
Diss. ETH No. 25512

Composable Anonymous
Credentials from Global

Random Oracles

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

Manu Drijvers

Master of Science, Radboud University
born 07.02.1991

citizen of the Netherlands

accepted on the recommendation of

Prof. Dr. Srdjan Čapkun, examiner
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Abstract

Authentication is a key aspect of digital security. However, users must
authenticate frequently and are often asked to reveal more information
than neccessary in the process. Not only does this hurt the privacy of
users, it also negatively impacts security, e.g., by increasing the risk
of identity theft. Anonymous credentials allow for privacy-friendly au-
thentication, by revealing only minimal information, and by guarantee-
ing unlinkability of multiple authentications. The most efficient anony-
mous credential schemes today work in the so-called random-oracle
model, in which a hash function is idealized as an oracle implementing
a random function. In this thesis, we work towards composable anony-
mous credentials from random oracles, which means that the security
remains in tact if we run an instance of this protocol alongside many
other protocols. As authentication is typically just one building block
of a larger system, composability is a very important property.

First, we investigate the power of global random oracles in the gener-
alized universal composability framework. Global random oracles cap-
ture the setting in which a single idealized hash function can be used by
many different protocols. Consequently, a protocol secure with a global
random oracle avoids the unreasonable requirement of an idealized hash
function specific to every protocol instance. So far, this seemed to come
with a price, and protocols proven secure w.r.t. global random oracles
are much less efficient than their counterparts from local random or-
acles. We show that global random oracles are much more powerful
than previously known, by proving that some of the most practical and
efficient primitives known can be proven secure with respect to dif-
ferent formulations of global random oracles, without losing efficiency
compared to local random oracles.

Second, building on our first set of results, we construct the first
composable delegatable anonymous credential scheme, which also offers



support for attributes. In contrast with basic anonymous credentials,
where the user must reveal the identity of the credential issuer to au-
thenticate, delegatable credentials can support a hierarchy of issuers,
much like the current public-key infrastructure. A user can authenticate
while only revealing the identity of the root issuer, this way preserving
the privacy of users in settings with hierarchical issuance of credentials.

Third, we turn to Direct Anonymous Attestation (DAA), which is
a variation of basic anonymous credentials where the user has a secure
device, such as a Trusted Platform Module (TPM), that holds a part
of its secret key. DAA is deployed in practice to attest that a system
with a TPM is in a secure state. We show that existing security models
have shortcomings and present a new formal security model. Our model
protects the privacy of the user even if the TPM is corrupt, removing
the need to trust a piece of hardware for privacy. We then present the
first composable DAA protocol that is efficient and satisfies our strong
security notion, again building on our results on global random oracles.

Overall, the results of this thesis make it easier to design privacy-
friendly systems that build on top of anonymous credentials, by defining
different notions of anonymous credentials in a composable manner,
presenting efficient realizations, and by removing the need for idealized
hash functions specific to each protocol instance.
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Zusammenfassung

Die Authentifizierung von Nutzern ist ein zentraler Aspekt im Kontext
der digitalen Sicherheit und eine häufige Anforderung in einer Vielzahl
von Anwendungen. Nutzer müssen sich häufig authentifizieren und ge-
ben dabei oft mehr Informationen preis als notwendig. Während dies
eine klare Verletzung der Privatsphähre der Nutzer darstellt, bringt es
auch andere Sicherheitsrisiken, wie zum Beispiel ein erhöhtes Risiko für
Identitätsdiebstahl, mit sich.

Anonyme Berechtigungsnachweise (anonymous credentials) geben
Nutzern die Möglichkeit sich zu authentifizieren und dabei nur ein Mini-
mum an Information preiszugeben. Daneben garantieren sie, dass meh-
rere Authentifizierungsvorgänge des selben Nutzers nicht miteinander
in Verbindung gebracht werden können. Die effizientesten Protokolle
für anonyme Berechtigungsnachweise arbeiten heutzutage in dem so-
genannten Zufallsorakel-Modell, wo eine Hashfunktion als idealisiertes
Orakel, welches eine echte Zufallsfunktion implementiert, betrachtet
wird.

In dieser Dissertation legen wir den Fokus auf zusammensetzbare
anonyme Berechtigungsnachweise im Zufallsorakel-Modell. Zusammen-
setzbarkeit ist eine wichtige Eigenschaft kryptographischer Protokolle
und stellt sicher, dass die Sicherheitsgarantien erhalten bleiben, selbst
wenn das Protokoll parallel mit anderen Protokollen läuft. Nachem Au-
thentifizierung typischerweise nur ein Baustein in größeren Systemen
ist, ist die Zusammensetzbarkeit eine sehr wichtige Eigenschaft.

Wir beginnen damit die Möglichkeiten zu untersuchen, welche glo-
bale Zufallsorakel im Rahmen von allgemeiner universeller Zusammen-
setzbarkeit bieten. Globale Zufallsorakel adressieren das Szenario, in
welchem eine einzelne idealisierte Hashfunktion – das globale Zufall-
sorakel – von vielen verschiedenen Protokollen genutzt werden kann.
Folglich umgeht ein Protokoll, welches unter Verwendung eines globa-



len Zufallsorakels beweisbar sicher ist, die unrealistische Anforderung
einer spezifischen idealisierten Hashfunktion für jede einzelne Instanz
eines Protokolls. Bisher schien das einen hohen Preis zu haben und
Protokolle, die sich in Bezug auf globale Zufallsorakel als sicher erwie-
sen haben, waren weniger effizient als entsprechende Protokolle die auf
lokalen Zufallsorakeln basierten. Wir zeigen, dass globale Zufallsorakel
mächtiger sind als bisher angenommen, indem wir nachweisen, dass ei-
nige der praktischsten und effizientesten bekannten Primitive hinsicht-
lich verschiedener Formulierungen des globalen Zufallsorakels als sicher
bewiesen werden können, ohne dass Effizienz, verglichen mit lokalen
Zufallsorakeln, verloren geht.

Aufbauend auf die oben genannten Ergebnisse konstruieren wir das
erste zusammensetzbare Protokoll, das delegierbare anonyme Berech-
tigungsnachweise realisiert und zusätzlich Attribute unterstützt. Im
Vergleich zu konventionellen anonymen Berechtigungsnachweisen, bei
welchen der Nutzer die Identität des Ausstellers offenlegen muss um
sich zu authentifizieren, unterstützen delegierbare anonyme Berechti-
gungsnachweise eine Ausstellungshierarchie, ähnlich zur gegenwärtigen
Public-Key Infrastruktur. Ein Benutzer kann sich authentifizieren, in-
dem er nur die Identität des Urausstellers angibt, während die Privat-
sphäre der Benutzer in der Ausstellungshierarchie gewahrt bleibt.

Daneben betrachten wir direkte anonyme Bescheinigungen (Direct
Anonymous Attestation, DAA) welche als eine Variation von anony-
men Berechtigungsnachweisen gesehen werden können. In der Praxis
wird DAA zur Bestätigung eines sichern Systemstatus verwendet. Da-
bei hat der Benutzer eine vertraute Ausführungsumgebung, wie zum
Beispiel ein Trusted Platform Module (TPM), zur Verügung, welche
einen Teil seines geheimen Schlüssels enthält. Wir zeigen, dass die be-
stehenden Sicherheitsmodelle unzulänglich sind und präsentieren ein
neues formales Sicherheitsmodell für DAA. Unser Modell bewahrt die
Privatsphäre des Nutzers, selbst wenn das TPM korrumpiert ist. Es be-
seitigt daher die Notwendigkeit einem Chip bezüglich der Wahrung der
Privatsphäre seiner Nutzer zu vertrauen. Zusätzlich präsentieren wir
das erste zusammensetzbare DAA-Protokoll, welches gleichzeitig effizi-
ent ist und unser starkes Sicherheitsmodell erfüllt. Wir bauen dabei auf
unsere Ergebnisse im Rahmen globaler Zufallsorakel auf.

Zusammenfassend wird es durch die in dieser Arbeit präsentierten
Ergebnisse einfacher privatsphährenschonende Systeme, die auf anony-
men Berechtigungsnachweisen basieren, zu entwerfen. Zum einen durch
zusammensetzbare Definitionen von verschiedenen Varianten von an-
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onymen Berechtigungshinweisen und deren effiziente Realisierungen.
Zum anderen durch das Entfernen der Anforderung eine spezifische
idealisierte Hashfunktion je Protokollinstanz verwenden zu müssen.
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Chapter 1

Introduction

Our society is becoming increasingly digital: Many of our purchases are
now placed online, email and messenger applications on smartphones
replace traditional post, and perhaps cryptocurrencies will replace tra-
ditional money in the near future. Strong authentication is a corner-
stone of this society. We want to be sure that we buy goods from an
authentic manufacturer, we communicate with the intended person, or
that we transfer money to the intended receiver. Unfortunately, users
are often asked to reveal far too much information. This trend of shar-
ing too much personal information is problematic for multiple reasons.
First, requiring users to share personal information harms users’ pri-
vacy. While every individual transaction may reveal little about a user’s
habits, malicious service providers may pool their combined data, which
may paint a detailed picture of the user’s lifestyle. Second, an attacker
will benefit from any personal information it can obtain. With sufficient
information about a user, one can often act in their name. This can
happen through account recovery mechanisms, or even by just stating
one’s social security number. An attacker can then perform a so-called
identity theft, impersonating a victim and performing actions, such as
taking loans, in the victim’s name. Furthermore, personal information
enables an attacker to pretend to be a victim’s co-worker, tricking the
victim into voluntarily sharing private data and business secrets. This
shows that sharing personal information does not only harm the privacy
of users but also increases the attack surface of digital systems.

In this thesis, we will work towards enabling privacy-friendly au-
thentication. Anonymous Credentials [Cha85] are a cryptographic tool



Chapter 1. Introduction

that allows users to authenticate while disclosing minimal information.
An issuer can issue anonymous credentials to users, certifying certain
attributes of the user in the credential. The user can then authenticate
by proving possession of certain attributes as certified in its credential.
The key feature is that the user can choose which attributes from a
credential to reveal to a verifier, and the verifier can cryptographically
verify the disclosed part. The verifier does not learn anything more
than that the disclosed attributes were certified by some issuer. More-
over, multiple authentications are unlinkable, meaning that a verifier
cannot distinguish a returning user from a new user, and the user has
anonymity in the set of all users possessing the disclosed attributes.
Note that certain scenarios require unique identifiability, such as au-
thenticating to see your personal email inbox, and in such settings
anonymous credentials do not improve the user’s privacy. Many sce-
narios, however, merely require proving that your attributes satisfy a
certain predicate that many users fulfill, such as proving that you are
of age, where anonymous credentials provide a large anonymity set. As
anonymous credentials allow the user to control which personal infor-
mation it reveals to whom, they are a primary ingredient for secure and
privacy-preserving IT systems.

Hierarchical Issuance for Anonymous Credentials. Despite
their strong privacy features, anonymous credentials do reveal the iden-
tity of the issuer, which, depending on the use case, still leaks informa-
tion about the user such as the user’s location, organization, or business
unit. In practice, credentials are typically issued in a hierarchical man-
ner and thus the chain of issuers will reveal even more information.
For instance, consider governmental issued certificates such as drivers
licenses, which are typically issued by a local authority whose issu-
ing keys are then certified by a central authority. Thus, when a user
presents her drivers license to prove her age, the local authority’s pub-
lic key will reveal her place of residence, which, together with other
attributes such as the user’s age, might help to identify the user.

Delegatable Anonymous Credentials (DAC), as formally introduced
by Belenkiy et al. [BCC+09], can solve this problem. They allow the
owner of a credential to delegate her credential to another user, who, in
turn, can delegate it further as well as present it to a verifier for authen-
tication purposes. Only the identity (or rather the public key) of the
initial delegator (root issuer) is revealed for verification. A few DAC
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constructions have been proposed [CL06, BCC+09, Fuc11, CKLM13a],
but none is suitable for practical use due to their computational com-
plexity and their lack of support for attributes.

Direct Anonymous Attestation. Direct Anonymous Attestation
(DAA) [BCC04] allows a secure device, such as the Trusted Platform
Module (TPM), that is embedded in a host computer to create attesta-
tions about the state of the host system. Such attestations, which can
be seen as signatures on the current state under the TPM’s secret key,
convince a remote verifier that the system it is communicating with
is running on top of certified hardware and is using the correct soft-
ware. A crucial feature of DAA is that it performs such attestations in a
privacy-friendly manner. That is, the user of the host system can choose
to create attestations anonymously ensuring that her transactions are
unlinkable and do not leak any information about the particular TPM
being used.

DAA can be seen as a variation on anonymous credentials where
the credential holder uses a secure device to store (a part of) the secret
key. It is one of the most complex cryptographic protocols deployed
in practice. The Trusted Computing Group (TCG), the industry stan-
dardization group that designed the TPM, standardized the first DAA
protocol in the TPM 1.2 specification in 2004 [Tru04] and included
support for multiple DAA schemes in the TPM 2.0 specification in
2014 [Tru14]. This sparked a strong interest in the research community
in the security and efficiency of DAA schemes [BCC04,BCL08,BCL09,
CMS08b, CMS08a, CMS09, Che09, CPS10, BFG+13b]. Unfortunately,
existing schemes only offer anonymity properties if the TPM behaves
honestly. This is a severe limitation, as verifying that a piece of hard-
ware follows protocol is very difficult. Moreover, in spite of the large
scale deployment and the long body of work on the subject, DAA still
lacks a sound and comprehensive security definition, meaning it does
not live up to the standards of provable security.

Provable Security. Cryptography has already been used for a long
time to protect communication, long before computers were invented.
In its early days, a cryptographic system was considered secure un-
til somebody managed to break it, which is not very reassuring. As
there are infinitely many ways to attack a cryptographic system, it is
infeasible to simply “test” its security. In the 1970s, the cryptographic

3
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community started following a more scientific approach termed prov-
able security, where a mathematical proof of security is required for any
new cryptographic scheme. This would typically come in the form of a
reduction: if there exists an attacker that can break the cryptographic
scheme, we can use this attacker to break a computational problem
that we assume to be infeasible to solve. A security proof requires a
precise definition of security, which can come in two forms. In the first
form, security is defined through games between an adversary and a
challenger, and a protocol is considered secure if no adversary (typi-
cally with limited computing power) can win any of the games (with at
least a certain probability). This approach considers the cryptographic
protocol in isolation, meaning that care has to be taken when compos-
ing multiple cryptographic schemes together, e.g., by running multiple
instances of the same protocol, or using one protocol as a sub-protocol
of higher level protocol. In the second form, security is defined through
an ideal functionality, which can be seen as a trusted third party that
executes the task at hand in an ideal manner. This approach was in-
troduced by Beaver [Bea92] and used by composability frameworks,
such as the Universal Composability (UC) framework [Can01] or the
Generalized UC framework [CDPW07], that can give stronger secu-
rity guarantees than game-based security proofs. A proof in the UC
framework guarantees that security is maintained under composition,
i.e., one can run many instances of the same protocol, or use it as a
building block in higher level protocols, without having to worry about
affecting the security.

Practical Cryptographic Protocols. Cryptographic protocols are
more likely to be used if they are practical, meaning efficient in com-
putation and communication, and protocol can easily be deployed.
Many interesting cryptographic tasks, such as composable commit-
ments [CF01], are impossible to achieve without assuming some ideal-
ized component. One common example of such an idealized component
is a common reference string (CRS), which is an honestly generated
string sampled from a certain distribution that is available to all parties.
To deploy a protocol that relies on a CRS, one typically runs a complex
multiparty protocol to first generate a CRS, as was recently done to
generate the parameters of the Zcash cryptocurrency [BCG+15]. An
alternative approach to bypassing impossibility results is the random-
oracle model (ROM) [BR93], which is a truly random function that
all parties have oracle access to. The ROM is designed to model an
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idealized cryptographic hash function, and hence, random oracle based
protocols are typically deployed with a hash function that replaces the
random oracle. This is a heuristic approach, and the protocol instan-
tiated with a hash function is not formally proven secure. Examples
of protocols that are secure with a random oracle but not with any
hash function have been constructed [CGH98]. We can gain some con-
fidence in this heuristic approach by the fact that random oracle based
protocols deployed with a cryptographic hash function have been used
extensively and no attacks have been found. Using random oracles we
can obtain more efficient protocols than with a CRS, and we have a
way of deploying them that has so far not led to attacks, making the
random-oracle model (ROM) a promising approach to obtain practi-
cal cryptographic schemes. When composing multiple random oracle
based protocols, each protocol typically requires its own random oracle,
which means replacing it with a single hash function is unreasonable.
Canetti, Jain, and Scafuro [CJS14] put forth the notion of a global ran-
dom oracle, that allows protocols to make use of one globally available
random oracle, which proves that the composition of random oracle
based schemes instantiated with a hash function will not affect secu-
rity.

Contributions and Outline. In this dissertation, we construct com-
posable anonymous credentials from global random oracles. First, we
advance the state-of-the-art in using global random oracles to construct
composable cryptographic schemes. We propose multiple notions of
global random oracle, and present positive results for each of the no-
tions. Second, we use global random oracles to construct very efficient
and composable delegatable anonymous credentials with attributes,
which allow for hierarchichal issuance of anonymous credentials, much
like the current public-key infrastructure works today. Third, we turn
to Direct Anonymous Attestation. We identify flaws in previous secu-
rity models and present a new notion of security, and a DAA protocol
where the user’s privacy is guaranteed even with a subverted TPM.

In a bit more detail, our contributions are the following:

Composable Security with Global Random Oracles. In Chapter 3, we
discuss global random oracles, which capture the fact that random ora-
cles can be shared by many different instances of one or more protocols.
This builds on the work of Canetti, Jain, and Scafuro [CJS14], who put
forth a global but non-programmable random oracle in the Generalized
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UC (GUC) framework and showed that some basic cryptographic prim-
itives with composable security can be efficiently realized in their model.
Because their random-oracle functionality is non-programmable, there
are many practical protocols that have no hope of being proved secure
using it. We study alternative definitions of a global random oracle and,
perhaps surprisingly, show that these allow one to prove GUC-security
of existing, very practical realizations of a number of essential cryp-
tographic primitives including public-key encryption, non-committing
encryption, commitments, Schnorr signatures, and hash-and-invert sig-
natures. Some of our results hold generically for any suitable scheme
proven secure in the traditional random-oracle model, some hold for
specific constructions only. Our results include many highly practi-
cal protocols, for example, the folklore commitment scheme H(m‖r)
(where m is a message and r is the random opening information) which
is far more efficient than the construction of Canetti et al. This chapter
is based on the following publication:

• Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Leh-
mann, and Gregory Neven. The wonderful world of global ran-
dom oracles. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 280–
312. Springer, Heidelberg, April / May 2018.

Delegatable Anonymous Credentials. In Chapter 4, we present the first
hierarchical (or delegatable) anonymous credential system that is prac-
tical. To this end, we provide a surprisingly simple ideal functionality
for delegatable credentials with attributes and present a generic con-
struction that we prove secure in the GUC model. We then give a
concrete instantiation using a recent pairing-based signature scheme
by Groth [Gro15] and global random oracles, and describe a number of
optimizations and efficiency improvements that can be made when im-
plementing our concrete scheme. The latter might be of independent
interest for other pairing-based schemes as well. Finally, we provide
concrete performance figures. This chapter is based on the following
publication:

• Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Prac-
tical UC-secure delegatable credentials with attributes and their
application to blockchain. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17,
pages 683–699. ACM Press, October / November 2017.

Anonymous Attestation. In Chapter 5, we first point out many prob-
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lems in existing security models for direct anonymous attestation. Then,
we tackle the challenge of formally defining DAA and present a new
ideal functionality Fpdaa in the UC framework. In addition to the stan-
dard security properties such as unforgeability and non-frameability,
Fpdaa also captures optimal privacy, ensuring the privacy of honest
hosts even when the TPM might try to break anonymity by deviat-
ing from the protocol. To this end, we capture subversion attacks in
the UC framework.

Next, we discuss why existing protocols do not offer privacy when
the TPM is corrupt and propose a new DAA protocol which achieves
our strong security definition. Our protocol is constructed from generic
building blocks which yields a more modular design. Shifting more
responsibility to the host allows us to achieve optimal privacy, while
also decreasing the computational burden on the TPM, which is usually
the bottleneck in a DAA scheme.

This chapter is based on the following publication:
• Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous

attestation with subverted TPMs. In Jonathan Katz and Ho-
vav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of
LNCS, pages 427–461. Springer, Heidelberg, August 2017.

This chapter also includes partial results form the following publi-
cations:
• Jan Camenisch, Manu Drijvers, and Anja Lehmann. Univer-

sally composable direct anonymous attestation. In Chen-Mou
Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang,
editors, PKC 2016, Part II, volume 9615 of LNCS, pages 234–
264. Springer, Heidelberg, March 2016.

• Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous
attestation using the strong diffie hellman assumption revisited.
In Michael Franz and Panos Papadimitratos, editors, Trust and
Trustworthy Computing - 9th International Conference, TRUST
2016, Vienna, Austria, August 29-30, 2016, Proceedings, volume
9824 of Lecture Notes in Computer Science, pages 1–20. Springer,
2016.

• Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann,
David Novick, and Rainer Urian. One TPM to bind them all:
Fixing TPM 2.0 for provably secure anonymous attestation. In
2017 IEEE Symposium on Security and Privacy, pages 901–920.
IEEE Computer Society Press, May 2017.
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Chapter 2

Preliminaries

This chapter introduces the required preliminaries, including notation,
definitions, and computational problems. Moreover, it introduces the
universal composability framework and how many useful primitives
such as signatures and encryption can be captured in this model. Fi-
nally, it introduces the concept of zero-knowledge proofs.

2.1 Notation

Let N denote the natural numbers, R the real numbers, and R+ the
non-negative real numbers. Let Zq denote all integers modulo q. Let
Z∗q denote all integers modulo q that are coprime with q. We will use κ
to denote the security parameter. Let 1κ denote the κ-length string of

ones. If S is a set, let s
$← S denote sampling s uniformly at random

from S.

2.1.1 Negligible functions and Indistinguishability

A function is called negligible if it is asymptotically smaller than the
inverse of any polynomial.

Definition 1 (Negligible function [KL14]). A function f : N→ R+ is
negligible if for every polynomial p(·) there exists an N such that for all
integers n > N it holds that f(n) < 1

p(n) .
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Definition 2 (Overwhelming function). A function f : N → R+ is
overwhelming if 1− f(x) is negligible.

Probability ensembles X and Y are computationally indistinguish-
able, denoted X ≈ Y, if no efficient distinguisher has non-negligible
success probability.

Definition 3 (Computational indistinguishability [KL14]). Two prob-
ability ensembles X = {Xn}n∈N and Y = {Yn}n∈N are computationally
indistinguishable if for every probabilistic polynomial-time distinguisher
D there exists a negligible function f such that∣∣∣∣ Pr

x←Xn
[D(1κ, x) = 1]− Pr

y←Yn
[D(1κ, y) = 1]

∣∣∣∣ ≤ f(n).

2.1.2 Groups

We write G = 〈g〉 to denote a group G generated by element g. The
group operation is always written multiplicatively, and 1G denotes the
identity element of G. Let algorithm GroupGen on input the security
parameter outputs (G, g, q), such that g generates G of prime order q,
and q is of bitlength κ. Let G∗ denote the elements of G that generate
G.

Bilinear Groups

Let PairGen be a bilinear group generator that takes as an input a secu-
rity parameter 1κ and outputs the descriptions of multiplicative groups
(G1,G2,Gt, g1, g2, q, e) where G1, G2, and Gt are groups of prime or-
der q, generated by g1, g2, and e(g1, g2) respectively. Moreover, we
require e to be efficiently computable and be bilinear, meaning for any

(α, β)
$← Zq, e(gα1 , g

β
2 ) = e(g1, g2)α·β .

2.2 Computational Problems

This section defines the hardness of certain computational problems,
which we will assume in later chapters of this thesis.

Definition 4 (Discrete Logarithm (DL) Problem Hardness [KL14]).
The discrete logarithm problem is hard relative to GroupGen if for all
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probabilistic polynomial-time algorithms A there exists a negligible func-
tion f such that

Pr
[
(G, g, q)← GroupGen(1κ), h

$← G, x← A(G, g, q, h), gx = h
]
≤ f(κ).

Definition 5 (Computational Diffie-Hellman (CDH) Problem Hard-
ness). The computational Diffie-Hellman problem is hard relative to
GroupGen if for all probabilistic polynomial-time algorithms A there ex-
ists a negligible function f such that

Pr
[
(G, g, q)← GroupGen(1κ), (α, β)

$← Zq,

y ← A(G, g, q, gα, gβ), y = gα·β
]
≤ f(κ).

Definition 6 (Decisional Diffie-Hellman (DDH) Problem Hardness
[KL14]). The decisional Diffie-Hellman problem is hard relative to group
generator GroupGen if for all probabilistic polynomial-time algorithms
A there exists a negligible function f such that

Pr [A(G, g, q, gx, gy, gz) = 1]− [A(G, g, q, gx, gy, gxy) = 1] ≤ f(κ),

where in each case the probabilities are taken over the experiment in

which GroupGen(1κ) outputs (G, g, q), and then uniform x, y, z
$← Zq

are chosen.

Definition 7 (Computational co-Diffie-Hellman (co-CDH) Problem
Hardness [BLS04]). The computational co-Diffie-Hellman problem is
hard relative to PairGen if for all probabilistic polynomial-time algo-
rithms A there exists a negligible function f such that

Pr
[
(G1,G2,Gt, g1, g2, q, e)← PairGen(1κ), (α, β)

$← Zq,

y ← A(G1,G2,Gt, g1, g2, q, e, g
α
1 , g

β
1 , g

β
2 ), y = gα·β1

]
≤ f(κ).

Definition 8 (External Diffie-Hellman (XDH) Problem Hardness).
The symmetric external Diffie-Hellman problem is hard relative to group
generator PairGen if for all probabilistic polynomial-time algorithms A
there exists a negligible function f such that

Pr [A(G1,G2,Gt, g1, g2, q, e, g
x
1 , g

y
1 , g

z
1) = 1]−

[A(G1,G2,Gt, g1, g2, q, e, g
x
1 , g

y
1 , g

xy
1 ) = 1] ≤ f(κ),

11
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where in each case the probabilities are taken over the experiment in
which PairGen(1κ) outputs (G1,G2,Gt, g1, g2, q, e), and then uniform

x, y, z
$← Zq are chosen.

Definition 9 (Symmetric External Diffie-Hellman (SXDH) Problem
Hardness). The symmetric external Diffie-Hellman problem is hard rel-
ative to group generator PairGen if for b ∈ {1, 2} for all probabilistic
polynomial-time algorithms A there exists a negligible function f such
that

Pr [A(G1,G2,Gt, g1, g2, q, e, g
x
b , g

y
b , g

z
b ) = 1]−

[A(G1,G2,Gt, g1, g2, q, e, g
x
b , g

y
b , g

xy
b ) = 1] ≤ f(κ),

where in each case the probabilities are taken over the experiment in
which PairGen(1κ) outputs (G1,G2,Gt, g1, g2, q, e), and then uniform

x, y, z
$← Zq are chosen.

2.3 Universal Composability Framework

The universal composability (UC) framework [Can01,Can00] is a frame-
work to define and prove the security of protocols. It follows the
simulation-based security paradigm, meaning that security of a pro-
tocol is defined as the simulatability of the protocol based on an ideal
functionality F. In an imaginary ideal world, parties hand their pro-
tocol inputs to a trusted party running F, where F by construction
executes the task at hand in a secure manner. A protocol π is consid-
ered a secure realization of F if the real world, in which parties execute
the real protocol, is indistinguishable from the ideal world. Namely, for
every real-world adversary A attacking the protocol, we can design an
ideal-world attacker (simulator) S that performs an equivalent attack
in the ideal world. As the ideal world is secure by construction, this
means that there are no meaningful attacks on the real-world protocol
either.

One of the goals of UC is to simplify the security analysis of proto-
cols, by guaranteeing secure composition of protocols and, consequently,
allowing for modular security proofs. One can design a protocol π as-
suming the availability of an ideal functionality F ′, i.e., π is a F ′-hybrid
protocol. If π securely realizes F, and another protocol π′ securely re-
alizes F ′, then the composition theorem guarantees that π composed
with π′ (i.e., replacing π′ with F ′) is a secure realization of F.
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Security is defined through an interactive Turing machine (ITM)
Z that models the environment of the protocol and chooses protocol
inputs to all participants. Let EXECπ,A,Z denote the output of Z
in the real world, running with protocol π and adversary A, and let
IDEALF,S,Z denote its output in the ideal world, running with func-
tionality F and simulator S. Protocol π securely realizes F if for every
polynomial-time adversary A, there exists a simulator S such that for
every environment Z, EXECπ,A,Z ≈ IDEALF,S,Z .

2.3.1 Generalized Universal Composability.

A UC protocol using random oracles is modeled as a FRO-hybrid pro-
tocol. Since an instance of a UC functionality can only be used by a
single protocol instance, this means that every protocol instance uses
its own random oracle that is completely independent of other protocol
instances’ random oracles. As the random-oracle model is supposed to
be an idealization of real-world hash functions, this is not a very real-
istic model: Given that we only have a handful of standardized hash
functions, it’s hard to argue their independence across many protocol
instances.

To address these limitations of the original UC framework, Canetti
et al [CDPW07] introduced the Generalized UC (GUC) framework,
which allows for shared “global” ideal functionalities (denoted by G)
that can be used by all protocol instances. Additionally, GUC gives
the environment more powers in the UC experiment. Let GEXECπ,A,Z
be defined as EXECπ,A,Z , except that the environment Z is no longer
constrained, meaning that it is allowed to start arbitrary protocols in
addition to the challenge protocol π. Similarly, GIDEALF,S,Z is equiv-
alent to IDEALF,S,Z but Z is now unconstrained. If π is a G-hybrid
protocol, where G is some shared functionality, then Z can start addi-
tional G-hybrid protocols, possibly learning information about or influ-
encing the state of G. In GUC, protocol emulation and functionality
realization are defined as follows.

Definition 10. Protocol π GUC-emulates protocol ϕ if for every ad-
versary A there exists an adversary S such that for all unconstrained
environments Z, GEXECπ,A,Z ≈ GEXECϕ,S,Z .

Definition 11. Protocol π GUC-realizes ideal functionality F if for
every adversary A there exists a simulator S such that for all uncon-
strained environments Z, GEXECπ,A,Z ≈ GIDEALF,S,Z .

13
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GUC gives very strong security guarantees, as the unconstrained
environment can run arbitrary protocols in parallel with the challenge
protocol, where the different protocol instances might share access to
global functionalities. However, exactly this flexibility makes it hard to
reason about the GUC experiment. To address this, Canetti et al. also
introduced Externalized UC (EUC). Typically, a protocol π uses many
local hybrid functionalities F but only uses a single shared functionality
G. Such protocols are called G-subroutine respecting, and EUC allows
for simpler security proofs for such protocols. Rather than considering
unconstrained environments, EUC considers G-externally constrained
environments. Such environments can invoke only a single instance of
the challenge protocol, but can additionally query the shared function-
ality G through dummy parties that are not part of the challenge proto-
col. The EUC experiment is equivalent to the standard UC experiment,
except that it considers G-externally constrained environments: A G-
subroutine respecting protocol π EUC-emulates a protocol ϕ if for every
polynomial-time adversary A there is an adversary S such that for ev-
ery G-externally constrained environment EXECGπ,A,Z ≈ EXECGϕ,S,Z .
Figure 3.2(b) depicts EUC-emulation and shows that this setting is
much simpler to reason about than GUC-emulation: We can reason
about this static setup, rather than having to imagine arbitrary proto-
cols running alongside the challenge protocol. Canetti et al. [CDPW07]
prove that showing EUC-emulation is useful to obtain GUC-emulation.

Theorem 1. Let π be a G-subroutine respecting protocol, then protocol
π GUC-emulates protocol ϕ if and only if π G-EUC-emulates ϕ.

2.3.2 Ideal Functionalities

We now present some standard ideal functionalities that model common
tasks. When specifying ideal functionalities, we will use some conven-
tions for ease of notation. For a non-shared functionality with session
id sid, we write “On input x from party P”, where it is understood
the input comes from machine (P, sid). For shared functionalities, ma-
chines from any session may provide input, so we always specify both
the party identity and the session identity of machines. If a function-
ality makes a delayed output, it means the adversary first receives the
output, and only when the adversary indicates it allows the output,
the output is sent to the party. In a public delayed output, the adver-
sary receives the full output, whereas in a private delayed output, the
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Functionality Fauth

1. On input (SEND, sid,m) from a party P, abort if sid 6=
(S,R, sid′), Generate a public delayed output (SENT, sid,m)
to R and halt.

Figure 2.1: Ideal authenticated channel functionality Fauth.

Functionality FLsmt

1. On input (SEND, sid,m) from a party P, abort if sid 6=
(S,R, sid′), send (SEND, sid,L(m)) to the adversary. When
the adversary allows, output (SENT, sid,m) to R and halt.

Figure 2.2: Ideal secure message transmission functionality FLsmt.

adversary does not obtain the contents of the output. In some cases
an ideal functionality requires immediate input from the adversary. In
such cases we write “wait for input x from the adversary”, which is
formally defined by Camenisch et al. [CEK+16].

Authenticated Channels

Figure 2.1 depicts functionality Fauth, as defined by Canetti [Can00],
sends a single message from a sender to a receiver in an authenticated
manner.

Secure Message Transfer

Figure 2.2 depicts functionality FLsmt, as defined by Canetti [Can00],
sends a single message to a receiver in a authenticated and confiden-
tial manner. The functionality is parameterized by a leakage function
L : {0, 1}∗ → {0, 1}∗ that leaks information about the transmitted
message, e.g., the message length.

Special Authenticated Communication

We introduce a special authenticated channel functionality Fauth∗ that
sends an authenticated message from one party to another via a third
party. This will model the authentication a TPM performs to an issuer,
where messages are forwareded by an unauthenticated host. Fauth∗ is
depicted in Figure 2.3.
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Functionality Fauth∗
1. On input (SEND, sid, ssid,m1,m2, F ) from S. Check

that sid = (S,R, sid′) for some R an output
(REPLACE1, sid, ssid,m1,m2, F ) to the adversary.

2. On input (REPLACE1, sid, ssid,m′2) from the adversary, out-
put (APPEND, sid, ssid,m1,m

′
2) to F .

3. On input (APPEND, sid, ssid,m′′2) from F , output
(REPLACE2, sid, ssid,m1,m

′′
2) to the adversary.

4. On input (REPLACE2, sid, ssid,m′′′2 ) from the adversary, out-
put (SENT, sid, ssid,m1,m

′′′
2 ) to R.

Figure 2.3: The special authenticated communication functionality Fauth∗.

Certification Authority

Ideal certification authority functionality Fca, as defined by Canetti [Can04],
allows parties to register data (such as a public key) in an authenticated
manner, such that other users can look up this data knowing only the
identity of the party. We extend Fca to allow one party to register mul-
tiple keys, i.e., we check sid = (P, sid′) for some sid′ instead of checking
sid = P . Fca is depicted in Figure 2.4.

Common Reference String

Figure 2.5 depicts FDcrs, the ideal common reference string functional-
ity as defined by Canetti and Fischlin [CF01]. This functionality is
parametrized by a distribution D, from which the string is sampled.

Commitments.

Figure 2.6 depics the ideal commitment functionality Fcom, as defined
by Canetti [Can00]. Party C first commits to a value, upon which
receiver R learns that C chose a value. At a later point, C can reveal
to R the value it committed to earlier.
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Functionality Fca

1. Upon receiving the first message (Register, sid, v) from P ,
send (Registered, sid, v) to the adversary; upon receiving
(sid, ok) from the adversary, and if sid = (P, sid′), and this
is the first request from P , then record the pair (P, v).

2. Upon receiving a message (Retrieve, sid) from party P ′, send
(Retrieve, sid, P ′) to the adversary, and wait for an ok from
the adversary. Then, if there is a recorded pair (sid, v) output
(Retrieve, sid, v) to P ′. Else output (Retrieve, sid,⊥) to P ′.

Figure 2.4: Ideal certification authority functionality Fca.

Functionality FDcrs
1. When receiving input (crs, sid) from party P, look up a

recorded value r. If there is no value r recorded then choose
and record r

$← D. Finally, send a public delayed output
(crs, sid, r) to P.

Figure 2.5: The ideal common reference string functionality FD
crs.

Signatures.

Figure 2.7 depicts the ideal signature functionality Fsig, as defined by
Canetti [Can04]. The functionality lets the adversary choose signature
values and verify signatures, but it uses internal lists to guarantee secu-
rity properties. Fsig keeps records of the honestly signed messages, and
its verification interface rejects any purported signature on a message
that was not honestly signed to guarantee unforgeability. It logs han-
dled verification queries to guarantee consistency, and while generating
a signature, it makes sure that this signature will be accepted by its
verification interface, to enforce completeness.

Public-key Encryption.

Figure 2.8 depicts the ideal public-key encryption functionality FLpke, as
defined by Camenisch et al. [CLNS17]. Similar to Fsig, it lets the ad-
versary create ciphertexts and provide decryptions, while guaranteeing
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Functionality Fcom

1. Commit: on input (Commit, sid, x) from a party C proceed as fol-
lows.

• Check that sid = (C,R, sid′).

• Store x and generate public delayed output (Receipt, sid) to R.
Ignore subsequent Commit inputs.

2. Open: on input (Open, sid) from C proceed as follows.

• Check that a committed value x is stored.

• Generate public delayed output (Open, sid, x) to R.

Figure 2.6: The ideal commitment functionality Fcom.

the desired security properties.

2.4 Zero-Knowledge Proofs

Feige, Fiat, and Shamir [FFS88] were the first to formalize the proof
of knowledge, while the concept of zero-knowledge was introduced by
Goldwasser et al. [GMR85]. When referring to the interactive proofs,
one usually uses the notation introduced by Camenisch and Stadler
[CS97] and formally defined by Camenisch, Kiayias, and Yung [CKY09].
For instance, PK{(a, b, c) : Y = ga1H

b ∧ Ỹ = g̃1
aH̃c} denotes a “zero-

knowledge Proof of Knowledge of integers a, b, c such that Y = ga1H
b

and Ỹ = g̃1
aH̃c holds,” where y, g, h, Ỹ , g̃1, and H̃ are elements of some

groups G = 〈g1〉 = 〈H〉 and G̃ = 〈g̃1〉 = 〈H̃〉. The convention is
that the letters in the parenthesis (a, b, c) denote quantities of which
knowledge is being proven, while all other values are known to the
verifier. SPK{. . .}(m) denotes a signature proof of knowledge on m,
which is a non-interactive transformation of such proofs using the Fiat-
Shamir heuristic [FS87].

We can create similar proofs proving knowledge of group elements
instead of exponents, e.g., SPK{a ∈ G1 : y = e(a, b)} by using e(·, b)
instead of b(·): Take r

$← G1, t ← e(r, b), c ← H(. . .) ∈ Zq, and
s ← r · ac. Verification computes t̂ = e(s, b) · y−c and checks that the
Fiat-Shamir hash [FS87] equals c. With the same mechanism we can
prove knowledge of elements in G2.
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Fsig – functionality for public-key signatures.
Variables: initially empty records keyrec and sigrec.
1. Key Generation. On input (KeyGen, sid) from a party P.

• If sid 6= (P, sid′) or a record (keyrec, sid, pk) exists, then abort.

• Send (KeyGen, sid) to A and wait for (KeyConf, sid, pk) from A.
If a record (sigrec, sid, ∗, ∗, pk , ∗) exists, abort (Consistency).

• Create record (keyrec, sid, pk).

• Output (KeyConf, sid, pk) to P.

2. Signature Generation. On input (Sign, sid,m) from P.

• If sid 6= (P, sid′) or no record (keyrec, sid, pk) exists, then abort.

• Send (Sign, sid,m) to A, and wait for (Signature, sid, σ) from A.

• If a record (sigrec, sid,m, σ, pk , false) exists, then abort.

• Create record (sigrec, sid,m, σ, pk , true) (Completeness).

• Output (Signature, sid, σ) to P.

3. Signature Verification. On input (Verify, sid,m, σ, pk ′) from
some party V.

• If a record (sigrec, sid,m, σ, pk ′, b) exists, set f ← b (Consis-
tency).

• Else, if a record (keyrec, sid, pk) exists, P is honest, and no record
(sigrec, sid,m, ∗, pk , true) exists, set f ← 0 (Unforgeability).

• Else, send (Verify, sid,m, σ, pk ′) toA and wait for (Verified, sid, b),
and set f ← b.

• Create a record (sigrec, sid,m, σ, pk ′, f) and output
(Verified, sid, f) to V.

Figure 2.7: The signature functionality Fsig.

We use NIZK{w : s(w)} to denote a generic non-interactive zero-
knowledge proof proving knowledge of witness w such that statement
s(w) is true. Sometimes we need a witness to be online extractable by a
simulator, i.e., extratable without making use of rewinding. We denote
online-extractability by drawing a box around the witness: NIZK{ w :
s(w)}.
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FLpke – public-key encryption functionality with leakage function L.

Parameters: message space M
Variables: initially empty records keyrec, encrec, decrec.

1. KeyGen. On input (KeyGen, sid) from party P:

• If sid 6= (P, sid′) or a record (keyrec, sid, pk) exists, then abort.

• Send (KeyGen, sid) to A and wait for (KeyConf, sid, pk) from A.

• Create record (keyrec, sid, pk).

• Output (KeyConf, sid, pk) to P.

2. Encrypt. On input (Encrypt, sid, pk ′,m) from party Q with m ∈
M:

• Retrieve record (keyrec, sid, pk) for sid.

• If pk ′ = pk and P is honest, then:

– Send (Enc-L, sid, pk ,L(m)) to A, and wait for (Ciphertext,
sid, c) from A.

– If a record (encrec, sid, ·, c) exists, then abort.
– Create record (encrec, sid,m, c).

• Else (i.e., pk ′ 6= pk or P is corrupt) then:

– Send (Enc-M, sid, pk ′,m) to A, and wait for (Ciphertext, sid, c)
from A.

• Output (Ciphertext, sid, c) to Q.

3. Decrypt. On input (Decrypt, sid, c) from party P:

• If sid 6= (P, sid′) or no record (keyrec, sid, pk) exists, then abort.

• If a record (encrec, sid,m, c) for c exists:

– Output (Plaintext, sid,m) to P.

• Else (i.e., if no such record exists):

– Send (Decrypt, sid, c) to A and wait for (Plaintext, sid,m) from
A.

– Create record (encrec, sid,m, c).
– Output (Plaintext, sid,m) to P.

Figure 2.8: The PKE functionality FLpke with leakage function L.
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Chapter 3

Composable Security
with Global Random
Oracles

This chapter focuses on cryptographic protocols using an idealized hash
function, the so-called random oracle. Typically, protocols assume ran-
dom oracles specific to the protocol instance. We present new key
insights on proving protocols secure with respect to global random or-
acles, that allow the random oracle to be shared by different protocols,
correctly modeling the fact that the same hash functions are used by
most protocols. These insights will be used in the later chapters to
construct practical and composable protocols.

3.1 Introduction

The random-oracle model (ROM) [BR93] is an overwhelmingly popular
tool in cryptographic protocol design and analysis. Part of its success is
due to its intuitive idealization of cryptographic hash functions, which
it models through calls to an external oracle that implements a random
function. Another important factor is its capability to provide security
proofs for highly practical constructions of important cryptographic
building blocks such as digital signatures, public-key encryption, and
key exchange. In spite of its known inability to provide provable guar-
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antees when instantiated with a real-world hash function [CGH98], the
ROM is still widely seen as convincing evidence that a protocol will
resist attacks in practice.

Most proofs in the ROM, however, are for property-based secu-
rity notions, where the adversary is challenged in a game where he
faces a single, isolated instance of the protocol. Security can there-
fore no longer be guaranteed when a protocol is composed. Addressing
this requires composable security notions such as Canetti’s Universal
Composability (UC) framework [Can01], which have the advantage of
guaranteeing security even if protocols are arbitrarily composed.

UC modeling. In the UC framework, a random oracle is usually
modeled as an ideal functionality that a protocol uses as a subroutine
in a so-called hybrid model, similarly to other setup constructs such as a
common reference string (CRS). For example, the random-oracle func-
tionality FRO [Nie02] simply assigns a random output value h to each
input m and returns h. In the security proof, the simulator executes
the code of the subfunctionality, which enables it to observe the queries
of all involved parties and to program any random-looking values as
outputs. Setup assumptions play an important role for protocols in the
UC model, as many important cryptographic primitives such as com-
mitments simply cannot be achieved [CF01]; other tasks can, but have
more efficient instantiations with a trusted setup.

An important caveat is that this way of modeling assumes that
each instance of each protocol uses its own separate and independent
instance of the subfunctionality. For a CRS this is somewhat awkward,
because it raises the question of how the parties should agree on a
common CRS, but it is even more problematic for random oracles if all,
supposedly independent, instances of FRO are replaced in practice with
the same hash function. This can be addressed using the Generalized
UC (GUC) framework [CDPW07] that allows one to model different
protocol instances sharing access to global functionalities. Thus one can
make the setup functionality globally available to all parties, meaning,
including those outside of the protocol execution as well as the external
environment.

Global UC random oracle. Canetti, Jain, and Scafuro [CJS14] in-
deed applied the GUC framework to model globally accessible random
oracles. In doing so, they discard the globally accessible variant of FRO
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described above as of little help for proving security of protocols because
it is too “strict”, allowing the simulator neither to observe the environ-
ment’s random-oracle queries, nor to program its answers. They argue
that any shared functionality that provides only public information is
useless as it does not give the simulator any advantage over the real
adversary. Instead, they formulate a global random-oracle functionality
that grants the ideal-world simulator access to the list of queries that
the environment makes outside of the session. They then show that this
shared functionality can be used to design a reasonably efficient GUC-
secure commitment scheme, as well as zero-knowledge proofs and two-
party computation. However, their global random-oracle functionality
rules out security proofs for a number of practical protocols, especially
those that require one to program the random oracle.

Our Contributions.

In this chapter, which is based on [CDG+18], we investigate different
alternative formulations of globally accessible random-oracle function-
alities and protocols that can be proven secure with respect to these
functionalities. For instance, we show that the simple variant discarded
by Canetti et al. surprisingly suffices to prove the GUC-security of a
number of truly practical constructions for useful cryptographic primi-
tives such as digital signatures and public-key encryption. We achieve
these results by carefully analyzing the minimal capabilities that the
simulator needs in order to simulate the real-world (hybrid) protocol,
while fully exploiting the additional capabilities that one has in proving
the indistinguishability between the real and the ideal worlds. In the
following, we briefly describe the different random-oracle functionalities
we consider and which we prove GUC-secure using them.

Strict global random oracle. First, we revisit the strict global
random-oracle functionality GsRO described above and show that, in
spite of the arguments of Canetti et al. [CJS14], it actually suffices to
prove the GUC-security of many practical constructions. In particular,
we show that any digital signature scheme that is existentially unforge-
able under chosen-message attack in the traditional ROM also GUC-
realizes the signature functionality with GsRO, and that any public-
key encryption (PKE) scheme that is indistinguishable under adaptive
chosen-ciphertext attack in the traditional ROM GUC-realizes the PKE
functionality under GsRO with static corruptions.
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This result may be somewhat surprising as it includes many schemes
that, in their property-based security proofs, rely on invasive proof
techniques such as rewinding, observing, and programming the random
oracle, all of which are tools that the GUC simulator is not allowed
to use. We demonstrate, however, that none of these techniques are
needed during the simulation of the protocol, but rather only show
up when proving indistinguishability of the real and the ideal worlds,
where they are allowed. A similar technique was used It also does not
contradict the impossibility proof of commitments based on global setup
functionalities that simply provide public information [CDPW07,CF01]
because, in the GUC framework, signatures and PKE do not imply
commitments.

Programmable global random oracles. Next, we present a global
random-oracle functionality GpRO that allows the simulator as well as
the real-world adversary to program arbitrary points in the random
oracle, as long as they are not yet defined. We show that it suffices
to prove the GUC-security of Camenisch et al.’s non-committing en-
cryption scheme [CLNS17], i.e., PKE scheme secure against adaptive
corruptions. Here, the GUC simulator needs to produce dummy cipher-
texts that can later be made to decrypt to a particular message when
the sender or the receiver of the ciphertext is corrupted. The crucial
observation is that, to embed a message in a dummy ciphertext, the
simulator only needs to program the random oracle at random inputs,
which have negligible chance of being already queried or programmed.
Again, this result is somewhat surprising as GpRO does not give the
simulator any advantage over the real adversary either.

We also define a restricted variant GrpRO that, analogously to the
observable random oracle of Canetti et al. [CJS14], offers programming
subject to some restrictions, namely that protocol parties can check
whether the random oracle was programmed on a particular point. If
the adversary tries to cheat by programming the random oracle, then
honest parties have a means of detecting this misbehavior. However,
we will see that the simulator can hide its programming from the adver-
sary, giving it a clear advantage over the real-world adversary. We use it
to GUC-realize the commitment functionality through a new construc-
tion that, with only two exponentiations per party and two rounds of
communication, is considerably more efficient than the one of Canetti
et al. [CJS14], which required five exponentiations and five rounds of
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communication.

Programmable and observable global random oracle. Finally,
we describe a global random-oracle functionality GrpoRO that combines
the restricted forms of programmability and observability. We then
show that this functionality allows us to prove that commitments can
be GUC-realized by the most natural and efficient random-oracle based
scheme where a commitment c = H(m‖r) is the hash of the random
opening information r and the message m.

Transformations between different oracles. While our different
types of oracles allow us to securely realize different protocols, the vari-
ety in oracles partially defies the original goal of modeling the situation
where all protocols use the same hash function. We therefore explore
some relations among the different types by presenting efficient pro-
tocol transformations that turn any protocol that securely realizes a
functionality with one type of random oracle into a protocol that se-
curely realizes the same functionality with a different type.

Other related work.

Dodis et al. [DSW08] already realized that rewinding can be used in
the indistinguishability proof in the GUC model, as long as it’s not
used in the simulation itself. In a broader sense, our work complements
existing studies on the impact of programmability and observability of
random oracles in security reductions. Fischlin et al. [FLR+10] and
Bhattacharyya and Mukherjee [BM15] have proposed formalizations
of non-programmable and weakly-programmable random oracles, e.g.,
only allowing non-adaptive programmability. Both works give a number
of possibility and impossibility results, in particular that full-domain
hash (FDH) signatures can only be proven secure (via black-box re-
ductions) if the random oracle is fully programmable [FLR+10]. Non-
observable random oracles and their power are studied by Ananth and
Bhaskarin [AB13], showing that Schnorr and probabilistic RSA-FDH
signatures can be proven secure. All these works focus on the use of
random oracles in individual reductions, whereas our work proposes
globally re-usable random-oracle functionalities within the UC frame-
work. The strict random oracle functionality GsRO that we analyze is
comparable to a non-programmable and non-observable random oracle,
so our result that any unforgeable signature scheme is also GUC-secure
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GsRO – functionality for the strict global random oracle.

Parameters: output size `(κ)
Variables: initially empty list ListH
1. Query: on input (HashQuery,m) from a machine (P, sid), proceed

as follows.

• Find h such that (m,h) ∈ ListH. If no such h exists, let

h $←−{0, 1}`(κ)
and store (m,h) in ListH.

• Output (HashConfirm, h) to (P, sid).

Figure 3.1: The strict global random oracle functionality GsRO that does
not give any extra power to anyone (mentioned but not defined by Canetti
et al. [CJS14]).

w.r.t. GsRO may seem to contradict the above results. However, the
GsRO functionality imposes these restrictions only for the GUC simula-
tor, whereas the reduction can fully program the random oracle.

Summary.

Our results clearly paint a much more positive picture for global ran-
dom oracles than was given in the literature so far. We present several
formulations of globally accessible random-oracle functionalities that
allow to prove the composable security of some of the most efficient
signature, PKE, and commitment schemes that are currently known.
We even show that the most natural formulation, the strict global ran-
dom oracle GsRO that was previously considered useless, suffices to prove
GUC-secure a large class of efficient signature and encryption schemes.
By doing so, our work brings the (composable) ROM back closer to its
original intention: to provide an intuitive idealization of hash functions
that enables to prove the security of highly efficient protocols. We
expect that our results will give rise to many more practical crypto-
graphic protocols that can be proven GUC-secure, among them known
protocols that have been proven secure in the traditional ROM model.
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Figure 3.2: The UC experiment with a local random oracle (a) and the
EUC experiment with a global random oracle (b).

3.2 Strict Random Oracle

This section focuses on the so-called strict global random oracle GsRO
depicted in Figure 3.1, which is the most natural definition of a global
random oracle: on a fresh input m, a random value h is chosen, while
on repeating inputs, a consistent answer is given back. This natural
definition was discussed by Canetti et al. [CJS14] but discarded as it
does not suffice to realize Fcom. While this is true, we will argue that
GsRO is still useful to realize other functionalities.

The code of GsRO is identical to that of a local random oracle FRO

in UC. In standard UC, this is a very strong definition, as it gives the
simulator a lot of power: In the ideal world, it can simulate the random
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Figure 3.3: Reduction B from a real-world adversary A and a black-box
environment Z, simulating all the ideal functionalities (even the global ones)
and playing against an external challenger C.

oracle FRO, which gives it the ability to observe all queries and program
the random oracle on the fly (cf. Figure 3.2(a)). In GUC, the global
random oracle GsRO is present in both worlds and the environment
can access it (cf. Figure 3.2(b)). In particular, the simulator is not
given control of GsRO and hence cannot simulate it. Therefore, the
simulator has no more power over the random oracle than explicitly
offered through the interfaces of the global functionality. In the case of
GsRO, the simulator can neither program the random oracle, nor observe
the queries made.

As the simulator obtains no relevant advantage over the real-world
adversary when interacting with GsRO, one might wonder how it could
help in security proofs. The main observation is that the situation
is different when one proves that the real and ideal world are indistin-
guishable. Here one needs to show that no environment can distinguish
between the real and ideal world and thus, when doing so, one has full
control over the global functionality. This is for instance the case when
using the (distinguishing) environment in a cryptographic reduction: as
depicted in Figure 3.3, the reduction algorithm B simulates the com-
plete view of the environment Z, including the global GsRO, allowing
B to freely observe and program GsRO. As a matter of facts, B can
also rewind the environment here – another power that the simulator
S does not have but is useful in the security analysis of many schemes.
It turns out that for some primitives, the EUC simulator does not need
to program or observe the random oracle, but only needs to do so when
proving that no environment can distinguish between the real and the
ideal world.

This allows us to prove a surprisingly wide range of practical pro-
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tocols secure with respect to GsRO. First, we prove that any signa-
ture scheme proven to be EUF-CMA in the local random-oracle model
yields UC secure signatures with respect the global GsRO. Second,
we show that any public-key encryption scheme proven to be IND-
CCA2 secure with local random oracles yields UC secure public-key
encryption (with respect to static corruptions), again with the global
GsRO. These results show that highly practical schemes such as Schnorr
signatures [Sch91], RSA full-domain hash signatures [BR93, Cor00],
RSA-PSS signatures [BR96], RSA-OAEP encryption [BR95], and the
Fujisaki-Okamoto transform [FO13] all remain secure when all schemes
share a single hash function that is modeled as a strict global ran-
dom oracle. This is remarkable, as their security proofs in the local
random-oracle model involve techniques that are not available to an
EUC simulator: signature schemes typically require programming of
random-oracle outputs to simulate signatures, PKE schemes typically
require observing the adversary’s queries to simulate decryption queries,
and Schnorr signatures need to rewind the adversary in a forking argu-
ment [PS00] to extract a witness. However, it turns out, this rewinding
is only necessary in the reduction B showing that no distinguishing envi-
ronment Z can exist and we can show that all these schemes can safely
be used in composition with arbitrary protocols and with a natural,
globally accessible random-oracle functionality GsRO.

3.2.1 Composable Signatures using GsRO
Let SIG = (KGen,Sign,Verify) be an EUF-CMA secure signature scheme
in the ROM. We show that this directly yields a secure realization of
UC signatures Fsig with respect to a strict global random oracle GsRO.

We assume that SIG uses a single random oracle that maps to {0, 1}`(κ)
.

Protocols requiring multiple random oracles or mapping into different
ranges can be constructed using standard domain separation and length
extension techniques.

We define πSIG to be SIG phrased as a GUC protocol. Whenever an
algorithm of SIG makes a call to the random oracle, πSIG makes a call
to GsRO.

1. On input (KeyGen, sid), signer P proceeds as follows.

• Check that sid = (P, sid′) for some sid′, and no record (sid, sk)
exists.

• Run (pk , sk)← SIG.KGen(κ) and store (sid, sk).
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• Output (KeyConf, sid, pk).

2. On input (Sign, sid,m), signer P proceeds as follows.

• Retrieve record (sid, sk), abort if no record exists.

• Output (Signature, sid, σ) with σ ← SIG.Sign(sk ,m).

3. On input (Verify, sid,m, σ, pk ′) a verifier V proceeds as follows.

• Output (Verified, sid, f) with f ← SIG.Verify(pk ′, σ,m).

We will prove that πSIG will realize UC signatures. There are two
main approaches to defining a signature functionality: using adversari-
ally provided algorithms to generate and verify signature objects (e.g.,
the 2005 version of [Can00]), or by asking the adversary to create and
verify signature objects (e.g., [Can04]). For a version using algorithms,
the functionality will locally create and verify signature objects using
the algorithm, without activating the adversary. This means that the
algorithms cannot interact with external parties, and in particular com-
munication with external functionalities such as a global random oracle
is not permitted. We could modify an algorithm-based Fsig to allow the
sign and verify algorithms to communicate only with a global random
oracle, but we choose to use an Fsig that interacts with the adversary
as this does not require special modifications for signatures with global
random oracles.

Theorem 2. If SIG is EUF-CMA in the random-oracle model, then
πSIG GUC-realizes Fsig (as defined in Figure 2.7) in the GsRO-hybrid
model.

Proof. By the fact that πSIG is GsRO-subroutine respecting and by The-
orem 1, it is sufficient to show that πSIG GsRO-EUC-realizes Fsig. We
define the UC simulator S as follows.

1. Key Generation. On input (KeyGen, sid) from Fsig, where sid =
(P, sid′) and P is honest.

• Simulate honest signer “P”, and give it input (KeyGen, sid).

• When “P” outputs (KeyConf, sid, pk) (where pk is generated
according to πSIG), send (KeyConf, sid, pk) to Fsig.

2. Signature Generation. On input (Sign, sid,m) from Fsig, where
sid = (P, sid′) and P is honest.

• Run simulated honest signer “P” with input (Sign, sid,m).

• When “P” outputs (Signature, sid, σ) (where σ is generated
according to πSIG), send (Signature, sid, σ) to Fsig.
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3. Signature Verification. On input (Verify, sid,m, σ, pk ′) from
Fsig, where sid = (P, sid′).

• Run f ←− SIG.Verify(pk ′, σ,m), and send (Verified, sid, f) to
Fsig.

We must show that πSIG realizes Fsig in the standard UC sense,
but with respect to GsRO-externally constrained environments, i.e., the
environment is now allowed to access GsRO via dummy parties in sessions
unequal to the challenge session. Without loss of generality, we prove
this with respect to the dummy adversary.

During key generation, S invokes the simulated honest signer P, so
the resulting keys are exactly like in the real world. The only difference
is that in the ideal world Fsig can abort key generation in case the
provided public key pk already appears in a previous sigrec record. But
if this happens it means that A has successfully found a collision in the
public key space, which must be exponentially large as the signature
scheme is EUF-CMA by assumption. This means that such event can
only happen with negligible probability.

For a corrupt signer, the rest of the simulation is trivially correct:
the adversary generates keys and signatures locally, and if an honest
party verifies a signature, the simulator simply executes the verification
algorithm as a real world party would do, and Fsig does not make further
checks (the unforgeability check is only made when the signer is honest).
When an honest signer signs, the simulator creates a signature using the
real world signing algorithm, and when Fsig asks the simulator to verify
a signature, S runs the real world verification algorithm, and Fsig keeps
records of the past verification queries to ensure consistency. As the
real world verification algorithm is deterministic, storing verification
queries does not cause a difference. Finally, when S provides Fsig with
a signature, Fsig checks that there is no stored verification query exists
that states the provided signature is invalid. By completeness of the
signature scheme, this check will never trigger.

The only remaining difference is that Fsig prevents forgeries: if a
verifier uses the correct public key, the signer is honest, and we verify
a signature on a message that was never signed, Fsig rejects. This
would change the verification outcome of a signature that would be
accepted by the real-world verification algorithm. As this event is the
only difference between the real and ideal world, what remains to show
is that this check changes the verification outcome only with negligible
probability. We prove that if there is an environment that causes this
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event with non-negligible probability, then we can use it to construct a
forger B that breaks the EUF-CMA unforgeability of SIG.

Our forger B plays the role of Fsig, S, and even the random oracle
GsRO, and has black-box access to the environment Z. Then B receives a
challenge public key pk and is given access to a signing oracle OSign(sk ,·)

and to a random oracle RO. It responds Z’s GsRO queries by relaying
queries and responses to and from RO. It runs the code of Fsig and S,
but S now uses pk as the public key of“P”, and usesOSign(sk ,m) whenever
Fsig requests S to generate a signature. If the unforgeability check of
Fsig triggers for a cryptographically valid signature σ on message m,
then we know that B made no query OSign(sk ,m), meaning that B can
submit (σ,m) to win the EUF-CMA game.

3.2.2 Composable Public-Key Encryption using GsRO
Let PKE = (KGen,Enc,Dec) be a CCA2 secure public-key encryption
scheme in the ROM. We show that this directly yields a secure re-
alization of GUC public-key encryption FLpke, as recently defined by
Camenisch et al. [CLNS17] and depicted in Figure 2.8), with respect to
a strict global random oracle GsRO and static corruptions. As with our
result for signature schemes, we require that PKE uses a single random

oracle that maps to {0, 1}`(κ)
.

We define πPKE to be PKE phrased as a GUC protocol.
1. On input (KeyGen, sid, κ), party P proceeds as follows.

• Check that sid = (P, sid′) for some sid′, and no record (sid, sk)
exists.

• Run (pk , sk)← PKE.KGen(κ) and store (sid, sk).

• Output (KeyConf, sid, pk).

2. On input (Encrypt, sid, pk ′,m), party Q proceeds as follows.

• Set c← PKE.Enc(pk ′,m) and output (Ciphertext, sid, c).

3. On input (Decrypt, sid, c), party P proceeds as follows.

• Retrieve (sid, sk), abort if no such record exist.

• Set m← PKE.Dec(sk , c) and output (Plaintext, sid,m).

Theorem 3. Protocol πPKE GUC-realizes FLpke with static corruptions
with leakage function L in the GsRO-hybrid model if PKE is CCA2 secure
with leakage L in the ROM.
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Proof. By the fact that πPKE is GsRO-subroutine respecting and by The-
orem 1, it is sufficient to show that πPKE GsRO-EUC-realizes FLpke.

We define simulator S as follows.
1. On input (KEYGEN, sid).

• Parse sid as (P, sid′). Note that P is honest, as S does not
make KeyGen queries on behalf of corrupt parties.

• Invoke the simulated receiver “P” on input (KeyGen, sid) and
wait for output (KeyConf, sid, pk) from “P”.

• Send (KeyConf, sid, pk) to FLpke.
2. On input (Enc-M, sid, pk ′,m) with m ∈M.

• S picks some honest party “Q” and gives it input (Encrypt,
sid, pk ′,m). Wait for output (Ciphertext, sid, c) from “Q”.

• Send (Ciphertext, sid, c) to FLpke.
3. On input (Enc-L, sid, pk , l).

• S does not know which message is being encrypted, so it
chooses a dummy plaintext m′ ∈M with L(m′) = l.

• Pick some honest party “Q” and give it input (Encrypt, sid,
pk ,m′), Wait for output (Ciphertext, sid, c) from “Q”.

• Send (Ciphertext, sid, c) to FLpke.
4. On input (Decrypt, sid, c).

• Note that S only receives such input when P is honest, and
therefore S simulates “P” and knows its secret key sk .

• Give“P”input (Decrypt, sid, c) and wait for output (Plaintext,
sid,m) from “P”.

• Send (Plaintext, sid,m) to FLpke.
What remains to show is that S is a satisfying simulator, i.e., no GsRO-
externally constrained environment can distinguish the real protocol
πPKE from FLpke with S. If the receiver P (i.e., such that sid = (P, sid′))
is corrupt, the simulation is trivially correct: S only creates ciphertexts
when it knows the plaintext, so it can simply follow the real protocol.
If P is honest, S does not know the message for which it is computing
ciphertexts, so a dummy plaintext is encrypted. When the environment
submits that ciphertext for decryption by P, the functionality FLpke will
still return the correct message. Using a sequence of games, we show
that if an environment exists that can notice this difference, it can break
the CCA2 security of PKE.
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Let Game 0 be the game where S and FLpke act as in the ideal world,

except that FLpke passes the full message m in Enc-L inputs to S, and S
returns a real encryption of m as the ciphertext. It is clear that Game 0
is identical to the real world EXECGπ,A,Z . Let Game i for i = 1, . . . , qE,
where qE is the number of Encrypt queries made by Z, be defined as
the game where for Z’s first i Encrypt queries, FLpke passes only L(m)
to S and S returns the encryption of a dummy message m′ so that
L(m′) = L(m), while for the i + 1-st to qE-th queries, FLpke passes m
to S and S returns an encryption of m. It is clear that Game qE is
identical to the ideal world IDEALGF,S,Z .

By a hybrid argument, for Z to have non-negligible probability to
distinguish between EXECGπ,A,Z and IDEALGF,S,Z , there must exist
an i such that Z distinguishes with non-negligible probability between
Game (i−1) and Game i. Such an environment gives rise to the following
CCA2 attacker B against PKE.

Algorithm B receives a challenge public key pk as input and is given
access to decryption oracle ODec(sk ,·) and random oracle RO. It answers
Z’s queries GsRO(m) by relaying responses from its own oracle RO(m)
and lets S use pk as the public key of P. It largely runs the code of
Game (i − 1) for S and FLpke, but lets S respond to inputs (Dec, sid, c)

from FLpke by calling its decryption oracle m = ODecrypt(sk ,c). Note

that FLpke only hands such inputs to S for ciphertexts c that were not

produced via the Encrypt interface of FLpke, as all other ciphertexts are

handled by FLpke itself.

Let m0 denote the message that Functionality FLpke hands to S as
part of the i-th Enc-L input. Algorithm B now sets m1 to be a dummy
message m′ such that L(m′) = L(m0) and hands (m0,m1) to the chal-
lenger to obtain the challenge ciphertext c∗ that is an encryption of
mb. It is clear that if b = 0, then the view of Z is identical to that in
Game (i− 1), while if b = 1, it is identical to that in Game i. Moreover,
B will never have to query its decryption oracle on the challenge ci-
phertext c∗, because any decryption queries for c∗ are handled by FLpke
directly. By outputting 0 if Z decides it runs in Game (i− 1) and out-
putting 1 if Z decides it runs in Game i, B wins the CCA2 game with
non-negligible probability.
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3.3 Programmable Global Random Oracle

We now turn our attention to a new functionality that we call the pro-
grammable global random oracle, denoted by GpRO. The functionality
simply extends the strict random oracle GsRO by giving the adversary
(real-world adversary A and ideal-world adversary S) the power to pro-
gram input-output pairs. Because we are in GUC or EUC, that also
means that the environment gets this power. Thus, as in the case of
GsRO, the simulator is thus not given any extra power compared to
the environment (through the adversary), and one might well think
that this model would not lead to the realization of any useful crypto-
graphic primitives either. To the contrary, one would expect that the
environment being able to program outputs would interfere with secu-
rity proofs, as it destroys many properties of the random oracle such
as collision or preimage resistance.

As it turns out, we can actually realize public-key encryption se-
cure against adaptive corruptions (also known as non-committing en-
cryption) in this model: we prove that the PKE scheme of Camenisch
et al. [CLNS17] GUC-realizes FLpke against adaptive corruptions in the
GpRO-hybrid model. The security proof works out because the simulator
equivocates dummy ciphertexts by programming the random oracle on
random points, which are unlikely to have been queried by the envi-
ronment before.

3.3.1 The Programmable Global Random Oracle

The programmable global random oracle functionality GpRO (cf. Fig-
ure 3.4) is simply obtained from GsRO by adding an interface for the
adversary to program the oracle on a single point at a time. To this
end, the functionality GpRO keeps an internal list of preimage-value
assignments and, if programming fails (because it would overwrite a
previously taken value), the functionality aborts, i.e., it replies with an
error message ⊥.

Notice that our GpRO functionality does not guarantee common
random-oracle properties such as collision resistance: an adversary can
simply program collisions into GpRO. However, this choice is by design,
because we are interested in achieving security with the weakest form
of a programmable global random oracle to see what can be achieved
against the strongest adversary possible.
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GpRO – functionality for the programmable global random oracle.

Parameters: output size `(κ)
Variables: initially empty list ListH
1. Query: on input (HashQuery,m) from a machine (P, sid), proceed

as follows.

• Find h such that (m,h) ∈ ListH. If no such h exists, let

h $←−{0, 1}`(κ)
and store (m,h) in ListH.

• Output (HashConfirm, h) to (P, sid).

2. Program: on input (ProgramRO,m, h) from adversary A
• If ∃ h′ ∈ {0, 1}`(κ)

such that (m,h′) ∈ ListH and h 6= h′, then
abort

• Else, add (m,h) to ListH and output (ProgramConfirm) to A

Figure 3.4: The programmable global random oracle functionality GpRO.

3.3.2 Public-Key Encryption with Adaptive Cor-
ruptions from GpRO

We show that GUC-secure non-interactive PKE with adaptive corrup-
tions (often referred to as non-committing encryption) is achievable in
the hybrid GpRO model by proving the PKE scheme by Camenisch et
al. [CLNS17] secure in this model. We recall the scheme in Figure 3.5
based on the following building blocks:
• a family of one-way trapdoor permutations OWTP = (OWTP.Gen,

OWTP.Sample,OWTP.Eval,OWTP.Invert), where domains Σ gen-
erated by OWTP.Gen(1κ) have cardinality at least 2κ;

• a block encoding scheme (EC,DC) such that EC : {0, 1}∗ →
({0, 1}`(κ)

)∗ is an encoding function such that the number of
blocks that it outputs for a given message m depends only on
the leakage L(m), and DC its deterministic inverse (possibly re-
jecting with ⊥ if no preimage exists).

Theorem 4. Protocol πPKE in Figure 3.5 GUC-realizes FLpke with adap-
tive corruptions and leakage function L in the GpRO-hybrid model.

Proof. We need to show that πPKE GUC-realizes FLpke, i.e., that, given
any environment Z and any real-world adversary A, there exists a sim-
ulator S such that the output distribution of Z interacting with FLpke,
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πPKE – public-key encryption secure against adaptive corruptions.

Parameters: block size `(κ)

1. KeyGen. On input (KeyGen, sid) from party P:

• Check that sid = (P, sid′) and no record (keyrec, sid, sk) exist.

• Sample (ϕ,ϕ−1,Σ)←− OWTP.Gen(1κ).

• Set pk ← (ϕ,Σ), sk ← (ϕ,ϕ−1,Σ).

• Create record (keyrec, sid, pk , sk).

• Output (KeyConf, sid, pk) to P.

2. Encrypt. On input (Encrypt, sid, pk ′,m) from party Q:

• Parse pk ′ as (ϕ,Σ), get (m1, . . . ,mk) ← EC(m) and x ←−
OWTP.Sample(Σ).

• Let c1 ← OWTP.Eval(Σ,ϕ,x), c2,i ← mi ⊕ hi,∀ i =
1, . . . , k, and c3 ← h where h and all hi are ob-
tained as (HashConfirm, hi) ← GpRO(HashQuery, (x‖i)) and
(HashConfirm, h)← GpRO(HashQuery, (x‖k‖m)), respectively.

• Set c← (c1, c2,1, . . . , c2,k, c3).

• Output (Ciphertext, sid, c) to Q.

3. Decrypt. On input (Decrypt, sid, c) from party P:

• Check that sid = (P, sid′) and (keyrec, sid, sk) exist, if not, then
abort.

• Parse sk as (ϕ,ϕ−1,Σ), and c as (c1, c2,1, . . . , c2,k, c3).

• Set x′ ←− OWTP.Invert(Σ, ϕ, ϕ−1, c1), m′i ← c2,i ⊕ h′i for i =
1, . . . , k, and m′ ←− DC(m′1, . . . ,m

′
k), where all h′i are obtained

as (HashConfirm, h′i)← GpRO(HashQuery, (x′‖i)).
• If m′ = ⊥m or h′ 6= c3, then output (Plaintext, sid,⊥m)

to P, where h′ is obtained from (HashConfirm, h′) ←
GpRO(HashQuery, (x′‖k‖m′)).

• Else, output (Plaintext, sid,m) to P.

Figure 3.5: Public-key encryption scheme secure against adaptive at-
tacks [CLNS17] based on one-way permutation OWTP and encoding function
(EC,DC).
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GpRO, and S is indistinguishable from its output distribution when in-
teracting with πPKE, GpRO, and A. Because πPKE is GsRO-subroutine re-
specting, by Theorem 1 it suffices to show that πPKE GpRO-EUC-realizes
FLpke.

The simulator S is depicted in Figure 3.6. Basically, it generates
an honest key pair for the receiver and responds to Enc-M and Decrypt
inputs by using the honest encryption and decryption algorithms, re-
spectively. On Enc-L inputs, however, it creates a dummy ciphertext
c composed of c1 = ϕ(x) for a freshly sampled x (but rejecting values
of x that were used before) and randomly chosen c2,1, . . . , c2,k and c3
for the correct number of blocks k. Only when either the secret key
or the randomness used for this ciphertext must be revealed to the ad-
versary, i.e., only when either the receiver or the party Q who created
the ciphertext is corrupted, does the simulator program the random
oracle so that the dummy ciphertext decrypts to the correct message
m. If the receiver is corrupted, the simulator obtains m by having it
decrypted by FLpke; if the encrypting party Q is corrupted, then m is
included in the history of inputs and outputs that is handed to S upon
corruption. The programming is done through the Program subroutine,
but the simulation aborts in case programming fails, i.e., when a point
needs to be programmed that is already assigned. We will prove in the
reduction that any environment causing this to happen can be used to
break the one-wayness of the trapdoor permutation.

We now have to show that S successfully simulates a real execution
of the protocol πPKE to a real-world adversary A and environment Z.
To see this, consider the following sequence of games played with A and
Z that gradually evolve from a real execution of πPKE to the simulation
by S.

Let Game 0 be a game that is generated by letting an ideal function-
ality F0 and a simulator S0 collaborate, where F0 is identical to FLpke,
except that it passes the full message m along with Enc-L inputs to S0.
The simulator S0 simply performs all key generation, encryption, and
decryption using the real algorithms, without any programming of the
random oracle. The only difference between Game 0 and the real world
is that the ideal functionality F0 aborts when the same ciphertext c
is generated twice during an encryption query for the honest public
key. Because S0 generates honest ciphertexts, the probability that the
same ciphertext is generated twice can be bounded by the probability
that two honest ciphertexts share the same first component c1. Given
that c1 is computed as ϕ(x) for a freshly sampled x from Σ, and given

38



3.3. Programmable Global Random Oracle

1. On input (KeyGen, sid) from FLpke:
• Sample r $←−{0, 1}κ and honestly generate keys with randomness r by gener-

ating (Σ, ϕ, ϕ−1) ←− OWTP.Gen(κ; r) and setting pk ← (Σ, ϕ), sk ← ϕ−1.
Record (pk , sk , r) and send (KeyConf, sid, pk) to FLpke.

2. On input (Enc-L, sid, pk , λ) from FLpke:
• Parse pk as (Σ, ϕ), sample r $←−{0, 1}κ, and generate x ←

OWTP.Sample(Σ; r) until x does not appear in EncL.

• Choose a dummy plaintext m such that L(m) = λ and let k be such that
(m1, . . . ,mk)← EC(m).

• Generate a dummy ciphertext c with c1 ← OWTP.Eval(Σ, ϕ, x) and with
random c2,1, . . . , c2,k, c3

$←−{0, 1}`(κ).

• Record (c,⊥m, r, x, pk) in EncL and send (Ciphertext, sid, c) to FLpke.
3. On input (Enc-M, sid, pk ′,m) from FLpke:
• Sample r $←−{0, 1}κ and produce ciphertext c honestly from m using key

pk ′ and randomness r.

• Send (Ciphertext, sid, c) to FLpke.
4. On input (Decrypt, sid, c) from FLpke:
• Decrypt c honestly using the recorded secret key sk to yield plaintext m.

• Send (Plaintext, sid,m) to FLpke.
5. On corruption of party Q, receive as input from FLpke the history of Q’s

inputs and outputs, then compose Q’s state as follows and hand it to FLpke:
• For every input (Encrypt, sid, pk ′,m) and corresponding response

(Ciphertext, sid, c) in Q’s history:

– If pk ′ 6= pk , then include the randomness r that S used in the corre-
sponding Enc-M query into Q’s state.

– If pk ′ = pk , then find (c,⊥m, r, x, pk) in EncL, update it to
(c,m, r, x, pk), and include r into Q’s state. Execute Program(m, c, r).

• If Q is the receiver, i.e., sid = (Q, sid′), then include the randomness r used
at key generation into Q’s state, and for all remaining (c,⊥m, r, x, pk) in
EncL do:

– Send (Decrypt, sid, c) to FLpke in name of Q and wait for response
(Plaintext, sid,m).

– If m 6= ⊥m, then execute Program(m, c, r).
– Update record (c,⊥m, r, x, pk) in EncL to (c,m, r, x, pk)

Figure 3.6: The EUC simulator S for protocol πPKE.
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On input (m, c, r) do the following:
• Parse (m1, . . . ,mk) := EC(m), and c := (c1, c2,1, . . . , c2,k′ , c3);

let x := OWTP.Sample(Σ; r).

• For i = 1, . . . , k:

– Execute GpRO.Program(x‖i,mi⊕ c2,i) ; abort if unsuccess-
ful.

• Execute GpRO.Program(x‖k‖m, c3) ; abort if unsuccessful.

Figure 3.7: The oracle programming routine Program .

that x is uniformly distributed over Σ which has size at least 2κ, the
probability of a collision occurring over qE encryption queries is at most
q2
E/2

κ.
Let Game 1 to Game qE be games for a hybrid argument where grad-

ually all ciphertexts by honest users are replaced with dummy cipher-
texts. Let Game i be the game with a functionality Fi and simulator Si
where the first i − 1 Enc-L inputs of Fi to Si include only the leakage
L(m), and the remaining such inputs include the full message. For the
first i−1 encryptions, Si creates a dummy ciphertext and programs the
random oracle upon corruption of the party or the receiver as done by
S in Figure 3.6, aborting in case programming fails. For the remaining
Enc-L inputs, Si generates honest encryptions of the real message.

One can see that Game qE is identical to the ideal world with FLpke
and S. To have a non-negligible advantage distinghuishing the real
from the ideal world, there must exist an i ∈ {1, . . . , qE} such that Z
and A can distinguish between Game (i− 1) and Game i. These games
are actually identical, except in the case that abort happens during
the programming of the random oracle GpRO for the i-th ciphertext,
which is a real ciphertext in Game (i − 1) and a dummy ciphertext in
Game i. We call this the ROABORT event. We show that if there exists
an environment Z and real-world adversary A that make ROABORT
happen with non-negligible probability ν, then we can construct an
efficient algorithm B (the “reduction”) with black-box access to Z and
A that is able to invert OWTP.

Our reduction B must only simulate honest parties, and in partic-
ular must provide to A a consistent view of their secrets (randomness
used for encryption, secret keys, and decrypted plaintexts, just like S
does) when they become corrupted. Moreover, since we are not in the
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idealized scenario, there is no external global random oracle function-
ality GpRO: instead, B simulates GpRO for all the parties involved, and
answers all their oracle calls.

Upon input the OWTP challenge (Σ, ϕ, y), B runs the code of Game
(i−1), but sets the public key of the receiver to pk = (Σ, ϕ). Algorithm
B answers the first i − 1 encryption requests with dummy ciphertexts
and the (i+ 1)-st to qE-th queries with honestly generated ciphertexts.
For the i-th encryption request, however, it returns a special dummy
ciphertext with c1 = y.

To simulate GpRO, B maintains an initially empty list ListH to which
pairs (m,h) are either added by lazy sampling for HashQuery queries,
or by programming for ProgramRO queries. (Remember that the en-
vironment Z can program entries in GpRO as well.) For requests from
Z, B actually performs some additional steps that we describe further
below.

It answers Decrypt requests for a ciphertext c = (c1, c2,1, . . . , c2,k, c3)
by searching for a pair of the form (x‖k‖m, c3) ∈ ListH such that ϕ(x) =
c1 and m = DC(c2,1 ⊕ h1, . . . , c2,k ⊕ hk), where hj = H(x‖j), meaning
that hj is assigned the value of a simulated request (HashQuery, x‖j)
to GpRO. Note that at most one such pair exists for a given ciphertext
c, because if a second (x′‖k‖m′, c3) ∈ ListH would exist, then it must
hold that ϕ(x′) = c1. Because ϕ is a permutation, this means that
x = x′. Since for each j = 1, . . . , k, only one pair (x‖j, hj) ∈ ListH can
be registered, this means that m′ = DC(c2,1 ⊕ h1, . . . , c2,k ⊕ hk) = m
because DC is deterministic. If such a pair (x‖k‖m, c3) exists, it returns
m, otherwise it rejects by returning ⊥m.

One problem with the decryption simulation above is that it does
not necessarily create the same entries into ListH as an honest de-
cryption would have, and Z could detect this by checking whether
programming for these entries succeeds. In particular, Z could first
ask to decrypt a ciphertext c = (ϕ(x), c2,1, . . . , c2,k, c3) for random
x, c2,1, . . . , c2,k, c3 and then try to program the random oracle on any
of the points x‖j for j = 1, . . . , k or on x‖k‖m. In Game (i − 1) and
Game i, such programming would fail because the entries were created
during the decryption of c. In the simulation by B, however, program-
ming would succeed, because no valid pair (x‖k‖m, c3) ∈ ListH was
found to perform decryption.

To preempt the above problem, B checks all incoming requests
HashQuery and ProgramRO by Z for points of the form x‖j or x‖k‖m
against all previous decryption queries c = (c1, c2,1, . . . , c2,k, c3). If
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ϕ(x) = c1, then B immediately triggers the creation of all random-
oracle entries (by making appropriate HashQuery calls) that would have
been generated by a decryption of c by computing m′ = DC(c2,1 ⊕
H(x‖1), . . . , c2,k ⊕ H(x‖k)) and c′3 = H(x‖k‖m′). Only then does B
handle Z’s original HashQuery or ProgramRO request.

The only remaining problem is if during this procedure c′3 = c3,
meaning that c was previously rejected during by B, but it becomes
a valid ciphertext by the new assignment of H(x‖k‖m) = c′3 = c3.
This happens with negligible probability, though: a random value c′3
will only hit a fixed c3 with probability 1/|Σ| ≤ 1/2κ. Since up to qD

ciphertexts may have been submitted with the same first component
c1 = ϕ(x) and with different values for c3, the probability that it hits
any of them is at most qD/2

κ. The probability that this happens for
at least one of Z’s qH HashQuery queries or one of its qP ProgramRO
queries during the entire execution is at most (qH + qP)qD/2

κ.

When A corrupts a party, B provides the encryption randomness
that it used for all ciphertexts that such party generated. If A corrupts
the receiver or the party that generated the i-th ciphertext, then B
cannot provide that randomness. Remember, however, that B is run-
ning Z and A in the hope for the ROABORT event to occur, meaning
that the programming of values for the i-th ciphertext fails because the
relevant points in GpRO have been assigned already. Event ROABORT
can only occur at the corruption of either the receiver or of the party
that generated the i-th ciphertext, whichever comes first. Algorithm
B therefore checks ListH for points of the form x‖j or x‖k‖m such
that ϕ(x) = y. If ROABORT occurred, then B will find such a point
and output x as its preimage for y. If it did not occur, then B gives
up. Overall, B will succeed whenever ROABORT occurs. Given that
Game (i − 1) and Game i are different only when ROABORT occurs,
and given that Z and A have non-negligible probability of distinguish-
ing between Game (i−1) and Game i, we conclude that B succeeds with
non-negligible probability.

3.4 Restricted Programmable Global Ran-
dom Oracles

The strict and the programmable global random oracles, GsRO and GpRO,
respectively, do not give the simulator any extra power compared to
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the real world adversary/environment. Canetti and Fischlin [CF01]
proved that it is impossible to realize UC commitments without a setup
assumption that gives the simulator an advantage over the environment.
This means that, while GsRO and GpRO allowed for security proofs of
many practical schemes, we cannot hope to realize even the seemingly
simple task of UC commitments with this setup. In this section, we turn
our attention to programmable global random oracles that do grant an
advantage to the simulator.

3.4.1 Restricting Programmability to the Simulator

Canetti et al. [CJS14] defined a global random oracle that restricts
observability only adversarial queries, (hence, we call it the restricted
observable global random oracle GroRO), and show that this is sufficient
to construct UC commitments. More precisely, if sid is the identifier
of the challenge session, a list of so-called illegitimate queries for sid
can be obtained by the adversary, which are queries made on inputs
of the form (sid, . . .) by machines that are not part of session sid. If
honest parties only make legitimate queries, then clearly this restricted
observability will not give the adversary any new information, as it con-
tains only queries made by the adversary. In the ideal world, however,
the simulator S can observe all queries made through corrupt machines
within the challenge session sid as it is the ideal-world attacker, which
means it will see all legitimate queries in sid. With the observability of
illegitimate queries, that means S can observe all hash queries of the
form (sid, . . .), regardless of whether they are made by honest or cor-
rupt parties, whereas the real-world attacker does not learn anything
form the observe interface.

We recall the restricted observable global random oracle GroRO due
to Canetti et al. [CJS14] in a slightly modified form in Fig. 3.8. In
their definition, it allows ideal functionalities to obtain the illegitimate
queries corresponding to their own session. These functionalities then
allow the adversary to obtain the illegitimate queries by forwarding the
request to the global random oracle. Since the adversary can spawn any
new machine, and in particular an ideal functionality, the adversary can
create such an ideal functionality and use it to obtain the illegitimate
queries. We chose to explicitly model this adversarial power by allowing
the adversary to query for the illegitimate queries directly.

Also in Fig. 3.8, we define a restricted programmable global random
oracle GrpRO by using a similar approach to restrict programming ac-
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GroRO, GrpRO, and GrpoRO – functionalities of the global random oracle
with restricted programming and/or restricted observability.

Parameters: output size function `.
Variables: initially empty lists ListH, prog.
1. Query. On input (HashQuery,m) from a machine (P, sid) or from the

adversary:

• Look up h such that (m,h) ∈ ListH. If no such h exists:

– draw h $←−{0, 1}`(κ)

– set ListH := ListH ∪ {(m,h)}
• Parse m as (s,m′).

• If this query is made by the adversary, or if s 6= sid, then add
(s,m′, h) to the (initially empty) list of illegitimate queries Qs.

• Output (HashConfirm, h) to the caller.

2. Observe. (GroRO and GrpoRO only) On input (Observe, sid) from the

adversary:

• If Q|sid does not exist yet, then set Qsid = ∅.

• Output (ListObserve,Qsid) to the adversary.

3. Program. (GrpRO and GrpoRO only) On input (ProgramRO,m, h) with

h ∈ {0, 1}`(κ)
from the adversary:

• If ∃ h′ ∈ {0, 1}`(κ)
such that (m,h′) ∈ ListH and h 6= h′, ignore

this input.

• Set ListH := ListH ∪ {(m,h)} and prog := prog ∪ {m}.
• Output (ProgramConfirm) to the adversary.

4. IsProgrammed: (GrpRO and GrpoRO only) On input (IsProgrammed,

m) from a machine (P, sid) or from the adversary:

• If the input was given by (P, sid), parse m as (s,m′). If s 6= sid,
ignore this input.

• Set b← m ∈ prog and output (IsProgrammed, b) to the caller.

Figure 3.8: The global random-oracle functionalities GroRO, GrpRO, and
GrpoRO with restricted observability, restricted programming, and combined
restricted observability and programming, respectively. Functionality GroRO

contains only the Query and Observe interfaces, GrpRO contains only the
Query, Program, and IsProgrammed interfaces, and GrpoRO contains all in-
terfaces.
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cess from the real-world adversary. The adversary can program points,
but parties in session sid can check whether the random oracle was
programmed on a particular point (sid, . . .). In the real world, the ad-
versary is allowed to program, but honest parties can check whether
points were programmed and can, for example, reject signatures based
on a programmed hash. In the ideal world, the simulator controls the
corrupt parties in sid and is therefore the only entity that can check
whether points are programmed. Note that while it typically internally
simulates the real-world adversary that may want to check whether
points of the form (sid, . . .) are programmed, the simulator can simply
“lie” and pretend that no points are programmed. Therefore, the extra
power that the simulator has over the real-world adversary is program-
ming points without being detected.

It may seem strange to offer a new interface allowing all parties to
check whether certain points are programmed, even though a real-world
hash function does not have such an interface. However, we argue that
if one accepts a programmable random oracle as a proper idealization of
a clearly non-programmable real-world hash function, then it should be
a small step to accept the instantiation of the IsProgrammed interface
that always returns “false” to the question whether any particular entry
was programmed into the hash function.

3.4.2 UC-Commitments from GrpRO
We now show that we can create a UC-secure commitment protocol
from GrpRO. A UC-secure commitment scheme must allow the simu-
lator to extract the message from adversarially created commitments,
and to equivocate dummy commitments created for honest commit-
ters, i.e., first create a commitment that it can open to any message
after committing. Intuitively, achieving the equivocability with a pro-
grammable random oracle is simple: we can define a commitment that
uses the random-oracle output, and the adversary can later change the
committed message by programming the random oracle. Achieving ex-
tractability, however, seems difficult, as we cannot extract by observing
the random-oracle queries. We overcome this issue with the following
approach. The receiver of a commitment chooses a nonce on which we
query random oracle, interpreting the random oracle output as a public
key pk . Next, the committer encrypts the message to pk and sends the
ciphertext to the receiver, which forms the commitment. To open, the
committer reveals the message and the randomness used to encrypt it.
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This solution is extractable as the simulator that plays the role of
receiver can program the random oracle such that it knows the secret
key corresponding to pk , and simply decrypt the commitment to find
the message. However, we must take care to still achieve equivocability.
If we use standard encryption, the simulator cannot open a ciphertext
to any value it learns later. The solution is to use non-committing
encryption, which, as shown in Section 3.3, can be achieved using a
programmable random oracle. We use a slightly different encryption
scheme, as the security requirements here are slightly less stringent
than full non-committing encryption, and care must be taken that we
can interpret the result of the random oracle as a public key, which
is difficult for constructions based on trapdoor one-way permutations
such as RSA. This approach results in a very efficient commitment
scheme: with two exponentiations per party (as opposed to five) and
two rounds of communication (as opposed to five), it is considerably
more efficient than the one of [CJS14].

Let COMGrpRO be the following commitment protocol, parametrized
by a group G = 〈g〉 of prime order q. We require an algorithm Embed

that maps elements of {0, 1}`(κ)
into G, such that for h $←−{0, 1}`(κ)

,
Embed(h) is computationally indistinguishable from uniform in G. Fur-
thermore, we require an efficiently computable probabilistic algorithm
Embed−1, such that for all x ∈ G, Embed(Embed−1(x)) = x and for
x $←−G, Embed−1(x) is computationally indistinguishable from uniform

in {0, 1}`(κ)
. COMGrpRO assumes authenticated channels Fauth as defined

by Canetti [Can00].

1. On input (Commit, sid, x), party C proceeds as follows.

• Check that sid = (C,R, sid′) for some C, sid′. Send Commit
to R over Fauth by giving Fauth input (Send, (C,R, sid, 0),
“Commit”).

• R, upon receiving (Sent, (C,R, sid, 0), “Commit”) from Fauth,
takes a nonce n $←−{0, 1}κ and sends the nonce back to C by
giving Fauth input (Send, (R, C, sid, 0), n).

• C, upon receiving (Sent, (R, C, sid, 0), n), queries GrpRO on
(sid, n) to obtain hn. It checks whether this point was pro-
grammed by giving GroRO input (IsProgrammed, (sid, n)) and
aborts if GroRO returns (IsProgrammed, 1).

• Set pk ← Embed(hn).

• Pick a random r $←−G and ρ ∈ Zq. Set c1 ← gr, query GrpRO
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on (sid, pkr) to obtain hr and let c2 ← hr ⊕ x.

• Store (r, x) and send the commitment to R by giving Fauth

input (Send, (C,R, sid, 1), (c1, c2)).

• R, upon receiving (Sent, (C,R, sid, 1), (c1, c2)) from Fauth out-
puts (Receipt, sid).

2. On input (Open, sid), C proceeds as follows.

• It sends (r, x) to R by giving Fauth input (Send, (C,R, sid, 2),
(r, x)).

• R, upon receiving (Sent, (C,R, sid, 1), (r, x)):

– Query GrpRO on (sid, n) to obtain hn and compute pk ←
Embed(hn).

– Check that c1 = gr.
– Query GrpRO on (sid, pkr) to obtain hr and check that
c2 = hr ⊕ x.

– Check that none of the points was programmed by giving
GroRO inputs (IsProgrammed, (sid, n)) and (IsProgrammed,
pkr) and asserting that it returns (IsProgrammed, 0) for
both queries.

– Output (Open, sid, x).

COMGrpRO is a secure commitment scheme under the computational
Diffie-Hellman assumption, which given a group G generated by g
of prime order q, challenges the adversary to compute gαβ on input
(gα, gβ), with (α, β) $←−Z2

q.

Theorem 5. COMGrpRO GUC-realizes Fcom (as defined in Figure 2.6)
in the GrpRO and Fauth hybrid model under the CDH assumption.

Proof. By the fact that COMGrpRO is GrpRO-subroutine respecting and by
Theorem 1, it is sufficient to show that COMGrpRO GrpRO-EUC-realizes
Fcom.

We describe a simulator S by defining its behavior in the different
corruption scenarios. In all scenarios, whenever the simulated real-
world adversary makes an IsProgrammed query or instructs a corrupt
party to make such a query on a point that S has programmed, the
simulator intercepts this query and simply replies (IsProgrammed, 0),
lying that the point was not programmed.

When both the sender and the receiver are honest, S works as fol-
lows.

1. When Fcom asks S for permission to output (Receipt, sid):
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• Parse sid as (C,R, sid′) and let “C” create a dummy com-
mitment by choosing r $←−Zq, letting c1 = gr, and choosing

c2
$←−{0, 1}`(κ)

.

• When “R” outputs (Receipt, sid), allow Fcom to proceed.

2. When Fcom asks S for permission to output (Open, sid, x):

• Program GrpRO by giving GroRO input (ProgramRO, (sid, pkr),
c2 ⊕ x), such that the commitment (c1, c2) commits to x.

• Give “C” input (Open, sid) instructing it to open its commit-
ment to x.

• When “R” outputs (Open, sid, x), allow Fcom to proceed.
If the committer is corrupt but the receiver is honest, S works as

follows.
1. When the simulated receiver “R” notices the commitment pro-

tocol starting (i.e., receives (Sent, (C,R, sid, 0), “Commit”) from
“Fauth”):

• Choose nonce n as in the protocol.

• Before sending n, choose sk $←−Zq and set pk ← gsk .

• Program GrpRO by giving GrpRO input (ProgramRO, (sid, n),
Embed−1(pk)). Note that this simulation will succeed with
overwhelming probability as n is freshly chosen, and note
that as pk is uniform in G, by definition of Embed−1 the

programmed value Embed−1(pk) is uniform in {0, 1}`(κ)
.

• S now lets “R” execute the remainder the protocol honestly.

• When “R” outputs (Receipt, sid), S extracts the committed
value from (c1, c2). Query GrpRO on (sid, csk1 ) to obtain hr
and set x← c2 ⊕ hr.
• Make a query with Fcom on C’s behalf by sending (Commit, sid,
x) on C’s behalf to Fcom.

• When Fcom asks permission to output (Receipt, sid), allow.

2. When “R” outputs (Open, sid, x):

• Send (Open, sid) on C’s behalf to Fcom.

• When Fcom asks permission to output (Open, sid, x), allow.
If the receiver is corrupt but the committer is honest, S works as

follows.
1. When Fcom asks permission to output (Receipt, sid):

• Parse sid as (C,R, sid′).
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• Allow Fcom to proceed.

• When Fcom receives (Receipt, sid) from Fcom as R is corrupt,
it simulates “C” by choosing r $←−Zq, computing c1 = gr, and

choosing c2
$←−{0, 1}`(κ)

.

2. When Fcom asks permission to output (Open, sid, x):

• Allow Fcom to proceed.

• When S receives (Open, sid, x) from Fcom as R is corrupt, S
programs GrpRO by giving GrpRO input (ProgramRO, (sid, pkr),
c2 ⊕ x), such that the commitment (c1, c2) commits to x.

• S inputs (Open, sid) to “C”, instructing it to open its com-
mitment to x.

What remains to show is that S is a satisfying simulator, i.e., no
GrpRO-externally constrained environment can distinguish Fcom and S
from COMGrpRO and A. When simulating an honest receiver, S extracts
the committed message correctly: Given pk and c1 = gr for some r,
there is a unique value pkr, and the message x is uniquely determined
by c2 and pkr. Simulator S also simulates an honest committer cor-
rectly. When committing, it does not know the message, but can still
produce a commitment that is identically distributed as long as the
environment does not query the random oracle on (sid, pkr). When S
later learns the message x, it must equivocate the commitment to open
to x, by programming GrpRO on (sid, pkr), which again succeeds unless
the environment makes a random oracle query on (sid, pkr). If there is
an environment that triggers such a GrpRO with non-negligible proba-
bility, we can construct an attacker B that breaks the CDH problem in
G.

Our CDH attacker B plays the role of Fcom, S, and GrpRO, and
has black-box access to the environment. B receives CDH problem
gα, gβ and is challenged to compute gαβ . It simulates GrpRO to return
hn ← Embed−1(gα) on random query (sid, n). When simulating an
honest committer committing with respect to this pk , set c1 ← gβ and

c2
$←−{0, 1}`(κ)

. Note that S cannot successfully open this commitment,
but remember that we consider an environment that with non-negligible
probability makes a GrpRO query on pkr(= gαβ) before the commitment
is being opened. Next, B will choose a random GrpRO query on (sid,m).
With nonnegligible probability, we have m = gαβ , and B found the
solution to the CDH challenge.
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3.4.3 Adding Observability for Efficient Commit-
ments

While the commitment scheme COMGrpRO from the restricted program-
mable global random oracle is efficient for a composable commitment
scheme, there is still a large efficiency gap between composable com-
mitments from global random oracles and standalone commitments or
commitments from local random oracles. Indeed, COMGrpRO still re-
quires multiple exponentiations and rounds of interaction, whereas the
folklore commitment scheme c = H(m‖r) for message m and random
opening information r consists of computing a single hash function.

We extend GrpRO to, on top of programmability, offer the restricted
observability interface of the global random oracle due to Canetti et
al. [CJS14]. With this restricted programmable and observable global
random oracle GrpoRO (as shown in Figure 3.8), we can close this effi-
ciency gap and prove that the folklore commitment scheme above is a
secure composable commitment scheme with a global random oracle.

Let COMGrpoRO be the commitment scheme that simply hashes the
message and opening, phrased as a GUC protocol using GrpoRO and
using authenticated channels, which is formally defined as follows.

1. On input (Commit, sid, x), party C proceeds as follows.

• Check that sid = (C,R, sid′) for some C, sid′.

• Pick r $←−{0, 1}κ and query GrpoRO on (sid, r, x) to obtain c.

• Send c to R by giving Fauth input (Send, (C,R, sid, 0), c).

• R, upon receiving (Sent, (C,R, sid, 0), c) from Fauth, outputs
(Receipt, sid).

2. On input (Open, sid), C proceeds as follows.

• It sends (r, x) to R by giving Fauth input (Send, (C,R, sid, 1),
(r, x)).

• R, upon receiving subroutine output (Sent, (C,R, sid, 1), (r,
x)) from Fauth, queries GrpoRO on (sid, r, x) and checks that
the result is equal to c, and checks that (sid, r, x) is not pro-
grammed by giving GrpoRO input (IsProgrammed, (sid, r, x))
and aborting if the result is not (IsProgrammed, 0). Output
(Open, sid, x).

Theorem 6. COMGrpoRO GUC-realizes Fcom (as defined in Figure 2.6),
in the GrpoRO and Fauth hybrid model.
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Proof. By the fact that COMGrpoRO is GrpoRO-subroutine respecting and
by Theorem 1, it is sufficient to show that COMGrpoRO GrpoRO-EUC-
realizes Fcom.

We define a simulator S by describing its behavior in the different
corruption scenarios. For all scenarios, S will internally simulate A
and forward any messages between A and the environment, the corrupt
parties, and GrpoRO. It stores all GrpoRO queries that it makes for A and
for corrupt parties. Only when A directly or through a corrupt party
makes an IsProgrammed query on a point that S programmed, S will
not forward this query to GrpoRO but instead return (IsProgrammed, 0).
When we say that S queries GrpoRO on a point (s,m) where s is the
challenge sid, for example when simulating an honest party, it does so
through a corrupt dummy party that it spawns, such that the query is
not marked as illegitimate.

When both the sender and the receiver are honest, S works as fol-
lows.

1. When Fcom asks S for permission to output (Receipt, sid):

• Parse sid as (C,R, sid′) and let “C” commit to a dummy
value by giving it input (Commit, sid,⊥), except that it takes

c $←−{0, 1}`(κ)
instead of following the protocol.

• When “R” outputs (Receipt, sid), allow Fcom to proceed.

2. When Fcom asks S for permission to output (Open, sid, x):

• Choose a random r $←−{0, 1}κ and program GrpoRO by giv-
ing it input (ProgramRO, (sid, r, x), c), such that the com-
mitment c commits to x. Note that since r is freshly chosen
at random, the probability that GrpoRO is already defined on
(sid, r, x) is negligible, so the programming will succeed with
overwhelming probability.

• Give “C” input (Open, sid) instructing it to open its commit-
ment to x.

• When “R” outputs (Open, sid, x), allow Fcom to proceed.

If the committer is corrupt but the receiver is honest, S works as
follows.

1. When simulated receiver “R” outputs (Receipt, sid):

• Obtain the list Qsid of all random oracle queries of form
(sid, . . .), by combining the queries that S made on behalf
of the corrupt parties and the simulated honest parties, and
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by obtaining the illegitimate queries made outside of S by
giving GrpoRO input (Observe, sid).

• Find a non-programmed record ((sid, r, x), c) ∈ Qsid. If no
such record is found, set x to a dummy value.

• Make a query with Fcom on C’s behalf by sending (Commit,
sid, x) on C’s behalf to Fcom.

• When Fcom asks permission to output (Receipt, sid), allow.

2. When “R” outputs (Open, sid, x):

• Send (Open, sid) on C’s behalf to Fcom.

• When Fcom asks permission to output (Open, sid, x), allow.
If the receiver is corrupt but the committer is honest, S works as

follows.
1. When Fcom asks permission to output (Receipt, sid):

• Parse sid as (C,R, sid′).

• Allow Fcom to proceed.

• When S receives (Receipt, sid) from Fcom as R is corrupt, it

simulates “C” by choosing c $←−{0, 1}`(κ)
instead of following

the protocol.

2. When Fcom asks permission to output (Open, sid, x):

• Allow Fcom to proceed.

• When S receives (Open, sid, x) from Fcom as R is corrupt,
choose r $←−{0, 1}κ and program GrpoRO by giving it input
(ProgramRO, (sid, r, x), c), such that the commitment c com-
mits to x. Note that since r is freshly chosen at random, the
probability that GrpoRO is already defined on (sid, r, x) is neg-
ligible, so the programming will succeed with overwhelming
probability.

• S inputs (Open, sid) to “C”, instructing it to open its com-
mitment to x.

We must show that S extracts the correct value from a corrupt com-
mitment. It obtains a list of all GrpoRO queries of the form (sid, . . .) and
looks for a non-programmed entry (sid, r, x) that resulted in output c. If
this does not exist, then the environment can only open its commitment
successfully by later finding a preimage of c, as the honest receiver will
check that the point was not programmed. Finding such a preimage
happens with negligible probability, so committing to a dummy value
is sufficient. The probability that there are multiple satisfying entries
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is also negligible, as this means the environment found collisions on the
random oracle.

Next, we argue that the simulated commitments are indistinguish-
able from honest commitments. Observe that the commitment c is
distributed equally to real commitments, namely uniform in {0, 1}`(κ)

.
The simuator can open this value to the desired x if programming the
random oracle succeeds. As it first takes a fresh nonce r $←−{0, 1}κ and
programs (sid, r, x), the probability that GrpoRO is already defined on
this input is negligible.

3.5 Unifying the Different Global Random
Oracles

At this point, we have considered several notions of global random ora-
cles that differ in whether they offer programmability or observability,
and in whether this power is restricted to machines within the local
session, or also available to other machines. Having several coexisting
variants of global random oracles, each with their own set of schemes
that they can prove secure, is somewhat unsatisfying. Indeed, if dif-
ferent schemes require different random oracles that in practice end up
being replaced with the same hash function, then we’re back to the
problem that motivated the concept of global random oracles.

We were able to distill a number of relations and transformations
among the different notions, allowing a protocol that realizes a func-
tionality with access to one type of global random oracle to be efficiently
transformed into a protocol that realizes the same functionality with
respect to a different type of global random oracle. A graphical repre-
sentation of our transformation is given in Figure 3.9.

The transformations are very simple and hardly affect efficiency of
the protocol. The s2ro transformation takes as input a GsRO-subroutine-
respecting protocol π and transforms it into a GroRO-subroutine respect-
ing protocol π′ = s2ro(π) by replacing each query (HashQuery,m) to
GsRO with a query (HashQuery, (sid,m)) to GroRO, where sid is the ses-
sion identifier of the calling machine. Likewise, the p2rp transformation
takes as input a GpRO-subroutine-respecting protocol π and transforms
it into a GrpRO-subroutine respecting protocol π′ = p2rp(π) by replacing
each query (HashQuery,m) to GpRO with a query (HashQuery, (sid,m))
to GrpRO and replacing each query (ProgramRO,m, h) to GpRO with a

53



Chapter 3. Composable Security with Global Random Oracles

GsRO s2ro - GroRO

GpRO p2rp - GrpRO rp2rpo- GrpoRO

Figure 3.9: Relations between different notions of global random oracles.
An arrow from G to G′ indicates the existence of simple transformation such
that any protocol that G-EUC-realizes a functionality F, the transformed
protocol G′-EUC-realizes the transformed functionality F (cf. Theorem 7).

query (ProgramRO, (sid,m), h) to GrpRO, where sid is the session iden-
tifier of the calling machine. The other transformation rp2rpo simply
replaces HashQuery, ProgramRO, and IsProgrammed queries to GrpRO
with identical queries to GrpoRO.

Theorem 7. Let π be a GxRO-subroutine-respecting protocol and let
GyRO be such that there is an edge from GxRO to GyRO in Figure 3.9,
where x, y ∈ {s, ro, p, rp, rpo}. Then if π GxRO-EUC-realizes a function-
ality F, where F is an ideal functionality that does not communicate
with GxRO, then π′ = x2y(π) is a GyRO-subroutine-respecting protocol
that GyRO-EUC-realizes F.

Proof sketch. We first provide some detail for the s2ro transformation.
The other transformations can be proved in a similar fashion, so we
only provide an intuition here.

As protocol π GsRO-EUC-realizes F, there exists a simulator Ss that
correctly simulates the protocol with respect to the dummy adversary.
Observe that GroRO offers the same HashQuery interface to the adver-
sary as GsRO, and that the GroRO only gives the simulator extra pow-
ers. Therefore, given the dummy-adversary simulator Ss for π, one can
build a dummy-adversary simulator Sro for s2ro(π) as follows. If the
environment makes a query (HashQuery, x), either directly through the
dummy adversary, or indirectly by instructing a corrupt party to make
that query, Sro checks whether x can be parsed as (sid, x′) where sid
is the challenge session. If so, then it passes a direct or indirect query
(HashQuery, x′) to Ss, depending whether the environment’s original
query was direct or indirect. If x cannot be parsed as (sid, x′), then
it simply relays the query to GroRO. Simulator Sro relays Ss’s inputs
to and outputs from F. When Ss makes a (HashQuery, x′) query to
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GsRO, Sro makes a query (HashQuery, (sid, x′)) to GroRO and relays the
response back to Ss. Finally, Sro simply relays any Observe queries
by the environment to GroRO. Note, however, that these queries do not
help the environment in observing the honest parties, as they only make
legitimate queries.

To see that Sro is a good simulator for s2ro(π), we show that if there
exists a distinguishing dummy-adversary environment Zro for s2ro(π)
and Sro, then there also exists a distinguishing environment Zs for π
and Ss, which would contradict the security of π. The environment Zs

runs Zro by internally executing the code of GroRO to respond to Zro’s
GroRO queries, except for queries (HashQuery, x) where x can be parsed
as (sid, x′), for which Zs reaches out to its own GsRO functionality with
a query (HashQuery, x′).

The p2rp transformation is very similar to s2ro and prepends sid to
random oracle queries. Moving to the restricted programmable RO only
reduces the power of the adversary by making programming detectable
to honest users through the IsProgrammed interface. The simulator,
however, maintains its power to program without being detected, be-
cause it can intercept the environment’s IsProgrammed queries for the
challenge sid and pretend that they were not programmed. The en-
vironment cannot circumvent the simulator and query GrpRO directly,
because IsProgrammed queries for sid must be performed from a ma-
chine within sid.

Finally, the rp2rpo transformation increases the power of both the
simulator and the adversary by adding a Observe interface. Similarly
to the s2ro simulator, however, the interface cannot be used by the
adversary to observe queries made by honest parties, as these queries
are all legitimate.

Unfortunately, we were unable to come up with security-preserving
transformations from non-programmable to programmable random ora-
cles that apply to any protocol. One would expect that the capability to
program random-oracle entries destroys the security of many protocols
that are secure for non-programmable random oracles. Often this effect
can be mitigated by letting the protocol, after performing a random-
oracle query, additionally check whether the entry was programmed
through the IsProgrammed interface, and rejecting or aborting if it was.
While this seems to work for signature or commitment schemes where
rejection is a valid output, it may not always work for arbitrary pro-
tocols with interfaces that may not be able to indicate rejection. We

55



Chapter 3. Composable Security with Global Random Oracles

leave the study of more generic relations and transformations between
programmable and non-programmable random oracles as interesting
future work.
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Chapter 4

Delegatable Anonymous
Credentials

Anonymous credentials allow users to prove that they were issued cer-
tain attributes by an issuer in an anonymous manner, meaning that
they are indistinguishable from other users who prove the same state-
ment. However, since the identity of the issuer must be known, anony-
mous credentials cannot offer anonymity when different intermediate
authorities may issue credentials. This chapter introduces the first prac-
tical delegatable anonymous credential scheme, which supports exactly
this scenario. Moreover, it is the first delegatable credential scheme
that supports attributes, and we prove the scheme to be secure in a
composable manner. This chapter builds on the results of the previous
chapter and is secure with respect to a global random oracle.

4.1 Introduction

Privacy-preserving attribute-based credentials (PABCs) [CDE+14], orig-
inally introduced as anonymous credentials [Cha85,CL04], allow users
to authenticate to service providers in a privacy-protecting way, only re-
vealing the information absolutely necessary to complete a transaction.
The growing legal demands for better protection of personal data and
more generally the increasingly stronger security requirements make
PABCs a primary ingredient for building secure and privacy-preserving
IT systems.
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An (attribute-based) anonymous credential is a set of attributes cer-
tified to a user by an issuer. Every time a user presents her credential,
she creates a fresh token which is a zero-knowledge proof of posses-
sion of a credential. When creating a token, the user can select which
attributes she wants to disclose from the credential or choose to in-
clude only predicates on the attributes. Verification of a token requires
knowledge of the issuer public key only. Despite their strong privacy
features, anonymous credentials do reveal the identity of the issuer,
which, depending on the use case, still leaks information about the
user such as the user’s location, organization, or business unit. In prac-
tice, credentials are typically issued in a hierarchical manner and thus
the chain of issuers will reveal even more information. For instance,
consider governmental issued certificates such as drivers licenses, which
are typically issued by a local authority whose issuing keys are then
certified by a regional authority, etc. So there is a hierarchy of at least
two levels if not more. Thus, when a user presents her drivers license
to prove her age, the local issuer’s public key will reveal her place of
residence, which, together with other attributes such as the user’s age,
might help to identify the user. As another example consider a (per-
missioned) blockchain. Such a system is run by multiple organizations
that issue certificates (possibly containing attributes) to parties that
are allowed to submit transactions. By the nature of blockchain, trans-
actions are public or at least viewable by many blockchain members.
Recorded transactions are often very sensitive, in particular when they
pertain to financial or medical data and thus require protection, includ-
ing the identity of the transaction originator. Again, issuing credential
in a permissioned blockchain is a hierarchical process, typically consist-
ing of two levels, a (possibly distributed) root authority, the first level
consisting of CAs by the different organizations running the blockchain,
and the second level being users who are allowed to submit transactions.

Delegatable anonymous credentials (DAC), formally introduced by
Belenkiy et al. [BCC+09], can solve this problem. They allow the owner
of a credential to delegate her credential to another user, who, in turn,
can delegate it further as well as present it to a verifier for authentica-
tion purposes. Thereby, only the identity (or rather the public key) of
the initial delegator (root issuer) is revealed for verification. A few DAC
constructions have been proposed [CL06, BCC+09, Fuc11, CKLM13a],
but none is suitable for practical use for the following reasons:
• While being efficient in a complexity theoretic sense, they are not

practical because they use generic zero-knowledge proofs or Groth-
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Sahai proofs with many expensive pairing operations and a large
credential size.

• The provided constructions are described mostly in a black-box
fashion (to hide the complexity of their concrete instantiations),
often leaving out the details that would be necessary for their im-
plementation. Therefore, a substantial additional effort would be
required to translate these schemes to a software specification or
perform a concrete efficiency analysis.

• The existing DAC security models do not consider attributes, which,
however, are necessary in many practical applications. Also, ex-
tending the proposed schemes to include attributes on different del-
egation levels is not straightforward and will definitely not improve
their efficiency.

• Finally, the existing schemes either do not provide an ideal function-
ality for DAC ( [CL06]) or are proven secure in standalone models
( [BCC+09,Fuc11,CKLM13a]) that guarantee security only if a pro-
tocol is run in isolation, which is not the case for a real environment.
In other words, no security guarantees are provided if they are used
to build a system, i.e., the security of the overall system would
have to be proved from scratch. This usually results in complex
monolithic security proofs that are prone to mistakes and hard to
verify.

The main reason why the existing schemes are sufficiently efficient,
is that they hide the identities of the delegator and delegatee during
credential delegation. Thus privacy is ensured for both delegation and
presentation of credentials. While this is a superior privacy guarantee,
we think that privacy is not necessary for delegation. Indeed, in real-
world scenarios a delegator and a delegatee would typically know each
other when an attribute-based credential is delegated, especially in the
most common case of a hierarchal issuance. Therefore, we think that
ensuring privacy only for presentation is a natural way to model del-
egatable credentials. Furthermore, revealing the full credential chain
including the public keys and attribute values to the delegatee would
allow us to avoid using expensive cryptographic building blocks such as
generic zero-knowledge proofs, re-randomizable proofs, and malleable
signatures.
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4.1.1 Our Contribution

Let us look at delegatable credentials with a different privacy assump-
tions for delegation in mind and see how such system would work.
The root delegator (we call it issuer) generates a signing and a corre-
sponding verification key and publishes the latter. User A, to whom a
credential gets issued on the first level (we call it a Level-1 credential),
generates a fresh credential secret and a public key and sends the public
key to the issuer. The issuer signs this public key together with the set
of attributes and sends the generated signature to user A. User A can
then delegate her credential further to another user, say B, by signing
B’s freshly generated credential public key and (possibly another) set
of attributes with the credential secret key of user A. A sends her sig-
nature together with her original credential and A’s attributes to user
B. User B’s credential, therefore, consists of two signatures with the
corresponding attribute sets, credential public keys of user A and user
B, and B’s credential secret key. User B, using his credential secret key,
can delegate his credential further as described above or use it to sign
a message by generating a presentation token. The token is essentially
a non-interactive zero-knowledge (NIZK) proof of possession of the sig-
natures and the corresponding public keys from the delegation chain
that does not reveal their values. The signed attributes can also be
only selectively revealed using NIZK. Verification of the token requires
only the public key of the issuer and, thus, hides the identities of both
users A and B and (selectively) their attributes. Since all attributes,
signatures, and public keys are revealed to the delegatee during dele-
gation, we can use the most efficient zero-knowledge proofs (Schnorr
proofs) that would make a protocol practical.

Contribution Summary In this chapter, which is based on [CDD17],
we propose the first practical delegatable anonymous credential system
with attributes that is well-suited for real-world applications.

More concretely, we first provide a (surprisingly simple) ideal func-
tionality Fdac for delegatable credentials with attributes. Attributes can
be different on any level of delegation. Each attribute at any level can
be selectively revealed when generating presentation token. Tokens can
be used to sign arbitrary messages. Privacy is guaranteed only during
presentation, during delegation the delegatee knows the full credential
chain delegated to her.

Second, we propose a generic DAC construction from signature
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schemes and zero-knowledge proofs and prove it secure in the universal
composability (UC) framework introduced by Canetti [Can01]. Our
construction can be used as a secure building block to build a higher-
level system as a hybrid protocol, enabling a modular design and sim-
pler security analysis.

Third, we describe a very efficient instantiation of our DAC scheme
based on a recent pairing-based signature scheme by Groth [Gro15] and
on Schnorr zero-knowledge proofs [Sch90]. We further provide a thor-
ough efficiency analysis of this instantiation and detailed pseudocode
that can be easily translated into a computer program. We also discus
a few optimization techniques for the type of zero-knowledge proofs we
use (i.e., proofs of knowledge of group elements under pairings). These
techniques are of independent interest.

Finally, we report on an implementation of our scheme and give
concrete performance figures, demonstrating the practicality of our con-
struction. For instance, generating an attribute token with four undis-
closed attributes from a delegated credential takes only 50 miliseconds,
and verification requires only 40 miliseconds, on a 3.1GHz Intel I7-
5557U laptop CPU.

4.1.2 Related Work

There is only a handful of constructions of delegatable anonymous cre-
dentials [CL06,BCC+09,Fuc11,CKLM13a]. All of them provide privacy
for both delegator and delegatee during credential delegation and pre-
sentation. The first one is by Chase and Lysyanskaya [CL06] which uses
generic zero-knowledge proofs. The size of a credential in their scheme
is exponential in the number of delegations, which, as authors admit
themselves, makes it impractical and allows only for a constant number
of delegations. Our ideal functionality for DAC is also quite different
from the signature of knowledge functionality that they use to build
a DAC system. For example, we distinguish between the delegation
and presentation interfaces and ping the adversary for the delegation.
We also do not require the extractability for the verification interface,
which makes our scheme much more efficient.

The construction by Belenkiy et al. [BCC+09] employs Groth-Sahai
NIZK proofs and in particular their randomization property. It allows
for a polynomial number of delegations and requires a common ref-
erence string (CRS). Fuchsbauer [Fuc11] proposed a delegatable cre-
dential system that is inspired by the construction of Belenkiy et al.
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and supports non-interactive issuing and delegation of credentials. It is
based on the commuting signatures and Groth-Sahai proofs and is at
least twice as efficient as the scheme by Belenkiy et al. [BCC+09]. Our
construction also requires a CRS, but still outperforms both schemes.
For example, without attributes, the token size increases with every
level by 4 group elements (G2

1 × G2
2) for our scheme versus G50

1 × G40
2

for Belenkiy et al. [BCC+09] and G20
1 × G18

2 for Fuchsbauer [Fuc11].
Due to our optimization techniques, the number of expensive opera-
tions (exponentiations and pairings) is also minimized.

Finally, Chase et al. [CKLM13a, CKLM14] propose a DAC instan-
tiation that is also non-interactive and scales linearly with the number
of delegations. Their unforgeability definition is a bit different from
the one by Belenkiy et al. [BCC+09] and implements the simulation
extractability notion. However, none of the schemes accommodate at-
tributes in their security definitions. As we mentioned above, it is hard
to derive the exact efficiency figures from the“black-box”-type construc-
tion of [CKLM13a], which is built from malleable signatures, which, in
turn, are built from the malleable proofs. The efficiency of their scheme
depends on the concrete instantiation of malleable proofs: either Groth-
Sahai proofs [CKLM12], which would be in the same spirit as [Fuc11],
or non-interactive arguments of knowledge (SNARKs) and homomor-
phic encryption [CKLM13b], which, as the authors claim themselves,
is less efficient.

Hierarchical group signatures, as introduced by Trolin and Wik-
ström [TW05] and improved by Fuchsbauer and Pointcheval [FP09],
are an extension of group signatures that allow for a tree of group
managers. Users that received a credential from any of the managers
can anonymously sign on behalf of the group, as is the case with del-
egatable credentials. However, in contrast to delegatable credentials,
parties can serve either as manager or as user, but not both simulta-
neously. Additionally, hierarchical group signatures differ from dele-
gatable credentials in the fact that signatures can be deanonymized by
group managers.

4.2 Definition of Delegatable Credentials

We now define delegatable credentials in the form of an ideal function-
ality Fdac. For simplicity we consider the functionality with a single
root delegator (issuer), but using multiple instances of Fdac allows for
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1. Setup. On input (SETUP, sid, 〈ni〉i) from I.

• Verify that sid = (I, sid′).

• Output (SETUP, sid, 〈ni〉i) to A and wait for response
(SETUP, sid,Present,Ver, 〈Ai〉i) from A, where Present is a proba-
blistic ITM Ver is a deterministic ITM, both interacting only with
random oracle GsRO.

• Store algorithms Present and Ver and credential parameters 〈Ai〉i, 〈ni〉i,
initialize Lde ← ∅ ; Lat ← ∅.

• Output (SETUPDONE, sid) to I.

2. Delegate. On input (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pj) from some
party Pi, with ~aL ∈ AnLL .

• If L = 1, check sid = (Pi, sid′) and add an entry 〈Pj , ~a1〉 to Lde.

• If L > 1, check that an entry 〈Pi, ~a1, . . . , ~aL−1〉 exists in Lde.

• Output (ALLOWDEL, sid, ssid ,Pi,Pj , L) to A and wait for input
(ALLOWDEL, sid, ssid) from A.

• Add an entry 〈Pj , ~a1, . . . , ~aL〉 to Lde.

• Output (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pi) to Pj .
3. Present. On input (PRESENT, sid,m,~a1, . . . ,~aL) from some party Pi,

with ~ai ∈ (Ai ∪ ⊥)ni for i = 1, . . . , L.

• Check that an entry 〈Pi,~a′1, . . . ,~a′L〉 exists in Lde such that ~ai � ~ai
′ for

i = 1, . . . , L.

• Set at ← Present(m,~a1, . . . ,~aL) and abort if Ver(at ,m,~a1, . . . ,~aL) = 0.

• Store 〈m,~a1, . . . ,~aL〉 in Lat.

• Output (TOKEN, sid, at) to Pi.
4. Verify. On input (VERIFY, sid, at ,m,~a1, . . . ,~aL) from some party Pi.
• If there is no record 〈m,~a1, . . . ,~aL〉 in Lat, I is honest, and for i =

1, . . . , L, there is no corrupt Pj such that 〈Pj ,~a′1, . . . ,~a′i〉 ∈ Lde with
~aj � ~a′j for j = 1, . . . , i, set f ← 0.

• Else, set f ← Ver(at ,m,~a1, . . . ,~aL).

• Output (VERIFIED, sid, f) to Pi.

Figure 4.1: Ideal functionality for delegatable credentials with attributes
Fdac
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many issuers. Fdac allows for multiple levels delegation. A Level-1
credential is issued directly by the issuer. Any further delegations are
done between users: the owner of a Level-(L − 1) credential can dele-
gate it further, giving the receiver a Level L credential. Fdac supports
attributes on every level; attributes can be selectively disclosed during
credential presentation. A presentation of a delegated credential cre-
ates a so-called attribute token, which can be verified with respect to
the identity of the issuer, hiding the identity of the delegators.

Fdac interacts with the issuer I and parties Pi who can delegate,
present, and verify the credentials through the following four interfaces:
SETUP,DELEGATE,PRESENT,VERIFY, that we describe here. The
formal definition is presented in Fig. 4.1, where we use two conventions
that ease the notation. First, the SETUP interface can only be called
once, and all other interfaces ignore all input until a SETUP message
has been completed. Second, whenever Fdac performs a check, it means
that if the check fails, it aborts by outputting ⊥ to the caller.

Setup. The SETUP message is sent by the issuer I, whose identity is
fixed in the session identifier sid: Fdac first checks that sid = (I, sid′),
which guarantees that each issuer can initialize its own instance of the
functionality. The issuer defines the number of attributes for every
delegation level i by specifying 〈ni〉i. This can be done efficiently by
describing a function f(i). We fix the number of attributes on the same
delegation level since different number of attributes used by different
delegators on the same level may leak information about the delegators.
I does not need to specify the maximum number of the delegation
levels.

Fdac then asks the adversary for algorithms and credential param-
eters. The adversary provides algorithms Present,Ver for presenting
and verifying attribute tokens, respectively, and specifies the attribute
spaces 〈Ai〉i for different credential levels. To support random-oracle
based realizations of Fdac, Present and Ver are allowed to interact with
a global random oracle GsRO. Observe that here we make sure of the
fact that the random oracle is global, as two local functionalities cannot
interact in the standard UC framework. Fdac stores Present,Ver, 〈Ai〉i,
〈ni〉i and initializes two empty sets: Lde for delegation and Lat for
presentation bookkeeping.
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Delegate. The DELEGATE message is sent by a user Pi with a Level-
(L − 1) credential to delegate it to a user Pj , giving Pj a Level-L
credential. Pi specifies a list of attribute vectors for all the previous
levels in the delegation chain ~a1, . . . ,~aL−1 and the vector of attributes
~aL to certify in a freshly delegated Level-L credential. All attribute
vectors should satisfy the corresponding attribute space and length re-
quirements. We use subsession identifiers in this interface since multiple
delegation sessions might be interleaved due to the communication with
the adversary. If this delegation gives Pj a Level-1 credential, then Fdac

verifies that party Pi is the issuer by checking the sid and adds an entry
〈Pj ,~a1〉 to Lde. If this is not the first level delegation (L > 1), Fdac

checks if Pi indeed has a Level-(L − 1) credential with the specified
attributes ~a1, . . . ,~aL−1 by looking it up in Lde. Fdac then asks the ad-
versary if the delegation should proceed and, after receiving a response
from A, adds the corresponding delegation record to Lde and sends the
output that includes the full attribute chain to Pj , notifying it of the
successful delegation.

Note that in contrast to previous work on delegatable credentials,
we model no privacy in delegation. That is, Pi and Pj will learn the
identity of eachother during delegation. While this is a weaker privacy
definition than previous definitions, we think privacy for delegation is
not neccesary. in real-world scenarios, the delegator and delegatee will
typically know eachother when a credential with attributes is delegated.

Present. The PRESENT message is sent by a user Pi to create an
attribute token. A token selectively reveals attributes from the dele-
gated credential and also signs a message m, which can be an arbitrary
string. Pi inputs attribute vectors by specifying only the values of the
disclosed attributes and using special symbol ⊥ to indicate the hidden
attributes. Fdac checks if a delegation entry exists in Lde such that the
corresponding disclosed attributes were indeed delegated to Pi. For
this, it uses the following relation for attribute vectors: We say that
for two vectors ~a = (a1, . . . , an) ; ~b = (b1, . . . , bn) : ~a � ~b if ai = bi or
ai = ⊥ for i = 1, . . . , n.

If this is the case it runs the Present algorithm to generate the
attribute token. The Present algorithm does not take the identity of the
user and the non-disclosed attributes as input - the attribute token is
computed independently of these values. This ensures the user’s privacy
and hiding the non-disclosed attributes on all levels of the delegated
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credential chain. Next, it checks that the computed attribute token is
valid using the Ver algorithm, which ensures completeness. It outputs
the token value to user Pi.

Verify. The VERIFY message is sent by a user Pi to verify an attribute
token. Message m and the disclosed attribute values are also provided
as input for verification. Fdac performs the unforgeability check: if the
message together with the corresponding disclosed attribute values were
not signed by calling the PRESENT interface (there is no corresponding
bookkeeping record), the issuer is honest, and on any delegation level
there is no corrupted party with the matching attributes, then Fdac out-
puts a negative verification result; otherwise, Fdac runs the verification
algorithm and outputs the result to Pi.

Our ideal functionality Fdac can be easily extended to also accept
as input and output commitments to attribute values, following the
recent work by Camenisch et al. [CDR16], which would allow extending
our delegatable credential scheme with existing revocation schemes for
anonymous credentials in a hybrid protocol.

4.3 Building Blocks

This section introduces the building blocks used in our delegatable
credential scheme. We recall Groth’s structure preserving signature
scheme and define a new primitive we call a sibling signature scheme,
that allows for two different signing algorithms sharing a single key
pair.

4.3.1 Signature Schemes

A digital signature scheme SIG is a set of PPT algorithms SIG =
(Setup,Gen,Sign,Verify):

SIG.Setup(1κ)
$→ sp : The setup algorithm takes as input a security

parameter and outputs public system parameters that also specify
a message space M.

SIG.Gen(sp)
$→ (sk , pk) : The key generation algorithm takes as input

system parameters and outputs a public key pk and a correspond-
ing secret key sk .
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SIG.Sign(sk ,m)
$→ σ : The signing algorithm takes as input a private

key sk and a message m ∈M and outputs a signature σ.

SIG.Verify(pk ,m, σ)→ 1/0 : The verification algorithm takes as input
a public key pk , a message m and a signature σ and outputs 1
for acceptance or 0 for rejection according to the input.

Structure-Preserving Signature scheme by Groth

We recall the structure-preserving signature scheme by Groth [Gro15],
which we refer to as Groth. Note that the original scheme supports
signing blocks of messages in a form of “matrix”, whereas we provide a
simplified description for “vectors” of messages only, since we use this
version later in the chapter. Let a message be a vector of group elements
of length n: ~m = (m1, . . . ,mn). Groth can sign messages in either G1

or G2, by choosing a public key in G2 or G1, respectively. Let GrothG1

be the Groth signature scheme signing messages in G1 with a public key
in G2, and GrothG2 signs messages in G2 with a public key in G1. We
describe the GrothG2

scheme below. GrothG1
follows immediately.

GrothG2
.Setup: Let Λ∗ = (q,G1,G2,Gt, e) and yi

$← G2 for i = 1, . . . , n.
Output parameters sp = (Λ∗, {yi}i=1,...,n).

GrothG2
.Gen(sp): Choose random v

$← Zq and set V
$← gv1 . Output

public key pk = V and secret key sk = v.

GrothG2
.Sign(sk; ~m): To sign message ~m ∈ Gn2 choose a random r

$←
Z∗q and set

R← gr1 , S ← (y1 · gv2)
1
r , and Ti ← (yvi ·mi)

1
r .

Output signature σ = (R,S, T1, . . . , Tn).

GrothG2
.Verify(pk , σ, ~m) On input public key pk = V ∈ G1, message

~m ∈ Gn2 and signature σ = (R,S, T1, . . . , Tn) ∈ G1×Gn+1
2 , output

1 iff

e(R,S) = e(g1, y1)e(V, g2) ∧
n∧
i=1

e(R, Ti) = e(V, yi)e(g1,mi) .
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GrothG2
. $←−(σ) To randomize signature σ = (R,S, T1, . . . , Tn), pick

r′
$← Zq and set

R′ ← Rr
′
, S′ ← S

1
r′ , and T ′i ← T

1
r′
i .

Output randomized signature σ′ = (R′, S′, T ′1, . . . , T
′
n).

4.3.2 Sibling Signatures

We introduce a new type of signatures that we call sibling signatures.
It allows a signer with one key pair to use two different signing algo-
rithms, each with a dedicated verification algorithm. In our generic
construction, this will allow a user to hold a single key pair that it can
use for both presentation and delegation of a credential.

A sibling signature scheme consists of algorithms Setup, Gen, Sign1,
Sign2, Verify1, Verify2.

Sib.Setup(1κ)
$→ sp : The setup algorithm takes as input a security

parameter and outputs public system parameters that also specify
two message spaces M1 and M2.

Sib.Gen(sp)
$→ (sk , pk) : The key generation algorithm takes as input

system parameters and outputs a public key pk and a correspond-
ing secret key sk .

Sib.Sign1(sk ,m)
$→ σ : The signing algorithm takes as input a private

key sk and a message m ∈M1 and outputs a signature σ.

Sib.Sign2(sk ,m)
$→ σ : The signing algorithm takes as input a private

key sk and a message m ∈M2 and outputs a signature σ.

Sib.Verify1(pk ,m, σ)→ 1/0 : The verification algorithm takes as input
a public key pk , a message m and a signature σ and outputs 1
for acceptance or 0 for rejection according to the input.

Sib.Verify2(pk ,m, σ)→ 1/0 : The verification algorithm takes as input
a public key pk , a message m and a signature σ and outputs 1
for acceptance or 0 for rejection according to the input.

We require sibling signatures to be complete and unforgeable.
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Definition 12 (Completeness). A sibling signature scheme is complete
if for b ∈ {0, 1} and for all m ∈Mb we have

Pr
[
Sib.Verifyb(pk ,m, σ) = 1|sp

$← Sib.Setup(1κ),

(sk , pk)
$← Sib.Gen(sp), σ

$← Sib.Signb(sk ,m)
]

= 1 .

Definition 13 (Unforgeability). No adversary with oracle access to
Sign1 and Sign2 can create a signature that correctly verifies with Verifyb,
if no Signb query was made for message m. For every such b ∈ {1, 2}
we call it unforgeability-b. More precisely, a sibling signature scheme is
unforgeable-b if the probability

Pr
[
Sib.Verifyb(pk ,m, σ) = 1 ∧m 6∈ QSignb |

sp
$← Sib.Setup(1κ), (sk , pk)

$← Sib.Gen(sp),

(σ,m)
$← AOSib.Sign1(sk,·),OSib.Sign2(sk,·)

(sp, pk)
]

is negligible in κ for every PPT adversary A and b ∈ {1, 2}, where ora-
cle OSib.Signb(sk ,·) on input m stores m in QSignb and returns Sib.Signb(sk ,
m). A sibling signature scheme is unforgeable if it is both unforgeable-1
and unforgeable-2.

Constructing Sibling Signatures

Note that one can trivially construct a sibling signature scheme from
two standard signature schemes by setting the public key pk as (pk1, pk2)
and the signing key as sk = (sk1, sk2), and simply using one signature
scheme as Sign1 and Verify1 and the other as Sign2 and Verify2. However,
this generalization also allows for instantiations that securely share key
material between the two algorithms.

We now show that one can combine GrothG1 signatures with Schnorr-
signatures to form a sibling signature scheme we call SibGS1. SibGS1
uses only a single key pair. It uses the Setup and Gen algorithms of
GrothG1

. Algorithm Sign1 is instantiated with GrothG1
.Sign, and Sign2

creates a Schnorr signature. Let SibGS2 denote the analogously de-
fined Groth-Schnorr sibling signature where we use GrothG2 instead of
GrothG1

.

Lemma 1. SibGSb is a secure sibling signature scheme in the random
oracle and generic group model.
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Proof. Completeness of SibGSb directly follows from the completeness
of Grothb and Schnorr signatures. We can reduce the unforgeability-1
and unforgeability-2 of SibGSb to the unforgeability of Grothb, which
is proven to be unforgeable in the generic group model. The reduction
algorithm B receives the Grothb public key pk from the challenger and
has access to signing oracle OGrothb.Sign(sk ,·) that creates signatures valid
under pk . B simulates the random oracle honestly and must answer A’s
signing queries by simulating oracles OSib.Sign1(sk ,·) and OSib.Sign2(sk ,·).
When A queries OSib.Sign1(sk ,·) on m, B queries σ ← OGrothb.Sign(sk ,m) and
returns σ. When A queries OSib.Sign2(sk ,·) on m, B simulates a Schnorr
signature without knowledge of sk by programming the random oracle.

Finally, A outputs a forgery. Let us first consider the unforge-
ability-1 game, meaning that A outputs forgery σ∗ on message m∗,
such that σ∗ is a valid Grothb signature on m∗ and OSib.Sign1(sk ,·) was
not queried on m∗. This means that B did not query OGrothb.Sign(sk ,·) on
m∗, so B can break the unforgeability of Grothb by submitting forgery
(σ∗,m∗).

Next, consider the unforgeability-2 game. Forgery σ∗ is a Schnorr
signature on m∗ and A did not query OSib.Sign1(sk ,·) on m∗. This means
that the Schnorr signature is not a simulated signature and we use the
forking lemma [BN06b] to extract sk . Now, B picks a new message
m̂∗ for which it did not query OGrothb.Sign(sk ,·), and uses sk to create
signature σ̂∗ on m̂∗. It submits (σ̂∗, m̂∗) as its forgery to win the
Grothb unforgeability game.

4.4 A Generic Construction for Delegat-
able Credentials

In this section, we provide a generic construction for delegatable anony-
mous credentials with attributes. We first explain the intuition be-
hind our construction, then present a construction based on sibling
signatures defined in Section 4.3.2 and non-interactive zero-knowledge
proofs. Then we prove that our generic construction securely realizes
Fdac. We provide an efficient instantiation of our generic construction
in the next section.
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Issuer
ipk, isk

~a1

0

1

2

L− 1

L

cpk1, csk1

σ1 = Signisk(cpk1,~a1)

Level

~a2

cpk2, csk2

σ2 = Signcsk1(cpk2,~a2)

cpkL, cskL

cpkL−1, cskL−1

~aL

credL = (〈σi,~ai, cpki〉Li=1, cskL)

σL = SigncskL−1(cpkL,~aL)

...
...

...

Figure 4.2: Our Generic Construction: Delegation

4.4.1 Construction Overview

Recall that our definition of delegatable credentials allows for multiple
levels of delegation. There is a root delegator (also called issuer) that
issues Level-1 credentials to users. Users can delegate their Level-L
credential, resulting in a Level-(L + 1) credential. We now explain
on a high level how a user obtains a Level-1 credential and then that
credential is delegated. It is then easy to see how a Level-L credential
is delegated (this is also depicted in Fig. 4.2).

The issuer first generates a signing key isk and corresponding ver-
ification key ipk and publishes ipk , after which it can issue a Level-1
credential to a user. The user, to get Level-1 credential issued, gen-
erates a fresh secret and a public key (csk1, cpk1) for this credential
and sends public key cpk1 to the root delegator. The root delegator
signs this public key together with a set of attributes ~a1 and sends the
signature σ1 back to the user. A Level-1 credential cred1 consists of
the signature σ1, attributes ~a1, and credential keys (cpk1, csk1).

The user can delegate cred1 further to another user by issuing a
Level-2 credential. The receiver generates a fresh key pair (csk2, cpk2)
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for the Level-2 credential. The delegation is done by signing public
key cpk2 and a set of attributes ~a2 (chosen by the delegator) with
the Level-1 credential secret key csk1. The resulting signature σ2 is
sent back together with the attributes ~a2 and the original signature σ1,
and the corresponding attributes ~a1. The Level-2 credential consists
of both signatures σ1, σ2, attributes ~a1,~a2, and keys cpk1, cpk2, csk2.
Note that the Level-2 credential is a chain of two so-called credential
links. The first link, consisting of (σ1,~a1, cpk1) proves that the del-
egator has a Level-1 credential containing attributes ~a1. The second
link, (σ2,~a2, cpk2), proves that this delegator issued attributes ~a2 to the
owner of cpk2. The key csk2 allows the user to prove he is the owner
of this Level-2 credential. Note, that the Level-1 credential secret key
csk1 is not sent together with the signature and the credential link,
so that it is impossible for a user who owns the Level-2 credential to
present or delegate the Level-1 credential.

The Level-2 credential can be delegated further in the analogous way
by generating a signature on attributes and a public key and sending
them together with lower-level credential links. A Level-L credential
is therefore a chain of the L credential links, where every link adds a
number of attributes ~ai, and a secret key cskL that allows the owner
to present the credential or to delegate it further.

A credential of any level can be presented by its owner by gener-
ating a NIZK proof proving a possession of all credential links back to
the issuer and selectively disclosing attributes from the corresponding
signatures. This proof, that we call an attribute token, can be verified
with the public key of only the issuer. The public keys of all the cre-
dential links remain hidden in the zero-knowledge proof and, therefore,
the identities of all the intermediate delegators are not revealed by the
attribute token.

4.4.2 Generic Construction

Our generic construction Πdac is based on sibling signature schemes,
where Sign1 signs vectors of messages, combined with non-interactive
zero-knowledge proofs. We allow different sibling signature schemes to
be used at different delegation levels. Let Sibi denote the scheme used
by the owners of Level-i credentials. As we sign public keys of an-
other signature scheme and the attribute values, the different signature
schemes must be compatible with each other: The public key space of
Sibi+1 must be included in the message space M1 of Sibi. It follows
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that the attribute space Ai is the message space of Sibi−1. In addition,
we require an IND-CPA public-key encryption scheme PKE compatible
with Sib0, i.e., it can encrypt the issuer secret key.

The required system parameters for the signature schemes and the
non-interactive zero-knowledge proof system are taken from Fcrs. In ad-
dition, Fcrs contains a public key epk for PKE such that nobody knows
the corresponding secret key. We implicitly assume that every protocol
participant queries Fcrs to retrieve the system parameters and that the
system parameters are passed as an implicit input to every algorithm
of the signature schemes. Moreover, every party must query Fca to
retrieve the issuer public key and check its validity by verifying πisk .
Our generic construction allows the building blocks to be proven secure
with respect to local random oracles, as this is sufficient to prove our
overall construction to be secure with respect to strict global random
oracles.

Setup. In the setup phase, the issuer I creates his key pair and reg-
isters this with the CA functionality Fca.
1. I, upon receiving input (SETUP, sid, 〈ni〉i):
• Check that sid = I, sid′ for some sid′.

• Run (ipk , isk) ← Sib0.Gen(1κ), encrypt isk to the crs public key
by computing cisk ← PKE.Enc(epk , isk), and compute proof

πisk ← NIZK{isk : (ipk , isk) ∈ Sib0.Gen(1κ) ∧
cisk ∈ PKE.Enc(epk , isk)}.

Register public key (ipk , cisk , πisk ) with Fca. Let cpk0 ← ipk .

• Output (SETUPDONE, sid).

Delegate. Any user Pi with a Level-L−1 credential can delegate this
credential to another user Pj , giving Pj a Level-L credential. Delegator
Pi can choose the attributes he adds in this delegation. Note that only
the issuer I can issue a Level-1 credential, so we distinguish two cases:
issuance (delegation of a Level-1 credential) and delegation of credential
of level L > 1.

2. Pi on input (DELEGATE, sid, ssid ,~a1, . . . ,~aL,Pj) with ~aL ∈ AnLL :

• If L = 1, Pi only proceeds if he is the issuer I with sid = (I, sid′).
If L > 1, Pi checks that he possesses a credential chain that
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signs ~a1, . . . ,~aL−1. That is, he looks up cred = (〈σi,~ai, cpk i〉L−1
i=1 ,

cskL−1) in Lcred.

• Send (sid, ssid , ~a1, . . . , ~aL) to Pj over Fsmt.

• Pj , upon receiving (sid, ssid ,~a1, . . . ,~aL) from Pi over Fsmt, gener-
ate a fresh credential specific key pair (cpkL, cskL)← SibL.Gen(1κ).

• Send cpkL to Pi over Fsmt.

• Pi, upon receiving cpkL from Pj over secure channel Fsmt, com-
putes σL ← SibL−1.Sign1(cskL−1; cpkL,~aL) and sends 〈σi, cpk i〉Li=1

to Pj over Fsmt.

• Pj , upon receiving 〈σi, cpk i〉Li=1 from Pi over Fsmt, verifies the
credential by checking Sibi−1.Verify1(cpk i−1, σi, cpk i,~ai) for i =
1, . . . , L. It stores cred ← (〈σi,~ai, cpk i〉Li=1, cskL) in Lcred. Output
(DELEGATE, sid, ssid ,~a1, . . . ,~aL,Pi).

Present. A user can present a credential she owns, while also signing
a message m. The disclosed attributes are described by ~a1, . . . ,~aL. Let
~ai = ai,1, . . . , ai,n ∈ (A ∪ ⊥)n. If ai,j ∈ A, the user shows it possesses
this attribute. If ai,j = ⊥, the user does not show the attribute. Let D
be the set of indices of disclosed attributes, i.e., the set of pairs (i, j)
where ai,j 6= ⊥.

3. Pi, upon receiving input (PRESENT, sid,m,~a1, . . . ,~aL) with ~ai ∈
(Ai ∪ ⊥)ni for i = 1, . . . , L:

• Look up a credential cred = (〈σi,~a′i, cpk i〉Li=1, cskL) in Lcred, such
that ~ai � ~ai

′ for i = 1, . . . , L. Abort if no such credential was
found.

• Create an attribute token by proving knowledge of the credential:

at ← NIZK
{

(σ1, . . . , σL, cpk1, . . . , cpkL, 〈a′i,j〉i 6∈D, tag) :

L∧
i=1

1 = Sibi−1.Verify1(cpk i−1, σi, cpk i, a
′
i,1, . . . , a

′
i,ni)

∧ 1 = Sib.Verify2(cpkL, tag ,m)
}

• Output (TOKEN, sid, at).

Verify. A user can verify an attribute token by verifying the zero
knowledge proof.
4. Pi, upon receiving input (VERIFY, sid, at ,m,~a1, . . . ,~aL):
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• Verify the zero-knowledge proof at with respect tom and ~a1, . . . ,~aL.
Set f ← 1 if valid and f ← 0 otherwise.

• Output (VERIFIED, sid, f).

Random Oracles.

This generic construction uses multiple building blocks that may use
one or multiple random oracles. If the building blocks require no
random oracles, our generic construction does not require any ran-
dom oracles. If they do, then our generic construction will use a
single global random oracle GsRO. Let Sibi and NIZK use local ran-
dom oracles RO1, . . . , ROj , mapping to sets S1, . . . , Sj respectively. To
work with GsRO, our generic construction assumes the existence of ef-
ficiently computable probabilistic algorithms Embed1, . . . ,Embedj and

Embed−1
1 , . . . ,Embed−1

j , such that for h $←−{0, 1}`(κ)
, Embed(h) is com-

putationally indistinguishable from uniform in G, and for all x ∈ G,
Embed(Embed−1(x)) = x and for x $←−G, Embed−1(x) is computation-

ally indistinguishable from uniform in {0, 1}`(κ)
. Whenever one of the

building blocks would query ROi on m, expecting an element uniform
in Si, it instead queries GsRO on (i,m) and uses Embedi to map the
result to Si. Note that we also apply domain separation by prepending
i to the query, which allows us to use a single random oracle. The
Embed−1 algorithms are only used in the security proof: If the simu-
lator programmed ROi(m) to x ∈ Si in the security proof of one of
the building blocks, then in a reduction proving equivalence between
the real and ideal world of our DAA scheme, we can program GsRO on
(i,m) to Embed−1

i (x) to achieve the same programming.

4.4.3 Security of Πdac

We now prove the security of our generic construction.

Theorem 8. Our delegatable credentials protocol Πdac GUC-realizes
Fdac (as defined in Section 5.3), in the (Fsmt,Fca,Fcrs,GsRO)-hybrid
model, provided that
• Sibi is a secure sibling signature scheme (as defined in Section 4.3.2),

• NIZK is a simulation-sound zero-knowledge proof of knowledge,

• Sibi and NIZK use local random oracles RO1, . . . , ROj, mapping to
S1, . . . , Sj respectively, and efficiently computable probabilistic algo-
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rithms Embed1, . . . ,Embedj and Embed−1
1 , . . . ,Embed−1

j exist, such
that

– for h $←−{0, 1}`(κ)
, Embed(h) is computationally indistinguishable

from uniform in G,

– for all x ∈ G, Embed(Embed−1(x)) = x and

– for x $←−G, Embed−1(x) is computationally indistinguishable from

uniform in {0, 1}`(κ)
.

Proof. By Theorem 1, it is sufficient to show that Πdac GsRO-EUC-
emulates Fdac in the Fsmt,Fca,Fcrs-hybrid model, meaning that we have
to show that there exists a simulator S as a function of A such that
no GsRO-externally constrained environment can distinguish Πdac and
A from Fdac and S. We prove this using a sequence of games, starting
with the real world protocol execution. In the next game we construct
one entity C that runs the real world protocol for all honest parties.
Then we split C into two pieces, a functionality F and a simulator S,
where F receives all inputs from honest parties and sends the outputs
to honest parties. We start with a dummy functionality, and gradually
change F and update S accordingly, to end up with the full Fdac and a
satisfying simulator. First, we show how we can reduce to the security
of the building blocks (which were proven w.r.t. a local random oracle),
and then we start the sequence of games.

The domain separation of GsRO and the availability of the Embed and
Embed−1 algorithms allow us to reduce to the properties of the building
blocks. If we want to reduce to, e.g., the unforgeability of Sibi, which
uses random oracle ROi, then as shown in Figure 3.3, the reduction
simulates GsRO. It plays the unforgeability game of Sibi against a chal-
lenger who also controls random oracle ROi. We need to make sure
that the global random oracle on points (i,m) agrees with ROi. More
precisely, we simulate GsRO on (i,m) by querying ROi to obtain h. We
then let GsRO return Embed−1

i (h). Observe that for points (i′ 6= i,m′),
we can still freely choose GsRO’s output, showing that in this setting,
we can for example simulate NIZK proofs, as this is based on a different
local random oracle, which we are simulating in GsRO.

Game 1: This is the real world.
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1. Setup. On input (SETUP, sid, 〈ni〉i) from I.

• Output (FORWARD, (SETUP, sid, 〈ni〉i), I) to A.

2. Delegate. On input (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pj) from some
party Pi, with ~aL ∈ AnLL .

• Output (FORWARD, (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pj),Pi) to A.

3. Present. On input (PRESENT, sid,m,~a1, . . . ,~aL) from some party Pi,
with ~ai ∈ (Ai ∪ ⊥)ni for i = 1, . . . , L.

• Output (FORWARD, (PRESENT, sid,m,~a1, . . . ,~aL),Pi) to A.

4. Verify. On input (VERIFY, sid, at ,m,~a1, . . . ,~aL) from some party Pi.
• Output (FORWARD, (VERIFY, sid, at ,m,~a1, . . . ,~aL),Pi) to A.

Figure 4.3: Ideal functionality for Game 3 in the proof of Theorem 8
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When a simulated party “P” outputs m and no specific action is defined, send
(OUTPUT,m,P) to F.
Simulating Fcrs

• S simulates Fcrs honestly, except that it chooses epk such that it knows the corre-
sponding decryption key esk .

Forwarded Input
• On input (FORWARD,m,P).

– Give “P” input m.

Figure 4.4: Simulator for Game 3 in the proof of Theorem 8

Game 2: We let the simulator S receive all inputs and generate all
outputs by simulating the honest parties honestly. It also simulates the
hybrid functionalities honestly, except that it simulates Fcrs in a way
that it knows the decryption key esk corresponding to epk . Clearly,
this is equal to the real world.

Game 3: We now start creating a functionality F that receives inputs
from honest parties and generates the outputs for honest parties. It
works together with a simulator S. In this game, we simply let F
forward all inputs to S, who acts as before. When S would generate an
output, it first forwards it to F, who then outputs it. This game hop
simply restructures Game 2, we have Game 3 = Game 2.

Game 4: F now handles the setup queries, and lets S enter algorithms
that F will store. Observe that S will always know isk : If I is honest, S
simulates the issuer, and if I is corrupt, it can extract isk by using esk to
decrypt isk from cisk . S defines Present to create a fresh credential key
pair, issue a level L credential to this key pair, and create an attribute
token as in the real-world protocol. It defines Ver to be equal to the
real-world protocol.

F checks the structure of sid, and aborts if it does not have the
expected structure. This does not change the view of E , as I in the
protocol performs the same check, giving Game 4 = Game 3.

Game 5: F now handles the verification queries using the algorithm
that S defined in Game 4. In Game 4, S defined the Ver algorithm as
the real world verification algorithm so we have Game 5 = Game 4.
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1. Setup. On input (SETUP, sid, 〈ni〉i) from I.

• Verify that sid = (I, sid′).

• Output (SETUP, sid, 〈ni〉i) to A and wait for response
(SETUP, sid,Present,Ver, 〈Ai〉i) from A, where Present is a proba-
blistic ITM Ver is a deterministic ITM, both interacting only with
random oracle GsRO.

• Store algorithms Present and Ver and credential parameters 〈Ai〉i, 〈ni〉i,
initialize Lde ← ∅ ; Lat ← ∅.

• Output (SETUPDONE, sid) to I.

2. Delegate. On input (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pj) from some
party Pi, with ~aL ∈ AnLL .

• Output (FORWARD, (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pj),Pi) to A.

3. Present. On input (PRESENT, sid,m,~a1, . . . ,~aL) from some party Pi,
with ~ai ∈ (Ai ∪ ⊥)ni for i = 1, . . . , L.

• Output (FORWARD, (PRESENT, sid,m,~a1, . . . ,~aL),Pi) to A.

4. Verify. On input (VERIFY, sid, at ,m,~a1, . . . ,~aL) from some party Pi.
• Output (FORWARD, (VERIFY, sid, at ,m,~a1, . . . ,~aL),Pi) to A.

Figure 4.5: Ideal functionality for Game 4 in the proof of Theorem 8
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When a simulated party “P” outputs m and no specific action is defined, send
(OUTPUT,m,P) to F.
Simulating Fcrs

• S simulates Fcrs honestly, except that it chooses epk such that it knows the corre-
sponding decryption key esk .

Setup
Honest I
• On input (SETUP, sid, 〈ni〉i) from Fdac.

– Parse sid as (I, sid′) and give “I” input (SETUP, sid, 〈ni〉i).
– When “I” outputs (SETUPDONE, sid), S takes its public key ipk and secret key

isk and defines Present and Ver, and the attribute spaces 〈Ai〉i.
∗ Define Present(m,~a1, . . . ,~aL) as follows: Run (cpk i, csk i) ← SIGi.Gen(1κ)

for i = 1, . . . , L. Compute σ1 ← SIG0.Sign(isk ; cpk1,~a1) and σi ←
SIGi−1.Sign(csk i−1, cpk i,~ai) for i = 2, . . . , L. Next, compute at as in the real
world protocol and return at .

∗ Define Ver(at ,m,~a1, . . . ,~aL) as the real world verification algorithm that verifies
with respect to ipk .

∗ Define Ai as G1 for odd i and as G2 for even i.

S sends (SETUP, sid,Present,Ver, 〈Ai〉i) to Fdac.
Corrupt I
• S notices this setup as it notices I registering a public key with “Fca” with sid =

(I, sid′).

– If the registered key is of the form (ipk , cisk , πisk ) and πisk is valid, S obtains the
issuer secret key isk ← PKE.Dec(esk , cisk ).

– S defines Present,Ver and 〈Ai〉 as when I is honest, but now depending on the
extracted key.

– S sends (SETUP, sid) to Fdac on behalf of I.

• On input (SETUP, sid) from Fdac.

– S sends (SETUP, sid,Present,Ver, 〈Ai〉i) to Fdac.

• On input (SETUPDONE, sid) from Fdac

– S continues simulating “I”.
Forwarded Input
• On input (FORWARD,m,P).

– Give “P” input m.

Figure 4.6: Simulator for Game 4 in the proof of Theorem 8
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1. Setup. On input (SETUP, sid, 〈ni〉i) from I.

• Verify that sid = (I, sid′).

• Output (SETUP, sid, 〈ni〉i) to A and wait for response
(SETUP, sid,Present,Ver, 〈Ai〉i) from A, where Present is a proba-
blistic ITM Ver is a deterministic ITM, both interacting only with
random oracle GsRO.

• Store algorithms Present and Ver and credential parameters 〈Ai〉i, 〈ni〉i,
initialize Lde ← ∅ ; Lat ← ∅.

• Output (SETUPDONE, sid) to I.

2. Delegate. On input (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pj) from some
party Pi, with ~aL ∈ AnLL .

• Output (FORWARD, (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pj),Pi) to A.

3. Present. On input (PRESENT, sid,m,~a1, . . . ,~aL) from some party Pi,
with ~ai ∈ (Ai ∪ ⊥)ni for i = 1, . . . , L.

• Output (FORWARD, (PRESENT, sid,m,~a1, . . . ,~aL),Pi) to A.

4. Verify. On input (VERIFY, sid, at ,m,~a1, . . . ,~aL) from some party Pi.
• Set f ← Ver(at ,m,~a1, . . . ,~aL).

• Output (VERIFIED, sid, f) to Pi.

Figure 4.7: Ideal functionality for Game 5 in the proof of Theorem 8
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When a simulated party “P” outputs m and no specific action is defined, send
(OUTPUT,m,P) to F.
Simulating Fcrs

• S simulates Fcrs honestly, except that it chooses epk such that it knows the corre-
sponding decryption key esk .

Setup
unchanged.
Verify
Nothing to simulate.
Forwarded Input
• On input (FORWARD,m,P).

– Give “P” input m.

Figure 4.8: Simulator for Game 5 in the proof of Theorem 8

Game 6: F now also handles the delegation queries. If both the
delegator and the delegatee are honest, S does not learn the attribute
values and must simulate the real world protocol with dummy values.
As all communication is over a secure channel, this difference is not
noticable by the adversary.

If the delegatee is corrupt, S learns the attribute values S can sim-
ulate the real world protocol with the correct input. If the delegator is
corrupt and the delegatee honest, S has to take more care: The corrupt
delegator may have received delegated credentials from other corrupt
users, without S and F knowing. If S would make a delegation query
with F on the delegator’s behalf, F would reject as it does not possess
the required attributes for this delegation, invalidating the simulation.
In this case, S first informs F of the missing delegations, such that F’s
records accept the delegation, and only then calls F on the delegator’s
behalf for this delegation.

As S only lacks information to simulate when both parties are hon-
est, but this change is not noticable due to the use of a secure channel,
Game 6 ≈ Game 5.
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1. Setup. On input (SETUP, sid, 〈ni〉i) from I.

• Verify that sid = (I, sid′).

• Output (SETUP, sid, 〈ni〉i) to A and wait for response
(SETUP, sid,Present,Ver, 〈Ai〉i) from A, where Present is a proba-
blistic ITM Ver is a deterministic ITM, both interacting only with
random oracle GsRO.

• Store algorithms Present and Ver and credential parameters 〈Ai〉i, 〈ni〉i,
initialize Lde ← ∅ ; Lat ← ∅.

• Output (SETUPDONE, sid) to I.

2. Delegate. On input (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pj) from some
party Pi, with ~aL ∈ AnLL .

• If L = 1, check sid = (Pi, sid′) and add an entry 〈Pj , ~a1〉 to Lde.

• If L > 1, check that an entry 〈Pi, ~a1, . . . , ~aL−1〉 exists in Lde.

• Output (ALLOWDEL, sid, ssid ,Pi,Pj , L) to A and wait for input
(ALLOWDEL, sid, ssid) from A.

• Add an entry 〈Pj , ~a1, . . . , ~aL〉 to Lde.

• Output (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pi) to Pj .
3. Present. On input (PRESENT, sid,m,~a1, . . . ,~aL) from some party Pi,

with ~ai ∈ (Ai ∪ ⊥)ni for i = 1, . . . , L.

• Output (FORWARD, (PRESENT, sid,m,~a1, . . . ,~aL),Pi) to A.

4. Verify. On input (VERIFY, sid, at ,m,~a1, . . . ,~aL) from some party Pi.
• Set f ← Ver(at ,m,~a1, . . . ,~aL).

• Output (VERIFIED, sid, f) to Pi.

Figure 4.9: Ideal functionality for Game 6 in the proof of Theorem 8
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When a simulated party “P” outputs m and no specific action is defined, send
(OUTPUT,m,P) to F.
Simulating Fcrs

• S simulates Fcrs honestly, except that it chooses epk such that it knows the corre-
sponding decryption key esk .

Setup
unchanged.
Delegate
Honest P, P ′
• S notices this delegation as it receives (ALLOWDEL, sid, ssid ,P,P ′, L) from Fdac.

– S picks dummy attribute values ~a1, . . . , ~aL and gives “P” input
(DELEGATE, sid, ssid , ~a1, . . . , ~aL,P ′).

– When “P ′” outputs (DELEGATE, sid, ssid , ~a1, . . . , ~aL,P), let Fdac proceed by out-
putting (ALLOWDEL, sid, ssid) to Fdac.

Honest P, corrupt P ′
• S notices this delegation as it receives (ALLOWDEL, sid, ssid ,P,P ′, L) from Fdac.

– Output (ALLOWDEL, sid, ssid) to Fdac.

• S receives (DELEGATE, sid, ssid , ~a1, . . . , ~aL,P) as P ′ is corrupt.

– S gives “P” input (DELEGATE, sid, ssid , ~a1, . . . , ~aL,P ′).
Honest P ′, corrupt P
• S notices this delegation as “P” outputs (DELEGATE, sid, ssid , ~a1, . . . , ~aL,P).

– If L > 1 and S has not simulated delegating attributes ~a1, . . . , ~aL−1 to P, and
there is a corrupt party P ′′ that has attributes ~a1, . . . , ~ai for 0 < i < L − 1
(note that if the root delegator I is corrupt, i = 0), P ′′ may have delegated
~ai, . . . ,~aL−1 to P ′ without S noticing. Therefore, S needs to delegate attributes
~ai, . . . ,~aL−1 in the ideal world, which is possible as P ′′ is corrupt: S sends
(DELEGATE, sid, ssid , ~a1, . . . , ~ai,P ′) on P ′′’s behalf to Fdac and allows the delega-
tion, and for j = i+1, . . . , L−1, sends (DELEGATE, sid, ssid , ~a1, . . . , ~aj ,P ′) on P ′’s
behalf to Fdac, allowing every delegation. Note that P ′ now possesses attributes
~a1, . . . , ~aL−1 in Fdac’s records.

– Send (DELEGATE, sid, ssid , ~a1, . . . , ~aL,P ′) on P’s behalf to Fdac.

• On input (ALLOWDEL, sid, ssid ,P,P ′, L) from Fdac.

– Output (ALLOWDEL, sid, ssid) to Fdac.
Corrupt P, P’
Nothing to simulate.
Verify
Nothing to simulate.
Forwarded Input
• On input (FORWARD,m,P).

– Give “P” input m.

Figure 4.10: Simulator for Game 6 in the proof of Theorem 8
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1. Setup. On input (SETUP, sid, 〈ni〉i) from I.

• Verify that sid = (I, sid′).

• Output (SETUP, sid, 〈ni〉i) to A and wait for response
(SETUP, sid,Present,Ver, 〈Ai〉i) from A, where Present is a proba-
blistic ITM Ver is a deterministic ITM, both interacting only with
random oracle GsRO.

• Store algorithms Present and Ver and credential parameters 〈Ai〉i, 〈ni〉i,
initialize Lde ← ∅ ; Lat ← ∅.

• Output (SETUPDONE, sid) to I.

2. Delegate. On input (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pj) from some
party Pi, with ~aL ∈ AnLL .

• If L = 1, check sid = (Pi, sid′) and add an entry 〈Pj , ~a1〉 to Lde.

• If L > 1, check that an entry 〈Pi, ~a1, . . . , ~aL−1〉 exists in Lde.

• Output (ALLOWDEL, sid, ssid ,Pi,Pj , L) to A and wait for input
(ALLOWDEL, sid, ssid) from A.

• Add an entry 〈Pj , ~a1, . . . , ~aL〉 to Lde.

• Output (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pi) to Pj .
3. Present. On input (PRESENT, sid,m,~a1, . . . ,~aL) from some party Pi,

with ~ai ∈ (Ai ∪ ⊥)ni for i = 1, . . . , L.

• Check that an entry 〈Pi,~a′1, . . . ,~a′L〉 exists in Lde such that ~ai � ~ai
′ for

i = 1, . . . , L.

• Set at ← Present(m,~a1, . . . ,~aL) and abort if Ver(at ,m,~a1, . . . ,~aL) = 0.

• Store 〈m,~a1, . . . ,~aL〉 in Lat.

• Output (TOKEN, sid, at) to Pi.
4. Verify. On input (VERIFY, sid, at ,m,~a1, . . . ,~aL) from some party Pi.
• Set f ← Ver(at ,m,~a1, . . . ,~aL).

• Output (VERIFIED, sid, f) to Pi.

Figure 4.11: Ideal functionality for Game 7 in the proof of Theorem 8
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Simulating Fcrs

• S simulates Fcrs honestly, except that it chooses epk such that it knows the corre-
sponding decryption key esk .

Setup
unchanged.
Delegate
unchanged.
Present
Nothing to simulate.
Verify
Nothing to simulate.

Figure 4.12: Simulator for Game 7 in the proof of Theorem 8

Game 7: F now generates the attribute tokens for honest parties,
using the Present algorithm that S defined in Game 4. First, F checks
whether the party is eligible to create such an attribute token, and
aborts otherwise. This does not change E ’s view, as the real world pro-
tocol performs an equivalent check. Second, F tests whether attribute
token at generated with Present is valid w.r.t. Ver before outputting at .
S defined Present to sign a valid witness for the NIZK that at is, and
Ver will verify the NIZK. By completeness of all the sibling signature
schemes Sib and completeness of NIZK, at will be accepted by Ver. This
shows that F outputs an attribute token if and only if the real world
party would output an attribute token.

Next, we must show that the generated attribute token is indis-
tinguishable between the real and ideal world. Both the real world
protocol and the Present algorithm compute

at ← NIZK
{

(σ1, . . . , σL, cpk1, . . . , cpkL, 〈a′i,j〉i6∈D, tag) :

L∧
i=1

1 = Sibi−1.Verify1(cpk i−1, σi, cpk i, a
′
i,1, . . . , a

′
i,ni)∧

1 = Sib.Verify2(cpkL, tag ,m)
}

but in the real world, a party uses his own credential every time he
proves this statement, and F creates a fresh credential for every sig-
nature. Note that the credential only concerns the witness of the
zero-knowledge proof. By the witness indistinguishability of the zero-
knowledge proofs, this change is not noticable and we have Game 7 ≈
Game 6.
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1. Setup. On input (SETUP, sid, 〈ni〉i) from I.

• Verify that sid = (I, sid′).

• Output (SETUP, sid, 〈ni〉i) to A and wait for response
(SETUP, sid,Present,Ver, 〈Ai〉i) from A, where Present is a proba-
blistic ITM Ver is a deterministic ITM, both interacting only with
random oracle GsRO.

• Store algorithms Present and Ver and credential parameters 〈Ai〉i, 〈ni〉i,
initialize Lde ← ∅ ; Lat ← ∅.

• Output (SETUPDONE, sid) to I.

2. Delegate. On input (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pj) from some
party Pi, with ~aL ∈ AnLL .

• If L = 1, check sid = (Pi, sid′) and add an entry 〈Pj , ~a1〉 to Lde.

• If L > 1, check that an entry 〈Pi, ~a1, . . . , ~aL−1〉 exists in Lde.

• Output (ALLOWDEL, sid, ssid ,Pi,Pj , L) to A and wait for input
(ALLOWDEL, sid, ssid) from A.

• Add an entry 〈Pj , ~a1, . . . , ~aL〉 to Lde.

• Output (DELEGATE, sid, ssid , ~a1, . . . , ~aL,Pi) to Pj .
3. Present. On input (PRESENT, sid,m,~a1, . . . ,~aL) from some party Pi,

with ~ai ∈ (Ai ∪ ⊥)ni for i = 1, . . . , L.

• Check that an entry 〈Pi,~a′1, . . . ,~a′L〉 exists in Lde such that ~ai � ~ai
′ for

i = 1, . . . , L.

• Set at ← Present(m,~a1, . . . ,~aL) and abort if Ver(at ,m,~a1, . . . ,~aL) = 0.

• Store 〈m,~a1, . . . ,~aL〉 in Lat.

• Output (TOKEN, sid, at) to Pi.
4. Verify. On input (VERIFY, sid, at ,m,~a1, . . . ,~aL) from some party Pi.
• If there is no record 〈m,~a1, . . . ,~aL〉 in Lat, I is honest, and for i =

1, . . . , L, there is no corrupt Pj such that 〈Pj ,~a′1, . . . ,~a′i〉 ∈ Lde with
~aj � ~a′j for j = 1, . . . , i, set f ← 0.

• Else, set f ← Ver(at ,m,~a1, . . . ,~aL).

• Output (VERIFIED, sid, f) to Pi.

Figure 4.13: Ideal functionality for Game 8 in the proof of Theorem 8
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Simulating Fcrs

• S simulates Fcrs honestly, except that it chooses epk such that it knows the corre-
sponding decryption key esk .

Setup
unchanged.
Delegate
unchanged.
Present
Nothing to simulate.
Verify
Nothing to simulate.

Figure 4.14: Simulator for Game 8 in the proof of Theorem 8

Game 8: F now guarantees unforgeability of attribute tokens. We
make this change gradually, where in the first intermediate game we
guarantee unforgeability of level 1 attribute tokens, then of level 2, and
so forth, and we prove that each game is indistinguishable from the
previous.

If the unforgeability check for level L credentials triggers with non-
negligible probability, there must be an attribute token at that was
valid before but is rejected by the unforgeability check of F. This
means that one of the two statements must hold with non-negligible
probability:
• at proves knowledge either of a public key cpkL that belongs to an

honest user with the correct attributes, but this user never signed
m (as otherwise the unforgeability check would not trigger)

• at proves knowledge of a public key cpkL that does not belong to
an honest user.

We will reduce both cases to the unforgeability of Sib. Recall that we
only assume Sib to be unforgeable with respect to a local random oracle,
i.e., the security proof may use the observability and programmability
of the random oracle to simulate signing queries, which our simulator
does not have. However, since this is a security reduction, everything
falls under control of the reduction (as depicted in Figure 3.3), including
the global random oracle. This means that the reduction can observe
and program the random oracle, and we can reduce to the security of
Sib in this setting.

In the first case, we can reduce to the unforgeability-2 property of
Sib: There can only be polynomially many delegations of a level L cre-
dential to an honest user. Pick a random one and simulate the receiving
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party with the public key pk as received from the unforgeability game
of Sib. When the user delegates this credential, use the Sign1 oracle,
and when presenting the credential, use the Sign2 oracle. Finally, when
F sees an attribute token at that it considers a forgery, the sound-
ness of NIZK allows us to extract from the zero-knowledge proof. With
non-negligible probability, cpkL = pk , and then tag is a Sib forgery.

In the second case, we can reduce to the unforgeability-1 property of
Sib: If L = 1, simulate the issuer with ipk ← pk , where pk is taken from
the Sib unforgeability game. As isk us not known to the simulator, we
simulate πisk , and define the Present algorithm to simulate the proof
such that the issuer secret key is not needed. I uses the Sign1 oracle
to delegate. If a delegation was chosen, simulate the receiver using
cpk i ← pk . If L > 1, there can only be polynomially many delegations
that give an honest user a credential of level L − 1. Pick a random
one and simulate the receiving party with cpkL−1 ← pk . Use the Sign1

oracle to delegate this credential, and the Sign2 oracle to present this
credential. Finally, when F sees an attribute token at that it considers
a forgery, extract from the zero-knowledge proof. With non-negligible
probability, cpkL−1 = pk , and then σL is a Sib forgery on message
cpkL.
F of Game 8 of equal to Fdac, concluding our sequence of games.

4.5 A Concrete Instantiation using Pair-
ings

We propose an efficient instantiation of our generic construction based
on the Groth-Schnorr sibling signatures SibGS that we introduced in
Sec. 4.3.2.

In the generic construction, we have a sibling signature scheme Sibi
for each delegation level i, where Sibi must sign the public key of Sibi+1.
Groth signature scheme uses bilinear group Λ = (q,G1,G2,Gt, e, g1, g2).
Recall that GrothG1

signs messages in G1 with a public key in G2, while
GrothG2

signs messages in G2 with a public key in G1. Therefore, we
set Sib2n to SibGS1 and Sib2n+1 to SibGS2. This means that we have
attribute sets1 A2n = G1 and A2n+1 = G2.

1Alternatively, one could define a single attribute set A for all levels and use
injective functions f1 : A→G1 and f2 : A→G2, such as setting A = Zq and f1(a) =
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SPK
{

(〈s′i, t′i,j〉i=1,...,L,j=1,...,ni , 〈ai,j〉i 6∈D, 〈cpk i〉i=1,...,L−1, cskL) :

L∧
i=1,3,...

(
e(y1,1, g2)

[
e(g1, ipk)

]
i=1

= e(s′i, r
′
i)
[
e(g−1

1 , cpk i−1)
]
i6=1
∧

1Gt

[
e(y1,1, ipk)

]
i=1

= e(t′i,1, r
′
i)
[
e(cpk i, g

−1
2 )
]
i 6=L
[
e(g1, g

−1
2 )cski

]
i=L

[
e(y −1

1,1 , cpk i−1)
]
i 6=1
∧∧

j:(i,j)∈D
e(ai,j , g2)

[
e(y1,j+1, ipk)

]
i=1

= e(t′i,j+1, r
′
i)
[
e(y −1

1,j+1, cpk i−1)
]
i 6=1
∧

∧
j:(i,j) 6∈D

1Gt

[
e(y1,j+1, ipk)

]
i=1

= e(t′i,j+1, r
′
i)e(ai,j , g

−1
2 )
[
e(y −1

1,j+1, cpk i−1)
]
i6=1

)
∧

L∧
i=2,4,...

(
e(g1, y2,1) = e(r′i, s

′
i)e(cpk i−1, g

−1
2 ) ∧

1Gt
= e(r′i, t

′
i,1)e(cpk i−1, y

−1
2,1 )

[
e(g−1

1 , cpk i)
]
i 6=L
[
e(g−1

1 , g2)cski
]
i=L
∧∧

j:(i,j)∈D
e(g1, ai,j) = e(r′i, t

′
i,j+1)e(cpk i−1, y

−1
2,j+1) ∧

∧
j:(i,j)6∈D

1Gt
= e(r′i, t

′
i,j+1)e(cpk i−1, y

−1
2,j+1)e(g−1

1 , ai,j)

)}
(sp, r′1, . . . , r

′
L,m).

Figure 4.15: Efficient instantiation of the NIZK used to generate attribute
tokens (witness underlined for clarity).

In addition to the bilinear group, SibGS1 requires parameters y1,1,
. . . , y1,n+1 ∈ G1, where n is the maximum number of attributes signed
at an odd level (n = max i=1,3,...(ni)), and SibGS2 requires parameters
y2,1, . . . , y2,n+1 ∈ G2, for n the maximum number of attributes signed
at an even level (n = max i=2,4,...(ni)). Fcrs provides both the bilinear
groups Λ and the yi,j values.

We consider Level-0 to be an even level and, therefore, the issuer
key pair is (ipk = gisk2 , isk). The issuer must verifiably encrypt its
secret key isk to a public key from the CRS. This can be achieved
in the random-oracle model using the techniques of Camenisch and
Shoup [CS03].

4.5.1 A Concrete Proof for the Attribute Tokens

What remains to show is how to efficiently instantiate the zero-knowl-
edge proof that constitutes the attribute tokens. Since we instantiate

ga1 , f2(a) = ga2 ), but for ease of presentation we omit this step and work directly
with attributes in G1 and G2.
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Sib2i with SibGS1 and Sib2i+1 with SibGS2, we can rewrite the proof
we need to instantiate as follows.

at ← NIZK
{

(σ1, . . . , σL, cpk1, . . . , cpkL, 〈a′i,j〉i 6∈D, tag) :

L∧
i=1,3,...

1 = SibGS1.Verify1(cpk i−1, σi, cpk i, a
′
i,1, . . . , a

′
i,ni)

L∧
i=2,4,...

1 = SibGS2.Verify1(cpk i−1, σi, cpk i, a
′
i,1, . . . , a

′
i,ni)

∧ 1 = SibGSb.Verify2(cpkL, tag ,m)
}

The proof has three parts: First, it proves all the odd-level creden-
tial links by proving that σi is valid using SibGS1.Verify1. Second, it
proves the even-level credential links by proving that σi verifies with
SibGS2.Verify1. Finally, it proves that the user signed message m with
SibGSb.Verify2, where b depends on whether L is even or odd.

The abstract zero-knowledge proof can be efficiently instantiated
with a generalized Schnorr zero-knowledge proof. Let σi = (ri, si, ti,1,
. . . , ti,ni+1). First, we use the fact that Groth is randomizable and ran-
domize each signature to (r′i, s

′
i, t
′
i,1, . . . , t

′
i,ni+1). As r′i is now uniform

in the group, we can reveal the value rather than proving knowledge
of it. Next, we use a Schnorr-type proof depicted in Fig. 4.15 to prove
knowledge of the s and t values of the signatures, the undisclosed at-
tributes, the credential public keys, and the credential secret key. The
concrete zero-knowledge proof contains the same parts as described for
the abstract zero-knowledge proof. The third part, proving knowledge
of tag , is somewhat hidden. Recall that we instantiate SibGSb.Verify2
with Schnorr signatures, which means the signature is a proof of knowl-
edge of cskL. This can efficiently be combined with other two parts of
the proof: instead of proving knowledge of cpkL, we prove knowledge
of cskL.

4.5.2 Optimizing Attribute Token Computation

There is a lot of room for optimization when computing zero-knowledge
proofs such as the one depicted in Fig. 4.15. We describe how to effi-
ciently compute this specific proof, but many of these optimizations will
be applicable to other zero-knowledge proofs in pairing-based settings.
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1: input: 〈ri, si, 〈ti,j〉n1+1
j=1 〉Li=1, cskL, 〈cpk i〉Li=1, 〈ai,j〉i=1,...,L,j=1,...,ni , D, sp,m

2: for i = 1, . . . , L do . Randomize σi

3: ρσi
$← Zq, r′1 ← r

ρσi
i , s′i ← s

1/ρσi
i

4: for j = 1, . . . ni + 1 do

5: t′i,j ← t
1/ρσi
i,j

6: end for
7: end for
8: 〈ρsi , 〈ρti,j 〉ni+1

j=1 , 〈ρai,j 〉nij=1〉Li=1, 〈ρcpki〉L−1
i=1 , ρcskL

$← Zq
9: for i = 1, 3, . . . , L do . Compute com-values for odd-level σi

10: comi,1 ← e(g1, ri)
ρσi ·ρsi

[
· e(g−1

1 , g2)ρcpki−1
]
i 6=1

11: comi,2 ← e(g1, ri)
ρσi ·ρti,1 · e(g1, g

−1
2 )ρcpki

[
· e(y1,1, g2)ρcpki−1

]
i 6=1

12: for j = 1, . . . , ni do
13: if (i, j) ∈ D then . Attribute ai,j is disclosed
14: comi,j+2 ← e(g1, ri)

ρσi ·ρti,j+1
[
· e(y1,j+1, g2)ρcpki−1

]
i 6=1

15: else . Attribute ai,j is hidden
16: comi,j+2 ← e(g1, ri)

ρσi ·ρti,j+1 · e(g1, g
−1
2 )ρai,j

[
· e(y1,j+1, g2)ρcpki−1

]
i 6=1

17: end if
18: end for
19: end for
20: for i = 2, 4, . . . , L do . Compute com-values for even-level σi
21: comi,1 ← e(ri, g2)ρσi ·ρsi e(g1, g

−1
2 )ρcpki−1

22: comi,2 ← e(ri, g2)ρσi ·ρti,1 e(g1, y
−1
2,1)ρcpki−1 e(g−1

1 , g2)ρcpki

23: for j = 1, . . . , ni do
24: if (i, j) ∈ D then . Attribute ai,j is disclosed
25: comi,j+2 ← e(g1, y

−1
2,j+1)ρcpki−1 · e(ri, g2)ρσi ·ρti,j+1

26: else . Attribute ai,j is hidden
27: comi,j+2 ← e(g1, y

−1
2,j+1)ρcpki−1 · e(ri, g2)ρσi ·ρti,j+1 · e(g−1

1 , g2)ρai,j

28: end if
29: end for
30: end for
31: c← H(sp, ipk , 〈r′i, 〈comi,j〉ni+2

j=1 〉Li=1, 〈ai,j〉(i,j)∈D,m) . Fiat-Shamir hash
32: for i = 1, 3, . . . , L do . Compute res-values for odd-level σi
33: ressi = g

ρsi
1 sci ,

[
rescpki = g

ρcpki
1 cpk ci

]
i 6=L,

[
rescski = ρcpki + c · csk i

]
i=L

34: for j = 1, . . . , ni + 1 do
35: resti,j = g

ρti,j
1 tci,j

36: end for
37: for j = 1, . . . , ni with (i, j) 6∈ D do

38: resai,j = g
ρai,j
1 aci,j

39: end for
40: end for
41: for i = 2, 4, . . . , L do . Compute res-values for even-level σi
42: ressi = g

ρsi
2 sci ,

[
rescpki = g

ρcpki
2 cpk ci

]
i 6=L,

[
rescski = ρcpki + c · csk i

]
i=L

43: for j = 1, . . . , ni + 1 do
44: resti,j = g

ρti,j
2 tci,j

45: end for
46: for j = 1, . . . , ni with (i, j) 6∈ D do

47: resai,j = g
ρai,j
2 aci,j

48: end for
49: end for
50: output: c, 〈r′i, ressi , 〈resti,j 〉ni+1

j=1 〉Li=1, 〈resai,j 〉(i,j)6∈D, 〈rescpki〉L−1
i=1 , rescskL

Figure 4.16: Pseudocode for efficiently computing attribute tokens.
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Computing attribute tokens. The pairing operation is the most
expensive operation in bilinear groups, so for the efficiency of the scheme
it is beneficial to minimize the amount of pairings computed. We can
use some optimizations in computing the zero-knowledge proof that
remove the need to compute any pairings. As a small example, sup-
pose we prove SPK{x : z = e(x, b)}. The standard way to compute

this is taking rx
$← G1, computing com ← e(rx, b), c ← H(com, . . .),

and resx ← rx · xc. We can compute the same values without com-

puting the pairing by precomputing e(g, b), taking ρ
$← Zq and setting

com← e(g1, b)
ρ and res← gρ1x

c.
To prove knowledge of a Groth signature, we must prove z = e(x, r′),

where r′ is the randomized r-value of the Groth signature. If we try

to apply the previous trick, we set ρx
$← Zq, comx ← e(g1, r

′)ρx . How-
ever, now we cannot precompute e(g1, r

′) since r′ is randomized be-
fore every proof. We can solve this by remembering the randomness
used to randomize the Groth signature. Let r′ = rρσ , we can compute
comx ← e(g1, r)

ρσ·ρx by precomputing e(g1, r). The full pseudocode for
computing the proofs using these optimizations is given in Fig. 4.16.

Verifying attribute tokens. In verification, computing pairings is
unavoidable, but there are still tricks to keep verification efficient. The
pairing function is typically instantiated with the tate pairing, which
consists of two parts: Miller’s algorithm t̂(·) and the final exponen-
tiation fexp(·) [DSD07]. Both parts account for roughly half the time
required to compute a pairing.2 When computing the product of multi-
ple pairings, we can compute the Miller loop for every pairing and then
compute the final exponentiation only once for the whole product. This
means that computing the product of three pairings is roughly equally
expensive as computing two individual pairings.

Fig. 4.17 shows how to verify attribute tokens efficiently using this
observation. When we write e(a, b) in the pseudocode, it means we can
precompute the value.

4.5.3 Efficiency Analysis of Our Instantiation

We now analyze the efficiency of our construction. Namely, we cal-
culate the number of pairing operations and (multi-) exponentiations

2We verified this by running bench_pair.c of the AMCL library (github.com/
miracl/amcl) using the BN254 curve.
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1: input: c, 〈r′i, ressi , 〈resti,j 〉ni+1
j=1 〉Li=1, 〈resai,j 〉(i,j) 6∈D, 〈rescpki〉L−1

i=1 , rescskL ,
2: 〈ai,j〉(i,j∈D), D, sp,m
3: for i = 1, 3, . . . , L do . Recompute com-values for odd-level σi
4: comi,1 ← fexp(t̂(ressi , r

′
i)
[
· t̂(g−1

1 , rescpki−1
)
]
i6=1

) · (e(y1,1, g2)
[
· e(g1, ipk)

]
i=1

)−c

5: comi,2 ← fexp(t̂(resti,1 , r
′
i)
[
· t̂(y1,1, rescpki−1

)
]
i 6=1

[
· t̂(rescpki , g

−1
2 )
]
i 6=L)

[
·

e(g1, g
−1
2 )rescski

]
i=L

[
· e(y1,1, ipk)−c

]
i=1

6: for j = 1, . . . , ni do
7: if (i, j) ∈ D then . Attribute ai,j is disclosed
8: comi,j+2 ←

fexp(t̂(resti,j+1
, r′i)

[
· t̂(y1,j+1, rescpki−1

)
]
i 6=1

) · (e(ai,j , g2)
[
e(y1,j+1, ipk)

]
i=1

)−c

9: else . Attribute ai,j is hidden
10: comi,j+2 ←

fexp(t̂(resti,j+1
, r′i)· t̂(resai,j , g

−1
2 )
[
· t̂(y1,j+1, rescpki−1

)
]
i 6=1

)
[
·e(y1,j+1, ipk)−c

]
i=1

11: end if
12: end for
13: end for
14: for i = 2, 4, . . . , L do . Compute com-values for even-level σi
15: comi,1 ← fexp(t̂(r′i, ressi) · t̂(rescpki−1

, g−1
2 )) · e(g1, y2,1)−c

16: comi,2 ← fexp(t̂(r′i, resti,1) · t̂(rescpki−1
, y−1

2,1)
[
· t̂(g−1

1 , rescpki)
]
i 6=L)

[
· e(g−1

1 , g2)rescski
]
i=L

17: for j = 1, . . . , ni do
18: if (i, j) ∈ D then . Attribute ai,j is disclosed
19: comi,j+2 ← fexp(t̂(rescpki−1

, y−1
2,j+1) · t̂(r′i, resti,j+1

)) · e(g1, ai,j)
−c

20: else . Attribute ai,j is hidden
21: comi,j+2 ← fexp(t̂(rescpki−1

, y−1
2,j+1) · t̂(r′i, resti,j+1

) · t̂(g−1
1 , resai,j ))

22: end if
23: end for
24: end for
25: c′ ← H(sp, ipk , 〈r′i, 〈comi,j〉ni+2

j=1 〉Li=1, 〈ai,j〉(i,j)∈D,m) . Fiat-Shamir hash
26: output: c = c′

Figure 4.17: Pseudocode for efficiently verifying attribute tokens.

in different groups that is required to compute and verify attribute
tokens. We also compute the size of credentials and attribute tokens
with respect to a delegation level and number of attributes, and provide
concrete timings for our prototype implementation in C that generates
and verifies Level-2 attribute tokens.

Let di and ui denote the amount of disclosed and undisclosed at-
tributes at delegation level i, respectively, and we define ni = di + ui.

Computational efficiency.

Let us count the operations required to perform the recurring opera-
tions, namely delegating credentials, presenting credentials, and verify-
ing attribute tokens. For operations we use the following notation. We
use X{Gj1}, X{Gj2}, and X{Gjt} to denote X j-multi-exponentiations

94



4.5. A Concrete Instantiation using Pairings

Algorithm Operations Total time estimate (ms)

DELEGATE
For each odd Level-i: 1{G2} +
(ni + 2){G1}+ (ni + 1){G2

1}
2.96 + 1.21ni

For each even Level-i: 1{G1} +
(ni + 2){G2}+ (ni + 1){G2

2}
5.27 + 3.52ni

PRESENT

∑L
i=1,3,..

(
1{G2}+(ni+2){G1}+

(1 + di){G2
t}+ (1 + ui){G3

t}+

∑L
i=1,3,..(13.63 + 3.89di +

6.11ui + 1.21ni)+
(2 + ni){G2

1}
)∑L

i=2,4,..

(
1{G1}+(ni+2){G2}+

(1 + di){G2
t}+ (1 + ui){G3

t}+

∑L
i=2,4,..(17.58 +

3.89di + 6.11ui + 3.52ni)
(2 + ni){G2

2}
)

VERIFY
(1 + d1)E + (3 + u1 + dL)E2 +
uLE

3 + (4 + n1 + dL){Gt}+
21.65+2.36d1+3.91u1+1.89n1+
5.80dL + 5.48uL+∑(L−1)

i=2,3,..

(
(1 + di)E

2 + (1 +

ui)E
3 + (1 + di){Gt}

) ∑(L−1)
i=2,3,..

(
11.28+5.80di+5.48ui

)

Table 4.1: Performance evaluation and timing estimations, where di and
ui denote the amount of disclosed and undisclosed attributes at delegation
level i, respectively, and ni = di + ui; X{Gj

1}, X{Gj
2}, and X{Gj

t} de-
note X j-multi-exponentiations in the respective group; j = 1 means a
simple exponentiation. Ek denote a k-pairing product that we can com-
pute with k-Miller loops and a single shared final exponentiation; k = 1
means a single pairing. Benchmarks are (all in ms): 1{G1} = 0.54; 1{G2

1} =
0.67; 1{G2} = 1.21; 1{G2

2} = 2.31; 1{Gt} = 1.89; 1{G2
t} = 3.89; 1{G3

t} =
6.11; 1E = 2.36; 1E2 = 3.91; 1E3 = 5.48.

in the respective group; j = 1 means a simple exponentiation. We
denote as Ek a k-pairing product that we can compute with k-Miller
loops and a single shared final exponentiation.

Delegation. Delegation of a credential includes generating a key and
a signature on the public key and a set of attributes:
• for even i the cost is 1{G1}+ (ni + 2){G2}+ (ni + 1){G2

2},
• for odd i the cost is 1{G2}+ (ni + 2){G1}+ (ni + 1){G2

1}.
Signature verification for Level-i costs ni · E3 plus E2 or E3, de-

pending on if the pairing with the public key was pre-computed or not.

Computing attribute tokens (Presentation). Randomizing σi
costs (ni+2)·{G1}+1{G2} for odd i and 1{G1}+(ni+2){G2} for even i.
Computing the com-values for Level-1 costs (1+di){Gt}+(1+ui){G2

t}.
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The com-values for Level-i for i > 1 cost (1 + di){G2
t}+ (1 + ui){G3

t}.
Computing the res-values for odd i costs (2 + ni){G2

1}, and for even i
it costs (2 + ni){G2

2}, except the last level, where 1{G2
1} or 1{G2

2} can
be saved when L is even or odd, respectively.

If we consider a practical example, where we show Level-2 creden-
tials with attributes only on Level-1 (meaning that n2 = 0), computing
the attribute token costs very roughly 3n1 + 13 exponentiations, and
more precisely: (3 + n1){G1}+ (2 + n1){G2

1}+ 3{G2}+ 1{G2
2}+ (1 +

d1){Gt}+ (2 + u1){G2
t}+ 1{G3

t}.

Verifying attribute tokens. Verifying the first credential link costs
(1 + d1)E + (1 + u1)E2 + (2 + n1){Gt} and one final exponentiation.
Every next level adds (1 + di)E

2 + (1 + ui)E
3 + (1 + di){Gt}, except

the last level, which costs (2 + di)E
2 + uiE

3 + (2 + di){Gt}.
For the same practical example with two levels, to verify a Level-

2 attribute token will cost very roughly n1 + 4 pairings and n1 + 4
exponentiations, and more precisely: (1 + d1)E + (3 + u1)E2 + (4 +
n1){Gt}. We summarize the above efficiency analysis in Table 4.1.

Size of attribute tokens

To count the size of an attribute token we use the following notation.
We use X[G1] and X[G2] to denote X group elements from the respec-
tive group. The attribute token proves knowledge of every credential
link, so the token grows in the credential level.

First, we look at credential links without attributes. For every level
a credential link adds 4 group elements: 3[G1] + 1[G2] for an odd and
1[G1] + 3[G2] for an even level, respectively. Additionally, a token has
2 elements from Zq. This means that for even L, an attribute token
generated from a Level-L credential without attributes takes (2L)[G1]+
(2L− 1)[G2] + 2Zq.

Every attribute added to an odd level credential link adds one group
element, if it is disclosed, and two elements, if this attribute remains
hidden. For the odd levels these are the elements from [G1] and for
even levels - from [G2]. This means that for even L, an attribute token

generated from a Level-L credential takes (2L+
∑L−1
i=1,3,...(ni+ui))[G1]+

(2L− 1 +
∑L
i=2,4,...(ni + ui))[G2] + 2Zp.
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n1 n2 PRESENT VERIFY EST. PRES. EST. VERIFY
0 0 26.9 ms 20.2 ms 31.21 ms 21.65 ms
1 0 32.7 ms 25.4 ms 38.53 ms 27.45 ms
2 0 38.1 ms 30.9 ms 45.85 ms 33.25 ms
3 0 44.0 ms 36.1 ms 53.17 ms 39.05 ms
4 0 49.5 ms 41.4 ms 60.49 ms 44.85 ms
0 1 38.6 ms 24.8 ms 40.84 ms 27.13 ms
0 2 49.4 ms 29.2 ms 50.47 ms 32.61 ms
0 3 61.5 ms 34.1 ms 60.10 ms 38.09 ms
0 4 72.6 ms 38.7 ms 69.73 ms 43.57 ms
1 1 43.7 ms 30.1 ms 48.16 ms 32.93 ms
2 1 49.3 ms 35.4 ms 55.48 ms 38.73 ms

Table 4.2: Performance measurements of presenting and verifying Level-2
credentials, and our estimated timings following the computation of Table 4.1.
No attributes are disclosed.

Implementation and Performance Analysis.

We have implemented a prototype of our concrete instantiation for del-
egatable credentials in the C programming language, using the Apache
Milagro Cryptographic Library (AMCL) with a 254-bit Barreto-Naehrig
curve [BN06a]. This prototype generates and verifies Level-2 attribute
tokens. The prototype shows the practicality of our construction: gen-
erating an attribute token without attributes takes only 27 ms, and ver-
ification requires only 20 ms, on a 3.1GHz Intel I7-5557U laptop CPU.
Table 4.2 shows performance figures when presenting tokens with at-
tributes. Adding undisclosed attributes in the first credential link (that
is, increasing n1) adds roughly 6 ms to the token generation time per
attribute, while adding undisclosed attributes in the second link (thus
increasing n2) adds 11 ms. For verification, every added undisclosed
attribute increases verification time by 5 ms. Table 4.2 also shows that
our estimated timings in Table 4.1 are accurate: the estimated values
are close to the measured timings and our estimates are even a bit
conservative.
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Chapter 5

Anonymous Attestation

The Trusted Platform Module (TPM) is a chip embedded in a host com-
puter that can create trustworthy attestations about the host’s state.
This chapter focuses on Direct Anonymous Attestation (DAA), which
is a protocol allowing attestations that are anonymous by using tech-
niques from anonymous credentials. The main difference is that the
role of user in anonymous credentials is split into a TPM and a host in
DAA, where we require attestations to be trustworthy as long as the
TPM and credential issuer are honest, while privacy should be the re-
sponsibility of the host. First, we show that previous security notions
for DAA have shortcomings and put forth a new security definition.
Second, we present a secure and efficient DAA scheme from a global
random oracle, building on our results from Chapter 3.

5.1 Introduction

Direct Anonymous Attestation (DAA) allows a small chip, the Trusted
Platform Module (TPM), that is embedded in a host computer to cre-
ate attestations about the state of the host system. Such attestations,
which can be seen as signatures on the current state under the TPM’s
secret key, convince a remote verifier that the system it is communi-
cating with is running on top of certified hardware and is using the
correct software. A crucial feature of DAA is that it performs such
attestations in a privacy-friendly manner. That is, the user of the host
system can choose to create attestations anonymously ensuring that
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her transactions are unlinkable and do not leak any information about
the particular TPM being used.

DAA was introduced by Brickell, Camenisch, and Chen [BCC04] for
the Trusted Computing Group and was standardized in the TPM 1.2
specification in 2004 [Tru04]. Their paper inspired a large body of
work on DAA schemes [BCL08,CMS08b,CF08,BCL09,Che09,CPS10,
BL10, BFG+13b, CDL16b, CDL16a, CCD+17], including more efficient
schemes using bilinear pairings as well as different security definitions
and proofs. One result of these works is the recent TPM 2.0 specifi-
cation [Tru14, Int15] that includes support for multiple pairing-based
DAA schemes, two of which are standardized by ISO [Int13]. Recently,
the protocol has received renewed attention for authentication: An ex-
tension of DAA called EPID is used in Intel SGX [CD16], the most re-
cent development in the area of trusted computing. Further, the FIDO
alliance, an industry consortium designing standards for strong user
authentication, is in the process of standardizing a specification using
DAA to attest that authentication keys are securely stored [CDE+18].

Existing Security Definitions. Interestingly, in spite of the large
scale deployment and the long body of work on the subject, DAA still
lacks a sound and comprehensive security definition. There exist a
number of security definitions in the literature. Unfortunately all of
them have rather severe shortcomings such as allowing for obviously
broken schemes to be proven secure. This was recently discussed by
Bernard et al. [BFG+13b] who provide an analysis of existing secu-
rity notions and also propose a new security definition. In a nutshell,
the existing definitions that capture the desired security properties in
the form of an ideal functionality either fail to treat signatures as con-
crete objects that can be output or stored by the verifier [BCC04] or
are unrealizable [CMS08a,CMS09]. The difficulty in defining a proper
ideal functionality for the complex DAA setting might not be all that
surprising considering the numerous (failed) attempts in modeling the
much simpler standard signature scheme in the universal composability
framework [BH04,Can04].

Another line of work therefore aimed at capturing the DAA require-
ments in the form of game-based security properties [BCL09, Che09,
BFG+13b] as a more intuitive way of modeling. However, the first
attempts [BCL09, Che09] have failed to cover some of the expected
security properties and also have made unconventional choices when
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defining unforgeability (the latter resulting in schemes being consid-
ered secure that use a constant value as signatures).

Realizing that the previous definitions were not sufficient, Bernard
et al. [BFG+13b] provided an extensive set of property-based security
games. The authors consider only a simplified setting which they call
pre-DAA. The simplification is that the host and the TPM are consid-
ered as single entity (the platform), thus they are both either corrupt
or honest. For properties such as anonymity and non-frameability this
is sufficient as they protect against a corrupt issuer and assume both
the TPM and the host to be honest. Unforgeability of a TPM attesta-
tion, however, should rely only on the TPM being honest but allow the
host to be corrupt. This cannot be captured in their model. In fact,
shifting the load of the computational work to the host without affect-
ing security in case the host is corrupted is one of the main challenges
when designing a DAA scheme. Therefore, a DAA security definition
should allow one to formally analyze the setting of an honest TPM and
a corrupt host.

This is also acknowledged by Bernard et al. [BFG+13b] who, after
proposing a pre-DAA secure protocol, argue how to obtain a protocol
achieving full DAA security. Unfortunately, due to the absence of a
full DAA security model, this argumentation is done only informally.
In this paper we show that their argumentation is actually somewhat
flawed: the given proof for unforgeability of the given pre-DAA proof
can not be lifted (under the same assumptions) to the full DAA setting.
This highlights the fact that an “almost matching” security model to-
gether with an informal argument of how to achieve the actually desired
security does not provide sound guarantees beyond what is formally
proved.

Thus still no satisfying security model for DAA exists to date. This
lack of a sound security definition is not only a theoretic problem but
has resulted in insecure schemes being deployed in practice. A DAA
scheme that allows anyone to forge attestations (as it does not exclude
the “trivial” TPM credential (1, 1, 1, 1)) has even been standardized in
ISO/IEC 20008-2 [CPS10, Int13].1

Trusting Hardware for Privacy? The first version of the TPM
specification and attestation protocol had received strong criticism from

1 We have corrected this vulnerability by submitting a technical corrigendum
which was approved by ISO/IEC and published in December 2017.
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privacy groups and data protection authorities as it imposed linkability
and full identification of all attestations. As a consequence, guaran-
teeing the privacy of the platform, i.e., ensuring that an attestation
does not carry any identifier, became an important design criteria for
such hardware-based attestation. Indeed, various privacy groups and
data protection authorities had been consulted in the design process of
DAA.

Surprisingly, despite the strong concerns of having to trust a piece
of hardware when TPMs and hardware-based attestation were intro-
duced, the problem of privacy-preserving attestation in the presence of
fraudulent hardware has not been fully solved yet. The issue is that the
original DAA protocol as well as all other DAA protocols crucially rely
on the honesty of the entire platform, i.e., host and TPM, for guaran-
teeing privacy. Clearly, assuming that the host is honest is unavoidable
for privacy, as it communicates directly with the outside world and can
output any identifying information it wants. However, further requiring
that the TPM behaves in a fully honest way and aims to preserve the
host’s privacy is an unnecessarily strong assumption and contradicts
the initial design goal of not having to trust the TPM.

Even worse, it is impossible to verify this strong assumption as the
TPM is a chip that comes with pre-installed software, to which the
user only has black-box access. While black-box access might allow
one to partly verify the TPM’s functional correctness, it is impossible
to validate its privacy guarantees. A compromised TPM manufacturer
can ship TPMs that provide seemingly correct outputs, but that are
formed in a way that allows dedicated entities (knowing some trapdoor)
to trace the user, for instance by encoding an identifier in a nonce that
is hashed as part of the attestation signature. It could further encode
its secret key in attestations, allowing a fraudulent manufacturer to
frame an honest host by signing a statement on behalf of the platform.
We stress that such attacks are possible on all current DAA schemes,
meaning that, by compromising a TPM manufacturer, all TPMs it
produces can be used as mass surveillance devices. The revelations
of subverted cryptographic standards [PLS13, BBG13] and tampered
hardware [Gre14] indicate that such attack scenarios are very realistic.

In contrast to the TPM, the host software can be verified by the user,
e.g., being compiled from open source, and will likely run on hardware
that is not under the control of the TPM manufacturer. Thus, while
the honesty of the host is vital for the platform’s privacy and there
are means to verify or enforce such honesty, requiring the TPM to be
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honest is neither necessary nor verifiable.

5.1.1 Our Contribution

In this chapter we address this problem of anonymous attestation with-
out having to trust a piece of hardware, a problem which has been open
for more than a decade. We exhibit a new DAA protocol that provides
privacy even if the TPM is subverted. More precisely, our contributions
are threefold: we first present a formal security model for DAA, then
we show how to model subverted parties within the Universal Com-
posability (UC) model, and finally propose a protocol that is secure
against subverted TPMs. This chapter is based on [CDL17].

A Formal DAA Model. We tackle the challenge of formally defin-
ing Direct Anonymous Attestation and provide an ideal functional-
ity for DAA in the Universal Composability (UC) framework [Can00].
Our functionality models hosts and TPMs as individual parties who
can be in different corruption states and comprises all expected secu-
rity properties such as unforgeability, anonymity, and non-frameability.
The model also includes verifier-local revocation where a verifier, when
checking the validity of a signature, can specify corrupted TPMs from
which he no longer accepts signatures.

We choose to define a new model rather than addressing the weak-
nesses of one of the existing models. The latest DAA security model by
Bernard et al. [BFG+13b] seems to be the best starting point. However,
as their model covers pre-DAA only, changing all their definitions to
full DAA would require changes to almost every aspect of them. Fur-
thermore, given the complexity of DAA, we believe that the simulation-
based approach is more natural as one has a lower risk of overlooking
security properties. A functionality provides a full description of secu-
rity and no oracles have to be defined as the adversary simply gets full
control over corrupt parties. Furthermore, the UC framework comes
with strong composability guarantees that allow for protocols to be
analyzed individually and preserve that security when being composed
with other protocols.

Modeling Subversion Attacks in UC. Our DAA functionality
provides privacy guarantees in the case where the TPM is corrupt and
the host remains honest. Modeling corruption in the sense of subverted
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parties is not straightforward: if the TPM was simply controlled by the
adversary, then, using the standard UC corruption model, only very
limited privacy can be achieved. The TPM has to see and approve
every message it signs but, when corrupted, all these messages are
given to the adversary as well. In fact, the adversary will learn which
particular TPM is asked to sign which message. That is, the adversary
can later recognize a certain TPM attestation via its message, even if
the signatures are anonymous.

Modeling corruption of TPMs like this gives the adversary much
more power than in reality: even if a TPM is subverted and runs ma-
licious algorithms, it is still embedded into a host who controls all
communication with the outside world. Thus, the adversary cannot
communicate directly with the TPM, but only via the (honest) host.
To model such subversions more accurately, we introduce isolated cor-
ruptions in UC. When a TPM is corrupted like this, we allow the ideal-
world adversary (simulator) to specify a piece of code that the isolated,
yet subverted TPM will run. Other than that, the adversary has no
control over the isolated corrupted party, i.e., it cannot directly interact
with the isolated TPM and cannot see its state. Thus, the adversary
will also not automatically learn anymore which TPM signed which
message.

A New DAA Protocol with Optimal Privacy. We further dis-
cuss why the existing DAA protocols do not offer privacy when the
TPM is corrupt and propose a new DAA protocol which we prove to
achieve our strong security definition. In contrast to most existing
schemes, we construct our protocol from generic building blocks which
yields a more modular design. A core building block are split signatures
which allow two entities – in our case the TPM and host – each hold-
ing a secret key share to jointly generate signatures. Using such split
keys and signatures is a crucial difference compared with all existing
schemes, where only the TPM contributed to the attestation key which
inherently limits the possible privacy guarantees. We also redesign the
overall protocol such that the main part of the attestation, namely
proving knowledge of a membership credential on the attestation key,
can be done by the host instead of the TPM.

By shifting more responsibility and computations to the host, we
do not only increase privacy, but also achieve stronger notions of non-
frameability and unforgeability than all previous DAA schemes. Inter-
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estingly, this design change also improves the efficiency of the TPM,
which is usually the bottleneck in a DAA scheme. In fact, we propose
a pairing-based instantiation of our generic protocol which, compared
to prior DAA schemes, has the most efficient TPM signing operation.
This comes for the price of higher computational costs for the host and
verifier. However, we estimate signing and verification times of around
20ms, which is sufficiently fast for most practical applications.

5.1.2 Related Work

The idea of combining a piece of tamper-resistant hardware with a user-
controlled device was first suggested by Chaum [Cha92] and applied to
the context of e-cash by Chaum and Pedersen [CP93], which got later
refined by Cramer and Pedersen [CP94] and Brands [Bra94]. A user-
controlled wallet is required to work with a piece of hardware, the ob-
server, to be able to withdraw and spend e-cash. The wallet ensures the
user’s privacy while the observer prevents a user from double-spending
his e-cash. Later, Brands in 2000 [Bra00] considered the more general
case of user-bound credentials where the user’s secret key is protected
by a smart card. Brands proposes to let the user’s host add randomness
to the smart card contribution as a protection against subliminal chan-
nels. All these works use a blind signature scheme to issue credentials
to the observers and hence such credentials can only be used a single
time.

Young and Yung further study the protection against subverted
cryptographic algorithms with their work on kleptography [YY97a,
YY97b] in the late 1990s. Recently, caused by the revelations of sub-
verted cryptographic standards [PLS13, BBG13] and tampered hard-
ware [Gre14] as a form of mass-surveillance, this problem has again
gained substantial attention.

Subversion-Resilient Cryptography. Bellare et al. [BPR14] pro-
vided a formalization of algorithm-substitution attacks and consid-
ered the challenge of securely encrypting a message with an encryp-
tion algorithm that might be compromised. Here, the corruption is
limited to attacks where the subverted party’s behavior is indistin-
guishable from that of a correct implementation, which models the
goal of the adversary to remain undetected. This notion of algorithm-
substitution attacks was later applied to signature schemes, with the
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goal of preserving unforgeability in the presence of a subverted signing
algorithm [AMV15].

However, these works on subversion-resilient cryptography crucially
rely on honestly generated keys and aim to prevent key or information
leakage when the algorithms using these keys get compromised.

Recently, Russell et al. [RTYZ16, RTYZ17] extended this line of
work by studying how security can be preserved when all algorithms,
including the key generation can be subverted. The authors also pro-
pose immunization strategies for a number of primitives such as one-
way permutations and signature schemes. The approach of replacing
a correct implementation with an indistinguishable yet corrupt one is
similar to the approach in our work, and like Russell et al. we allow the
subversion of all algorithms, and aim for security (or rather privacy)
when the TPM behaves maliciously already when generating the keys.

The DAA protocol studied in this work is more challenging to pro-
tect against subversion attacks though, as the signatures produced by
the TPM must not only be unforgeable and free of a subliminal channel
which could leak the signing key, but also be anonymous and unlink-
able, i.e., signatures must not leak any information about the signer
even when the key is generated by the adversary. Clearly, allowing the
TPM to run subverted keys requires another trusted entity on the user’s
side in order to hope for any privacy-protecting operations. The DAA
setting naturally satisfies this requirement as it considers a platform to
consist of two individual entities: the TPM and the host, where all of
TPM’s communication with the outside world is run via the host.

Reverse Firewalls. This two-party setting is similar to the con-
cept of reverse firewalls recently introduced by Mironov and Stephens-
Davidowitz [MS15]. A reverse firewall sits in between a user’s machine
and the outside world and guarantees security of a joint cryptographic
operation even if the user’s machine has been compromised. Moreover,
the firewall-enhanced scheme should maintain the original functional-
ity and security, meaning the part run on the user’s computer must
be fully functional and secure on its own without the firewall. Thus,
the presence of a reverse firewall can enhance security if the machine is
corrupt but is not the source of security itself. This concept has been
proven very powerful and manages to circumvent the negative results
of resilience against subversion-attacks [DMSD16,CMY+16].

The DAA setting we consider in this chapter is not as symmetric as
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a reverse firewall though. While both parties contribute to the unforge-
ability of attestations, the privacy properties are only achievable if the
host is honest. In fact, there is no privacy towards the host, as the host
is fully aware of the identity of the embedded TPM. The requirement of
privacy-protecting and unlinkable attestation only applies to the final
output produced by the host.

Divertible Protocols & Local Adversaries. A long series of re-
lated work explores divertible and mediated protocols [BD95, OO90,
BBS98,AsV08], where a special party called the mediator controls the
communication and removes hidden information in messages by reran-
domizing them. The host in our protocol resembles the mediator, as it
adds randomness to every contribution to the signature from the TPM.
However, in our case the host is a normal protocol participant, whereas
the mediator’s sole purpose is to control the communication.

Alwen et al. [AKMZ12] and Canetti and Vald [CV12] consider local
adversaries to model isolated corruptions in the context of multi-party
protocols. These works thoroughly formalize the setting of multi-party
computations where several parties can be corrupted, but are controlled
by different and non-colluding adversaries. In contrast, the focus of this
work is to limit the communication channel that the adversary has to
the corrupted party itself. We leverage the flexibility of the UC model
to define such isolated corruptions.

Generic MPC. Multi-party computation (MPC) was introduced by
Yao [Yao82] and allows a set of parties to securely compute any function
on private inputs. Although MPC between the host and TPM could
solve our problem, a negative result by Katz and Ostrovsky [KO04]
shows that this would require at least five rounds of communication,
whereas our tailored solution is much more efficient. Further, none
of the existing MPC models considers the type of subverted corrup-
tions that is crucial to our work, i.e., one first would have to extend
the existing models and schemes to capture such isolated TPM corrup-
tion. This holds in particular for the works that model tamper-proof
hardware [Kat07, HPV16], as therein the hardware is assumed to be
“perfect” and unsubvertable.
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5.2 Issues in Existing Security Definitions

In this section we briefly discuss why current security definitions do not
properly capture the security properties one would expect from a DAA
scheme. Some of the arguments were already pointed out by Bernhard
et al. [BFG+13b], who provide a thorough analysis of the existing DAA
security definitions and also propose a new set of definitions. For the
sake of completeness, we summarize and extend their findings and also
give an assessment of the latest definition by Bernhard et al.

Before discussing the various security definitions and their limita-
tion, we informally describe how DAA works and what are the desired
security properties. In a DAA scheme, we have four main entities: a
number of trusted platform modules (TPM), a number of hosts, an
issuer, and a number of verifiers. A TPM and a host together form a
platform which performs the join protocol with the issuer who decides
if the platform is allowed to become a member. Once being a member,
the TPM and host together can sign messages with respect to base-
names bsn. If a platform signs with bsn = ⊥ or a fresh basename, the
signature must be anonymous and unlinkable to previous signatures.
That is, any verifier can check that the signature stems from a legiti-
mate platform via a deterministic verify algorithm, but the signature
does not leak any information about the identity of the signer. Only
when the platform signs repeatedly with the same basename bsn 6= ⊥,
it will be clear that the resulting signatures were created by the same
platform, which can be publicly tested via a (deterministic) link algo-
rithm.

One requires the typical completeness properties for signatures cre-
ated by honest parties:

Completeness: When an honest platform successfully creates a sig-
nature on a message m w.r.t. a basename bsn, an honest verifier
will accept the signature.

Correctness of Link: When an honest platform successfully creates
two signatures, σ1 and σ2, w.r.t. the same basename bsn 6= ⊥, an
honest verifier running a link algorithm on σ1 and σ2 will output
1. To an honest verifier, it also does not matter in which order
two signatures are supplied when testing linkability between the
two signatures.

The more difficult part is to define the security properties that a
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DAA scheme should provide in the presence of malicious parties. These
properties can be informally described as follows:

Unforgeability-1: When the issuer and all TPMs are honest, no ad-
versary can create a signature on a message m w.r.t. basename
bsn when no platform signed m w.r.t. bsn.

Unforgeability-2: When the issuer is honest, an adversary can only
sign in the name of corrupt TPMs. More precisely, if n TPMs are
corrupt, the adversary can at most create n unlinkable signatures
for the same basename bsn 6= ⊥.

Anonymity: The standard anonymity property requires an adversary
that is given two signatures, w.r.t. two different basenames or
bsn = ⊥, cannot distinguish whether both signatures were cre-
ated by one honest platform, or whether two different honest plat-
forms created the signatures. In this chapter, we will investigate
a stronger notion of anonymity, requiring the anonymity to hold
whenever the host is honest, even if the platform’s TPM is cor-
rupt.

Non-frameability: No adversary can create signatures on a message
m w.r.t. basename bsn that links to a signature created by an
honest platform, when this honest platform never signed m w.r.t.
bsn. We require this property to hold even when the issuer is
corrupt.

5.2.1 Simulation-Based Security Definitions

A simulation-based security definition defines an ideal functionality,
which can be seen as a central trusted party that receives inputs from
all parties and provides outputs to them. Roughly, a protocol is called
secure if its behavior is indistinguishable from the functionality.

The Brickell, Camenisch, Chen definition [BCC04]. DAA was
first introduced by Brickell, Camenisch, and Chen [BCC04] along with
a simulation-based security definition. The functionality has a sin-
gle procedure encompassing both signature generation and verification,
meaning that a signature is generated for a specific verifier and will im-
mediately be verified by that verifier. As the signature is never output
to the verifier, he only learns that a message was correctly signed, but
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can neither forward signatures or verify them again. Clearly this limits
the scenarios in which DAA can be applied.

Furthermore, linkability of signatures with the same basename was
not defined explicitly in the security definition. In the instantiation
it is handled by attaching pseudonyms to signatures, and when two
signatures have the same pseudonym, they must have been created by
the same platform.

The Chen, Morissey, Smart definitions [CMS08a,CMS09]. An
extension to the security definition by Brickell et al. was later proposed
by Chen, Morissey, and Smart [CMS08a]. It aims at providing link-
ability as an explicit feature in the functionality. To this end, the
functionality is extended with a link interface that takes as input two
signatures and determines whether they link. However, as discussed be-
fore, the sign and verify interfaces are interactive and thus signatures
are never sent as output to parties, so it is not possible to provide them
as input either. This was realized by the authors who later proposed
a new simulation-based security definition [CMS09] that now separates
the generation of signatures from their verification by outputting signa-
tures. Unfortunately, the functionality models the signature generation
in a too simplistic way: signatures are simply random values, even when
the TPM is corrupt. Furthermore, the verify interface refuses all re-
quests when the issuer is corrupt. Clearly, both these behaviours are
not realizable by any protocol.

5.2.2 Property-Based Security Definitions

Given the difficulties in properly defining ideal functionalities, there is
also a line of work that captures DAA features via property-based def-
initions. Such definitions capture every security property in a separate
security game.

The Brickell, Chen, and Li security definition [BCL09]. The
first property-based security definition is presented by Brickell, Chen,
and Li [BCL09]. They define security games for anonymity, and “user-
controlled traceability”. The latter aims to capture our unforgeability-1
and unforgeability-2 requirements. Unfortunately, this definition has
several major shortcomings that were already discussed by Bernhard
et al. [BFG+13b].
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The first problem is that the game for unforgeability-1 considers
insecure schemes to be secure. The adversary in the unforgeability-1
game has oracle access to the honest parties from whom he can request
signatures on messages and basenames of his choice. The adversary
then wins if he can come up with a valid signature that is not a pre-
vious oracle response. This last requirement allows trivially insecure
schemes to win the security game: assume a DAA scheme that outputs
the hash of the TPM’s secret key gsk as signature, i.e., the signature is
independent of the message. Clearly, this should be an insecure scheme
as the adversary, after having seen one signature can provide valid sig-
natures on arbitrary messages of his choice. However, this scheme is
secure according to the unforgeability-1 game, as there reused signa-
tures are not considered a forgery.

Another issue is that the game for unforgeability-2 is not well de-
fined. The goal of the adversary is to supply a signature σ, a message
m, a basename bsn 6= ⊥, and a signer’s identity ID. The adversary
wins if another signature “associated with the same ID” exists, but the
signatures do not link. Firstly, there is no check on the validity of the
supplied signature, which makes winning trivial for the adversary. Sec-
ondly, “another signature associated with the same ID” is not precisely
defined, but we assume it to mean that the signature was the result of
a signing query with that ID. However, then the adversary is limited
to tamper with at most one of the signatures, whereas the second one is
enforced to be honestly generated and unmodified. Thirdly, there is no
check on the relation between the signature and the supplied ID. We
expect that the intended behavior is that the supplied signature uses
the key of ID, but there is no way to enforce this. Now an adversary
can simply make a signing query with (m, bsn, ID1), thus obtaining σ,
and win the game with (σ,m, bsn, ID2).

The definition further lacks a security game that captures the non-
frameability requirement. This means a scheme with a link algorithm
that always outputs 1 can be proven secure. Chen [Che09] extends the
definition to add non-frameability, but this extension inherits all the
aforementioned problems from [BCL09].

The Bernhard et al. security definition [BFG+13b]. Realiz-
ing that the previous security definitions are not sufficient, Bernhard
et al. [BFG+13b] provide an extensive set of property-based security
definitions covering all expected security requirements.
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The main improvement is the way signatures are identified. An
identify algorithm is introduced that takes a signature and a TPM key,
and outputs whether the key was used to create the signature, which
is possible as signatures are uniquely identifiable if the secret key is
known. In all their game definitions, the keys of honest TPMs are
known, allowing the challenger to identify which key was used to create
the signature, solving the problems related to the imprecisely defined
ID in the Brickell, Chen, and Li definition.

However, the security games make a simplifying assumption, namely
that the platform, consisting of a host and a TPM, is considered as one
party. This approach, termed “pre-DAA”, suffices for anonymity and
non-frameability, as there both the TPM and host have to be honest.
However, for the unforgeability requirements it is crucial that the host
does not have to be trusted. In fact, distributing the computational
work between the TPM and the host, such that the load on the TPM is
as small as possible and, at the same time, not requiring the host to be
honest, is the main challenge in designing a DAA scheme. Therefore, a
DAA security definition must be able to formally analyze this setting
of an honest TPM working with a corrupt host.

The importance of such full DAA security is also acknowledged by
Bernhard et al. [BFG+13b]. After formally proving a proposed scheme
secure in the pre-DAA setting, the authors bring the scheme to the
full DAA setting where the TPM and host are considered as separate
parties. To obtain full DAA security, the host randomizes the issuer’s
credential on the TPM’s public key. Bernhard et al. then argue that
this has no impact on the proven pre-DAA security guarantees as the
host does not perform any action involving the TPM secret key. While
this seems intuitively correct, it gives no guarantees whether the secu-
rity properties are provably preserved in the full DAA setting. Indeed,
the proof of unforgeability of the pre-DAA scheme, which is proven
under the DL assumption, does not hold in the full DAA setting as
a corrupt host could notice the simulation used in the security proof.
More precisely, in the Bernhard et al. scheme, the host sends values
(b, d) to the TPM which are the re-randomized part of the issued cre-
dential and are supposed to have the form bgsk = d with gsk being
the TPM’s secret key. The TPM then provides a signature proof of
knowledge (SPK) of gsk to the host. The pre-DAA proof relies on
the DL assumption and places the unknown discrete logarithm of the
challenge DL instance as the TPM key gsk. In the pre-DAA setting,
the TPM then simulates the proof of knowledge of gsk for any input

112



5.3. A Security Model for DAA with Optimal Privacy

(b, d). This, however, is no longer possible in the full DAA setting. If
the host is corrupt, he can send arbitrary values (b, d) with bgsk 6= d
to the TPM. The TPM must only respond with a SPK if (b, d) are
properly set, but relying only on the DL assumption does not allow the
TPM to perform this check. Thus, the unforgeability can no longer be
proven under the DL assumption. Note that the scheme could still be
proven secure using the stronger static DH assumption, but the point
is that a proof of pre-DAA security and a seemingly convincing but
informal argument to transfer the scheme to the full DAA setting does
not guarantee security in the full DAA setting.

Another peculiarity of the Bernhard et al. definition is that it makes
some rather strong yet somewhat hidden assumptions on the adver-
sary’s behavior. For instance, in the traceability game showing un-
forgeability of the credentials, the adversary must not only output the
claimed forgery but also the secret keys of all TPMs. For a DAA pro-
tocol this implicitly assumes that the TPM secret key can be extracted
from every signature. Similarly, in games such as non-frameability or
anonymity that capture security against a corrupt issuer, the issuer’s
key is generated honestly within the game, instead of being chosen by
the adversary. For any realization this assumes either a trusted setup
setting or an extractable proof of correctness of the issuer’s secret key.

In the scheme proposed by Bernhard et al. [BFG+13b], none of
these implicit assumptions hold though: the generation of the issuer
key is not extractable or assumed to be trusted, and the TPM’s secret
key cannot be extracted from every signature, as the rewinding for this
would require exponential time. Note that these assumptions are indeed
necessary to guarantee security for the proposed scheme. If the non-
frameability game would allow the issuer to choose its own key, it could
choose y = 0 and win the game. Ideally, a security definition should not
impose such assumptions or protocol details. If such assumptions are
necessary though, then they should be made explicit to avoid pitfalls
in the protocol design.

5.3 A Security Model for DAA with Opti-
mal Privacy

This section presents our security definition for direct anonymous at-
testation with optimal privacy. First, we introduce our formal DAA
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1. Issuer Setup. On input (SETUP, sid) from issuer I.

• Verify that sid = (I, sid′).
• Output (SETUP, sid) to A and wait for input

(ALG, sid, sig, ver, link, identify, ukgen) from A.

• Check that ver, link and identify are deterministic, and check that sig, ver,
link, identify, ukgen interact only with random oracle GsRO.

• Store (sid, sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

2. Join Request. On input (JOIN, sid, jsid ,Mi) from host Hj .
• Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .

• Output (JOIN, sid, jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid, jsid) from TPM Mi.

• Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to
delivered .

• Output (JOINPROCEED, sid, jsid ,Mi,Hj) to A, wait for input
(JOINPROCEED, sid, jsid) from A.

• Output (JOINPROCEED, sid, jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid, jsid) from I.

• Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to
complete.

• Output (JOINCOMPLETE, sid, jsid) to A and wait for input
(JOINCOMPLETE, sid, jsid , τ) from A.

• Abort if I orMi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.

• If Hj is honest, set τ ← ⊥.

• Else, verify that the provided tracing trapdoor τ is eligible by checking
CheckTtdCorrupt(τ) = 1.

• Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid, jsid) to Hj .

Figure 5.1: The Setup and Join interfaces of our ideal functionality Fpdaa

for DAA with optimal privacy.

model as ideal functionality Fpdaa, which slightly deviates from the in-
formal properties defined in Section 5.2, by ommitting the bsn = ⊥
option. This simplifies the security notion, and by choosing fresh bsn
values, platforms are still completely unlinkable. Second, we elaborate
on the inherent limitations the UC framework imposes on privacy in
the presence of fully corrupted parties and introduce the concept of
isolated corruptions, which allow one to overcome this limitation yet
capture the power of subverted TPMs.
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5. Sign Request. On input (SIGN, sid, ssid ,Mi,m, bsn) from Hj .
• If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

• Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ←
request .

• Output (SIGNPROCEED, sid, ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid, ssid) from Mi.

• Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and up-
date it to status ← complete.

• If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.

• Generate the signature for a fresh or established key:

– Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry
exists, set (gsk , τ) ← ukgen(), check CheckTtdHonest(τ) = 1, and store
〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.

– Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.
– Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj)

with tracing trapdoor τ ′ registered in Members or DomainKeys with
identify(σ,m, bsn, τ ′) = 1.

• Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (Signature, sid, ssid , σ) to Hj .
7. Verify. On input (VERIFY, sid,m, bsn, σ, RL) from some party V.

• Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi〉 ∈ Members and
〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where identify(σ,m, bsn, τi) = 1. Set f ← 0
if at least one of the following conditions hold:

– More than one τi was found.
– I is honest and no pair (τi,Mi,Hj) was found.
– Mi or Hj is honest but no entry 〈∗,m, bsn,Mi,Hj〉 ∈ Signed exists.
– There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1 and no pair (τi,Mi,Hj)

for an honest Hj was found.

• If f 6= 0, set f ← ver(σ,m, bsn).

• Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid, f) to V.

8. Link. On input (LINK, sid, σ,m, σ′,m′, bsn) from a party V.

• Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

• For each τi in Members and DomainKeys compute bi ← identify(σ,m, bsn, τi)
and b′i ← identify(σ′,m′, bsn, τi) and do the following:

– Set f ← 0 if bi 6= b′i for some i.
– Set f ← 1 if bi = b′i = 1 for some i.

• If f is not defined yet, set f ← link(σ,m, σ′,m′, bsn).

• Output (LINK, sid, f) to V.

Figure 5.2: The Sign, Verify, and Link interfaces of our ideal functionality
Fpdaa for DAA with optimal privacy.
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5.3.1 Ideal Functionality Fpdaa

We start by describing the interfaces and guaranteed security properties
in an informal manner, and present the detailed definition of Fpdaa in
Figures 5.1 and 5.2.

Setup.

The SETUP interface on input sid = (I, sid′) initiates a new session for
the issuer I and expects the adversary to provide algorithms (ukgen,
sig, ver, link, identify) that will be used inside the functionality. ukgen
creates a new key gsk and a tracing trapdoor τ that allows Fpdaa to trace
signatures generated with gsk . sig, ver, and link are used by Fpdaa to
create, verify, and link signatures, respectively. Finally, identify allows
to verify whether a signature belongs to a certain tracing trapdoor.
This allows Fpdaa to perform multiple consistency checks and enforce
the desired non-frameability and unforgeability properties.

Note that the ver and link algorithms assist the functionality only
for signatures that are not generated by Fpdaa itself. For signatures gen-
erated by the functionality, Fpdaa will enforce correct verification and
linkage using its internal records. While ukgen and sig are probabilistic
algorithms, the other ones are required to be deterministic. The link
algorithm also has to be symmetric, i.e., for all inputs it must hold that
link(σ,m, σ′,m′, bsn) ↔ link(σ′,m′, σ,m, bsn). To allow for instantia-
tions based on global random oracles, Fpdaa allows the algorithms to
query the global random oracle GsRO. As in the previous chapter, this
random oracle needs to be global to allow Fpdaa to interact with the
global random oracle. Fpdaa makes sure that the algorithms commu-
nicate with no other entity, as any communication with the adversary
would break the anonymity guarantees.

Join.

A host Hj can request to join with a TPM Mi using the JOIN in-
terface. If both the TPM and the issuer approve the join request,
the functionality stores an internal membership record for Mi,Hj in
Members indicating that from now on that platform is allowed to create
attestations.

If the host is corrupt, the adversary must provide Fpdaa with a trac-
ing trapdoor τ . This value is stored along in the membership record
and allows the functionality to check via the identify function whether
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signatures were created by this platform. Fpdaa uses these checks to en-
sure non-frameability and unforgeability whenever it creates or verifies
signatures. To ensure that the adversary cannot provide bad trapdoors
that would break the completeness or non-frameability properties, Fpdaa

checks the legitimacy of τ via the “macro” function CheckTtdCorrupt.
This function checks that for all previously generated or verified signa-
tures for which Fpdaa has already seen another matching tracing trap-
door τ ′ 6= τ , the new trapdoor τ is not also identified as a matching
key. CheckTtdCorrupt is defined as follows:

CheckTtdCorrupt(τ) =6 ∃(σ,m, bsn) :

(
(
〈σ,m, bsn, ∗, ∗〉 ∈ Signed ∨ 〈σ,m, bsn, ∗, 1〉 ∈ VerResults

)
∧

∃τ ′ :
(
τ 6= τ ′ ∧

(
〈∗, ∗, τ ′〉 ∈ Members ∨ 〈∗, ∗, ∗, ∗, τ ′〉 ∈ DomainKeys

)
∧ identify(σ,m, bsn, τ) = identify(σ,m, bsn, τ ′) = 1

))

Sign.

After joining, a host Hj can request a signature on a message m with
respect to basename bsn using the SIGN interface. The signature will
only be created when the TPMMi explicitly agrees to signing m w.r.t.
bsn and a join record for Mi,Hj in Members exists (if the issuer is
honest).

When a platform wants to sign message m w.r.t. a fresh basename
bsn, Fpdaa generates a new key gsk (and tracing trapdoor τ) via ukgen
and then signs m with that key. The functionality also stores the fresh
key (gsk , τ) together with bsn in DomainKeys, and reuses the same
key when the platform wishes to sign repeatedly under the same base-
name. Using fresh keys for every signature naturally enforces the de-
sired privacy guarantees: the signature algorithm does not receive any
identifying information as input, and thus the created signatures are
guaranteed to be anonymous (or pseudonymous in case bsn is reused).

Our functionality enforces this privacy property whenever the host
is honest. Note, however, that Fpdaa does not behave differently when
the host is corrupt, as in this case its output does not matter due to
the way corruptions are handled in UC. That is, Fpdaa always outputs
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anonymous signatures to the host, but if the host is corrupt, the signa-
ture is given to the adversary, who can choose to discard it and output
anything else instead.

To guarantee non-frameability and completeness, our functional-
ity further checks that every freshly generated key, tracing trapdoor
and signature does not falsely match with any existing signature or
key. More precisely, Fpdaa first uses the CheckTtdHonest macro to ver-
ify whether the new key does not match to any existing signature.
CheckTtdHonest is defined as follows:

CheckTtdHonest(τ) =

∀〈σ,m, bsn,M,H〉 ∈ Signed : identify(σ,m, bsn, τ) = 0 ∧
∀〈σ,m, bsn, ∗, 1〉 ∈ VerResults : identify(σ,m, bsn, τ) = 0

Likewise, before outputting σ, the functionality checks that no one else
already has a key which would match this newly generated signature.

Finally, for ensuring unforgeability, the signed message, basename,
and platform are stored in Signed which will be used when verifying
signatures.

Verify.

Signatures can be verified by any party using the VERIFY interface.
Fpdaa uses its internal Signed, Members, and DomainKeys records to
enforce unforgeability and non-frameability. It uses the tracing trap-
doors τ stored in Members and DomainKeys to find out which platform
created this signature. If no match is found and the issuer is honest,
the signature is a forgery and rejected by Fpdaa. If the signature to be
verified matches the tracing trapdoor of some platform with an honest
TPM or host, but the signing records do not show that they signed this
message w.r.t. the basename, Fpdaa again considers this to be a forgery
and rejects. If the records do not reveal any issues with the signature,
Fpdaa uses the ver algorithm to obtain the final result.

The verify interface also supports verifier-local revocation. The ver-
ifier can input a revocation list RL containing tracing trapdoors, and
signatures matching any of those trapdoors are no longer accepted.
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Link.

Using the LINK interface, any party can check whether two signatures
(σ, σ′) on messages (m,m′) respectively, generated with the same base-
name bsn originate from the same platform or not. Fpdaa again uses
the tracing trapdoors τ stored in Members and DomainKeys to check
which platforms created the two signatures. If they are the same, Fpdaa

outputs that they are linked. If it finds a platform that signed one,
but not the other, it outputs that they are unlinked, which prevents
framing of platforms with an honest host.

The full definition of Fpdaa is given in Figures 5.1 and 5.2. Note
that when Fpdaa runs one of the algorithms sig, ver, identify, link, and
ukgen, it does so without maintaining state. This means all user keys
have the same distribution, signatures are equally distributed for the
same input, and ver, identify, and link invocations only depend on the
current input, not on previous inputs.

5.3.2 Modeling Subverted Parties in the UC Frame-
work

As just discussed, our functionality Fpdaa guarantees that signatures
created with an honest host are unlinkable and do not leak any informa-
tion about the signing platform, even if the TPM is corrupt. However,
the adversary still learns the message and basename when the TPM
is corrupt, due to the way UC models corruptions. We discuss how
this standard corruption model inherently limits the achievable privacy
level, and then present our approach of isolated corruptions which al-
low one to overcome this limitation yet capture the power of subverted
TPMs. While we discuss the modeling of isolated corruptions in the
context of our DAA functionality, we consider the general concept to be
of independent interest as it is applicable to any other scenario where
such subversion attacks can occur.

Conditional Privacy under Full TPM Corruption.

In the standard UC corruption model, the adversary gains full control
over a corrupted party, i.e., it receives all inputs to that party and can
choose its responses. For the case of a corrupt TPM this means that the
adversary sees the message m and basename bsn whenever the honest
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host wants to create a signature. In fact, the adversary will learn which
particular TPM Mi is asked to sign m w.r.t. bsn. Thus, even though
the signature σ on m w.r.t. bsn is then created by Fpdaa and does not
leak any information about the identity of the signing platform, the
adversary might still be able to recognize the platform’s identity via
the signed values. That is, if a message m or basename bsn is unique,
i.e., only a single (and corrupt) TPM has ever signed m w.r.t. bsn,
then, when later seeing a signature on m w.r.t. bsn, the adversary can
derive which platform had created the signature.

A tempting idea for better privacy would be to change the function-
ality such that the TPM does not receive the message and basename
when asked to approve an attestation via the SIGNPROCEED message.
As a result, this information will not be passed to the adversary if
the TPM is corrupt. However, that would completely undermine the
purpose of the TPM that is supposed to serve as a trust anchor: veri-
fiers accept a DAA attestation because they know a trusted TPM has
approved them. Therefore, it is essential that the TPM sees and ac-
knowledges the messages it signs.

Thus, in the presence of a fully corrupt TPM, the amount of privacy
that can be achieved depends which messages and basenames are being
signed – the more unique they are, the less privacy Fpdaa guarantees.

Optimal Privacy under Isolated TPM Corruption.

The aforementioned leakage of all messages and basenames that are
signed by a corrupt TPM is a result of the standard UC corruption
model. Modeling corruption of TPMs like this gives the adversary
much more power than in reality: even if a TPM is subverted and runs
malicious algorithms, it is still embedded into a host who controls all
communication with the outside world. Thus, the adversary cannot
communicate directly with the TPM, but only via the (honest) host.

To model such subversions more accurately and study the privacy
achievable in the presence of subverted TPMs, we define a relaxed level
of corruption that we call isolated corruption. When the adversary
corrupts a TPM in this manner, it can specify code for the TPM but
cannot directly communicate with the TPM.

We formally define such isolated corruptions via the body-shell
paradigm used to model standard UC corruptions [Can00]. Recall that
the body of a party defines its behavior, whereas the shell models the
communication with that party. Thus, for our isolated corruptions,
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Figure 5.3: Modeling of corruption in the real world. Left: an honest
TPM applies the protocol ΠM, and communicates with the host running ΠH.
Middle: a corrupt TPM sends any input the adversary instructs it to, and
forwards any messages received to the adversary. Right: an isolated corrupt
TPM is controlled by an isolated adversary AM, who can communicate with
the host, but not with any other entities.
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Figure 5.4: Modeling of corruption in the ideal world. Left: an honest
TPM is a dummy party dM that forwards inputs and outputs between the
environment E and the functionality Fpdaa. Middle: a corrupt TPM sends
any input the adversary instructs it to, and forwards any subroutine output
to the adversary. Right: an isolated corrupt TPM is controlled by an isolated
simulator SM, who may send inputs and receive outputs from Fpdaa, but not
communicate with any other entities.

the adversary gets control over the body but not the shell. Interest-
ingly, this is exactly the inverse of honest-but-curious corruptions in
UC, where the adversary controls the shell and thus sees all inputs and
outputs, but cannot change the body, i.e., the parties behavior remains
honest.

In our case, an adversary performing an isolated corruption can pro-
vide a body, which models the tampered algorithms that an isolated
corrupt TPM may use. The shell remains honest though and handles
inputs, and subroutine outputs, and only forwards the ones that are
allowed to the body. In the real world, the shell would only allow com-
munication with the host in which the TPM is embedded. In the ideal
world, the shell allows inputs to and outputs from the functionality,
and blocks anything else. For protocols making use of a global random
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oracle, the shell would also allow for communication with the global
random oracle functionality in both the real and ideal world.

Figure 5.3 and Figure 5.4 depict the different levels of corruption
in the real world and ideal world, respectively. In the ideal word, an
isolated corruption of a TPM replaces the dummy TPM that forwards
inputs and outputs between the environment and the ideal functional-
ity with an isolated simulator comprising of the adversarial body and
honest shell.

When designing a UC functionality, then all communication be-
tween a host and the “embedded” party that can get corrupted in such
an isolated manner must be modeled as a direct channel (see e.g., the
SIGN related interfaces in Fpdaa). Otherwise the simulator/adversary
will be aware of the communication between both parties and can delay
or block messages, which would contradict the concept of an isolated
corruption where the adversary has no direct channel to the embedded
party. Note that the perfect channel of course only holds if the host
entity is honest, if it is corrupt (in the standard sense), the adversary
can see and control all communication via the host anyway.

With such isolated adversaries we specify much stronger privacy.
The adversary no longer automatically learns which isolated corrupt
TPM signed which combination of messages and basenames, and the
signatures created by Fpdaa are guaranteed to be unlinkable. Of course
the message m and basename bsn must not leak information about the
identity of the platform. In certain applications, the platform would
sign data generated or partially controlled by other functions contained
in a TPM. This is out of scope of the attestation scheme, but the higher
level scheme using Fpdaa should ensure that this does not happen, by,
e.g., letting the host randomize or sanitize the message.

5.4 Insufficiency of Existing DAA Schemes

Our functionality Fpdaa requires all signatures on a message m with
a fresh basename bsn to have the same distribution, even when the
TPM is corrupt. None of the existing DAA schemes can be used to
realize Fpdaa when the TPM is corrupted (either fully or isolated). The
reason is inherent to the common protocol design that underlies all
DAA schemes so far, i.e., there is no simple patch that would allow
upgrading the existing solutions to achieve optimal privacy.

In a nutshell, in all existing DAA schemes, the TPM chooses a
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secret key gsk for which it blindly receives a membership credential of a
trusted issuer. To create a signature on message m with basename bsn,
the platform creates a signature proof of knowledge signing message m
and proving knowledge of gsk and the membership credential.

In the original RSA-based DAA scheme [BCC04], and the more
recent qSDH-based schemes [CF08,BL11,BL10,CDL16a], the proof of
knowledge of the membership credential is created jointly by the TPM
and host. After jointly computing the commitment values of the proof,
the host computes the hash over these values and sends the hash c
to the TPM. To prevent leaking information about its key, the TPM
must ensure that the challenge is a hash of fresh values. In all the
aforementioned schemes this is done by letting the TPM choose a fresh
nonce n and computing the final hash as c′ ← H(n, c). An adversarial
TPM can embed information in n instead of taking it uniformly at
random, clearly altering the distribution of the proof and thus violating
the desired privacy guarantees.

At a first glance, deriving the hash for the proof in a more robust
manner might seem a viable solution to prevent such leakage. For
instance, setting the nonce as n ← nt ⊕ nh, with nt being the TPM’s
and nh the host’s contribution, and letting the TPM commit to nt
before receiving nh. While this indeed removes the leakage via the
nonce, it still reveals the hash value c′ ← H(n, c) to the TPM with the
hash becoming part of the completed signature. Thus, the TPM can
base its behavior on the hash value and, e.g., only sign messages for
hashes that start with a 0-bit.

The same argument applies to the existing LRSW-based schemes
[CPS10, BFG+13b, CDL16b], where the proof of a membership cre-
dential is done solely by the TPM, and thus can leak information
via the Fiat-Shamir hash output again. The general problem is that
the signature proofs of knowledge are not randomizable. If the TPM
would create a randomizable proof of knowledge, e.g., a Groth-Sahai
proof [GS08], the host could randomize the proof to remove any hidden
information, but this would yield a highly inefficient signing protocol
for the TPM.

5.5 Building Blocks

In this section we introduce the building blocks for our DAA scheme.
In addition to standard components such as additively homomorphic
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encryption, we introduce two non-standard types of signature schemes.
One signature scheme we require is for the issuer to blindly sign the
public key of the TPM and host. The second signature scheme is needed
for the TPM and host to jointly create signed attestations, which we
term split signatures.

The approach of constructing a DAA scheme from modular building
blocks rather than basing it on a concrete instantiation was also used
by Bernhard et al. [BFG+13b, BFG13a]. As they considered a simpli-
fied setting, called pre-DAA, where the host and platform have a joint
corruption state, and we aim for much stronger privacy, their “linkable
indistinguishable tag” is not sufficient for our construction. We replace
this with our split signatures.

As our protocol requires“compatible”building blocks, i.e., the differ-
ent schemes have to work in the same group, we assume the availability

of public system parameters spar
$← SParGen(1κ) generated for secu-

rity parameter κ. We give spar as dedicated input to the individual
key generation algorithms instead of the security parameter κ. For the
sake of simplicity, we omit the system parameters as dedicated input to
all other algorithms and assume that they are given as implicit input.

5.5.1 Homomorphic Encryption Schemes

We require an encryption scheme (EncKGen,Enc,Dec) that is seman-
tically secure and that has a cyclic group G = 〈g〉 of order q as mes-

sage space. It consists of a key generation algorithm (epk , esk)
$←

EncKGen(spar), where spar defines the group G, an encryption algo-

rithm C
$← Enc(epk ,m), with m ∈ G, and a decryption algorithm

m← Dec(esk , C).
We further require that the encryption scheme has an appropriate

homomorphic property, namely that there is an efficient operation �
on ciphertexts such that, if C1 ∈ Enc(epk ,m1) and C2 ∈ Enc(epk ,m2),
then C1�C2 ∈ Enc(epk ,m1 ·m2). We will also use exponents to denote
the repeated application of �, e.g., C2 to denote C � C.

ElGamal Encryption. We use ElGamal encryption [ElG86], which
is homomorphic and chosen plaintext secure. The semantic security
is sufficient for our construction, as the parties always prove to each
other that they formed the ciphertexts correctly. Let spar define a
group G = 〈g〉 of order q such that the DDH problem is hard.
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EncKGen(spar) : Pick x
$← Zq, compute y ← gx, and output esk ←

x, epk ← y.

Enc(epk ,m) : To encrypt a message m ∈ G under epk = y, pick r
$← Zq

and output the ciphertext (C1, C2)← (yr, grm).

Dec(esk , C) : On input the secret key esk = x and a ciphertext C =

(C1, C2) ∈ G2, output m′ ← C2 · C−1/x
1 .

5.5.2 Signature Schemes for Encrypted Messages

We need a signature scheme that supports the signing of encrypted mes-
sages and must allow for (efficient) proofs proving that an encrypted
value is correctly signed and proving knowledge of a signature that signs
an encrypted value. Dual-mode signatures [CL15] satisfy these proper-
ties, as therein signatures on plaintext as well as on encrypted messages
can be obtained. As we do not require signatures on plaintexts, though,
we can use a simplified version.

A signature scheme for encrypted messages consists of the algo-
rithms (SigKGen,EncSign,DecSign,Vf) and uses an encryption scheme
(EncKGen,Enc,Dec) that is compatible with the message space of the
signature scheme. In particular, the algorithms working with encrypted

messages or signatures also get the keys (epk , esk)
$← EncKGen(spar)

of the encryption scheme as input.

SigKGen(spar) : On input the system parameters, this algorithm out-
puts a public verification key spk and secret signing key ssk .

EncSign(ssk , epk , C) : On input signing key ssk , a public encryption
key epk , and ciphertext C = Enc(epk ,m), outputs an “encrypted”
signature σ of C.

DecSign(esk , spk , σ) : On input an “encrypted” signature σ, secret de-
cryption key esk and public verification key spk , outputs a stan-
dard signature σ.

Vf(spk , σ,m) : On input a public verification key spk , signature σ and
message m, outputs 1 if the signature is valid and 0 otherwise.

For correctness, we require that any message encrypted with hon-
estly generated keys that is honestly signed decrypts to a valid signa-
ture. More precisely, for any message m, we require
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Experiment ExpESIG-forge
A,ESIG,Enc(G, τ):

spar ← SParGen(τ)

(spk , ssk)
$← SigKGen(spar)

L← ∅
(m∗, σ∗)

$← AOEncSign(ssk,·,·)
(spar , spk)

where OEncSign on input (epk i,mi):
add mi to the list of queried messages L← L ∪mi

compute Ci
$← Enc(epk i,mi)

return σ
$← EncSign(ssk , epk i, Ci)

return 1 if Vf(spk , σ∗,m∗) = 1 and m∗ /∈ L

Figure 5.5: Unforgeability experiment for signatures on encrypted mes-
sages.

Pr
[
Vf(spk , σ,m) = 1 | spar ← SParGen(τ),

(spk , ssk)
$← SigKGen(spar), (epk , esk)← EncKGen(spar),

C ← Enc(epk ,m), σ̄ ← EncSign(ssk , epk , c),

σ ← DecSign(esk , spk , σ̄)
]
.

We use the unforgeability definition of [CL15], but omit the oracle
for signatures on plaintext messages. Note that the oracle OEncSign will
only sign correctly computed ciphertexts, which is modeled by provid-
ing the message and public encryption key as input and let the oracle
encrypt the message itself before signing it. When using the scheme,
this can easily be enforced by asking the signature requester for a proof
of correct ciphertext computation, and, indeed, in our construction such
a proof is needed for other reasons as well.

Definition 14. (Unforgeability of Signatures for Encrypted
Messages). We say a signature scheme for encrypted messages is
unforgeable if for any efficient algorithm A the probability that the ex-
periment given in Figure 5.5 returns 1 is negligible (as a function of
τ).

AGOT+ Signature Scheme. To instantiate the building block of
signatures for encrypted messages we will use the AGOT+ scheme
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of [CL15], which was shown to be a secure instantiation of a dual-mode
signature, hence is also secure in our simplified setting. Again, as we
do not require signatures on plaintext messages we omit the standard
signing algorithm. The AGOT+ scheme is based on the structure-
preserving signature scheme by Abe et al. [AGOT14], which is proven
to be unforgeable in the generic group model.

The AGOT+ scheme assumes the availability of system parameters
(q,G1,G2,Gt, e, g1, g2, x), where G1,G2,Gt are groups of prime order
q generated by g1, g2, and e(g1, g2) respectively, e is a non-degenerate
bilinear map e : G1 × G2 → Gt, and x is an additional random group
element in G1.

SigKGen(spar) : Draw v
$← Zq, compute y ← gv2 , and return spk = y,

ssk = v.

EncSign(ssk , epk ,M) : On input a proper encryption M = Enc(epk ,m)
of a message m ∈ G1 under epk , and secret key ssk = v, choose a

random u
$← Z∗q , and output the (partially) encrypted signature

σ̄ = (r, S, T, w), with r ← gu2 , S ← (Mv � Enc(epk , x))1/u, T ←
(Sv � Enc(epk , g1))1/u, w ← g

1/u
1 .

DecSign(esk , spk , σ) : Parse σ = (r, S, T, w), compute s← Dec(esk , S),
t← Dec(esk , T ) and output σ = (r, s, t, w).

Vf(spk , σ,m) : Parse σ = (r, s, t, w′) and spk = y and output 1 iff
m, s, t ∈ G1, r ∈ G2, e(s, r) = e(m, y) · e(x, g2), and e(t, r) =
e(s, y) · e(g1, g2).

Note that for notational simplicity, we consider w part of the sig-
nature, i.e., σ = (r, s, t, w), altough signature verification will ignore
w. As pointed out by Abe et al., a signature σ = (r, s, t) can be
randomized using the randomization token w to obtain a signature

σ′ = (r′, s′, t′) by picking a random u′
$← Z∗q and computing r′ ←

ru
′
, s′ ← s1/u′ , t′ ← (tw(u′−1))1/u′2 .
For our construction, we also require the host to prove that it knows

an encrypted signature on an encrypted message. In Section 5.7 we
describe how such a proof can be done.

5.5.3 Split Signatures

The second signature scheme we require must allow two different par-
ties, each holding a share of the secret key, to jointly create signa-
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tures. Our DAA protocol performs the joined public key generation
and the signing operation in a strict sequential order. That is, the first
party creates his part of the key, and the second party receiving the
‘pre-public key’ generates a second key share and completes the joined
public key. Similarly, to sign a message the first signer creates a ‘pre-
signature’ and the second signer completes the signature. We model
the new signature scheme for that particular sequential setting rather
than aiming for a more generic building block in the spirit of threshold
or multi-signatures, as the existence of a strict two-party order allows
for substantially more efficient constructions.

We term this new building block split signatures partially following
the notation by Bellare and Sandhu [BS01] who formalized different
two-party settings for RSA-based signatures where the signing key is
split between a client and server. Therein, the case “MSC” where the
first signature contribution is produced by an external server and then
completed by the client comes closest to out setting.

Formally, we define a split signature scheme SSIG as a tuple of algo-
rithms (PreKeyGen,CompleteKeyGen,VerKey,PreSign,CompleteSign,Vf):

PreKeyGen(spar) : On input the system parameters, this algorithm out-
puts the pre-public key ppk and the first share of the secret signing
key ssk1.

CompleteKeyGen(ppk) : On input the pre-public key, this algorithm
outputs a public verification key spk and the second secret signing
key ssk2.

VerKey(ppk , spk , ssk2) : On input the pre-public key ppk , the full public
key spk , and a secret key share ssk2, this algorithm outputs 1 iff
the pre-public key combined with secret key part ssk2 leads to
full public key spk .

PreSign(ssk1,m) : On input a secret signing key share ssk1, and mes-
sage m, this algorithm outputs a pre-signature σ′.

CompleteSign(ppk , ssk2,m, σ
′) : On input the pre-public key ppk , the

second signing key share ssk2, message m, and pre-signature σ′,
this algorithm outputs the completed signature σ.

Vf(spk , σ,m) : On input the public key spk , signature σ, and message
m, this algorithm outputs a bit b indicating whether the signature
is valid or not.

128



5.5. Building Blocks

A split signature scheme must satisfy correctness, meaning that
honestly generated signatures will pass verification.

Definition 15. A split signature scheme is correct if we have

Pr
[
Vf(spk , σ,m) = 1 | spar ← SParGen(κ),

(ppk , spk1)
$← PreKeyGen(spar), (spk , ssk2)

$← CompleteKeyGen(ppk),

σ′
$← PreSign(ssk1,m), σ′ ← CompleteSign(ppk , ssk2,m, σ

′)
]
.

We further require a number of security properties from our split
signatures. The first one is unforgeability which must hold if at least
one of the two signers is honest. This is captured in two security ex-
periments: type-1 unforgeability allows the first signer to be corrupt,
and type-2 unforgeability considers a corrupt second signer. Our defini-
tions are similar to the ones by Bellare and Sandhu, with the difference
that we do not assume a trusted dealer creating both secret key shares.
Instead, we let the adversary output the key share of the party he
controls. For type-2 unforgeability we must ensure, though, that the
adversary indeed integrates the honestly generated pre-key ppk when
producing the completed public key spk , which we verify via VerKey.
Formally, unforgeability for split signatures is defined as follows.

Definition 16. (Type-1/2 Unforgeability of SSIG). A split
signature scheme is type-1/2 unforgeable if for any efficient algorithm
A the probability that the experiments given in Figure 5.6 return 1 is
negligible (as a function of κ).

Further, we need a property that we call key-hiding, which ensures
that signatures do not leak any information about the public key for
which they are generated. This is needed in the DAA scheme to get
unlinkability even in the presence of a corrupt TPM that contributes to
the signatures and knows part of the secret key, yet should not be able
to recognize“his” signatures afterwards. Our key-hiding notion is some-
what similar in spirit to key-privacy for encryption schemes as defined
by Bellare et al. [BBDP01], which requires that a ciphertext should not
leak anything about the public key under which it is encrypted.

Formally, this is captured by giving the adversary a challenge signa-
ture for a chosen message either under the real or a random public key.
Clearly, the property can only hold as long as the real public key spk
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Experiment ExpUnforgeability-1
A (κ):

spar
$← SParGen(1κ)

(ppk , state)← A(spar)
(spk , ssk2)← CompleteKeyGen(ppk)
L← ∅
(m∗, σ∗)← AOCompleteSign(ppk,ssk2,·,·)

(state, spk)
where OCompleteSign on input (mi, σ

′
i):

set L← L ∪mi

return σi ← CompleteSign(ppk , ssk2,mi, σ
′
i)

return 1 if Vf(spk , σ∗,m∗) = 1 and m∗ /∈ L

Experiment ExpUnforgeability-2
A (κ):

spar
$← SParGen(1κ)

(ppk , ssk1)← PreKeyGen(spar)
L← ∅
(m∗, σ∗, spk , ssk2)← AOPreSign(ssk1,·)

(spar , ppk)
where OPreSign on input mi:
set L← L ∪mi

return σ′i ← PreSign(ssk1,mi)
return 1 if Vf(spk , σ∗,m∗) = 1, and m∗ /∈ L

and VerKey(ppk , spk , ssk2) = 1

Figure 5.6: Unforgeability-1 (1st signer is corrupt) and unforgeability-2
(2nd signer is corrupt) experiments.

is not known to the adversary, as otherwise he can simply verify the
challenge signature. As we want the property to hold even when the
first party is corrupt, the adversary can choose the first part of the se-
cret key and also contribute to the challenge signature. The adversary
is also given oracle access to OCompleteSign again, but is not allowed to
query the message used in the challenge query, as he could win trivially
otherwise (by the requirement of signature-uniqueness defined below
and the determinism of CompleteSign). The formal experiment for our
key-hiding property is given below. The oracle OCompleteSign is defined
analogously as in type-1 unforgeability.

Definition 17. (Key-hiding property of SSIG). We say a split
signature scheme is key-hiding if for any efficient algorithm A the prob-
ability that the experiment given in Figure 5.7 returns 1 is negligible
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Experiment ExpKey-Hiding
A (κ):

spar
$← SParGen(1κ)

(ppk , state)
$← A(spar)

(spk , ssk2)
$← CompleteKeyGen(ppk)

L← ∅
(m,σ′, state ′)

$← AOCompleteSign(ppk,ssk2,·,·)
(state)

b
$← {0, 1}

if b = 0 (signature under spk):
σ ← CompleteSign(ppk , ssk2,m, σ

′)
if b = 1 (signature under random key):

(ppk∗, ssk∗1)
$← PreKeyGen(spar)

(spk∗, ssk∗2)
$← CompleteKeyGen(ppk∗)

σ′
$← PreSign(ssk∗1,m)

σ ← CompleteSign(ppk∗, ssk∗2,m, σ
′)

b′ ← AOCompleteSign(ppk,ssk2,·,·)
(state ′, σ)

return 1 if b = b′, m 6∈ L, and Vf(spk , σ,m) = 1

Figure 5.7: Key-hiding experiment for split signatures.

Experiment ExpKey-Uniqueness
A (κ):

spar
$← SParGen(1κ)

(σ, spk0, spk1,m)
$← A(spar)

return 1 if spk0 6= spk1, Vf(spk0, σ,m) = 1, and Vf(spk1, σ,m) = 1

Figure 5.8: Key-uniqueness experiment for split signatures.

(as a function of κ).

We also require two uniqueness properties for our split signatures.
The first is key-uniqueness, which states that every signature is only
valid under one public key.

Definition 18. (Key-uniqueness of split signatures). We say a
split signature scheme has key-uniqueness if for any efficient algorithm
A the probability that the experiment given in Figure 5.8 returns 1 is
negligible (as a function of κ).

The second uniqueness property required is signature-uniqueness,
which guarantees that one can compute only a single valid signature
on a certain message under a certain public key.
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Experiment ExpSignature-Uniqueness
A (κ):

spar
$← SParGen(1κ)

(σ0, σ1, spk ,m)
$← A(spar)

return 1 if σ0 6= σ1, Vf(spk , σ0,m) = 1, and Vf(spk , σ1,m) = 1

Figure 5.9: Signature-uniqueness experiment for split signatures.

Definition 19. (Signature-uniqueness of split signatures). We
say a split signature scheme has signature uniqueness if for any effi-
cient algorithm A the probability that the experiment given in Figure 5.9
returns 1 is negligible (as a function of κ).

Instantiation of split signatures (split-BLS). To instantiate split
signatures, we use a modified BLS signature [BLS04]. Let H be a
hash function {0, 1} → G∗1 and the public system parameters be the
description of a bilinear map, i.e., spar = (G1,G2,Gt, g1, g2, e, q).

PreKeyGen(spar) : Take ssk1
$← Z∗q , set ppk ← gssk1

2 , and output
(ppk , ssk1).

CompleteKeyGen(spar , ppk) : Check ppk ∈ G2 and ppk 6= 1G2
. Take

ssk2
$← Z∗q and compute spk ← ppk ssk2 . Output (spk , ssk2).

VerKey(spar , ppk , spk , ssk2) : Output 1 iff ppk 6= 1G2
and spk = ppk ssk2 .

PreSign(spar , ssk1,m) : Output σ′ ← H(m)ssk1 .

CompleteSign(spar , ppk , ssk2,m, σ
′) : If e(σ′, g2) = e(H(m), ppk), out-

put σ ← σ′ssk2 , otherwise ⊥.

Vf(spar , spk , σ,m) : Output 1 iff σ 6= 1G1
and e(σ, g2) = e(H(m), spk).

Theorem 9. Split-BLS is a secure multisignature scheme under the
co-CDH and XDH assumptions in the random-oracle model.

This theorem is a result of the following lemmas.

Lemma 2. Split-BLS is correct, as defined in Definition 15.
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Proof. From running PreKeyGen, we get ssk1
$← Z∗q and ppk ← gssk1

2 .
CompleteKeyGen will check that ppk 6= 1G2

, which holds as ssk1 is taken

from Z∗q . It then takes ssk2
$← Z∗q and spk ← ppk ssk2 .

When signing, PreSign sets σ′ ← H(m)ssk1 . CompleteSign checks

e(σ′, g2)
?
= e(H(m), ppk) which holds for this σ′, and computes σ ←

σ′ssk2 .
Verification checks e(σ, g2) = e(H(m), spk), which holds as σ =

H(m)ssk1·ssk2 and spk = gssk1·ssk2
2 . Since both ssk1 and ssk2 are taken

from Z∗q , they are both unequal to 0 and ssk1 · ssk2 6= 0. As H maps to
G∗1, this means σ 6= 1G1

.

Lemma 3. The split-BLS signature scheme satisfies unforgeability-
1, as defined in Definition 16, under the co-CDH assumption, in the
random-oracle model.

Proof. Assume that adversary A breaks unforgeability-1 with non-neg-
ligible probability, then we construct reduction B that breaks co-CDH
with non-negligible probability. B takes as input the groups and gα1 , gβ1 ,

gβ2 , and must compute gα·β1 . If gα1 = 1G1 or gβ1 = 1G1 , B outputs 1G1 to
solve the co-CDH problem directly. Otherwise, B initializes A on the
parameters and receives the pre-key ppk from A. For some unknown
ssk1, ppk = gssk1

2 . B simulates the (unknown) second key ssk2 =

β/ssk1 by setting spk ← gβ2 = ppk ssk2 . Random oracle queries are

answered with gr1 for r
$← Z∗q , while maintaining consistency, except for

a random query m̄, where it returns gα1 . When A makes a CompleteSign

query on a message m 6= m̄ and pre-signature σ′, first check e(σ′, g2)
?
=

e(H(m), ppk), and return ⊥ if this does not hold. Otherwise, return

σ ← H(m)β = (gβ1 )r, where the reduction knows r from simulating the
random oracle.

When A outputs forgery (m∗, σ∗). With non-negligible probability,

m∗ = m̄, and we have e(σ∗, g2) = e(H(m), spk) = e(gα1 , g
β
2 ), showing

that σ∗ solves the co-CDH instance.

Lemma 4. The split-BLS signature scheme satisfies unforgeability-
2, as defined in Definition 16, under the co-CDH assumption, in the
random-oracle model.

Proof. Assume that adversary A breaks unforgeability-2 with non-neg-
ligible probability, then we construct reduction B that breaks co-CDH
with non-negligible probability. B takes as input the groups and gα1 ,
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gβ1 , gβ2 , and must compute gα·β1 . If gα1 = 1G1
or gβ1 = 1G1

, B outputs
1G1

to solve the co-CDH problem directly. B runs A on input the

parameters and ppk = gβ2 . When A makes random oracle queries, B
answers them with gr1 with r

$← Z∗q , while maintaining consistency,
except for a random query m̄, where it returns gα1 . When A makes a
PreSign query on m, B looks up r such that H(m) = gr1 from simulating

the random oracle and output signature σ ← (gβ1 )r. If A makes a query
with m = m̄, the reduction fails.

When A outputs (m∗, σ∗, spk , ssk2) with VerKey(ppk , spk , ssk2) =
1, Vf(spk , σ∗,m∗) = 1, and m was not queried, with non-negligible
probability we have m∗ = m̄ and therefore e(σ∗, g2) = e(gα1 , spk). Since

spk = gβ2
ssk2

, we have e(σ∗, g2) = e(gα1 , g
β
2

ssk2
). As σ∗ 6= 1G1 , we have

ssk2 6= 0 and e(σ∗1/ssk2 , g2) = e(gα1 , g
β
2 ), so σ∗1/ssk2 = gα·β1 solves the

co-CDH instance.

Lemma 5. The split-BLS signature scheme is key-hiding, as defined in
Definition 17, under the XDH assumption, in the random-oracle model.

Proof. Assume that adversary A breaks the key-hiding property with
non-negligible probability, then we construct reduction B that breaks
XDH with non-negligible probability.
B receives input the groups and gα1 , g

β
1 , g

γ
1 . If gα1 = 1G1 , gβ1 = 1G1 ,

or γ = 1G1 , the reduction fails. It receives ppk ∈ G2 from A, after
initializing it on the system parameters. When A makes random oracle

queries, B answers with gr1 with r
$← Z∗q , while maintaining consistency,

except for a random query m̄, where it returns gβ1 . When A makes
a CompleteSign query on a message m 6= m̄ and pre-signature σ′, B
first checks e(σ′, g2)

?
= e(H(m), ppk), and returns ⊥ if this does not

hold. Otherwise, return H(m)α = (gα1 )r, where the reduction knows
r from simulating the random oracle. A then outputs the challenge
message, which with nonnegligible probability is m̄, and a presignature

σ′. B checks e(σ′, g2)
?
= e(H(m), ppk) and returns σ ← gγ1 . A finally

outputs a bit indicating whether the real key was used or a random key,
which exactly corresponds to the XDH instance being a DDH tuple or
not. B can therefore copy A’s output to break the XDH instance with
nonnegligible probability.

Lemma 6. The split-BLS signature scheme satisfies key-uniqueness,
as defined in Definition 18.
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Proof. As we work in prime order groups, every element has a unique
discrete logarithm in Zq. Assume for contradiction that a signature
σ on message m verifies under two keys spk0 6= spk1. We then have
e(σ, g2) = e(H(m), spk b) for b ∈ {0, 1}. Let H(m) be gr1 for some r ∈ Z∗q ,
and let spk b = gxb2 for some xb ∈ Z∗q . This gives e(σ, g2) = e(g1, g2)r·xb .
Let s be the discrete log of σ, this means s = r · x0 and s = r · x1, and
since r ∈ Z∗q , s/r = x0 = x1, contradicting spk0 6= spk1.

Lemma 7. The split-BLS signature scheme satisfies signature unique-
ness, as defined in Definition 19.

Proof. Assume for contradiction that two signatures σ0 6= σ1 on mes-
sage m both verify under key spk , we have e(σb, g2) = e(H(m), spk)
for b ∈ {0, 1}. Let H(m) be gr1, σb = gsb1 , and spk = gx2 , for some
r, s0, s1 ∈ Z∗q and x ∈ Zq. This gives s0 = s1 = r · x, which contradicts
s0 6= s1.

5.6 Construction

This section describes our DAA protocol achieving optimal privacy.
On a very high level, the protocol follows the core idea of existing
DAA protocols: The platform, consisting of the TPM and a host, first
generates a secret key gsk that gets blindly certified by a trusted issuer.
Subsequently, the platform can use the key gsk to sign attestations and
basenames and then prove that it has a valid credential on the signing
key, certifying the trusted origin of the attestation.

This high-level procedure is the main similarity to existing schemes
though, as we significantly change the role of the host to satisfy our
notion of optimal privacy. First, we no longer rely on a single secret
key gsk that is fully controlled by the TPM. Instead, both the TPM
and host generate secret shares, tsk and hsk respectively, that lead to a
joint public key gpk . For privacy reasons, we cannot reveal this public
key to the issuer in the join protocol, as any exposure of the joint pub-
lic key would allow to trace any subsequent signed attestations of the
platform. Thus, we let the issuer sign only an encryption of the public
key, using the signature scheme for encrypted messages. When creating
this membership credential cred the issuer is assured that the blindly
signed key is formed correctly and the credential is strictly bound to
that unknown key.
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After having completed the JOIN protocol, the host and TPM can
together sign a message m with respect to a basename bsn. Both
parties use their individual key shares and create a split signature on the
message and basename (denoted as tag), which shows that the platform
intended to sign this message and basename, and a split signature on
only the basename (denoted as nym), which is used as a pseudonym.
Recall that attestations from one platform with the same basename
should be linkable. By the uniqueness of split signatures, nym will be
constant for one platform and basename and allow for such linkability.
Because split signatures are key-hiding, we can reveal tag and nym while
preserving the unlinkability of signatures with different basenames.

When signing, the host proves knowledge of a credential that signs
gpk . Note that the host can create the full proof of knowledge because
the membership credential signs a joint public key. In existing DAA
schemes, the membership credential signs a TPM secret, and therefore
the TPM must always be involved to prove knowledge of the credential,
which prevents optimal privacy as we argued in Section 5.4.

5.6.1 Our DAA Protocol with Optimal Privacy Πpdaa

We now present our generic DAA protocol with optimal privacy Πpdaa

in detail. Let SSIG = (PreKeyGen,CompleteKeyGen,VerKey,PreSign,
CompleteSign,Vf) denote a secure split signature scheme, as defined
in Section 5.5.3, and let ESIG = (SigKGen,EncSign,DecSign,Vf) de-
note a secure signature scheme for encrypted messages, as defined in
Section 5.5.2. In addition, we use a CPA secure encryption scheme
ENC = (EncKGen,Enc,Dec). We require all these algorithms to be
compatible, meaning they work with the same system parameters.

We further assume that functionalities (Fcrs,Fca,Fauth∗) are avail-
able to all parties. The certificate authority functionality Fca allows the
issuer to register his public key, and we assume that parties call Fca to
retrieve the public key whenever needed. As the issuer key (ipk , πipk )
also contains a proof of well-formedness, we also assume that each party
retrieving the key will verify πipk .

The common reference string functionality Fcrs provides all parties
with the system parameters spar generated via SParGen(1τ ). All the
algorithms of the building blocks take spar as an input, which we omit
– except for the key generation algorithms – for ease of presentation.

For the communication between the TPM and issuer (via the host)
in the join protocol, we use our semi-authenticated channel Fauth∗, as
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introduced in Section 2.3.2. This functionality abstracts the differ-
ent options on how to realize the authenticated channel between the
TPM and issuer that is established via an unauthenticated host. We
assume the host and TPM can communicate directly, meaning that
they have an authenticated and perfectly secure channel. This models
the physical proximity of the host and TPM forming the platform: if
the host is honest an adversary can neither alter nor read their inter-
nal communication, or even notice that communication is happening.
To make the protocol more readable, we omit the explicit calls to the
sub-functionalities with sub-session IDs and simply say e.g., issuer I
registers its public key with Fca.

1. Issuer Setup.

In the setup phase, the issuer I creates a key pair of the signature
scheme for encrypted messages and registers the public key with Fca.

(a) I upon input (SETUP, sid) generates his key pair:

• Check that sid = (I, sid′) for some sid′.

• Get (ipk , isk)
$← ESIG.SigKGen(spar) and prove knowledge of

the secret key via

πipk ← NIZK{( isk ) : (ipk , isk) ∈ ESIG.SigKGen(spar)}(sid).

• Initiate LJOINED ← ∅.

• Register the public key (ipk , πipk ) at Fca and store (isk ,LJOINED).

• Output (SETUPDONE, sid).

Join Protocol.

The join protocol runs between the issuer I and a platform, consist-
ing of a TPM Mi and a host Hj . The platform authenticates to the
issuer and, if the issuer allows the platform to join, obtains a creden-
tial cred that subsequently enables the platform to create signatures.
The credential is a signature on the encrypted joint public key gpk to
which the host and TPM each hold a secret key share. To show the
issuer that a TPM has contributed to the joint key, the TPM reveals
an authenticated version of his (public) key contribution to the issuer
and the host proves that it correctly incorporated that share in gpk . A
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unique sub-session identifier jsid distinguishes several join sessions that
might run in parallel.

2. Join Request.

The join request is initiated by the host.

(a) Host Hj , on input (JOIN, sid, jsid ,Mi) parses sid = (I, sid′) and
sends (sid, jsid) to Mi.

2

(b) TPM Mi, upon receiving (sid, jsid) from a party Hj , outputs
(JOIN, sid, jsid).

3. M-Join Proceed.

The join session proceeds when the TPM receives an explicit input
telling him to proceed with the join session jsid .

(a) TPM Mi, on input (JOIN, sid, jsid) creates a key share for the
split signature and sends it authenticated to the issuer (via the
host):

• Run (tpk , tsk)
$← SSIG.PreKeyGen(spar).

• Send tpk over Fauth∗ to I viaHj , and store the key (sid,Hj , tsk).

(b) When Hj notices Mi sending tpk over Fauth∗ to the issuer, it
generates its key share for the split signature and appends an en-
cryption of the jointly produced gpk to the message sent towards
the issuer.

• Complete the split signature key as

(gpk , hsk)
$← SSIG.CompleteKeyGen(tpk).

• Create an ephemeral encryption key pair

(epk , esk)
$← EncKGen(spar).

• Encrypt gpk under epk as C
$← Enc(epk , gpk).

2Recall that we use direct communication between a TPM and host, i.e., this
message is authenticated and unnoticed by the adversary.
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• Prove that C is an encryption of a public key gpk that is cor-
rectly derived from the TPM public key share tpk :

πJOIN,H ← NIZK{( gpk , hsk) : C ∈ Enc(epk , gpk) ∧
SSIG.VerKey(tpk , gpk , hsk) = 1}(sid, jsid).

• Append (Hj , epk , C, πJOIN,H) to the message Mi is sending to
I over Fauth∗ and store (sid, jsid ,Mi, esk , hsk , gpk).

(c) I, upon receiving a message over Fauth∗, receiving tpk authen-
ticated by Mi and (Hj , epk , C, πJOIN,H) in the unauthenticated
part, verifies that the request is legitimate:

• Verify πJOIN,H w.r.t. the authenticated tpk and check that
Mi /∈ LJOINED.

• Store (sid, jsid ,Hj ,Mi, epk , C) and output (JOINPROCEED,
sid, jsid ,Mi).

4. I-Join Proceed.

The join session is completed when the issuer receives an explicit input
telling him to proceed with join session jsid .

(a) I upon input (JOINPROCEED, sid, jsid) signs the encrypted pub-
lic key C using the signature scheme for encrypted messages:

• Retrieve (sid, jsid ,Hj ,Mi, epk , C) and set LJOINED ← LJOINED∪
Mi.

• Sign C as cred ′
$← ESIG.EncSign(isk , epk , C) and prove that it

did so correctly. (This proof is required to allow verification in
the security proof: ENC is only CPA-secure and thus we cannot
decrypt cred ′.)

πJOIN,I ← NIZK{isk : cred ′ ∈ ESIG.EncSign(isk , epk , C) ∧
(ipk , isk) ∈ ESIG.SigKGen(spar)}(sid, jsid).

• Send (sid, jsid , cred ′, πJOIN,I) to Hj (via the network).

(b) Host Hj , upon receiving (sid, jsid , cred ′, πJOIN,I) decrypts and
stores the membership credential:
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• Retrieve the session record (sid, jsid ,Mi, esk , hsk , gpk).

• Verify proof πJOIN,I w.r.t. ipk , cred ′, C, and decrypt the cre-
dential as cred ← ESIG.DecSign(esk , cred ′).

• Store the completed key record (sid, hsk , tpk , gpk , cred ,Mi) and
output (JOINED, sid, jsid).

Sign Protocol.

The sign protocol runs between a TPM Mi and a host Hj . After
joining, together they can sign a message m w.r.t. a basename bsn using
the split signature. Sub-session identifier ssid distinguishes multiple
sign sessions.

5. Sign Request.

The signature request is initiated by the host.
(a) Hj upon input (SIGN, sid, ssid ,Mi,m, bsn) prepares the signature

process:

• Check that it joined with Mi (i.e., a completed key record for
Mi exists).

• Create signature record (sid, ssid ,Mi,m, bsn).

• Send (sid, ssid ,m, bsn) to Mi.

(b) Mi, upon receiving (sid, ssid ,m, bsn) from Hj , stores (sid, ssid ,
Hj ,m, bsn) and outputs (SIGNPROCEED, sid, ssid ,m, bsn).

6. Sign Proceed.

The signature is completed when Mi gets permission to proceed for
ssid .

(a) Mi on input (SIGNPROCEED, sid, ssid) creates the first part of
the split signature on m w.r.t. bsn:

• Retrieve the signature request (sid, ssid ,Hj ,m, bsn) and key
(sid,Hj , tsk).

• Set tag ′
$← SSIG.PreSign(tsk , (0,m, bsn)).

• Set nym′
$← SSIG.PreSign(tsk , (1, bsn)).

• Send (sid, ssid , tag ′,nym′) to Hj .

140



5.6. Construction

(b) Hj upon receiving (sid, ssid , tag ′,nym′) from Mi completes the
signature:

• Retrieve the signature request (sid, ssid ,Mi,m, bsn) and key
(sid, hsk , tpk , gpk , cred ,Mi).

• Compute tag ← SSIG.CompleteSign(hsk , tpk , (0,m, bsn), tag ′).

• Compute nym← SSIG.CompleteSign(hsk , tpk , (1, bsn),nym′).

• Prove that tag and nym are valid split signatures under public
key gpk and that it owns a valid issuer credential cred on gpk ,
without revealing gpk or cred .

πSIGN ← NIZK{(gpk , cred) : ESIG.Vf(ipk , cred , gpk) = 1 ∧
SSIG.Vf(gpk , tag , (0,m, bsn)) = 1 ∧

SSIG.Vf(gpk ,nym, (1, bsn)) = 1}

• Set σ ← (tag ,nym, πSIGN) and output (Signature, sid, ssid , σ).

Verify & Link.

Any party can use the following verify and link algorithms to determine
the validity of a signature and whether two signatures for the same
basename were created by the same platform.

7. Verify.

The verify algorithm allows one to check whether a signature σ on
message m w.r.t. basename bsn and private key revocation list RL is
valid.

(a) V upon input (VERIFY, sid,m, bsn, σ, RL) verifies the signature:

• Parse σ as (tag ,nym, πSIGN).

• Verify πSIGN with respect to m, bsn, tag , and nym.

• For every gpk i ∈ RL, check that SSIG.Vf(gpk i,nym, (1, bsn)) 6=
1.

• If all tests pass, set f ← 1, otherwise f ← 0.

• Output (VERIFIED, sid, f).
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8. Link.

The link algorithm allows one to check whether two signatures σ and
σ′, on messages m and m′ respectively, that were generated for the
same basename bsn were created by the same platform.

(a) V upon input (LINK, sid, σ,m, σ′,m′, bsn) verifies the signatures
and compares the pseudonyms contained in σ, σ′:

• Check that both signatures σ and σ′ are valid with respect to
(m, bsn) and (m′, bsn) respectively, using the Verify algorithm
with RL← ∅. Output ⊥ if they are not both valid.

• Parse the signatures as (tag ,nym, πSIGN) and (tag ′,nym′, π′SIGN).

• If nym = nym′, set f ← 1, otherwise f ← 0.

• Output (LINK, sid, f).

Random Oracles.

As our generic construction for delegatable anonymous credentials, this
generic construction may use building blocks that assume one or more
random oracles. Our generic construction assumes Embed and Embed−1

algorithms and applies domain separation as described in Section 4.4.2.

5.6.2 Security

We now prove that that our generic protocol is a secure DAA scheme
with optimal privacy under isolated TPM corruptions (and also achieves
conditional privacy under full TPM corruption) as defined in Section 5.3.

Theorem 10. Our protocol Πpdaa described in Section 5.6, GUC-realizes
Fpdaa defined in Section 5.3, in the (Fauth∗,Fca,Fcrs,GsRO)-hybrid model,
provided that

• SSIG is a secure split signature scheme (as defined in Section 5.5.3),

• ESIG is a secure signature scheme for encrypted messages,

• ENC is a CPA-secure encryption scheme, and

• NIZK is a zero-knowledge, simulation-sound and online-extractable
(for the underlined values) proof system,
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• SSIG, ESIG, ENC, and NIZK use local random oracles RO1, . . . , ROj,
mapping to S1, . . . , Sj respectively, and efficiently computable proba-
bilistic algorithms Embed1, . . . ,Embedj and Embed−1

1 , . . . ,Embed−1
j

exist, such that

– for h $←−{0, 1}`(κ)
, Embed(h) is computationally indistinguishable

from uniform in G,

– for all x ∈ G, Embed(Embed−1(x)) = x and

– for x $←−G, Embed−1(x) is computationally indistinguishable from

uniform in {0, 1}`(κ)
.

By Theorem 1, it is sufficient to show that Πpdaa GsRO-EUC-emulates
Fpdaa in the Fauth∗,Fca,Fcrs-hybrid model, meaning that we have to
show that there exists a simulator S as a function of A such that no
GsRO-externally constrained environment can distinguish Πpdaa and A
from Fpdaa and S. We let the adversary perform both isolated corrup-
tions and full corruptions on TPMs, showing that this proof both gives
optimal privacy with respect to adversaries that only perform isolated
corruptions on TPMs, and conditional privacy otherwise. The full proof
is given in the full version of [CDL17], we present a proof sketch below.

Proof Sketch

Setup. For the setup, the simulator has to provide the functionality
the required algorithms (sig, ver, link, identify, ukgen), where sig, ver, link,
and ukgen simply reflect the corresponding real-world algorithms. The
signing algorithm also includes the issuer’s secret key. When the issuer
is corrupt, S can learn the issuer secret key by extracting from the proof
πipk . When the issuer is honest, it is simulated by S in the real-world
and thus S knows the secret key.

The algorithm identify(σ,m, bsn, τ) that is used by Fpdaa to inter-
nally ensure consistency and non-frameability is defined as follows:
parse σ as (tag ,nym, πSIGN) and output SSIG.Vf(τ,nym, (1, bsn)). Re-
call that τ is a tracing trapdoor that is either provided by the simulator
(when the host is corrupt) or generated internally by Fpdaa whenever a
new gpk is generated.

Join. The join-related interfaces of Fpdaa notify S about any triggered
join request by a platform consisting of host Hj and TPM Mi such
that S can simulate the real-world protocol accordingly. If the host
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is corrupt, the simulator also has to provide the functionality with
the tracing trapdoor τ . For our scheme the joint key gpk of the split
signature serves that purpose. For privacy reasons the key is never
revealed, but the host proves knowledge and correctness of the key in
πJOIN,H. Thus, if the host is corrupt, the simulator extracts gpk from
this proof and gives it Fpdaa.

Sign. For platforms with an honest host, Fpdaa creates anonymous
signatures using the sig algorithm S defined in the setup phase. Thereby,
Fpdaa enforces unlinkability by generating and using fresh platform keys
via ukgen whenever a platform requests a signature for a new basename.
For signature requests where a platform repeatedly uses the same base-
name, Fpdaa re-uses the corresponding key accordingly. We now briefly
argue that no environment can notice this difference. Recall that sig-
natures consist of signatures tag and nym, and a proof πSIGN, with the
latter proving knowledge of the platform’s key gpk and credential cred ,
such that tag and nym are valid under gpk which is in turn certified by
cred . Thus, for every new basename, the credential cred is now based
on different keys gpk . However, as we never reveal these values but
only prove knowledge of them in πSIGN, this change is indistinguishable
to the environment.

The signature tag and pseudonym nym, that are split signatures on
the message and basename, are revealed in plain though. For repeated
attestations under the same basename, Fpdaa consistently re-uses the
same key, whereas the use of a fresh basename will now lead to the
disclosure of split signatures under different keys. The key-hiding prop-
erty of split signatures guarantees that this change is unnoticeable, even
when the TPM is corrupt and controls part of the key.3 Note that the
key-hiding property requires that the adversary does not know the joint
public key gpk , which we satisfy as gpk is never revealed in our scheme;
the host only proves knowledge of the key in πJOIN,H and πSIGN.

Verify. For the verification of DAA signatures Fpdaa uses the pro-
vided ver algorithm but also performs additional checks that enforce
the desired non-frameability and unforgeability properties. We show
that these additional checks will fail with negligible probability only,

3Notice that this proof step is a reduction, in which GsRO is in the reduction’s
control, meaning we can reduce to the key-hiding property which was proven w.r.t.
a local random oracle.
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and therefore do not noticeably change the verification outcome.

First, Fpdaa uses the identify algorithm and the tracing trapdoors τi
to check that there is only a unique signer that matches to the signature
that is to be verified. Recall that we instantiated the identify algorithm
with the verification algorithm of the split signature scheme SSIG and
τ = gpk are the (hidden) joint platform keys. By the key-uniqueness
property of SSIG the check will fail with negligible probability only.

Second, Fpdaa rejects the signature when no matching tracing trap-
door was found and the issuer is honest. For platforms with an honest
hosts, theses trapdoors are created internally by the functionality when-
ever a signature is generated, and Fpdaa immediately checks that the
signature matches to the trapdoor (via the identify algorithm). For
platforms where the host is corrupt, our simulator S ensures that a
tracing trapdoor is stored in Fpdaa as soon as the platform has joined
(and received a credential). If a signature does not match any of the
existing tracing trapdoors, it must be under a gpk = τ that was neither
created by Fpdaa nor signed by the honest issuer in the real-world. The
proof πSIGN that is part of every signature σ proves knowledge of a valid
issuer credential on gpk . Thus, by the unforgeability of the signature
scheme for encrypted messages ESIG, such invalid signatures can occur
only with negligible probability.

Third, if Fpdaa recognizes a signature on message m w.r.t. basename
bsn that matches the tracing trapdoor of a platform with an honest
TPM or honest host, but that platform has never signed m w.r.t. bsn,
it rejects the signature. This can be reduced to unforgeability-1 (if the
host is honest) or unforgeability-2 (if the TPM is honest) of the split
signature scheme SSIG.

The fourth check that Fpdaa makes corresponds to the revocation
check in the real-world verify algorithm, i.e., it does not impose any
additional check.

Link. Similar as for verification, Fpdaa is not relying solely on the
provided link algorithm but performs some extra checks when testing
for the linkage between two signatures σ and σ′. It again uses identify
and the internally stored tracing trapdoor to derive the final linking
output. If there is one tracing trapdoor matching one signature but
not the other, it outputs that they are not linked. If there is one
tracing trapdoor matching both signatures, it enforces the output that
they are linked. Only if no matching tracing trapdoor is found, Fpdaa
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derives the output via link algorithm.
We now show that the two checks and decisions imposed by Fpdaa

are consistent with the real-world linking algorithm. In the real world,
signatures σ = (tag ,nym, πSIGN) and σ′ = (tag ′,nym′, π′SIGN) w.r.t base-
name bsn are linked iff nym = nym′. Tracing trapdoors are instantiated
by the split signature scheme public keys gpk , and identify verifies nym
under the key gpk . If one key matches one signature but not the other,
then by the fact that the verification algorithm of the split signatures is
deterministic, we must have nym 6= nym′, showing that the real world
algorithm also outputs unlinked. If one key matches both signatures,
we have nym = nym′ by the signature-uniqueness of split signatures,
so the real-world algorithm also outputs linked.

Global Random Oracle. In the above paragraphs, we sketch re-
ducing to the security properties of our building blocks, which were
preven with respect to local random oracles that can be programmed
and observed, whereas our protocol works with strict global random
oracle GsRO that does not give the simulator such powers. However, we
only do so in reductions showing that no environment can distinguish
two worlds. In that setting, everything except the environment is inter-
nal to the reduction, including GsRO, as is depicted in Figure 3.3. This
shows that in such reductions, we can program and observe GsRO, allow-
ing us to reduce to the security of the underlying building blocks. The

local random oracles may map to sets other than {0, 1}`(κ)
. However,

we can use the Embed algorithms to obtain elements in the right set.
In a security reduction, the security game offers local random oracles
ROi. Whenever a party queries GsRO on (i,m), we query ROi on m to
obtain x, and simulate GsRO to return Embed−1(x).

Proof of Theorem 10

We now formallly prove Theorem 10, by showing that for every adver-
sary A, there exists a simulator S such that for every GsRO-externally
constrained environment E we have EXECπ,A,Z ≈ IDEALF,S,Z .

Proof. To show that no environment E can distinguish the real world,
in which it is working with Πpdaa and adversary A, from the ideal
world, in which it uses Fpdaa with simulator S, we use a sequence of
games. We start with the real world protocol execution. In the next
game we construct one entity C that runs the real world protocol for
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all honest parties. Then we split C into two pieces, a functionality F
and a simulator S, where F receives all inputs from honest parties
and sends the outputs to honest parties. We start with a dummy
functionality, and gradually change F and update S accordingly, to
end up with the full Fpdaa and a satisfying simulator. First we define
all intermediate functionalities and simulators, and then we prove that
they are all indistinguishable from each other.

Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

• Output (FORWARD, (SETUP, sid), I) to S.

Join
2. Join Request. On input (JOIN, sid, jsid ,Mi) from host Hj .

• Output (FORWARD, (JOIN, sid, jsid ,Mi),Hj) to S.

3. M Join Proceed. On input (JOIN, sid, jsid) from TPM Mi.

• Output (FORWARD, (JOIN, sid, jsid),Mi) to S.

4. I Join Proceed. On input (JOINPROCEED, sid, jsid) from I.

• Output (FORWARD, (JOINPROCEED, sid, jsid), I) to S.

Sign
5. Sign Request. On input (SIGN, sid, ssid ,Mi,m, bsn) from Hj .

• Output (FORWARD, (SIGN, sid, ssid ,Mi,m, bsn),Hj) to S.

6. Sign Proceed. On input (SIGNPROCEED, sid, ssid) from Mi.

• Output (FORWARD, (SIGNPROCEED, sid, ssid),Mi) to S.

Verify
7. Verify. On input (VERIFY, sid,m, bsn, σ, RL) from some party V.

• Output (FORWARD, (VERIFY, sid,m, bsn, σ, RL),V) to S.

Link
8. Link. On input (LINK, sid, σ,m, σ′,m′, bsn) from a party V.

• Output (FORWARD, (LINK, sid, σ,m, σ′,m′, bsn),V) to S.

Output
9. Output. On input (OUTPUT, sid,P,m) from S.

• Output m to P.

Figure 5.10: F for Game 3

147



Chapter 5. Anonymous Attestation

When a simulated party “P” outputs m and no specific action is defined, send
(OUTPUT,P,m) to F. On input (FORWARD,m,P), give “P” input m.

Figure 5.11: Simulator for Game 3
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Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

• Verify that sid = (I, sid′).
• Output (SETUP, sid) to A and wait for input

(ALG, sid, sig, ver, link, identify, ukgen) from A.

• Check that ver, link and identify are deterministic, and check that sig,
ver, link, identify, ukgen interact only with random oracle GsRO.

• Store (sid, sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to
I.

Join
2. Join Request. On input (JOIN, sid, jsid ,Mi) from host Hj .

• Output (FORWARD, (JOIN, sid, jsid ,Mi),Hj) to S.

3. M Join Proceed. On input (JOIN, sid, jsid) from TPM Mi.

• Output (FORWARD, (JOIN, sid, jsid),Mi) to S.

4. I Join Proceed. On input (JOINPROCEED, sid, jsid) from I.

• Output (FORWARD, (JOINPROCEED, sid, jsid), I) to S.

Sign
5. Sign Request. On input (SIGN, sid, ssid ,Mi,m, bsn) from Hj .

• Output (FORWARD, (SIGN, sid, ssid ,Mi,m, bsn),Hj) to S.

6. Sign Proceed. On input (SIGNPROCEED, sid, ssid) from Mi.

• Output (FORWARD, (SIGNPROCEED, sid, ssid),Mi) to S.

Verify
7. Verify. On input (VERIFY, sid,m, bsn, σ, RL) from some party V.

• Output (FORWARD, (VERIFY, sid,m, bsn, σ, RL),V) to S.

Link
8. Link. On input (LINK, sid, σ,m, σ′,m′, bsn) from a party V.

• Output (FORWARD, (LINK, sid, σ,m, σ′,m′, bsn),V) to S.

Output
9. Output. On input (OUTPUT, sid,P,m) from S.

• Output m to P.

Figure 5.12: F for Game 4

149



Chapter 5. Anonymous Attestation

When a simulated party “P” outputs m and no specific action is defined, send
(OUTPUT,P,m) to F. On input (FORWARD,m,P), give “P” input m.
Setup
Honest I
• On input (SETUP, sid) from F.

– Parse sid as (I, sid′) and give “I” input (SETUP, sid).
– When “I” outputs (SETUPDONE, sid), S takes its secret key isk and defines

the following algorithms.

∗ Define sig(((tsk , hsk), gpk),m, bsn) as follows: First, create a credential
by taking encryption key (epk , esk) ← EncKGen(). Encrypt the cre-
dential with C ← Enc(epk , gpk), and sign the ciphertext with cred′ ←
EncSign(isk , epk , C)., and decrypt credential cred ← DecSign(esk , cred′).
Next, the algorithm performs the real world signing algorithm (performing
both the tasks from the host and the TPM).

∗ Define ver(σ,m, bsn) as the real world verification algorithm, except that
the private-key revocation check is ommitted.

∗ Define link(σ,m, σ′,m′, bsn) as the real world linking algorithm.
∗ Define identify(σ,m, bsn, τ) as follows: parse σ as (tag,nym, πSIGN) and

check SSIG.Vf(τ,nym, (1, bsn)). If so, output 1, otherwise 0.
∗ Define ukgen as follows: Let (tpk , tsk) ← SSIG.PreKeyGen(), (gpk , hsk) ←

SSIG.CompleteKeyGen(tpk), and output ((tsk , hsk), gpk).

S sends (ALG, sid, sig, ver, link, identify, ukgen) to F.

Corrupt I
• S notices this setup as it notices I registering a public key with “Fca” with

sid = (I, sid′).
– If the registered key is of the form (ipk , πisk ) and π is valid, S extracts isk

from πisk .
– S defines the algorithms sig, ver, link, identify, ukgen as when I is honest, but

now depending on the extracted key.
– S sends (SETUP, sid) to F on behalf of I.

• On input (SETUP, sid) from F.

– S sends (ALG, sid, sig, ver, link, identify, ukgen) to F.

• On input (SETUPDONE, sid) from F
– S continues simulating “I”.

Figure 5.13: Simulator for Game 4
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5.6. Construction

Setup
Unchanged.
Join

2. Join Request. On input (JOIN, sid, jsid ,Mi) from host Hj .

• Output (FORWARD, (JOIN, sid, jsid ,Mi),Hj) to S.

3. M Join Proceed. On input (JOIN, sid, jsid) from TPM Mi.

• Output (FORWARD, (JOIN, sid, jsid),Mi) to S.

4. I Join Proceed. On input (JOINPROCEED, sid, jsid) from I.

• Output (FORWARD, (JOINPROCEED, sid, jsid), I) to S.

Sign
5. Sign Request. On input (SIGN, sid, ssid ,Mi,m, bsn) from Hj .

• Output (FORWARD, (SIGN, sid, ssid ,Mi,m, bsn),Hj) to S.

6. Sign Proceed. On input (SIGNPROCEED, sid, ssid) from Mi.

• Output (FORWARD, (SIGNPROCEED, sid, ssid),Mi) to S.

Verify
7. Verify. On input (VERIFY, sid,m, bsn, σ, RL) from some party V.

• Set f ← 0 if at least one of the following conditions hold:

– There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

• If f 6= 0, set f ← ver(σ,m, bsn).

• Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid, f) to
V.

Link
8. Link. On input (LINK, sid, σ,m, σ′,m′, bsn) from a party V.

• Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not
valid (verified via the verify interface with RL = ∅).

• Set f ← link(σ,m, σ′,m′, bsn).

• Output (LINK, sid, f) to V.

Output
9. Output. On input (OUTPUT, sid,P,m) from S.

• Output m to P.

Figure 5.14: F for Game 5
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Chapter 5. Anonymous Attestation

When a simulated party “P” outputs m and no specific action is defined, send
(OUTPUT,P,m) to F. On input (FORWARD,m,P), give “P” input m.
Setup
Honest I
• On input (SETUP, sid) from F.

– Parse sid as (I, sid′) and give “I” input (SETUP, sid).
– When “I” outputs (SETUPDONE, sid), S takes its secret key isk and defines

the following algorithms.

∗ Define sig(((tsk , hsk), gpk),m, bsn) as follows: First, create a credential
by taking encryption key (epk , esk) ← EncKGen(). Encrypt the cre-
dential with C ← Enc(epk , gpk), and sign the ciphertext with cred′ ←
EncSign(isk , epk , C)., and decrypt credential cred ← DecSign(esk , cred′).
Next, the algorithm performs the real world signing algorithm (performing
both the tasks from the host and the TPM).

∗ Define ver(σ,m, bsn) as the real world verification algorithm, except that
the private-key revocation check is ommitted.

∗ Define link(σ,m, σ′,m′, bsn) as the real world linking algorithm.
∗ Define identify(σ,m, bsn, τ) as follows: parse σ as (tag,nym, πSIGN) and

check SSIG.Vf(τ,nym, (1, bsn)). If so, output 1, otherwise 0.
∗ Define ukgen as follows: Let (tpk , tsk) ← SSIG.PreKeyGen(), (gpk , hsk) ←

SSIG.CompleteKeyGen(tpk), and output ((tsk , hsk), gpk).

S sends (ALG, sid, sig, ver, link, identify, ukgen) to F.

Corrupt I
• S notices this setup as it notices I registering a public key with “Fca” with

sid = (I, sid′).
– If the registered key is of the form (ipk , πisk ) and π is valid, S extracts isk

from πisk .
– S defines the algorithms sig, ver, link, identify, ukgen as when I is honest, but

now depending on the extracted key.
– S sends (SETUP, sid) to F on behalf of I.

• On input (SETUP, sid) from F.

– S sends (ALG, sid, sig, ver, link, identify, ukgen) to F.

• On input (SETUPDONE, sid) from F
– S continues simulating “I”.

Figure 5.15: Simulator for Game 5
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5.6. Construction

Setup
Unchanged.
Join

2. Join Request. On input (JOIN, sid, jsid ,Mi) from host Hj .

• Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .

• Output (JOIN, sid, jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid, jsid) from TPM Mi.

• Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to
delivered .

• Output (JOINPROCEED, sid, jsid ,Mi,Hj) to A and wait for input
(JOINPROCEED, sid, jsid) from A.

• Output (JOINPROCEED, sid, jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid, jsid) from I.

• Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered
to complete.

• Output (JOINCOMPLETE, sid, jsid) to A and wait for input
(JOINCOMPLETE, sid, jsid , τ) from A.

• Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already
exists.

• If Hj is honest, set τ ← ⊥.

• Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid, jsid) to Hj .

Sign
5. Sign Request. On input (SIGN, sid, ssid ,Mi,m, bsn) from Hj .

• Output (FORWARD, (SIGN, sid, ssid ,Mi,m, bsn),Hj) to S.

6. Sign Proceed. On input (SIGNPROCEED, sid, ssid) from Mi.

• Output (FORWARD, (SIGNPROCEED, sid, ssid),Mi) to S.

Verify
Unchanged.
Link
Unchanged.
Output
Unchanged.

Figure 5.16: F for Game 6
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Chapter 5. Anonymous Attestation

When a simulated party “P” outputs m and no specific action is defined, send
(OUTPUT,P,m) to F. On input (FORWARD,m,P), give “P” input m.
Isolated Corrupt TPM
When a TPMMi becomes isolated corrupted in the simulated real world, S defines
a local simulator SMi

that simulates an honest host with the isolated corruptMi.
Note thatMi only talks to one host, who’s identity is fixed upon receiving the first
message. SMi

is defined as follows.

• When SMi
receives (JOINPROCEED, sid, jsid,Hj) as Mi is isolated corrupt.

– Give “Hj” input (JOIN, sid, jsid,Mi).
– When “Hj” outputs (JOINED, sid, jsid), send (JOINPROCEED, sid, jsid) on
Mi’s behalf to F.

Setup
Unchanged.
Join
Honest M, H, I
• On input (JOINPROCEED, sid, jsid,Mi,Hj) from F.

– Give “Hj” input (JOIN, sid, jsid,Mi).
– When “Mi” outputs (JOIN, sid, jsid,Hj), give “Mi” input (JOIN, sid, jsid).
– When “I” outputs (JOINPROCEED, sid, jsid,Mi), output

(JOINPROCEED, sid, jsid) to F.

• On input (JOINCOMPLETE, sid, jsid).

– Give “I” input (JOINPROCEED, sid, jsid).
– When “Hj” outputs (JOINED, sid, jsid), output (JOINCOMPLETE, sid, jsid,⊥)

to F.

Honest H, I, Corrupt M
• When S receives (JOIN, sid, jsid) from F as Mi is corrupt.

– Give “Hj” input (JOIN, sid, jsid,Mi).
– When “I” outputs (JOINPROCEED, sid, jsid,Mi), send (JOIN, sid, jsid) on
Mi’s behalf to F.

• On input (JOINPROCEED, sid, jsid,Mi,Hj) from F.

– Output (JOINPROCEED, sid, jsid) to F.

• On input (JOINCOMPLETE, sid, jsid).

– Give “I” input (JOINPROCEED, sid, jsid).
– When “Hj” outputs (JOINED, sid, jsid), output (JOINCOMPLETE, sid, jsid,⊥)

to F.

Honest M, H, Corrupt I
• On input (JOINPROCEED, sid, jsid,Mi,Hj) from F.

– Give “Hj” input (JOIN, sid, jsid,Mi).
– When “Mi” outputs (JOIN, sid, jsid,Hj), give “Mi” input (JOIN, sid, jsid).
– When “Hj” outputs (JOINED, sid, jsid), output (JOINPROCEED, sid, jsid) to F.

• When S receives (JOINPROCEED, sid, jsid,Mi) from F as I is corrupt.

– Send (JOINPROCEED, sid, jsid) on I’s behalf to F.

• On input (JOINCOMPLETE, sid, jsid).

– output (JOINCOMPLETE, sid, jsid,⊥) to F.

Figure 5.17: First part of Simulator for Game 6
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5.6. Construction

Honest M, I, Corrupt H
• S notices this join as “Mi” outputs (JOINPROCEED, sid, jsid,Hj).

– Send (JOIN, sid, jsid,Mi) on Hj ’s behalf to F.

• On input (JOINPROCEED, sid, jsid,Mi,Hj) from F.

– Continue simulating “Mi” by giving it input (JOINPROCEED, sid, jsid).
– When “I” outputs (JOINPROCEED, sid, jsid,Mi), extract gpk from πJOIN,H

and output (JOINPROCEED, sid, jsid) to F.

• On input (JOINCOMPLETE, sid, jsid) from F.

– output (JOINCOMPLETE, sid, jsid, gpk) to F.

• When S receives (JOINED, sid, jsid) from F as Hj is corrupt.

– Continue simulating “I” by giving it input (JOINPROCEED, sid, jsid).

Honest H, Corrupt M, I
• When S receives (JOIN, sid, jsid,Mi) as Mi is corrupt.

– Send (JOIN, sid, jsid) on Mi’s behalf to F.

• On input (JOINPROCEED, sid, jsid,Mi,Hj) from F.

– Give “Hj” input (JOIN, sid, jsid,Mi).
– When “Hj” outputs (JOINED, sid, jsid), output (JOINPROCEED, sid, jsid) to F.

• When S receives (JOINPROCEED, sid, jsid,Mi) as I is corrupt.

– Send (JOINPROCEED, sid, jsid) on I’s behalf to F.

• On input (JOINCOMPLETE, sid, jsid) from F.

– Output (JOINCOMPLETE, sid, jsid,⊥) to F.

Honest I, Corrupt M, H
• S notices this join as “I” outputs (JOINPROCEED, sid, jsid,Mi).

– Extract gpk from πJOIN,H and output (JOINPROCEED, sid, jsid) to F.
– Pick some corrupt identity Hj , and send (JOIN, sid, jsid,Mi) on Hj ’s behalf

to F.

• When S receives (JOINPROCEED, sid, jsid,Hj) as Mi is corrupt.

– Send (JOINPROCEED, sid, jsid) on Mi’s behalf to F.

• On input (JOINPROCEED, sid, jsid,Mi,Hj) from F.

– Output (JOINPROCEED, sid, jsid) to F.

• On input (JOINCOMPLETE, sid, jsid, gpk) from F.

– Output (JOINCOMPLETE, sid, jsid) to F.

• When S receives (JOINED, sid, jsid) as Hj is corrupt.

– Give “I” input (JOINPROCEED, sid, jsid).

Honest M, Corrupt H, I
• S notices this join as “Mi” outputs (JOINPROCEED, sid, jsid,Hj).

– Send (JOIN, sid, jsid,Mi) on Hj ’s behalf to F.

• On input (JOINPROCEED, sid, jsid,Mi,Hj) from F.

– Output (JOINPROCEED, sid, jsid) to F.

• When S receives (JOINPROCEED, sid, jsid,Mi) as I is corrupt.

– Send (JOINPROCEED, sid, jsid) on I’s behalf to F.

• On input (JOINCOMPLETE, sid, jsid) from F.

– Output (JOINCOMPLETE, sid, jsid,⊥) to F.

• When S receives (JOINED, sid, jsid) as Hj is corrupt.

– Give “Mi” input (JOINPROCEED, sid, jsid).

Figure 5.18: Second part of Simulator for Game 6
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Chapter 5. Anonymous Attestation

Honest H, I, Isolated corrupt M
• On input (JOINPROCEED, sid, jsid,Mi,Hj).

– Give “Hj” input (JOIN, sid, jsid,Mi).
– When “Mi” outputs (JOINPROCEED, sid, jsid,Hj), Give “Mi” input

(JOINPROCEED, sid, jsid).
– When “I” outputs (JOINPROCEED, sid, jsid,Mi), output

(JOINPROCEED, sid, jsid) to F.

• On input (JOINCOMPLETE, sid, jsid).

– Give “I” input (JOINPROCEED, sid, jsid).
– When “Hj” outputs (JOINED, sid, jsid), output (JOINCOMPLETE, sid, jsid,⊥)

to F.

Honest H, Isolated corrupt M, Corrupt I
• On input (JOINPROCEED, sid, jsid,Mi,Hj).

– Give “Hj” input (JOIN, sid, jsid,Mi).
– When “Mi” outputs (JOINPROCEED, sid, jsid,Hj), Give “Mi” input

(JOINPROCEED, sid, jsid).
– When “Hj” outputs (JOINED, sid, jsid), output (JOINPROCEED, sid, jsid) to F.

• When S receives (JOINPROCEED, sid, jsid,Mi) as I is corrupt.

– Send (JOINPROCEED, sid, jsid) on I’s behalf to F.

• On input (JOINCOMPLETE, sid, jsid) from F.

– output (JOINCOMPLETE, sid, jsid,⊥) to F.

Figure 5.19: Third part of Simulator for Game 6
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5.6. Construction

Setup
Unchanged.
Join
Unchanged.
Sign

5. Sign Request. On input (SIGN, sid, ssid ,Mi,m, bsn) from Hj .

• If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

• Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ←
request .

• Output (SIGNPROCEED, sid, ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid, ssid) from Mi.

• Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and
update it to status ← complete.

• If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.

• Generate the signature for a fresh or established key:

– Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such
entry exists, set (gsk , τ)← ukgen(), and store 〈Mi,Hj , bsn, gsk , τ〉 in
DomainKeys.

– Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.

• Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (Signature, sid, ssid , σ)
to Hj .

Verify
7. Verify. On input (VERIFY, sid,m, bsn, σ, RL) from some party V.

• Set f ← 0 if at least one of the following conditions hold:

– There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

• If f 6= 0, set f ← ver(σ,m, bsn).

• Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid, f) to
V.

Link
8. Link. On input (LINK, sid, σ,m, σ′,m′, bsn) from a party V.

• Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not
valid (verified via the verify interface with RL = ∅).

• Set f ← link(σ,m, σ′,m′, bsn).

• Output (LINK, sid, f) to V.

Figure 5.20: F for Game 7
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Isolated Corrupt TPM
When a TPMMi becomes isolated corrupted in the simulated real world, S defines
a local simulator SMi

that simulates an honest host with the isolated corruptMi.
Note thatMi only talks to one host, who’s identity is fixed upon receiving the first
message. SMi

is defined as follows.

• When SMi
receives (JOINPROCEED, sid, jsid,Hj) as Mi is isolated corrupt.

– Give “Hj” input (JOIN, sid, jsid,Mi).
– When “Hj” outputs (JOINED, sid, jsid), send (JOINPROCEED, sid, jsid) on
Mi’s behalf to F.

• When SMi
receives (SIGNPROCEED, sid, ssid,m, bsn) as Mi is isolated corrupt.

– Give “Hj” input (SIGN, sid, ssid,Mi,m, bsn).
– When “Hj” outputs (Signature, sid, ssid, σ), send (SIGNPROCEED, sid, ssid) on
Mi’s behalf to F.

Setup
Unchanged.
Join
Unchanged.
Sign
Honest M, H
Nothing to simulate.
Honest H, Corrupt M
• When S receives (SIGNPROCEED, sid, ssid,m, bsn) as Mi is corrupt.

– Give “Hj” input (SIGN, sid, ssid,Mi,m, bsn).
– When “Hj” outputs (Signature, sid, ssid, σ), send (SIGNPROCEED, sid, ssid) on
Mi’s behalf to F.

Honest H, Isolated corrupt M
Nothing to simulate.
Honest M, Corrupt H
• When “Mi” outputs (SIGNPROCEED, sid, ssid,m, bsn).

– Send (SIGN, sid, ssid,Mi,m, bsn) on Hj ’s behalf to F.
– When S receives (Signature, sid, ssid, σ) from F as Hj is corrupt, give “Mi”

input (SIGNPROCEED, sid, ssid).

Figure 5.21: Simulator for Game 7
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5.6. Construction

Setup
Unchanged.
Join

2. Join Request. On input (JOIN, sid, jsid ,Mi) from host Hj .

• Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .

• Output (JOIN, sid, jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid, jsid) from TPM Mi.

• Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to
delivered .

• Output (JOINPROCEED, sid, jsid ,Mi,Hj) to A and wait for input
(JOINPROCEED, sid, jsid) from A.

• Output (JOINPROCEED, sid, jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid, jsid) from I.

• Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered
to complete.

• Output (JOINCOMPLETE, sid, jsid) to A and wait for input
(JOINCOMPLETE, sid, jsid , τ) from A.

• Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already
exists.

• If Hj is honest, set τ ← ⊥.

• Else, verify that the provided tracing trapdoor τ is eligible by checking
CheckTtdCorrupt(τ) = 1.

• Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid, jsid) to Hj .

Sign
Unchanged.
Verify
Unchanged.
Link
Unchanged.

Figure 5.22: F for Game 8
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Isolated corrupt TPM
Unchanged.
Setup
Unchanged.
Join
Unchanged.
Sign
Unchanged.

Figure 5.23: Simulator for Game 8
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5.6. Construction

Setup
Unchanged.
Join
Unchanged.
Sign

5. Sign Request. On input (SIGN, sid, ssid ,Mi,m, bsn) from Hj .

• If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

• Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ←
request .

• Output (SIGNPROCEED, sid, ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid, ssid) from Mi.

• Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and
update it to status ← complete.

• If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.

• Generate the signature for a fresh or established key:

– Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such
entry exists, set (gsk , τ) ← ukgen(), check CheckTtdHonest(τ) = 1,
and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.

– Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.

• Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (Signature, sid, ssid , σ)
to Hj .

Verify
7. Verify. On input (VERIFY, sid,m, bsn, σ, RL) from some party V.

• Set f ← 0 if at least one of the following conditions hold:

– There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

• If f 6= 0, set f ← ver(σ,m, bsn).

• Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid, f) to
V.

Link
8. Link. On input (LINK, sid, σ,m, σ′,m′, bsn) from a party V.

• Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not
valid (verified via the verify interface with RL = ∅).

• Set f ← link(σ,m, σ′,m′, bsn).

• Output (LINK, sid, f) to V.

Figure 5.24: F for Game 9
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Isolated corrupt TPM
Unchanged.
Setup
Unchanged.
Join
Unchanged.
Sign
Unchanged.

Figure 5.25: Simulator for Game 9
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5.6. Construction

Setup
Unchanged.
Join
Unchanged.
Sign

5. Sign Request. On input (SIGN, sid, ssid ,Mi,m, bsn) from Hj .

• If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

• Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ←
request .

• Output (SIGNPROCEED, sid, ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid, ssid) from Mi.

• Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and
update it to status ← complete.

• If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.

• Generate the signature for a fresh or established key:

– Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such
entry exists, set (gsk , τ) ← ukgen(), check CheckTtdHonest(τ) = 1,
and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.

– Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.

– Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6=
(Mi,Hj) with tracing trapdoor τ ′ registered in Members or
DomainKeys with identify(σ,m, bsn, τ ′) = 1.

• Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (Signature, sid, ssid , σ)
to Hj .

Verify
7. Verify. On input (VERIFY, sid,m, bsn, σ, RL) from some party V.

• Set f ← 0 if at least one of the following conditions hold:

– There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

• If f 6= 0, set f ← ver(σ,m, bsn).

• Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid, f) to
V.

Link
8. Link. On input (LINK, sid, σ,m, σ′,m′, bsn) from a party V.

• Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not
valid (verified via the verify interface with RL = ∅).

• Set f ← link(σ,m, σ′,m′, bsn).

• Output (LINK, sid, f) to V.

Figure 5.26: F for Game 10

163



Chapter 5. Anonymous Attestation

Isolated corrupt TPM
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Figure 5.27: Simulator for Game 10
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7. Verify. On input (VERIFY, sid,m, bsn, σ, RL) from some party V.

• Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi〉 ∈ Members and
〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where identify(σ,m, bsn, τi) = 1. Set
f ← 0 if at least one of the following conditions hold:

– More than one τi was found.

– There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

• If f 6= 0, set f ← ver(σ,m, bsn).

• Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid, f) to
V.

Link
8. Link. On input (LINK, sid, σ,m, σ′,m′, bsn) from a party V.

• Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not
valid (verified via the verify interface with RL = ∅).

• Set f ← link(σ,m, σ′,m′, bsn).

• Output (LINK, sid, f) to V.

Figure 5.28: F for Game 11
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Figure 5.29: Simulator for Game 11
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7. Verify. On input (VERIFY, sid,m, bsn, σ, RL) from some party V.

• Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi〉 ∈ Members and
〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where identify(σ,m, bsn, τi) = 1. Set
f ← 0 if at least one of the following conditions hold:

– More than one τi was found.

– I is honest and no tuple (τi,Mi,Hj) was found.

– There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

• If f 6= 0, set f ← ver(σ,m, bsn).

• Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid, f) to
V.

Link
8. Link. On input (LINK, sid, σ,m, σ′,m′, bsn) from a party V.

• Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not
valid (verified via the verify interface with RL = ∅).

• Set f ← link(σ,m, σ′,m′, bsn).

• Output (LINK, sid, f) to V.

Figure 5.30: F for Game 12
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Figure 5.31: Simulator for Game 12
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7. Verify. On input (VERIFY, sid,m, bsn, σ, RL) from some party V.

• Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi〉 ∈ Members and
〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where identify(σ,m, bsn, τi) = 1. Set
f ← 0 if at least one of the following conditions hold:

– More than one τi was found.

– I is honest and no tuple (τi,Mi,Hj) was found.

– Mi or Hj is honest but no entry 〈∗,m, bsn,Mi,Hj〉 ∈ Signed exists.

– There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

• If f 6= 0, set f ← ver(σ,m, bsn).

• Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid, f) to
V.

Link
8. Link. On input (LINK, sid, σ,m, σ′,m′, bsn) from a party V.

• Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not
valid (verified via the verify interface with RL = ∅).

• Set f ← link(σ,m, σ′,m′, bsn).

• Output (LINK, sid, f) to V.

Figure 5.32: F for Game 13
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Figure 5.33: Simulator for Game 13
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7. Verify. On input (VERIFY, sid,m, bsn, σ, RL) from some party V.

• Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi〉 ∈ Members and
〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where identify(σ,m, bsn, τi) = 1. Set
f ← 0 if at least one of the following conditions hold:

– More than one τi was found.

– I is honest and no tuple (τi,Mi,Hj) was found.

– Mi or Hj is honest but no entry 〈∗,m, bsn,Mi,Hj〉 ∈ Signed exists.

– There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1, and no pair
(τi,Mi,Hj) for an honest Hj was found.

• If f 6= 0, set f ← ver(σ,m, bsn).

• Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid, f) to
V.

Link
8. Link. On input (LINK, sid, σ,m, σ′,m′, bsn) from a party V.

• Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not
valid (verified via the verify interface with RL = ∅).

• Set f ← link(σ,m, σ′,m′, bsn).

• Output (LINK, sid, f) to V.

Figure 5.34: F for Game 14
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Figure 5.35: Simulator for Game 14
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8. Link. On input (LINK, sid, σ,m, σ′,m′, bsn) from a party V.

• Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not
valid (verified via the verify interface with RL = ∅).

• For each τi in Members and DomainKeys compute bi ←
identify(σ,m, bsn, τi) and b′i ← identify(σ′,m′, bsn, τi) and do the
following:

– Set f ← 0 if bi 6= b′i for some i.

– Set f ← 1 if bi = b′i = 1 for some i.

• If f is not defined yet, set f ← link(σ,m, σ′,m′, bsn).

• Output (LINK, sid, f) to V.

Figure 5.36: F for Game 15
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Figure 5.37: Simulator for Game 15
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We now show that every game hop is indistinguishable from the
previous. Note that although we separate F and S, in reductions we
can consider them to be one entity, as this does not affect A and E .

Game 1: This is the real world.

Game 2: We let the simulator S receive all inputs and generate
all outputs. It does so by simulating all honest parties honestly. It
simulates the oracles honestly, except that it chooses encryption keys
in the crs of which it knows corresponding secret keys, allowing it to
decrypt messages encrypted to the crs. Clearly, this is equal to the real
world.

Game 3: We now start creating a functionality F that receives inputs
from honest parties and generates the outputs for honest parties. It
works together with a simulator S. In this game, we simply let F
forward all inputs to S, who acts as before. When S would generate an
output, it first forwards it to F, who then outputs it. This game hop
simply restructures Game 2, we have Game 3 = Game 2.

Game 4: F now handles the setup queries, and lets S enter algorithms
that F will store. F checks the structure of sid, and aborts if it does
not have the expected structure. This does not change the view of E ,
as I in the protocol performs the same check, giving Game 4 = Game
3.

Game 5: F now handles the verify and link queries using the al-
gorithms that S defined in Game 4. In Game 4, S defined the ver
algorithm as the real world with the revocation check ommitted. As F
performs this check separately. The link algorithm is equal to the real
world algorithm, showing that using these algorithms does not change
the verification or linking outcome, so Game 5 = Game 4.

Game 6: We now let F handle the join queries. S receives enough
information from F to correctly simulate the real world protocol. Only
when a join query with honest issuer and corrupt TPM and host takes
place, S misses some information. It must make a join query with F on
the host’s behalf, but it does not know the identity of the host. How-
ever, it is sufficient to choose an arbitrary corrupt host. This results in
a different host registered in Members, but F will not use this informa-
tion when the registered host is corrupt. Since S can always simulate
the real world protocol, we have Game 6 = Game 5.
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Game 7: F now handles the sign queries. When one party creates
two signatures with different basenames, F signs with different keys,
showing that the signatures are unlinkable. S can simulate the real
world protocol and block any signatures that would not be successfully
generated in the real world. F may prevent a signature from being
output, when the TPM and host did not yet join, or when the signature
generated by F does not pass verification. If the TPM and host did
not join, and the host is honest, the real world would also not output a
signature, as the host performs this check. The signatures F generate
will always pass verification, as the algorithms that S set in Game 4
will only create valid signatures (by completeness of the split signatures,
signatures on encrypted messages, and zero-knoweldge proofs). This
shows that F outputs a signature if and only if the real world would
outputs a signature.

What remains to show is that the signatures that F outputs are
indistinguishable from the real world signatures. We make this change
gradually. First, all signatures come from the real world, and then we
let F gradually create more signatures, until all signatures come from
F. Let Game 7.i.j denote the game in which F creates all signatures for
platforms with TPMsMi′ with i′ < i, lets S create the signatures if i′ >
i, and for the platform with TPM Mi, the first j distinct basenames
are signed. We show that Game 7.i.j is indistinguishable from Game
7.i.(j+ 1), and by repeating this argument, we have Game 7 ≈ Game
6.

Proof of Game 7.i.j ≈ Game 7.i.(j + 1) We make small changes
to Game 7.i.j and Game 7.i.(j + 1), and then show that the remain-
ing difference can be reduced to the key hiding property of the split
signatures.

As we are in a reduction, where we play the key hiding game with a
challenger, and we have access to some local random oracle ROi. GsRO
is simulated, meaning we are free to observe and simulate, except that
we need to keep GsRO(i, ·) in sync with ROi. We simulate GsRO(i,m) by
quering h← ROi(m) and using Embed−1(h) as GsRO’s output.

First, we let the NIZK proofs in join and in the signatures be simu-
lated (as we simulate the random oracle), which is indistinguishable by
the zero-knowledge property of the proofs. Second, we encrypt dummy
values in join and sign, instead of encrypting cred and gpk . Under the
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CPA security of the encryption scheme, this is indistinguishable.4 Note
that the host cannot decrypt his credential while reducing to the CPA
security, which means he cannot verify the credential and he cannot
later use it to sign. Proof πJOIN,I guarantees that the encrypted cre-
dential is valid, so it still aborts when the issuer tries to send a invalid
credential. The simulator simulating the honest host can solve the sec-
ond problem: since Game 4, the simulator knows the issuer secret key
and can therefore create an equivalent credential.

Now, the only remaning difference is the computation of tag and
nym. In Game 7.i.j, S computes these values using the same key as it
joined with, and in Game 7.i.(j + 1), F uses a fresh key.

We first show that the difference in nym is indistinguishable under
the key hiding property of the split signatures. S simulates the honest
host without knowing gpk . In the join, it uses a dummy ciphertext and
simulates the proof. Signatures with basename bsnj′ are handled as
follows.

• j′ ≤ j: these signatures are created by F.

• j′ = j + 1: S gives the challenger of the key hiding game of split
signatures message bsnj′ , giving it the pseudonym for bsnj′ . As the
split signatures are unique, we can use this pseudonym for every
signature with bsnj′ .

• j′ > j + 1: S uses OCompleteSign to compute tag and nym.

If the bit in the key hiding game is zero, nym is computed like in
Game 7.i.j, and if one, nym is computed like in Game 7.i.(j + 1), so
any environment distinguishing the different ways to compute nym can
break the key hiding property of the split signatures.

What remains to show is that using a fresh key for every basename
in the computation of tag is also indistinguishable. Here we make the
same reduction to the key hiding property of split signatures, but now
we make a reduction per message that the platform signs with this
basename.

Game 8: F now runs the CheckTtdCorrupt algorithm when S gives
the extracted gpk from platforms with a corrupt host. This checks

4Note that S previously held the trapdoor to the crs encryption key. S only uses
this to extract gpk in the join and gives it to F. Since F does not use this extracted
value yet, we can omit these extractions here, and use the CPA property of the
encryption scheme.
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that F has not seen valid signatures yet that match both this key and
existing key. If this happens, we break the key-uniqueness property of
the split signatures, so Game 8 ≈ Game 7.

Game 9: When F creates fresh domain keys when signing for hon-
est platforms, it checks that there are no signatures that match this
key. Since S instantiated the identify algorithm with the verification al-
gorithm of the split signatures, this would mean there already exists a
valid signature under the freshly generated key. Clearly, this breaks the
unforgeability-1 property of the split signatures, so Game 9 ≈ Game
8.

Game 10: F now performs additional tests on the signatures it
creates, and if any fails, it aborts. First, it checks whether the generated
signature matches the key it was generated with. With the algorithms
S defined in Game 4, this always holds. Second, F checks that there
is no other platform with a key that matches this signature. We can
reduce this check occuring to the key-hiding property of SSIG using a
hybrid argument. In Game 10.i, F performs this check for the first i
entries in DomainKeys.

The proof of Game 7 shows that signing under a different key is
indistinguishable, meaning that the environment gains no information
on τ = spk and we only have to worry about collisions. As any un-
forgeable split-signature scheme must have an exponentially large key
space, the chance that a collission occurs is negligible.

Game 11: In verification, F now checks whether it knows multiple
tracing keys that match one signature. As S instantiated the identify
with the verification of split signatures, this cannot happen with non-
neglibible probability by the key-uniqueness property of the split sig-
natures, Game 11 ≈ Game 10.

Game 12: When I is honest, F verifying a signature now checks
whether the signature matches some key of a platform that joined, and
if not, rejects the signature. Under the unforgeability of the signa-
ture scheme for encrypted messages, this check will trigger only with
negligible probability.

When reducing to the unforgeability of the signature scheme for
encrypted messages, we do not know the issuer secret key isk . S sim-
ulating I therefore simulates proof π in the public key of the issuer.
When S must create a credential while simulating the join protocol,
it now uses the signing oracle. From C2, it can extract gpk using its
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knowledge of the crs trapdoor. It passes gpk to the signing oracle, along
with the ephemeral encryption key epk , which allows simulation with-
out knowing isk . F’s algorithms used to be based on the issuer secret
key, which we do not know in this reduction. We let sig now also use
the signing oracle. Instead of encrypting gpk with epk , it passes these
two values to the signing oracle, and continues as before. Note that any
gpk we pass to the signing oracle is stored in Members or DomainKeys.
Now, when we see a valid signature that does not match any of the
gpk values stored, we can extract a forgery: Signatures have structure
(tag ,nym, πSIGN), with

πSIGN ← NIZK{(gpk , cred) : ESIG.Vf(ipk , cred , gpk) = 1 ∧
SSIG.Vf(gpk , tag , (0,m, bsn)) = 1 ∧ SSIG.Vf(gpk ,nym, (1, bsn)) = 1}

If the signature does not match any of the keys (using the identify
algorithm), it means that nym is not a valid split signature under any of
the gpk values for which an oracle query has been made. By soundness
of the proof, S can extract a credential on the gpk value used, which will
be a forgery. Note that as we perform this extraction only in reductions,
online extractability is not required.

As the signature scheme for encrypted messages is unforgeable, we
have Game 12 ≈ Game 11.

Game 13: F now rejects signatures on message m with basename
bsn that match the key of a platform with an honest TPM or honest
host, but that platform never signed m w.r.t. bsn. If signatures that
would previously have been accepted are now no longer accepted, we
can break the unforgeability of the split signatures.

We distinguish two cases: the host is honest, which means gpk is
found in DomainKeys (as for honest hosts, we do not register a τ value
in Members), or the TPM is honest and the host is corrupt, which means
the matching key is found in Members. the matching key gpk is found in
Members and the host is honest, the matchking key is found in Members

and the host is corrupt, or gpk is found in DomainKeys.

[Case 1 – gpk in DomainKeys, honest host]. Let Game 13.i.j
denote the game in which F prevents forgeries for keys in DomainKeys

of the platform with TPM Mi′ and i′ < i, and prevents forgery under
the keys in domainkeys with bsnj′ , j

′ < j of the platform with TPMMi

lets S create the signatures if i′ > i, and for the platform with TPMMi,
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the first j distinct basenames are signed. We show that Game 13.i.j
is indistinguishable from Game 13.i.(j + 1) under unforgeability-1 of
the split signatures.
S receives the system parameters, which it puts in the crs. S now

changes the algorithms it gives to F, such that on input bsnj , it runs
(ppk , tsk) ← PreKeyGen(spar) and gives ppk to the challenger. S re-
ceives gpk , for which it does not know the full secret key. When F
wants to sign using gpk , it must create tag and nym without knowing
the second part of the secret key. It creates the pre-signature using tsk ,
and completes the signature using OCompleteSign. Now, when F notices
a signature on message m w.r.t. basename bsn that the platform never
signed, it means it did not query OCompleteSign on (0,m, bsn), so we can
extract tag which is a forgery on (0,m, bsn).

[Case 2 – gpk in Members, honest TPM, corrupt host]. We make
this change gradually, for each TPM Mi individually.
S receives the system parameters, which it puts in the crs. When S

simulates Mi joining, instead of running PreKeyGen, it uses the ppk
as received from the challenger. When S simulating the issuer re-
ceives gpk and π1 from the platform with Mi, it extracts hsk such
that VerKey(spar , ppk , spk , hsk) = 1. Observe that we do not need
online extractability of hsk , as in this reduction we extract from just
one proof, and rewinding would be acceptable. Whenever S must pre-
sign using the unknown tsk , it calls OPreSign. When F sees a signa-
ture matching this platform’s key gpk on message m w.r.t. basename
bsn that Mi never signed, extract tag , which is a valid signature on
(0,m, bsn) under gpk . Now the unforgeability-2 game is won by sub-
mitting ((0,m, bsn), tag , gpk , hsk).

Game 14: F now prevents revocation of platforms with an honest
host. Note that revocation requires a gpk value of the platform to be
placed on the revocation list. We now show that no environment has
nonnegligible probability of entering these values.

For platforms with an honest host, we can remove all information
on gpk . First, when we encrypt gpk , tag , or cred , we encrypt dummy
values instead and simulate the proofs. Second, we can replace the nym
values by signatures under different keys, by the key hiding property
of the split signatures. Now, the environment must simply guess gpk .
As any unforgeable split-signature scheme must have an exponentially
large key space, the chance that a collission occurs is negligible.
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Game 15: F answering linking queries now uses its tracing infor-
mation to answer the queries. Previously, it compared nym and nym′,
valid split signatures on bsn under keys gpk and gpk ′ respectively. If
nym = nym′, F answered 1, and otherwise 0.

F now takes all the gpk values it knows and if it finds some gpk
such that one nym is a valid split signature under gpk , but nym′ is not,
it outputs that the signatures are not linked. Clearly, in this case we
must have nym 6= nym′, so the linking decision does not change. If F
finds some gpk such that both nym and nym′ are valid signatures on
bsn under gpk , it outputs that the signatures are linked. By signature
uniqueness, we have nym = nym′, so again, the linking decision does
not change. This shows Game 15 ≈ Game 14.

5.7 Concrete Instantiation and Efficiency

In this section we describe on a high level how to efficiently instanti-
ate the generic building blocks to instantiate our generic DAA scheme
presented in Section 5.6.

The split signature scheme is instantiated with the split-BLS signa-
tures (as described in Section 5.5.3), the signatures for encrypted mes-
sages with the AGOT+ signature scheme (as described in Section 5.5.2)
and the encryption scheme with ElGamal, both working in G2. All the
zero-knowledge proofs are instantiated with non-interactive Schnorr-
type proofs about discrete logarithms, and witnesses that have to be
online extractable are encrypted using ElGamal for group elements and
Camenisch-Shoup encryption [CS03] for exponents. Note that the lat-
ter is only used by the issuer to prove that its key is correctly formed,
i.e., every participant will only work with Camenisch-Shoup ciphertexts
once. The shared system parameters spar then consist of a security pa-
rameter κ, a bilinear group G1,G2,Gt of prime order q with generators
g1 and g2 and bilinear map e, as generated by PairGen(1κ). Further,
the system parameters contain an additional random group element

x
$← G2 for the AGOT+ signature and an ElGamal encryption key

epk crs
$← G2. This crs-key allows for efficient online extractability in

the security proof, as the simulator will be privy of the corresponding
secret key. Finally, let H : {0, 1}∗ → G∗1 be a hash function, that we
model as a random oracle in the security proof.
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Setup. The issuer registers the AGOT+ key ipk = gisk1 along with
a proof πipk that ipk is well-formed. For universal composition, we
need isk to be online-extractable, which can be achieved by verifiable
encryption. To this end, we let the crs additionally contain a public
key (n, y, g, h) for the CPA version of the Camenisch-Shoup encryption
scheme and an additional element g to make the verifiable encryption
work [CS03]. We thus instantiate the proof

πipk ← NIZK{( isk ) : (ipk , isk) ∈ ESIG.SigKGen(spar)}(sid)

as follows:

πipk ← SPK{(isk , r) : ipk = gisk1 ∧ ĝrgisk mod n ∧
gr mod n ∧ yrhisk mod n ∧ isk ∈ [−n/4, n/4]}(sid)

Join. Using the split-BLS signature, the TPM has a secret key tsk ∈
Z∗q and public key tpk = gtsk2 , the host has secret key hsk ∈ Z∗q , and

together they have created the public key gpk = gtsk ·hsk2 .

We now show how to instantiate the proof πJOIN,H where the host
proves that C is an encryption of a correctly derived gpk . Recall that
the issuer receives the Mi’s public key contribution tpk authenticated
from the TPM.

πJOIN,H ← NIZK{( gpk , hsk) : C ∈ Enc(epk , gpk) ∧
SSIG.VerKey(tpk , gpk , hsk) = 1}(sid, jsid).

The joint public key gpk is encrypted under an ephemeral key epk

using ElGamal with crs trapdoor epk crs. We set ρ
$← Zq, C1 ← epkρcrs,

C2 ← epkρ, C3 ← gρ2 · gpk and prove:

π′JOIN,H ← SPK{(hsk , ρ) : C1 = epkρcrs ∧
C2 = epkρ ∧ C3 = gρ2 · tpkhsk}(sid, jsid).

The host sets πJOIN,H ← (C1, C2, C3, π
′
JOIN,H) as the final proof.

Note that gpk is online-extractable as it is encrypted under epk crs. The
issuer checks tpk 6= 1G2 and verifies π′JOIN,H.
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Next, the issuer places an AGOT+ signature on gpk . Since gpk ∈
G2, the decrypted credential has the form (r, s, t, w) which is an ele-
ment of G1 × G3

2. The issuer computes the credential on ciphertext

(C1, C2, C3) as follows: Choose a random u, ρ1, ρ2
$← Z∗q , and compute

the (partially) encrypted signature σ̄ = (r, (S1, S2, S3), (T1, T2, T3), w):

r ←gu2 , S1 ←Cv/u2 epkρ1 , S2 ←(Cv3x)1/ugρ12 ,

T1 ←Sv/u2 epkρ2 , T2 ←(Sv2g2)1/ugρ22 , w ←g1/u
2 .

Then, with πJOIN,I it proves that it signed the ciphertext correctly:

πJOIN,I ← NIZK{isk : cred ′ ∈ ESIG.EncSign(isk , epk , C) ∧
(ipk , isk) ∈ ESIG.SigKGen(spar)}(sid, jsid).

To instantiate this, we let the issuer create π′JOIN,I as follows, using

witness u′ = 1
u and isk ′ = isk

u :

π′JOIN,I ← SPK{(u′, isk ′, ρ1, ρ2) : g2 = ru
′ ∧ S1 = Cisk ′

2 epkρ1 ∧
S2 = Cisk ′

3 xu
′
gρ12 ∧ T1 = Sisk ′

1 epkρ2 ∧ T2 = Sisk ′
2 gu

′
2 g

ρ2
2 ∧ w = gu

′
2 ∧

1 = ipk−isk
′
gu
′

1 }(sid, jsid).

The issuer outputs πJOIN,I = (r, S1, S2, T1, T2, w, π
′
JOIN,I).

Sign. In our concrete instantiation, signatures on messages and base-
names are split-BLS signatures, i.e., the TPM and host jointly compute
BLS signatures tag ← H(0,m, bsn)tsk ·hsk and nym ← H(1, bsn)tsk ·hsk .
Recall that we cannot reveal the joint public key gpk or the credential
cred . Instead the host provides the proof πSIGN that tag and nym are
valid split signatures under public key gpk and that it owns a valid
issuer credential cred on gpk , without disclosing gpk and cred :

πSIGN ← NIZK{(gpk , cred) : ESIG.Vf(ipk , cred , gpk) = 1 ∧
SSIG.Vf(gpk , tag , (0,m, bsn)) = 1 ∧ SSIG.Vf(gpk ,nym, (1, bsn)) = 1}

This proof can be realized as follows: First, the host randomizes the
AGOT+ credential (r, s, t, w) to (r′, s′, t′, w) using the randomization
token w. Note that this randomization allows the host to release r′

(instead of encrypting it) without becoming linkable. The host then
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proves knowledge of the rest of the credential and gpk , such that the
credential is valid under the issuer public key and signs gpk , that tag
is a valid split-BLS signature on (0,m, bsn) under gpk , and that nym
is a valid split-BLS signature on (1, bsn) under gpk . It computes the
following proof:

π′SIGN ← SPK{(gpk , s′, t′) :

e(g1, x) = e(r′, s′)e(V −1, gpk) ∧ e(g1, g2) = e(r′, t′)e(V −1, gpk) ∧
e(tag , g2) = e(H(0,m, bsn), gpk) ∧ e(nym, g2) = e(H(1, bsn), gpk)}

The host finally sets πSIGN ← (r′, π′SIGN).

Verify. A verifier receiving (tag ,nym, πSIGN) verifies π′SIGN and checks
nym 6= 1G1

and tag 6= 1G1
.

Embedding functions for GsRO. In addition to secure instantiations
of the primitives, Theorem 10 states that we also need Embed functions
for any type of random oracle used by the primitives.

The verifiable encryption by Camenisch and Shoup requires a ran-

dom oracle mapping to {0, 1}k. If we have GsRO output {0, 1}`(κ)
such

that `(κ) is much larger than k, we can let Embed simply reduce modulo

2k, and h
$← Embed−1(m) lets m define the k least-significant bits of

h, and chooses the `(κ)− k most significant bits uniformly at random.
For the SPK proofs, we use a random oracle mapping to Zq, allowing

us to make similar Embed and Embed−1 functions by letting {0, 1}`(κ)

to be exponentially larger than Zq. We let Embed simply reduce modulo
q, and Embed−1(m) takes a value r uniformly at random in Z2`(κ)−q
and returns r +m (computed over the integers).

Finally, split-BLS uses a random oracle mapping to G∗1. Without
making assumptions on the groups that PairGen generates, it seems im-
possible to construct appropriate Embed functions. In practice, how-
ever, G1 is typically an elliptic curve, and appropriate Embed and
Embed−1 functions are described in [BLS04, Section 3.2].

5.7.1 Security

When using the concrete instantiations as presented above we can de-
rive the following corollary from Theorem 10 and the required security
assumptions of the deployed building blocks. We have opted for a
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highly efficient instantiation of our scheme, which comes for the price
of stronger assumptions such as the generic group (for AGOT+ sig-
natures) and random oracle model (for split-BLS signatures and Fiat-
Shamir NIZKs). We would like to stress that our generic scheme based
on abstract building blocks, presented in Section 5.6, does not require
either of the models, and one can use less efficient instantiations to
avoid these assumptions.

Corollary 1. Our protocol Πpdaa described in Section 5.6 and instan-
tiated as described above, GUC-realizes Fpdaa in the (Fauth∗,Fca,Fcrs,
GsRO)-hybrid model under the following assumptions:

Primitive Instantiation Assumption
SSIG split-BLS co-CDH, XDH, ROM
ESIG AGOT+ generic group model
ENC ElGamal SXDH
NIZK ElGamal, Fiat-Shamir,

Camenisch-Shoup
SXDH, Strong RSA [FO97], ROM

5.7.2 Efficiency

We now give an overview of the efficiency of our protocol when instan-
tiated as described above. Our analysis focuses on signing and verifi-
cation, which will be used the most and thus have the biggest impact
on the performance of the scheme. We now discuss the efficiency of our
protocol when instantiated as described above. Our analysis focuses on
the signing protocol and verification, which will be used the most and
thus have the biggest impact on the performance of the scheme.

TPM. Given the increased“responsibility”of the host, our protocol is
actually very lightweight on the TPM’s side. When signing, the TPM
only performs two exponentiations in G1. In fact, according to the
efficiency overview by Camenisch et al. [CDL16a], our scheme has the
most efficient signing operation for the TPM to date. Since the TPM
is typically orders of magnitude slower than the host, minimizing the
TPM’s workload is key to achieve an efficient scheme.

Host. The host performs more tasks than in previous DAA schemes,
but remains efficient. The host runs CompleteSign twice, which costs
4 pairings and 2 exponentiations in G1. Next, it constructs πSIGN.
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This involves randomizing the AGOT credential, which costs 1 expo-
nentiation in G1 and 3 in G2. It then constructs π′SIGN, which costs 3
exponentiations in G2 and 6 pairings. This results in total signing cost
of 3G1, 6G2, 10P for a host.

Verifier. The verification checks the validity of (tag ,nym, πSIGN) by
verifying π′SIGN. Computing the left-hand sides of the euqations in π′SIGN
costs two pairings, as e(g1, g2) and e(g1, x) can be precomputed. Veri-
fying the rest of the proof costs 6 pairings and 4 exponentiations in Gt.
The revocation check with a revocation list of n elements costs n + 1
pairings.

Estimated Performance. We measured the speed of the Apache
Milagro Cryptographic Library (AMCL)5 and found that exponentia-
tions in G1, G2, and Gt require 0.6ms, 1.0ms, and 1.4ms respectively.
A pairing costs 1.6ms. Using these numbers, we estimate a signing
time of 23.8ms for the host, and a verification time of 18.4ms, showing
that also for the host our protocol is efficient enough to be used in
practice. Table 5.1 gives an overview of the efficiency of our concrete
instantiation.

M Sign H Sign Verify
Operations 2G1 3G1, 6G2, 10P 4Gt, 8P
Est. Time 23.8ms 18.4ms

Table 5.1: Efficiency of our concrete DAA scheme (nG indicates n expo-
nentiations in group G, and nP indicates n pairing operations).

5See https://github.com/miracl/amcl. We used the C-version of the library,
configured to use the BN254 curve. The program benchtest_pair.c has been used
to retrieve the timings, executed on an Intel i5-4300U CPU.
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Chapter 6

Concluding Remarks

Authentication is a key aspect of digital security, but revealing too
much information while authenticating will harm the users’ privacy
and security due to an increased risk of identity theft. Anonymous
credentials enable privacy-friendly authentication by revealing as little
as possible. In this dissertation, we have taken multiple steps towards
obtaining practical and composable anonymous credentials. First, we
have shown that global random oracles are much more powerful than
was known before, by presenting different notions of global random or-
acles, and presenting very efficient protocols with these notions. This
allows us to correctly model composition with random oracles, by cap-
turing the fact that multiple protocols typically use the same random
oracle. Second, building on our results on global random oracles, we
presented a delegatable anonymous credential scheme which is the first
to be composable and the first to include attributes, while also being
very efficient. This allows anonymous credentials to be used in a setting
where credentials are hierarchically issued, which is a typical setting in
today’s public key infrastructure. Third, we presented a formal security
model for direct anonymous attestation, a form of anonymous creden-
tials where a TPM holds a part of the signing key. DAA has been
lacking a formal security model that captures all desired properties for
the last decade Our model captures very strong privacy guarantees, by
preserving privacy of a host even if it signs with a subverted TPM.
These steps allow anonymous credentials to be used for attested com-
puting without affecting the privacy of users.

Some relevant questions require further investigation. In Chap-
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ter 3, we did not prove that adding restricted programmability to a
non-programmable global random oracle maintains security, while in-
tuitively this should not help the adversary and therefore be possible.
It seems promising to further investigate this subject, ideally proving
that adding restricted programmability maintains security, potentially
for a restricted class of protocols.

Our definition of delegatable credentials focuses on a single root
issuer per protocol instance. While this allows for a simple and under-
standable ideal functionality, it does not allow for proving statements
about multiple credentials from different root issuers. It would there-
fore be useful to extend Fdac to work with multiple root issuers and
extend our protocol to that setting. Another simplification in Fdac is
that it does not require anonymity during issuance or delegation, which
again helps achieving a simple definition and an efficient realizations.
The lack of anonymity during issuance is not a problem for many use
cases, but certain applications would require anonymous issuance. One
could extend Fdac to optionally support anonymous issuance, which
will be harder to realize, but then the higher level protocol designer
can choose the level of anonymity required for the specific setting.

The constructions for delegatable credentials and anonymous at-
testation are only secure with respect to static adversaries. Future
work could investigate how one can construct delegatable credentials
and anonymous attestation secure against an adaptive adversary. For
anonymous attestation, this would also allow us to reason about for-
ward anonymity, which requires signatures from an honest host to re-
main anonymous even after the host becomes corrupted.

Our generic constructions for delegatable anonymous credentials
and direct anonymous attestation are built from primitives defined in
a property-based manner, rather than using hybrid functionalities as
one would expect in the UC framework. Unfortunately, using hybrid
functionalities is not always possible. In some cases one could choose
between a property-based notion and a UC functionality, but the UC
functionality is much stronger and therefore harder to realize, such that
building on the hybrid functionality would yield a less efficient overall
protocol. An example is a cryptographic commitment scheme, where
the property-based definition is easier to achieve than the UC notion.
In other cases, it is simply not possible to use hybrid functionalties
to capture the building blocks. For example, anonymous credentials
typically use zero-knowledge proofs to prove possession of a signature
from the issuer. It is not clear how the zero-knowledge functionality
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Fzk, which expects a statement and a witness as input, can prove that
the signature functionality Fsig would consider a certain signature to
be valid. A more fundamental direction of future work would aim to
remove these road blocks and find ways to combine functionalities in
the same way as their property-based counterparts, which would unluck
the full potential of the UC framework.
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