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Abstract
Let k be a field of characteristic zero containing all roots of unity and K = k((t)).
We build a ring morphism from the Grothendieck ring of semi-algebraic sets over
K to the Grothendieck ring of motives of rigid analytic varieties over K . It extends
the morphism sending the class of an algebraic variety over K to its cohomological
motive with compact support. We show that it fits inside a commutative diagram
involving Hrushovski and Kazhdan’s motivic integration and Ayoub’s equivalence
between motives of rigid analytic varieties over K and quasi-unipotent motives over
k; we also show that it satisfies a form of duality. This allows us to answer a question
by Ayoub, Ivorra and Sebag about the analytic Milnor fiber.

Keywords Motivic integration · Rigid motives · Rigid analytic geometry · Motivic
Milnor fiber · Analytic Milnor fiber

Mathematics Subject Classification 14C15 · 14F42 · 03C60 · 14G22 · 32S30

1 Introduction

Let k be a field of characteristic zero containing all roots of unity and K = k((t))
the field of Laurent series. Morel and Voevodsky build in [27] the category SH(k)
of stable A

1-invariant motivic sheaves without transfers over k. More generally, for
S a k-scheme they build the category of S-motives SH(S). Following an insight by
Voevodsky, see Deligne’s notes [13], Ayoub developed in [1] a six functors formalism
for the categories SH(−), mimicking Grothendieck’s six functors formalism for étale
cohomology. See also in [11] an alternative construction by Cisinski and Déglise. For
f : X → Y a morphism of schemes, in addition to the direct image f∗ : SH(X) →
SH(Y ) and pull-back f ∗ : SH(Y ) → SH(X), one has the extraordinary direct
image f! : SH(X) → SH(Y ) and extraordinary pull-back f ! : SH(Y ) → SH(X).
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This allows in particular to define for any S-scheme f : X → S an object
M∨

S,c(X) = f! f ∗1k ∈ SH(S), the so-called cohomological motive with compact
support of X .

Denote by K(Vark) the Grothendieck ring of k-varieties. It is the abelian group
generated by isomorphism classes of k-varieties, with the scissors relations

[X ] = [Y ] + [X\Y ]

for Y a closed subvariety of X . The cartesian product induces a ring structure on
K(Vark).

As SH(k) is a triangulated category, we can consider its Grothendieck ring
K(SH(k)), which is the abelian group generated by isomorphism classes of its com-
pact (also called constructible) objects, with relations [B] = [A]+[C]whenever there
is a distinguished triangle

A → B → C
+1→ .

Elements of K(SH(k)) are called virtual motives and the tensor product on SH(k)
induces a ring structure on K(SH(k)). The locality principle implies that the assign-
ment X ∈ Vark �→ [M∨

k,c(X)] ∈ K(SH(k)) satisfies the scissors relations, hence
induces a morphism

χk : K(Vark) → K(SH(k))

which is a ring morphism. Such a morphism was first considered by Ivorra and
Sebag [22].

Ayoub builds in [3] the category RigSH(K ) of rigid analytic motives over K , in a
similar fashion of SH(K ) but instead of K -schemes, he starts with rigid analytic K -
varieties in the sense of Tate. The analytification functor from algebraic K -varieties
to rigid K -varieties induces a functor

Rig∗ : SH(K ) → RigSH(K ).

For any rigid K -variety X , Ayoub defines MRig(X) and M∨
Rig(X), respectively, the

homological and cohomological rigid motives of X . However, to our knowledge there
is no general notion of cohomological rigid motive with compact support.

One can also consider K(VFK ), the Grothendieck ring of semi-algebraic sets over
K . If X = Spec(A) is an affine variety over K , a semi-algebraic subset of X an is
a boolean combination of subsets of the form {x ∈ X an | v( f (x)) ≤ v(g(x))}, for
f , g ∈ A (where v is the valuation on K ). The ringK(VFK ) is then the abelian group
of isomorphism classes of semi-algebraic sets (for semi-algebraic bijections) with
relations [X ] = [U ]+[V ] if X is the disjoint union ofU and V .We could also consider
K(VFanK ), theGrothendieck ringof subanalytic sets over K . It is isomorphic toK(VFK )

by a byproduct of Hrushovski and Kazhdan’s theory of motivic integration [20].
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In this situation it is rather natural to ask about the existence of a ring
morphism

χRig : K(VFK ) → K(RigSH(K ))

extending the morphism χK : K(VarK ) → K(SH(K )).
Ayoub, Ivorra and Sebag ask in [4, Remark 8.15] about the existence of a morphism

similar toχRig and speculate that one should be able to recover from it their comparison
result about the motivicMilnor fiber.Wewill show that it is indeed the case, see below.

If X is an algebraic K -variety smooth and connected of dimension d, then
[M∨

K ,c(X)] = [MK (X)(−d)], where (−d) is the Tate twist (iterated d times). We
would like to define for X a quasi-compact rigid K -variety smooth and connected of
dimension d, χRig([X ]) = [MRig(X)(−d)]. Such classes generate K(VFK ). If χRig
is well-defined, it will be the unique morphism satisfying such conditions. The main
objective of this paper is to show the existence of such a morphism.

The strategy of proof is to use alternative descriptions of K(VFK ) and RigSH(K ),
the former being established by Hrushovski and Kazhdan, the latter by Ayoub. Let us
describe them briefly.

From a model-theoretic point of view, semi-algebraic sets over K are definable sets
in the (first order) theory of algebraically closed valued fields over K . If L is a valued
field, with ring of integersOL of maximal idealML , we set RV(L) = L×/(1+ML).
Observe that RV fits in the following exact sequence, where k is the residue field and
� the value group:

1 → k× → RV → � → 0.

Working in a two sorted language, with one sort VF for the valued field and one sort
RV, Hrushovski and Kazhdan establish in [20] the following isomorphism of rings:

∮
: K(VFK ) → K(RVK [∗])/Isp,

where K(RVK [∗]) is the Grothendieck ring of definable sets of RV, the [∗] meaning
that some grading is considered and Isp is an ideal generated by a single explicit
relation, see Sect. 2.1. Set μ̂ = lim←n μn , with μn the group of n-th roots of unity

in k and K(Varμ̂k ) the Grothendieck of varieties equipped with a good μ̂-action, see
Definition 2.6 for the precise definition.

The ringK(RVK [∗]) can be further decomposed into a part generated byK(Varμ̂k )

and a part generated by definable subsets of the value group. The latter being polytopes,
one can apply Euler characteristic with compact supports to get a ring morphism

� ◦ Ec : K(RVK [∗])/Isp → K(Varμ̂k ).

Ayoub on his side defines the category of quasi-unipotent motives QUSH(k) as the
triangulated subcategory of SH(Gmk) with infinite sums generated by homological
motives (and their twists) of Gmk-varieties of the form
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X [T , T−1, V ]/(Vr − T f ) → Spec(k[T , T−1]) = Gmk

where X is a smooth k-variety, r ∈ N
∗, and f ∈ �(X ,O×

X ). Let q : Spec(K ) → Gmk
be the morphism defined by T ∈ k[T , T−1] �→ t ∈ K = k((t)). Ayoub shows in [3]
that the functor

F : QUSH(k)
q∗
→ SH(K )

Rig∗
→ RigSH(K )

is an equivalence of categories, denote by R a quasi-inverse.
We will define a morphism

χμ̂ : K(Varμ̂k ) → K(QUSH(k))

compatible with χk in the sense that it commutes with the morphism K(Varμ̂k ) →
K(Vark) induced by the forgetful functor and 1∗ : K(SH(Gmk)) → K(SH(k)), where
1 : Spec(k) → Gmk is the unit section, see Sect. 3.3.

Here is our main theorem.

Theorem 1.1 Let k be a field of characteristic zero containing all roots of unity and
set K = k((t)). Then there exists a unique ring morphism

χRig : K(VFK ) → K(RigSH(K ))

such that for anyquasi-compact rigid K -variety X, smoothandconnectedof dimension
d, χRig([X ]) = [MRig(X)(−d)].

Moreover, all the squares in the following diagram commute:

K(VarK )

χK

K(VFK )

χRig

∮

 K(RVK [∗])/Isp �◦Ec K(Varμ̂k )

χμ̂

K(Vark)

χk

K(SH(K ))
Rig∗ K(RigSH(K ))



R

K(QUSH(k))
1∗ K(SH(k)).

Observe that with this diagram in mind, defining χRig is easy since R is an iso-
morphism, it is the equality χRig(X) = [MRig(X)(−d)] that we will have to prove.
We will rely for this on an explicit computation of

∮ [X ] when a semi-stable formal
R = k[[t]]-model of X is chosen.

Two choices are made in this construction. The first is when applying the compactly
supported Euler characteristic Ec, where we also could have used the Euler character-
istic E , the second is when we apply the morphism χμ̂, where we can also consider
the morphism sending the class of a variety to its homological motive with compact
support. Varying these choices leads to three other ring morphisms

χ ′
Rig, χ̃Rig, χ̃

′
Rig : K(VFK ) → K(RigSHM(K ))
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satisfying properties analogous to Theorem 1.1. In particular, we will show that χ̃ ′
Rig

also extends the morphism χK .
We claim that χRig(X) is the virtual incarnation of a hypothetical cohomological

rigid motive with compact support of X . Hence, we expect some duality to appear.
Here is what we prove in this direction.

Theorem 1.2 Let X be a quasi-compact smooth rigid variety, X an formal R-model
of X, D a proper subscheme of its special fiber Xσ . Consider the tube ]D[ of D in X ,
it is a (possibly non-quasi-compact) rigid subvariety of X. Then

χRig(]D[) = [M∨
Rig(]D[)].

In particular, if X is a smooth and proper rigid variety,

χRig(X) = [M∨
Rig(X)].

To prove this theorem, we will once again rely on a choice of a semi-stable formal
R-model of X and compute explicitly [M∨

Rig(]D[)] in terms of homological motives
of ]D[ and some subsets of ]D[. Our approach is inspired by parts of Bittner’s works
[6,7] where she defines duality involutions in K(Vark)[L−1] and shows that a toric
variety associated to a simplicial fan satisfies an instance of Poincaré’s duality.

Theorem 1.2 allows us to answer the question asked by Ayoub et al. [4, Remark
8.15] in relation to the motivic Milnor fiber. Fix X a smooth connected k-variety and
let f : X → A

1
k be a non-constant morphism. Define Xσ to be the closed subvariety

of X defined by the vanishing of f . Denef and Loeser define in [14–16], see also [25],

the motivic nearby cycle of f as an element ψ f ∈ K(Varμ̂Xσ
). If x : Spec(k) → Xσ is

a closed point of Xσ , fiber product induces a morphism x∗ : K(Varμ̂Xσ
) → K(Varμ̂k ),

and ψ f ,x = x∗ψ f ∈ K(Varμ̂k ) is the motivic Milnor fiber of f at x .
Denef and Loeser justify their definition by showing that known additive invariants

associated to the classical nearby cycle functor can be recovered from ψ f and ψ f ,x ,
the Euler characteristic for example.

Ivorra and Sebag study a new instance of such a principle in [22] where they show
(with our notations) that χXσ (ψ f ) = [� f 1] ∈ K(SH(Xσ )), where � f is the motivic
nearby cycle functor constructed by Ayoub [2, Chapitre 3]. Literally speaking they
only prove it inK(DAét(Xσ , Q)), but it is observed in [4, Section 8.2] that their result
generalizes to K(SH(Xσ )).

It was first observed by Nicaise and Sebag [30] that one can relate the motivic
Milnor fiber to a rigid analytic variety. Consider the morphism Spec(R) → Spec(A1

k)

induced by T ∈ k[T ] �→ t ∈ k[[t]]. Still denote X → Spec(R) the base change of f
along this morphism, and let X be the formal t-adic completion of X . For x ∈ Xσ a
closed point, let Fan

f ,x be the tube of {x} in X . It is called the analytic Milnor fiber.
Ayoub, Ivorra and Sebag show in [4] that

[1∗ ◦ RM∨
Rig(Fan

f ,x )] = χk(ψ f ,x ) ∈ K(SH(k)).
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In our context, we have � ◦ Ec ◦ ∮
Fan

f ,x = ψ f ,x ∈ K(Varμ̂k ), we can see it either
by a direct computation using resolution of singularities as in [28,29] or by adapting
results by Hrushovski and Loeser [21]. Now Theorem 1.2 shows that χRig(Fan

f ,x ) =
[M∨

Rig(Fan
f ,x )] hence by Theorem 1.1,

[RM∨
Rig(Fan

f ,x )] = χμ̂(ψ f ,x ) ∈ K(QUSH(k)).

We then have refined the result of Ayoub, Ivorra and Sebag to an equivariant setting.
The paper is organized as follows. See the beginning of each section for the precise

content. Section 2 is devoted to what we need on Hrushovski and Kazhdan motivic
integration. In Sect. 3, we settle what we will use on motives, rigid analytic geometry
and rigid motives. In Sect. 4 we build the realization map χRig and prove Theorem 1.1.
The last Sect. 5 is devoted to duality and the proof of Theorem 1.2.

2 Preliminaries onmotivic integration

In this section we will introduce Hrushovski and Kazhdan’s theory of motivic inte-
gration in Sect. 2.1 and use it to define two maps from the Grothendieck ring of
semi-algebraic sets over K to the equivariant Grothendieck ring of varieties over k in
Sect. 2.2.

2.1 Recap on Hrushovski and Kazhdan’s integration in valued fields

We outline here the construction of Hrushovski and Kazhdan’s motivic integration
[20], focusing on the universal additive invariant since this is the only part that we will
use. See also the papers [35,36] by Yin who gives an account of the theory in ACVF.

We will work in the first order theory ACVF of algebraically closed valued fields
of equicharacteristic zero in the two-sorted language L. The two sorts are VF and
RV. We put the ring language on VF, with symbols (0, 1,+,−, ·), on RV we put
the group language (·, ()−1), a unary predicate k× for a subgroup, and operations
+ : k2 → k where k is the union of k× and a symbol 0. We add also a unary function
rv : VF× = VF\{0} → RV.

We will also consider the imaginary sort � defined by the exact sequence

1 → k× → RV → � → 0,

together with maps vrv : RV → � and v : VF× → �. We extend v to K by setting
v(0) = +∞.

If L is a valued field, with valuation ring OL and maximal ideal ML , define an
L-structure by VF(L) = L , RV(L) = L×/(1 + ML), k(L) = OL/ML , �(L) =
L×/O×

L . Note that the valuation ring is definable in this language because O×
L =

rv−1(k×(L)).
Fix a field k of characteristic zero containing all roots of unity and set K = k((t)).

Viewing K as a fixed base structure, for the rest of the paper, we will only consider



Virtual rigid motives of semi-algebraic sets Page 7 of 43 6

L(K )-structures, where L(K ) is the language obtained by adjoining to L constants
symbols for elements of K . Any valued field extending K can be interpreted as a
L(K )-structure. Denote by ACVFK the L(K )-theory of such algebraically closed
valued fields. The theory ACVFK admits quantifier elimination in the language
L(K ).

We will use the notation VF• for VFn for some n. The L(K )-definable subsets of
VF• are semi-algebraic sets, that is boolean combinations of sets of the form

{
x ∈ VFn | v( f (x)) ≥ v(g(x))

}
,

where f and g are polynomials with coefficients in K . Observe that constructible sets
are semi-algebraic, since one can take g = 0 in the definition.

Denote by K(VFK ) the free group of L(K )-definable subsets of VF•, with the
following relations:

• [X ] = [Y ] if there is a semi-algebraic bijection X → Y
• [X ] = [U ] + [V ] if X is the disjoint union X = U

.∪ V .

The cartesian product endows K(VFK ) with a ring structure.

Remark 2.1 Note that this framework allows us to consider general semi-algebraic
subsets of K -varieties as studied for example by Martin [26]. We say that S is a semi-
algebraic subset of a k-scheme X , if S is a finite union S = ∪Si such that for every
i , there is an open affine subset Ui = Spec(Ai ) of U such that Si ⊆ Ui is defined by
a boolean combination of subsets of the form

{
y ∈ U an

i | v( f (y)) ≤ v(g(y))
}
, with

f , g ∈ Ai . Hence, we can consider its class [S] ∈ K(VFK ).

Remark 2.2 Hrushovski and Kazhdan use a slightly different definition for K(VFK ).
They define it as the group generated by isomorphism classes of definable sets X ⊆
VF• ×RV•, such that for some n ∈ N, there is some definable function f : X → VFn

with finite fibers, with cut-and-paste relations (the function f is not part of the data).
We can show that for such an X , there is some definable X ′ ⊆ VF•, with a definable
bijection X 
 X ′, see [20, Lemma 8.1], hence the rings are isomorphic.

The category RVK [n] is the category of pairs (Y , f ), with Y ⊆ RV• definable
and f : Y → RVn a definable finite-to-one function. A morphism between (Y , f )
and (Y ′, f ′) is a definable function g : Y → Y ′. One defines RESK [n] to be the full
subcategory of RV[n] whose objects (Y , f ) are such that vrv(Y ) is finite. From those
categories one forms the graded categories

RVK [∗] :=
∐
i∈N

RVK [i],RESK [∗] :=
∐
i∈N

RESK [i].

For later purpose, we will also need a category related to the value group. One defines
�[n] to be the categorywith objects subsets of�n defined by piecewise linear equations
and inequations with Z-coefficients. A morphism between Y and Y ′ is a bijection
defined piecewise by composite of Q-translations and GLn(Z) morphisms. From this
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one forms �[∗] := ∐
n∈N

�[n]. One defines also �fin[n] and �fin[∗] to be the full
subcategories of �[n] and �[∗] whose objects are finite.

Each of these categories C has disjoint unions, induced by disjoint unions of defin-
able sets. We can form the associated Grothendieck ring K(C). It is the abelian group
generated by isomorphism classes of objects of C, with relations induced by disjoint
unions and the product induced by the cartesian product.

For a fixed definable set X ⊆ RVm , we can view X as an object in RVK [n], for any
n ≥ m. Hence for each n ≥ m, X induces a class denoted [X ]n ∈ K(RVK [∗]). If X
is non-empty, we then have [X ]n �= [X ]n′ for n �= n′.

Note that he Cartesian product induces graded ring structures on K(RVK [∗]),
K(RESK [∗]) and K(�[∗]). We can also forget the grading and obtain rings K(RVK )

and K(RESK ).
Set (X , f ) ∈ RVK [n]. Define L(X , f ) to be the fiber product

L(X , f ) = {
(x, y) ∈ VFn × X | rv(x) = f (y)

}
.

As f is finite-to-one, the projection of L(X , f ) to VFn is finite-to-one, hence we can
view it as an object in VFK by Remark 2.2.

If (X , f ), (X ′, f ′) ∈ RVK [n], with a definable bijection X 
 X ′, then there is a
definable bijection L(X , f ) 
 L(X ′, f ′) by [20, Proposition 6.1], hence we have a
ring morphism L : K(RVK [∗]) → K(VFK ).

Set RV>0 = {x ∈ RV | vrv(x) > 0}. Denote by Isp the ideal of K(RVK [∗]) gener-
ated by [RV>0] + [1]0 − [1]1. The main theorem of [20] is the following.

Theorem 2.3 The morphism L is surjective and its kernel is Isp.

Denote by
∮
the inverse: K(VFK ) → K(RVK [∗])/Isp.

Remark 2.4 We will also consider the theory ACVFanK in the language Lan(K ). This
language is an enrichment ofLwhere we add symbols for restricted analytic functions
with coefficients in K , see [12,24] for details. A maximally complete algebraically
closed valued field containing K can be enriched as an Lan(K )-structure. Denote
ACVFanK their Lan(K )-theory. We shall refer to Lan(K )-definable subsets of VF• as
subanalytic sets. We can form similarly the Grothendieck ring of sub-analytic sets
K(VFanK ).

As ACVFanK is an enrichment of ACVFK , we have a canonical map K(VFK ) →
K(VFanK ), which is an isomorphism.

Indeed Hrushovski and Kazhdan establish the isomorphism
∮
for any first order

theory T which is V -minimal. The theory ACVFan being an example of such a theory,
we get also an isomorphism

∮ an

: K(VFanK ) → K(RVan
K [∗])/Isp.

Quantifier elimination shows that K(RVan
K [∗]) 
 K(RVK [∗]), hence in particular

K(VFK ) 
 K(VFanK ).
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The above isomorphism allows to consider the class of any subanalytic set in
K(VFK ). If X is a quasicompact rigid analytic K -variety, it determines a subana-
lytic set XVF and we can then consider its class in K(VFK ). From now on, we will
implicitly use this convention when referring to classes of subanalytic sets.

2.2 Landing in K(Var�̂k )

Our goal here is to relate the target ring of motivic integration K(RVK [∗])/Isp to the
Grothendieck ring of k-varieties equipped with a μ̂-action.

Recall from [20, Corollary 10.3] that there is an isomorphism of rings

K(RESK [∗]) ⊗K(�fin[∗]) K(�[∗]) → K(RVK [∗]).

As the theory of � is o-minimal, one can use o-minimal Euler characteristic to
define an additive map eu : K(�[n]) → Z. Any X ⊆ �n can be finitely partitioned
into pieces definably isomorphic to non-empty open cubes

∏
i=1,...,k(αi , βi ), with

αi , βi ∈ � ∪ {−∞,+∞}. One sets eu((α, β)k) = (−1)k and then defines eu(X)

by additivity. One can show that this does not depends on the chosen partition of X ,
see [33, Chapter 4]. One can also show that when M → +∞, eu(X ∩ [−M, M]n)
stabilizes and one defines the bounded Euler characteristic to be

euc(X) := lim
M→+∞ eu(X ∩ [−M, M]n).

The Euler characteristics eu and euc do coincide on bounded sets, but not in general.
For example, eu((0,+∞)) = −1 but euc((0,+∞)) = 0.

For a ∈ Q, set ea = [v−1
rv (a)]1 ∈ K(RESK [1]). Let !I be the ideal of K(RESK )

spanned by all differences ea − e0 and set !K(RESK ) := K(RESK )/!I. Define also
L = [A1

k].
Proposition 2.5 ([20, Theorem 10.5 (2) and (4)]) There are ring morphisms

E : K(RVK [∗])/Isp →!K(RESK )[L−1]

and

Ec : K(RVK [∗])/Isp →!K(RESK ),

such that for [X ]n ∈ RESK [n], E([X ]n) = [X ]/L
n and Ec([X ]n) = [X ], and for


 ∈ �[n], E(v−1(
)) = eu(
)[Gm
n
k ]/L

n and Ec(v−1(
)) = euc(
)[Gm
n
k ].

Definition 2.6 Letμn be the group of n-th roots of unity in k and μ̂ = lim←
n

μn . Define

Varμ̂k to be the category of quasi-projective k-varieties equipped with a good μ̂-action,
that is, a μ̂-action that factors through someμn-action. Since the varieties are assumed
to be quasi-projective, such an action is automatically good in the usual sense, i.e.
the orbit of every point is contained in an affine open subset stable by the action.
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Let K(Varμ̂k
�
) be the abelian group generated by isomorphism classes of quasi-

projective k-varieties X equipped with good μ̂-action, with the scissors relations.

LetK(Varμ̂k ) be the quotient ofK(Varμ̂k
�
) by additional relations [(V , ρ)] = [(V , ρ′)]

if V is a finite dimensional k-vector space and ρ, ρ′ two good linear μ̂-actions on V .

Note that the Cartesian product induces ring structures on K(Varμ̂k
�
) and K(Varμ̂k ).

We want to define a map K(RESK ) → K(Varμ̂k
�
). Fix a set of parameters ta ∈

K ((t))alg for a ∈ Q such that t1 = t and tab = tab for a ∈ N
∗ and denote ta := rv(ta).

Set V ∗
γ = v−1(γ ) and Vγ = V ∗

γ ∪ {0}. If X ∈ RES, then X ⊆ RVn and the image of
vrv : X → �n is finite. Working piecewise we can suppose this image is a singleton.
In this case, there are m, k1, . . . , kn ∈ N

∗ such that X ⊆ Vk1/m × · · · × Vkn/m .
The function g : (x1, . . . , xn) ∈ X �→ (x1/tk1/m, . . . , xn/tkn/m) ∈ kn is K ((t1/m))-
definable and its image g(X) inherits a μn-action from the one on X . Moreover g(X)

is a definable subset of kn , hence constructible by quantifier elimination. So, we get a

map � : K(RESK ) → K(Varμ̂k
�
), and it induces also a map !K(RESK ) → K(Varμ̂k ).

Hrushovski and Loeser prove the following proposition.

Proposition 2.7 ([21, Proposition 4.3.1]) The ring morphisms

� : K(RESK ) → K(Varμ̂k
�
) and � : !K(RESK ) → K(Varμ̂k )

are isomorphisms.

Set t = rv(t). IfU ⊆ A
n
k is a smooth subvariety ofA

n
k , f ∈ �(U ,O×

U ) an invertible
regular function on U and r ∈ N\ {0}, set

QRV
r (U , f ) = {

(u, v) ∈ V n
0 × V1/r | u ∈ U , vr = t f (u)

}
.

Corollary 2.8 The ring K(RESK [∗]) is generated by classes of sets of the form
[QRV

r (U , f )]n ∈ K(RESK [n]).

Corollary 2.9 There is a unique ring morphism K(Varμ̂k ) → K(VarGmk ) that satisfies
the following condition. For X a k-variety, f ∈ O×

X (X) and m ∈ N
∗, it sends the class

of X [V ]/(Vm − f ) with the μm-action on V to the class of

X [V , V−1, T , T−1]/(Vm − T f ) → Gmk = Spec(k[T , T−1]).

Proof ByCorollary 2.8 andProposition 2.7, the classes in the statement of the corollary

generate K(Varμ̂k ), hence uniqueness is clear. To show that the morphism is well
defined, one proceeds by induction on the dimension as in the proof of Proposition 2.7.

This leads to a well-defined mapK(Varμ̂k
�
) → K(VarGmk ). Indeed, given Y as above,

X and m are uniquely determined. The function f is only determined up to a factor
in O×

X
n
, but all different choices of representatives will lead to isomorphic Z .

Finally, note that the relations added when dropping the flat are in the kernel of the
above map. Indeed, once again, because a linear action of μn on kr is diagonalizable,
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it suffices to show that the image of [(k, μn)], where μn acts on k by multiplication by
n-th roots of unity, is independent of n. As 0 is a fixed point, we can restrict the action
on k×. The image in K(VarGmk ) is then [Spec(k[U ,U−1, T , T−1, V ]/(V n − TU ))].
But this variety is isomorphic to Spec(k[V , V−1, T , T−1]) overGmk , the isomorphism
being defined by U �→ V nT−1, V �→ V . ��

3 Preliminaries onmotives

This section is devoted to fix notations about motives. After a brief recap on
Grothendieck rings of triangulated categories in Sect. 3.1, we introduce the category
of motives in Sect. 3.2. We then build a map from the equivariant Grothendieck ring
of varieties to the Grothendieck ring of quasi-unipotent motives in Sect. 3.3. Finally,
we introduce motives of rigid analytic varieties in Sect. 3.4.

3.1 Triangulated categories

A triangulated category, as introduced by Verdier in his thesis [34], is an additive
category endowed with an autoequivalence, denoted −[1] and called the suspension,

and a class of distinguished triangles, of the form A → B → C
+1→, satisfying some

axioms.
Recall from [31, Tag 09SM] the notion of compact object. Let Tcp be the full

subcategory of compact objects of T . It is a triangulated subcategory of T .
We define the Grothendieck group K(T ) of a triangulated category T admitting

infinite sums as the free abelian group generated by isomorphism classes of objects
of Tcp with relations [B] = [A] + [C] for every distinguished triangle

A → B → C
+1→ .

As for every compact object A, the triangle A → 0 → A[1] +1→ is distinguished,
[A[1]] = −[A] ∈ K(T ), hence the suspension is idempotent in K(T ). Moreover,

since we have, for every A, B ∈ Tcp, a distinguished triangle A → A ⊕ B → B
+1→,

we have [A ⊕ B] = [A] + [B]. If T is moreover a monoidal triangulated category,
then K(T ) inherits a ring structure induced by tensor product.

3.2 Stable category of motives

All schemes are separated and of finite type. Fix a scheme S. Denote by SHM(S) the
stable category of motivic sheaves over S for the Nisnevich topology and coefficients
M, as studied by Ayoub [2, Définition 4.5.21]. The two main examples are if M is
the category of simplicial spectra, in which case SHM(S) is the stable homotopy
category (without transfers) of Morel-Voevodsky introduced in [27]. The other one is
if M is the category of complexes of �-modules, for some ring �. In this case we set
SHM(S) = DA(S,�).
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The category SHM(S) is triangulated, denote by −[1] its suspension functor. It
is also equipped with a Tate twist −(−1) with is an autoequivalence. The categories
SHM(−) possess various functorialities. If f : X → Y is a morphism of schemes,
then the pull-back f ∗ and the push-forward f∗ defined at the level of sheaves induce
functors f ∗ : SHM(Y ) → SHM(X) and f∗ : SHM(X) → SHM(Y ), f∗ is a
right adjoint to f ∗. Assuming we work over a base scheme of characteristic zero,
Ayoub [1] has constructed a six functors formalism for SHM(−). In particular, he
defines extraordinary push-forward f! and pull-back f ! that satisfy various compat-
ibilities. See also [11] for the definition of the shriek functors in the non-projective
case.

The homological (resp. cohomological, homological with compact support, coho-
mological with compact support) motive of X is defined asMS(X) := f! f !(1S) (resp.
M∨

S (X) := f∗ f ∗(1S), M∨
S,c(X) := f! f ∗(1S), MS,c(X) := f∗ f !(1S)). For X smooth

over S, MS(X) and M∨
S (X) can in fact be defined using only the suspension functor

Sus0T and the internal Hom Hom.
The followingmotivic realization has already been considered by Ivorra and Sebag.

Proposition 3.1 ([22, Lemma 2.1]) Let S be a k-scheme. There is a unique ring mor-
phism

χS : K(VarS) → K(SHM(S))

such that χS([X ]) = M∨
S,c(X) for any S-scheme f : X → S.

Proposition 3.2 Let f : X → S be a smooth morphism of pure relative dimension d.
Then

[M∨
S,c(X)] = [MS(X)(−d)] ∈ K(SHM(S)).

Proof By definition, M∨
S,c(X) = f! f ∗(1S) and f! = f∗Th−1(� f ), where � f is the

bundle of relative differentials of f and Th(� f ) its associated Thom equivalence. As
MS,c(−) is additive and � f is locally free, we can assume � f is free (of rank d). In
that case, Th−1(� f ) = (−d)[−2d]. The result now follows because the suspension
function is idempotent in the Grothendieck ring. ��

3.3 From K(Var�̂k ) to K(QUSHM(k))

Let X = Spec(A) be a k-scheme of finite type, r ∈ N
∗ and f ∈ A×. We denote

Qgm
r (X , f ) the Gmk-scheme

Spec(A[T , T−1, V ]/(Vr − f T )) → Gmk = Spec(k[T , T−1]).

More generally, we define by gluing for X = Spec(A) a k-scheme of finite type,
r ∈ N\ {0} and f ∈ �(X ,O×

X ) the Gmk-scheme Qgm
r (X , f ).

Let QUSHM(k) be the triangulated subcategory of SHM(Gmk) with infinite sums
spanned by objects SuspT (Qgm

r (X , f ) ⊗ Acst) for X smooth k-scheme and A ∈ E .
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Here, E is a set of homotopically compacts objects of M generating the homotopy
category of M, see [3, Définition 1.2.31] for details. Let q : Gmk → Spec(k) be the
structural projection and 1 : Spec(k) → Gmk its unit section.

Proposition 3.3 There is a unique ring morphism

χμ̂ : K(Varμ̂k ) → K(QUSHM(k))

such that for X a smooth k-scheme, f ∈ �(X ,O×
X ) and r ∈ N\{0}, the class of

X [V ]/(Vr − f ) (with the μr -action on V ) is send to [M∨
Gmk ,c

(Qgm
r (X , f ))].

Proof The ring morphism

χμ̂ : K(Varμ̂k ) → K(VarGmk ) → K(SHM(Gmk)).

is defined by composition of maps from Corollary 2.9 and Proposition 3.1.
It suffices to show that the image of this morphism lies in K(QUSHM(k)). From

the proof of Proposition 2.7, K(Varμ̂k ) is generated by classes of X [V ]/(Vr = f ) as
in the statement of the proposition. Hence it suffices to show that

[MGmk ,c(Q
gm
r (X , f ))] ∈ K(QUSHM(k)).

But QUSHM(k) is the triangulated subcategory with infinite sums generated by the
set of objects SuspT (Qgm

r (X , f )⊗ Acst), which is stable by Tate twist, hence by Propo-
sition 3.2, [MGmk ,c(Q

gm
r (X , f ))] ∈ K(QUSHM(k)). ��

Lemma 3.4 We have a commutative diagram:

K(Varμ̂k )

χμ̂

K(Vark)

χk

K(QUSHM(k))
1∗ K(SHM(k)),

where K(Varμ̂k ) → K(Vark) is induced by the forgetful functor and

1∗ : K(QUSHM(k)) → K(SHM(k))

is the composite

K(QUSHM(k)) −→ K(SHM(Gmk))
1∗−→ K(SHM(k)).
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Proof Recall that the composition K(Varμ̂k ) → K(VarGmk )
1∗−→ K(Vark) is the for-

getful map. Hence it suffices to show that the following diagram is commutative:

K(VarGmk )

χGmk

K(Vark)

χk

K(SHM(Gmk)) 1∗ K(SHM(k)),

where the upper map is induced by picking the fiber above 1 of a Gmk-variety. For
X ∈ VarGmk , we consider the following cartesian square:

X ′

f ′

1′
X

f

k
1

Gmk .

One needs to show that 1∗MGmk ,c(X) 
 Mk,c(X ′). By [1, Scholie 1.4.3], there is a
2-isomorphism f ′

! 1
′∗ ∼= 1∗ f!. Hence

1∗MGmk ,c(X) = 1∗ f! f ∗1Gmk 
 f ′
! 1

′∗ f ∗1Gmk 
 f ′
! f

′∗1∗1Gmk = Mk,c(X
′).

��

3.4 Rigidmotives

We use the formalism of Tate’s rigid analytic geometry [32]. For details and proofs,
see also [9,18].

Ayoubbuilds in [3] a categoryRigSHM(K )of rigidmotives over K , in an analogous
manner of SHM(K ), but with starting point rigid analytic K -varieties instead of K -
schemes, and replacingA

1-invariance byB
1-invariance, whereB

1 represent the closed
unit ball.

As in the algebraic case, one needs to choose a category of coefficientsM, the main
examples being RigSH(K ) and RigDA(K ,�). We also have the suspension functor
SusrT an(−), the tensor −⊗ A has a right adjoint Hom(A,−) and the Tate twist −(−1)
is defined.

We define for X a smooth rigid K -variety its homological motive by MRig(X) =
Sus0T an(X ⊗ 1K ) and its cohomological motive by M∨

Rig(X) = Hom(MRig(X),1K ).
To our knowledge a full six functor formalism is not available in this context,

the missing ingredients being f! and f !. Hence there is no already defined notion of
compactly supported rigid motive.

The analytification functor induces a (monoidal triangulated) functor

Rig∗ : SHM(K ) → RigSHM(K ).
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Such a functor is compatible in a strong sense with the six operations defined on
SHM(−), see [3, Théorème 1.4.40].

Let X be a smooth k-scheme, f ∈ �(X ,O×
X ) and p ∈ N

∗. Then define Qfor
p (X , f )

as the t-adic completion of the R-scheme X ×k R[V ]/(V p − t f ), and QRig
p (X , f )

the generic fiber of Qfor
p (X , f ). Define also Qan

p (X , f ) as the analytification of X ×k

K [V ]/(V p − t f ). There is an open immersion of rigid K -varieties QRig
p (X , f ) →

Qan
p (X , f ).

Theorem 3.5 ([3, Théorème 1.3.11]) Let X be a smooth k-scheme, f ∈ �(X ,O×
X ),

and p a positive integer. Then the inclusion QRig
p (X , f ) → Qan

p (X , f ) induces an
isomorphism

MRig(Q
Rig
p (X , f )) 
 MRig(Q

an
p (X , f )).

Define a functor F : QUSHM(k) → RigSHM(K ) as the composite

F : QUSHM(k) → SHM(Gmk) →
π∗ SHM(K ) →

Rig∗ RigSHM(K ),

where π : Spec(K ) → Gmk corresponds to the ring morphism k[T , T−1] → K =
k((t)) sending T to t . Observe that F sends the generators MGmk (Q

gm
p (X , f )) ∈

QUSHM(k) to MRig(Qan
p (X , f )). One of the main results of Ayoub [3] is the fol-

lowing theorem.

Theorem 3.6 ([3, Scholie 1.3.26]) The functor F : QUSHM(k) → RigSHM(K ) is
an equivalence of categories.

Denote by R a quasi-inverse of F.

4 Realizationmap for definable sets

This aim of this section is to define a morphism χRig : K(VFK ) → K(RigSHM(K )).
We will first define it on K(�[∗]) and K(RESK [∗]) in Sects. 4.1 and 4.2. Using
Hrushovski and Kazhdan’s isomorphism, this will allow us to define it onK(VFK ) in
Sect. 4.3. Section 4.4 is devoted to the proof of Theorem 1.1 via the study of motives
of tubes in a semi-stable situation, the main results are grouped in Sect. 4.5. The
last Sect. 4.6 is devoted to the definition of two other realization maps K(VFK ) →
K(RigSHM(K )) and the statement of an analog of Theorem 1.1 for them.

4.1 The 0 part

Recall the o-minimal Euler characteristics eu and euc defined above Proposition 2.5.
We use the notations from [3]. For a rigid K -variety X and f , g ∈ O(X), we denote
by BX (o, | f |) (resp. Cr X (o, | f | , | f |), ∂BX (o, | f |)) the family parametrized by X of
closed balls centered at the origin and radius | f | (resp. annuli centered at the origin
and radius | f | and |g|, thin annuli centered at the origin and radius | f |).



6 Page 16 of 43 A. Forey

Definition 4.1 If [X ] ∈ K(�[∗]), with X ∈ �[d], define

χ�
Rig(X) = euc(X)[MRig(∂B(o, 1)d)(−d)] ∈ K(RigSHM(K ))

and

χ ′�
Rig([X ]) = eu(X)[MRig(∂B(o, 1)d)] ∈ K(RigSHM(K )).

Hence we get two ring morphisms

χ�
Rig, χ

′�
Rig : K(�[∗]) → K(RigSHM(K )).

It is well defined because K(�[∗]) is naturally graded and by additivity of Euler
characteristic.

Proposition 4.2 Let X ⊆ �n be a convex bounded polytope. If X is closed, then

χ�
Rig([X ]) = [MRig(v

−1(X)Rig)(−n)] and χ ′�
Rig([X ]) = [MRig(v

−1(X)Rig)].

If X is open, then

χ�
Rig([X ]) = (−1)n[MRig(v

−1(X)Rig)(−n)]

and

χ ′�
Rig([X ]) = (−1)n[MRig(v

−1(X)Rig)].

Proof If X is empty, eu(X) = euc(X) = 0 hence the proposition is verified. Hence
we can suppose X in non-empty. We have eu(X) = euc(X) = 1 if X is closed, and
eu(X) = euc(X) = (−1)n if X is open. Hence the result follows from the following
Lemma 4.3. ��
Lemma 4.3 Let X ⊆ �n be a non-empty convex polytope, either closed or open. Then

MRig(v
−1(X)Rig) 
 MRig(∂B(o, 1)n).

Proof We first assume that X is closed. We work by induction on n. If n = 1, then

X = {x | α ≤ px ≤ β}

for α, β ∈ Z, p ∈ N. Hence

v−1(X)Rig = Cr(o,
∣∣πβ

∣∣1/p ,
∣∣πα

∣∣1/p).
By [3, Proposition 1.3.4], MRig(v−1(X)Rig) = MRig(∂B(o, 1)).
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Suppose now that the result is known for n − 1. There are finitely many affine
functions (hi )i∈I0 with Z-coefficients such that

X = {
x ∈ �n | hi (x) ≥ 0, i ∈ I0

}
.

We can rewrite X as

X =
{
(x, y) ∈ � × �n−1 | pi x ≤ fi (y), q j x ≥ g j (y), i ∈ I , j ∈ J

}

for some (possibly empty) finite sets I , J , integers pi , q j ∈ N and affine functions
fi , g j : �n−1 → � with Z coefficients. Now observe that the projection of X on the
last n − 1-th coordinates is

Y =
{
y ∈ �n−1 | ∀(i, j) ∈ I × J , pi g j (y) ≤ q j fi (y)

}
.

It satisfies the hypotheses of the proposition hence we get that [MRig(v−1(Y )Rig)] =
[MRig(∂B(o, 1)n−1)] by induction.

We set I ′ = {i ∈ I | pi > 0} and J ′ = {
j ∈ J | q j > 0

}
. Observe that

X = {
(x, y) ∈ � × Y | pi x ≤ fi (y), q j x ≥ g j (y), i ∈ I ′, j ∈ J ′} .

Set Xi, j = CrYRig(o,
∣∣∣ f̃i

∣∣∣1/pi ,
∣∣g̃ j

∣∣1/q j ), where we used the notation that if

f (y1, . . . , yn−1) = b + a1y1 + · · · + an−1yn−1,

then

f̃ (x1, . . . , xn−1) = tb · xa11 · · · · · xan−1
n−1 .

We have now

XRig =
⋂

(i, j)∈I ′×J ′
Xi, j .

Set

Yi, j =
{
y ∈ YRig | ∀(i ′, j ′) ∈ I × J ,

∣∣∣ f̃i
∣∣∣1/pi ≥

∣∣∣ f̃i ′
∣∣∣1/pi ′ ,

∣∣g̃ j
∣∣1/q j ≤ ∣∣g̃ j ′

∣∣1/q j ′
}

.

The (Yi, j )(i, j)∈I×J form an admissible cover of YRig, indeed, Yi, j is defined in YRig

by some non-strict valuative inequalities, if D is a rational domain, the standard cover
of D induced by functions used to define D and the functions used to define the Yi, j
gives the required refinement of (D ∩ Xi, j )(i, j)∈I×J .

Then it suffices to show the result for XRig ∩ (Yi, j ×K A
1,an
K ). But we have then

XRig ∩ (Yi, j ×K A
1,an
K ) = CrYi, j

(
o,

∣∣∣ f̃i
∣∣∣1/pi ,

∣∣g̃ j
∣∣1/q j

)
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hence the result follows from [3, Proposition 1.3.4], which gives

MRig

(
CrYi, j

(
o,

∣∣∣ f̃i
∣∣∣1/pi ,

∣∣g̃ j
∣∣1/q j

))

 MRig(∂BYi, j (o, 1)).

Suppose now that X is an open polyhedron. We work similarly by induction on n.
If n = 1,

X = {x | α < px < β}

for α, β ∈ Z, p ∈ N. Hence

v−1(X)Rig =
⋃

r0≤r<1

Cr(o, r−1
∣∣πβ

∣∣1/p r , r ∣∣πα
∣∣1/p),

for some r0 < 1 close enough to 1. It is thus enough to show that the inclusion

∂B(o, r1) ↪→ Cr
(
o, r−1

∣∣πβ
∣∣1/p , r

∣∣πα
∣∣1/p)

induces an isomorphism in RigSHM(K ), for r0 ≤ r < 1 and r1 ∈ R
∗+ such that

r−1
0

∣∣πβ
∣∣1/p ≤ r1 ≤ r0|πα|1/p. This is [3, Proposition 1.3.4].

Suppose now that the result is known for n − 1. There are finitely many affine
functions hi , i ∈ I0 with Z-coefficients such that

X = {
x ∈ �n | hi (x) > 0

}
.

Proceed now as in the closed case, denote by Y the projection of X on the last
n − 1-th coordinates. By induction, it suffices to show that MRig(v−1(X)Rig) 

MRig(∂BY (o, 1)). Define I , J ,Yi, j , Xi, j as above, replacing large inequalities by strict
ones where needed. We will show that MRig(Xi, j ) 
 MRig(∂BYi, j (o, 1)), with these
isomorphisms compatible on Xi, j ∩ Xi ′, j ′ . We can find r0 ∈ Q with 0 < r0 < 1 such

that for each (i, j) ∈ I × J , and y ∈ Yi, j , r0−1
∣∣∣ f̃i (y)

∣∣∣1/pi ≤ r0
∣∣g̃ j (y)

∣∣1/q j . We can

moreover choose for each (i, j) ∈ I × J a monomial function ˜hi, j on Yi, j such that
for all y ∈ Yi, j ,

r0
−1

∣∣∣ f̃i (y)
∣∣∣1/pi ≤

∣∣∣ ˜hi, j (y)
∣∣∣ ≤ r0

∣∣g̃ j (y)
∣∣1/q j

and assume that these functions coincide on Yi, j ∩ Yi ′, j ′ .
We now have

Xi, j ∩ (Yi, j ×K A
1,an
K = ∪r0<r<1CrYi, j

(
o, r−1

∣∣∣ f̃i (y)
∣∣∣1/pi , r

∣∣g̃ j (y)
∣∣1/q j

)
,
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hence it suffices to show that the immersion

∂BYi, j (o, ˜hi, j ) ↪→ CrYi, j

(
o, r−1

∣∣∣ f̃i (y)
∣∣∣1/pi , r

∣∣g̃ j (y)
∣∣1/q j

)

induces an isomorphism in RigSHM(K ), which follows once again from [3, Propo-
sition 1.3.4]. ��

We will not use it, but Proposition 4.2 can be extended to all closed polyhedral
complexes.

Proposition 4.4 Let X ⊆ �n be (the realization of) a bounded closed polyhedral
complex. Then

χ�
Rig([X ]) = [MRig(v

−1(X)Rig)(−d)].

Proof In view of the definition of χ�
Rig, we need to show that

[MRig(v
−1(X)Rig)] = eu(X)[∂B(o, 1)n].

We work by double induction on the maximal dimension of simplexes in X and
the number of simplexes of maximal dimension. Let 
 ⊂ X be a simplex of maximal
dimension. Set Y = X\
◦, with 
◦ the interior of 
, ∂
 = 
\
◦.

Then (v−1(
)Rig, v−1(Y )Rig) is an admissible cover of v−1(X)Rig, with intersec-
tion v−1(∂
)Rig hence

[MRig(v
−1(X)Rig)] = [MRig(v

−1(
)Rig)] + [MRig(v
−1(Y )Rig)] − [MRig(v

−1(∂
)Rig)].

By Lemma 4.3, [MRig(v−1(
)Rig)] = [∂B(o, 1)n]. Apply the induction hypothesis
to get [MRig(v−1(∂
)Rig)] = (1 − (−1)d)([∂B(o, 1)n] and [MRig(v−1(Y )Rig)] =
eu(Y )[∂B(o, 1)n]. We have the result, since eu(X) = eu(Y ) + (−1)d . ��

4.2 The RES part

Definition 4.5 Define ring morphisms

χRES
Rig : K(RESK )[∗] → K(RigSHM(K ))

and

χ ′RES
Rig : K(RESK )[∗] → K(RigSHM(K ))

by the formulas, for X a smooth k-variety of pure dimension r , f ∈ �(X ,O×
X ),

m ∈ N
∗,

χRES
Rig ([QRV

m (X , f )]n) = [QRig
m (X , f )(−r)]



6 Page 20 of 43 A. Forey

and

χ ′RES
Rig ([QRV

m (X , f )]n) = [QRig
m (X , f )(n − r)].

As the [QRV
m (X , f )]n generate K(RESK [∗]) by Corollary 2.8, one only needs to

show that the maps are well defined. But we can check that they coincide with the
composite

K(RESK [∗]) →!K(RESK )[L−1] �→ K(Varμ̂k )[L−1]
χμ̂→ K(QUSHM(k))

F→ K(RigSHM(K )).

where the map K(RESK [∗]) →!K(RESK )[A1
k]−1 is [X ]n �→ [X ] for χRES

Rig and

[X ]n �→ [X ]L−n for χ ′RES
Rig . The maps �, χμ̂, F are respectively defined in Propo-

sitions 2.7, 3.3 and Theorem 3.6. Note that this also implies that it is a morphism of
rings.

4.3 Definition of �RV
Rig

Recall the isomorphism K(RESK [∗]) ⊗K(�fin[∗]) K(�[∗]) → K(RVK [∗]). To define
a ring morphism K(RVK [∗]) → K(RigSHM(K )), it suffices to specify rings mor-
phisms

K(RESK [∗]) → K(RigSHM(K )) and K(�[∗]) → K(RigSHM(K ))

that coincide on K(�fin[∗]).
Definition 4.6 Define

χRV
Rig : K(RVK [∗]) → K(RigSHM(K ))

using the morphisms χRES
Rig and χ�

Rig and

χ ′RV
Rig : K(RVK [∗]) → K(RigSHM(K ))

using the morphisms χ ′RES
Rig and χ ′�

Rig.

To show that it is well defined, one needs to check that if A ⊆ �n is definable and
finite, then χ�

Rig([A]) = χRES
Rig ([vrv−1(A)]n) and χ ′�

Rig([A]) = χ ′RES
Rig ([vrv−1(A)]n).

By additivity, one can assume A = {α}. Hence it follows from the following lemma.

Lemma 4.7 Let α = (α1, . . . , αn) ∈ �n be definable. Then

χRES
Rig ([vrv−1({α})] = [∂B(o, 1)n(−n)]
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and

χ ′RES
Rig ([vrv−1({α})] = [∂B(o, 1)n]

Proof We have vrv−1({α}) = vrv−1(α1) × · · · × vrv−1(αn). Because χRES
Rig and χ ′RES

Rig
are ring morphisms and [∂B(o, 1)n(−n)] = [∂B(o, 1)(−1)]n , we can assume n = 1.
Suppose α = k/m, with k ∈ Z and m ∈ N

∗ relatively prime. Let a, b ∈ Z be such
that am + bk = 1. In this case, we have

vrv
−1(k/m) 


{
(z, u) ∈ vrv

−1(1/m) × vrv
−1(0) | zm = tub

}
= QRV

m (Gmk, u
b)

via the isomorphismw ∈ vrv−1(k/m) �→ (tawb, t−kwm). But now, QRig
m (Gmk, u

b) 

∂B(o, k/m) via the isomorphism (z, u) �→ zkua and

MRig(∂B(o, k/m)) 
 MRig(∂B(o, 1))

by [3, Proposition 1.3.4]. ��
Remark 4.8 If X ⊆ RVn is definable, then χRig([X ]m) = χRig([X ]n) for any m ≥ n,
hence χRig does not depend on the grading inK(RV[∗]), it is in fact defined onK(RV).

Proposition 4.9 The ring morphisms χRV
Rig and χ ′RV

Rig of Definition 4.6 induce ring
morphisms

χRV
Rig, χ

′RV
Rig : K(RVK [∗])/Isp → K(RigSHM(K )).

Proof We need to check that the generator of Isp vanishes under χRV
Rig and χ ′RV

Rig .
We have MRig({1}) = MRig(Spm(K )) = 1K , hence

χRV
Rig([{1}]1) = χRV

Rig([{1}]0) = χ ′RV
Rig ([{1}]0) = [1K ]

and χ ′RV
Rig ([{1}]1) = [1K (1)].

Moreover, RV>0 = v−1((0,+∞)) and euc((0,+∞)) = 0, eu((0,+∞)) = −1.
Hence χRV

Rig([RV>0]1) = 0 and χRV
Rig([RV>0]1) = −[MRig(∂B(o, 1))], which implies

that

χRV
Rig([{1}]1) = χRV

Rig([{1}]0 + [RV>0]1).

For χ ′RV
Rig , we have by construction

MRig(∂B(o, 1)) = MRig(Spm(K )) ⊕ MRig(Spm(()K ))(1)[1].

Hence we get that in K(RigSHM(K )), the equality

[MRig(Spm(K ))] = [MRig(Spm(K ))(1)] + [MRig(∂B(o, 1))]
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holds, which implies that

χ ′RV
Rig ([{1}]0] = χ ′RV

Rig ([{1}]1] − χ ′RV
Rig ([RV>0]1),

hence

χ ′RV
Rig ([{1}]1) = χ ′RV

Rig ([{1}]0 + [RV>0]1).

��

Recall the isomorphism
∮ : K (VFK ) → K (RVK [∗])/Isp.

Definition 4.10 Define χRig and χ ′
RigK(VF) → K(RigSHM(K )) by χRig = χRV

Rig ◦ ∮
and χ ′

Rig = χ ′RV
Rig ◦ ∮

.

For any irreducible smooth k-variety X of dimension d, f ∈ O×
X (X) and r ∈ N

∗,
set

QVF
r (X , f ) = {

(x, y) ∈ X(VF) × VF | yr = t f (x)
}
.

Proposition 4.11 For any irreducible smooth k-variety X of dimension d, f ∈ O×
X (X)

and r ∈ N
∗,

χRig(Q
VF
r (X , f )) = [MRig(Q

Rig
r (X , f ))(−d)].

Proof Since
∮ [QVF

r (X , f )] = [QRV
r (X , f )]r , it simply follows from the definition of

χRES
Rig . ��

Proposition 4.12 Let 
 ⊂ �n be defined by linearly independent affine equations
li > 0 for i = 0, . . . , n. Then

χRig(v
−1(
)) = (−1)n[MRig(v

−1(
)Rig)(−n)].

Proof It follows from Proposition 4.2. ��

Theorem 4.13 There are commutative squares

K(VFK )

χRig

�◦Ec◦
∮

K(Varμ̂k )

χμ̂

K(RigSHM(K ))
R

K(QUSHM(k))



Virtual rigid motives of semi-algebraic sets Page 23 of 43 6

and

K(VFK )

χ ′
Rig

�◦E◦∮
K(Varμ̂k )[A1

k]−1

χμ̂

K(RigSHM(K ))
R

K(QUSHM(k)).

Proof We will only show the commutativity of the first diagram, the second being
similar.

We need to show that the following diagram is commutative:

K(RV[∗])/Isp
χRV
Rig

�◦Ec K(Varμ̂k )

χμ̂

K(RigSHM(K ))
R

K(QUSHM(k)).

It suffices to show that the following diagrams are commutative:

K(RESK [∗])
χRES
Rig

�◦Ec K(Varμ̂k )

χμ̂

K(RigSHM(K ))
R

K(QUSHM(k)).

and

K(�)

χ�
Rig

�◦Ec K(Varμ̂k )

χμ̂

K(RigSHM(K ))
R

K(QUSHM(k)).

For the first one, we already observed that χRES
Rig does not depend on the grading,

hence we need to show that R ◦ χRES
Rig = χμ̂ ◦ �, as morphisms from !K(RESK ) to

K(QUSHM(k)). By Corollary 2.8, !K(RESK ) is generated by classes of QRV
r (X , f ),

for X a k-variety smooth of pure dimension d, r ∈ N\{0} and f ∈ �(X ,O×
X ). The def-

inition of χμ̂◦� shows that χμ̂◦�(QRV
r (X , f )) = [MGmk (Q

gm
r (X , f ))(− dim(X))].

From the definition of χRES
Rig , χRES

Rig (QRV
r (X , f )) = [MRig(Q

Rig
r (X , f )(−d))] ; from

Theorem 3.5, MRig(Q
Rig
r (X , f ) 
 MRig(Qan

r (X , f ), and from the definition of R,
R(MRig(Qan

r (X , f )) = MGmk (Q
gm
r (X , f )). For the second square, for any X ⊂ �n ,
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χ�
Rig(X) = euc(X)[∂B(o, 1)n(−n)] and Ec(X) = euc(X)[Gm

n
k ], so it follows from

the fact that R[MRig(∂B(o, 1)] = [MGmk (Gmk ×k Gmk)]. ��

4.4 Motives of tubes

The aim of this section is to compute χRig for a quasi-compact smooth rigid K -variety.
We will use semi-stable formal models, and in particular tubes of their branches, see
[5] or [23] for details on tubes. Denote by R = k[[t]] the valuation ring of K . All the
formal R-schemes we consider are assumed to be topologically of finite type.

Let X be a formal R-scheme. Denote by Xσ ∈ Vark its special fiber and Xη its
generic fiber, which is a rigid K -variety. Given an admissible formal R-scheme X ,
there is a canonical map, called the specialization map (or the reduction map), defined
at the level of topological spaces sp : Xη → Xσ .

Recall from [10, Theorem 4.1] that any separated quasi-compact rigid K -variety
admits an admissible formal R-model.

Definition 4.14 Let X be a formal R-scheme. If D is a locally closed subset of the
special fiber, the tube of D in X is the inverse image ]D[X := sp−1(D), with its
reduced rigid variety structure. It is an open rigid analytic subvariety of Xη. When
there is no possible confusion, we will denote ]D[X by ]D[.

If U is an open formal subscheme of X such that D ⊂ Uσ , then ]D[X=]D[U . In
particular, ]Uσ [X = Uη.

Definition 4.15 Let X be a formal R-scheme of finite type. Say that X is semi-stable
if for every x ∈ Xσ , there is a regular open formal subscheme U ⊂ X containing x
and elements u, t1, . . . , tr ∈ O(U) such that the following properties hold:

1. u is invertible and there are positive integers N1, . . . , Nr such that the following
equality holds: t = ut N1

1 · · · t Nr
r ,

2. for every non empty I ⊂ {1, . . . , r}, the subscheme DI ⊆ Uσ defined by equations
ti = 0 for i ∈ I is smooth over k, has codimension |I | − 1 in Uσ and contains x .

The irreducible components of Xσ are called its branches.

If X is a formal R-scheme, f ∈ �(X ,OX ), N ∈ N
k , we define

St fX ,N = X {T1, . . . , Tk}/(T N1
1 . . . T Nk

k − f ).

LetX be a semi-stable formal R-scheme and (Di )i∈J be the branches of its special
fiber Xσ . For any non-empty I ⊂ J , set DI = ∩i∈I Di and D(I ) = ∪i∈I Di . Set also
for I ′ ⊂ J\I , D◦I ′

I = DI \D(I ′) and if I ′ = J\I , simply D◦
I = DI \D(J\I ).

Ayoub, Ivorra and Sebag prove the following proposition.

Proposition 4.16 ([4, Theorem 5.1]) For any non-empty I ⊂ J and I ′ ⊂ I ′′ ⊂ J\I ,
the inclusion ]D◦I ′′

I [ ↪→ ]D◦I ′
I [ induces an isomorphism

MRig(]D◦I ′′
I [) 
 MRig(]D◦I ′

I [).
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We will mostly use this proposition in the following particular case.

Corollary 4.17 For any non-empty I ⊆ J , there is an isomorphism

MRig(]D◦
I [) 
 MRig(]DI [).

Proposition 4.18 Let X be a semi-stable formal R-scheme and D = ∪i∈J ′ Di a union
of branches. Then the following equalities hold in K(RigSHM(K ))

[MRig(]D[)] =
∑
I⊂J ′

(−1)|I |−1[MRig(]DI [)]

and

[M∨
Rig(]D[)] =

∑
I⊂J ′

(−1)|I |−1[M∨
Rig(]DI [)].

Proof The collection (Di )i∈J ′ is a closed cover of D, hence by [5, Proposition 1.1.14],
(]Di [)i∈J ′ is an admissible cover of ]D[. Hence by Mayer–Vietoris distinguished
triangle and induction on the cardinal of I , we have the result. ��

Using Corollary 4.17, we deduce the following formula.

Corollary 4.19 Under the hypotheses of Proposition 4.18, we have

[MRig(]D[)] =
∑
I⊆J ′

(−1)|I |−1[MRig(]D◦
I [)]

and

[M∨
Rig(]D[)] =

∑
I⊆J ′

(−1)|I |−1[M∨
Rig(]D◦

I [)].

Theorem 4.20 Let X be a semi-stable formal R-scheme of dimension d. Then

χRig(XVF
η ) = [MRig(Xη(−d))].

Still denoting Xσ = ∪i∈J Di the irreducible components of Xσ , the special fiber of

X , we can write XVF
η as a disjoint union XVF

η =
.⋃
I⊂J ]D◦

I [, hence

χRig(]D[VFX ) =
∑
I⊂J

χRig(]D◦
I [).

In view of the formula of Corollary 4.19, to prove Theorem 4.20, it suffices to prove
the following proposition.
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Proposition 4.21 Let X be a semi-stable R-scheme. Then

χRig(]D◦
I [VF) = (−1)|I |−1[MRig(]D◦

I [)(−d)],

where d = dim(Xσ ).

Before proving the proposition, we need a reduction.

Lemma 4.22 To prove Proposition 4.21, we can assume that X = Stu
−1t
D◦
I ×k R,N , where

N = (N1, . . . , Nr ) ∈ (N×)r (where r = |I |), u I ∈ O×(D◦
I ×k R).

Proof UsingMayer–Vietoris distinguished triangles, we can also work Zariski locally,
hence suppose by [3, Proposition 1.1.62] that there is an étale R-morphism

e : X {V , V−1} → S = StUt
Spec(R[U ,U−1]),N [S1, . . . , Sr ],

where N is the type of X at x ∈ ]D◦
I [. The irreducible components of Sσ are

defined by equations Ti = 0, denote by C their intersection. We have C =
Spec(k[U ,U−1, S1, . . . , Sr ]). Up to permuting the Di , we can assume that Di is
defined in Xσ by Ti ◦ e = 0, inducing an étale morphism eσ : DI [V , V−1] → C and
a Cartesian square of R-schemes

DI [V , V−1]
eσ

X

e

C S.

The morphism eσ induces an étale morphism of R-schemes

DI [V , V−1] ×k R → C ×k R,

which itself induces an étale R-morphism

e′ : X ′ = St
u−1
I t

DI [V ,V−1]×k R,N
→ S,

together with a Cartesian square

DI [V , V−1]
eσ

X ′

e′

C S.

The fiber product X {V , V−1} ×S X ′ hence satisfies X {V , V−1} ×S X ′ ×S C 

DI [V , V−1] ×C DI [V , V−1]. Because eσ : DI [V , V−1] → C is étale, the diag-
onal embedding DI [V , V−1] → DI [V , V−1] ×C DI [V , V−1] is an open and
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closed immersion, hence induces a decomposition DI [V , V−1] ×C DI [V , V−1] 

DI [V , V−1]∪ F . SetX ′′ = X {V , V−1}×S X ′\F . We have two étale morphisms f :
X ′′ → X {V , V−1} and f ′ : X ′′ → X ′ such that f −1(DI [V , V−1]) 
 DI [V , V−1]
and f ′−1(DI [V , V−1]) 
 DI [V , V−1]. We can apply twice [5, Proposition 1.3.1] to
get that

]D◦
I [V , V−1][X {V ,V−1} 
 ]D◦

I [V , V−1][X ′′

and

]D◦
I [V , V−1][X ′ 
 ]D◦

I [V , V−1][X ′′ .

By the choice of F , at the ring level both f and f ′ send V to the same element. Hence
the isomorphism ]D◦

I [V , V−1][X {V ,V−1} 
 ]D◦
I [V , V−1][X ′ induces an isomorphism

]D◦
I [X 
 ]D◦

I [
St

u−1
I t

DI ×k R,N

,

where the above map is the composition

]D◦
I [X ↪→ ]D◦

I [V , V−1][X {V ,V−1} 
 ]D◦
I [V , V−1][X ′ � ]D◦

I [
St

u−1
I t

DI ×k R,N

,

with the first map the inclusion of the unit section and the last one the projection
forgetting the V variable. ��
Remark 4.23 The proof of Lemma 4.22 also gives a definable bijection ]D◦

I [VFX 

]D◦

I [VFX ′ , see also [28, Theorem 2.6.1] for an alternative approach.

Proof of Proposition 4.21 We can suppose that we are in the situation of Lemma 4.22,
with X = Stu

−1t
D◦
I×k R,N . Let NI be the greatest common divisor of the Ni for i ∈ I . Set

N ′
i = Ni/NI . As the N ′

i are coprime, we can form an r ×r matrix A ∈ GLn(Z)which
first row is constituted by the N ′

i . The matrices A and A−1 define automorphisms of
Gm

r ,an
K , hence of G = D◦

I (R) × Gm
r ,an
K . As ]D◦

I [X is a rigid subvariety of G, we can
consider W , its image by A. Then W is the locally closed semi-algebraic subset of G
defined by

{
(x, w) ∈ DI (R) × (K×)r | w

NI
1 uI (x) = t, l1(v(w)) > 0, . . . , lr−1(v(w)) > 0

}
,

where the li : �r → � are linearly independent affine functions with integer coeffi-
cients. HenceW = QVF

NI
(D◦

I , uI )×v−1(
), where
 ⊂ �r−1 is defined by equations
li > 0 for i = 1, . . . , r .

By Propositions 4.11 and 4.12, we know that

χRig(Q
VF
NI

(D◦
I , uI )) = [MRig(Q

Rig
NI

(D◦
I , uI ))(−d + r − 1)]
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and

χRig(v
−1(
)) = (−1)r−1[MRig(v

−1(
)Rig)(−r + 1)].

Hence as χRig is multiplicative,

χRig(W ) = (−1)r−1[MRig(W
Rig)(−d)].

After applying the isomorphism A−1, we get as required

χRig(]D◦
I [VFX ) = (−1)|I |−1[MRig(]D◦

I [)(−d)].

��
The proof of Theorem 4.20 is now complete. For later use, note that the proofs of
Proposition 4.21 and Lemma 4.22 gives the following equality.

Corollary 4.24 With the notation of Proposition 4.21, we have

MRig(]D◦
I [) 
 MRig(Q

Rig
NI

(D◦
I , uI ) × ∂B(o, 1)|I |−1).

4.5 Compatibilities of �Rig

We will now derive consequences of Theorem 4.20.

Theorem 4.25 The morphism χRig is the unique ring morphism

K(VFK ) → K(RigSHM(K ))

such that for any quasi-compact smooth rigid K -variety X of pure dimension d,

χRig(X
VF) = [MRig(X)(−d)].

Proof Byquantifier elimination in the theoryACVFK ,K(VFK ) is generated by classes
of smooth affinoid rigid K -varieties, which shows uniqueness. For the existence, fix
X a quasi-compact smooth rigid K -variety of pure dimension d. We can find X , a
formal R-model of X and by Hironaka’s resolution of singularities, we can assume X
is semi-stable. We can now apply Theorem 4.20. ��
Theorem 4.26 There is a commutative diagram

K(VarK )

χK

K(VFK )

χRig

K(SHM(K ))
Rig

K(RigSHM(K )).
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Proof By Hironaka’s resolution of singularities, the ring K(VarK ) is generated by
classes of smooth projective varieties, hence it suffices to check the compatibility for
such a K -variety X . Denoting by f : X → K the structural morphism, one has by
definition

χK ([X ]) = [ f! f ∗1K ] = [ f� f ∗1K (−d)] = [MK (X)(−d)],

where d = dim(X) and we used f! = f� ◦ Th−1(� f ) for f smooth. Applying the
functor Rig, one needs to show that χRig([X ]VF) = [MRig(X an)(−d)]. As X is smooth
and projective, X an is a quasi-compact rigid smooth K -variety hence one can find a
semi-stable formal model of X an over R, denote it X̃ . Hence X 
 X̃K 
 ]X̃σ [X̃ , so
by Theorem 4.20, χRig([X ]VF) = [MRig(XRig)(−d)]. ��

Note that combining Theorems 4.25 and 4.26 gives Theorem 1.1.

4.6 A fewmore realizationmaps

In this section we construct in addition to χRig and χ ′
Rig two more realization maps

χ̃Rig and χ̃ ′
Rig obtained by considering homological motives with compact support

instead of cohomological motives with compact support.
Recall the ringmorphismof Proposition 3.1χS : K(VarS) → K(SHM(S)) sending

[ f : X → S] to [M∨
S,c(X)] = [ f! f ∗1S].

Working dually, we can define also a morphism χ̃S : K(VarS) → K(SHM(S))

sending [ f : X → S] to [MS,c(X)] = [ f∗ f !1S]. The proof that it respects the
scissors relations is similar, using the exact triangle

i∗i !A → A → j∗ j !A
+1→

instead of

j� j
∗A → A → i∗i∗A

+1→,

where i and j are closed and open complementary immersions. Another approach
would be to use the duality involution of the following Sect. 5.

Composing with the morphism K(Varμ̂k ) → K(VarGmk ), we get a morphism χ̃μ̂ :
K(Varμ̂k ) → K(QUSHM(Gmk)), fitting in the following commutative square:

K(Varμ̂k )

χ̃μ̂

K(Vark)

χ̃k

K(QUSHM(k))
1∗ K(SHM(k)).
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Recall that

χRig = F ◦ χμ̂ ◦ � ◦ Ec ◦
∮

and χ ′
Rig = F ◦ χμ̂ ◦ � ◦ E ◦

∮
.

We can now define

χ̃Rig = F ◦ χ̃μ̂ ◦ � ◦ Ec ◦
∮

and χ̃ ′
Rig = F ◦ χ̃μ̂ ◦ � ◦ E ◦

∮
.

Unraveling the definitions, we see that if X is a smooth connected k-variety of
dimension d, f ∈ �(X ,O×

X ), r ∈ N
∗ and 
 ⊂ �n an open simplex of dimension n,

χ̃Rig(Q
VF
r (X , f )) = [M∨

Rig(Q
Rig
r (X , f ))(d)],

χ̃ ′
Rig(Q

VF
r (X , f )) = [M∨

Rig(Q
Rig
r (X , f ))],

χ̃Rig(v
−1(
)) = (−1)d [M∨

Rig(v
−1(
)Rig)(d)],

and

χ̃ ′
Rig(v

−1(
)) = (−1)d [M∨
Rig(v

−1(
)Rig)].

See the proofs of Propositions 4.11 and 4.12 for details.

Hence the proof of Theorem 4.20 can be adapted to χ ′
Rig, χ̃Rig and χ̃ ′

Rig, show-
ing in particular that if X is a quasi-compact smooth connected rigid K -variety of
dimension d,

χRig(X
VF) = [MRig(X)(−d)], χ ′

Rig(X
VF) = [MRig(X)],

χ̃Rig(X
VF) = [M∨

Rig(X)(d)], χ̃ ′
Rig(X

VF) = [M∨
Rig(X)].

If X is a proper algebraic K -variety of structural morphism f , since f∗ = f!, we
have M∨

K ,c(X) = M∨
K (X) and M∨

K ,c(X) = MK (X), hence we can adapt the proof
of Theorem 4.26 to get commutative diagrams similar of Theorem 1.1, the first one
being the statement of Theorem 1.1.

Proposition 4.27 The squares in the following diagrams commutes:

K(VarK )

χK

K(VFK )

χRig

�◦Ec◦
∮

K(Varμ̂k )

χμ̂

K(Vark)

χk

K(SH(K ))
Rig∗ K(RigSH(K ))



R

K(QUSH(k))
1∗ K(SH(k)),
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K(VarK )

χ̃K

K(VFK )

χ ′
Rig

�◦E◦∮
K(Varμ̂k )[L−1]

χμ̂

K(Vark)[L−1]
χk

K(SH(K ))
Rig∗ K(RigSH(K ))



R

K(QUSH(k))
1∗ K(SH(k)),

K(VarK )

χ̃K

K(VFK )

χ̃Rig

�◦Ec◦
∮

K(Varμ̂k )

χ̃μ̂

K(Vark)

χ̃k

K(SH(K ))
Rig∗ K(RigSH(K ))



R

K(QUSH(k))
1∗ K(SH(k)),

K(VarK )

χK

K(VFK )

χ̃ ′
Rig

�◦E◦∮
K(Varμ̂k )[L−1]

χ̃μ̂

K(Vark)[L−1]
χ̃k

K(SH(K ))
Rig∗ K(RigSH(K ))



R

K(QUSH(k))
1∗ K(SH(k)).

In particular, we see that χRig and χ̃ ′
Rig agree on the image ofK(VarK ) and similarly

χ ′
Rig and χ̃Rig agree on the image of K(VarK ).

Remark 4.28 (Volume forms) In addition of the additive morphism
∮
, Hrushovski

and Kazhdan also study the Grothendieck ring of definable sets with volume forms
K(μ�VFK ). Objects in μ�VFK are pairs (X , ω) with X ⊆ VF• a definable set
and ω : X → � a definable function. Morphisms are measure preserving definable
bijections (up to a set of lower dimension). In this context, they build an isomorphism

∮ μ

: K(μ�VFK ) → K(μ�RVK )/μIsp,

see [20, Theorem 8.26].
One can further decompose K(μ�RVK ) similarly to K(RVK [∗]). Using this

Hrushovski and Loeser define in [21] for m ∈ N morphisms

hm : K(μ�RV
bdd
K )/μIsp → K(Varμ̂k )loc

with the m related to considering rational points in k((t1/m)). Here, bdd means we
consider only bounded sets. Note that there is an inaccuracy in the definition of hm in
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[21] since they use [20, Proposition 10.10 (2)] which happens to be incorrect. Using
the category of bounded sets with volume forms deals with the issue.

We can further compose with the morphism F ◦ χμ̂ in order to get for each m ∈ N
∗

a morphism

K(μ�VF
bdd
K ) → K(RigSHM(K )).

Such morphisms do not seem to satisfy properties similar to those of χRig.

5 Duality

The goal of this section is to prove Theorem 1.2. We will adapt Bittner’s results on
duality in the Grothendieck ring of varieties in Sect. 5.1 in order to be able to compute
in Sect. 5.2 explicitly the cohomological motive of some tubes in terms of homological
motives. The last Sect. 5.3 is devoted to an application to the motivic Milnor fiber and
analytic Milnor fiber.

5.1 Duality involutions

Bittner developed in [6] an abstract theory of duality in the Grothendieck ring of
varieties. We recall here some of her results and show that they imply similar results
for K(SHM(K )).

Using the weak factorization theorem, Bittner prove the following alternative
description of K(VarX ). We state if for a variety S above K , but it holds for vari-
eties above any field of characteristic zero.

Proposition 5.1 ([6, Theorem 5.1])Fix a K -variety S. The ringK(VarS) is isomorphic
to the abelian group generated by classes of S-varieties which are smooth over K ,
proper over S, subject to the relations [∅]S = 0 and [BlY(X)]S−[E]S = [X ]S−[Y ]S,
where X is smooth over K , proper over S, Y ⊂ X a closed smooth subvariety,BlY(X)

is the blow-up of X along Y and E is the exceptional divisor of this blow-up.

For f : X → Y a morphism of S-varieties, composition with f induce a
(group) morphism f! : K(VarX ) → K(VarY ) and pull-back along f induces a
(group) morphism f ∗ : K(VarY ) → K(VarX ). Both induces MS-linear morphisms
f! : MX → MY and f ∗ : MY → MX , where MX = K(VarX )[L−1].
Definition 5.2 We define now a duality operator DX : K(VarX ) → MX for any K -
variety X . SetDX ([Y ]) = [Y ]L− dim(Y ) if Y is an X -variety proper over X , connected
and smooth over K . In view of Proposition 5.1, to show that it induces a unique (group)
morphism K(VarX ) → MX , it suffices to show that if Y ⊂ Z is a closed immersion
of X -varieties, proper over X , smooth and connected over K ,

[BlY (Z)]L− dim(Z) − [E]L− dim(Z)+1 = [Z ]L− dim(Z) − [Y ]L− dim(Y ),

it holds since (L−1)[E] = (Ldim(Z)−dim(Y )−1)[Y ]. See [6, Definition 6.3] for details.
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Observe that DX (L) = L
−1 and that DX is DS-linear, hence DX can be extended

as a DK -linear morphism DX : MX → MX , which is an involution.
Although DX is not in general a ring morphism, DK is a ring morphism.
For f : X → Y , set f ! = DX f ∗DY and f∗ = DY f!DX . Observe that if f is

proper, f! = f∗ and if f is smooth of relative dimension d over S, f ! = L
−d f ∗.

Such a duality operator can also be defined in the Grothendieck ring of varieties
equipped with a good action of some finite group G, see [6, Sections 7,8] for details.

In SHM(K ), the internal hom gives also notion of duality. Define the dual-
ity functor as DK (A) = HomK (A,1K ). Since DK is triangulated, it induces a
morphism on K(SHM(S)), still denoted DK . By [1, Théorème 2.3.75], DK is an
autoequivalence on constructible objects and its ownquasi-inverse. In particular, (com-
pactly supported) (co)homological motives of S-varieties are constructible, hence
DK is an involution. One can also define more generally for a : X → Spec(K ),
DX (A) = HomX (A, a!1K ), but we will not use those. By [1, Théorème 2.3.75],
DK (MK (X)) = M∨

K (X) for any K -variety X .
The following proposition shows the compatibility between those two duality oper-

ators.

Proposition 5.3 There is a commutative diagram

MK

χK

DK MK

χK

K(SHM(K ))
DK

K(SHM(K )).

Proof It suffices to show that χKDK ([X ]) = DKχK ([X ]) for X a connected, smooth
and proper K -variety of dimension d. Set f : X → Spec(K ). As f is smooth and
proper, [M∨

K ,c(X)] = [M∨
K (X)] = [MK (X)(−d)]. We then have

χK (DK ([X ])) = χK ([X ]L−d) = [M∨
K ,c(X)(d)] = [MK (X)]

and

DKχK ([X ]) = DK ([M∨
K ,c(X)]) = DK ([M∨

K (X)]) = [MK (X)].

��
All our duality resultswill ultimately boil down to the following lemma,which states

that normal toric varieties satisfy Poincare duality. It is due to Bittner, see [7, Lemma
4.1]. The proof relies on toric resolution of singularities and the Dehn–Sommerville
equations, see for example [19].

Lemma 5.4 Let X be an affine toric K -variety associated to a simplicial cone, X → Y
be a proper morphism, G a finite group acting on X via the torus with trivial action
on Y . Then
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DY ([X ]) = [X ]L− dim(X) ∈ MG
Y .

For the rest of the section, we fix a semi-stable formal R-schemeX and let (Di )i∈J

be the branches of its special fiber Xσ . Fix I ⊂ J , up to reordering the coordinates,
suppose I = {1, . . . , k}. Recall that around every closed point x ∈ D◦

I , there is a
Zariski open neighborhood U and regular functions uI , x1, . . . , xk such that uI ∈
O×(U) and t = uI x

N1
1 . . . xNk

k , with the branch Di defined by xi = 0. Still denote
uI , x1, . . . , xk their reductions to U = Uσ . The various uI glue to define a section
uI ∈ �(D◦

I ,O
×
D◦
I
/(O×

D◦
I
)NI ). Recall that NI is the greatest common divisor of the Ni ,

i ∈ I .
We already considered (the analytification of) the K -variety

Qgeo
NI

(D◦
I , uI ) = D◦

I ×k K [V ]/(V NI − tu I ).

In this section, we will denote D̃◦
I = Qgeo

NI
(D◦

I , uI ) to simplify the notations. We will
also abuse the notations and still denote D◦

I , DI , U the base change to K of those
varieties.

Let D̃I be the normalization of DI in D̃◦
I . We also set for K ⊂ I , D̃I |DK =

D̃I ×DI DK

Proposition 5.5 For every I ⊂ K ⊂ J , we have D̃I |DK 
 D̃K and DDI [D̃I ] =
L

|I |−d+1[D̃I ].
Observe that Bittner’s Lemma 5.2 in [7] is analogous, but holds inK(Varμ̂k ). Since

it is not a priori clear that dualities on K(Varμ̂k ) and K(QUSHM(k)) are compatible,
we cannot apply directly her Lemma. We will nevertheless follow closely her proof.

Combination of Propositions 5.5 and 5.3 yields the following corollary.

Corollary 5.6 For any I ⊂ J such that DI is proper, we have the equality inK(VarK )

[D̃I ] =
∑

I⊂K⊂J

[̃D◦
K ],

and [DK (M∨
K ,c(D̃I ))] = [M∨

K ,c(D̃I )(d − |I | + 1)] ∈ K(SHM(K )).

Proof The first equality is the first point of Proposition 5.5. For the second equality,
since DI is proper, setting f : DI ×k Gmk → Gm , we have f!DDI = DK f! hence by
the second point of Proposition 5.5,

DK ([D̃I ]) = [D̃I ]L−d+|I |−1.

Since D̃I is proper over K , we have M∨
K (D̃I ) = M∨

K ,c(D̃I ), hence the result follows
from Proposition 5.3 after applying a Tate twist. ��
Proof of Proposition 5.5 Working inductively on the codimension of DK in DI and up
to reordering the branches, we can suppose I = {1, . . . , k − 1} ⊂ K = {1, . . . , k}.
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As the statement is local we can work on an open neighborhood U of some closed
point of DK and choose a system of local coordinates x1, . . . , xd on U such that
uI x

N1
1 . . . xNk−1

k−1 = uK x
N1
1 . . . xNk

k = uxN1
1 . . . xNd

d , where u ∈ O×(U ) and for i =
1, . . . , k, Di is defined by equation xi = 0. Define a μN1 -étale cover of U by

V = U [Z ]/(ZN1 − tu).

We consider V as a variety with a μN1 -action induced by multiplication of z by
ζ ∈ μN1 .

Then y1 = sx1, y2 = x2, . . . , xd = yd+1 is a system of local coordinates on V .
Shrinking U , we can assume the morphism V → A

d+1
k induced by y1, . . . , yd+1 is

étale. Denote by FI , F◦
I , FK , F◦

K the pull-backs of DI , D◦
I , DK , D◦

K .
Denote by F̃◦

I the following étale cover of F◦
I :

F̃◦
I = F◦

I [W ]/(WNI − yNk+1
k+1 . . . yNd

d ).

Observe that F̃◦
I is isomorphic to the fiber product (F◦

I ) ×D◦
I
D̃◦

I . The variety F̃◦
I is

equipped with a μN1 -action, with ζ ∈ μN1 acting on w by multiplication by ζ N1/NI .
Denote by F̃I the normalization of FI in F̃◦

I and consider the following diagram:

p∗ D̃I D̃I

FI p DI .

As p : FI → DI is smooth and D̃I is normal, p∗ D̃I is normal. As p∗ D̃I → FI is
finite and surjective, p∗ D̃I is isomorphic to F̃I . Denoting by F̃I /μN1 the quotient of F̃I

by the μN1 -action, we then have D̃I 
 F̃I /μN1 and similarly D̃K 
 F̃K /μN1 . Hence
it suffices to show that F̃I |FK 
 F̃K and DFI [F̃I ] = [F̃I ]L−n+k−1, both equalities
being compatible with the μN1 -actions.

Now consider the étale morphism π : V → A
d+1
K . Denoting by z1, . . . , zd+1 the

coordinates of A
d+1
K , define CI ⊆ A

d+1
Gmk

by the equations z1 = · · · = zk−1 = 0 and

C◦
I = CI \∪ j=k,...,d+1

{
z j = 0

}
. Define similarly CK and C◦

K .
Define an étale cover of C◦

I by

C̃◦
I = C◦

I [S]/(SNI − zNk
k . . . zNd+1

d+1 ),

define similarly C̃◦
K and let C̃I and C̃K be the normalizations of CI and CK in C̃◦

I
and C̃◦

K .
We then have a Cartesian diagram

F̃I C̃I

FI π
CI
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with π étale, hence it suffices to show that C̃I |CK 
 C̃K and DCI [C̃I ] = C̃IL
−d+k ,

both equalities being compatible with the μN1 -actions (ζ ∈ μN1 acts on C̃
◦
I by multi-

plication of s by ζ N1/NI ). Indeed, since π is étale, we have π∗DCI = DFI×kGmkπ
∗.

Since the projection A
d+1 → A

d−k is smooth, the result now follows from the
following Lemmas 5.7 and 5.8 which correspond to Lemmas 5.3 and 5.4 in [7]. ��
Lemma 5.7 The restriction of the normalization S̃ of S = {

sN = xa11 . . . xadd
} ⊂

A
1
k ×k A

d
Gmk

to {x1 = 0} ⊂ A
d
Gmk

is isomorphic to the normalization S̃′ of S′ ={
sN

′ = xa22 . . . xNd
d

}
, where N ′ = gcd(N , a1). If N divides some q ∈ N

∗, then the

isomorphism is compatible with the μq -actions on S̃ and S̃′ where ζ ∈ μq acts on S
by multiplication of s by ζ q/N and on S′ by multiplication of s by ζ q/N ′

.

Proof Assume first that N , a1, . . . , ad are coprime. Then S is irreducible. Let M be
the lattice of R

d spanned by Z
d and v = (a1/N , . . . , ad/N ). Set M+ = M ∩ R

d+.
Then S̃ 
 Spec(k[M+]). If M1 := {u ∈ M | u1 = 0} and M+

1 = M1 ∩ R
d+, then

Spec(k[M+
1 ]) is the restriction of S̃ to {x1 = 0}.

Now consider the lattice M ′ generated by v′ = (0, a2/N ′, . . . , ad/N ′) and {0} ×
Z
d−1, and set M ′+ = M ′ ∩ R

d+. We have S̃′ 
 Spec(k[M ′+]), hence it suffices to
show that M ′ 
 M1.

Denote e1, . . . , ed the canonical basis of Z
d . Set k = a1/N ′ and l = N/N ′.

Observe that v′ = N/N ′v − a1/N ′e1 = lv − ke1, hence M ′ ⊆ M1. Reciprocally, if
u = ∑d

i=1 λi ei + μv ∈ M1, then λ1 + μk/l ∈ Z, hence μ′ = μ/l ∈ Z (since k and
� are coprime), hence u = ∑d

i=2 λi ei + μ′v′ ∈ M ′. The μq -actions are compatible,
since s′N ′ = sN x−a1

1 .
Back to the general case, let c be the greatest common divisor of N , a1, . . . , ad . Set

e = N/c,a′
i = ai/c, e′ = N ′/c. Let T̃ be the normalization of T =

{
se = x

a′
1

1 . . . x
a′
d

d

}

and T̃ ′ be the normalization of T ′ =
{
se

′ = x
a′
2

2 . . . x
a′
d

d

}
. Both T̃ and T̃ ′ are equipped

with a μe-action as in the statement of the lemma.
The mapping

(ζ, s, x) ∈ μN × T → (ζ s, x) ∈ S

induce an isomorphism

(μN × T̃ )/μe 
 S̃,

where the μN -action on S̃ correspond to the action on (μN × T̃ )/μe given by multi-
plication on μN . Similarly, the mapping

(ζ, s, x) ∈ μN × T ′ → (ζ N/N ′
s, x) ∈ S′

induce an isomorphism

(μN × T̃ ′)/μe 
 S̃′.
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Hence we can apply the first case to T̃ and T̃ ′ to get S̃|x1=0 
 S̃′ and check that the
actions correspond. ��
Lemma 5.8 Denote again by S̃ the normalization of S = {

sN = xa11 . . . xadd
}
. Then

D
A
d
K
[S̃] = [S̃]L−d ∈ Mμq

A
d
K
, ζ ∈ μq acting again by multiplication of s by ζ q/N .

Proof It is a particular case of Lemma 5.4 when N , a1, . . . , ad are coprime, and the
general case follows as in the proof of Lemma 5.7. ��

5.2 Computation of cohomological motives

Using Corollary 5.6, we can now compute the cohomological motive of D̃◦
I in terms

of homological motives.

Proposition 5.9 For any I ⊂ J such that Di is proper for i ∈ I , we have

[M∨
K (D̃◦

I )] =
∑

I⊂L⊂J

(−1)|L|−|I |[MK

(
D̃◦
L ×K Gm

|L|−|I |
K

)
(−d + |I | − 1)] ∈ K(SHM(K )).

We first prove an auxiliary formula.

Lemma 5.10 For any I ⊂ J such that Di is proper for i ∈ I , we have [M∨
K (D̃◦

I )] =
[
MK (D̃◦

I )(−d + |I | − 1)
]
+

∑
I�L⊂J

([
MK (D̃◦

L )(−d + |L| − 1)
]

− [M∨
K (D̃◦

L )(|I | − |L|)]
)

.

Proof By the first point of Corollary 5.6 and additivity of M∨
K ,c(−), we have

[M∨
K ,c(D̃

◦
I )] = [M∨

K ,c(D̃I )] −
∑

I�L⊂J

[M∨
K ,c(D̃

◦
L)]. (5.1)

As each of the D̃◦
L is smooth of pure dimension d − |L| + 1, by Proposition 3.2,

[M∨
K ,c(D̃

◦
L)] = [MK (D̃◦

L)(−d + |L| − 1)]. We apply DK to Eq. 5.1. By linearity of

DK , the fact that DKMK (D̃◦
L)(−d + |L| − 1) = M∨

K (D̃◦
L)(+d − |L| + 1) and second

point of Corollary 5.6, we get

[M∨
K (D̃◦

I )(d−|I |+1)] = [M∨
K ,c(D̃I )(d−|I |+1)]−

∑
I�L⊂J

[M∨
K (D̃◦

L)(d−|L|+1)].
(5.2)

Twisting this equation d − |I | + 1 times and applying again Corollary 5.6 gives the
desired result. ��
Proof of Proposition 5.9 We work by induction on d − |I | + 1. If d − |I | + 1 < 0,
then D̃◦

I is empty and there is nothing to show. If d − |I | + 1 = 0, the formula boils
down to

[M∨
K (D̃◦

I )] = [MK (D̃◦
I )],
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which holds since D̃◦
I is of dimension 0.

Suppose now the proposition holds for any L with |L| > |I |. Let r = d − |I | + 1.
By Lemma 5.10,

[M∨
K (D̃◦

I )] = [MK (D̃◦
I )(−r)] +

∑
I�L⊂J

([MK (D̃◦
L)(−d + |L| − 1)]

−[M∨
K (D̃◦

L)(|I | − |L|)]).

Applying the induction hypothesis to [M∨
K (D̃◦

L)], we get

[M∨
K (D̃◦

I )] = [MK (D̃◦
I )(−r)] +

∑
I�L⊂J

(
[MK (D̃◦

L)(−d + |L| − 1)]

−
∑

L⊂L ′⊂J

(−1)|L ′|−|L|[MK (̃D◦
L ′ ×K Gm

|L ′|−|L|
K )(−d + |I | − 1)]

)
.

Interverting the sums, we get

[M∨
K (D̃◦

I )] = [MK (D̃◦
I )(−r)] +

∑
I�L⊂J

[MK (D̃◦
L)(−d + |L| − 1)]

−
∑

I�L ′⊂J

|L ′|−|I |−1∑
i=0

( ∣∣L ′∣∣ − |I |
|L ′| − |I | − i

)
(−1)i

[
MK (̃D◦

L ′ ×K Gm
i
K )(−r)

]
.

Regrouping the terms, we get

[M∨
K (D̃◦

I )] = [MK (D̃◦
I )(−r)] +

∑
I�L ′⊂J

[MK (̃D◦
L ′)(−r)]

·
⎛
⎝[MK (1)(

∣∣L ′∣∣ − |I |)] −
|L ′|−|I |−1∑

i=0

(∣∣L ′∣∣ − |I |
i

)
(−1)i [MK (Gm

i
K )]

⎞
⎠ .

(5.3)

We need to compute the expression inside the big brackets. We have

[MK (1)(
∣∣L ′∣∣ − |I |)] −

|L ′|−|I |−1∑
i=0

(∣∣L ′∣∣ − |I |
i

)
(−1)i [MK (Gm

i
K )]

= [MK (1)(
∣∣L ′∣∣ − |I |)] + (−1)|L ′|−|I |[MK (Gm

|L ′|−|I |
K )]

−([MK (1)] − [MK (GmK )])|L ′|−|I |

= (−1)|L ′|−|I |[MK (Gm
|L ′|−|I |
K )]

because [MK (GmK )] = [MK (1)]−[MK (1)(1)]. Injecting inEq. 5.3 gives the required
expression for [M∨

K (D̃◦
I )]. ��
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Proposition 5.11 Let X be a semi-stable formal R-scheme and (Di )i∈I the reduced
irreducible components of its special fiber. Set J ′ ⊂ J such that for every i ∈ J ′, Di

is proper. Then setting D = ⋃
i∈J ′ Di , we have

χRig(]D[VFX ) = [M∨
Rig(]D[X )].

Proof By additivity of χRig, Proposition 4.21 and Corollary 4.24, we have

χRig(]D[VFX ) =
∑
I⊂J

I∩J ′ �=∅

χRig(]D◦
I [VF)

=
∑
I⊂J

I∩J ′ �=∅

(−1)|I |−1[MRig(]D◦
I [)(−d)]

=
∑
I⊂J

I∩J ′ �=∅

(−1)|I |−1[MRig(Q
Rig
NI

(D◦
I , uI ) × ∂B(o, 1)|I |−1)(−d)]. (5.4)

Wewill relate the cohomological motive of the tube to this formula using the duality
relations proven above. By Corollary 4.19, we have⎡

⎣M∨
Rig(]D[)] =

∑
I⊆J ′

(−1)|I |−1[M∨
Rig(]D◦

I [)
⎤
⎦ . (5.5)

By Corollary 4.24,

[M∨
Rig(]D◦

I [)] =
[
M∨

Rig(Q
Rig
NI

(D◦
I , uI ) × ∂B(o, 1)|I |−1)

]

=
[
M∨

Rig(Q
Rig
NI

(D◦
I , uI ))] · [M∨

Rig(∂B(o, 1)|I |−1)
]
. (5.6)

Combining Eqs. 5.5 and 5.6, we get

[M∨
Rig(]D[)] =

∑
I⊆J ′

(−1)|I |−1
[
M∨

Rig(Q
Rig
NI

(D◦
I , uI ))

] [
M∨

Rig(∂B(o, 1|I |−1)
]
. (5.7)

The analytification of D̃◦
I is Q

an
NI

(D◦
I , uI ), hence by Theorem 3.5,

Rig∗MK (D̃◦
I ) = MRig(Q

Rig
NI

(D◦
I , uI ))

and similarly for cohomological motives.
For each I ⊆ J ′, DI satisfies the hypothesis of Proposition 5.9, hence after applying

Rig∗, we get

[M∨
Rig(Q

Rig
NI

(D◦
I , uI ))]

=
∑

I⊂L⊂J

(−1)|L|−|I |[MRig(Q
Rig
NL

(D◦
L , uL) ×K ∂B(o, 1)|L|−|I |)(−d + |I | − 1)].

(5.8)
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We also know that [M∨
Rig(∂B(o, 1))] = −[MRig(∂B(o, 1))(−1)]. With these two

remarks, Eq. 5.7 yields

[M∨
Rig(]D[)] =

∑
∅�=I⊂J ′

∑
I⊂L⊂J

(−1)|L|−|I | [MRig(Q
Rig
NL

(D◦
L , uL ) ×K ∂B(o, 1)|L|−1)(−d)

]

=
∑
L⊂J

L∩J ′ �=∅

(−1)|L|−1
[
MRig(Q

Rig
NL

(D◦
L , uL ) ×K ∂B(o, 1)|L|−1)(−d)

]

·
|L∩J ′|∑
i=1

(∣∣L ∩ J ′∣∣
i

)
(−1)i−1

=
∑
L⊂J

L∩J ′ �=∅

(−1)|L|−1
[
MRig(Q

Rig
NL

(D◦
L , uL ) ×K ∂B(o, 1)|L|−1)(−d)

]
. (5.9)

Comparing to Eq. 5.4 gives the desired

χRig(]D[VF) = [M∨
Rig(]D[)].

��
Proposition 5.11 imply the following theorem, which is Theorem 1.2 of the intro-

duction. All we need to do is choosing a semi-stable formal R-scheme Y over X such
that Y → X is a composition of admissible blow-ups. Hence the induced morphism
at the level of special fibers is proper and we can apply Proposition 5.11.

Theorem 5.12 Let X be a quasi-compact smooth rigid K -variety, X an formal R-
model of X, D a proper subscheme of its special fiber Xσ . Then

χRig(]D[VF) = [M∨
Rig(]D[)].

In particular, if X is a smooth and proper rigid variety,

χRig([XVF]) = [M∨
Rig(X)].

5.3 Analytic Milnor fiber

It is suggested by Ayoub et al. [4, Remark 8.15] that one should be able to recover their
comparison result between the motivic Milnor fiber and the cohomological motive of
the analytic Milnor fiber using a morphism similar to χRig. We show below that it
is indeed the case and moreover generalize their comparison result to an equivariant
setting.

Let X be a smooth k-variety and f : X → A
1
k a non-constant regular function.

Base change to R makes of X an R-scheme. Denote X f the formal completion of X
with respect to (t). Its special fiber X f ,σ is the zero locus of f in X . For any closed
point x ∈ X f ,σ , denote by Fan

f ,x the tube of {x} in X f . It is the analytic Milnor fiber.
It is a rigid subvariety of X f ,η, the analytic nearby cycles.
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Consider an embedded resolution of singularities of X f ,σ in X . It is a proper bira-
tional morphism h : Y → X such that h−1(X f ,σ ) is a smooth strict normal crossing
divisor. Denote by (Ei )i∈J the reductions of its (smooth) irreducible components and
Ni ∈ N

∗ the multiplicity of Ei in h−1(X f ,σ ).
For any non-empty I ⊂ J , denote by EI = ∩i∈I Ei and E◦

I = EI\∪ j∈J\I E j .
Define as follows the étale cover Ẽ◦

I of E◦
I . Let NI be the greatest common divi-

sor of the Ni , for i ∈ I . Working locally on some open neighborhood U of E◦
I

in Y , we can assume that Ei is defined by equation ti = 0, for some ti ∈ O(U )

and that on U , f = uI t
Ni1
i1

. . . t
Nir
ir

, with uI ∈ O(U )×. Then set Ẽ◦
I ∩U ={

(v, x) ∈ Gmk ×U | vNI = uI
}
.

Recall the motivic Milnor fiber, defined by Denef and Loeser, see for example [17].
In an equivariant setting, for any closed point x ∈ X f ,σ , it satisfies the formula

ψ f ,x =
∑

∅�=I⊆J

(−1)|I |−1[Gm
|I |−1
k ][Ẽ◦

I ∩ h−1(x)] ∈ K(Varμ̂k ).

In particular, they show that this formula is independent of the chosen resolution h.

Remark 5.13 In the literature, the motivic Milnor is defined in the localization of
K(Varμ̂k ) by L = [A1

k]. Such a localization in non-injective if k = C, see Borisov [8].

However, Proposition 5.14 shows that it is well defined in K(Varμ̂k ). The same fact is
proven in [28, Corollary 2.6.2] using a computation similar to ours.

Proposition 5.14 For any closed point x ∈ X f ,σ ,

� ◦ Ec ◦
∮

(Fan,VF
f ,x ) = ψ f ,x ∈ K(Varμ̂k ).

Proof The embedded resolution of X f ,σ induces an admissible morphism h : Y →
X f , hence ]h−1(x)[Y 
 ] {x} [X f

. Up to changing h, we can suppose h−1(x) is a
divisor E = ∪i∈J ′Ei in Yσ = ∪i∈J Di , with I ′ ⊂ I . Then we have

Fan,VF
f ,x =

.⋃
I⊂J

I∩J ′ �=∅

]E◦
I [VF.

We want to show that

� ◦ Ec ◦
∮

(]E◦
I [) = (−1)|I |−1[Gm

|I |−1
k ×k Ẽ◦

I ].

By Remark 4.23 following Lemma 4.22, we can suppose Y = St
u−1
I t

E◦
I ×k R,N , where

N = (N1, . . . , Nr ) ∈ (N×)r (where r = |I |), uI ∈ O(E◦
I ×k R)×. But now, as in the

proof of Proposition 4.21, ]E◦
I [VF is definably isomorphic to QVF

NI
(E◦

I , u) × v−1(
).

Hence
∮ ]E◦

I [ = [QRV
NI

(E◦
I , uI ) × v−1

rv (
)]d . Now �QRV
NI

(E◦
I , uI ) = [Ẽ◦

I ] and
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� ◦ Ecv−1
rv (
) = euc(
)[Gmk]|I |−1 = (−1)|I |−1[Gmk]|I |−1,

So, putting pieces together by linearity of � ◦ Ec ◦ ∮
,

� ◦ Ec ◦
∮

Fan,VF
f ,x =

∑
I⊂J

I∩J ′ �=∅

(−1)|I |−1[Gm
|I |−1
k ×k Ẽ◦

I ] = ψ f ,x ∈ K(Varμ̂k ).

��
From Theorem 5.12, we deduce the following corollary.

Corollary 5.15 For any closed point x ∈ X f ,σ ,

χRig(Fan,VF
f ,x ) = [M∨

Rig(Fan
f ,x )].

Combining Corollary 5.15 and Proposition 5.14 with Theorem 4.13 gives the fol-
lowing result.

Corollary 5.16 For any closed point x ∈ X f ,σ , we have

[RM∨
Rig(Fan

f ,x )] = χμ̂(ψ f ,x ) ∈ K(QUSHM(k)).

It is a generalization of Corollary 8.9 of Ayoub et al. [4] at an equivariant level. They
show the same equality, but in K(SHM(k)), hence one can deduce their result from
Corollary 5.16 using Lemma 3.4.
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