
DISS. ETH NO. 25441

Intelligent Drone Cinematography

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH Zürich

(Dr. sc. ETH Zürich)

presented by

Tobias Nägeli

MSc ETH in Electrical Engineering
ETH Zürich

born 01.09.1986
citizen of Bülach ZH,

Switzerland

accepted on the recommendation of

Prof. Otmar Hilliges, Supervisor
Prof. Daniela Rus, Co-supervisor
Prof. Javier Alonso-Mora, Co-supervisor
Prof. Markus Gross, Co-examiner

2018

Abstract

Smooth shots, spectacular images and photo-realistic animation scenes
are a crucial demand in the media and entertainment industry. Creat-
ing this content for sporting events or action movies, however, still re-
quires heavy equipment such as dollies, cranes or huge camera setups.
Whereas for example in lighting there have been huge achievements
towards small and light-weight devices, for stabilization systems, the
industry still relies on the same heavy tools as decades ago. Drones
can be equipped with high-end cameras and serve as �ying camera
platforms. They can provide smooth camera shots, �y lower to the
ground, provide stunning aerial �lming content and even serve as �y-
ing sensor platforms to provide precise motion estimates of the actors.
However, using drones for �lming, has two major issues: i) Filming
often requires more than one take of the same shot. Therefore, drones
need to be able to �y the exact same path several times. This is hardly
possible with a manually controlled drone, and if so, it requires hours
and hours of training. ii) Computer-controlled drones may solve this
problem. However, their current positioning systems are not reliable
enough yet, due to the lack of precision technology. In this thesis,
we present new methods to solve these two issues which allows to use
drones as a compelling replacement of classical �lming equipment.
We explored new methods and algorithms for robust, fast and ac-

curate real-time intelligent cinematography. This includes keyframe
based �lming, collision avoidance, virtual dolly movements and human

iii

pose estimation. To reach this we use advanced and very fast non-
linear recursive estimation techniques in combination with real-time
nonlinear programming for model predictive control.
In the �rst part of this thesis, we present methods to provide ac-

curate vision and inertial sensor based position estimates for �ying
drones. The algorithm is based on a very small baseline stereo camera
and a separation between feature tracking and position estimation. In
addition, we present an extension to the proposed algorithm to reach
the highest level of coupling by directly estimating the position using
pixel intensity measurements.

In the second part of the thesis we introduce the concept of intelli-
gent real-time multi-drone Cinematography. We present a method for
viewpoint optimization of a single drone and multiple actors. The user
can de�ne how the resulting video should look like while the algorithm
controls the drone in real-time to provide the desired image content.
In addition, we present a method for subject collision avoidance in
order to �y safe around the actors. We also present a technology to
emulate camera cranes and dollies using drones. We present how mul-
tiple drones can be used to capture a scene in a collaborative way. We
also present the algorithmic foundations to minimize mutual visibility,
which means the single cameras do not �lm each other.

In the last part of the thesis, we combine the methods presented
above and develop a method for real-time drone-based human motion
estimation. We show the working system in a number of compelling
experiments independent of the environment.

iv

Zusammenfassung

Ästhetisch ansprechende und spektakuläre Kamerabilder sowie foto-
realistische Animationsszenen sind ein zentrales Element in der Medien-
und Entertainmentbranche. Die Erstellung dieses Inhalts für Sportver-
anstaltungen oder Action-Filme erfordert jedoch immer noch schwere
Ausrüstung wie Dollies, Kräne oder riesige Kameraaufbauten. Wäh-
rend beispielsweise in der Beleuchtung grosse Fortschritte gemacht
wurden in Richtung kleinerem und leichterem Equipment, setzt die
Kamerabranche immer noch auf die gleichen schweren Werkzeuge wie
vor Jahrzehnten. Drohnen können mit High-End-Kameras ausgestat-
tet werden und dienen als �iegende Kameraplattformen. Sie können
sanfte Kamerafahrten bieten, nahe dem Boden �iegen, atemberau-
bende Luftaufnahmen liefern und sogar als �iegende Sensor-Plattform
dienen, um eine genaue Bewegungsanalyse der Schauspieler zu liefern.
Um Drohnen zum Filmen zu verwenden gibt es jedoch zwei Haupt-
probleme: i) In einem Film werden oft mehrere Aufnahmen der glei-
chen Szene benötigt. Daher müssen Drohnen den exakt gleichen Pfad
mehrmals �iegen können. Dies ist mit einer manuell gesteuerten Droh-
ne kaum möglich oder es erfordert stundenlanges Training. ii) Com-
putergesteuerte Drohnen können dieses Problem lösen. Jedoch sind
die derzeitigen Positionierungssysteme aufgrund fehlender Präzisions-
technologie nicht zuverlässig genug.

v

In dieser Arbeit stellen wir neue Methoden zur Lösung dieser bei-
den Probleme vor. Diese ermöglichen es, Drohnen als überzeugenden
Ersatz für klassische Filmausrüstung zu verwenden.

Wir erforschten neue Methoden und Algorithmen für robuste, schnel-
le und genaue intelligente Kameraführung in Echtzeit. Dazu gehö-
ren Keyframe-basierte Filmaufnahmen, Kollisionsvermeidung, virtu-
elle Dolly-Bewegungen und Echtzeit-Posen-Schätzung von Schauspie-
lern. Um dies zu erreichen, verwenden wir fortgeschrittene und sehr
schnelle nichtlineare rekursive Schätztechniken in Kombination mit
nichtlinearer Echtzeitprogrammierung zur modellprädiktiven Steue-
rung.

Im ersten Teil dieser Arbeit stellen wir Methoden vor, um genaue
Positions- und Inertiasensor-basierte Positionsschätzungen für �iegen-
de Drohnen zu erzeugen. Der Algorithmus basiert auf einer sehr klei-
nen Stereokamera. Zusätzlich stellen wir eine Erweiterung des vor-
gestellten Algorithmus vor, bei dem wir eine maximale Integration
erreichen, indem wir die Position anhand von Pixelintensitätsmessun-
gen direkt schätzen.

Im zweiten Teil der Arbeit stellen wir das Konzept der intelligenten
Echtzeit-Multidrohnen�lmproduktion vor. Wir präsentieren eine Me-
thode zur Optimierung des Blickwinkels einer einzelnen Drohne und
mehrerer Schauspieler. Der Benutzer kann festlegen, wie das resul-
tierende Video aussehen soll. Der Algorithmus steuert die Drohne in
Echtzeit, um den gewünschten Bildausschnitt zu erzeugen. Darüber
hinaus stellen wir eine Methode zur Kollisionsvermeidung vor, welche
es erlaubt sicher um die Schauspieler zu �iegen. Weiter präsentieren
wir Methoden, um Kamerakran und Dollies mit Drohnen zu emulie-
ren. Wir zeigen, wie mehrere Drohnen verwendet werden können, um
eine Szene mit mehreren Kameras zu �lmen. Wir stellen auch die al-
gorithmischen Grundlagen vor, die es braucht, so dass die einzelnen
Kameras sich nicht gegenseitig �lmen.

Im letzten Teil der Arbeit kombinieren wir die oben aufgeführten
Algorithmen und entwickelten eine Methode für Echtzeit-Drohnen-
basierte Bewegungsschätzung für Menschen. Wir zeigen das funktio-

vi

nierende System in einer Reihe von Experimenten, unabhängig von
der Umgebung.

vii

Acknowledgement

First of all, I am grateful to my advisor, Prof. Otmar Hilliges, for his
impeccable guidance, for convincing me to start in his group - as �rst
PhD student - and for giving me opportunities to do my research with
the highest possible degree of freedom you can think. These projects
gave me the chance to work with many researchers at ETH but also
in collaboration with other groups. In addition, a special thank goes
to Prof. Daniela Rus for having the incredible possibility to do a re-
search internship at the CSAIL croup at MIT and to Markus Gross for
providing me feedback on my thesis. I also want to thank especially
to my co-advisor and friend Prof. Javier Alonso-Mora. Without his
brilliant ideas, many publications in this thesis would not have been
possible. We discussed in endless calls new ideas and concepts. I wish
also to tank our great AIT group. It was great to see the group grow-
ing as one of the �rst members. A very special thank goes to Benni
for the disputes about manifolds, Fabrizio for teaching us about the
best Pizza in town, Jie as our great guide in China and Stephan to
be a fantastic o�ce partner. A special thank also goes to Christioph
for helping me all the time in the last minute to do magic and cut an
incredible submission video and Wookie for providing the voice-overs.
In addition, a special thank goes to Manuel, Emre, Adrian and Velko.
A special thanks goes to Edouard Leurent, Jean-Baptiste Dubois, Ber-
trand Djavan and Mathieu Babel from Parrot for their great help and

ix

support. I am also very thankful to Alexander Domahidi and Andreas
Hempel from embotech for their incredible technical support.
I also want to thank the great individuals from our research lab

and the former PIXHAWK team - consisting of students and PhD
students - for all the fruitful discussions. Especially to Lorenz Meier
for his support, Petri Tanskanen for the great discussions on all visual
and camera problems you can think o�, Dominik Honegger for being
a great shared-�at partner and being a great opponent for discussions
over lunch. Further to all my former students, especially Lukas Meier,
Nicolas de Palézieux, Silvan Pluess and Samuel Oberholzer. Without
their help, many of the contributions of this theses where not have
been possible. Also a special thank goes to Lisa Sturzenegger for her
very valuable linguistic advice. I consider myself very lucky to have
worked with so many people together. I would like to thank all of them
and hope I do not miss anyone: Wilko Schwarting, Alex Wallar, Andy
Spielberg, Brandon Araki, Cenk Baykal, Cristian Vasile, Je�ery I. S.
Lipton, Liam Paull, Lucas Liebwein, Robert Katzschmann, Shugang
Li, Changil Kim, and Martin Rutschman.
Last but not least, I'm very thankful to my family for their uncon-

ditional support. Especially in memory of my father: It was a crazy
attempt to explain the di�erence between current and voltage to a
�ve-year-old Tobi during a hike. Although he thought I got it, he
guided me on the right way by suggesting studying at ETH electrical
engineering. Now, 31 years later, I think I �nally got the di�erence
now.

x

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Research Opportunities 4
1.3. Intelligent Cinematography in the Literature 5
1.4. Contribution Statement 10
1.5. Publications . 11
1.6. Patents . 13

2. Preliminaries and Mathematical Foundation 15
2.1. Notation . 15

2.1.1. Points and Vectors 15
2.1.2. Rotation Matrices and Quaternions 16
2.1.3. Lie Derivatives 17
2.1.4. States, Estimates and Set-points 18
2.1.5. Measurements and Residuals 19

2.2. Quadrotor Model . 19
2.2.1. Parrot Bebop 2 Model 21
2.2.2. Set of States 26

2.3. Camera Projection Model 26
2.4. Inertial Measurement Unit (IMU) 27
2.5. State Estimation . 28

2.5.1. Kalman Filtering 30
2.6. Model Predictive Control 37

xi

Contents

I. Vision Based Position Estimation 39

3. Fast, Light-weight, Stereo Inertial Odometry 41
3.1. Introduction . 42
3.2. Related Work . 42

3.2.1. System Overview 43
3.2.2. Modeling . 45
3.2.3. Point Parametrization 46

3.3. Algorithm . 47
3.3.1. Feature Initialization 47
3.3.2. Anchor-centric Estimation 48
3.3.3. Prediction . 49

3.4. Experimental Results 53
3.4.1. Hardware Setup 53
3.4.2. Experiments 54

3.5. Conclusion . 61

4. Semi-Direct EKF-based Monocular Visual-Inertial Odometry 63
4.1. Introduction . 64

4.1.1. Related Work 65
4.1.2. System Overview 68

4.2. Modeling and State Propagation 69
4.3. Photometric Update 69

4.3.1. Patch Extraction 72
4.3.2. Image Pyramid Level Selection 72
4.3.3. Iterated Sequential Update 73

4.4. Experimental Results 74
4.5. Conclusion . 77

II. Real-time Drone Cinematography 79

5. Multi-Subject Filming and Viewpoint Optimization 81
5.1. Introduction . 82
5.2. Related Work . 83

xii

Contents

5.3. Preliminaries . 85

5.3.1. Cinematographic Objectives 85

5.3.2. Target Model 86

5.4. Trajectory Generation for Viewpoint Optimization . . 87

5.4.1. Method Overview 88

5.4.2. Viewpoint Optimization Problem 89

5.4.3. Occlusion Minimization 91

5.4.4. Collision Avoidance 92

5.4.5. MPC Formulation 93

5.5. Experimental Results 101

5.5.1. Hardware Setup 101

5.5.2. Experiments 101

5.5.3. Results . 102

5.6. Conclusion . 105

6. Real-time Planning for Multi-View Drone Cinematography 107

6.1. Introduction . 108

6.2. Related Work . 110

6.3. Method . 114

6.3.1. Dynamical Models 114

6.3.2. Actor-driven Framing Objectives 116

6.3.3. Subject Collision Avoidance 116

6.3.4. 3D Virtual Camera Rails 117

6.4. Multi-Drone Flight . 122

6.5. Evaluation and Discussion 126

6.5.1. Implementation Details 126

6.5.2. Quantitative and Qualitative Experiments . . . 127

6.5.3. Preliminary Expert Feedback 128

6.6. Conclusions . 134

xiii

Contents

III. Real-time Drone-based Motion Capturing 135

7. Environment-independent Human Pose Estimation with
Drones 137
7.1. Introduction . 138
7.2. Related Work . 140
7.3. Overview . 144
7.4. Modeling . 147

7.4.1. Terminology 147
7.4.2. Human Pose 147
7.4.3. Drones and Cameras 148
7.4.4. State-space Structure and Filtering Strategy . 148

7.5. Joint Camera and Human State Estimation 152
7.5.1. Pose State Propagation 152
7.5.2. Filter measurements 153
7.5.3. Filter Update 155
7.5.4. Bone Length Estimation 156

7.6. Camera Control . 157
7.6.1. Marker Visibility 158
7.6.2. Trajectory Optimization 159

7.7. Implementation . 160
7.7.1. Active Markers 161

7.8. Experiments . 162
7.9. Limitations and Conclusions 170

8. Conclusion 171
8.1. Limitations and Future Research Avenues: 173

9. Appendix 177
9.1. Active LED Markers 177
9.2. Mutual Visibility . 179

Bibliography 181

xiv

List of Figures

1.1. James bond scene from the movie Skyfall 1
1.2. A person walking in a motion capturing system 3
1.3. Behind the scenes of a movie set. 4

2.1. Illustration of a quadrotor model. 20
2.2. Illustration of the Parrot Bebop 2 model. 22
2.3. A schematic view to illustrate the Parrot Bebop 2 model

dynamics in the x axis. The y axis can be derived sim-
ilarly. 23

2.4. Illustration of the three state estimation approaches. . 35
2.5. Manifold with tangent space. 36
2.6. Intuitive explanation of model predictive control. . . . 37
2.7. MPC uses the system dynamics to compute the optimal

states x and inputs u according to their physical con-
straints in a prediction window. 38

3.1. Outdoor trajectory estimated with our method. 44
3.2. The coordinate frames used in the Kalman Filter frame-

work . 45
3.3. Fast motion experiment. 55
3.4. Still images of the throwing experiment. 56
3.5. Still images of the disturbance rejection experiment. . . 57
3.6. In �ight trajectory estimation. 58

xv

List of Figures

3.7. Comparison of anchor-centric and world-centric para-
metrization. 60

4.1. Illustration of phtonometric �lter update. 66
4.2. Selection of the optimal pyramid level for pixel patch

alignment. 69
4.3. Estimating per-pixel intensity di�erences. 70
4.4. Comparison of our approach with the state of the art. 75
4.5. The algorithm is able to initialize even on this di�cult

scene consisting only of almost vertical lines. 76
4.6. Visual-Inertial odometry on a scene with lines. 76

5.1. Illustration of cinematographic framing constraints. . . 85
5.2. Coordinate frames and physical quantities used in our

method. 87
5.3. Schematic explanation of the MPC framework 95
5.4. Schematic illustration of occlusion minimization. . . . 96
5.5. The e�ect of viewpoint optimization under varying set-

points. 97
5.6. E�ect of occlusion handling. 98
5.7. Framing and collision avoidance 99
5.8. The Camera tries to keep the three targets in view. . . 100
5.9. Timing of the MPC algorithm. 104

6.1. Explanation of lag and contour error. 118
6.2. Online warping of camera reference path. 120
6.3. Schematic explanation of the MPCC framework. . . . 121
6.4. Schematic of collision between two quadrotors. 124
6.5. Explanation of the mutual visibility cost. 125
6.6. In�uence of penalizing mutual visibility. 130
6.7. Solve times for the optimization problem. 131
6.8. Multi-view, multi-person shot, transcribed form story

board. 132
6.9. Multi-view, single-person shot outdoors. 133

xvi

List of Figures

7.1. Overview of the proposed algorithmic structure. 144
7.2. Schematic of the states used to model the human skeleton.145
7.3. System overview. 161
7.4. Parrot Bebop 2 hardware modi�cations. 162
7.5. A subject performing jumping jacks. 165
7.6. A subject is walking over a long distance. 166
7.7. Outdoor experiment. 167
7.8. The joint positions plotted over time. 167
7.9. Ground truth comparison. 168
7.10. A subject is climbing up a wall. 169

xvii

List of Algorithms

1. Extended Kalman Filtering 31
2. Iterated Kalman Filtering 32
3. Eror State Kalman Filtering 34

4. ieskf State Update . 52

5. Compute drone state 115
6. Multi-drone algorithm 126

7. Joint Skeleton and Camera Pose Estimation 151

xix

Chapter 1.

Introduction

1.1. Motivation

Figure 1.1.: James bond scene from the movie Skyfall (left). A be-
hind the scene picture from the same scene (right).

Nothing beats the thrill of watching a good movie. Films are able
to tell fascinating stories with the help of stunning camera footage,
transporting us to places we have never been before and allowing us
to explore the perspectives of people quite di�erent from ourselves.

1

Chapter 1. Introduction

To create these unique impressions, incredible viewpoints and smooth
camera shots are required. Indeed, these elements have been in high
demand since the very �rst days of cinema.
Filming a smooth camera shot still requires heavy camera equip-

ment such as dollies or cranes, however handling such heavy equip-
ment is very time-consuming and cost-intensive. For example, in the
movie Skyfall, a camera crane and whole �lm crew were put on a mov-
ing train, as can be seen in Fig. 1.3 (left). Working with such bulky
and in�exible equipment is not only expensive, but also raises safety
issues. Therefore, producers began to actively search for other solu-
tions, as the owner and founder of Singorell Productions explained:

�Setting up and handling a dolly is very time-consuming
and cost-intensive. I rarely use them and prefer to look
for another solution.�
Riccardo Signorell Owner, Producer Signorell Produc-

tions1

To overcome the problem of such high-cost setups � as well as to
generate completely new visual content � the �lm industry started
to animate such scenes. Due to the technical progress of computer
graphics in recent years, these movies have started to become more
and more photorealistic. Fig. 1.3 (right).
Computer-animated content provides us with many more possibil-

ities and far greater �exibility. It is not only possible to render, for
example, a special e�ect in a classical feature �lm, but also to com-
pletely animate a whole movie. However, to produce such scenes, an
incredible amount of knowledge and time is needed2.
To cut down on costs, studios are using so-called motion-capturing

technology, which draws on people's natural movements. This involves
placing several infrared cameras around a �lm set (as shown in Fig.
7.9), which detect re�ective markers that are placed on actors. This
allows the cameras to capture their motions in real time. This not

1http://signorell.com/
2http://www.ign.com/articles/2014/07/11/a-brief-history-of-motion-capture-in-

the-movies

2

1.1. Motivation

only saves time and money, but also results in animated characters
with natural, human-like mobility, as was the case in the movie Dawn
of the Planet of the Apes, shown in Fig. 1.3.

Figure 1.2.: A person walking in a motion capturing system. Several
cameras at the ceiling are �lming the person's motion
from di�erent perspectives. Using all image information
allows to reconstruct the human motion in real-time and
to animate a character.

Although motion capturing solves many problems, it also has sev-
eral disadvantages. For example, specialized hardware is needed and
the costs for even small productions are immense, meaning it is not
practical to use such systems on a large scale.
Quick setup changes or motion capturing of long-distance and dy-

namic sequences are thus extremely di�cult to achieve, and are in any
case only possible with huge time and cost overheads.
The use of bulky, immobile and heavy camera equipment is there-

fore a general problem in both classical �lming as well in movies where
motion-capturing technology is used. To overcome this problem, in
recent years drones have become increasingly popular. Drones can be
equipped with high-end movie or even infrared cameras, and they can
�y low against the ground and provide smooth camera shots. Not
only could they potentially replace heavy equipment such as dollies
or cranes, they could also serve as �ying motion-capturing platforms

3

Chapter 1. Introduction

to reduce camera overheads and allow motion capturing independ-
ent of a �xed infrastructure. However, �lm sets are highly dynamic
spaces involving many people, objects and environmental challenges.
This means using drones for this purpose requires very precise �ights,
particularly where dynamic and complicated processes are concerned.

Figure 1.3.: Behind the scene of the James Bond �lm Skyfall (left)
and Dawn of the Planet of the Apes (right). Motion
capturing was used to capture the human motion in or-
der to animate the virtual apes.

1.2. Research Opportunities

Our vision is to transfer the boundless possibilities of a �ying camera
carried by a drone to creative people on �lm sets. However, there are
two very big challenges towards this ambitious goal.

1. The cognitive load to simultaneously control a drone and pro-
duce artistic shot compositions is incredibly high.

2. A �lm set has an unpredictable and unstructured nature where
actors are walking around and scenes may change very quickly.

The automated trajectory generation methods presented by Roberts
and Hanrahan [2016] as well as by Gebhardt et al. [2016, 2018] ad-
dress the �rst point by providing a complete automated �ight tool to
automatically �lm static scenes by de�ning key frames.

4

1.3. Intelligent Cinematography in the Literature

However, a cinematographer wants to keep control over his work by
having the ability to react on unpredicted movements and frame actors
in real-time. Therefore, we believe an end-to end motion planning
from global user inputs to low-level drone control is not the right way
to address both aforementioned problems. We believe a separation
into a local feasible trajectory controller and a global planner will be
the right way to address the challenging problem and bring technology
one step closer towards our vision.
In this thesis, we provide a possible solution of a modular low-level

motion planning strategy. In order to prove our proposed method,
we show the modularity in a wide range of challenging and compel-
ling scenarios where we go far beyond the state of the art of real-time
drone cinematography and call this concept intelligent drone cinema-
tography.

1.3. Intelligent Cinematography in the
Literature

Intelligent drone cinematography can be understood as a special case
of a sensor placement problem, where the sensors are the cameras and
the objective are the �lming requirements of the user. In the following,
we present a historical background of the building blocks needed for
intelligent drone cinematography. First, we discuss active robot vision
approaches. They can be interpreted as the �rst camera control prob-
lem. This is followed by presenting the literature of virtual camera
placement in virtual environments such as in computer games. These
two paragraphs serve as background for the drone cinematography as
well as drone based human motion capturing. A detailed related work
of the individual and detailed topics, such as GPS less navigation, will
follow in the individual subsequent chapters.

Active robot vision: Sensor placement has been an active area of
research in recent years in a number of areas as for example in ro-

5

Chapter 1. Introduction

botics and computer vision. For instance, the general problem of
task planning in robotics and its component areas of motion-, grasp-
, and assembly-planning can be seen as di�erent facets of a sensor
placement problem. In active sensing, sensor parameters are con-
trolled in response to the requirements of the task as shown in Bajcsy
[1988] and Swain and Stricker [1993]. It has been shown in Aloimonos
et al. [1988a] that active sensing can take ill-posed vision problems
and render them well posed through constraints introduced by the
dynamic nature of the sensor.
With the development of more powerful computers, people started

to explore the possibility of using camera-controlled robots for auto-
matic product assemble. In Sakane et al. [1987], a system is presented
where the goal was to actively minimize occlusions for e.g. automated
manipulation task. Therefore, the authors present a system for hand-
eye occlusion minimization system. Tarabanis et al. [1991] present a
method to determine viewpoints for a robotic vision system for which
object features of interest will simultaneously be visible, inside the
�eld-of-view, in-focus and magni�ed as required.

Virtual camera placement: Automatic camera control was studied
extensively in the context of virtual environments in computer graph-
ics. From an application point of view, approaches to control a camera
can be distinguished based on whether the user has some degree of
interactive control, or the application assumes full control of the cam-
era itself. According to Christie et al. [2008a], there are a number
of fundamental issues in interactive camera control. Firstly, direct
interactive control of a virtual camera requires an expert user. This
because there is a huge cognitive load to deal simultaneously with all
six degrees of freedom of a camera. Cameras in computer graphics
are modeled using three degrees of freedom for Cartesian coordinates
and three rotational degrees.
This problem was tried to solve by not directly control the cameras

degrees of freedom but to describe the resulting video, as for example
shown in [Gleicher and Witkin, 1992]. They proposed the through-

6

1.3. Intelligent Cinematography in the Literature

the-lens control concept of a camera. There, the user can de�ne where
and how the actors should appear on the screen instead of directly
manipulating the camera's degrees of freedom.
A second issue is the partially automated camera planning. Motion

control of a virtual camera can be considered as a special case of
path planning and thus is a hard problem with a complexity that is
exponential in the number of degrees of freedom, as shown by Christie
et al. [2008b]. Furthermore, the mathematical relation between an
object in a 3D scene and its projection on the 2D screen is non-linear.
For camera control techniques, interactive computer games serve as

a benchmark. A classical camera control problem involves following
one or more characters whilst simultaneously avoiding occlusions in a
cluttered environment.
To control a camera automatically, several problems have to be

solved: Visibility of the characters, collision avoidance with the cam-
era as well as the environment, smooth motion, keeping characters in
the view and aesthetic pleasant �lming. Insights of how cameras are
placed in �lm-sets are found in the cinematographic literature such as
[Arijon, 1976] and [Katz, 1991] where for example the triangle prin-
ciple or shot compositions are introduced.
Arijon's triangle principle invokes the notation of a line of action,

which for single actors is determined by the direction of the actor's
view, and for two actors the line between their heads. This ensures,
especially in narrative scenes or sequences, that by ensuring the tri-
angle principle, it can be assured that viewers would not be confused
by changes in the relative positions, or by camera cuts from one shot
to another. In order to produce aesthetically pleasant camera com-
binations, especially at a practical level, Mascelli [1965] observes in a
number of compositional heuristics as for example, that neither strong
vertical nor horizontal line should be centered. This is known in pho-
tography and cinematography as the rule of thirds. The guideline
proposes that an image should be imagined as divided into nine equal
parts by two equally spaced horizontal lines and two equally spaced
vertical lines, and that important compositional elements should be
placed along these lines or their intersections

7

Chapter 1. Introduction

Recent work in gaming was presented by Galvane et al. [2013] where
they present in an automated computation of appropriate viewpoints
in complex 3D scenes. In [Galvane et al., 2015] the same authors
present a method for generating virtual camera rails and computing
smooth camera motions on these rails.
Galvane et al. [2017] present a similar system presenting an active

tool for shot compositions in dynamic environment. The only work
using multiple drones for subject �lming is presented by Poiesi and
Cavallaro [2015]. There the authors try to keep the subject in the
�eld of view. They show the approach working in simulation.
However, virtual environments are not limited by real-world phys-

ics and robot constraints and hence can produce arbitrary camera
trajectories, velocities and viewpoints. Also all positions of all parti-
cipants, cameras and objects are known a-priori, which makes it easier
for planning

Drone cinematography: There is currently very little literature on
autonomous drones applied to cinematography [Mademlis et al., 2018].
For example in [Srikanth et al., 2014] an interesting approach is presen-
ted to control quadrotors for lighting purposes. The authors present a
solution, which can to achieve automatically a speci�c lighting e�ect
on dynamic subjects using a quadrotor equipped with a �xed portable
light source. Their solution processes the images from a static camera
to compute the 3D motion commands for the quadrotor.
Closer to our work, Joubert et al. [2015] address the challenge

of autonomously performing camera shots with quadrotors. They
present an interactive tool that allows users to design physically plaus-
ible trajectories by visually specifying shots. They use a virtual envir-
onment to compose and preview the shots. Their tool however remains
limited to outdoor environment. It also requires to manually describe
the path beforehand and does not allow to track targets in real-time.
Roberts and Hanrahan [2016] propose a method that re-times a user-
de�ned physically infeasible Drone Trajectory. With infeasible, the
authors de�ne that the trajectory cannot respect the dynamics and

8

1.3. Intelligent Cinematography in the Literature

physical limits of the quadrotor. A similar method was presented by
Gebhardt et al. [2016, 2018] where feasible trajectories for drones were
computed according to user preferences in static scenes. Although this
methods are interesting, they only deal with aesthetic camera paths
and cannot react in real-time on moving objects with a unknown mo-
tion pattern. This would require recomputing the whole path, which
is computationally not trackable. All this approaches worked with a
global optimization strategy which only worked in interactive rates
(e.g. around 1-2 seconds on normal desktop computers).
A step forward to real-time drone cinematography is presented in

[Joubert et al., 2016]. The author presents a system working with
moving subjects. It is able to capture drone video footage of hu-
man subjects performing limited movements. The authors track the
subjects using an RTK GPS and IMU sensors. Joubert et al. [2016]
uses a simpli�cation of the sampling based search space, called torus
space. This was introduced in by Lino and Christie [2015]. However,
although the approach worked in real-time, they could only frame two
subjects on the screen. It is also not possible due easily integrate a
collision avoidance. Galvane et al. [2018] combine a torus-space based
approach with a high-level planner. The system takes handcrafted
trajectories as inputs and computes a C4 continuous spline. The sys-
tem is still only able to frame two person at the time. Ceiling and �oor
constrains are taken into account. However, local collision avoidance
is not included in the system

Drone based motion capture: Using drones as a mobile camera plat-
form for real-time motion capturing is a new research topic and there-
fore not much work is published. In [Zhou et al., 2018], the authors
used a single quadrotor equipped with a RGB camera following a hu-
man, similar to a system proposed by [Lim and Sinha, 2015]. The pose
of the human is computed in an o�ine process using a multi-frame
skeleton detection. A general problem with such approaches is �rst
the problem of occlusion and ambiguities using a monocular camera,
and second the system can nor run online. The system also only can

9

Chapter 1. Introduction

track humans. A more general approach was proposed by [Xu et al.,
2017]. The authors used multiple quadrotors following a human us-
ing visual detection. Further, the drones are equipped with a depth
camera to capture and record the motion sequences. The presented
pipeline computed a deformable mesh in an o�ine process. Although
this system could minimize the occlusion and ambiguity, it is still not
able to process data in real-time and react on the human.

1.4. Contribution Statement

In this thesis, we made contributions in the �eld of GPS less naviga-
tion, drone cinematography and real-time human motion capturing.
Our �rst core contribution is the development of conceptual building

blocks for modular low-level motion planning which we state to be the
basis for intelligent drone cinematography.

• We provide a very �exible model predictive control formulation
that allows to abstract a drone as a �ying camera. The method
allows an intuitive and easy way to include cinematographic
concepts by de�ning key frames. The developed control strategy
steers the drone in a way that the desired key frame � the frame
the user wants to see the resulting camera footage � is ful�lled.
Cinematographic concepts such as shot size, subject framing
and relative view angles can easily be integrated. In addition, we
also show how to integrate subject visibility and subject collision
avoidance. The work is presented in chapter 5.

• We developed a real-time method for drones that allows to track
arbitrary high-level trajectories with guaranteed constraints. The
input trajectories do not need to be physically feasible in the
sense Roberts and Hanrahan [2016] de�ned. Further, we show
extensions of the proposed algorithm by adding the possibility
to do multi-camera productions using drones. The algorithms
have a real-time inter drone collision avoidance, and can �lm

10

1.5. Publications

with a reciprocal visibility minimization. We present the work
chapter 6.

We used the above presented building blocks as a basis for our second
core contribution:

• We developed the �rst real-time human motion capturing system
using drones. We provided a completely self-contained method
that allows human skeleton tracking in real-time and to control
of the states of multiple drones in real-time. We present the
work in chapter 7.

In order to develop the above presented core building blocks for intel-
ligent drone cinematography, we did a third core contribution in the
�eld of environment independent position estimation:

• We provided a very lightweight and fast Visual Inertial Odo-
metry (VIO) algorithm to accurately estimate the position of a
drone, presented in chapter 3. In addition, we present an exten-
sion to the presented VIO algorithm that directly includes pixel
intensity for position estimation, presented in chapter 4.

1.5. Publications

In the context of this thesis, the technical contributions have lead to
top-tier peer reviewed conference publications:

• Nägeli, T., Oberholzer, S., Plüss S., A., Alonso-Mora, J., Hil-
liges, O. (2017). Flycon: Real-time Environment-independent
Multi-view Human Pose Estimation with Aerial Vehicles (TOG),
36(4), 132.

• Nägeli, T., Meier, L., Domahidi, A., Alonso-Mora, J., Hilliges,
O. (2017). Real-time planning for automated multi-view drone
cinematography. ACM Transactions on Graphics (TOG), 36(4),
132.

11

Chapter 1. Introduction

• Nägeli, T., Alonso-Mora, J., Domahidi, A., Rus, D., Hilliges,
O. (2017). Real-time motion planning for aerial videography
with dynamic obstacle avoidance and viewpoint optimization.
IEEE Robotics and Automation Letters, 2(3), 1696-1703.

• de Palézieux, Nicolas, Nägeli, T., and Hilliges, O. "Duo-vio:
Fast, light-weight, stereo inertial odometry." Intelligent Robots
and Systems (IROS), 2016 IEEE/RSJ International Conference
on. IEEE, 2016.

• Tanskanen, P., Nägeli, T., Pollefeys, M., Hilliges, O. (2015,
September). Semi-direct EKF-based monocular visual-inertial
odometry. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on (pp. 6073-6078). IEEE.

Althought not directly related to the work presented in this thesis,
the following peer-reviewed publications were published during my
PhD studies:

• Stevsic, S., Nägeli, T., Alonso-Mora, J., Hilliges, O. (2018).
Sample E�cient Learning of Path Following and Obstacle Avoid-
ance Behavior for Quadrotors. IEEE Robotics and Automation
Letters.

• Alonso-Mora, J., Montijano, E.,Nägeli, T., Hilliges, O., Schwager,
M., Rus, D. (2018). Distributed multi-robot formation control
in dynamic environments. Autonomous Robots, 1-22.

• Araki, B., Strang, J., Pohorecky, S., Qiu, C., Nägeli, T., Rus,
D. (2017, May). Multi-robot path planning for a swarm of ro-
bots that can both �y and drive. In Robotics and Automation
(ICRA), 2017 IEEE International Conference on (pp. 5575-
5582). IEEE.

• Gebhardt, C., Hepp, B., Nägeli, T., Stev²i¢, S., Hilliges, O.
(2016, May). Airways: Optimization-based planning of quadro-
tor trajectories according to high-level user goals. In Proceedings

12

1.6. Patents

of the 2016 CHI Conference on Human Factors in Computing
Systems (pp. 2508-2519). ACM.

• Hepp, B., Nägeli, T., Hilliges, O. (2016, October). Omni-
directional person tracking on a �ying robot using occlusion-
robust ultra-wideband signals. In Intelligent Robots and Sys-
tems (IROS), 2016 IEEE/RSJ International Conference on (pp.
189-194). IEEE.

• Alonso-Mora, J.,Nägeli, T., Siegwart, R., Beardsley, P. (2015).
Collision avoidance for aerial vehicles in multi-agent scenarios.
Autonomous Robots, 39(1), 101-121.

1.6. Patents

In the context of this thesis, the technical contributions have lead two
patent applications:

• Nägeli, T. et al. Flycon: "Method and computer program for
detecting the form of a deformable object", 2018, EU Patent
(pending).

• Nägeli, T. et al. VirtualRails: "A Drone and Method of Con-
trolling Flight of a Drone", 2017, EU Patent (pending).

13

Chapter 2.

Preliminaries and

Mathematical Foundation

In the following, we provide an overview of the used mathematical
notation as well as the basic Lie algebra math, quadrotor modeling,
state estimation concepts. We also give an introduction into model
predictive control.

2.1. Notation

We provide a consistent and easy to follow notation which means we
avoid unnecessary sub - or superscripts. Whenever possible, we follow
the standard notation proposed in literature.

2.1.1. Points and Vectors

In the following, we denote points in 3D as p(·) with a name as sub-
script, e.g. pq for pquadrotor. If the context is clear and additional
subscripts make the variable not readable anymore, we shorten the
subscript to e.g. pq for pquadrotor. A relative vector between two

15

Chapter 2. Preliminaries and Mathematical Foundation

points pa and pb is denoted as rab. A superscript rWab indicates the
vector rab is expressed in frame W . Without subscript vectors are ex-
pressed in the standard Earth North Up (ENU) inertial global world
coordinate system frame W e.g. rWab := rab
The following coordinate frames are used throughout this thesis and

are illustrated in Fig. 3.2: W � the inertial world frame; O � the origin
frame; Aj � anchor frames; C � the camera frame; I � the IMU or
Quadrotor body frame.

2.1.2. Rotation Matrices and Quaternions

Rotation matrices performing rotations from frame A to frame B are
denoted by RAB = R(q̄AB) ∈ SO(3), where q̄AB is the correspond-
ing quaternion. Similar to position vectors, we shorten RAB to RB

if A is the inertial global world coordinate system frame W . We ad-
here to the JPL quaternion de�nition [Breckenridge, 1979] and denote
a quaternion by q̄ = [qxi+ qyj+ qzk+ qw] = [q, qw]

T . Quaternion
multiplication is denoted by ⊗ and is de�ned as:

q̄q⊗q̄p=


pw −pz py px

pz pw −px py

−py px pw pz

−px −py −pz pw




qx

qy

qz

qw

 .

A rotation around a unit length axis ω = [ωx, ωy, ωz] by an angle α
is expressed as a quaternion as follows:

q̄q(ω, α) =


sin(α/2)ωx

sin(α/2)ωy

sin(α/2)ωz

cos(α/2)

 (2.1)

16

2.1. Notation

The rotation de�ned by a general 3 dimensional vector v, where ‖v‖ 6=
0, is written as a quaternion by decomposing v into α = ‖v‖ and
ω =

v

α
and applying (2.1). This operation is denoted by:

q̄(v) = q̄

(
v

‖v‖
, ‖v‖

)
(2.2)

To compute a rotation matrix from a quaternion, we use the the
function R(q̄BA) de�ned as:

R(q̄BA) =


q2
x − q2

y − q2
z + q2

w 2(qxqy + qzqw) 2(qxqz − qyqw)

2(qxqy − qzqw) −q2
x + q2

y − q2
z + q2

w 2(qyqz + qxqw)

2(qxqz + qyqw) 2(qyqz − qxqw) −q2
x − q2

y + q2
z + q2

w

 .
The concatenation of rotations are composed by multiplication on the
left. Thus, the rotation matrix that rotates vectors from a frame A
to a frame C can be composed by:

RCA = RCBRBA

Analogously, the quaternion q̄CA corresponding to RCA can be com-
posed by:

q̄CA = q̄CB ⊗ q̄BA

Note that, with the JPL quaternion convention, the order of multi-
plication is the same for rotation matrices as for quaternions. Orient-
ation errors are described in so(3), the tangent space of SO(3), and
are written as δθ.

2.1.3. Lie Derivatives

In this thesis, we use lie derivatives of a rotation in SO(3) with respect
to its tangent space so(3). We are using the derivation provided in

17

Chapter 2. Preliminaries and Mathematical Foundation

[Mourikis et al., 2009] and [Mourikis and Roumeliotis, 2007]. A de-
tailed derivation can be found in [de Palézieux et al., 2016]. Consider
the rotation matrix R ∈ SO(3) and the vector x ∈ R3. Let

y = Rx y′ = RTx

The di�erentiation by x is straightforward:

∂y

∂x
= R

∂y′

∂x
= RT

The di�erentiation with respect to the rotation parameters that de�ne
R (according to Eq. (2.2)), which we simply denote by ∂

∂R , is:

∂y

∂R
= byc×

∂y′

∂R
= −RT bxc×,

where bxc× is the skew symmetric matrix of a three dimensional vector
and de�ned as

bwc× =


0 −w3 w2

w3 0 −w1

−w2 w1 0

 .
2.1.4. States, Estimates and Set-points

In this thesis, states are denoted as x(·). We de�ne them as variables
which evolve over time according to a mathematical model and also
might be in�uenced by other variables or inputs. Expected or estim-
ated values of a variable x(·) are denoted by E

[
x(·)
]

= x̂(·). Desired
setpoints are indicated with a subscript (·)d.
We distinguish between an a-priori estimate and an a-posteriori

estimate. The prior state is the a priori estimate of a state x and
denoted as x̂k. If the context is clear, we also write xprior for the
a-priori state. The a-posteri estimate of a state is denoted as x̂+

k .

18

2.2. Quadrotor Model

We denote the set of positive de�nite matrices of size n by Sn++

and the set of positive semi-de�nite matrices of size n by Sn+. Given
a vector x(·) ∈ Rn, we de�ne the square of the norm as ‖x(·)‖P ,
xT(·)Px(·) for P ∈ Sn++.

2.1.5. Measurements and Residuals

A general measurement is denoted by z(·) and de�ned with the measurement-
function z(·) = hx(·) . For example if only the length of a vector rab can
be observed the measurement function is given as zl = hxl = ‖rab‖.
An estimated measurement is de�ned as ẑ(·) = hx̂(·) . A residual is
written as ρ· and de�ned as the di�erence between a measurement
and an estimated measurement ρ· := z(·) − hx̂(·) .

2.2. Quadrotor Model

In the following we derive and introduce the mathematical model of
a general quadrotor, presented by Alonso-Mora et al. [2015], followed
by a speci�cation needed for a Parrot Bebop 2, which is used in this
thesis. A quadrotor is a multi-copter with four rotor blades where the
propellers are mounted in one plane. Although latest research showed
that rotor-crafts with less than four propellers are still controllable
[Zhang et al., 2016] the quadrotor is the most used multi-rotor in re-
search and therefore also our choice. A general quadrotor has four
rotors which are mounted in �xed positions with respect to the body
frame. Their motor speeds ωm can be controlled individually as in-
dicated in Fig. 2.1. Each motor of the quadrotor produces a force
Fqi = atω

2
mi ∈ R1 and a moment Mqi = aωω

2
i ∈ R1 where at and aω

are model speci�c constants. The roll Φq, pitch Θq and yaw Ψq angle
as well as the total thrust T ∈ R1 are controlled by di�erential control
of the individual rotor speeds ωmi . Due to the physical con�guration
of the actuators, a quadrotor is an unteractuated system. In order
to control the translational dynamics, we have to indirectly control
them by �rst rotating around the roll Φq and pitch Θq angle in order

19

Chapter 2. Preliminaries and Mathematical Foundation

Figure 2.1.: Illustration of a quadrotor model.

to perform a translation. Following Mellinger and Kumar [2011], the
total force along the body z axis T and the angular moments around
the body axes Mq = [Mqx,Mqy,Mqz]

T ∈ R3 can be written in matrix
form and are given by:

 T

Mq

 =


at at at at

0 atal 0 −atal
−atal 0 atal 0

aω −aω aω −aω




ω2
m1

ω2
m2

ω2
m3

ω2
m4

 ,

where al is the length from the center of gravity of the quadrotor to
the rotor axis of the motor. Following [Mellinger and Kumar, 2011],

20

2.2. Quadrotor Model

the angular acceleration around the center of gravity is given by

ω̇q = aq
−1
J

[
−ωq × aqJωq + Mq

]
with aqJ the moment of inertia matrix, which is assumed to be

diagonal, of the center of mass along the body axes of the quadrotor
and ωq = [ωqx , ωqy , ωqz] the angular speeds around the body axes of
the quadrotor. If q̄q resp. Rq(q̄q) denotes the rotation from the body
B to the inertial world frame W , the rotational velocity dynamic of
the quadrotor's body frame with respect to the inertial frame is given
by

˙̄qq =
1

2
Ω(ωq)q̄q. or Ṙq = bωqc×Rq.

For the position dynamic, we use a simpli�ed point-mass model.
This can be done due to the symmetric distribution and mass con-
centration around the center of the quadrotor. Therefore, the accel-
erations of the quadrotor's mass-point in the inertial frame p̈q can be
written as

p̈q = Rq(q̄q)


0

0

T
aqm

− aqD


ṗqx

ṗqy

ṗqz

−


0

0

g

 (2.3)

where two forces are applied:

1. Gravity: FG = maqmg in the z direction eWz of the inertial
frame.

2. Thrust: T in the negative z direction eBz of the quadrotor
body-frame.

2.2.1. Parrot Bebop 2 Model

For our experiments we used a Parrot Bebop 2 drone. Therefore, we
slightly have to modify the general quadrotor dynamics in order to

21

Chapter 2. Preliminaries and Mathematical Foundation

Figure 2.2.: The Parrot Bebop 2 Drone type which is used in this
thesis.

develop a controller which is able to use the interfaces provided by
parrot's SDK1. The physical inputs which are provided by the SDK
are four inputs to control the drone and the attached camera gimbal:

• Physical drone inputs: φq the desired roll angle, θq the de-
sired pitch angle, ωqψ the desired yaw speed and ṗqz the desired
z velocity.

• Physical gimbal inputs: θg the desired absolute camera pitch
angle and ψg the desired relative camera yaw angle with respect
to the quadrotor yaw angle.

the input vector is therefore de�ned as

udrone = [uq,ugimb] = [ṗqz , ωqφ ωqθ , ωqψ |ωgθ , ωgψ] ∈ R6.

Drone model: We are following the modeling presented in [Bristeau
et al., 2011]. Because the z dynamic of the Bebop 2 is controlled

1http://developer.parrot.com/

22

2.2. Quadrotor Model

Figure 2.3.: A schematic view to illustrate the Parrot Bebop 2 model
dynamics in the x axis. The y axis can be derived sim-
ilarly.

separately from the translational x and y dynamics of the drone we
can separate these. We can assume the Bebop controller keeps the
actual height constant during a translation of the drone. The thrust
T which is needed for a drone to hover, e.g. φq ≈ 0 and θq ≈ 0, is
given as T = aqmg with aqm the mass of the quadrotor and g the
earth's gravity. If the quadrotor performs a translation, the norm of
the thrust vector, which is always pointing along the body z eBz axis,
has to be increased in order to keep the height. This fact is illustrated
in Fig. 2.3 and we can compute the force acting in the earth's x
direction as:

Fqx = tan(Θq)Fqg

with Fqx the force in the x axis of the intertial frame and Fqg =
aqmg, acting in the negative z direction of the inertial frame (note the
de�nition of the angle cancels out the minus sign of Fqg).
According to Newton's law, we can simply divide both sides by

the quadrotor's mass and get the position dynamics. The horizontal

23

Chapter 2. Preliminaries and Mathematical Foundation

position dynamics of the drone are then given as

p̈qx,y = RΨq(Ψq)

 tan(Θq)

−tan(Φq)

 g −
ṗqxaqDx

ṗqyaqDy


︸ ︷︷ ︸

Drag

∈ R2

where the matrix RΨq(Ψq) ∈ SO(2) rotates the acceleration into the
inertial frame. The air drag of a quadrotor can be approximated as
a linear and quadratic term, dependent on the quadrotor's velocity,
and acts against the moving direction of the quadrotor. According to
Bristeau et al. [2009, 2011] the linear drag component is dominant at
lower speeds and therefore we only add the linear approximation of
the drag force. The z position dynamics is simply given as

p̈qz = aqDzṗqz ∈ R1.

As described in the general quadrotor model Sec.2.2, the quadrotor
has to adjust the rotor speeds in order to track a reference roll or
pitch angle. To approximate the internal controller dynamics, we add
an arti�cial state, representing the rotation speed around the body x
and y axis. The dynamics of the Euler angles φq, θq and Ψq are then
given as:


Φ̇q

Θ̇q

Ψ̇q

 =


ωqφ

ωqθ

ωqψ


and the additional rotational speed dynamics for the roll and pitch

axis can be written as:

ω̇qφ
ω̇qθ

 = τ2
ω0

φqref − Φq

θqref −Θq

− τητω0

ωqφ
ωqθ


︸ ︷︷ ︸

Drag

24

2.2. Quadrotor Model

with model speci�c constants τω0 and τη.

Camera gimbal: The camera of the bebop is attached to the robot
via a software pan-tilt gimbal. The roll and pitch axes of the gimbal
are stabilized, which mean the roll and pitch angles of the quadrotor
during �ying are compensated in order to have a stable and still image.
The input which the SDK provides are the absolute pitch and Yaw
angle of the gimbal, denoted as θg and ψg.
To get a smooth camera response, the underlying camera stabiliza-

tion algorithm inside the parrot Bebop 2 drone is a 3rd. order model
which we approximate. It allows us also easily to control the gimbal
rotation speed.

θ̇g = ωgθ and ψ̇g = ωgψ

While the camera is not directly attached to the center of the quad-
rotor, experimentally we have found it to be su�cient assuming the
camera position and the quadrotor's position pq to be identical.
The Full camera orientation matrix is given as the multiplication of

the three rotations:

Rc(q̄c) = Rθg(q̄θg)Rψg(q̄ψg)RΨq(q̄Ψq), (2.4)

and in quaternion notation:

q̄c = q̄g(θg)⊗ q̄g(ψg)⊗ q̄q(Ψq), (2.5)

where q̄g(θg) is the quaternion de�ned by the gimbal pitch angle ψg,
q̄g(ψg) is the quaternion de�ned by the gimbal pitch angle ψg and
q̄g(θg) is the quaternion de�ned by the quadrotor's yaw angle Ψq The
full state the quadrotor is given by its position pq ∈ R3 its velocity
ṗq ∈ R2 its orientation , i.e. roll Φq, pitch Θq and yaw Ψq. as well as
the body angular states ωqφ and ωqθ

xq = [xq,xgimb] = [pq, ṗq,Φq,Θq,Ψq|θg, ψg] ∈ R10.

25

Chapter 2. Preliminaries and Mathematical Foundation

The sets X and U are given by the physical limits of the environment
(e.g. pz > 0) and by the internal constraints of the Parrot Bebop 2
(e.g. maximal vertical and horizontal velocities, maximal roll pitch
angle). The limits are described in the documentation of the Parrot
SDK 2.

2.2.2. Set of States

We denote by X and U the set of admissible states and inputs. These
can be derived from physical limits of the environment and by the in-
ternal constraints of the �ying camera hardware, e.g. bounds on ver-
tical and horizontal velocities as well as on roll and pitch angles. We
obtained the limits from the documentation of the Parrot SDK [Par,
2015]. While each quadrotor model has di�erent values of these
bounds, in general such bounds exist and can be assumed to be known
for a particular model. The trajectory generation method should en-
sure xqk ∈ X and uqk ∈ U for all k.

2.3. Camera Projection Model

In order to use a camera we need a mathematical model which de-
scribes how 3D information is mapped on a 2D image and vice versa.
The simplest projection model is the pinhole camera model that de-
scribes the camera with a simple projection. But in practice, this
model is normally not enough, since the actual camera lenses used in
real cameras create a distortion of the simple projection.
The pinhole camera model projects a 3D point pf in the camera

frame onto the virtual image plane according to:uu
vu

 =

fy pf
pf

+ Cx

fx
pf
pf

+ Cy

 , (2.6)

2http://developer.parrot.com/

26

2.4. Inertial Measurement Unit (IMU)

where fy and fx are the focal lengths in the horizontal and vertical im-
age directions in pixel units, respectively. Cx and Cy are the camera's
center of projection in units of pixels.
Due to lens distortion, the feature pf does not actually appear at

pixel coordinates (uu, vu), but at distorted coordinates (ud, vd). This
distortion is modeled with the plumb bob model [Brown, 1971], where
the tangential distortion is assumed to be negligible:

ud
vd

 =

fy 0

0 fx

(1 + κ1r
2
u + κ2r

4
u + κ3r

6
u

)uun
vun

+

Cu
Cv

 , (2.7)

where κ1, κ2, and κ3 are distortion parameters that depend on the
camera lens, and ru =

√
(uun)2 + (vun)2. (uun, v

u
n) are the normalized

undistorted pixel coordinatesuun
vun

 =

fu 0

0 fv

−1uu
vu

−
Cx
Cy


If we need to recover the undistorted pixel coordinates (uu, vu) from

distorted measurements (ud, vd), we need to invert equation (2.7) .
This requires the computation of ru. While ru is straightforwardly
computed from (uu, vu), it cannot be analytically computed from
(ud, vd). This can iteratively be done using the Newton-Raphson
method [Abramowitz et al., 1965]:

rd = ru
(
1 + κ1r

2
u + κ2r

4
u + κ3r

6
u

)
.

2.4. Inertial Measurement Unit (IMU)

For quadrotor controlling as well as for navigation in GPS denied areas
an Inertial Measurement Unit (IMU) is needed. An IMU is a device
that normally consists of 3 sensors to estimate the orientation of an
object with respect to the inertial world frame.

27

Chapter 2. Preliminaries and Mathematical Foundation

1. Gyroscope: Measures the rotational speed ωq around the body
angular axis of the object to which the sensor is attached.

2. Accelerometer: Measures the superposition of the earth's grav-
ity �eld and the acceleration of the object, to which the sensor
is attached.

3. Magnetometer: Measures the superposition of the earth's
magnetic �eld and the magnetic �elds caused by electrical in-
stallations. Especially iron disturbs the magnetic �eld.

By integrating the gyroscope values, it is possible to capture very
fast attitude changes. However, real-world sensors are a�ected by
unknown and drifting sensor o�sets. By integrating the pure meas-
urements, the estimated value will drift quickly which results in a
very bad attitude estimation. This drift can be compensated using
the measurement of the static gravity �eld and the earth magnetic
�eld. Using an accelerometer can �x two degrees of freedom of the at-
titude estimation. However, especially on a quadrotor it is not trivial
to measure the gravity vector due to the high sensor noise level and
the acceleration of the quadrotor itself. In order to correct the third
component of the gyro integrated attitude, a magnetometer can be
used which measures the earth magnetic �eld. However, especially
indoors this estimate can be highly a�ected by additional magnetic
�elds caused by electrical installations. To accurately estimate the
orientation, there is a bunch of literature in how these three types
of sensors can be fused in an e�ective way [Le�erts et al., 1982a] or
[Madgwick, 2010].

2.5. State Estimation

In general, state estimation describes the method to gain an optimal
estimate x̂(·) of a set of true system states x(·). Often, the true state
is hidden and only part of the state-space can be measured. This can
be illustrated by a moving object, such as a car: If the position can be

28

2.5. State Estimation

measured, only this state is directly observable, while the velocity of
the car is a so-called hidden state and has to be estimated through the
system dynamics. Estimating states is done using two fundamental
resources of information: The system model describing how states
evolve over time f(x(·),u(·)) and measurement model h(x(·)):

• A system model: The system model f(x(·),u(·)) describes
how the system states are evolving over time.

• Observations: The measurement model h(x(·)) describes how
measurements are related to observations.

In general we can distinguish between three di�erent concepts for
state estimation depending on the time where the information is pro-
cessed or generated as illustrated in Fig. 2.4: Smoothing in the past,
Filtering at the current time-step and predicting in the future. These
tree concepts are illustrated in Fig. 2.4.

Smoothing: Smoothing is the method to correct states in the past
using new, incoming information.

• Fixed point: The smoothed state is only computed at a �xed
point in time, or possible, several �xed points. This technology
is used to improve the anchor estimates of our visual odometry
presented in Sec.3.

• Fixed lag: The smoothed state is computed at a �xed lag in time
from the current measurement. This method is used to be able
to merge sensor data arriving with a time delay to the estimator.
They can correct the current state estimate by updating the
�xed lag state.

• Fixed interval: Smoothed state estimates are computed at every
measurement time from the start to the end of a �xed interval.

29

Chapter 2. Preliminaries and Mathematical Foundation

Filtering: In state �ltering, the goal is to continuously provide
the best estimate of the system state x(·). When a new measurement
becomes available, the �lter processes the measurement and provides
an improved estimate of the state at the new measurement time.

Prediction: If states in the future are of interest, the process
model can be used to predict the future states. The prediction is
based on the state x0 at time-step t0 and known inputs u0. This
concept is used in the Model Predictive Controlling to predict the
future to optimally plan the control actions.

2.5.1. Kalman Filtering

The Kalman Filter [Gibbs, 2011] is an algorithm that produces an
optimal estimate in real-time, assuming the measurements are a�ected
by Gaussian noise and the system is time linear and invariant. In the
case of a non-linear system, there is a bunch of suboptimal approaches
based on the so-called Extended Kalman Filter (EKF). We quickly
introduce the EKF and two extensions, the iterated extended Kalman
�lter (IEKF) for highly non linear measurement functions and the
Error State Extended Kalman Filter (ISEKF) for Kalman �ltering on
manifolds. Both of these extensions are designed to improve the state
estimate produced by an EKF.

Extended Kalman �ltering

The extended Kalman �lter (EKF) is the nonlinear version of the
Kalman �lter witch is linearized around an estimate of the current
mean and covariance. Although there are no general guarantees about
optimality of the EKF, it is the standard in the theory of real-time
nonlinear estimation. The equations are given in algorithm 1.

30

2.5. State Estimation

Algorithm 1 Extended Kalman Filtering

Require: Previous a posteriori state estimate: x̂+
k−1,P

+
k−1

Prediction
x̂k = f(x̂+

k−1,uk)

Pk = FkP
+
k−1F

T
k + Q

Update
ρk = zk − h(x̂k)
Sk = HkPkH

T
k + R

Kk = PkH
T
k S−1

k

x̂+
k = x̂k + Kkρk

P+
k = (I−KkHk) Pk

with Fk =
∂f(x̂+

k−1,uk)

∂xk
and Hk = ∂h(x̂k)

∂xk

Iterated Kalman �ltering

In case a highly non-linear measurement function h(x(·)) it is possible
to improve the estimate using a modi�cation of the standard EKF,
kalled Iterated Extended Kalman Filter (IEKF) [Denham and Pines,
1966]. The IEKF can remove the e�ects of measurement model non-
linearities. After processing the measurement in the update step, is
used in the IEKF to recompute the measurement Jacobian Hj , where
the superscript j means the j'th iteration. The IEKF can be inter-
preted as a reweighed gauss newton method [Bell and Cathey, 1993].
The process is repeated until the change in the state estimate is small.
It is important to notice that the measurement zk is only used once to
update the state at the end of all iterations. We provide in algorithm
4 the basic equations of the IEKF. Details can be found in [Gibbs,
2011].

31

Chapter 2. Preliminaries and Mathematical Foundation

Algorithm 2 Iterated Kalman Filtering

x̂k = f(x̂+
k−1,uk)

Pk = FkP
+
k−1F

T
k + Q

Update
η0 = x̂k
for j = 0 to max_it do

ρjk = zk − h(ηj)

Hj
k = ∂h(ηj)

∂xk

Sjk = Hj
kPk(Hj

k)T + R

Kj
k = Pk(Hj

k)TS−1
k

δj+1
η = Kk

(
ρjk −Hj

k

(
x̂k − ηj

))
ηj+1 = x̂k + δj+1

η

if ‖δj+1
η ‖ small then
Stop iteration

end if
end for
x̂+
k = ηj+1

P+
k =

(
I−Kj

kH
j
k

)
Pk

with Fk =
∂f(x̂+

k−1,uk)

∂xk
and Hk = ∂h(x̂k)

∂xk

∣∣∣
x̂=η

j

32

2.5. State Estimation

Error state Kalman �ltering

The classical EKF computes a state update according to the general
linear additive update equation x̂+

k = x̂k + Kkρk. This update step
works for euclidean vector spaces e.g. x ∈ Rn.
But as soon as the underlying system uses states which are not in

an euclidean space any more, which is for example the case using rota-
tions Rab, q̄ab ∈ SO3, it is not possible to use an additive update step
anymore. An error State kalman �lter (ESKF) [Roumeliotis et al.,
1999] can help to circumvent this problem, by transferring the �lter-
ing problem from the manifold Ω into a linearized, euclidean tangent
space τ for the update step, as illustrated in Fig. 2.5.
Roumeliotis et al. [1999] presented an intuitive example about qua-

ternion estimation is described which was proposed and derived in
[Le�erts et al., 1982a]. Instead of estimating the total state, as is the
case for the direct Kalman �lter, an error state is estimated. There-
fore, it can be di�erentiated between the total state x̂ , and the error
state δ. Usually, the error between two quantities is de�ned as the
arithmetic di�erence between the two, which is how we de�ne the error
in estimated values which are linear, such as positions δ := x− x̂ . For
orientation errors however, the arithmetic di�erence is not suitable.
We de�ne the error of an orientation using an error quaternion δq̄q, a
small rotation between the estimated and true orientation. This error
is multiplicative and can be de�ned as δq̄A = q̄−1

A ⊗ ˆ̄qA. Using δθ to
represent orientations in the Kalman �lter reduces their dimensional-
ity to 3. This is both computationally advantageous and circumvents
the issues with a 4 × 4 orientation covariance matrix. In the error
state EKF, the error state δ is the quantity being estimated and the
covariance matrix P describes the uncertainty of δ. The total state
x̂ is always updated such that the expected value of the error state
E [δ] = 0. In other words, the total state x̂ always represents the best
estimate of x̂ . The ESKF equations are given in algorithm 3.

33

Chapter 2. Preliminaries and Mathematical Foundation

Algorithm 3 Eror State Kalman Filtering

Require: Previous state estimate: x̂+
k−1,P

+
k−1

Prediction
x̂k = f(x̂+

k−1,uk)

Pk = FkP
+
k−1F

T
k + Q

Update
δ0
η = 0
ρk = zk − h(x̂k)

Hj = ∂rj

∂δx

∣∣∣
x̂=η

j

Sk = HkPkH
T
k + R

Kk = PkH
T
k S−1

k

Sj = HjPk|k−1(Hj)T + R

Kj = Pk|k−1(Hj)T
(
Sj
)−1

δj+1
η = Kjρk

x̂+
k = x̂k � δ

j+1
η

P+
k = (I−KkHk) Pk

with Fk =
∂f(x̂+

k−1,uk)

∂xk
and Hk = ∂h(x̂k)

∂δx

34

2.5. State Estimation

Figure 2.4.: Top: Smoothing computes estimates in the past, Filter-
ing computes an optimal estimate at the current time
step k and Predicting uses the system model and inputs
to predict future estimates. Smoothing can be distin-
guished into �xed point smoothing(red) where the estim-
ate at a �xed time-step is computed using all informa-
tion available, �xed lag (greed) where the estimate is
produced at a �xed time lag and �xed interval (blue)
which is a sliding window smoothing approach. Down:
All three concepts at the next time step k+ 1. Note that
the �xed point smoothing point (red) stays at the same
position.

35

Chapter 2. Preliminaries and Mathematical Foundation

Figure 2.5.: The manifold Ω with the embedded state x. The Tan-
gent space τ is linearized around a speci�c state on the
manifold. The error state δis de�ned in the tangent
space.

36

2.6. Model Predictive Control

2.6. Model Predictive Control

Figure 2.6.: While car driving, the driver has a intuition where
the car is in one or two seconds (left). If something
happens, the driver immediately recomputes the origin-
ally planned actions and computes a new plan (middle,
right).

Model Predictive Control (MPC) is a way to compute a control law
by predicting the future using the full systen dynamics as well as state
and input constraints. It was developed in the late 70's and �rst used
in Chemical engineering processes [Qin and Badgwell, 2003]. With
availability of fast computers and microprocessors, MPC is increas-
ingly �nding application in many other engineering domains such as
automobiles, aerospace industries and robotics. The major strengths
of MPC are abilities to handle multi-variable interactions and operat-
ing constraints as well as non linear systems. MPC is formulated as a
constrained optimization problem, which is solved on-line repeatedly
by carrying out model based forecasting over a moving window of time
as illustrated in Fig. 2.7. In Fig. 2.6 an intuitive explanation of MPC
is given. While driving a car, the driver has an intuition of where the
car is in one or two seconds (left). If something happens, the driver
immediately recomputes the originally planned actions and computes
a new plan (middle, right). In algorithm 2.8 we present the most basic
MPC formulation which we will adopt later in the following Chapters
to the speci�c problems. The basic MPC formulation is given as the

37

Chapter 2. Preliminaries and Mathematical Foundation

Figure 2.7.: MPC uses the system dynamics to compute the optimal
states x and inputs u according to their physical con-
straints in a prediction window.

following optimization problem:

min
x,u

ΣN−1
k=0 c(xk,uk) + c(xN ,uN)

x0 = x̂0 (Initial State)

s.t. xk+1 = f(xk,uk), (Dynamics)

xk ∈ X , (State Constraints)

uk ∈ U , (Input Constraints)

(2.8)

where c(xk,uk) is the objective at a given timestep k, c(xN ,uN) is
the terminal set cost, f(xk,uk) is the system model, X is the set
of feasible States (e.g. the values of states which can be ful�lled by
the system) and U are the feasible inputs of the system. A good
introduction to MPC can be found in [Borrelli et al., 2017].

38

Part I.

Vision Based Position

Estimation

39

Chapter 3.

Fast, Light-weight, Stereo

Inertial Odometry

In order to �y accurately with a drone also in GPS denied areas, a ro-
bust and reliable position estimate is needed. Therefore, we developed
a fast and accurate metric visual inertial odometry which relies on
commercially available and a�ordable hardware both for sensing and
computation. We use a low baseline stereo camera with an integ-
rated Inertial Measurement Unit. Stereo measurements are used to
initialize the depth of a tracked feature, while features are tracked
over time using only a single camera. An indirect Extended Kalman
Filter fuses IMU measurements and feature measurements extracted
from the camera images to estimate the position, orientation, and ve-
locity of the camera, in addition to IMU biases and a map of feature
points. The algorithm runs in real time on an ARM based embedded
micro-computer on-board a drone. In experiments, we demonstrate
the performance of the system both indoors and outdoors, in hand
held an in-�ight scenarios. The achieved accuracy of the experiments
is competitive with other research which uses custom designed hard-
ware and desktop-grade processors.

41

Chapter 3. Fast, Light-weight, Stereo Inertial Odometry

3.1. Introduction

In this chapter we present a Visual-Inertial Odometry (VIO) algorithm
that has been purposefully designed for the usage on small drones. A
major draw of the presented system is that it is designed to run on
a�ordable and o� the self hardware. The algorithm runs at 100Hz
on a low-power ARM CPU and works with forward-facing cameras,
allowing for fast �ight and removing the need for a second camera
for collision avoidance. Furthermore, the algorithm provides accurate
metric scale estimates without requiring speci�c initialization. We de-
tail the algorithm here and release the code as open-source software.

3.2. Related Work

There is a vast body of literature on camera pose estimation, we con-
centrate our discussion on approaches of particular interest in the
context of small, agile robots. One of the �rst �ying robots leveraging
vision was shown in [Altu§ et al., 2003, 2005], using two cameras
to estimate the 6 degrees of freedom necessary for �ight stabiliza-
tion. Frauendorfer et al. [Fraundorfer et al., 2012] used a downward
looking camera for optical �ow based �ight stabilization and an addi-
tional stereo camera pair for collision avoidance, mapping and short
horizon path planning. Others have used the PTAM algorithm [Klein
and Murray, 2007] directly to �y with a downward-looking monocu-
lar camera [Blösch et al., 2010] or leveraged modi�ed versions [Engel
et al., 2014, 2012] in conjunction with o�-board processing.
Key-frame based stereo approaches together with a loosely coupled

IMU integration have been proposed to overcome the scale drift prob-
lem [Leutenegger et al., 2013]. Recently a number of approaches have
been proposed that directly use dense surface measurements instead
of extracted visual features, e.g. [Kerl et al., 2013]. Similarly, Forster
et al. propose a sparse direct methods approach [Forster et al., 2014].
All of these methods use key-frames and hence require an explicit
initialization phase to estimate scale from IMU data.

42

3.2. Related Work

This initialization requirement can be circumvented using probab-
ilistic approaches such as the Extended Kalman Filter (EKF), �rst
applied to camera pose estimation in [Davison, 2003; Davison et al.,
2007]. In aerospace engineering, the indirect or error-state Kalman
Filter has been introduced by Le�erts [Le�erts et al., 1982b] and re-
introduced by Roumeliotis et al. [Roumeliotis et al., 1999]. Similar
approaches to visual odometry exist such as the Multi State Con-
strained Kalman Filter (MSCKF) [Li and Mourikis, 2013], or hybrid
versions [Tsotsos et al., 2014; Jones and Soatto, 2011; Li and Mourikis,
2013]. EKF-based approaches have also been combined with direct
photometric methods [Tanskanen et al., 2015; Bloesch et al., 2015].
The EKF framework has been used for vision only camera tracking

and structure from motion [Davison et al., 2007]. It allows for straight
forward sensor fusion and hence it is very popular for algorithms
designed with mobile platforms in mind, which predominantly are
shipped with cameras and IMUs [Hesch et al., 2013; Li and Mouri-
kis, 2013]. However, to make the problem computationally tractable
typically EKF approaches operate on sets of image-space features. As
outlined above this comes with certain issues. In the �ltering context
a further issue is that they are uncoupled from the estimated system.
It is only possible to use predicted locations to support the feature
correlation or matching but the correlation itself is completely un-
constrained by the overall system state. This requires costly outlier
rejection (e.g., RANSAC) to detect features that where not matched
or tracked correctly.

3.2.1. System Overview

The main goal of this work is the robust, fast and accurate estima-
tion of the pose of a quadrotor without external sensing infrastruc-
ture, such as GPS or markers on the ground. Therefore, an important
design goal was to perform all sensing and computing on-board, lever-
aging readily procurable o�-the-shelf hardware only. Furthermore,
due to the power constraints on small robots the algorithm needs to

43

Chapter 3. Fast, Light-weight, Stereo Inertial Odometry

Figure 3.1.: Left: Outdoor trajectory as estimated with our method
(length: 230m, 2.9% drift). Right: Our hardware con-
sisting of a low-cost stereo sensor and a single board
ARM PC, weighing less than 100g total.

be computationally e�cient. To ful�ll these constraints we contribute
three main aspects:

Stereo initialization, monocular tracking: We use a small baseline
stereo camera with an integrated Inertial Measurement Unit (IMU).
Stereo measurements are only used to initialize the depth of features,
while tracking over time is performed monocularly. This combines the
e�ciency of monocular approaches with reliable scale estimation via
stereo.

Iterated error state Kalman Filter: An ieskf fuses IMU measure-
ments and feature observations extracted from the camera images to
estimate the position, orientation, and velocity of the camera. Fur-
thermore we estimate additive IMU biases and a compact 3D map of
feature point locations.

Anchor-centric parameterization: Feature points are parameterized
by their inverse depth on an iteratively updated small set of past cam-
era poses. This set of pose estimates are expressed in a reference frame

44

3.2. Related Work

Right Camera
Left Camera

Figure 3.2.: The coordinate frames used in the Kalman Filter frame-
work. The camera and anchor poses are expressed in
the origin frame O, which coincides with the pose of an
anchor, here A1.

that is moved along with the current frame, keeping the camera pose
and map uncertainty bounded and hence reducing drift over time.

3.2.2. Modeling

The state space of the Ieskfconsist of two parts, the Camera state and
the Map state.

Camera model and state: The camera state describes the camera's
estimated pose (position and orientation) and velocity, as well as the
estimated accelerometer and gyroscope biases, denoted by ba ∈ R3

and bω ∈ R3, respectively. Further, the orientation of the origin frame
in the inertial world frame, q̄OW ∈ R4, is included. The purpose of
this additional orientation is explained in Sec 3.3.2. The nonlinear
process model follows the standard formulation of [Mourikis et al.,

45

Chapter 3. Fast, Light-weight, Stereo Inertial Odometry

2009]. 

ṗc

˙̄qc

p̈c

ḃa

ḃω

˙̄qOW


︸ ︷︷ ︸

ẋcam

=



ṗc

q̄c × q̄(zω − bω)

Rc(q̄c)(za − ba)

nba

nbω

no


︸ ︷︷ ︸

f(x)

(3.1)

.

xcam =
[
pc, q̄c, ṗc, ba, bω, q̄OW

]T
∈ R20

3.2.3. Point Parametrization

We parametrize the map of feature points by their inverse depths from
the camera pose at which they are �rst seen [Pietzsch, 2008]. These
past poses are termed anchor poses and denoted by rOAj ∈ R3 and
q̄AjO ∈ R4. The unit norm vector rµ encoding the ray in the anchor
frame on which a feature i lies is stored statically for each map feature.
For every time step where new points are initialized, the point state
vector xmap is augmented with xnew = [rOA , q̄AO, ρ0, ..., ρ0]T where
rOA = pc and rOA = q̄c are the current camera pose and ρ0 the
inverse depths which are set to an arbitrary value. In addition to
the point state vector the location of each point in normalized image
coordinates in the anchor frame is stored statically in a vector rµ. The
3D position of a point can be computed as follows:

pi = rOA +
rµ
ρi
R(q̄AO) ∈ R3 (3.2)

where rOA is the position and R(q̄AO) the orientation of the according
anchor frame and ρi the inverse depth of the point.

46

3.3. Algorithm

The 3D points are modeled as static scene points assuming that they
do not move in the 3D space. Therefore, the feature space dynamics
are given as ˙̃pfi = 0, ˙̃qfi = 0 and [˙̃ρ1 . . . ˙̃ρN] = 0.
By bundling several map features to the same anchor pose, a very

e�cient map state is achieved [Pietzsch, 2008; Tanskanen et al., 2015].
The total map state xmap is composed of l anchor states:

xmap =
[
xanch1

, . . . , xanchl

]T
∈ R(7+n)l

xanchj =
[
rOAj , q̄AjO, ρ1, . . . , ρn

]T
,∈ R(7+n)

The total state of the ieskf has thus the following form:

x = [xcam, xmap]
T ∈ R20+(7+n)l×20+(7+n)l

Due to the error state formulation, the covariance matrix needed to
estimate the camera pose and l anchors, each with n features is P ∈
R18+(6+n)l×18+(6+n)l.

3.3. Algorithm

We now discuss the most important aspects of the proposed algorithm.

3.3.1. Feature Initialization

Upon �lter initialization or once features can no longer be tracked,
new features need to be inserted into the state space. For this, salient
features are extracted from both the left and right camera image and
their inverse depth is initialized by triangulation in a least squares
fashion. Together with a new anchor pose

(
rOAj q̄AjO

)
, correspond-

ing to the current camera pose estimate rOAj = pc and q̄AjO = q̄c,
these point estimates are added to the state space.
To capture that the new anchor pose estimate is identical to the cur-

rent camera pose, the covariance matrix is updated with the Jacobian

47

Chapter 3. Fast, Light-weight, Stereo Inertial Odometry

of the insertion function.

P+ = JPJT J =
∂δ+
∂δ

∣∣∣
δ=0,

where (·) and (·)+ denote the time instances before and after the
insertion. The parameter σρ0 can be computed, given known camera
intrinsics and extrinsics. Due to the inverse depth parameterization,
σρ0 does not depend on the feature's depth. For a monocular camera,
an arbitrary, su�ciently large value must be chosen for σρ0 .

3.3.2. Anchor-centric Estimation

In traditional approaches camera and feature locations are estimated
relative to a global world reference frame and hence the uncertainty of
the (unobservable) absolute camera position grows unbounded. This
is detrimental to the �lter performance, as large uncertainties result in
large linearization errors in both the Kalman Filter propagation and
update step [Martinez-Cantin and Castellanos, 2006]. Our approach
circumvents this issue by marginalizing the unobservable component
of the global position uncertainty out of the state space � by moving a
relative reference frame with the current camera pose estimate. This
improves the �lter performance as less linearization error is incurred
due to bounded uncertainty.
This bears similarity to so-called robo-centric EKF formulations

[Castellanos et al., 2004; Civera et al., 2009; Martinez-Cantin and
Castellanos, 2006; Bloesch et al., 2015]. An important di�erence is
that in our anchor-centric approach, the reference frame O, which is
chosen to coincide with one of the anchor poses, is only updated when
the corresponding anchor pose is removed from the state space (see
Fig. 3.2), rather than updating it on every iteration as is the case in
robo-centric approaches. This is both computationally more e�cient
and reduces drift, as shown in experiments (see Sec 7.8).
O is moved to coincide with the anchor frame with the lowest un-

certainty, denoted by AO.

AO ∈ A1, ..., Al s.t. ‖P(AO)‖ ≤ ‖P(Aj)‖, j = 1, ..., l.

48

3.3. Algorithm

where ‖P(Aj)‖ denotes the matrix 2-norm of the entries of the cov-
ariance matrix P pertaining to anchor Aj .
The relative translation and rotation between the old origin frame

and the new one is given by rOκOκ+1
= r̂OAO and q̄Oκ+1Oκ = ˆ̄qAOO,

respectively, where κ and κ+ 1 denote the time instances before and
after the move, respectively. They are used to transform the camera
pose and velocity as well as the anchor poses into the new origin frame.
The bias states, ba, bω, and inverse depths ρi do not depend on the
origin frame and therefore do not need to be transformed.
As the absolute position of the origin frame O in the world frame

W is not observable, estimating this translation does not improve
the performance of the �lter. Therefore it is not part of the state
space, but is stored statically and updated only when the origin frame
is moved. The orientation of the origin frame in the world frame,
q̄OW , however, is included in the state space, as its roll and the pitch
axes are observable through the gravity measurement from the IMU.
Estimating these two components of the origin orientation allows for
the pose estimate and the map to become aligned with gravity.

3.3.3. Prediction

Following the continuous-discrete hybrid approach suggested in [Rou-
meliotis et al., 1999] we perform a 4th order Runga-Kutta integration
of the continuous motion equations given in 3.2.2. The error covari-
ance P =

[
PCC PCM
PMC PMM

]
is propagated by:

P+ =

 P+
CCk−1

Φ(tk+1, tk)P+
CMk−1

P+
MCk−1

Φ(tk+1, tk)> P+
MMk−1

 (3.3)

The camera error covariance is numerically integrated by

ṖCC = FPCC + PCCF> + GQG> (3.4)

where Q represents the process noise and Φ(tk+1, tk) is integrated by

Φ̇(tk + τ, tk) = FΦ(tk + τ, tk), τ ∈ [0, T]. (3.5)

49

Chapter 3. Fast, Light-weight, Stereo Inertial Odometry

The estimated state is propagated whenever measurements from
the IMU become available. These measurements are a�ected by pro-
cess noise and bias. Following [Mourikis et al., 2009; Tanskanen et al.,
2015], the gyroscope and accelerometer process noise, denoted by ng
and na, respectively, are modeled as white Gaussian noise processes
with respective variances σa and σg. The biases are modeled as ran-
dom walks ḃω = nbω , ḃa = nba , where nbω and nba are zero mean
white Gaussian noise processes. The IMU measurements and camera
dynamics are modeled as in [Mourikis et al., 2009]. The dynamics of
the camera state are discretized with a zero order hold strategy and
are propagated using the expected values of the linear acceleration
and rotational velocity. The map is assumed to be static. Thus, it
remains unchanged in the propagation. Note that, after propagating
the total state with the IMU measurements, the expected error state
is still zero.The covariance matrix is propagated using the Jacobians
of the error state dynamics [Trawny and Roumeliotis, 2005], taken
with respect to the error state δx = 0 and the process noise n = 0:

F =
∂δ̇cam
∂δcam

∣∣∣δx=0
n=0

G =
∂δ̇cam
∂n

∣∣∣δx=0
n=0

(3.6)

A state update is performed whenever image data becomes avail-
able. First, all currently estimated features are tracked from the pre-
vious to the current image of the left camera using the KLT tracker
implemented in OpenCV1.

Outlier rejection

Features may be badly tracked due to e.g. specular re�ections or mov-
ing objects, necessitating the detection and rejection of these outliers.
We apply two methods of outlier rejection consecutively.

1-Point RANSAC: This consensus based method builds on the stand-
ard RANSAC algorithm by taking into account prior information

1www.opencv.org/

50

www.opencv.org/

3.3. Algorithm

about the model, dramatically reducing the computational complexity
of the algorithm [Civera et al., 2009].
The residual of a randomly selected feature is computed by predict-

ing the measurement according to the a priori state estimate:

ρi = zi − h(x̂ , i), (3.7)

where h(x, i) is the map from the total state to image coordinates
[Montiel et al., 2006]. An intermediate total state is then computed:

Khyp = PHT
i S−1

i (3.8a)

δhypapo = Khypri (3.8b)

x̂hyp = x̂ � δapo, (3.8c)

where Hi is the Jacobian of (7.5) taken with respect to δx, linearized
around its expected value, E [δx] = 0, and Si = HiPHT

i + Ri the
measurement innovation. � denotes the fusion of the a priori total
state and the a posteriori error state. Linear quantities are updated
additively, while rotational entries are updated multiplicatively.
Features which now have a small residual are considered inliers of

this hypothesis. Equations (7.5) and (3.8) are applied repeatedly with
di�erent measurements. The iteration is stopped according to stand-
ard RANSAC criteria about the expected inlier ratio [Fischler and
Bolles, 1981]. Once the algorithm has terminated, we have a set of
low innovation inliers. The complementary set is termed the set of
high innovation candidates, which will be further processed as de-
scribed in the following. The covariance matrix is updated with the
standard Kalman Filter equation:

Pk|k = (I −KH) Pk|k−1 (3.9)

Following the state update with the low innovation inliers, the high
innovation candidates are further separated into high innovation inli-
ers and outliers by testing their measurement likelihood:

χ2
i = rTi S−1

i ri ≤ χ2
thresh. (3.10)

51

Chapter 3. Fast, Light-weight, Stereo Inertial Odometry

The high innovation inliers are fused into the state estimate as de-
scribed in the following.

Iterated state update

The Kalman gain K is computed using the linearization H of the
measurement model h(·), evaluated at the current state estimate. The
computed a posteriori error state δapo is thus only a �rst order approx-
imation of the true error state. The accuracy of the state estimate
can be improved by repeatedly performing an update with a set of
measurements. This is particularly the case for features with a high
innovation. Therefore we apply an iterated state update according
to Algorithm 4 [Gibbs, 2011; Denham and Pines, 1966] with the high
innovation inliers. The iteration is stopped if a maximum number of

Algorithm 4 ieskf State Update

Require: Previous state estimate: x̂,P
1: η0 = x̂
2: δ0

η = 0
3: for j = 0 to max_it do
4: ρj = z− h(ηj)

5: Hj = ∂rj

∂δx

∣∣∣
x̂=η

j

6: Sj = HjP(Hj)T + R

7: Kj = P(Hj)T
(
Sj
)−1

8: δj+1
η = Kj

(
rj + Hjδjη

)
9: ηj+1 = δ � δj+1

η

10: if ‖δj+1
η ‖ small then

11: Stop iteration
12: end if
13: end for
14: x̂+ = ηj+1

15: P+ =
(
I−KjHj

)
P

52

3.4. Experimental Results

iterations has been reached or when δapo is very small. Note that, irre-
spective of the number of iterations performed, the covariance matrix
P is updated only once.

3.4. Experimental Results

3.4.1. Hardware Setup

Our localization system consists of a small baseline stereo camera
connected to a single-board ARM computer on which the presented
algorithm runs. The system is depicted in Fig. 3.1. Both devices
are commercially available and a�ordable and make for a very small
and light-weight system, weighing less than 100g. Such a small and
portable form-factor makes the localization system suitable for a large
variety of applications, particularly the use on board drones designed
to �y in the close vicinity of people.
We use a DUO MLX camera by Duo3d2, featuring two mono-

chrome global shutter cameras with a 30mm baseline and a 6 de-
gree of freedom IMU. Inertial measurements are provided at 100 Hz,
while the image frame rate is con�gured at 50 Hz with a resolution
of 320x240 pixels. The VIO algorithm runs on a Hardkernel Odroid
XU43, equipped with a Samsung Exynos5422 ARM processor. This
ARM based micro computer is equipped with a Samsung Exynos5422
processor which features four Cortex-A15 and four Cortex-A7 CPU
cores. The presented VIO algorithm is implemented as a single core
process, leaving the other processors available for other computations,
such as position control or person tracking.
For �ight experiments we mount the VIO system on a Parrot Be-

bop4 equipped with a PixFalcon PX4 Autopilot. running a customized
version of the Px45 Autopilot software.

2www.duo3d.com/product/duo-minilx-lv1
3www.hardkernel.com/main/products/prdt_info.php
4http://www.parrot.com/products/bebop-drone/
5www.px4.io

53

www.duo3d.com/product/duo-minilx-lv1
www.hardkernel.com/main/products/prdt_info.php
http://www.parrot.com/products/bebop-drone/
www.px4.io

Chapter 3. Fast, Light-weight, Stereo Inertial Odometry

3.4.2. Experiments

We demonstrate the performance of the presented VIO system with
several experiments. In particular, we show its utility for the usage
on small, agile robots such as drones.

Hand-held accuracy

Table 3.1.: Hand-held Trajectory of Length 230 m

Experiment 1 2 3 4 5 Mean

Rel. drift [%] 2.88 3.57 2.96 3.23 3.43 3.21

As baseline and for comparison with the current state-of-the-art, we
evaluate the system's accuracy in a hand-held scenario, where we walk
around several buildings, a 230m long trajectory, and compute the re-
lative position drift of the trajectory. One such trajectory is shown
in Fig. 3.1. The same experiment is performed several times to as-
sess repeatability. The relative drift of each repetition of the experi-
ment is shown in Table 3.1. We observe that the system reproducibly
estimates its trajectory accurately. Note that all computations are
performed on-board, whereas the literature often reports results from
o�-board computations.

Fast motions

To evaluate the system's robustness and ability to track fast motions,
we place the sensor in a foam cube and throw it we throw the system
back and forth over a distance of 4m. The estimate is compared to
ground truth form a motion capture system in Fig. 3.3. Fig. 3.3
shows the speed reached by the device. Fig. 3.4 shows three frames
of the experiment with the corresponding time instances labeled in
Fig. 3.3. The system successfully tracks ego motion even at very high
speeds of close to 6 m/s. Despite the high accelerations and motion

54

3.4. Experimental Results

0 1 2 3 4

X [m]

0

0.5

1

1.5

Z
[m

]

VIO
Motion Capture(a)

(b)

(c)

(d)

(e)

(f)

0 2 4 6

Time [s]

0

2

4

6

S
p
ee

d
[m

/
s]

(a)

(b)

(c) (d)

(f)

(f)

Figure 3.3.: Fast motion experiment. The VIO system is thrown
over a distance of 4m. The estimated trajectory is com-
pared to ground truth data from a motion capture sys-
tem.

blur present in this scenario, the estimated trajectory does not deviate
signi�cantly from the ground truth. The ability to track fast motions
The ability to track fast motions is interesting particularly for drone
applications, where the presented system is expected to enable faster
�ight compared to an optical �ow sensor, which is limited to tracking
speeds of about 2m/s [Honegger et al., 2012].

55

Chapter 3. Fast, Light-weight, Stereo Inertial Odometry

(a): t=0.7s

(b): t=1.0s

(c): t=1.4s

Figure 3.4.: Still images of the throwing experiment. The labels de-
note the same time instances as in Fig. 3.3

56

3.4. Experimental Results

Figure 3.5.: Still images of the disturbance rejection experiment.
The quadrotor (green) is disturbed from its setpoint
(red) and returns to it.

Fast �ight

Fast outdoor �ight, faster than possible with downward optical �ow.
We already saw in the throwing experiment that speeds faster than
optical �ow are possible.

In-�ight ground truth comparison

Furthermore, we We demonstrate the performance of the system dur-
ing �ight where a quadrotor is controlled to repeatedly �y a prede�ned
�gure-8 trajectory, using positional information from a motion cap-
ture system for reference. The trajectory has a length of 123 m and a

57

Chapter 3. Fast, Light-weight, Stereo Inertial Odometry

Figure 3.6.: In �ight trajectory estimated by VIO (blue) compared to
ground truth (red).

duration of 2 minutes and 47 seconds. The quadrotor is controlled to
move along this trajectory using positional information from a motion
capture system. We compare the trajectory as estimated by our al-
gorithm We compare the estimated trajectory with the ground truth
in Fig. 3.6. The �own trajectory is 123m long and the estimate shows
a drift in position of 0.46% and 1.17% yaw drift relative to the ground
truth. We note that the position drift in y appears signi�cantly bigger
than in x. This di�erence can be explained by observing that the drift
in x and y is not independent of drift in yaw. Drift in y appears signi-
�cantly bigger than in x, which is due to the fact that positional drift
is not independent of drift in yaw. When the estimated yaw angle
deviates from the true value, the estimated and true world frames are
no longer aligned. This can result in a signi�cant apparent position
drift. Inspection of Fig. 3.6 suggests that the under-estimation of the
yaw angle causes an under-estimation of the world y position.

58

3.4. Experimental Results

Disturbance rejection

The system's capabilities in a control loop of a quadrotor is tested
by commanding the quadrotor to hover at a set-point and repeatedly
disturbing it. Fig. 3.5 shows still frames from this experiment and we
observe that the quadrotor returns to its set-point after each disturb-
ance.

Validation of anchor-centric approach

The anchor-centric parameterization is relevant particularly for longer
trajectories. We analyze its e�ect based on an outdoor trajectory. Fig.
3.7 shows the estimated trajectory with the anchor-centric paramet-
erization in red and with a world centric parametrization in green.
We observe drift in yaw, as seen by the misalignment of the tra-

jectories as well as drift in position of close to three times as much as
with the anchor-centric parameterization.

59

Chapter 3. Fast, Light-weight, Stereo Inertial Odometry

Figure 3.7.: The trajectory estimated by the anchor-centric paramet-
erization (red) is compared to the estimate with a world
centric parameterization (green). The trajectories are
aligned with each other and the satellite image at the
start.

60

3.5. Conclusion

3.5. Conclusion

We presented a Visual-Inertial Odometry system that relies solely on
o�-the-shelf and light-weight components. All computations are per-
formed on-board an embedded ARM processor and no external sensors
or beacons are required. We have demonstrated that the system is able
to accurately track long trajectories and is robust with respect to fast
motions. We have further shown that the system enables the stabil-
ization of a Micro Aerial Vehicle's position in �ight. The a�ordable
hardware in combination with the algorithm available as open-source
software presents a pose estimation system that is easily incorporated
in a wide variety of applications.

61

Chapter 4.

Semi-Direct EKF-based

Monocular Visual-Inertial

Odometry

In the last chapter 3 we presented a method to accurately estimate the
metric position in real-time given a small baseline stereo camera and
an inertial measurement unit. The proposed algorithm uses a separ-
ation between feature tracking, using a KLT tracker, and pose estim-
ation. In order allow also using features with bad image gradients on
one image axis, we propose a monocular visual inertial odometry al-
gorithm that combines the advantages of EKF-based approaches with
those of direct photometric error minimization methods. The method
is based on sparse, very small patches and incorporates the minimiz-
ation of photometric error directly into the EKF measurement model
so that inertial data and vision-based surface measurements are used
simultaneously during camera pose estimation. We fuse vision-based
and inertial measurements almost at the raw-sensor level, allowing the
estimated system state to constrain and guide image-space measure-
ments. The proposed formulation allows for an e�cient implement-

63

Chapter 4. Semi-Direct EKF-based Monocular Visual-Inertial
Odometry

ation that runs in real-time on a standard CPU and has several ap-
pealing and unique characteristics such as being robust to fast camera
motion, in particular rotation, and not depending on the presence of
corner-like features in the scene. We experimentally demonstrate ro-
bust and accurate performance compared to ground truth and show
that our method works on scenes containing only non-intersecting
lines.

4.1. Introduction

The problem of estimating the motion of a camera relative to a known
3D scene from a set of images or RGB-D (RGB and depth) frames
is one of the fundamental problems in computer vision and robotics.
Estimating camera motion enables applications such as vehicle or ro-
bot localization [Nistér et al., 2004], 3D reconstruction [Tanskanen
et al., 2013] and augmented reality [Schöps et al., 2014]. Recently a
number of approaches have leveraged dense RGB-D data, available
in real-time from depth sensing cameras such as the Kinect [Zhang,
2012], in combination with ICP-like algorithms for pose estimation
[Izadi et al., 2011; Kerl et al., 2013; Newcombe et al., 2011a].
Similar in philosophy but using monocular images only, methods

for camera pose estimation using dense surface measurements have
been demonstrated [Matthies et al., 1988; Newcombe et al., 2011b;
Wendel et al., 2012]. These methods use all data available for pose
estimation and hence promise high tracking accuracy and robustness.
However, they are computationally expensive and typically require
powerful GPUs for real-time performance, prohibiting use in mobile
and compute restricted setups.
Direct methods, minimizing photometric error for pose estimation,

have recently been adapted to sparse formulations [Engel et al., 2013;
Forster et al., 2014] with great success. These methods o�er higher
precision and robustness than traditional feature extraction and track-
ing based methods [Klein and Murray, 2007] and, in the sparse variant,
have comparable or better runtime performance.

64

4.1. Introduction

Being purely vision based, these methods struggle under fast mo-
tion, in particular rotation [Engel et al., 2013], when the camera is
moving along it's focal axis, and in scenes with few corner-like features
[Forster et al., 2014]. Most direct photometric approaches are formu-
lated as energy minimization problem and leverage Gauss-Newton like
methods to solve for camera pose. Therefore, tightly coupling IMU
and vision data is non-trivial in these frameworks. On the other hand
�lter-based approaches to VIO [Davison et al., 2007; Li and Mouri-
kis, 2013; Hesch et al., 2013] tightly couple inertial measurements with
visual data and have demonstrated robustness to fast rotation, partial
loss of visual tracking and relatively little drift over time. However, we
are not aware of exisiting methods to incorporate direct methods (i.e.,
photometric error minimization) directly in the measurement model
of the EKF framework. In this chapter we propose, to our best know-
ledge, for the �rst time an algorithm that combines the use of direct
photometric error minimization in an extended kalman �lter (EKF)
framework. Allowing us to fuse vision and inertial data tightly, almost
at the raw sensor level. Both signal sources measure the same motion
but have di�erent, complementary sensor characteristics which can
provide additional constraints during the optimization camera pose.
Fusing the complementary data sources at the lowest possible level
allows the estimated system state to constrain and guide the image-
space measurements, enforcing consistency between image-space fea-
ture positions and 6DOF camera motion. Our approach works with
very few (10-20) and very small (as small as 3×3) image-patches. This
sparsity allows for an e�cient and fast implementation. Furthermore,
the method can handle scenes that do not have any corner-like features
and hence is suitable for scenarios in which other methods fail.

4.1.1. Related Work

Dense methods

Dense direct methods operate on surface measurements directly, either
depth estimates of a stereo camera or a RGB-D sensor [Kerl et al.,

65

Chapter 4. Semi-Direct EKF-based Monocular Visual-Inertial
Odometry

Figure 4.1.: The left image shows the pixel patches selected for
odometry computation on the current camera image.
The middle two images show a selection of the pixel
patches in the current image and the respective refer-
ence patches. The algorithm is optimizing the camera
pose and the patch depth by minimizing the intensity
residual. The rightmost image shows the intensity re-
siduals with an arrow illustrating the patch motion that
is needed to align both patches resulting from the image
gradient of the current image.

66

4.1. Introduction

2013; Newcombe et al., 2011a], and do not extract sets of features from
this data. These approaches require heavy GPU parallelization due to
computational cost and tend to have restricted working ranges, due
to sensor working principles. Dense monocular methods do not have
special sensor requirements but have similar computational costs be-
cause they require the build-up of an explicit cost volume[Newcombe
et al., 2011b] or on computing constrained scene �ow [Newcombe and
Davison, 2010].

Semi-dense direct methods

Recently [Engel et al., 2013] proposed to estimate depth only for pixels
in textured image areas and introduce an e�cient epipolar search, en-
abling real-time visual odometry and semi-dense point cloud recon-
struction on a standard CPU and even on mobile platforms [Schöps
et al., 2014]. Photometric alignment on sparse, known 3D points has
been used by [Forster et al., 2014] to improve accuracy and robustness
of the standard SLAM pipeline of [Klein and Murray, 2007]. Most of
these approaches either do not use inertial data or treat both data
sources mostly independently and only fuse the two at the camera
pose level. For example, to estimate metric scale on top of vision
based camera pose [Weiss and Siegwart, 2011].

Visual inertial odometry

To improve feature correlation results, early SLAM approaches have
used photometric error and patch-wise normal estimation [Molton
et al., 2004] to improve feature correlation but this was done sep-
arately from the standard EKF-SLAM steps. Instead of externally
optimizing the homography between �lter updates, [Jin et al., 2003]
estimates the patch normal inside the EKF framework. The draw-
back with these methods is that the local patches have to be reas-
onably large (25× 25 pixel or larger) for the normal to be estimated
robustly. This increases computational cost and introduce problems

67

Chapter 4. Semi-Direct EKF-based Monocular Visual-Inertial
Odometry

with patches near depth discontinuities, where the texture in a patch
would not change consistently with camera motion.

4.1.2. System Overview

Our technique is a visual-inertial odometry (VIO) approach, this means
that camera pose is estimated only from currently visible regions of
the observed 3D scene and we do not maintain a global map of previ-
ously extracted feature points, we remove all features from the state
space as soon as they leave the �eld of view of the camera. Note
that the proposed approach could easily be extended with standard
mapping back-end as for example in [Klein and Murray, 2007]. Fol-
lowing the approach in [Mourikis et al., 2009] We reformulate the
EKF framework which has been used successfully for structure from
motion [Davison et al., 2007] into an Error State Extended Kalman
Filter ErKF.

Fig. 7.1 illustrates our approach. A small number of small patches
were extracted in previous frames and the corner locations of the
patches are projected into a predicted camera pose based on IMU
data. An a�ne warp for the whole patch is computed (cf. Fig. 4.3).
The algorithm then jointly optimizes the camera pose and the patch
depth by minimizing the intensity residual. One advantage of this ap-
proach is that we do not rely on the extraction of features of a speci�c
type (e.g., corners) but can use any patches with su�cient gradient.
In particular, patches which lie on lines (see highlighted region in
Fig. 7.1) or they can be placed in image areas with good texture,
similar to the pixel selection in (semi-)dense approaches [Engel et al.,
2013]. Furthermore, we use an inverse depth parametrization for the
patch depth which allows us to start tracking without a special ini-
tialization sequence as it is necessary with other approaches [Forster
et al., 2014; Klein and Murray, 2007].

68

4.2. Modeling and State Propagation

Timestep k Timestep k+1 Timestep k+2 Timestep k+3

Figure 4.2.: The optimal pyramid level for pixel patch alignment is
selected based on the estimated variance of the projected
point location in pixel space. If the camera motion is
fast, higher levels are used, if there is low variance on
the camera pose lower levels are used for higher preci-
sion.

4.2. Modeling and State Propagation

We use the same feature parametrization and process model as presen-
ted in chapter 3. Therefore, we omit the repetition and refer the reader
to the previous chapter.

4.3. Photometric Update

The photometric update is di�erent from standard visual odometry
approaches that use 2D image positions from an external feature
tracker or matcher. In our case the measurement model h(x) is used
to directly predict the appearance of a pixel patch (the 1 dimensional
intensity values of the pixels) of a reference view given the pixel values
in the current camera view (see Figure 4.3).
More speci�cally, for every pixel patch the current estimate of the

3D location of the center pixel is transformed into the current camera
frame. The observation of a feature i de�nes a ray from the camera
optical center to the feature given by:

hi = Rc

(
ρi(rOAi − pc) + R(q̄TAiO)rµ

)
, (4.1)

69

Chapter 4. Semi-Direct EKF-based Monocular Visual-Inertial
Odometry

𝜌𝑖 =
1

𝑑𝑖

𝑟𝑤𝑐𝑘
𝑅𝑤𝑐𝑘

𝑊

𝑅𝑤𝑓𝑖

𝑟𝑤𝑓𝑖

𝑢𝑟𝑖

Reference View
Current View

Figure 4.3.: Estimating per-pixel intensity di�erences. Given a ref-
erence camera pose Rwfi |rwfi at time i and predicted
camera pose Rwck |rwck the center location uri of a patch
in the reference view is projected into 3D world coordin-
ates and re-projected into the current view. We compute
an a�ne warp to transform the pixel coordinates of all
pixels in the small patch around the point location in
the current camera view into the reference view. The
per-pixel intensity value di�erences form the residual to
minimize.

70

4.3. Photometric Update

where hi is a vector from the predicted current camera center towards
the 3D location of the patch center. The measurement function hIi(·)
is then used to compute the appearance of the reference pixels given
the current state estimates and the current camera image:

hIi = I(π(hi)) . (4.2)

Here, the measurement model equation hIi(·) is given for a single
pixel. In order to increase robustness we extend the single measure-
ment to a patch around this point. In doing so we make the assump-
tion that the scene around this point is planar because only the depth
of the single point is modeled. However, since we are using small
patches (3 × 3pixels), the assumption of a locally �at scene can be
made similar to [Forster et al., 2014]. To further reduce the degrees of
freedom, we assume the patch normal to be orthogonal to the image
plane in the anchor frame. This assumptions allows us to model the
appearance of the pixels surrounding the center point via an a�ne
warp A, encoding in-plane rotation of the patch, the depth dependent
size of the patch and some shear caused by a camera observing the
patch from a di�erent angle.
The residual ρIi , recursively minimized during camera pose estim-

ation by the Kalman �lter, is the photometric error between all the
pixels in the reference patch and the pixels in the warped patch, ex-
tracted from the current camera view:

ρIi = I(mx,y)− Ir(mx,y) , (4.3)

with I the current image, Ir the reference image. This residual is
computed for all points that are currently in the state space.
Finally, the Kalman �lter update step requires the linearization of

the measurement function H, computed as the derivative of h(x) with
respect to the states x:

H =
∂h(x)

∂x
= ∇Ik

∂π(hc)

∂hc(x)

∂hc(x)

∂x
, (4.4)

71

Chapter 4. Semi-Direct EKF-based Monocular Visual-Inertial
Odometry

with∇Ik being the image gradient of the warped patch extracted from
the current frame. Assuming familiarity with the EKF framework, the
equations given here and in the previous sections should be su�cient
to implement the proposed algorithm. However, there are a number
of details that can be taken into consideration in order to increase
robustness in real-world settings and improve performance. We brie�y
discuss these in the following subsections.

4.3.1. Patch Extraction

The patches can be selected using many di�erent methods and in par-
ticular there is no requirement for patches to be centered on corners.
In the experimental section we demonstrate the performance of our
technique using only patches that are centered on single, non-intersecting
lines. A simple implementation could just extract FAST keypoints
[Rosten and Drummond, 2005] on an uniform grid. However, we no-
ticed that selecting image areas based on the Shi-Tomasi score that
are stable over the whole scale space of the image pyramid leads to
better and more stable results.

4.3.2. Image Pyramid Level Selection

In our method we attain predictions and associated uncertainties for
all state variables and their covariances. This can be used to compute
the variance on the point location in image space and consequently
allows to select the optimal level in the image pyramid such that
convergence is guaranteed (see Fig. 4.2). Compared to the standard
approach of iterating through the whole image pyramid starting from
the highest level, this approach saves computation time while still
o�ering the advantage of a larger convergence radius of the higher
pyramid levels and the precision of the lower levels. In addition as
the method selects the lowest possible level for convergence, it also
reduces the risk of converging towards a wrong local minimum if the
optimization on higher levels would not converge towards the correct
image location.

72

4.3. Photometric Update

The error covariance can be computed by omitting the image gradi-
ent when taking the derivative of the measurement function ∂h

∂x :

Hπ =
∂π

∂hi

∂hc
∂x

, (4.5)

Sπ = HπPk−1|k−1H
>
π . (4.6)

The major axis of the error ellipsoid in image space is then the largest
Eigenvalue of the 2 × 2 matrix Sπ. To guarantee convergence the
length of this axis should be smaller than 1 pixel at the respective
pyramid level. These calculations can be done while computing the
derivate H during the update step before the image gradient of the
pixel patch is computed. The only overhead is the computation of the
2× 2 matrix S and its Eigenvalues.

4.3.3. Iterated Sequential Update

Inherently our formulation requires the processing of many measure-
ments for each update step (every pixel is a measurement). Unfor-
tunately this impacts runtime performance. The size of the Jacobian
∂h
∂x and as consequence, the size of the innovation covariance matrix S
will be ns×ns, where n is the number of patches and s the patch size
in pixels. Because S needs to be inverted during every EKF update
step, the size of S directly impacts the runtime. We use the same
algorithm (see Alg. 4) as proposed in the previous chapter 3. In the
case of the linear Kalman �lter, sequential updates [Anderson and
Moore, 2012] can be utilized to alleviate this situation. We observed
that if one iteratively re-linearizes the measurement matrix H = ∂h

∂xseq

around each updated estimated state sequentially, the algorithm pro-
duces very good estimates in practice. The sequential update reduces
the computations to n inversions of a s × s matrix which drastically
enhances runtime performance.

73

Chapter 4. Semi-Direct EKF-based Monocular Visual-Inertial
Odometry

4.4. Experimental Results

We performed a comparison against ground truth acquired from a
Vicon system and two of recently published methods that use a pho-
tometric approach in a semi-dense manner [Engel et al., 2013] and
patch-based on corner locations [Forster et al., 2014]. We moved the
camera around a regular o�ce space, see an example image from the
dataset in Figure 4.4 on the left. The top plot shows the 3D view of
the �nal positions of the tracked points during the sequence and the
trajectory of our method together with ground truth. The third plot
shows the position in all axes, as can be seen, our method tracks the
camera pose in typical scenes with equal quality than the compared
methods. The initialization for [Engel et al., 2013] was di�cult in
this particular scene and its performance did not match the expec-
ted level. The most compelling advantage of our constrained direct
method is that it do not rely on the presence of corner like features.
In particular, our implementation works on scenes that only contain
(non-intersecting) lines. Figure 4.5 shows a demonstration of such
a scene. It is clear that methods that rely on external trackers like
KLT will fail in this scenario since the tracker is not able to �x the
tracked points at a position and thus the point will start to randomly
slide along the edge. Since in our implementation the location of the
patches are constrained by the model in the �lter, the algorithm is
able to fully initialize with patches that lie on these kinds of edges
even with a patch size of only 3x3 pixels. Figure 4.6 shows the results
of a challenging dataset with a camera moving in front of a curtain
having almost only line-like structure in view. Only few patches where
placed on corner-like areas, this was enough to �x the camera pose
from drifting in vertical direction. This demonstrates that the pro-
posed method can be used to track scenes that are rather hard for
methods that rely on unconstrained feature correspondences as is the
case in many indoor scenes. The runtimes for the photometric update
in unoptimized C code from MATLAB on a Core i5 desktop com-
puter is 12 ms, thus already allowing for real-time use. We plan to
implement a fully optimized version for mobile ARM CPUs.

74

4.4. Experimental Results

−150

−100

−50

0

50

100

150

100

150

200

250

300

350

0

100

200

XY

Z

Vicon
Ours

0 500 1000 1500 2000 2500 3000
−100

−50

0

50

100

150

200

250

Time

D
is

t (
cm

)

Vicon
SDVO
SVO
Ours

Figure 4.4.: Blue: Trajectory from the presented algorithm,
Magenta: Semi Direct Visual Odometry (SVO) [For-
ster et al., 2014], Green: Semi-Dense Visual Odometry
(SDVO) [Engel et al., 2013], Black: Ground Truth
(VICON data). The initialization of SDVO had issues
in the selected scene, due to the suboptimal initial map
the performance is not as good as can be expected.

75

Chapter 4. Semi-Direct EKF-based Monocular Visual-Inertial
Odometry

Figure 4.5.: Thanks to the constraints on the pixel patches, the al-
gorithm is able to initialize even on this di�cult scene
consisting only of almost vertical lines. On the right
side the used 3x3 pixel patches are visible.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−100

−50

0

50

100

150

200

250

Time

D
is

t (
cm

)

Vicon
Ours

Figure 4.6.: Visual-Inertial odometry on a scene with lines. Left:
patches on lines. Right: comparison with ground truth
(VICON data).

76

4.5. Conclusion

4.5. Conclusion

In this chapter we presented a novel, Kalman �lter-based semi-direct
visual inertial odometry approach that combines the advantages of a
tightly coupled visual-inertial Kalman �lter and the robustness and
precision of direct photometric methods. We demonstrated how the
photometric update can be built into a standard error-state Kalman
�lter odometry algorithm. We proposed an e�cient implementation
that reduces the impact of the larger number of measurements when
minimizing the photometric residual error. Finally, we demonstated
that our proposed algorithm matches the tracking quality of other
state of the art approaches, and in addition, thanks to the rigid scene
constraints the proposed algorithm can work with pixel patches lying
only on line-like structures and is even able to fully initialize without
special procedure in such scenes.

77

Part II.

Real-time Drone

Cinematography

79

Chapter 5.

Multi-Subject Filming and

Viewpoint Optimization

In the �rst part of the thesis we described how we can accurately
estimate the position of the �ying drone. In the next part, we now
assume, the position of the drone and all the subject is known and
we describe how we can use this information to develop the necessary
algorithms for the proposed intelligent drone cinematography.
In this chapter, we propose a method for real-time motion planning

with applications in aerial videography. Taking framing objectives,
such as position of targets in the image plane as input, our method
solves for robot trajectories and gimbal controls automatically and
adapts plans in real-time due to changes in the environment. We
contribute a real-time receding horizon planner that autonomously re-
cords scenes with moving targets, while optimizing for visibility to tar-
gets and ensuring collision-free trajectories. A modular cost function,
based on the re-projection error of targets is proposed that allows for
�exibility and artistic freedom and is well behaved under numerical op-
timization. We formulate the minimization problem under constraints
as a �nite horizon optimal control problem that ful�lls aesthetic ob-

81

Chapter 5. Multi-Subject Filming and Viewpoint Optimization

jectives, adheres to non-linear model constraints of the �lming robot
and collision constraints with static and dynamic obstacles and can
be solved in real-time. We demonstrate the robustness and e�ciency
of the method with a number of challenging shots �lmed in dynamic
environments including those with moving obstacles and shots with
multiple targets to be �lmed simultaneously.

5.1. Introduction

Robotics and drones in particular are rapidly becoming an end-user
facing technology. In particular, the application domain of �lming
with drones currently receives great interest from industry and con-
sumers. Professional camera teams leverage consumer-grade robots
to create stunning visuals that previously required a helicopter and
expensive camera gear. However, manually �ying quadrotors remains
a surprisingly hard task. Furthermore, automated �ight modes in
current commercial o�erings are restricted to simple circling or target
following.
Several algorithms have been proposed for the planning of quad-

copter trajectories [Gebhardt et al., 2016; Joubert et al., 2015; Roberts
and Hanrahan, 2016], taking both aesthetic objectives and the phys-
ical limits of the robot into consideration. These methods make the
task of trajectory planning easier for non-experts. However, current
approaches employ global optimization techniques, planning the en-
tire trajectory a priori. While [Joubert et al., 2015] allows to adjust
the velocity along the planned trajectory at execution time, none of
the existing methods are capable of re-planning a suitable trajectory
in real-time, for example to avoid collisions with dynamic obstacles or
to �lm targets that move in unpredictable ways (e.g., human actors).
In this chapter we propose an approach to the automatic generation

of quadrotor and gimbal controls in real-time while ensuring phys-
ical feasibility. In particular, we contribute a fast receding horizon
planner based on numerical optimization for automatic aerial cine-
matography. The method takes high-level aesthetic objectives given

82

5.2. Related Work

by a cameraman as input and automatically records the scene while
the targets move in an a priori unknown way. The system ful�ls the
high-level framing objective, in the least squares sense, while ensuring
collision-free paths. The resulting appearance of targets is speci�ed
via set-points in screen space (extending ideas outlined in [Gleicher
and Witkin, 1992]) and the method minimizes the re-projection error
alongside the viewing direction and scale of the target projections in
real-time. We formulate this cost minimization problem under con-
straints as a �nite horizon model predictive control (MPC) non-linear
program with the following properties: (i) a main utility function to
ful�ll - as close as possible - the speci�cations from the user in a dy-
namic scene; (ii) input and state constraints to respect the dynamics
and model constraints of the drone; (iii) constraints for collision avoid-
ance with obstacles and the targets being recorded. The resulting
optimization problem can be solved numerically with state-of-the-art
solvers in real-time. The inputs computed are applied for the �rst
time step, and the optimization is repeated at the next sampling in-
stance with updated information about the quadrotor state, obstacles
and target positions. We believe that the method is general enough
and could be adapted to other tasks for drones which include collision
avoidance with respect to moving obstacles.

5.2. Related Work

Quadrotor trajectory generation is a well studied problem and vari-
ous approaches have been proposed, including early work on MPC for
collision avoidance applied to aerial vehicles [US et al., 2003; Richards
and How, 2004], global forward planning approaches to generate min-
imum snap trajectories [Mellinger and Kumar, 2011], for generat-
ing collision-free trajectories via convex optimization [Alonso-Mora
et al., 2015] or for state interception with a quadrotor [Mueller and
D'Andrea, 2013] based on a convex MPC formulation. Outside of the
�eld of aerial vehicles, constrained optimization methods have also
been proven to be powerful tools for trajectory generation [Schulman

83

Chapter 5. Multi-Subject Filming and Viewpoint Optimization

et al., 2014]. We also formulate our problem in the MPC framework
to attain real-time performance, using the full non-linear dynamics of
the quadrotor and extending trajectory generation to include collision
avoidance with dynamic targets and to respect cinematographic ob-
jectives. Automatic camera control has been studied extensively in the
context of virtual environments in computer graphics. We refer to the
comprehensive review in [Christie et al., 2008b], with the majority of
methods using discrete optimization formulations. Notably in virtual
environments it has become somewhat of a standard to de�ne viewing
constraints in screen-space [Gleicher and Witkin, 1992; Drucker and
Zeltzer, 1994; Lino et al., 2011]

However, virtual environments are not limited by real-world phys-
ics and robot constraints and hence can produce arbitrary camera
trajectories, velocities and viewpoints.

Extending the work on trajectory generation [Mellinger and Kumar,
2011], several algorithms for planning aerial video shots of (mostly)
static scenes [Gebhardt et al., 2016; Joubert et al., 2015; Roberts and
Hanrahan, 2016] exist. Joubert et al.'s method [Joubert et al., 2015]
allows an operator to adjust the velocity of the quadrotor at execution
time to keep moving targets in-frame. However, the method cannot
re-plan the trajectory in cases where the target does deviate from an
a-priori known path or in cases were dynamic obstacles temporarily
obstruct the original trajectory. Lino et al. [Lino and Christie, 2015]
propose a method to generate camera paths in virtual environments
that ensure visibility of the faces of two actors in the image. This
concept was later extended to quadrotors [Galvane et al., 2016], al-
beit limited to obstacle free environments. To record a single moving
target with multiple quadrotors, [Poiesi and Cavallaro, 2015] intro-
duced a particle swarm method for formation control. The method is
again limited to obstacle-free environments and only tested in simu-
lation. We propose a general constrained optimization approach for
automatic viewpoint and trajectory computation allowing for multiple
moving targets and obstacles in the environment. The approach can
be solved in real-time.

84

5.3. Preliminaries

Figure 5.1.: Illustration of cinematographic framing constraints:
size, viewing angle and position on screen (from left to
right).

Our method also accounts for occlusions and loosely relates to the
�elds of target tracking [Hausman et al., 2016], visual servoing [Espiau
et al., 1992], active vision [Aloimonos et al., 1988b] and persistent
monitoring [Smith et al., 2011], where our focus is on videographing
a set of moving targets.

5.3. Preliminaries

5.3.1. Cinematographic Objectives

While �lm making is a form of art and relies on human creativity
and intuition, many aspects of it have been studied and categorized
forming a `grammar' of �lm [Arijon, 1976]. Fig. 5.1 summarizes the
most important aspects. We later formalize these mathematically for
use in a cost minimization algorithm. In particular, we are interested
in framing objectives � that is formal rules that specify how objects
should appear on the screen. The �rst important notion is that of
distance. Shots can be categorized into �ve types of shots (close-up,
close-medium, full and long shots), see Fig. 5.1, left. A further im-
portant aspect is that of the relative viewing angle, which can also be
categorized into ranges of pan- and tilt-angles), see Fig. 5.1, middle.
Finally, the screen position of a �lmed target is important in order to
create aesthetically pleasing footage. In particular the rule of thirds

85

Chapter 5. Multi-Subject Filming and Viewpoint Optimization

(cf. [University of Dallas, 2016]) prescribes the placement of signi�c-
ant vertical and horizontal elements along the horizontal and vertical
thirds (Fig. 5.1, right).

Shot framing requirements

From the above �lm grammar we can extract objectives for an optim-
ization method. In particular, we consider (i) the screen position of
targets, where we seek to minimize the distance between the desired
position on screen and the projection of the actual (3D) target posi-
tion onto the screen. (ii) To relate shot distances to positions, we seek
to optimize the projected size of a given target. (iii) Furthermore, we
require the algorithm to consider the relative viewing angle between
target and camera center, for example to keep the face of a person in
view. (iv) Finally, we require the algorithm to account for an extern-
ally set camera pose, which could be speci�ed directly by the user or
a high-level global planning algorithm.

5.3.2. Target Model

We denote the position of each actor, or moving target, by pt ∈ R3,
with K the number of targets. We then assume that the human
motion is based on a constant velocity model p̈t = qη where qη ∼
N (0, σt) is Gaussian noise. Given the current observations, we predict
future positions of the actor with a standard linear Kalman �lter
[Gibbs, 2011].

86

5.4. Trajectory Generation for Viewpoint Optimization

Figure 5.2.: Coordinate frames and physical quantities used in our
method, here shown on the example of a human actor.
The pose of the �ying camera is given by its position pc,
its orientation q̄c and the orientation of the gimbal q̄g.
The target is modeled by an ellipsoid SΩs centered at
pt.The �ying camera avoids collisions with this volume.
In this case the objective is to record the head of the tar-
get, modeled as an oriented sphere with direction given
by ψ, size hh and position ph. The projection of the
head onto the camera image space has size σ and is
centered at µx, µy.

5.4. Trajectory Generation for Viewpoint
Optimization

The goal of our algorithm is to �nd a feasible and locally optimal tra-
jectory for the quadrotor and gimbal control inputs in real-time. The
method produces imagery that minimizes the deviation with respect
to the high-level image space speci�cations of Sec. 5.3.1 and gener-

87

Chapter 5. Multi-Subject Filming and Viewpoint Optimization

ates trajectories that guarantee collision-free motion with respect to
dynamic obstacles. A scene is formed by K targets to be �lmed, e.g.
the faces of actors as seen in Fig. 5.2. Each target i ∈ {1, . . . ,K} is
modeled as a sphere at position pt ∈ R3, with orientation ψ and of
diameter hh. Note that for clarity we typically omit the additional
subscript i unless explicitly dealing with several targets. Without
loss of generality, in the following we only consider the orientation ψ
around the z-axis, to model the gaze direction of the face (see Fig.
5.2). For collision avoidance and visibility, we consider that each tar-
get (not only the face) occupies a physical space de�ned by an ellipsoid
SΩs centered at ph = pt + (hh2 −

h
2)ez, where h denotes the physical

height of the target from the ground and ez the earth's up vector,
illustrated in Fig. 5.2 for the case of a human actor.

5.4.1. Method Overview

We propose a receding horizon MPC formulation for trajectory gen-
eration given by the following variables, cost terms and constraints.
Denote by ∆t the time step and by N the time horizon of the MPC
problem. At each time step a local trajectory of duration N∆t is com-
puted. The �rst input is then applied. The optimization problem is
re-solved at every sampling instance, leading to closed loop perform-
ance. This makes the approach robust against model uncertainties
and unpredictable disturbances. At the next timestep k + 1 we use
the estimated states x̂q0

of the quadrotor and all targets as the initial
state xq0

and use the trajectory from timestep k as an initialization
for the solver.

Variables

The optimization variables are the following. (a) The states xq0:N
,

which include the initial state xq0
, the state trajectory {xq1

, . . . ,xqN−1
}

and the �nal state xqN . The control inputs (b) uq0:N−1
= {uq1

, . . . ,uqN−1
}.

And (c) the additional slack variables λq0:N
= {λq0

, . . . , λqN }, one for
each collision constraint and described in the forthcoming Sec. 5.4.4.

88

5.4. Trajectory Generation for Viewpoint Optimization

The set of optimization variables is denoted by

zq = {xq0:N
,uq0:N−1

, λq0:N
}. (5.1)

Cost terms

The �nal quantity we seek to minimize is the weighted sum of cost
terms consisting of image framing, visibility and pose costs over all N
stages of the planned trajectory.

Constraints

We include constraints to avoid collisions with moving obstacles and
moving targets and to respect the dynamic model of the quadrotor
introduced in Sec. 2.2.1.

5.4.2. Viewpoint Optimization Problem

At the core of our algorithm lie a number of cost terms cimage(xq),
cangle(xq) and csize(xq) which describe the deviation from the desired
position of each target's projection on the image plane µyd, from the
viewing angle ad and from the projection size σd. Each of these cost
terms is computed for each state k ≤ N of the planning horizon and
for each target i ≤ K. For simplicity of exposition, the derivation of
the costs is described for a general target. We also de�ne the vector
rch as the relative vector between the target and the camera as well
as the rotation into the camera frame of rch which is denoted as rcch:

rch = pt − pc, and rcch = R(q̄c)rch,

Image space positions

Given the desired position of each target's projection on the image
plane µyd, the pixel coordinates mx,yd are computed via the camera

89

Chapter 5. Multi-Subject Filming and Viewpoint Optimization

intrinsics with focal point Cx,y and focal length f = [fy, fx]:

mx,yd =

(µxd − Cx) fy(
µyd − Cy

)
fx

 with µ(x,y)d
∈
{

0, 2C(x,y)

}
.

Consider the vector rµ = [mx,yd, 1]T ∈ R3 pointing from the camera
center through the desired pixel location mx,yd in the image. We
compute the quadratic image space location cost cimage(xq) using the
residual given by the di�erence between the ray rcch from the camera
to the target and the desired direction rµ,

cimage(xq) = ‖ρm‖Qm with ρm =
rcch
‖rcch‖

− rµ
‖rµ‖

(5.2)

The size σ of the target in the image plane is computed by projecting
the 3D sphere of diameter hh to a circle in the 2D image plane. The
target-size cost csize(xq) is computed using the di�erence between the
projected σ and the desired size σd.

csize(xq) = ‖σ − σd‖Qσ with σ =
hh‖f‖
‖rcch‖

. (5.3)

Relative viewing angle

Given the desired viewing angles θd and ψd, and the current orient-
ation ψ of the target, we de�ne the desired viewing orientation ad
between the center of the camera and the target:

ad =
[
sin θd cos (ψd + ψ) , sin θd sin (ψd + ψ) , cos θd

]T
.

Because the angle ψd is relative to the target we add the current
rotation of the target ψ to obtain the setpoint. The view angle cost
cangle(xq) is computed using the error between the desired (relative
to the target's normal) and the current viewing angle:

cangle(xq) = ‖ρa‖Qa with ρd = − rcch
‖rcch‖

− ad
‖ad‖

. (5.4)

90

5.4. Trajectory Generation for Viewpoint Optimization

Camera pose

In addition to local viewpoint optimization we can also consider the
residual in the camera's position and orientation dynamics - although
this is not a required cost. Here we assume that either the user or
a global path planning algorithm can specify a desired pose pcd and
q̄cd for the �ying camera, which is compared to the actual pose of
the camera given by pc and q̄c. The position residual is given by the
euclidean distance. The orientation residual ρθ is computed building
the error quaternion and projecting it into the tangent space so(3) of
the SO(3) manifold:

ρθ =
[
q̄ex q̄ey q̄ez

]
∈ so(3) with q̄e = q̄c ⊗ q̄−1

cd
.

cpose = ‖ρp‖qp + ‖ρθ‖qθ . (5.5)

cpose(xq) = ‖pcd − pc‖Qp + ‖ρθ‖Qθ . (5.6)

5.4.3. Occlusion Minimization

To allow for scenes containing objects that can move into the line-of-
sight, we have to account for target visibility. Dynamic objects are
modelled as ellipsoids SΩs and we observe that point visibility can be
decided by `horizon culling', illustrated in In Fig. 5.4. The lines from
the camera center pc to the ellipsoid's tangent de�ne the horizon plane
Ho. All points on the intersection of Ho and SΩs are on the horizon,
all points in the shaded region Co are below the horizon and therefore
not visible from the camera's viewpoint. To this end we adopt a fast
visibility test [Cozzi and Stoner, 2010], which can be summarized as:
(i) determine if a point is in front Ho (visible) and (ii) for those behind
Ho whether they are within the in�nite cone formed by the tangent
lines (Co). To determine if a target ti is in front of Ho, de�ned by tj ,

91

Chapter 5. Multi-Subject Filming and Viewpoint Optimization

we compute:

rchi = pti − pc,

rctj = ptj − pc,

pproj = rTchirctj .

Where rchi is the vector to the target, rctj the vector to the center
of ellipsoid SΩs and pproj is the component of rchi in the direction of
rctj . If pproj > rTctjrctj−1 then the point is behind the plane.For these
cases we can determine if the point falls into the cone by comparing the
opening angles α and β, see Fig. 5.4. Avoiding costly trigonometric
functions we use directly the approach given in [Cozzi and Stoner,
2010]. This gives us the visibility score:

dv =
pproj

rTchirchi
> rTctjrctj .

And we de�ne the visibility cost cvis(xq):

cvis(xq) =

{
‖dv‖Qv if dv > 0 and pproj > rTctjrctj − 1,

0 otherwise.
(5.7)

5.4.4. Collision Avoidance

A �nal concern of the planning algorithm is to generate collision-
free trajectories. Here we assume known geometry of the scene and
real-time position information of moving obstacles (targets are also
considered as moving obstacles). To improve safety and at the same
time guarantee performance and responsiveness of the system we ad-
opt a two layered approach: (i) a potential �eld to repel the robot
from obstacles and (ii) a hard constraint to stay outside a smaller en-
closing ellipsoid SΩs to enforce collision-free motion. We denote the
relative vector between the center of the target and the camera by
rch = pt − pc.

92

5.4. Trajectory Generation for Viewpoint Optimization

Collision avoidance potential �eld

First, we employ a potential �eld cost which becomes active as soon
as the camera enters an ellipsoid SΩl containing the target and with a
bu�er zone. This term helps to maintain a safe distance from moving
obstacles and leaves some bu�er for the un-modeled dynamics of the
quadrotor and human motion. Formally, the distance to this ellipsoid
is given by

dc = rTchΩlrch − 1.

Which produces the cost term:

ccoll(xq) =

{
‖dc‖Qc if dc > 0

0 else
. (5.8)

Collision avoidance constraint

Second, we introduce a non-linear constraint which becomes active
within the collision ellipsoid SΩs . This constraint guarantees collision-
free motion, i.e. the position of the quadrotor must remain outside of
the SΩs at all times. Formally,

rTchΩsrch > 1− λc. (5.9)

We introduce the slack variables λc and, therefore, we adopt a soft-
constrained approach for the collision-avoidance constraints to ensure
that the optimizer always returns an answer in practice. It can be
shown that under su�ciently high penalization of (a linear norm of)
the slack variables λc, the solution of the hard-constrained problem is
recovered when it exists; otherwise, a plan with minimum deviation
will be computed by the optimizer [Kerrigan and Maciejowski, 2000].

5.4.5. MPC Formulation

The locally optimal trajectory and inputs for the quadrotor are then
computed by solving a constrained optimization problem, which con-

93

Chapter 5. Multi-Subject Filming and Viewpoint Optimization

sists of the cost terms introduced in Eq. (7.10)-(5.8) and the con-
straints of Eq. (6.3), stacked together over all targets, obstacles and
time-steps of the controller. Without loss of generality, we consider
the obstacle set to be equal to the set of targets, since an obstacle can
be treated as a target with only the collision avoidance constrained
active - and no other cost term. The full constrained optimization
problem solved as MPC non-linear program is then given by:

min
xq,uq,λq

wTNc(xqN ,uqN) + ΣN−1
k=0 w

T c(xqk ,uqk) + λ‖λk‖∞

xq0
= x̂q0

(Initial State)

s.t. xqk+1
= f(xqk ,uqk), (Dynamics)

rTchΩsrch > 1− λk, (Collision Avoidance)

rch = g(xqk),

xqk ∈ X , (State Constraints)

uqk ∈ U , (Input Constraints)

λk ≥ 0, (Slack Constraints).

(5.10)

where the stage cost function c(xqk ,uqk) is de�ned as:

c(xqk ,uqk) =
[
cimage csize cangle ccoll cvis cpose

]T
Where w are weights that can be set interactively by the user to
control in�uence of the di�erent framing constraints. This prob-
lem can readily be formulated in standard software, e.g. FORCES
Pro [Domahidi et al., 2012; Domahidi and Jerez, 2016], and e�cient
code be generated to solve it in real-time.

94

5.4. Trajectory Generation for Viewpoint Optimization

Figure 5.3.: Top: Schematic explanation of the MPC framework.
The MPC algorithm starts at t0 and sums all de�ned
costs (red) in the time window up. Bottom: After a nu-
meric optimization, the optimal inputs u∗ are computed
and the costs (red) are minimized.

95

Chapter 5. Multi-Subject Filming and Viewpoint Optimization

Figure 5.4.: Schematic illustration of occlusion minimization based
on viewpoint dependent horizon culling.

96

5.4. Trajectory Generation for Viewpoint Optimization

Figure 5.5.: Exp. 1: The e�ect of viewpoint optimization under
varying set-points: 3/4 Frontal right, 3/4 frontal left,
right screen position, left screen position (from left to
right).

97

Chapter 5. Multi-Subject Filming and Viewpoint Optimization

Figure 5.6.: Exp. 2: E�ect of occlusion handling (onboard view).
Entire duration is 3s. Inset shows robot position and
non-visible areas.

98

5.4. Trajectory Generation for Viewpoint Optimization

Figure 5.7.: Exp. 3: Framing and collision avoidance. From left
to right: O�board view (robot in green). Onboard view
(target in purple). Visualization of collision ellipsoids.
Target position residual, gimbal reduces error in x but
yawing the robot is slow (large error in y).

99

Chapter 5. Multi-Subject Filming and Viewpoint Optimization

Figure 5.8.: Exp. 4: The Camera tries to keep the three targets in
view. Distribution of the re-projection is shown (right).

100

5.5. Experimental Results

5.5. Experimental Results

5.5.1. Hardware Setup

We use a Parrot Bebop2 with an integrated electronic gimbal. Robot
and targets are tracked with a Vicon motion capturing system. Ex-
periments were conducted on a standard desktop PC (Quadcore Intel
i7 CPU@3.5 GHz).

5.5.2. Experiments

We conducted �ve experiments to evaluate the performance of our
proposed method under dynamic conditions. In our experiments we
used a maximum number of three moving targets, although this is
not an inherent limitation of the method. In the following results the
boxes rendered on the images represent the setpoints. The size of a
box determines the desired size of the projected target ellipse. The
color coding is: Target 1 (red), Target 2 (purple) and Target 3 (blue).

Experiment 1 (setpoint change): First, we illustrate the e�ect of
di�erent framing objectives. A single target is �lmed with di�er-
ent setpoints, including transitions from sitting to standing. Horizon
length N = 25.

Experiment 2 (single target with occlusion): Our second experi-
ment demonstrates e�ectivity of the framing objectives (Eq. (7.10)-
(7.12)) and occlusion handling (Eq. (5.7)). One face is set as target
and two further actors move in and out of the line-of-sight. The goal
is then to keep the main target always in view while minimizing oc-
clusions from the other two targets. Horizon length N = 25.

Experiment 3 (single target with collision avoidance): In the third
experiment we modify above setup so that the two other targets walk

101

Chapter 5. Multi-Subject Filming and Viewpoint Optimization

randomly, including directly towards the quadrotor. Again the al-
gorithm will try to keep the target in frame while avoiding collisions
(Eq. (5.8)). Horizon length N = 25.

Experiment 4 (multi target framing objective): In our fourth setup
we declare all three actors to be targets and the algorithm tries to keep
all three faces appearing along a single line in the image. Horizon
length N = 25.

Experiment 5 (execution time): To evaluate the real-time perform-
ance we conducted two experiments. We measure the execution time
per timestep along a full trajectory (solving over the entire horizon
per timestep). First, we use a constant number of targets K = 2 and
vary horizon length (N = 25, N = 40, N = 55). Second, we keep the
horizon �xed N = 25 and vary the number of targets.

5.5.3. Results

Experiment 1: Fig. 5.5 shows the algorithm working with a single
target K = 1 and a horizon length of N = 25. With a single target
we change the setpoints to: 3/4 Frontal right, 3/4 frontal left, right
screen position, left screen position. The accompanying video also
shows the target moving.

Experiment 2: The sequence in Fig. 5.6 illustrates how at time
t = 0s the initial condition is met and the face is visible according to
the framing objective. At time t = 1s target 3 moves into the line-of-
sight and occludes target 2. The robot moves smoothly to the closest
pose in terms of framing objectives but restores line-of-sight t = 3s.

Experiment 3: Fig. 5.7 shows representative views with the framing
objective of creating a frontal shot of target 2. Although the targets
1 and 3 force the robot to perform multiple collision avoidance moves,

102

5.5. Experimental Results

the target remains in view and its screen space position remains relat-
ively stable. Due to safety reasons collision avoidance takes the highest
priority. Furthermore, collision avoidance (hard constraint) restricts
the quadrotor motion stronger than the occlusion minimization (soft
constraint).

Experiment 4: Fig. 5.8 shows representative frames from a shot
with multi-target framing objective. Although there exists, except of
some degenerated cases, a camera position with a zero re-projection
error, the algorithm has to respect state constraints. In this case the
quadrotor has to stay inside the physical room limits, reducing the
range of motion drastically. Nevertheless all targets remain in view
and the framing requirements are ful�lled as closely as possible.

Experiment 5: Fig. 5.9 plots the computation time for a trajectory
with 2000 timesteps at each of which we solve Eq. (5.10) over the
horizon length resulting in a total of 2000 × N calls to the solver.
We randomly vary the setpoints, ensuring that we don't initialize
with unrealistic values too close to the solution. Furthermore, colli-
sion avoidance is turned on. The two experiments are parametrized:
(i) First, a constant target number K = 2 and variable horizon length
Fig. 5.9, top. The mean solve-times are: 0.01s, 0.015s and 0.025s
respectively. (ii) Second, a constant horizon N = 25 and a variable
number of targets K Fig. 5.9, bottom. The mean solve-times are:
0.009s, 0.011s and 0.011s. The computational time grows approxim-
ately linear with the length of the horizon. This result is expected
according to the design of FORCES Pro. In general we see that the
computation time for longer horizons and more targets also tend to
have more variability in the solve-time. We think this is due to the
existence of a unique solution for a single target, while for multiple
targets, depending on the setpoints, the solution may only exist in the
least squares sense.

103

Chapter 5. Multi-Subject Filming and Viewpoint Optimization

Figure 5.9.: Plots show solve time per evaluation of the MPC-
problem (Eq. (5.10)) as function of horizon length (N)
and number of targets (K). Note that we solve over
N stages for each timestep (y-axis). Top: We change
desired setpoints randomly throughout the trajectory but
keep number of targets �xed. Colors indicate di�erent
horizon length. Bottom: Fixed horizon length, while
changing number of targets.104

5.6. Conclusion

5.6. Conclusion

In this chapter we presented a trajectory generation method that
solves for trajectory parameters from set-points de�ned in image space,
and a formulation of this problem that lends itself to an implement-
ation as a receding horizon optimal control program with non-linear
constraints which can be solved numerically with state-of-the art solv-
ers in real-time. We have demonstrated in experiments with an aerial
vehicle and multiple targets that the algorithm can satisfy framing
constraints, derived from cinematographic rules, continuously minim-
ize occlusions from dynamic objects in the environment and avoid
collisions with these. Currently our algorithm accepts position and
framing setpoints from a user. In future work this could be handled
by a global planning algorithm that generates inputs for entire scenes
rather than individual shots. We believe that the algorithm is general
and could be adapted to other tasks for aerial vehicles which include
collision avoidance with respect to moving obstacles.

105

Chapter 6.

Real-time Planning for

Multi-View Drone

Cinematography

In this chapter, we propose a method for automated aerial video-
graphy in dynamic and cluttered environments. An online receding
horizon optimization formulation facilitates the planning process for
novices and experts alike. The algorithm takes high-level plans as
input, which we dub virtual rails, alongside interactively de�ned aes-
thetic framing objectives and jointly solves for 3D quadrotor motion
plans and associated velocities. The method generates control in-
puts subject to constraints of a non-linear quadrotor model and dy-
namic constraints imposed by actors moving in an a priori unknown
way. The output plans are physically feasible, for the horizon length,
and we apply the resulting control inputs directly at each time-step,
without requiring a separate trajectory tracking algorithm. The online
nature of the method enables incorporation of feedback into the plan-
ning and control loop, makes the algorithm robust to disturbances.
Furthermore, we extend the method to include coordination between

107

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

multiple drones to enable dynamic multi-view shots, typical for action
sequences and live TV coverage. The algorithm runs in real-time on
standard hardware and computes motion plans for several drones in
the order of milliseconds. Finally, we evaluate the approach qualit-
atively with a number of challenging shots, involving multiple drones
and actors and qualitatively characterize the computational perform-
ance experimentally.

6.1. Introduction

Accessible quadrotor hardware now allows for end-user creation of
aerial videography which previously resided �rmly in the realm of
high-end �lm studios. However, designing trajectories that ful�ll aes-
thetic objectives and respect the physical limits of real robots remains
a challenging task both for non-experts and professionals. Especially
when �lming in dynamic environments with moving subjects, the op-
erator has to consider and trade o� many degrees of freedom relating
to subjects' motions, aesthetic considerations and the physical limits
of the robot simultaneously, rendering manual approaches infeasible.
Existing methods for planning of quadrotor trajectories [Gebhardt

et al., 2016; Joubert et al., 2015, 2016] allow users to specify shots
in 3D virtual environments and to generate �ight plans automatic-
ally. Typically, this is formulated as an o�ine optimization prob-
lem which generates a timed reference trajectory and control input
parameters from user-speci�ed 3D positions and camera look-at dir-
ections, subject to a model of the robot dynamics. The resulting plan
is then tracked online using a feedback controller. Due to this feed-
forward, open-loop nature for trajectory planning and tracking, such
algorithms are not well suited to handle drastic environmental disturb-
ances [Chen et al., 1992], typical for cluttered environments with mov-
ing subjects. Therefore they are restricted to �lming of mostly static
scenes. In contrast, dynamic scenes require continuous re-planning in
real-time to guarantee collision-free trajectories and record the inten-
ded footage, for example to keep a moving actor properly framed.

108

6.1. Introduction

In this chapter, we propose a general method for planning of aer-
ial videography in cluttered and dynamic environments. The method
jointly optimizes 3D motion paths, the associated velocities and con-
trol inputs for a �ying camera in an online fashion. Our method
takes user speci�ed, high-level plans alongside image-based framing
objectives as input (Fig. 3.1, a+b). The input paths do not need to
be physically feasible in the sense of [Roberts and Hanrahan, 2016],
since our method only uses them for guidance. Furthermore, the in-
puts can be updated interactively at every time-step by the user. The
algorithm adapts the high-level plans in real-time to produce dynam-
ically feasible trajectories for the drones. It takes the motion of the
�lmed subjects into consideration and inherently accounts for the dy-
namic constraints due to the actuation limits of the drone, which is
crucial to generate collision-free paths.

These multiple objectives and constraints are expressed mathem-
atically in a non-linear model predictive contouring control (MPCC)
formulation, solving for quadrotor states and control inputs online
and simultaneously in a receding horizon fashion: The �rst control
move of the plan is applied to the quadrotors, and the entire traject-
ory is re-computed at the next sampling instance. Solving non-linear
MPCC problems numerically at the sampling rates required by fast
mechanical systems, i.e. on the order of a few milliseconds, is a compu-
tationally demanding task and solving such problems in real-time has
only recently become feasible thanks to specialized solvers [Domahidi
and Jerez, 2016]. Furthermore, the algorithm allows for planning of
multi-angle shots and for the positioning of several quadrotors to �lm
one or more dynamic subjects simultaneously. This is a common ap-
proach in �lms and TV broadcasts when depicting moving subjects,
such as in action and sports sequences. In such settings, it is desirable
to provide di�erent views of the subjects, which have to be �lmed in a
single take, since humans struggle in precisely reproducing their mo-
tions from the recorded footage. To enable such shots, we extend our
method to produce collision-free paths between multiple drones and
subjects simultaneously. The formulation also minimize mutual visib-

109

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

ility of multiple cameras so that the recorded shots are unobstructed
and do not contain the other �ying cameras.
We demonstrate our method via several challenging, and in some

cases previously impossible shots, involving multiple, moving subjects
and using several �ying cameras simultaneously. Furthermore, we re-
port initial feedback elicited from an expert camera operator. Finally,
we characterize the computational cost of our method in controlled
experiments and show that it is capable of generating feasible tra-
jectories in the order of milliseconds, even for multiple subjects and
multiple drones.

6.2. Related Work

Aerial videography design tools

Various tools support the task of planning quadrotor-based video
shots. Commercially available applications are often limited to pla-
cing way-points on a 2D map [apm, 2015; dji, 2015; lit, 2015] and some
consumer-grade drones allow to interactively control the quadrotor's
camera as it tracks a pre-determined path (e.g., [3dr, 2015]). These
tools generally do not provide means to ensure feasibility of the result-
ing plans. In consequence, several algorithms for the planning of phys-
ically feasible quadrotor trajectories have been proposed. Such tools
allow for planning of aerial shots in 3D virtual environments [Gebhardt
et al., 2016; Joubert et al., 2015; Roberts and Hanrahan, 2016] and
employ o�ine optimization methods to ensure that both aesthetic ob-
jectives and robot modelling constraints are considered. Joubert et al.
[2015] compute control inputs along a pre-de�ned path and detects
violations of the robot model constraints. However correcting these
violations is o�oaded to the user. Gebhardt et al. [Gebhardt et al.,
2016] generates feasible trajectories subject to a linearized quadrotor
model and hence requires conservative limits on the control inputs.
The method proposed in [Roberts and Hanrahan, 2016] takes physic-
ally infeasible trajectories and computes the closest possible feasible

110

6.2. Related Work

trajectory by re-timing the user-de�ned velocities subject to a non-
linear quadrotor model.
While [Joubert et al., 2015] allows to adjust the velocity along the

planned trajectory at execution time, all of the above methods are
o�ine and convert the user's desired path into a time-dependent ref-
erence trajectory which is then tracked by a separate feedback con-
troller at �ight-time. Furthermore, generating control inputs over the
length of the entire trajectory is computationally expensive and ex-
isting methods are not capable of re-planning a suitable trajectory
online, for example to avoid collisions with dynamic obstacles or to
�lm targets that move in unpredictable ways.
The dimensionality of the problem can be reduced by planning in

the torus-subspace [Lino and Christie, 2015] to attain real-time per-
formance [Joubert et al., 2016; Galvane et al., 2016], albeit at the
cost of loosing generality in the types of plans that can be generated.
Very recently a model predictive control (MPC) formulation to op-
timize cinematographic constraints, such as visibility and position on
the screen, subject to robot constraints in real-time has been pro-
posed [Nägeli et al., 2017]. However, the method is limited to a single
drone and, more importantly, only computes local trajectories and
can not handle user-de�ned paths as input. In contrast, our method
integrates high-level input paths for guidance of an online traject-
ory planner, applies to multiple drones and optimizes for inter-drone
collision-freedom and suppresses mutual visibility.

Camera control in virtual environments

Our problem is similar to that of automatic camera placement in vir-
tual environments (VE), which has been studied extensively in com-
puter graphics. We refer to the comprehensive review in [Christie
et al., 2008a], with the majority of methods using discrete optimiza-
tion formulations. Many of these methods de�ne viewing constraints
in screen-space for single subjects [Gleicher and Witkin, 1992; Drucker
and Zeltzer, 1994; Lino et al., 2011] and two actors shot simultaneously
[Lino and Christie, 2015], citing better usability as main motivation.

111

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

Our approach is related to these approaches in that it minimizes pro-
jection error of subjects in screen-space to produce desired framing
e�ects. Finally, we take inspiration in Christie et al. [Christie et al.,
2008b] in that we take geometric primitives as input paths and `warp'
these in real-time to adhere to model, environment and aesthetic con-
straints. However, virtual environments are not limited by real-world
physics and robot constraints and hence can produce arbitrary camera
trajectories, velocities and viewpoints.

Trajectory optimization and tracking control

The problem of trajectory generation for dynamical systems is well
studied in the computer graphics [Geijtenbeek and Pronost, 2012] and
robotics literature (cf., [Betts, 2010]). Traditionally, sequences of in-
put positions are converted to time-dependent reference trajectories
using an appropriate trajectory optimization method and model of the
system dynamics. Approaches encoding the system dynamics as a set
of equality constraints are known as spacetime constraints in graphics
[Witkin and Kass, 1988; Rose et al., 1996] and direct collocation in
robotics [Betts, 2010] but this approach can lead to slow convergence
when optimizing over the entire trajectory, in particular for systems
with highly non-linear dynamics such as quadrotors.
Exploiting the di�erential �atness of quadrotors in the output space,

several methods exist for the generation of trajectories for aggressive
drone �ight [Mellinger and Kumar, 2011; Bry et al., 2015], for gener-
ating collision-free trajectories via convex optimization [Alonso-Mora
et al., 2015] or for state interception with a quadrotor [Mueller and
D'Andrea, 2013]. The previously discussed videography tools extend
the method in [Mellinger and Kumar, 2011].
An alternative to optimization-based methods are sampling-based

approaches, which leverage rapidly expanding random trees (RRT)
[Karaman and Frazzoli, 2011] or exact algorithms such as the A* al-
gorithm to �nd an optimal or near-optimal path through cluttered
environments [MacAllister et al., 2013; Saunders et al., 2005]. Re-
gardless of the trajectory planning algorithm it is necessary to use

112

6.2. Related Work

feedback controllers to track the reference trajectory accurately. How-
ever, tracking open loop reference trajectories inherently involves the
risk of performance deterioration and constraint violation if disturb-
ances or modeling errors arise [Chen et al., 1992].

Online path planning and contouring control

To avoid issues associated with tracking based methods and to re-
duce reliance on feasibility of the high-level path planner, uni�ed ap-
proaches have been proposed that address path optimization and path
following jointly. Such methods determine the evolution of the path
and the actuator inputs simultaneously using available feedback. It
has been shown that appropriate online path-following can alleviate
performance limitations for both linear and non-linear systems [Aguiar
et al., 2008]. In particular, Model Predictive Control (MPC) [Faul-
wasser et al., 2009] approaches have been used successfully for 2D
industrial contouring [Lam et al., 2010] and 2D RC racing [Liniger
et al., 2015] applications, in which time-optimal progress along the
path is the main objective. Our work is inspired by this particu-
lar MPCC formulation but to the best of our knowledge we are the
�rst to adapt and extend this framework to aerial videography (in
3D space). This is inherently a di�erent problem: instead of solv-
ing for the sole objective of following a trajectory in a time optimal
fashion [Lam et al., 2010; Liniger et al., 2015] or tracking a trajectory
with pre-determined timings [Roberts and Hanrahan, 2016], we de-
termine how fast and locally where to the quadrotor should �y based
on the dynamics of the �lmed subjects and the user speci�ed framing
objectives. We then solve for the resulting state-space trajectories via
online MPCC. The proposed method is particularly well-suited for
dynamic shots and �lming in densely cluttered environments because
it can �nd, in the least-squares sense, an optimized trade-o� between
high-level user plans and a priori unknown actor and environmental
motion.

113

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

6.3. Method

Our real-time method, summarized in Alg. 5, enables the automation
of aerial shots in cluttered and dynamic environments with one or
more subjects to be �lmed. The method is general enough to account
for both global guidance provided by the user (e.g., a camera-man) as
well as to account for real-time constraints and aesthetic requirements
imposed by the scene being recorded. In particular, we account for
the following:

• Coarsely follow a 3D guidance path for the �ying camera. We
will refer to this path as �virtual rails� in analogy to physical
camera cranes and dollies. This path may be adjusted and
moved online (cf. Fig. 6.2).

• Satisfy cinematographic objectives, again speci�ed interactively,
such as the framing or size of the object on screen.

• Respect the dynamic model and environmental constraints to
ensure feasibility of the resulting plan.

From these objectives, we formulate a receding horizon non-linear
optimization problem under constraints that can be solved with state-
of-the-art software. The proposed method computes and adapts in
real-time a feasible and collision-free trajectory to record a dynamic
scene as close as possible to the user-provided input speci�cation.

6.3.1. Dynamical Models

We introduce the models used in our formulation. Let pt ∈ R3 denote
the position of a subject to be �lmed and ṗt ∈ R3 its velocity. The
full state of the subject is then denoted by xt = (pt, ṗt) ∈ R6, with
simple linear dynamics

ẋt = (ṗt, 0),

A standard Kalman �lter is used to estimate this state and to update
it with measured position data. Further details can be found in [Nägeli
et al., 2017].

114

6.3. Method

Algorithm 5 Compute drone state

1: x0 ←initialize_horizon(nr. subjects)
2: loop
3: retrieve measurements and predict states: . Sec.6.3.1
4: xq ←KalmanFilter(zquad)
5: [pt, ṗt]←KalmanFilter(zsub)
6: retrieve dynamic inputs from user:
7: Ss ←framing setpoints from UI . Sec.6.3.2
8: Sc ←input trajectories from UI . Sec.6.3.4
9: solve for path and quadrotor con�guration:

10: s(xθ)←compute_virtual_rail(pt, ṗt, Ss, Sc) . Sec.6.3.4
11: update cost & constraints, solve MPCC Eq. (7.14)
12: apply_inputs(uq0

)
13: end loop

Flying camera

Our method is agnostic to the particular quadrotor or drone hardware
employed. It is based on a mathematical model in form of a di�er-
entiable function f : Rnx×nu → Rnx , denoting a discrete-time state
update equation of the �ying camera,

xqk+1
= f(xqk ,uqk) ,

where nx are the dimensions of the states xq ∈ Rnx and nu is the
dimensionality of inputs uq ∈ Rnu and k denotes the discrete time
instant. Typically, the state xq of the �ying camera includes at least
the position of the camera pc ∈ R3, its velocity ṗc ∈ R2 and its orient-
ation, i.e. roll, pitch and yaw, as well as the gimbal pitch θg and yaw
ψg angle. We use an unmodi�ed Parrot Bebop2 and include dynamics
of the (software) gimbal with resulting dimensionalities nx = 10 and
nu = 6.

115

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

6.3.2. Actor-driven Framing Objectives

When planning aerial shots, one has to consider both the camera
motion and how objects appear in the image. We control this framing
directly in the 2D image space via several cost terms similar to [Nägeli
et al., 2017] and inspired by Arijon's `grammar' of �lm [Arijon, 1976].
We allow the user to interactively specify the desired 2D position
of the actor in the screen and to specify the relative distance of the
subject to the camera via the projected screen size. These two metrics
already provide control over the most important framing objectives
and can be adjusted in real-time via a GUI. Incorporating further
framing objectives is straightforward [Nägeli et al., 2017].
Image space locations are controlled via a quadratic error measure

ci : Rnx+6 → R+ on the residual ρm between the actual and desired
viewing directions of the camera:

ci(xq,xt) = ‖ρm‖Qm with ρm =
rch
‖rch‖

−
rcchd
‖rcchd‖

, (6.1)

where rch is the ray from the camera to the target and rcchd = (mx,y, 1) ∈
R3 is the vector through the desired screen position.
The pixel coordinates mx,yd are given by the camera intrinsics.
Similarly, the size of objects in the image is controlled via the quad-

ratic error function cs : R7 → R+ on the residual between the actual
and desired Euclidean distance, σ and σd, between the position of the
�lmed subject pt and that of the camera pc:

cs(pt,pc, σd) = ‖ ‖pt − pc‖2 − σd ‖Qσ
. (6.2)

Note that minimizing these costs will require actuation of the robot
and hence the actor's natural motions cause the robot to move in
order to minimize these costs.

6.3.3. Subject Collision Avoidance

To guarantee that the �ying camera does not collide with moving
subjects, we introduce a collision avoidance constraint. We model the

116

6.3. Method

to be avoided region using an ellipse SΩs(pt) around each subject and
ask the method to compute quadrotor positions s() that lie outside or
on its boundary, i.e. the non-convex set

¯SΩs(pt, SΩλ) := R3 \ SΩs(pt)

:= {s(∈)R3 | (s(−)pt)
TΩs(s(−)pt) ≥ 1− SΩλ}, (6.3)

is the admissible region for camera positions s() for some positive def-
inite matrix E. The scalar SΩλ ≥ 0 is a slack variable necessary in
practice to ensure �nding a solution (soft constraint). It can be shown
that under su�ciently high penalization of a linear cost such slack
variables, the solution of the hard constrained problem, i.e. SΩλ ≡ 0,
is recovered when it exists; otherwise, a plan with minimum deviation
will be computed by the optimizer [Kerrigan and Maciejowski, 2000].
Such use of slack variables to relax hard constraints is common prac-
tice in the MPC literature. We use a 3-4 orders of magnitude higher
penalization than for remaining costs. Note that unusually high values
of the slack variables, indicating infeasible solutions or exhaustion of
the computational budget, can be detected and handled, for example
by triggering an emergency landing.

6.3.4. 3D Virtual Camera Rails

The above objectives and constraints locally determine the position
and orientation of the �ying camera in relationship to the subjects in
the scene. To control global motion, we use virtual rails, an analogy to
physical camera rails and camera cranes, routinely used on �lm sets
to produce smooth camera motion (see Chapter 22 in [Arijon, 1976]).
A virtual rail is a user-speci�ed geometric path, or a set of positions
in 3D space, which may be modi�ed interactively. This process is
schematically illustrated in Fig. 6.2. To incorporate virtual rails into
our method, we �rst approximate them by smooth curves and use an
MPCC path following approach to generate a feasible path close to
the user-de�ned rails.

117

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

Figure 6.1.: Exact projection of the quadrotor position onto the vir-
tual rail (A) and it's approximation in the local linear-
ized frame (B).

Smooth path approximation s(xθ) of virtual rails

At each time-step we compute a di�erentiable path s(xθ) given by a
second order approximation of the input. We then seek to follow this
smooth path as closely as possible. To do so we want to minimize the
projection of the drone's position s() onto the path:

θ∗ = arg min
xθ
‖s(xθ)− s(‖). (6.4)

This projection yields the closest distance to the path which is com-
monly denoted as the contouring error ρc, illustrated Fig. 6.1, A.
However, this projection is not suited as error measure within an op-
timization formulation since it is an optimization problem itself (over
the entire path) and cannot be solved analytically. In 2D MPCC it is
common practice to approximate ρc via separation of contouring and
lag-error. The lag-error ρl =

∫ θk
θ∗
s(x)dx is the integral over the path

segment between the desired location on the path θ∗ and the location
xθ found by solving the �nal MPCC problem (Eq. (7.14)).

118

6.3. Method

Error measures

Previous work for planar (2D) motion [Lam et al., 2010; Liniger et al.,
2015] uses expressions for the contouring and lag error that are not
directly transferable to the 3D case. We propose formulations suitable
for 3D which also separate lag from contour error. We approximate
ρl, ρc by projecting the current quadrotor position s() onto the tangent
vector n, with origin at the current path position s(()xθ). The relative
vector between s() and the tangent point s() can be written as rpqs :=
s(xθ) − pq. Further the derivative of the path s(xθ) with respect to
the path parameter xθ is de�ned as: s′ := ∂s(()xθ)

∂xθ
which de�nes the

normalized tangent vector n = s′

‖s′‖ . The approximation of the lag
error is then given by:

ρ̂l(pq, xθ) = ‖rTpqsn‖, (6.5a)

The approximations of the contour error is computed by:

ρ̂c(pq, xθ) = ‖rpqs −
(
rTpqsn

)
n‖, (6.5b)

With these error measures in place, we de�ne a cost function cp :
R4 → R+ which represents the trade-o� between path following ac-
curacy and progress ẋθ along the path:

cp(s(,)xθ, ẋθ) =

ρ̂l(pq, xθ)
ρ̂c(pq, xθ)

T Q

ρ̂l(pq, xθ)
ρ̂c(pq, xθ)

− βẋθ, (6.6)

where Q ∈ S2
+ is a positive de�nite weight matrix (typically diagonal)

chosen by the user, and β ≥ 0 is a scalar weight such that:

• If β = 0: the camera is forced to stay on the virtual rail, but
its position along the path is free running. In this case the
movement along the rail is entirely subject driven.

• If β > 0: the camera will automatically move along the rail.
The movement velocity can be controlled by the user and will
be traded o� with framing objectives.

119

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

Figure 6.2.: Online warping of camera reference path. The original
reference (red) is changed by the user (blue) at runtime,
causing the contour error ρc (in green) to increase for
the initial stages of the planning horizon (B). ρc quickly
converges to the changed reference path (B).

Fig. 6.1, B illustrates that as ρ̂l(pq, xθ) becomes small the approx-
imation quality of the contour error increases. In particular when
ρ̂l(pq, xθ) → 0 then ρ̂c(pq, xθ) ≈ ρc. We therefore typically chose a
high penalty on ρ̂l(pq, xθ). For the contouring error we allow some
�exibility in order to account for the subject-driven framing object-
ives and constraints since it might be desirable to deviate locally from
the virtual rail in favor of these other objectives (cf. Fig. 6.2, B).
The relative weight of the objectives can be set by the user via an
appropriate tuning of the cost function Eq. (6.6).
We take a linear combination of the error measures for image loca-

tion, Eq. (7.10), and size, Eq. (7.11), and the path following cost, Eq.
(6.6), to de�ne a stage cost that serves as a performance index for the
path generation, following and videography goals of the method:

Jk = aici(xqk , xθk) + adcs(pti ,pck , σd) + apcp(s(xθk), xθk , ˙xθk), (6.7)

120

6.3. Method

Figure 6.3.: Top: Schematic explanation of the MPCC framework.
The MPCC algorithm starts at t0 and sums all de�ned
costs (red) in the time window up. Bottom: After a nu-
meric optimization, the optimal inputs u∗ are computed
and the costs (red) are minimized.

where the scalar weight parameters ai, ad, ap > 0 can be set inter-
actively to control the (relative) importance of the di�erent terms.
The trajectory and control inputs of the drone at each time-step are
computed via the solution of the following N -step �nite horizon con-

121

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

strained non-linear optimization problem at time instant t:

minimize
uq,xq,xθ,ẋθ,Ωλ

N−1∑
k=0

(
Jk + uq

T
kRuqk

)
+ aNJN + λ‖Ωλ‖∞ (6.8a)

subject to xq0
= x̂qt

(Initial state)

xθ0 = x̂θt (Initial path parameter)

uqk+1
= f(uqk ,uqk) (Dynamics)

xθk+1 = xθk + ẋθkTs (Progress virtual rail)

s(θ)k /∈ SΩs(ptk, SΩλ k
) ∀s (Collision avoidance)

0 ≤ xθk ≤ L (Path length)

xqk ∈ X , (State constraints)

uqk ∈ U , (Input constraints)

SΩλ k
≥ 0, (Slack positivity)

where R ∈ Snu+ is a positive de�nite penalty matrix avoiding excessive
use of the control inputs. The vector xqt and the scalar x̂θ(t) denote
the (estimated or measured) values of the current states xq and xθ,
respectively. The scalar Ts is the sampling time. The scalar aN > 0 is
a weight parameter used to weight a so-called terminal cost JN on the
�nal stage. This is common in �nite-horizon schemes such as MPCC
to mimic long horizons, approximating the in�nite horizon solution.
Finally, the scalar λ is a penalty parameter for the slack variables
associated with the softened obstacle avoidance constraints.
The drone is actuated using the optimal inputs from the �rst step

uq0
. Importantly, a new trajectory is recomputed at each time-step,

taking updated sensor data, rail con�gurations and user-speci�ed view-
points into consideration.

6.4. Multi-Drone Flight

In the previous section we discussed the proposed online trajectory
planning method for the case of a single quadrotor. In this section we

122

6.4. Multi-Drone Flight

describe additional constraints and costs that allow for the �lming of
multi-view shots in a single take. For instance, when �lming highly
dynamic scenes, such as live sports, it is often desirable to provide
di�erent views of a subject as it moves through the environment,
requiring usage of several cameras to orchestrate views to allow for
spontaneous, non-scripted motion.

Collision avoidance with coordination

Further to avoiding collisions with subjects, see Sec. 6.3.3, each drone
now needs to avoid collisions with the other drones that are video-
graphing the scene. This becomes especially critical when �lming in
cluttered spaces with little room to navigate and when the camera
trajectories may overlap and intersect.
In traditional priority planning each robot would avoid only the ro-

bots of higher priority, leading to highly suboptimal trajectories (Fig.
6.4, A), which can con�ict with ful�lling the cinematographic object-
ives. In typical videography scenarios the multiple drones will be cent-
rally controlled or at least have a communication channel. Leveraging
this communication channel, our method is sequential consensus, not
priority based. To this end we extend our algorithm to consider
Eq. (6.3) for each drone's future states. In this scheme each drone
receives the current plans from all other drones and plans a collision-
free trajectory with respect to the complete set of plans. Further, to
guarantee safety, we assume that planning is performed sequentially
and plans are communicated to all other drones after each planning
iteration. While in the �rst iteration this is equivalent to priority
planning, in the subsequent iterations it is not and leads to more
cooperative trajectories, illustrated in Fig. 6.4, B.

¯SΩs(p
j
qk, S

j
Ωλ

) := R3 \ SΩs(p
j
qk) (6.9)

where scalar SjΩλ ≥ 0 again are slack variables ensuring that a solution
is found in practice.

123

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

Figure 6.4.: Schematic of collision between two quadrotors. (A)
shows classical priority based collision avoidance where
the blue quadrotor has higher priority than the red. (B)
shows our solution with iterative sharing of planned tra-
jectories. This results in cooperative collision avoid-
ance.

Mutual visibility

When �lming a multi-view scene it is desirable to reduce visibility of
other cameras. Our method can take this into account by extending
the stage-cost of Eq. (7.13) with an additional term cv for each pair
of drones, penalizing mutual visibility. The computation of this cost
is schematically illustrated in Fig. 6.5.
We approximate the camera's view frustum by a bounding cone

and test for all other drones if their bounding sphere intersects the
bounding cone C. For this, we project the relative vector between

124

6.4. Multi-Drone Flight

Figure 6.5.: Explanation of the mutual visibility cost Eq. (6.10).

the drones i and j onto the view direction of drone i to attain the
distance to drone j along the viewing direction. We then compute the
signed distance dsurf from the position of drone j to the cone surface
at the intersection point pint and normal to the viewing direction. If
this distance is positive, then drone j is outside of the viewing cone
of drone i. The stage cost is then

cv(xqi ,xqj) =

{
Qvd

2
surf if dsurf < 0

0 otherwise
, (6.10)

where xqi is the state of drone i. The cost cv is added to Eq. (7.13)
with a tunable weight Qv. The resulting behavior is shown in Fig. 6.6.
Algorithm 6 summarizes the procedure for multiple quadrotors. At
each time-step a new trajectory is computed for each drone independ-
ently and sequentially, by solving the MPCC problem of Eq. (7.14).
For each neighboring drone, we add: a) the collision constraints of
Eq. (6.9), and b) the mutual visibility cost of Eq. (6.10). Note that
communicating motion plans, rather than relying on estimates, can
enable highly dynamic maneuvers.

125

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

Algorithm 6 Multi-drone algorithm

Require: Trajectories Ti for all drones i ∈ {1,M} at time t− 1.
Require: Inputs [Ss, Sc,pt, ṗt] from Algorithm 1.
1: for i ∈ {1,M} do
2: for j ∈ {1,M}, j 6= i do
3: compute collision avoidance constraints w.r.t Tj .
4: compute mutual visibility cost w.r.t j.
5: end for
6: Ti ← solve Eq. (7.14) with new constraints and costs.
7: end for

6.5. Evaluation and Discussion

Here we discuss quantitative and qualitative results and experiments
conducted to evaluate our method and its components.

6.5.1. Implementation Details

Our experiments are conducted on a standard desktop PC (Quadcore
Intel i7 CPU@3.5 GHz). The subjects and drones are tracked via
a Vicon motion capture system for indoors experiments. We solve
the MPCC problem via the FORCES Pro [Domahidi et al., 2012;
Domahidi and Jerez, 2016] software which generates fast solver code,
exploiting the special structure in the non-linear program (NLP).

Quadrotor hardware

We use unmodi�ed Parrot Bebop2 quadrotors in all our experiments
with an integrated electronic gimbal. All communication between the
drones and the host PC is handled via ROS [Quigley et al., 2009]
and we directly send the control inputs from the �rst time-step uq0

computed in Eq. (7.14), without an additional feedback controller for
trajectory tracking on the drone.

126

6.5. Evaluation and Discussion

Initialization

The problem of Eq. (7.14) is non-convex and therefore initialization
is a concern. We initialize the solver with the solution vector com-
puted at the previous time-step, perturbed by random noise. Gen-
erally speaking, the method is robust to initialization and we did
not observe drastic changes in solve time even if the initialization is
drastically perturbed.

6.5.2. Quantitative and Qualitative Experiments

Computational performance

To assess the computational performance of the method we record
overall solve time of the method (Algorithm 5 and 6). We use �xed
horizon length N = 20 and a �xed number of two subjects and vary
the number of drones from 1 - 4. During the experiment we use
framing and mutual visibility cost terms and enable collision avoidance
constraints. Importantly the rails used in this last experiment are
designed to force collision avoidance maneuvers between the drones.
Fig. 6.7 shows that the computational cost grows linearly with the
number of drones. This is expected due to our sequential planning
approach. The collision avoidance and visibility optimization does
not yield signi�cant overheads when adding further drones.

Multi-view cinematography

Fig. 6.6 shows the impact of penalizing mutual visibility in multi-view
scenarios. The three frames are taken without and with the cost act-
ive, resulting in an avoidance maneuver of the drone. This setup forces
the drone to `warp' the input trajectory to ful�l all cinematographic
constraints.

127

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

6.5.3. Preliminary Expert Feedback

Finally we invited a trained camera operator from the local univer-
sity's �lm program to assess the overall utility of our approach. The
expert designed a number of multi-view shots with our system. While
our work is mostly algorithmic and does not have a sophisticated user
interface at this point, the expert was still able to plan and execute a
number of challenging shots with receiving only very little instructions
and no more than 10 minutes training. The resulting shots have been
included in the accompanying video �gure as so-called real-time cuts
(i.e., a single video sequence containing views from multiple cameras
o� the same duration as the individual clips). Note that these shots
include aspects that would be di�cult or impossible to achieve with
traditional camera cranes or dollies, for example entering and leav-
ing buildings through doors and windows and positioning of multiple
cameras in a tight space with several moving subjects.

Multi-view real-time shot

Fig. 6.8 illustrates a shot entailing two �ying cameras and two actors
that move into and out of a building on a simulated �lm set. The shot
was loosely de�ned using a storyboard (shown in the insets), which
is then transcribed into virtual rails, constraining the camera motion.
In this case the drone velocities are entirely driven by subject motion.
Note that the subject focus and framing is changed interactively by
the user at runtime.

Discussion

The expert user was able to design several shots of which we included
some. Overall the expert felt that the approach �ts well into the
practice of �lming and that it drastically reduces the complexity of
a number of shots in dynamic environments, an area in which aerial
videography was previously not applicable.
Our expert also provided a number of interesting ideas for future

work including requirements for the user interface and the control

128

6.5. Evaluation and Discussion

algorithm itself. Foremost, the user would have liked to be able to
have additional control over the exact framing or in other words would
have liked to manually re�ne the yaw and pitch of the camera on top of
computed control inputs. This idea is compatible with the proposed
method but is left for future work. Other interesting ideas include
being able to control the actual camera parameters such as depth of
�eld and focus points interactively and to incorporate stabilization
and smoothing of the optical �ow.
While not explicitly mentioned in our evaluation it became clear

that there is also an interesting opportunity to optimize camera place-
ment and virtual rails more globally, subject to a high-level script or
storyboard. In other words to provide a domain-speci�c language to
make the method more usable by non-technical users.

129

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

Figure 6.6.: In�uence of penalizing mutual visibility. A and C: single
subject is �lmed by two drones simultaneously, the �rst
drone (green) is in the �eld of view of the second drone.
B and D: Enabling the mutual visibility cost triggers
re-planning of trajectory resulting in unobstructed view
with correctly framed subject.

130

6.5. Evaluation and Discussion

Figure 6.7.: Solve times for horizon length N = 20 and 2 subjects
with number of drones varying from 1 - 4.

131

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

Figure 6.8.: Figures A - F: Multi-view, multi-person shot, tran-
scribed form story board (insets). Two drones enter
and leave the buildin to frame the subjects. The user
interactively refocuses the subjects during �lming. Full
sequence as real-time cut in the accompanying video.

132

6.5. Evaluation and Discussion

Figure 6.9.: Figures A - D: Multi-view, single-person shot outdoors.
A+B: A person rides a bike along a street and is �lmed
by camera 1 (red). C+D: Person gets of the bike, switch
to camera 2 (purple). camera 1 goes out of view of
camera 2.

133

Chapter 6. Real-time Planning for Multi-View Drone
Cinematography

6.6. Conclusions

In this chapter we present a method for the real-time generation
of multi-drone aerial cinematography motion plans. Our proposed
method formulates the motion plan generation and tracking problems
as a joint real-time receding horizon optimization problem. The al-
gorithm respects high-level user goals as well as possible and ensures
physical feasibility of the resulting plans at every time-step. Import-
antly, the real-time nature of the method allows for incorporation of
feedback and dynamic constraints, enabling the planning of collision-
free paths in cluttered environments with moving actors and multiple
drones. We have evaluated our method in a number of quantitative
and qualitative experiments including single and multi-view shots in
dynamic environments.

134

Part III.

Real-time Drone-based

Motion Capturing

135

Chapter 7.

Environment-independent

Human Pose Estimation with

Drones

In the last technical chapter of this thesis, we present a real-time
method for the infrastructure-free estimation of articulated human
motion, as for example needed in animation movies. The approach
leverages a swarm of camera-equipped �ying robots and jointly op-
timizes the swarm's and skeletal states, which include the 3D joint
positions and a set of bones. Our method allows to track the motion
of human subjects, for example an athlete, over long time horizons and
long distances, in challenging settings and at large scale, where �xed
infrastructure approaches are not applicable. The proposed algorithm
uses active infra-red markers, runs in real-time and accurately estim-
ates robot and human pose parameters online without the need for
accurately calibrated or stationary mounted cameras. Our method
i) estimates a global coordinate frame for the quadrotor swarm, ii)
jointly optimizes the human pose and relative camera positions, and
iii) estimates the length of the human bones. The entire swarm is then

137

Chapter 7. Environment-independent Human Pose Estimation with
Drones

controlled via a model predictive controller to maximize visibility of
the subject from multiple viewpoints even under fast motion such as
jumping or jogging. We demonstrate our method in a number of dif-
�cult scenarios including capture of long locomotion sequences at the
scale of a triplex gym, in non-planar terrain and while climbing.

7.1. Introduction

Many graphics applications such as character animation for games,
sports, biomechanics, VR, and AR rely on accurate human pose in-
formation, and virtually every modern movie production leverages
Motion Capture (Mocap) systems for special e�ects. Most commonly,
such systems are camera based, either relying on body-worn markers,
or more recently even work markerless. Multi-view approaches can
now be highly accurate and sometimes provide dense surface recon-
structions. The maturing of camera based motion capture technology
in turn leads to a desire to use it in increasingly challenging scenarios
such as with fast moving actors, large scale scenes and even in out-
doors settings. However, practically all existing approaches require
a set of environment mounted, accurately calibrated cameras look-
ing into a capture area of �xed size. This requirement for stationary
cameras makes application in these settings very tedious, costly and
sometimes entirely infeasible.
In this chapter we propose an environment-independent approach

to multi-view human motion capture that leverages an autonomous
swarm of quadrotors. They carry cameras trained on the subject of
interest, who wears a sparse set of active LED markers. The 2D
positions of these markers are extracted from the images and the 3D
joint positions of the human skeleton are estimated in real-time.
Our approach we address several challenges: First, and in contrast

to traditional camera localization approaches that make rigid scene
assumptions, the 3D joint locations move in an articulated non-rigid
fashion. Second, the cameras move relative to the human and their
con�guration changes dynamically, which is in contrast to typical hu-

138

7.1. Introduction

man pose estimation approaches where the cameras are assumed to
be stationary and calibrated. Third, we do not rely on any external
signal, such as GPS for positioning, making our approach applicable
both indoors and outdoors. Our method enables motion capture in
previously di�cult or entirely infeasible scenarios such as continuously
reconstructing the full body pose of an athlete throughout an entire
workout or capturing actors in remote and di�cult to reach locations,
for example while climbing.
More concretely we propose a completely self-contained method for

the joint estimation and control of the states of multiple quadrotors
and of 3D human skeletal con�guration. The proposed algorithm runs
in real-time and accurately estimates the positions of the robot swarm
and the human pose parameters. Furthermore, we compute in real-
time drone trajectories to keep the cameras trained on the subject
and therefore the markers in view of the cameras.
Our algorithm is inspired by recursive �ltering techniques used in

robot localization problems. However, in contrast to classical scene
reconstruction and camera localization algorithms, the tracked 3D
points are not static but move in a complex, articulated fashion.
To make this nonlinear state estimation problem of a discrete-time
stochastic system tractable in real-time, we pose it as an indirect iter-
ated extended Kalman �lter (IEKF) which computes the state estim-
ates as maximum a posteriori (MAP) estimates. In typical camera loc-
alization formulations, states are estimated relative to a global world
reference frame, which causes the uncertainty with respect to the ori-
gin to grow as one moves further away [Castellanos et al., 2004]. To
avoid this uncertainty growth, we use a formulation where 3D points
and the world origin are expressed with respect to a moving reference
frame (the lead drone of the swarm). During state propagation and
update, linearization is performed around the estimated lead camera
frame. In consequence, little linearization error is accumulated over
time. This allows us to follow the subject over long distances without
drift or loss in pose estimation accuracy.
To our knowledge, we are the �rst to frame localization and optimal

control of a robotic swarm and the estimation of human articulated

139

Chapter 7. Environment-independent Human Pose Estimation with
Drones

motion as a joint optimization problem and to provide a real-time
implementation. Our method, at every frame, i) collects images from
all drones, detects and labels 2D joint positions, ii) estimates the
state of a leader robot from onboard sensors (e.g., IMU, down-facing
optical �ow sensor), iii) estimates the joint positions of the human
skeleton (and the bone lengths) and optimizes the relative positions
and orientations of the multi-robot swarm; iv) �nally, it computes
control inputs for the drones via model-predictive control (MPC) to
keep markers observable under subject motion.
We demonstrate our method in a number of compelling usage scen-

arios that include fast motion, such as running or jumping jacks, and
that capture long trajectories (hundreds of meters). Furthermore, we
demonstrate the bene�ts of environment independence by following
a subject over di�erent elevations and in di�cult terrain such as a
climbing wall (see Fig. 3.1, middle).

7.2. Related Work

Our work brings together state-of-the-art robotics research on quad-
rotor state estimation and control and algorithms for motion capture
from the computer graphics and vision literature. Here we brie�y
review the most pertinent work.

Camera-based motion capture: Camera-based capture of articu-
lated human motion is at the core of many graphics and related ap-
plication domains. Commercial solutions require wearing of marker
suits or gloves and depend on multiple calibrated cameras mounted
in the environment. To overcome these constraints much research
has been devoted to developing marker-less approaches from multiple
cameras (cf. [Moeslund et al., 2006]). Often such methods trade-in
high quality results with o�ine processing [Bregler and Malik, 1998;
Ballan et al., 2012; Starck and Hilton, 2003] but recently real-time
approaches [Rhodin et al., 2015; de Aguiar et al., 2008; Stoll et al.,
2011; Elhayek et al., 2017] have been proposed. Such approaches typ-

140

7.2. Related Work

ically �t a skeletal model to image data or represent the human as
a collection of Gaussians [Rhodin et al., 2015]. Other approaches to
real-time performance include combining discriminative and generat-
ive approaches [Elhayek et al., 2017; Oikonomidis et al., 2012]. How-
ever, such multi-view approaches always assume stationary, well cal-
ibrated cameras and are therefore not suitable in mobile and outdoors
scenarios. More recently pose estimation methods have exploited deep
convolutional networks (ConvNets) for body-part detection in fully
unconstrainedmonocular images [Chen and Yuille, 2014; Newell et al.,
2016; Tompson et al., 2014; Toshev and Szegedy, 2014; Wei et al.,
2016]. However, these methods only capture 2D skeletal information.
Predicting 3D pose directly from 2D RGB images has been demon-
strated using o�ine [Bogo et al., 2016; Tekin et al., 2016; Zhou et al.,
2016] methods and in online settings [Mehta et al., 2017]. Monocular
depth cameras provide additional information and have been shown to
aid robust skeletal tracking [Ganapathi et al., 2012; Taylor et al., 2012;
Shotton et al., 2013] and enable dense surface reconstruction even un-
der deformation [Zollhöfer et al., 2014; Newcombe et al., 2015; Dou
et al., 2016]. Multiple, specialized structured light scanners have been
used to capture high-�delity dense surface reconstructions of humans
[Pons-Moll et al., 2015]. Our approach relies on multiple cameras to
estimate skeletal motion and we believe much of the above work is
complementary to ours in that marker-less techniques could serve as
input to our joint camera and human pose estimation pipeline. In
contrast to the above work, our method does not require any infra-
structure or calibrated cameras. Because the cameras are airborne all
measurements are noisy, unreliable and measure only relative quant-
ities, making the task signi�cantly harder. Yet, our method achieves
good accuracy over long sequences.

Inertial measurement units: Attaching sensors directly onto the
body overcomes the need for line-of-sight and enables use without in-
frastructure. Inertial measurements units (IMU) are the most promin-
ent type of sensor used for pose estimation. Commercial systems rely

141

Chapter 7. Environment-independent Human Pose Estimation with
Drones

on 17 or more IMUs, which fully constrain the pose space, to attain
accurate skeletal reconstructions via inverse kinematics [Roetenberg
et al., 2007]. It has been shown that good performance can be achieved
with fewer sensors by exploiting data-driven methods [Tautges et al.,
2011; Liu et al., 2011; Schwarz et al., 2009] or by taking temporal con-
sistency into account, albeit at the cost of high computational cost and
therefore o�ine processing [von Marcard et al., 2017]. While IMUs
provide mobility and accuracy, above approaches inherently require
user instrumentation. Furthermore, they rely on sophisticated models
of the human and hence can not easily be generalized to other sub-
jects. Our implementation currently also requires body-worn markers
but in principle can work markerless. More importantly, we optimize
3D point coordinates and only model the human by connecting adja-
cent joints, thus reducing computational cost of the optimization and
making the method applicable to all kinds of articulated motion.

Drones in graphics and vision: With the consumerization of aerial
robots, the graphics community has recently proposed a number of
tools and algorithms for the planning of physically feasible quadrotor
camera trajectories for aerial videography. Such tools allow for plan-
ning of aerial shots in 3D virtual environments [Gebhardt et al., 2016;
Joubert et al., 2015; Roberts and Hanrahan, 2016] and employ o�ine
optimization methods to ensure that both aesthetic objectives and
robot modeling constraints are considered. The methods of [Joubert
et al., 2015] and [Gebhardt et al., 2016] generate quadrotor traject-
ories given user-de�ned space-time keyframes, whereas the method
proposed in [Roberts and Hanrahan, 2016] takes physically infeasible
trajectories and computes the closest possible feasible trajectory by
re-timing the velocities subject to a non-linear quadrotor model. All
of the above methods are o�ine and cannot generate control inputs
for use in dynamic environments. Using a Model Predictive Control
(MPC) formulation, [Nägeli et al., 2017] optimizes cinematographic
constraints, such as visibility and position on the screen, subject to
robot constraints for a single quadrotor. [Nägeli et al., 2017] extends

142

7.2. Related Work

this work to multiple drones and allows actor-driven tracking on a geo-
metric path. The robotics literature has proposed methods to recover
the 3D trajectory of a moving person from a quadrotor mounted cam-
era while mapping the environment [Lim and Sinha, 2015; Li et al.,
2016]. In contrast, the objective of this work is to reconstruct the
full 3D body pose of a moving subject while planning the quadrotor
trajectories to always follow the actor and to keep markers in view.
For this task, multiple quadrotors are necessary and their position has
to be estimated alongside the skeletal joint positions.
In this sense our work is most closely related to [Xu et al., 2017] who

leverage depth-cameras mounted on three drones together with a de-
formable surface energy for dense surface reconstruction of a dynamic
user. However, the proposed method relies on depth data, a pre-
scanned template mesh (which is deformed and used for data �tting)
and only target tracking is performed in real-time via [Li et al., 2016],
whereas pose reconstruction is reported to run at 3 frames per minute
on a high-end PC. Our method runs entirely in real-time, while it
tracks articulated motion and controls the position of the quadrotors.
Our method estimates the articulated motion of the user from mon-
ocular imagery only and thus can work indoors and outdoors, where
depth cameras struggle in direct sunlight.

Multi-robot systems: Multi-robot teams are widely studied in ro-
botics, including groups of aerial [Lupashin et al., 2011; Michael et al.,
2010; Lima and Floreano, 2013] robots. To stabilize a formation,
each agent requires exact positional knowledge [Pugh and Martinoli,
2006]. Existing approaches to formation �ight therefore rely either on
low precision sensors, which result in large inter-robot distances, or
on external infrastructure. Methods for infrastructure-free formation
control have been proposed by [Nägeli et al., 2014], albeit requiring the
cameras to be trained on the other members of the swarm, rendering
it unsuitable for subject tracking. We do not rely on any infrastruc-
ture or external tracking and jointly estimate the drone position and
human pose in a single, combined optimization framework.

143

Chapter 7. Environment-independent Human Pose Estimation with
Drones

Figure 7.1.: Method Overview. Left to right: A subject wears a
sparse set of active LEDs from which we extract 2D
joint detections zj. A recursive error-state �lter for-
mulation jointly estimates the position and orientation
of multiple �ying cameras, and the positions of the 3D
joints and the length of bones. Finally we compute feas-
ible trajectories and corresponding control inputs uk for
the quadrotors to keep the human in view.

7.3. Overview

We propose a drone based real-time method for infrastructure-free
estimation of articulated human motion. The approach leverages a
swarm of �ying camera-equipped robots and jointly optimizes the
swarm's and skeletal states, consisting of 3D joint positions and a
set of bones (see Fig. 7.2) in real-time. This allows to track the
motion of human subjects, for example, an athlete over long time
horizons and long distances in challenging settings such as outdoors
where traditional multi-view approaches are not feasible.

144

7.3. Overview

Figure 7.2.: Schematic of the states used to model the human skel-
eton xh. The estimated skeleton constists of 13 real
joint markers (yellow), two virtual markers (red) and
14 bones (green). The virtual markers are computed
using the physikal markers and are introduced for better
bone estimates.

This is a di�cult problem because i) in contrast to traditional cam-
era localization approaches, no rigid scene assumption can be made
and ii) in contrast to traditional human pose estimation approaches,
no rigid camera assumption can be made. In our setting the quad-
rotor swarm and the 3D joint positions move non-rigidly and relative
to each other. While previous work has demonstrated o�ine human
pose estimation from several handheld cameras [Hasler et al., 2009]
via a conceptually related structure from motion (SfM) approach, this
is not feasible here since the swarm is controlled relative to the human
and hence real-time performance is mandatory.

To solve this challenging problem of online human pose estimation
using quadrotor's in unstructured environments, we make the follow-
ing key assumptions:

145

Chapter 7. Environment-independent Human Pose Estimation with
Drones

1. Fast sampling: The camera frame rates and our algorithm are
fast (30Hz) with respect to human motion. Hence, we assume
that the pixel displacement from image to image is small for all
marker positions.

2. Constant bone-length: Adjacent joints are linked via bones
of constant, yet unknown, length. Since the markers are not ri-
gidly attached to the bones, we allow small changes and estimate
bone-lengths online, without any prior calibration.

3. Observability: Marker's seen from at least two cameras are
called observable. The location of individual unobservable mark-
ers can be predicted via the bone-length constraint.

4. Predictive control: We assume that trajectories can be gener-
ated to accurately track the human and to keep it in the camera's
frame (see Sec.7.6.2). This allows for initialization of the pose a
priori estimate from the drone trajectory.

We formulate this optimization problem in a recursive �ltering frame-
work that allows us to naturally link states and measurements over
time and provides a straightforward integration of sensor data as pri-
ors for each iteration of the optimization.
Additionally, we accurately estimate the states of all quadrotors by

fusing the optimized camera poses with odometry measurements at-
tained from onboard sensors, which include downward looking optical
�ow sensors and IMUs. The drone positions are then controlled to
maximize visibility of the subject. Our algorithm, illustrated in Fig.
7.1 iteratively performs the following steps:

(A) Collect images from all drones, detect and label joints.

(B) Predicts and estimates the state of a leader robot from onboard
sensors (e.g., IMU, down-facing optical �ow sensor)

(C) Perform a joint reconstruction of the articulated human pose and
the camera states to obtain the position of the joints and the

146

7.4. Modeling

position of each drone-mounted camera. Update the pose state
xpose. Fuse the camera pose estimate with proprioceptive sensor
data (IMU, optical �ow) to estimate the full drone state.

(D) Estimate the length of the bones online.

(E) Compute drone inputs, via a receding horizon controller.

7.4. Modeling

We now provide a brief overview of the model of the human multi-
robot swarm used in our non-linear estimation and control formula-
tion. The states can be grouped into two sets corresponding to the
skeleton (see Sec.7.4.2) and the quadrotor cameras (see Sec.7.4.3).

7.4.1. Terminology

In this work we de�ne the term Pose as the pose (joint-angle con�gur-
ation) of the human, together with the pose (position and orientation)
of all cameras. If we talk about a speci�c pose, we specify this by writ-
ing Camera Pose or Human Pose. We call all quadrotors together a
swarm. The swarm together with the human forms a formation.

7.4.2. Human Pose

The pose of the human is de�ned by a set of m joints, modelled as
3D points, and their connecting bones. Fig. 7.2 shows the assumed
mapping between bones and joints. The state of all joints is denoted
by xjoint which contains the position of the m individual joints that
de�ne the human pose: xjoint = [xfeat1, . . . ,xfeatm] ∈ R3m.
All joints are connected by bones of a certain length. We denote

with xbone the bone-lengths state vector: xbone = [b1, . . . , bm−1] ∈
R(m−1). The bone-lengths are assumed to be constant, but unknown,
and therefore treated as bias states for which the exact values are

147

Chapter 7. Environment-independent Human Pose Estimation with
Drones

estimated online. The full human (or skeleton) state vector is then
given by:

xt = [Joints |Bonelengths] = [xjoint,xbone] ∈ R3m+(m−1) .

7.4.3. Drones and Cameras

We consider n drones, each of them equipped with a camera. The state
of each quadrotor is given by its position pq ∈ R3, its velocity ṗq ∈
R3and its orientation, i.e. roll Φq, pitch Θq and yaw Ψq. For drone i,
its camera is attached to the drone with a gimbal of controllable pitch
θg and yaw ψg. For brevity, we assume the camera position and the
quadrotor position to be identical. The full state vector of a drone is
de�ned as:

xq = [Quadrotor |Camera] = [pq, ṗq,Φq,Θq,Ψq, θg, ψg] ∈ R11,

where the camera state is

xcam = [pq, θg, ψg] ∈ R5,

and the additional states for the quadrotor are

xq = [ṗq,Φq,Θq,Ψq] ∈ R6.

Note that the Parrot Bebop's SDK demands angles as input and hence
we represent rotations as such for the control of the robot and its gim-
bal. For our optimization we always represent rotations as quaternions
to avoid gimbal locking. For instance, the 3D camera orientation is
denoted by the quaternion q̄c = q̄(θg, ψg) ∈ SO(3) and the orientation
of the drone by q̄q = q̄(Φq,Θq,Ψq) ∈ SO(3).

7.4.4. State-space Structure and Filtering Strategy

Since all robots and the human move dynamically, solving the problem
considered here requires the estimation of the full system state, which
consists of the drone states and the human state. This leads to a

148

7.4. Modeling

very large state-space of 11n+ 3m+ (m− 1). In our implementation
this dimensionality is 73. Since the computational cost of a single
�lter iteration grows cubically with the number of states, a naive
implementation would not run in real-time. We leverage two key ideas
to reduce the computational cost and render this problem tractable in
real-time. (1) We separate the constant, but unknown bias sates from
the state-space. This technique is known as separate-bias or two-stage
estimation [Friedland, 1969; Hsieh, 2000]. See Sec.7.5.4 for details of
the online bone length estimation xbone. (2) We separate the drone
states that are not necessary for the human pose estimation, but that
have fast dynamics, from the overall state-space. Following [Gibbs,
2011] we refer to these separable states as control states. See Sec.7.5
for details on human and drone state estimation.Based on concepts
(1) and (2), we can structure the state space into three groups:

• Pose: States used for the human pose estimation.

• Bias: Bone lengths that are constant but unknown.

• Control: Additional states used for quadrotor control.

We now restructure the state space accordingly:

x = [Cameras, Joints︸ ︷︷ ︸
Pose State

| Quadrotors︸ ︷︷ ︸
Control State

| Bonelength︸ ︷︷ ︸
Bias State

]

= [xc1 , . . . ,xcn ,xjoint︸ ︷︷ ︸
Pose State

| xq1 , . . . ,xqn︸ ︷︷ ︸
Control State

| xbone︸ ︷︷ ︸
Bias State

],

where the Pose state is

xpose = [xc1 , . . . ,xcn ,xjoint]. (7.1)

To solve this problem, we apply an error state Kalman �ltering
(ESKF) strategy to pose state estimation. This allows us to circum-
vent dynamic modeling errors [Roumeliotis et al., 1999], singularities
in the estimation of the covariance matrices of the camera poses [Lef-
ferts et al., 1982b] and �lter inconsistencies caused by unobservable
states [Castellanos et al., 2004].

149

Chapter 7. Environment-independent Human Pose Estimation with
Drones

Furthermore, the entire constellation of poses is relative to each
other and hence, if not taken care of properly, the solution is free
to drift arbitrarily. For consistency in the estimation, a global posi-
tion reference for the human-multi-robot team is required. To address
this issue we �rst estimate the global pose of one drone, which sub-
sequentially is used as reference frame to express all other poses and
feature locations. However, even this reference drone has no access
to drift-free positional information and hence a recursive �lter would
incur in growing uncertainty in the pose estimate. To alleviate this is-
sue, we adopt a robo-centric EKF formulation inspired by [Castellanos
et al., 2004; de Palézieux et al., 2016]. In our formulation, the world
reference frame and feature locations are expressed with respect to a
moving reference frame that is updated to the current estimated leader
pose after every �lter update. The (unobservable) uncertainty of the
absolute camera position, traditionally associated with the current es-
timate, is now associated with the world reference pose. Linearization
is now performed around the low uncertainty current estimate of the
camera pose, avoiding accumulation of error.
The above robo-centric estimation lends itself to a formalization as

error-state �lter [Castellanos et al., 2004; Roumeliotis et al., 1999].
Since we assume small motion, we can decouple the absolute, yet un-
known, pose state xpose into an estimated prior state and an additional
small error state δxpose :

• Prior state: The prior state xprior is the a priori estimate of
the pose xpose using all available onboard sensors (imu, optical
�ow).

• Error state: The error state δxpose describes the residual between
the a priori and the a posteriori estimate of the pose state
xpose after fusing prior estimates and camera measurements (i.e.,
marker locations).

We can now write the a posteriori estimate of the pose state:

xpose := xprior ⊗ δxpose . (7.2)

150

7.4. Modeling

where ⊗ denotes the fusion of the a priori total state and the a pos-
teriori error state. Linear quantities are updated additively, while
rotational entries are updated multiplicatively. Note that xpose is the
desired quantity we seek to optimize. That is, at the end of the pro-
cedure detailed in Alg 7, xpose will contain the estimate of the camera
swarm and the skeletal con�guration.

Algorithm 7 Joint Skeleton and Camera Pose Estimation

1: loop
2: get camera images and label joint positions: . Sec.7.7
3: for every camera do
4: zBlobs ←MarkerDetection(Image)
5: zj ←MarkerLabeling(Blobs)
6: end for
7:

8: estimate human and drone pose: . Sec.7.5
9: [xpose]←JointPoseEstimation(zj ,xbone,xcam)

10: [xbone]←BonelengthEstimation(xjoint)
11:

12: for every drone do
13: full drone state estimation:
14: [xq]←quadStatesEstimation(zodo,xcam)
15:

16: compute drone inputs: . Sec.7.6.2
17: update cost & constraints, solve MPC Eq. (7.14)
18: apply_inputs(uq0

) to drone
19: end for
20: end loop

151

Chapter 7. Environment-independent Human Pose Estimation with
Drones

7.5. Joint Camera and Human State
Estimation

Given the above �ltering structure, recovering the skeletal con�gura-
tion of the subject alongside the position of the camera drones now
boils done to estimating the Pose state xpose accurately. This Pose
state estimate is then used to compute the control inputs for the
swarm for the next timestep (see Sec. Sec.7.6.2) to ensure observabil-
ity of the human skeleton. We attain this estimate online via recursive
estimation repeating a prediction and update steps alternatingly.

7.5.1. Pose State Propagation

To accurately estimate the humans 3D joint positions we �rst need to
establish where the cameras are relative to the subject - this itself is
in the absence of global positioning an underconstraint problem. To
initialize our optimization we use the sensors of the drones to get an
a-priori estimate xprior of the pose state xpose. We denote by zodoi
the estimated position of drone i, given by an onboard optical �ow
estimation algorithm [Bristeau et al., 2011]. Note that at this point
neither of the drone has any information about the location of the
remaining n− 1 drones.

To establish the relative transformations, the robot-human constel-
lation requires an absolute position reference. Since the position dy-
namics of n have only 3(n − 1) independent degrees of freedom [Nä-
geli et al., 2014], we require only one absolute position estimate. To
approximate this global reference, we pick of one drone, which we
refer to as the leader drone and use the associated odometry estim-
ate zodo1 and the resulting position pq1, as the entire constellations
global position estimate. Note that this estimate drifts over time but
experimentally we found it to be su�ciently accurate even over long
distances and time horizons (see accompanying video).

152

7.5. Joint Camera and Human State Estimation

Camera pose propagation: Following Sec.7.3, we assume (4) that all
drones and the human are approximately translating with the global
frame, de�ned by the lead camera. For the lead drone we consider
that its position estimate is given by its odometry,

pq
k+1
1 ← zodo1 Drone 1 position propagation.

We can then compute the translation δ of the lead drone in one
time step, δ := zodo1 − pq1 = pq

k+1
1 − pq1.

From assumption (4), the position estimate of the remaining drones
can be initialized by adding the position change δ of the lead drone
to the latest position estimate. For drone i > 1,

pq
k+1
i ← pqi + δ Drone i>1 position propagation.

Following the covariance update proposed in [de Palézieux et al.,
2016; Castellanos et al., 2004], we marginalize out the position error
covariance of the position dynamics for the leader drone, Pp

k+1
1 = 0 ∈

R3×3, and for all the remaining drones, Pp
k+1
i = Pp

k
i +Qpos ∈ R3×3.

The parameter Qpos is a diagonal matrix containing the standard
deviation of the expected position change from the initial state, and
is a tunable parameter.
Again applying assumption (4), the estimated center of mass of the

human is also translated by δ,

xk+1
j ← xj + δ. (7.3)

The covariance of the skeletal joints state is then given by P k+1
j =

P kj + Qj . The parameter Qj is a diagonal matrix containing the
standard deviation of the expected position change from the initial
state, and is a tunable parameter.

7.5.2. Filter measurements

After having established an initialization of the di�erent positions, we
use the two following quantities to estimate the δ and hence to update
the pose state xpose:

153

Chapter 7. Environment-independent Human Pose Estimation with
Drones

• Camera measurements: Pixel-coordinates of the measured
marker positions from each camera, denoted by zj .

• Bone-length measurements: denoted by xbone, and obtained
with the estimated bias state, which we discuss in Section 7.5.4.

Joint residual: At each iteration we receive new camera measure-
ments. In our implementation these are 2D marker positions extrac-
ted from the images. With these measurements we perform an update
step of the �lter. More speci�cally, we use the pixel measurements
of all markers seen by all cameras as data term in order to minim-
ize the resulting residual between the estimated marker positions and
the incoming measurements. The estimate is attained via the prior
state xprior. Without loss of generality, but slight abuse of notation,
we describe the measurement residual of a joint a seen by camera i.
To build the residual ρj between the joint measurement and the es-
timated joint measurement, we project the estimated joint position
pjoint ⊂ xjoint ⊂ xprior into the camera frame using the prior camera
position pq ⊂ xprior and orientation q̄q ⊂ xprior. The projection is
performed via a standard pinhole camera model [Hartley and Zisser-
man, 2003]. The estimated 2D joint position is then attained via a
projection into undistorted pixel coordinates,

hj(xprior) =

mxfy + Cx

myfx + Cy

 with m =
1

rcz

rcx

rcy

 , (7.4)

where r = pjoint−pq is the relative vector between the joint estimate
and the camera center, and rc = R(q̄q)r is the vector r rotated into
the camera frame. Pixel coordinates m are computed via the camera
intrinsics f = [fy, fx] and C = [Cx, Cy].
The residual for joint a seen by camera i is then given by

ρj = v − hj(xprior) ∈ R2, (7.5)

where v ⊂ zj denotes the measurement element for joint a and camera
i.

154

7.5. Joint Camera and Human State Estimation

Bone length residual: Conceptually we treat the bone lengths as
constant in this �lter. However, for modelling convenience we follow
[Friedland, 1969] and include them as measurements a�ected by zero
mean Gaussian noise into the �ltering framework.
An individual bone-length prediction can be computed as the Euc-

lidean distance between two adjacent 3D joint positions pja and pjb .
It is therefore given by hb = ‖pja − pjb‖. For a single bone i, the
bone-length residual ρb is then

ρb = bi − hb(xprior) ∈ R1, (7.6)

where bi ⊂ xbone is the constant, but a-priori unknown, bone-length.
We estimate this quantity online, see Sec.7.5.4 for details. Intuitively,
this residual will ensure that the solution converges to a skeletal con-
�guration in which bones have a constant length. While the physical
bone does not change its length at all, this formulation allows for
slight variation in relative joint distances. This is due to the di�-
culties of integrating hard-constraints into recursive �lters and due to
the fact that the markers and their detections may move relative to
the actual joint. Finally, all the individual residuals are stacked into
a singe residual vector ρ = [ρj, ρb]

T . This residual vector is then used
to update the total state.

7.5.3. Filter Update

To update the total state xpose, via Eq. (7.2), we �rst compute the
error state δ by performing a Kalman iteration, thus minimizing the
residuals ρ. We compute the Kalman gain K with respect to the
measurement models hj(·) and hb(·), evaluated at the current state
estimate. We then compute the Jacobian, denoted by H, of Eq. (7.5)
and Eq. (7.6) with respect to the error state δ and linearized around
its expected value E [δ] = 0. Note that this step in practice is highly
involved and involves computation of derivatives for the quaternions
in xpose ∈ SO(3), with respect to the error state δ.

155

Chapter 7. Environment-independent Human Pose Estimation with
Drones

The a posteriori error state is then computed by

δ = Kρ, (7.7)

and the estimated total state is updated such that the expected error
state is once again zero E [δ] = 0. This allows us to rewrite Eq. (7.2):

xk+1
pose = xkpose ⊗ δ. (7.8)

To make this nonlinear state estimation problem of a discrete-time
stochastic system tractable in real-time, we have posed it as an error-
state extended Kalman �lter (EKF), which computes the state es-
timates as maximum a posteriori (MAP) estimate. The computed a
posteriori error state δ is thus only a �rst order approximation of the
true error state. The accuracy of the state estimate can be improved
by repeatedly performing an update with a single set of measure-
ments, this is known as an iterated state update (ISEKF) [Gibbs,
2011]. Via re-linearization of the measurement equation around the
updated state the IEKF avoids issues with �lter convergence, due to
accumulated linearization error.
We now have attained an estimate of the joint state of the multi-

robot human team including the desired human pose con�guration via
optimizing xpose. The covariance matrix is updated with the standard
Kalman Filter equation:

Pk+1 = (I −KH) Pk (7.9)

7.5.4. Bone Length Estimation

The bias or bone-length states xbone of our �lter remain constant over
time, but are unknown a-priori. We use an additional linear Kalman
�lter with a zero order state propagation model [Gibbs, 2011] to estim-
ate the bonelength, given the estimated joint positions pj ∈ xprior. We
only perform the �lter update of a bone if both corresponding joints
pja and pjb are seen at least by two cameras.

156

7.6. Camera Control

7.6. Camera Control

For accurate human pose estimation we must ensure that the human
is always in the �eld of view of each drone and that each drone in the
swarm records the human from a di�erent viewpoint. To achieve this,
we build upon the control method of [Nägeli et al., 2017], de�ning a
N -step �nite-horizon constrained non-linear optimization problem at
time instant k. Note that for here we assume known drone and human
states as well as 2D marker positions.

Robot model: To generate correct control inputs, a mathematical
model of the drone in form of a non-linear di�erentiable function f :
Rnx×nu → Rnx , discretized using a standard forward Euler approach
is needed. The discrete-time state update equation of the drone is
denoted by

xqk+1
= f(xqk ,uqk) ,

where nx is the dimension of the state xq ∈ Rnx , nu is the dimension
of the input uq ∈ Rnu and superindex k denotes the discrete time
instant. In our experiments we use a Parrot Bebop2 and include
dynamics of the (software) gimbal. This results in nx = 11 and nu =
6. With this model in place we de�ne a number of cost terms to
constrain the camera motion relative to the user. For given state xqk ,
an input uqk and the predicted position of the human at time-step
k, we can compute a cost Jk that penalizes deviations from a desired
relative orientation, a desired position and a desired size of the human
in the image. This is equivalent to maintaining an approximately
constant distance and viewing angle with respect to the human and
is de�ned in image space. A terminal cost JN , which only depends on
the state xqN and the predicted position of the human at time-step N ,
is computed analogously. The desired values are de�ned by the user
and can vary between drones. For the human prediction we currently
employ a constant velocity model.

157

Chapter 7. Environment-independent Human Pose Estimation with
Drones

7.6.1. Marker Visibility

To ensure that each drone can observe as many of the markers as pos-
sible we ask each drone to keep the bounding box of the detected and
labeled marker positions at a desired 2D position on-screen. Further-
more, we control the relative distance to the human via the size of the
projected bounding box and the viewing direction of each drone with
respect to the orientation of the human to maximize marker coverage.
Via a constant velocity model we predict the human states xt into the
future. These include the position pt of the center of the bounding
box and its orientation.

ci(xq,xt) = ‖ρm‖Qm with ρm =
rch
‖rch‖

−
rcchd
‖rcchd‖

, (7.10)

where rch is the ray from the camera to the human and rcchd =(
mx,yd, 1

)
∈ R3 is the vector through the desired screen-space po-

sition, where pixel coordinates mx,yd are computed via the camera
intrinsics. The screen-size of the bounding box is controlled via the
quadratic error function cs : R7 → R+ on the residual between the
actual σ and desired σd Euclidean distance between user's position
pt, extracted from xt, and the camera's pq:

cs(pt,pq, σd) = ‖ ‖pt − pq‖2 − σd ‖Qσ
. (7.11)

Similarly, the relative viewing angle per drone is controlled via the
quadratic error function ca : Rnx+6 → R+ on the residual ρa of the
camera relative to the orientation of the human:

ca(xq,xt) = ‖ρa‖Qa
with ρa =

rch
‖rch‖

− ad
‖ad‖

, (7.12)

where rch is the vector from the center of the camera to the human
in the global frame, and ad is the desired relative viewing orientation,
given by

ad =
[
sin θd cos (ψd + ψh) , sin θd sin (ψd + ψh) , cos θd

]T
,

158

7.6. Camera Control

where ψh is the current orientation of the human and θd and ψd are
the desired viewing angles, both speci�ed by the user and di�erent for
each drone in order to observe the human from di�erent view points.

7.6.2. Trajectory Optimization

For a given drone, and in a slight abuse of notation, we denote by xq =
[xq0

, . . . ,xqN] and uq = [uq0
, . . . ,uqN−1

] the computed trajectory and
inputs, where uq0

and uq0
are the initial states and inputs for the

drone. We take a linear combination of the error measures for image
location Eq. (7.10), size Eq. (7.11) and viewing angle Eq. (7.12) to
de�ne a stage cost for trajectory optimization:

Jk = alci(xqk ,xtk) + adcs(pqk,xtkσd) + aaca(xqk ,xtk) , (7.13)

where the scalar weight parameters al, ad, aa > 0 can be set inter-
actively to control the (relative) importance of the di�erent terms.
The trajectory and control inputs of the drone at each time step are
computed via the solution of the following N -step �nite horizon con-
strained nonlinear optimization problem at time instant t.

min
x,uq

N−1∑
k=0

(
Jk + uTqkRuqk

)
+ aNJN (7.14)

subject to x0 = x̂qt
(Initial state)

xqk+1
= f(xqk ,uqk), (Dynamics)

xqk ∈ X , (State constraints)

uqk ∈ U , (Input constraints)

∀k ∈ {0, . . . , N − 1}
xqN ∈ X , (State constraints)

where R ∈ Snu+ is a positive de�nite penalty matrix to avoid excessive
use of the control inputs. The scalar aN > 0 is a weight parameter
used to weight a so-called terminal cost JN on the �nal stage. This is

159

Chapter 7. Environment-independent Human Pose Estimation with
Drones

common in �nite-horizon schemes to mimic long horizons, approxim-
ating the in�nite horizon solution. The vector x̂qt

denotes the estim-
ated value of the current state xq. Finally, the sets X and U denote
the sets of feasible states and inputs for drone, respectively. These can
be derived from physical limits of the environment and by the internal
constraints of the �ying camera hardware, e.g. bounds on vertical and
horizontal velocities as well as on roll and pitch angles. We obtained
the limits from the documentation of the Parrot SDK [Par, 2015].
While each quadrotor model has di�erent values of these bounds, in
general such bounds exist and can be assumed to be known for a
particular model.
Additional constraints for avoiding collisions between the drones

and between each drone and the tracked human could also be added,
analogously to [Nägeli et al., 2017].
The drone is actuated using the optimal inputs from the �rst step

uq0
. Importantly, a new trajectory is recomputed at each time-step,

taking updated sensor data into consideration.

7.7. Implementation

Our experiments are conducted on a standard desktop PC (Quadcore
Intel i7 CPU@3.5 GHz). The subjects are tracked directly by the
drones via a custom active LED marker scheme no external motion
capture system was used. We implement the recursive estimation
algorithm using Matlab.

Quadrotor hardware:

We use Parrot Bebop2 quadrotors in all our experiments with an in-
tegrated electronic gimbal the camera has been modi�ed to remove
daylight illumination but record IR illumination (cf. Fig. 7.4). All
communication between the drones and the host PC is handled via
ROS [Quigley et al., 2009] and we directly send the control inputs
from the �rst time-step u0 without an additional feedback controller

160

7.7. Implementation

Figure 7.3.: Our system consists of two drones observing 13 active
LED markers worn on the users body. The controller,
described in Sec.7.6.2, computes control inputs fror the
drones in order to see as many markers as possible.
From the 2D detections observed by the quadrotors, the
human pose is estimated in real-time.

for trajectory tracking on the drone.

7.7.1. Active Markers

Our method takes 2D joint detections as input. While body-part de-
tection in monocular images is possible [Chen and Yuille, 2014; Newell
et al., 2016; Tompson et al., 2014; Toshev and Szegedy, 2014; Wei
et al., 2016] we leave full integration of such methods for future work.
Instead we utilize body-worn markers allowing for simple detection
and unique labeling of joints. Our setup consists of 13 active IR-LED
markers attached to a morphsuit (see 7.3).

161

Chapter 7. Environment-independent Human Pose Estimation with
Drones

Figure 7.4.: In order to detect our proposed active marker detection
scheme only requires little modi�cation to the Parrot
Bebop's hardware and is hence cheap. The camera has
to be removed �rst (left). First, the lens-mount has to
be removed using a heat-gun. Then, the infrared �lter
(read) can be removed and the daylight �lter (blue) can
be put on the lens mound. In the last step, the camera
has to be reasembeld and recalibrated.

A band-pass �lter was added to the camera lenses, removing day-
light but letting IR illumination pass. Each marker is composed of two
LEDs, one illuminated permanently and the other displaying a unique
temporal pattern. Markers are segmented from the background via
simple image processing operations. The temporal pattern creates
varying image intensities which are converted into a bit-stream which
is used to uniquely identify markers and to track them over time (see
Appendix 9.1 for details.)

7.8. Experiments

Our method enables motion capture in scenarios that are di�cult or
entirely infeasible with traditional techniques. Hence, direct quantit-
ative evaluation of accuracy is di�cult. Furthermore, the accuracy is

162

7.8. Experiments

a�ected by the placement of markers on the body and processing of
the resulting images as well as camera calibration. We demonstrate
the feasibility and robustness of our proof-of-concept implementation
in �ve experimental evaluations where we continuously reconstruct
full body pose of a subject during fast movements, moving through
large-scale scenes, in di�cult to reach locations, indoors and outdoors.

Fast Motion (Experiment 1): In a �rst experiment, a participant
performs jumping jacks. The sequence in Fig. 7.5 shows one half-cycle
of a jumping jack (duration: 0.15 seconds). The maximal joint velo-
city is limited by the camera sampling rate (30Hz in our experiment).
The reconstructed joint positions are indicated in yellow, the skeleton
is projected into the image and rendered in green.

Climbing (Experiment 2): To demonstrate the location independ-
ence we show results form our system being deployed in a di�cult to
reach location. A subject climbs up, across, and down a climbing wall,
while the drones track the position. Extracts from this sequence can
be seen in Fig. 7.10. The drone positions (indicated in red) are op-
timized to see all markers and hence automatically follow the subject,
adjusting their height above ground without external control.

Long trajectory (Experiment 3): Long-range trajectories are a par-
ticularly challenging scenario for traditional motion capture approaches.
To demonstrate the environment independence of our approach, we
ask a participant to walk in large circles in an area that exceeds typical
motion capture spaces signi�cantly. Fig. 7.6, top shows di�erent snap-
shots from the sequence, drones highlighted in red. Fig. 7.6, bottom
illustrates the corresponding estimated skeletal con�gurations. Note
that in this experiment the system tracks the user over time period
of 3 min and over a trajectory length of 170 meters. We observed an
absolute position drift of about 2m, caused by the integrating nature
of the optical �ow estimates. In Fig. 7.8 we show the cumulated joint

163

Chapter 7. Environment-independent Human Pose Estimation with
Drones

positions (red), relative to the person's center of mass over the long
walking sequence.

Ground-truth comparison (Experiment 4): To compute the expec-
ted accuracy of our method we performed an experiment with a mo-
tion capture system. In particular, we compare the estimated distance
between the hand of the subject and one of the drone cameras with
that obtained from the vicon based ground truth. In Fig. 7.9 we show
the distance from the left hand to the �rst drone camera. Over a 30
second sequence We obtained a standard deviation of 2.2cm.

Outdoor test (Experiment 5): We assess the environment independ-
ence of the proposed approach via an additional outdoor experiment.
Fig. 7.7 shows a motion sequence with the live reconstruction of the
skeleton (green) in overlay. The drones are highlighted in red for
better visibility.

Computational complexity: In principle, the our method could track
multiple sets of markers (multiple subjects). However, the complexity
of the algorithm grows cubically with the number of measurements
and quadratically with the number of states. In our proof of concept
implementation the number of states is (6n+ 3m) and the number of
measurements is (2m×n). Yet, the current image frame-rate (30Hz) is
well below the �lter update speed (100Hz), providing enough margin
to increase the number of drones or subjects tracked.

164

7.8. Experiments

Figure 7.5.: Experiment 1: A subject performing jumping jacks. The
sequence is captured with a camera and the reconstruc-
tion of our system is overlayed. The speed limitation
of motions we can track is limited by the frame-rate of
the Parrot Bebop 2 live image stream and therefore by
the marker tracking. The estimated joint positions are
indicated in yellow, the estimated skeleton is marked in
green.

165

Chapter 7. Environment-independent Human Pose Estimation with
Drones

Figure 7.6.: Experiment 3: Top: Subject walking over a long dis-
tance and time period in circles - indicated in blue - with
a walking speed around 1.5ms (top). The drones follow
the subject and always position themselves to optimally
observe the markers, mounted on the back of the sub-
ject. Bottom: reconstructed gait cycle recorded during
the experiment.

166

7.8. Experiments

Figure 7.7.: Experiment 5: Our system works indoors and outdoors.
Here we show extract from a long walking trajectory in
varied terrain.

Figure 7.8.: Experiment 4: The joint positions (yellow) are plotted
over time(red) with respect to the skeleton center. The
noise distribution is 3cm with respect to the mean joint-
trajectory.

167

Chapter 7. Environment-independent Human Pose Estimation with
Drones

Figure 7.9.: Experiment 4: Ground truth comparison between the
hands and the camera while walking. In the plot we
show the relative distance (x top, y middle and z bot-
tom) between the left hand and the �rst camera as a
representative result. The ground truth is blue, our es-
timate is red. The standard deviation is 2.2cm.

168

7.8. Experiments

Figure 7.10.: Experiment 2: A subject is climbing up a wall. The
drones follow the subject over di�erent elevations and
locations. The markers are indicated in yellow, the
estimated skeleton in green. The drones are indicated
in red.

169

Chapter 7. Environment-independent Human Pose Estimation with
Drones

7.9. Limitations and Conclusions

In this chapter we presented a real-time method for infrastructure-
free estimation of articulated human motion. The approach lever-
ages a swarm of camera-equipped quadrotors and jointly optimizes
the swarm's and skeletal states, including 3D joint positions and a
set of bones, in real-time. The problem is phrased as a non-linear
recursive �ltering estimation, namely IESKF, allowing us to natur-
ally link state estimates and measurements over time. Furthermore, a
robo-centric formulation minimizes accumulation of error due to lin-
earizion around the last state and uncertainty about the global trans-
form. Therefore the method provides robust long term predictions
of the global pose of the multi-robot swarm and the human skeletal
con�guration. We demonstrated the method in a number of challen-
ging settings where traditional multi-view methods are not applicable.
Our work lies the foundation for a host of exciting avenues of future
work. Foremost we currently rely on active LED-markers to detect
2D joint locations. The framework would naturally admit 2D detec-
tions stemming from a deep-learning method that extracts these joint
detections from natural images alone (e.g., [Wei et al., 2016; Toshev
and Szegedy, 2014]) or are even directly from videos (e.g., [Song et al.,
2017]). However, note that our method requires accurate tracking of
the human and makes small-motion assumptions, hence integration
of a deep-learning approach into our pipeline would have to address
several interesting challenges and would require strict real-time per-
formance. Environment features could be automatically extracted and
tracked to enable accurate localization of the quadrotors and tracking
of the human. Another interesting aspect is to extend our method
to work with learning-based approaches that directly predict 3D-pose
from images (e.g., [Mehta et al., 2017]). Another interesting challenge
is to incorporate our method into a pipeline that capture dense sur-
face deformation via model-�tting or related approaches (e.g., [Rhodin
et al., 2015; Robertini et al., 2016]). Finally, we are keen to explore
applications of method in graphics, AR/VR and bio-mechanics.

170

Chapter 8.

Conclusion

This chapter provides a summary of the contributions developed and
presented in this thesis. In addition, we also show limitations of our
methods and propose potential future research directions.
In this thesis, we investigated the problem of how the boundless

possibilities of �ying cameras can be transferred to creative people
on �lm sets. Moreover, we wanted to achieve the challenging goal to
allow non-drone experts to be able to use drones � without having to
know how to control a drone. Two major issues that currently prevent
the use of drones as everyday tools on �lm sets are identi�ed at the
beginning of this thesis as:

1. The cognitive load to simultaneously control a drone and pro-
duce artistic shot compositions is incredibly high.

2. A �lm set has an unpredictable and unstructured nature where
actors are walking around and scenes may change very quickly.

In contrast to Roberts and Hanrahan [2016] as well as Gebhardt et al.
[2016, 2018], we proposed a two-step approach, we suggested a separ-
ation planning problem into a real-time local feasible controller and a

171

Chapter 8. Conclusion

high-level planner. In our main contribution of this thesis, we present
the two building blocks needed to realize a local feasible controller,
which are the basis for intelligent drone cinematography. Our second
core contribution is the use of our presented building blocks and devel-
opment of a real-time drone based human motion capturing system.
In order to achieve these goals, we also contributed two methods for
GPS less drone navigation.

Keyframing and feasible path following: We provided a very �exible
model predictive control formulation that allows to abstract a drone
as a �ying camera. In contrast to the method presented by Galvane
et al. [2018], our solution allows multi subject framing and an easy way
to include a wide range of cinematographic concepts by de�ning key
frames. The controller steers the drone in a way that the desired key
frame � the frame the user wants to see the resulting camera footage
� is ful�lled. Cinematographic concepts such as shot size, subject
framing and relative view angles can easily be integrated.
Further, we present a method for drones that allows to track ar-

bitrary high level trajectories with guaranteed constraints. The in-
put trajectories do not need to be physically feasible in the sense of
Roberts and Hanrahan [2016]. In addition, we show extensions of the
proposed algorithm by adding the possibility to do multi-camera pro-
ductions using drones. The algorithms have a real-time inter drone
collision avoidance, and can �lm with a reciprocal visibility minimiz-
ation.

Drone-based motion capturing: In order to show the �exibility of
our proposed method, we developed a �ying motion capturing sys-
tem, which is our second core contribution. We developed the �rst
real-time human motion capturing system, which uses drones. We
provided a completely self-contained method that allows human skel-
eton tracking in real-time and controlling of the states of multiple
drones in real-time. We demonstrate the provided system in a wide
range of compelling experiments, including in and outdoor scenarios

172

8.1. Limitations and Future Research Avenues:

on larger scales. Using the proposed method, for the �rst time it is
possible to do large-scale human motion tracking independent of the
environment.

GPS-less position estimation: In addition to the above presented
core contributions, we provided a very lightweight and fast Visual In-
ertial Odometry (VIO) algorithm to accurately estimate the position
of a drone. In addition, we present an extension to the presented VIO
algorithm that directly includes pixel intensity for position estimation.

8.1. Limitations and Future Research
Avenues:

Some of the limitations and future research directions of the presen-
ted methods were already mentioned and discussed in the individual
sections. Here, we summarize and generalize them and show possible
solutions to overcome the limitations.

Real-time drone cinematography: Our method for key-framing and
path following addresses the issues we identi�ed to prevent non-experts
to use drones on a �lm set: Too high cognitive load and non-static
environment. Although we showed that the presented methods are a
step forward in the right direction, they still cannot fully solve the
problem: It is relatively easy to over constrain the presented meth-
ods. We can illustrate this with two examples: It is not possible for
the drone to stay on a path, while de�ning a shot size of an actor if
he moves around. Either, the drone has to leave the path and follow
the subject to keep the shot size constant or the drone stays on a
path and cannot �lm the subject with the desired shot size. To give
another example: We want to �lm two subjects from the front e.g.
to see both faces from the front but they are not exactly looking in
the same direction. A single drone cannot ful�ll this shot. Either,
the drone �lms the �rst subject from the front or the second sub-

173

Chapter 8. Conclusion

ject. These two examples show the main limitation of the proposed
method and the need of a high-level guidance controller, which is able
to provide feasible set points. With feasible we mean set points which
are not resulting in an over constraint optimization problem. A pos-
sible solution to the above problem of �lming two subjects can either
be:

(a) Film only one subjects from the front. The shot is ful�lled for one
subject, but not for the second.

(b) Use two drones.

It is not a priori clear how to solve this issue. It is a high-level op-
timization problem where the number of drones or human preferences
are part of the optimization objective. However, it is not clear how to
set up a cost function. A possible solution is to develop a combined
method with learning based cost objectives. This means it could be
possible to learn human preferences for example from classical �lms.

Drone-based motion capturing: In chapter 7 we presented a real-
time human motion capturing system using drones and active IR-LED
markers. The presented method is the �rst real-time motion capturing
system using drones. One of the biggest limitations of the system is
the marker tracking. In order to do a proper labeling of the markers,
light patterns have to be detected over time which limits the tracking
frame-rate. Therefore, we would directly suggest using a marker less
approach using 2D joint estimation algorithms. In addition, to robus-
tify the detection and to reduce visibility problems, motion patterns
can be analyzed and drones can be optimally placed around the sub-
ject. This will minimize observability issues and therefore lead to a
robust motion estimation. In addition, a full body mesh estimation
could be added in order to provide a performance capturing system.

Further research directions: In the following, we add further re-
search directions and possible, more detailed follow up projects.

174

8.1. Limitations and Future Research Avenues:

Environment independent position: Providing an absolute position
of a drone without the use of GPS is still an unsolved problem. Al-
though there are drones on the market which have a certain degree of
autonomy, a precise and absolute position estimate is still missing. In
order to use drones on a �lm set, maybe a marker-based solution could
be much more interesting than a complete infrastructure free solution.
This would allow providing the necessary �ight accuracy. Flying pre-
cise, accurate lower to the ground and with a velocities >100km/h
is still very challenging but would deliver completely new view per-
spectives. VirtualRail Interface: To de�ne the virtual camera rails
presented in chapter 6 a proper interface would be needed. Although
we used a Google maps based GUI interface for indoor experiments,
this is still not enough if you want e.g. �y accurately in a forest. To
�y in such narrow environments with lots of unmapped obstacles such
as trees, another interface is needed such as e.g. de�ning the virtual
rail on the ground using markers. Human Filming Imitation After
talking to producers1 they mentioned that drone shots are sometimes
too perfect. This means, industry as well as research are focusing
on perfect and smooth drone shots. However, sometimes the human
factor is wanted. E.g., if a producer wants to shoot a scene "out of the
eyes of a human". These shots are normally �lmed using a camera on
the shoulders of a camera operator. This human "motion" could be
learned and added on the smooth drone movement. This could give
the impression of a human camera operator.
Wildlife �lming and inspection: We see also potential in applying

the proposed building blocks for cinematography and add new cost
terms such as noise or distraction. This can be used e.g. to track
animals in the wild without disturbing them.

1Singorell.com, .stories.ch

175

Chapter 9.

Appendix

9.1. Active LED Markers

For reproducibility we detail how we extract marker IDs from the
drones onboard camera streams.

Marker labelling; To produce labeled measurements of marker po-
sitions in the image, bright blobs corresponding to markers are seg-
mented from the background. Each marker blinks with a distinct
bit pattern and when tracked over time the pixel intensities may be
converted into a bitstream indicating the on- or o�-state of the modu-
lated LED. The extracted bit pattern allows for unique identi�cation
of each marker.

Marker detection: Intensity blobs corresponding to our marker can-
didates are segmented from the background by applying an intens-
ity threshold on input frame Ii. A morphological opening operation
is used for noise removal and the remaining connected components
are marker candidates Ci. Marker candidates are tracked via a KLT
tracker and associated with the newly detected marker candidates.

177

Chapter 9. Appendix

Bitstream conversion: Each frame Ii provides a sample s
j
i of marker

Mj 's current signal bit state bjcur ∈ {0, 1, 0.5}, where bjcur = 0.5 de-
notes a corrupted signal.

Since apparent marker intensity depends on the current state of the
blinking LED and extraneous in�uences, dynamic thresholding is used
to classify the state as on (logical 1) or o� (logical 0). This marker-
speci�c threshold is computed as the moving average of a marker's
intensities over a sample size of Nwindow frames.

Note that our system clocks are not synchronized and hence the
time at which the LEDs state switches ttransition has to be approx-
imated by a transition window [ts, te]. This is done by �nding the
frames Ii and Ii+1 where the sample bits of multiple markers change
their value, i.e. �nd i such that |{j | sji 6= sji+1} | > 3. Because
the signal pattern frequency f is known, it can be assumed that
ttransition = ttransition+ 1

f and the transition window can be updated
accordingly. The transition time window allows us grouping samples
belonging to the same signal bit bjcur . Namely, we choose samples:

{sjl , ..., s
j
l+k} = {sji | timestamp(Ii) > te ∧ timestamp(Ii) < ts +

1

f
}

Having multiple samples per signal leads to increased robustness of
the bit classi�cation process. The resulting signal bit for a Marker j
is computed as bjcur = f(sjl , ...s

j
l+k)) with

f(sjl , ...s
j
l+k)) =


1, if 1

K

∑K
i=0 s

j+i
l > 0.6

0, if 1
K

∑K
i=0 s

j+i
l < 0.4

0.5, otherwise

The resulting bitstream can be used to match the extracted to the
known patterns which correspond to unique marker labels.

178

9.2. Mutual Visibility

9.2. Mutual Visibility

To ensure that no other camera is in the �eld of view, for camera i we
approximate its view frustum by a bounding cone C, de�ned by the
image plane P , the focal length [fy, fx], the focal point [Cx, Cy], the
center of the camera pc and its orientation Rq, see Fig. 6.5. For each
other drone j, we test if it is inside the cone C. We �rst compute the
view direction rview = Rq[0, 0, 1]T of the camera and the intersection
point pint = cintrview, where cint = rTijrview and rij = pqj −pci is the
relative vector from the camera to drone j. To determine if drone j
is outside of the view cone C, we compute the distance dsurf from the
drone to the cone surface at the intersection point pint,

dsurf = ‖rji − pTintrview‖ − rcone with rcone =
max(Cx, Cy)

max (fy, fx)
cint

If dsurf > 0 then drone j is outside of the viewing cone and if dsurf ≤ 0,
then drone j is visible in the camera image of drone i. To minimize
mutual visibility, we de�ne, for each pair of drones at states xqi and
quadStatesij, the cost term

cv(xqi,xqj) =

{
Qvd

2
surf if dsurf < 0

0 otherwise
, (9.1)

where Qv is a tunable weight.

179

Bibliography

(2015). 3DR Solo. http://3drobotics.com/solo.

(2015). APM Autopilot Suite. http://ardupilot.com.

(2015). DJI Ground Station. http://www.dji.com/product/

pc-ground-station.

(2015). Parrot SDK. http://developer.parrot.com/.

(2015). VC Technology Litchi Tool. https://flylitchi.com/.

Abramowitz, M., Stegun, I. a., and Miller, D. (1965). Handbook of
Mathematical Functions With Formulas, Graphs and Mathematical
Tables (National Bureau of Standards Applied Mathematics Series
No. 55). Courier Corporation.

Aguiar, A. P., Hespanha, J. P., and Kokotovi¢, P. V. (2008). Per-
formance limitations in reference tracking and path following for
nonlinear systems. Automatica, 44(3):598�610.

Aloimonos, J., Weiss, I., and Bandyopadhyay, A. (1988a). Active
vision. International journal of computer vision, 1(4):333�356.

Aloimonos, J., Weiss, I., and Bandyopadhyay, A. (1988b). Active
vision. Journal of computer vision.

181

http://3drobotics.com/solo
http://ardupilot.com
http://www.dji.com/product/pc-ground-station
http://www.dji.com/product/pc-ground-station
http://developer.parrot.com/
https://flylitchi.com/

Bibliography

Alonso-Mora, J., Naegeli, T., Siegwart, R., and Beardsley, P. (2015).
Collision avoidance for aerial vehicles in multi-agent scenarios.
Autonomous Robots, 39(1):101�121.

Altu§, E., Ostrowski, J. P., and Taylor, C. J. (2003). Quadrotor
control using dual camera visual feedback. In ICRA.

Altu§, E., Ostrowski, J. P., and Taylor, C. J. (2005). Control of a
quadrotor helicopter using dual camera visual feedback. The Inter-
national Journal of Robotics Research.

Anderson, B. D. and Moore, J. B. (2012). Optimal �ltering. Courier
Dover Publications.

Arijon, D. (1976). Grammar of the �lm language.

Bajcsy, R. (1988). Active perception. Proceedings of the IEEE,
76(8):966�1005.

Ballan, L., Taneja, A., Gall, J., Van Gool, L., and Pollefeys, M.
(2012). Motion capture of hands in action using discriminative
salient points. Computer Vision�ECCV 2012, pages 640�653.

Bell, B. M. and Cathey, F. W. (1993). The iterated kalman �lter up-
date as a gauss-newton method. IEEE Transactions on Automatic
Control, 38(2):294�297.

Betts, J. T. (2010). Practical methods for optimal control and estim-
ation using nonlinear programming, volume 19. Siam.

Bloesch, M., Omari, S., Hutter, M., and Siegwart, R. (2015). Robust
visual inertial odometry using a direct ekf-based approach. In Intel-
ligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 298�304. IEEE.

Blösch, M., Weiss, S., Scaramuzza, D., and Siegwart, R. (2010). Vision
based mav navigation in unknown and unstructured environments.
In ICRA, 2010 IEEE international conference on.

182

Bibliography

Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., and
Black, M. J. (2016). Keep it smpl: Automatic estimation of 3d
human pose and shape from a single image. In European Conference
on Computer Vision, pages 561�578. Springer.

Borrelli, F., Bemporad, A., and Morari, M. (2017). Predictive control
for linear and hybrid systems. Cambridge University Press.

Breckenridge, W. (1979). Quaternions proposed standard conventions.
Jet Propulsion Laboratory, Pasadena, CA, Intero�ce Memor-
andum.

Bregler, C. and Malik, J. (1998). Tracking people with twists and
exponential maps. In Computer Vision and Pattern Recognition,
1998. Proceedings. 1998 IEEE Computer Society Conference on,
pages 8�15. IEEE.

Bristeau, P.-J., Callou, F., Vissiere, D., and Petit, N. (2011). The
navigation and control technology inside the ar. drone micro uav.
IFAC Proceedings Volumes, 44(1):1477�1484.

Bristeau, P.-J., Martin, P., Salaün, E., and Petit, N. (2009). The
role of propeller aerodynamics in the model of a quadrotor uav. In
Control Conference (ECC), 2009 European, pages 683�688. IEEE.

Brown, D. C. (1971). Close-range camera calibration.

Bry, A., Richter, C., Bachrach, A., and Roy, N. (2015). Aggressive
�ight of �xed-wing and quadrotor aircraft in dense indoor environ-
ments. The International Journal of Robotics Research, 34(7):969�
1002.

Castellanos, J. A., Neira, J., and Tardos, J. D. (2004). Limits to the
consistency of EKF-based SLAM.

Chen, X. and Yuille, A. L. (2014). Articulated pose estimation by a
graphical model with image dependent pairwise relations. In NIPS,
pages 1736�1744.

183

Bibliography

Chen, Y., Chien, S. Y.-P., and DESROCHERS, A. A. (1992). General
structure of time-optimal control of robotic manipulators moving
along prescribed paths. International Journal of Control, 56(4):767�
782.

Christie, M., Olivier, P., and Normand, J.-M. (2008a). Camera Con-
trol in Computer Graphics. Computer Graphics Forum, 27(8):2197�
2218.

Christie, M., Olivier, P., and Normand, J. M. (2008b). Camera control
in computer graphics. Computer Graphics Forum, 27(8):2197�2218.

Civera, J., Grasa, O. G., Davison, A. J., and Montiel, J. M. M. (2009).
1-point RANSAC for EKF-based structure from motion. IROS.

Cozzi, P. and Stoner, F. (2010). Gpu ray casting of virtual globes. In
ACM SIGGRAPH 2010 Posters, SIGGRAPH '10, New York, NY,
USA. ACM.

Davison, A. J. (2003). Real-time simultaneous localisation and map-
ping with a single camera. In Computer Vision, 2003. Proceedings.
Ninth IEEE International Conference on. IEEE.

Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007).
Monoslam: Real-time single camera slam. Pattern Analysis and
Machine Intelligence, IEEE Transactions on.

de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P.,
and Thrun, S. (2008). Performance capture from sparse multi-view
video. In ACM SIGGRAPH 2008 Papers, SIGGRAPH '08, pages
98:1�98:10, New York, NY, USA. ACM.

de Palézieux, N., Nägeli, T., and Hilliges, O. (2016). Duo-vio: Fast,
light-weight, stereo inertial odometry. In 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages
2237�2242.

184

Bibliography

Denham, W. F. and Pines, S. (1966). Sequential estimation when
measurement function nonlinearity is comparable to measurement
error. AIAA journal, 4(6):1071�1076.

Domahidi, A. and Jerez, J. (2016). FORCES Pro: code gener-
ation for embedded optimization. https://www.embotech.com/

FORCES-Pro.

Domahidi, A., Zgraggen, A. U., Zeilinger, M. N., Morari, M., and
Jones, C. N. (2012). E�cient interior point methods for multistage
problems arising in receding horizon control. In Decision and Con-
trol, 2008. CDC 2008. 47th IEEE Conference on, pages 668�674.
IEEE.

Dou, M., Khamis, S., Degtyarev, Y., Davidson, P., Fanello, S. R.,
Kowdle, A., Escolano, S. O., Rhemann, C., Kim, D., Taylor, J.,
Kohli, P., Tankovich, V., and Izadi, S. (2016). Fusion4d: Real-time
performance capture of challenging scenes. ACM Trans. Graph.,
35(4):114:1�114:13.

Drucker, S. M. and Zeltzer, D. (1994). Intelligent camera control in
a virtual environment. In In Proceedings of Graphics Interface '94,
pages 190�199.

Elhayek, A., de Aguiar, E., Jain, A., Thompson, J., Pishchulin, L.,
Andriluka, M., Bregler, C., Schiele, B., and Theobalt, C. (2017).
Marconi�convnet-based marker-less motion capture in outdoor
and indoor scenes. IEEE transactions on pattern analysis and ma-
chine intelligence, 39(3):501�514.

Engel, J., Sturm, J., and Cremers, D. (2012). Camera-based nav-
igation of a low-cost quadrocopter. In Proc. of the International
Conference on Intelligent Robot Systems.

Engel, J., Sturm, J., and Cremers, D. (2013). Semi-dense visual odo-
metry for a monocular camera. In Computer Vision (ICCV), 2013
IEEE International Conference on. IEEE.

185

https://www.embotech.com/FORCES-Pro
https://www.embotech.com/FORCES-Pro

Bibliography

Engel, J., Sturm, J., and Cremers, D. (2014). Scale-aware navigation
of a low-cost quadrocopter with a monocular camera. Robotics and
Autonomous Systems (RAS), 62(11):1646��1656.

Espiau, B., Chaumette, F., and Rives, P. (1992). A new approach to
visual servoing in robotics. Robotics and Automation, IEEE Trans-
actions on, 8(3):313�326.

Faulwasser, T., Kern, B., and Findeisen, R. (2009). Model predictive
path-following for constrained nonlinear systems. In Decision and
Control, 2009 held jointly with the 2009 28th Chinese Control Con-
ference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference
on, pages 8642�8647. IEEE.

Fischler, M. a. and Bolles, R. C. (1981). Random sample consensus: a
paradigm for model �tting with applications to image analysis and
automated cartography. Communications of the ACM.

Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). Svo: Fast semi-
direct monocular visual odometry. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on. IEEE.

Fraundorfer, F., Heng, L., Honegger, D., Lee, G. H., Meier, L.,
Tanskanen, P., and Pollefeys, M. (2012). Vision-based autonom-
ous mapping and exploration using a quadrotor mav. In IROS.

Friedland, B. (1969). Treatment of bias in recursive �ltering. IEEE
Transactions on Automatic Control, 14(4):359�367.

Galvane, Q., Christie, M., Lino, C., and Ronfard, R. (2015). Camera-
on-rails: automated computation of constrained camera paths. In
Proceedings of the 8th ACM SIGGRAPH Conference on Motion in
Games, pages 151�157. ACM.

Galvane, Q., Christie, M., Ronfard, R., Lim, C.-K., and Cani, M.-P.
(2013). Steering behaviors for autonomous cameras. In Proceedings
of Motion on Games, pages 93�102. ACM.

186

Bibliography

Galvane, Q., Fleureau, J., Tariolle, F.-L., and Guillotel, P. (2016).
Automated cinematography with unmanned aerial vehicles. In
Eurographics Workshop on Intelligent Cinematography and Editing.
The Eurographics Association.

Galvane, Q., Fleureau, J., Tariolle, F.-L., and Guillotel, P. (2017).
Automated cinematography with unmanned aerial vehicles. arXiv
preprint arXiv:1712.04353.

Galvane, Q., Lino, C., Christie, M., Fleureau, J., Servant, F., Tariolle,
F., Guillotel, P., et al. (2018). Directing cinematographic drones.
ACM Transactions on Graphics (TOG), 37(3):34.

Ganapathi, V., Plagemann, C., Koller, D., and Thrun, S. (2012). Real-
time human pose tracking from range data. In European conference
on computer vision, pages 738�751. Springer.

Gebhardt, C., Hepp, B., Naegeli, T., Stevsic, S., and Hilliges, O.
(2016). Airways: Optimization-based Planning of Quadrotor Tra-
jectories according to High-Level User Goals. In SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI '16, New York,
NY, USA. ACM.

Gebhardt, C., Stevsic, S., and Hilliges, O. (2018). Optimizing for
Aesthetically Pleasing Quadrotor Camera Motion. ACM Trans.
Graph., 37(4):90:1�90:11.

Geijtenbeek, T. and Pronost, N. (2012). Interactive character anim-
ation using simulated physics: A state-of-the-art review. Comput.
Graph. Forum, 31(8):2492�2515.

Gibbs, B. P. (2011). Advanced Kalman �ltering, least-squares and
modeling: a practical handbook. John Wiley & Sons.

Gleicher, M. and Witkin, A. (1992). Through-the-lens camera control.
volume 26, New York, NY, USA. ACM.

187

Bibliography

Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in
Computer Vision. Cambridge University Press, New York, NY,
USA, 2 edition.

Hasler, N., Rosenhahn, B., Thormahlen, T., Wand, M., Gall, J., and
Seidel, H.-P. (2009). Markerless motion capture with unsynchron-
ized moving cameras. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 224�231. IEEE.

Hausman, K., Kahn, G., Patil, S., Müller, J., and Goldberg, K. (2016).
Cooperative Occlusion-Aware Multi-Robot Target Tracking using
Optimization. rll.berkeley.edu.

Hesch, J. A., Kottas, D. G., Bowman, S. L., and Roumeliotis, S. I.
(2013). Towards consistent vision-aided inertial navigation. In Al-
gorithmic Foundations of Robotics X. Springer.

Honegger, D., Greisen, P., Meier, L., Tanskanen, P., and Pollefeys,
M. (2012). Real-time velocity estimation based on optical �ow and
disparity matching. In IROS.

Hsieh, C.-S. (2000). Robust two-stage kalman �lters for systems
with unknown inputs. IEEE Transactions on Automatic Control,
45(12):2374�2378.

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli,
P., Shotton, J., Hodges, S., Freeman, D., Davison, A., and Fitzgib-
bon, A. (2011). KinectFusion: Real-time 3D Reconstruction and
Interaction Using a Moving Depth Camera. In Proc. ACM User
Interface Software and Technologies, UIST '11, pages 559�568.

Jin, H., Favaro, P., and Soatto, S. (2003). A semi-direct approach to
structure from motion. The Visual Computer.

Jones, E. S. and Soatto, S. (2011). Visual-inertial navigation, map-
ping and localization: A scalable real-time causal approach. The
International Journal of Robotics Research.

188

Bibliography

Joubert, N., Jane, L. E., Goldman, D. B., Berthouzoz, F., Roberts,
M., Landay, J. A., and Hanrahan, P. (2016). Towards a drone cine-
matographer: Guiding quadrotor cameras using visual composition
principles. CoRR, abs/1610.01691.

Joubert, N., Roberts, M., Truong, A., Berthouzoz, F., and Hanrahan,
P. (2015). An interactive tool for designing quadrotor camera shots.
volume 34, pages 238:1�238:11, New York, NY, USA. ACM.

Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for
optimal motion planning. International Journal of Robotics Re-
search, 30(7):846�894.

Katz, S. D. (1991). Film directing shot by shot: visualizing from
concept to screen. Gulf Professional Publishing.

Kerl, C., Sturm, J., and Cremers, D. (2013). Robust odometry es-
timation for rgb-d cameras. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA).

Kerrigan, E. C. and Maciejowski, J. M. (2000). Soft constraints and
exact penalty functions in model predictive control. In Control 2000
Conference, Cambridge.

Klein, G. and Murray, D. (2007). Parallel tracking and mapping for
small ar workspaces. In Mixed and Augmented Reality, 2007. IS-
MAR 2007. 6th IEEE and ACM International Symposium on.

Lam, D., Manzie, C., and Good, M. (2010). Model predictive con-
touring control. In 49th IEEE Conference on Decision and Control
(CDC), pages 6137�6142. IEEE.

Le�erts, E. J., Markley, F. L., and Shuster, M. D. (1982a). Kalman
�ltering for spacecraft attitude estimation. Journal of Guidance,
Control, and Dynamics, 5(5):417�429.

Le�erts, E. J., Markley, F. L., and Shuster, M. D. (1982b). Kalman
�ltering for spacecraft attitude estimation. Journal of Guidance,
Control, and Dynamics.

189

Bibliography

Leutenegger, S., Furgale, P. T., Rabaud, V., Chli, M., Konolige, K.,
and Siegwart, R. (2013). Keyframe-based visual-inertial slam using
nonlinear optimization. In Robotics: Science and Systems.

Li, M. and Mourikis, A. I. (2013). High-precision, consistent EKF-
based visual-inertial odometry. International Journal of Robotics
Research.

Li, R., Pang, M., Zhao, C., Zhou, G., and Fang, L. (2016). Monocular
long-term target following on uavs. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops,
pages 29�37.

Lim, H. and Sinha, S. (2015). Monocular localization of a moving
person onboard a quadrotor mav.

Lima, P. and Floreano, D. (2013). Audio-based Relative Positioning
System for Multiple Micro Air Vehicle Systems. RSS2013, (266470).

Liniger, A., Domahidi, A., and Morari, M. (2015). Optimization-
based autonomous racing of 1:43 scale rc cars. Optimal Control
Applications and Methods, 36(5):628�647.

Lino, C. and Christie, M. (2015). Intuitive and e�cient camera con-
trol with the toric space. ACM Transactions on Graphics (Proc.
SIGGRAPH 2015), 34(4):82.

Lino, C., Christie, M., Ranon, R., and Bares, W. (2011). The dir-
ector's lens: An intelligent assistant for virtual cinematography. In
Proceedings of the 19th ACM International Conference on Multi-
media, MM '11, pages 323�332, New York, NY, USA. ACM.

Liu, H., Wei, X., Chai, J., Ha, I., and Rhee, T. (2011). Realtime
human motion control with a small number of inertial sensors. In
Symposium on Interactive 3D Graphics and Games, pages 133�140.
ACM.

190

Bibliography

Lupashin, S., Schollig, A., Hehn, M., and D'Andrea, R. (2011). The
�ying machine arena as of 2010. In IEEE ICRA '11, pages 2970�
2971.

MacAllister, B., Butzke, J., Kushleyev, A., Pandey, H., and
Likhachev, M. (2013). Path planning for non-circular micro aer-
ial vehicles in constrained environments. In IEEE International
Conference on Robotics and Automation (ICRA), pages 3933�3940.
IEEE.

Mademlis, I., Mygdalis, V., Nikolaidis, N., and Pitas, I. (2018). Chal-
lenges in autonomous uav cinematography: An overview.

Madgwick, S. (2010). An e�cient orientation �lter for inertial and in-
ertial/magnetic sensor arrays. Report x-io and University of Bristol
(UK), 25:113�118.

Martinez-Cantin, R. and Castellanos, J. a. (2006). Bounding uncer-
tainty in EKF-SLAM: The robocentric local approach. Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE Inter-
national Conference on.

Mascelli, J. V. (1965). The �ve C's of cinematography. Gra�c Pub-
lications.

Matthies, L., Szeliski, R., and Kanade, T. (1988). Incremental estima-
tion of dense depth maps from image sequences. In Computer Vision
and Pattern Recognition, 1988. Proceedings CVPR'88., Computer
Society Conference on. IEEE.

Mehta, D., Sridhar, S., Sotnychenko, O., Rhodin, H., Sha�ei, M.,
Seidel, H.-P., Xu, W., Casas, D., and Theobalt, C. (2017). Vnect:
Real-time 3d human pose estimation with a single rgb camera.
volume 36.

Mellinger, D. and Kumar, V. (2011). Minimum snap trajectory gen-
eration and control for quadrotors. In Robotics and Automation

191

Bibliography

(ICRA), 2011 IEEE International Conference on, pages 2520�2525.
IEEE.

Michael, N., Mellinger, D., Lindsey, Q., and Kumar, V. (2010). The
grasp multiple micro-uav testbed. Robotics Automation Magazine,
IEEE, 17(3):56�65.

Moeslund, T. B., Hilton, A., and Krüger, V. (2006). A survey of ad-
vances in vision-based human motion capture and analysis. Com-
puter vision and image understanding, 104(2):90�126.

Molton, N., Davison, A. J., and Reid, I. (2004). Locally planar patch
features for real-time structure from motion. In BMVC.

Montiel, J., Civera, J., and Davison, A. (2006). Uni�ed inverse depth
parametrization for monocular SLAM. Analysis.

Mourikis, A. I. and Roumeliotis, S. I. (2007). A multi-state constraint
kalman �lter for vision-aided inertial navigation. In Robotics and
automation, 2007 IEEE international conference on, pages 3565�
3572. IEEE.

Mourikis, A. I., Trawny, N., Roumeliotis, S. I., Johnson, A. E., Ansar,
A., and Matthies, L. (2009). Vision-aided inertial navigation for
spacecraft entry, descent, and landing. Robotics, IEEE Transactions
on.

Mueller, M. W. and D'Andrea, R. (2013). A model predictive con-
troller for quadrocopter state interception. In Control Conference
(ECC), 2013 European, pages 1383�1389. IEEE.

Nägeli, T., Alonso-Mora, J., Domahidi, A., Rus, D., and Hilliges,
O. (2017). Real-time motion planning for aerial videography with
dynamic obstacle avoidance and viewpoint optimization. IEEE Ro-
botics and Automation Letters, 2(3):1696�1703.

Nägeli, T., Meier, L., Domahidi, A., Alonso-Mora, J., and Hilliges, O.
(2017). Real-time planning for automated multi-view drone cine-
matography. ACM Trans. Graph., 36(4):132:1�132:10.

192

Bibliography

Newcombe, R. A. and Davison, A. J. (2010). Live dense reconstruction
with a single moving camera. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on. IEEE.

Newcombe, R. A., Davison, A. J., Izadi, S., Kohli, P., Hilliges, O.,
Shotton, J., Molyneaux, D., Hodges, S., Kim, D., and Fitzgib-
bon, A. (2011a). Kinectfusion: Real-time dense surface mapping
and tracking. In Mixed and augmented reality (ISMAR), 2011 10th
IEEE international symposium on. IEEE.

Newcombe, R. A., Fox, D., and Seitz, S. M. (2015). Dynamicfusion:
Reconstruction and tracking of non-rigid scenes in real-time. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 343�352.

Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. (2011b). Dtam:
Dense tracking and mapping in real-time. In Computer Vision
(ICCV), 2011 IEEE International Conference on. IEEE.

Newell, A., Yang, K., and Deng, J. (2016). Stacked hourglass networks
for human pose estimation. In ECCV, pages 483�499.

Nägeli, T., Conte, C., Domahidi, A., Morari, M., and Hilliges, O.
(2014). Environment-independent formation �ight for micro aerial
vehicles. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1141�1146.

Nistér, D., Naroditsky, O., and Bergen, J. (2004). Visual odometry.
In Computer Vision and Pattern Recognition, 2004. CVPR 2004.
Proceedings of the 2004 IEEE Computer Society Conference on.
IEEE.

Oikonomidis, I., Kyriazis, N., and Argyros, A. A. (2012). Tracking the
articulated motion of two strongly interacting hands. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, pages 1862�1869. IEEE.

193

Bibliography

Pietzsch (2008). E�cient Feature Parameterisation for Visual SLAM
Using Inverse Depth Bundles. Bmvc.

Poiesi, F. and Cavallaro, A. (2015). Distributed vision-based �ying
cameras to �lm a moving target. In Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on, pages 2453�
2459. IEEE.

Pons-Moll, G., Romero, J., Mahmood, N., and Black, M. J. (2015).
Dyna: A model of dynamic human shape in motion. ACM Trans.
Graph., 34(4):120:1�120:14.

Pugh, J. and Martinoli, A. (2006). Relative localization and commu-
nication module for small-scale multi-robot systems. In Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE Inter-
national Conference on, pages 188�193. IEEE.

Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial
model predictive control technology. Control engineering practice,
11(7):733�764.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs,
J., Wheeler, R., and Ng, A. Y. (2009). Ros: an open-source ro-
bot operating system. In IEEE ICRA Workshop on Open Source
Software.

Rhodin, H., Robertini, N., Richardt, C., Seidel, H.-P., and Theobalt,
C. (2015). A versatile scene model with di�erentiable visibility ap-
plied to generative pose estimation. In Proceedings of the IEEE
International Conference on Computer Vision, pages 765�773.

Richards, A. and How, J. (2004). Decentralized model predictive
control of cooperating UAVs. In Decision and Control, 2008. CDC
2008. 47th IEEE Conference on, pages 4286�4291 Vol.4. IEEE.

Robertini, N., Casas, D., Rhodin, H., Seidel, H.-P., and Theobalt, C.
(2016). Model-based outdoor performance capture. In Proceedings
of the 2016 International Conference on 3D Vision (3DV 2016).

194

Bibliography

Roberts, M. and Hanrahan, P. (2016). Generating dynamically feas-
ible trajectories for quadrotor cameras. ACM Transactions on
Graphics (Proc. SIGGRAPH 2016), 35(4).

Roetenberg, D., Luinge, H., and Slycke, P. (2007). Moven: Full 6dof
human motion tracking using miniature inertial sensors. Xsen Tech-
nologies, December, 2(3):8.

Rose, C., Guenter, B., Bodenheimer, B., and Cohen, M. F. (1996). Ef-
�cient generation of motion transitions using spacetime constraints.
In Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, pages 147�154. ACM.

Rosten, E. and Drummond, T. (2005). Fusing points and lines for
high performance tracking. In IEEE International Conference on
Computer Vision (ICCV).

Roumeliotis, S. I., Sukhatme, G. S., and Bekey, G. A. (1999). Cir-
cumventing dynamic modeling: evaluation of the error-state kal-
man �lter applied to mobile robot localization. In Proceedings 1999
IEEE International Conference on Robotics and Automation (Cat.
No.99CH36288C), volume 2, pages 1656�1663 vol.2.

Sakane, S., Ish, M., and Kakikura, M. (1987). Occlusion avoidance of
visual sensors based on a hand-eye action simulator system: Heaven.
Advanced robotics, 2(2):149�165.

Saunders, J. B., Call, B., Curtis, A., Beard, R. W., and McLain,
T. W. (2005). Static and dynamic obstacle avoidance in miniature
air vehicles. AIAA Infotech@ Aerospace, 96.

Schöps, T., Engel, J., and Cremers, D. (2014). Semi-dense visual
odometry for AR on a smartphone. In ISMAR.

Schulman, J., Duan, Y., Ho, J., Lee, A., and Awwal, I. (2014). Motion
planning with sequential convex optimization and convex collision
checking. The International Journal of Robotics Research.

195

Bibliography

Schwarz, L., Mateus, D., and Navab, N. (2009). Discriminative hu-
man full-body pose estimation from wearable inertial sensor data.
Modelling the Physiological Human, pages 159�172.

Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M.,
Blake, A., Cook, M., and Moore, R. (2013). Real-time human pose
recognition in parts from single depth images. Communications of
the ACM, 56(1):116�124.

Smith, S. L., Schwager, M., and Rus, D. (2011). Persistent monit-
oring of changing environments using a robot with limited range
sensing. In Robotics and Automation (ICRA), 2010 IEEE Interna-
tional Conference on, pages 5448�5455. IEEE.

Song, J., Wang, L., Van Gool, L., and Hilliges, O. (2017). Thin-
slicing network: A deep structured model for pose estimation in
videos. arXiv preprint arXiv:1703.10898.

Srikanth, M., Bala, K., and Durand, F. (2014). Computational rim
illumination with aerial robots. In Proceedings of the Workshop on
Computational Aesthetics, pages 57�66. ACM.

Starck, J. and Hilton, A. (2003). Model-based multiple view recon-
struction of people. In null, page 915. IEEE.

Stoll, C., Hasler, N., Gall, J., Seidel, H.-P., and Theobalt, C. (2011).
Fast articulated motion tracking using a sums of gaussians body
model. In Computer Vision (ICCV), 2011 IEEE International Con-
ference on, pages 951�958. IEEE.

Swain, M. J. and Stricker, M. A. (1993). Promising directions in active
vision. International Journal of Computer Vision, 11(2):109�126.

Tanskanen, P., Kolev, K., Meier, L., Camposeco, F., Saurer, O.,
and Pollefeys, M. (2013). Live metric 3d reconstruction on mo-
bile phones. In Computer Vision (ICCV), 2013 IEEE International
Conference on. IEEE.

196

Bibliography

Tanskanen, P., Naegeli, T., Pollefeys, M., and Hilliges, O. (2015).
Semi-direct ekf-based monocular visual-inertial odometry. IROS.

Tarabanis, K., Tsai, R. Y., and Allen, P. K. (1991). Automated sensor
planning for robotic vision tasks. In Robotics and Automation, 1991.
Proceedings., 1991 IEEE International Conference on, pages 76�82.
IEEE.

Tautges, J., Zinke, A., Krüger, B., Baumann, J., Weber, A., Helten,
T., Müller, M., Seidel, H.-P., and Eberhardt, B. (2011). Motion
reconstruction using sparse accelerometer data. ACM Transactions
on Graphics (TOG), 30(3):18.

Taylor, J., Shotton, J., Sharp, T., and Fitzgibbon, A. (2012). The
vitruvian manifold: Inferring dense correspondences for one-shot
human pose estimation. In Computer Vision and Pattern Recogni-
tion (CVPR), 2012 IEEE Conference on, pages 103�110. IEEE.

Tekin, B., Márquez-Neila, P., Salzmann, M., and Fua, P. (2016). Fus-
ing 2d uncertainty and 3d cues for monocular body pose estimation.
arXiv preprint arXiv:1611.05708.

Tompson, J. J., Jain, A., LeCun, Y., and Bregler, C. (2014). Joint
training of a convolutional network and a graphical model for hu-
man pose estimation. In NIPS, pages 1799�1807.

Toshev, A. and Szegedy, C. (2014). Deeppose: Human pose estimation
via deep neural networks. In CVPR, pages 1653�1660.

Trawny, N. and Roumeliotis, S. I. (2005). Indirect Kalman Filter for
3D Attitude Estimation. University of Minnesota, Dept. of Comp.
Sci. & Eng., Tech. Rep.

Tsotsos, K., Chiuso, A., and Soatto, S. (2014). Robust inference for
visual-inertial sensor fusion. arXiv preprint arXiv:1412.4862.

University of Dallas (2016). Elements of Cinematography:
Camera. http://www.utdallas.edu/atec/midori/Handouts/

camera.htm. Accessed: 2016-09-02.

197

http://www.utdallas.edu/atec/midori/Handouts/camera.htm
http://www.utdallas.edu/atec/midori/Handouts/camera.htm

Bibliography

US, D. S., Kim, H., and Sastry, S. (2003). Decentralized re�ective
model predictive control of multiple �ying robots in dynamic envir-
onment.

von Marcard, T., Rosenhahn, B., Black, M. J., and Pons-Moll, G.
(2017). Sparse inertial poser: Automatic 3d human pose estimation
from sparse imus. Comput. Graph. Forum, 36(2):349�360.

Wei, S.-E., Ramakrishna, V., Kanade, T., and Sheikh, Y. (2016).
Convolutional pose machines. In CVPR, pages 4724�4732.

Weiss, S. and Siegwart, R. (2011). Real-time metric state estimation
for modular vision-inertial systems. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on. IEEE.

Wendel, A., Maurer, M., Graber, G., Pock, T., and Bischof, H. (2012).
Dense reconstruction on-the-�y. In Proceedings of the IEEE Inter-
national Conference on Computer Vision and Pattern Recognition
(CVPR). to appear.

Witkin, A. and Kass, M. (1988). Spacetime constraints. ACM Sig-
graph Computer Graphics, 22(4):159�168.

Xu, L., Liu, Y., Cheng, W., Guo, K., Zhou, G., Dai, Q., and Fang, L.
(2017). Flycap: Markerless motion capture using multiple autonom-
ous �ying cameras. IEEE Transactions on Visualization & Com-
puter Graphics, (1):1�1.

Zhang, W., Mueller, M. W., and D'Andrea, R. (2016). A controllable
�ying vehicle with a single moving part. In Robotics and Automation
(ICRA), 2016 IEEE International Conference on, pages 3275�3281.
IEEE.

Zhang, Z. (2012). Microsoft kinect sensor and its e�ect. IEEE Multi-
Media.

Zhou, X., Liu, S., Pavlakos, G., Kumar, V., and Daniilidis, K.
(2018). Human motion capture using a drone. arXiv preprint
arXiv:1804.06112.

198

Bibliography

Zhou, X., Zhu, M., Leonardos, S., Derpanis, K. G., and Daniilidis,
K. (2016). Sparseness meets deepness: 3d human pose estimation
from monocular video. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4966�4975.

Zollhöfer, M., Nieÿner, M., Izadi, S., Rehmann, C., Zach, C., Fisher,
M., Wu, C., Fitzgibbon, A., Loop, C., Theobalt, C., et al. (2014).
Real-time non-rigid reconstruction using an rgb-d camera. ACM
Transactions on Graphics (TOG), 33(4):156.

199

	1 Introduction
	1.1 Motivation
	1.2 Research Opportunities
	1.3 Intelligent Cinematography in the Literature
	1.4 Contribution Statement
	1.5 Publications
	1.6 Patents

	2 Preliminaries and Mathematical Foundation
	2.1 Notation
	2.1.1 Points and Vectors
	2.1.2 Rotation Matrices and Quaternions
	2.1.3 Lie Derivatives
	2.1.4 States, Estimates and Set-points
	2.1.5 Measurements and Residuals

	2.2 Quadrotor Model
	2.2.1 Parrot Bebop 2 Model
	2.2.2 Set of States

	2.3 Camera Projection Model
	2.4 Inertial Measurement Unit (IMU)
	2.5 State Estimation
	2.5.1 Kalman Filtering

	2.6 Model Predictive Control

	I Vision Based Position Estimation
	3 Fast, Light-weight, Stereo Inertial Odometry
	3.1 Introduction
	3.2 Related Work
	3.2.1 System Overview
	3.2.2 Modeling
	3.2.3 Point Parametrization

	3.3 Algorithm
	3.3.1 Feature Initialization
	3.3.2 Anchor-centric Estimation
	3.3.3 Prediction

	3.4 Experimental Results
	3.4.1 Hardware Setup
	3.4.2 Experiments

	3.5 Conclusion

	4 Semi-Direct EKF-based Monocular Visual-Inertial Odometry
	4.1 Introduction
	4.1.1 Related Work
	4.1.2 System Overview

	4.2 Modeling and State Propagation
	4.3 Photometric Update
	4.3.1 Patch Extraction
	4.3.2 Image Pyramid Level Selection
	4.3.3 Iterated Sequential Update

	4.4 Experimental Results
	4.5 Conclusion

	II Real-time Drone Cinematography
	5 Multi-Subject Filming and Viewpoint Optimization
	5.1 Introduction
	5.2 Related Work
	5.3 Preliminaries
	5.3.1 Cinematographic Objectives
	5.3.2 Target Model

	5.4 Trajectory Generation for Viewpoint Optimization
	5.4.1 Method Overview
	5.4.2 Viewpoint Optimization Problem
	5.4.3 Occlusion Minimization
	5.4.4 Collision Avoidance
	5.4.5 MPC Formulation

	5.5 Experimental Results
	5.5.1 Hardware Setup
	5.5.2 Experiments
	5.5.3 Results

	5.6 Conclusion

	6 Real-time Planning for Multi-View Drone Cinematography
	6.1 Introduction
	6.2 Related Work
	6.3 Method
	6.3.1 Dynamical Models
	6.3.2 Actor-driven Framing Objectives
	6.3.3 Subject Collision Avoidance
	6.3.4 3D Virtual Camera Rails

	6.4 Multi-Drone Flight
	6.5 Evaluation and Discussion
	6.5.1 Implementation Details
	6.5.2 Quantitative and Qualitative Experiments
	6.5.3 Preliminary Expert Feedback

	6.6 Conclusions

	III Real-time Drone-based Motion Capturing
	7 Environment-independent Human Pose Estimation with Drones
	7.1 Introduction
	7.2 Related Work
	7.3 Overview
	7.4 Modeling
	7.4.1 Terminology
	7.4.2 Human Pose
	7.4.3 Drones and Cameras
	7.4.4 State-space Structure and Filtering Strategy

	7.5 Joint Camera and Human State Estimation
	7.5.1 Pose State Propagation
	7.5.2 Filter measurements
	7.5.3 Filter Update
	7.5.4 Bone Length Estimation

	7.6 Camera Control
	7.6.1 Marker Visibility
	7.6.2 Trajectory Optimization

	7.7 Implementation
	7.7.1 Active Markers

	7.8 Experiments
	7.9 Limitations and Conclusions

	8 Conclusion
	8.1 Limitations and Future Research Avenues:

	9 Appendix
	9.1 Active LED Markers
	9.2 Mutual Visibility

	Bibliography

