor to very

ood state – we have not yet applied this idea. 

. Conclusion 

We presented a novel method for identifying multi-attribute

alue functions (MAVF) based on indifference statements and using

 probabilistic framework for parameter estimation. A real-world

pplication to an ecological assessment procedure used for river

anagement confirmed that the method is useful and feasible. 

Instead of forcing preferences to fit an a priori specified model,

e suggest to test how well different models fit the indifference

tatements made by the decision-makers. As additivity is a pre-

ominantly used a priori assumption, it is particularly interesting

o test for non-additivity. Complex preference models can be in-

erred based on commonly used preference statements such as

rade-offs. Ideas from statistical inference are promising for pref-

rence modeling because they allow explicit treatment of uncer-

ainty in the elicitation and modeling phase. 

This study contributes to a growing stream of literature on

odeling interacting objectives by presenting a novel, practical,

nd well-grounded approach for doing so. In the presented case

tudy, the most adequate preference models predominantly devi-
Table A1 

Parameters of aggregation functions expressed in terms of parameter α. 

Function name F f w (v ) 

Weighted geometric mean with offset 

(
n ∏ 

i =1 

( v i + δ) 
w i 

)
Mixture between weighted arithmetic mean and minimum ( 1 − γ ) ·

n ∑ 

i =1 

w i v

Weighted power mean 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

( 
∑ n 

i =1 w i v 
γ
i 
) ∏ n 

i =1 v 
w i 
i 

min (v ) 

max (v ) 

Weighted exponential mean 

{
lo g γ ( 

∑ n 
i =1 w i ∑ n 

i =1 w i v i 

a α is zero when the model coincides with the additive model, one when it

power mean and exponential mean α is minus one when the model is maxima
ted from the additive model. We hope to stimulate further re-

earch in this direction, especially by testing the feasibility of the

roposed approach in other cases. 
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ppendix A: Reparametrization 

See Table A1 . 

ppendix B: Expert elicitation and inference 

able B1 

licitation scheme used for the interviews for three objectives. 

Question Reference point Question point 

Value.1 Value.2 Value.3 Value.1 Value.2 Value.3 

1 0.7 0.7 0.7 ∼ ? 0.9 0.7 

2 0.7 0.7 0.7 ∼ 0.7 ? 0.9 

3 0.7 0.7 0.7 ∼ 0.9 0.7 ? 

4 0.2 0.2 0.2 ∼ 0 0.2 ? 

5 0.2 0.2 0.2 ∼ ? 0 0.2 

6 0.2 0.2 0.2 ∼ 0.2 ? 0 

7 0.1 0.9 0.9 ∼ ? 0.5 0.9 

8 0.1 0.9 0.1 ∼ ? 0.5 0.1 

9 0.9 0.1 0.9 ∼ 0.5 ? 0.9 

10 0.9 0.1 0.1 ∼ 0.5 ? 0.1 

11 0.9 0.9 0.1 ∼ 0.9 0.5 ? 

12 0.1 0.9 0.1 ∼ 0.1 0.5 ? 

13 0.9 0.1 0.9 ∼ 0.9 ? 0.5 

14 0.1 0.1 0.9 ∼ 0.1 ? 0.5 

15 0.9 0.9 0.1 ∼ 0.5 0.9 ? 

16 0.9 0.1 0.1 ∼ 0.5 0.1 ? 

17 0.1 0.9 0.9 ∼ ? 0.9 0.5 

18 0.1 0.1 0.9 ∼ ? 0.1 0.5 
Parameter expressed in terms of αa 

− δ, with δ ∈ R̄ ≥0 δ = − log (α) 

 i + γ · min (v ) , with γ ∈ [ 0 , 1 ] γ = α

1 
γ if γ � = 0 

if γ = 0 

if γ = −∞ 

if γ = ∞ 

γ = ln ( 2 
α + 1 

− 1 ) + 1 

· γ v i ) if γ ∈ R > 0 \ 1 
if γ = 1 

γ = −1 · ln ( α + 1 
2 ) 

ln (2) 

 is maximally different in direction of the minimum. In addition, for the 

lly different in direction of the maximum. 
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Fig. B1. Full objectives hierarchy for river management in Switzerland that includes existing assessment modules as well as modules that are in development or in revision. 



F. Haag et al. / Omega 85 (2019) 49–67 65 

Fig. B2. Example of lowest level value functions for two sub-objectives of the nutrient assessment module. Chemical concentrations are mapped to a level of achievement 

on the value scale with color-coding for the five quality classes. 

Fig. B3. Results of inference and bootstrapping with 200 bootstrap samples for all experts and aggregation functions. 
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Table B2 

Elicitation scheme used for the interviews for two objectives. 

Reference point Question point 

Question Value.1 Value.2 Value.1 Value.2 

1 0.7 0.7 ∼ ? 0.9 

2 0.2 0.2 ∼ ? 0 

3 0.7 0.7 ∼ 0.9 ? 

4 0.2 0.2 ∼ 0 ? 

5 0.9 0.1 ∼ 0.7 ? 

6 0.9 0.1 ∼ 0.5 ? 

7 0.1 0.9 ∼ ? 0.7 

8 0.1 0.9 ∼ ? 0.5 

9 0.5 0.5 ∼ 0.3 ? 

10 0.5 0.5 ∼ ? 0.3 
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