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Encoding a qubit in a trapped-ion mechanical 
oscillator
C. Flühmann1*, t. L. Nguyen1, M. Marinelli1, V. Negnevitsky1, K. Mehta1 & J. P. Home1*

The stable operation of quantum computers will rely on error 
correction, in which single quantum bits of information are stored 
redundantly in the Hilbert space of a larger system. Such encoded 
qubits are commonly based on arrays of many physical qubits, but 
can also be realized using a single higher-dimensional quantum 
system, such as a harmonic oscillator1–3. In such a system, a 
powerful encoding has been devised based on periodically spaced 
superpositions of position eigenstates4–6. Various proposals have 
been made for realizing approximations to such states, but these 
have thus far remained out of reach7–11. Here we demonstrate such 
an encoded qubit using a superposition of displaced squeezed states 
of the harmonic motion of a single trapped 40Ca+ ion, controlling 
and measuring the mechanical oscillator through coupling to an 
ancillary internal-state qubit12. We prepare and reconstruct logical 
states with an average squared fidelity of 87.3 ± 0.7 per cent. Also, 
we demonstrate a universal logical single-qubit gate set, which we 
analyse using process tomography. For Pauli gates we reach process 
fidelities of about 97 per cent, whereas for continuous rotations we 
use gate teleportation and achieve fidelities of approximately 89 per 
cent. This control method opens a route for exploring continuous 
variable error correction as well as hybrid quantum information 
schemes using both discrete and continuous variables13. The code 
states also have direct applications in quantum sensing, allowing 
simultaneous measurement of small displacements in both position 
and momentum14,15.

The basic unit of quantum information is the qubit. Such a two-
state system can be stored in corresponding physical systems, like the 
spin of an electron. However in practice, the need to correct inevita-
ble errors requires qubits to be stored in physical systems of higher 
dimension, where the larger state space allows detection of errors 
without disturbing the stored logical information16. Typically, such 
a larger space is provided by the collective space of multiple physical 
qubits. Operations acting on the full state space are required in order to 
perform encoding, measurement and logical control16. An alternative 
approach is to use a single higher dimensional quantum system, such 
as a harmonic oscillator or a cavity field mode1–3. The use of a single 
system requires less resources and offers simplified control, which 
for microwave cavities has allowed demonstrations of logical qubits 
encoded and manipulated using so-called cat codes17. These codes 
are designed for correcting photon loss, which enabled extension of 
qubit coherence using error correction by feedback18. An alternative 
oscillator code, proposed by Gottesman, Kitaev and Preskill (GKP)4, 
is based on sets of displacements generating a periodic grid with a unit 
cell area of 2h in real phase space. Compared to other oscillator codes 
this encoding has been shown to offer the highest correction perfor-
mance, even outperforming the cat code for the photon loss channel5. 
Code states can be realized by multi-component superpositions of 
displaced squeezed states. These states are challenging to engineer 
and their preparation requires nonlinear couplings4. Once the qubit 
is encoded, full quantum state control can be achieved by combining 
relatively simple Gaussian transformations with measurements of the 
oscillator4.

In this Letter, we experimentally demonstrate encoding, logical read-
out and full control of a GKP qubit in a trapped 40Ca+ ion motional 
oscillator. We generate the code states, and measure the spatial as well 
as the momentum probability densities, revealing their 2D periodic 
grid-like non-local structure in phase space. The preparation of these 
‘grid’ oscillator states is based on coupling the oscillator to two atomic 
pseudo-spin states ⟩| ≡ | = // m0 S , 1 2j1 2  and ⟩| ≡ | = // m1 D , 3 2j5 2  via 
state-dependent optical forces (SDF)19, combined with post-selected 
internal-state readout12. This toolbox also allows us to read out the 
encoded qubit state, and by combining sets of such measurements we 
perform encoded state tomography. We then extend these tools using 
direct oscillator displacements and atomic-state rotations to implement 
and characterize a universal single logical qubit gate set, including 
non-Clifford gates teleported onto the code.

In the stabilizer formalism, a qubit code subspace is defined within 
a higher-dimensional Hilbert space by the action of a set of mutually 
commuting stabilizer operators16. These form the error-check operators 
that are measured in order to detect logical qubit errors. Such measure-
ments should not disturb the stored information, therefore it is required 
that the stabilizer operators also commute with the generators of the 
qubit subspace, given by the Pauli operators. For a single harmonic 
oscillator, Gottesman, Kitaev and Preskill showed4 that a set of stabilizer 
and Pauli operations can be constructed from displacements in the 
oscillator phase space. The operator for a displacement is 

α = α α− ∗
D eˆ ( ) a aˆ ˆ† , where α is a complex number giving the size and 
direction of the displacement and a aˆ , ˆ†  are the creation and annihila-
tion operators of the oscillator20. Displacement operators are in general 
non-commutative, following α β Φ α β= ΦD D D Di[ ˆ ( ), ˆ ( )] 2 e sin( ) ˆ ( ) ˆ ( )i  
with Φ = Im(βα*). Displacements satisfying Φ = kπ, k ∈ Z commute, 
while for Φ =  (2k + 1)π/2 they anti-commute. It follows that 

≡ /DX lˆ ˆ ( 2)L , ≡ π/DZ i lˆ ˆ ( )L  and ≡ − / − π/DY l i lˆ ˆ ( 2 )L  will commute 
with the stabilizer operators ≡ DS lˆ ˆ ( )X , ≡ π/DS i lˆ ˆ ( 2 )Z , because Φ = π 
or 0, while the two stabilizer operators have Φ = 2π and thus also com-
mute. Φ is independent of the parameter l, which can thus be varied. 
Figure 1a gives a summary of the logical operators in phase space. The 
simultaneous eigenstates of Z S Sˆ , ˆ , ˆ

L Z X are the computational basis states 
and are periodic with respect to the three phase space shifts. The dis-
placement operators are non-Hermitian α α= −D Dˆ ( ) ˆ ( )† , nevertheless 
the action of X Y Zˆ , ˆ , ˆ

L L L and their Hermitian conjugates are identical on 
the periodic code states. This ensures the correct behaviour for Pauli 
operators (for more details, see Methods).

The computational basis states consist of an infinite array of position 
eigenstates4. These ideal code states are unphysical, since they cannot 
be normalized. Approximations to these states are given by finite super-
positions of displaced squeezed states4:

∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩
Z

∑= = /
∈

±

D Dc kl r l0 ˆ ( ) , 1 ˆ ( 2) 0 (1)L
k

k

k L L

max

where ∣ ⟩ ∣ ⟩=r S rˆ( ) 0  is a squeezed vacuum state with the squeezed axis 
aligned with position. = − /S rˆ( ) er a a(ˆ ˆ ) 22 †2

 is the corresponding phase 
space squeezing operator, where we define the squeezing parameter r 
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to be real and positive. The weight of the displaced components is given 
by the real pre-factors ck. This approximate form approaches the ideal 
states4,21 for larger r and kmax.

Experimentally, we create the code states in the axial motional mode 
of a single 40Ca+ ion which has a frequency of ωm ≈ 2π × 1.85 MHz. 
We start from a squeezed vacuum state produced by reservoir engi-
neering22, to which we apply a sequence of modular variable measure-
ments7,12,23,24. A modular measurement is implemented by a two stage 
process shown in the circuit in Fig. 1d excluding operations inside the 
dashed boxes. First (i) the ancillary internal-state qubit in ∣ ⟩1  is coupled 
to the oscillator using a resonant internal state-dependent force imple-
menting α /D Xˆ ( ˆ 2) with X̂ the internal-state Pauli operator (blue box 
in Fig. 1d). This is followed by (ii) detection of the internal state of the 
ion by resonance fluorescence. Conditioned on detecting no scattered 
photons, this implements the operator α α= / / + − /+ D DÊ 1 2( ˆ ( 2) ˆ ( 2)) 
on the oscillator, producing a superposition of two displaced copies of 
the initial state. This process is repeated with appropriately chosen α 
to build up multi-component superpositions of the form given in equa-
tion (1). Figure 1b, c shows Wigner function simulations (Methods) as 
well as measured probability densities (Methods)25 in both position 

ρ=P q q( ) tr( ˆˆ) and momentum ρ=P p p( ) tr(ˆ ˆ) for two approximate code 
eigenstates created using two rounds of modular variable measurement. 
Figure 1b shows an example of a ∣ ⟩0 L state consisting of three displaced 
components created using measurement displacements α1 = α2 = l, 
while Fig. 1c presents a four component version of ∣ ⟩1 L created using 
α1 = l, α2 = 2l. In both cases we choose ≈ πl 2 , which generates code 
states with similar modularities in q and p. To minimize sensitivity to 
motional dephasing, a low average phonon number n is desirable. 

Therefore states with a symmetric extent in q and p and with high 
weight close to the origin are preferable. This favours r ≈ 0.9 ≈ 7.8 dB 
and the three-component state on which we base our encoding in the 
results below. The marginals of the simulated Wigner functions provide 
a theory curve for the measured probability densities and match well 
with the data presented in Fig. 1b, c.

In order to create eigenstates of the other Pauli operators as well as 
implement arbitrary logical control, we perform two types of operation 
on the logical states. Pauli operations are simple displacements αD̂( ). 
These are experimentally implemented by applying an oscillating volt-
age resonant with the trap frequency ωm to one of our trapping elec-
trodes26. The magnitude |α| of the displacement is set by the product 
of the pulse amplitude and duration, and the direction αarg( ) by the 
phase of the oscillating tone. For continuous operations, we use a mod-
ification of the modular variable measurement, which involves the full 
circuit shown in Fig. 1d. We use ancilla controlled displacements 

/D l Xˆ ( ˆ 4)j  along variable directions j = X, Y, Z defined using lX = l, 
lZ = 2πi/l or lY = −lX − lZ. This, together with an unconditional cor-
rective displacement /D lˆ ( 4)j , which ensures remaining within the code 
space, realizes the controlled logical Pauli operation shown in Fig. 1e. 
Before the application of these pulses, a rotation of angle θ and  
phase φ θ φ θ θ φ φ= / + / +�R i X Y( ˆ( , ) cos( 2) sin( 2)(sin( ) ˆ cos( ) ˆ )) is per-
formed on the ancillary internal-state qubit using a resonant Rabi oscil-
lation. Conditional on the dark detection event this full circuit implements 

⟩⟨ ⟩⟨θ φ θ θ= / | + + | + / | − − |φÛ ( , ) 2 (cos( 2) sin( 2)e )L
j

j j L
i

j j L  on the 
oscillator state, where ∣ ⟩±j L denotes the ±1 ideal eigenstate of σ̂L

j. In 
the context of error-correction codes, this transformation is often 
referred to as teleportation of the gate onto the code27. This operation 
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Ĥ
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Fig. 1 | Grid state encoding and control. a, Phase space displacements for 
the two stabilizer operators ŜX , ŜZ  and the Pauli operators X̂L, ŶL, ẐL 
showing also the relevant phase space area Φ. We define the  dimensionless 
position q̂ and momentum p̂ such that for a coherent oscillator state: 
⟨ ∣ ∣ ⟩α α α=q̂ Re( ), ⟨ ∣ ∣ ⟩α α α=p̂ Im( ) (see Methods). The Hadamard Ĥ  
operation is given by a π/2-rotation of phase space. b, c, Approximate grid 
code states: encoding using the non-zero coefficients = = /−c c c 21 1 0  and 
displaying the ∣ ⟩0 L state (b) encoding with = = =− −c c c c2 1 0 1 and showing 
∣ ⟩1 L (c). In each case we plot the Wigner function20 (see colour bar on the 
right) of the grid code states obtained by a Lindblad master equation 
simulation of the experiment (Methods). The red ellipses show the 
position and r.m.s. size of the displaced squeezed wave-packets building 
up these grid states. The two marginal distributions P p P q( ), ( ) are plotted 

at the corresponding sides of the central figure. Here the curve obtained by 
simulation is shown in red whereas blue points with error bars present 
measurement results (Methods)25. d, Circuit used for grid state qubit 
control. Operations inside the blue box are an equivalent circuit for the 
SDF laser pulse. Performed together with the internal-state readout, this 
realizes the modular measurement. The additional dashed-box operations 
(carrier rotation θ φR̂( , ) and phase space shift βD̂( )) allow teleportation of 
gates. Here ∣ ⟩ψin  denotes an arbitrary oscillator input state and ∣ ⟩ψ±

 is the 
output state conditioned on the measurement result ±1. e, As circuit d but 
for replacing the oscillator with a logical grid qubit ∣ ⟩ψ L, and using 
displacement settings α β= / =l 2 2j . These settings realize the controlled 
Pauli operator σ̂L

j, and in total the circuit implements the continuous 
operation θ φÛ ( , )L

j .
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is only unitary if we set θ  =  π/2, resulting in a rotation 
φ φ φσπ/ = = − /φ φ/ /U R iˆ ( 2, ) e ˆ ( ) e exp( ˆ 2)L

j i
L
j i

L
j2 2  around the j axis of the 

Bloch sphere28. However, in state preparation it is not necessary to per-
form unitary operations as long as the pure target state is reached, and 
thus we used values of θ = 0, π, π/2 in the state preparations presented 
in Fig. 2.

Outcomes of the modular variable measurements are used to read 
out the logical operators and stabilizers. The internal-state readout 
performed in the modular measurement sequence has outcome prob-
abilities ⟨ ∣ ∣ ⟩ψ ψ= + +P E E(1) ˆ ˆ

in
†

in  and P(−1) = 1 − P(1) with the expec-
tation value of the readout given by ⟨ ∣ ∣ ⟩ψ ψ= − − =Z P P Qˆ (1) ( 1) ˆ

in in  
where α= DQ̂ Re{ ˆ ( )} and ∣ ⟩ψin  is the initial oscillator state. For appro-
priately chosen complex displacements this circuit realizes readout of 
the logical operators, which require only the real value since they are 
Hermitian for ideal code states. The readout probabilities are dependent 
on interference of the two displaced copies of the original state, which 
depends both on the state overlaps and on geometric phases12 
(Methods).

Figure 2 shows the results of such measurements performed on each 
of the eigenstates of X̂L, ŶL, ẐL with non-zero coefficients c1 = c−1 = c0/2. 
Each is prepared by first creating the three-component |0 L

, followed 
by appropriate displacements and teleported operations (for all settings, 
see Methods). Figure 2 shows additionally theoretical Wigner function 
plots of the created motional states. For each initialized state, we give 
the readout as a function of the displacement amplitude along three 
directions, which are parametrized as α = tlj with the real number t. 
The periodic nature of the code states can be observed in the experi-
mental data (blue points) presented in Fig. 2. Also shown are theory 
curves (red lines) together with a master equation simulation which 
includes the effects of motional dephasing (blue lines). We again see 
good agreement of the latter with our measurement. At t = 1 the sta-
bilizer operators are measured. Averaging the results over the six input 
states yields: = ± .Ŝ 56% 1% (65 8%)X  and = ± .Ŝ 41% 1% (59 2%)Z . 
The value given in parentheses is the expectation due to the 

approximate nature of the code states (red lines). These measurements 
allow us to estimate a simultaneous average effective squeezing level of 
about 7.3 dB and about 5.5 dB in the two orthogonal directions14 
(see Methods for details). At t = 0.5, the measurements read out the 
logical Pauli operators, which allows us to reconstruct the logical qubit 
density matrix ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ρ = + + +� X X Y Y Z Zˆ ( ˆ ˆ ˆ ˆ ˆ ˆ )L L L L L L L L

1
2

. We quantify 
the logical qubit quality by calculating the fidelity between the recon-
structed state and the ideal eigenstates of σ̂L

j given by ∣ ⟩±j L  as 
∣ ⟩ ⟨ ∣ ∣ ⟩ρ ρ± = ± ±F( ˆ , ) ˆL j L j L L j L  . The average state creation and read out 

fidelity of five data sets measured over several days was 87.3%  
with a standard deviation between the averages of 0.7%. In this case, 
the finite approximation limits the achievable average fidelity to 90.8%. 
All the measured states are shown as red points on the Bloch sphere in 
Fig. 3c. Additionally, we measure the lifetime of our grid qubit by pre-
paring ∣ ⟩0 L ∣ ⟩+( )L  and monitoring the ẐL X( ˆ )L  readout as a function 
of a preceding free evolution time. In both cases we fit exponential 
decays and extract timescales of T = 3.7 ± 0.2 ms (3.6 ± 0.3 ms) 
(Methods).

Readout of logical operators allows us to examine the teleported  
gates θ φÛ ( , )L

j
 implemented using the ancilla qubit. First we set θ = π/2 

and use the controlled X̂L operation. This implements a rotation around 
the X axis φ φπ/ = φ/U Rˆ ( 2, ) e ˆ ( )L

X i
L
X2 , with the choice of phase φ denot-

ing the rotation angle. This operation applied to ∣ ⟩0 L is shown in  
Fig. 3a. We see that the value of ⟨ ⟩X̂L  is largely unaffected, while a clear 
rotation is seen in the ⟨ ⟩ŜL  and ⟨ ⟩ẐL  signals. Figure 3b shows similar data,  
obtained using φ = π/2 while varying the value of θ again using  
the input state ∣ ⟩0 L and the controlled X̂L operation. Although this 
transformation is useful in state preparation it is not unitary. The states 
produced using both operations are shown on the Bloch sphere in 
Fig. 3c.

To characterize the performance of our qubit operations we  
use quantum process tomography. The six approximate eigenstates  
of X̂L, ŶL, ẐL are used as input states, which are then subjected to  
the process of interest. The input density matrix ρ̂L

in as well as the output 

P
(q

)

P( p) P( p)

p

M
X
(t

)
M

Y
(t

)
M

Z
(t

)
M

X
(t

)
M

Y
(t

)
M

Z
(t

)

q

a

1

0

0

P
(q

)
p 0

0

P
(q

)
p 0

0

0

0 +L L

1 –L L

L

L

0
q

–

+

t

0 P( p)
q
0

–1
1

0

–1
1

0

–1

1

0

–1
1

0

–1

0.0 0.5 1.0 1.5 2.0

t

0.0 0.5 1.0 1.5 2.0

t

0.0 0.5 1.0 1.5 2.0

1

0

–1

b c Fig. 2 | Logical readout. a, ẐL eigenstates 
∣ ⟩ ∣ ⟩0 , 1L L; b, X̂L eigenstates ∣ ⟩ ∣ ⟩+ −,L L; and c, 
ŶL eigenstates ∣ ⟩φ+ L,∣ ⟩φ− L. All states were 
created using the settings ≈ .r 0 9, ≈ πl 2  and 

= = /−c c c 21 1 0 . The ẐL eigenstates are three-
component superpositions whereas in b and c 
these are six-component superpositions given 
by coherent superpositions of the ẐL 
eigenstates’ components. Middle and lower 
panels show state analysis measurement 
results. Each state is analysed by sweeping the 
displacement parameter α = tlj along three 
phase space axes ( =l lX , = − −l l lY X Z and 

= π /l i l2Z ), and t is real and parametrizes these 
directions. We measure ⟨ ⟩= DM t tl( ) Re{ ˆ ( )}j j  as 
a function of t. The readout for t = 0.5 (solid 
vertical line) corresponds to a ⟨ ⟩σ̂L

j  Pauli 
readout, while t = 1 (dashed line) corresponds 
to the stabilizer readout ⟨ ⟩Ŝj . Blue points 
represent measured data with the error bars 
given as standard errors of the mean (s.e.m.). 
The red line shows an analytic calculation for 
the chosen l, r and ck whereas the blue line is a 
Lindblad master simulation including 
motional dephasing. Upper panels show 
theoretical Wigner functions of relevant 
motional states. In each case the −1 eigenstate 
is prepared from the +1 eigenstate via the 
application of a Pauli operation, thus the 
Wigner function of the −1 state has the same 
qualitative pattern but is shifted in phase space. 
This is accounted for in the plot by the shift of 
the relevant plot axes. Solid (dotted) lines are 
valid for +1 (−1) eigenstates.
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density matrix ρ̂L
out  are reconstructed by readout in the three  

Pauli bases. The process can be described by a linear map 
ρ ρ σ ρ σ χ= = ∑E( ˆ ) ˆ ˆ ˆ ˆ ˆL L mn L

m
L L

n
mn

in out in , which is fully defined by the com-
plex matrix χ. From the measurement results, we obtain χ using a 
constrained least square optimization of the set of linear equations 
relating input to output states (Methods). Results for a universal set of 
logical gates are shown in Fig. 4. The presented set of gates is given by 
all three Pauli operations X̂L, ŶL, ẐL, together with the T̂L gate π/R( ˆ ( 4))L

Z , and 
two π/2-rotations − π/R̂ ( 2)L

X  and − π/R̂ ( 2)L
Z  about orthogonal axes. 

The last three were performed by gate teleportation.
The quality of each of these operations can be evaluated by calculat-

ing the process fidelity χχ=F tr( )Ô id  between the experimentally 
obtained χ and the ideal logical qubit matrix χid. For the Pauli opera-
tions we find =σF 97%ˆL

j , while for the three reconstructed partial  
rotations around the Z and X axes we find = =π/F F 92%T Rˆ ˆ ( 4)L L

Z , 

=−π/F 91%R̂ ( 2)L
X , =−π/F 87%R̂ ( 2)L

Z . The numerical optimization used 
for determining χ makes the evaluation of error bars non-trivial, and 
we thus forego quoting error bars here. Additionally we note that the 
Hadamard gate can be implemented as an update of the readout direc-
tions. By definition, the process tomography routine then gives an ideal 
process matrix and a process fidelity of 1.

The evaluation of the logical qubit gates given above is independent 
of its physical realization. Although the process tomography analysis 
captures the relevant information about storing and manipulating 
quantum information, the underlying quantum states are those of the 
oscillator. In practice, the change in the states of the oscillator produces 
a number of complications that require further study (Methods). In the 
work above, this includes the teleported gates generating additional 
grid state components, and the change in the state adjusting the logical 
readout levels. Sequences of Pauli gates given by phase space shifts can 
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Ẑ

1.0

0.5

0.0

–0.5

–1.0

–
L

0
L

+
L

1
L

+ L

– L

Fig. 3 | Arbitrary single-qubit operations. a, φπ/ |Û ( 2, ) 0L
X

L
, realizing a 

rotation around the X axis of the Bloch sphere. b, θ π/ |Û ( , 2) 0L
X

L
. In a and 

b, ∣ ⟩ ∣ ⟩ ∣ ⟩ψ = ∝ − + + = .D Dl l r0 ( ˆ ( ) 2 ˆ ( )) 0 91Lin  with l = 2.36, errors are 
given as s.e.m., whereas the solid line shows the Lindblad master 
simulation of the experiment. c, Summary of the continuously varied 

operations presented in a and b on the Bloch sphere (shown in blue and 
purple, respectively). Corresponding ideal operations would follow a 
meridian and the equator, respectively, which are given as dashed black 
lines. In addition, red points indicate the states shown in Fig. 2, as well as 
all the process tomography input states.
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Fig. 4 | Process tomography of logical operations, characterized by the 
χ matrix. The reconstructed operations are as follows: a–c, Pauli gates, 
implemented by phase space displacements; d–f, rotations = π/T Rˆ ˆ ( 4)L L

Z  (d),  
− π/R̂ ( 2)L

X  (e) and − π/R̂ ( 2)L
Z  (f) implemented by teleportation using  

the internal-state qubit as an ancilla. The Hadamard operation ĤL is given 
by an oscillator phase space rotation of π/2, which can be conveniently 

realized as an update to the readout direction in the classical control 
system. Such a permutation of readout results trivially leads to a perfect 
process tomography result. Each panel displays the real (Re; left) and the 
imaginary (Im; right) part of the χ matrix, where each entry is coloured 
according to the colour bar shown on the left. Red (blue) colours indicate 
positive (negative) values.
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be optimized in order to maintain population at low n which minimizes 
dephasing.

Extensions to this work could include performing error correction 
and control of multiple encoded qubits. Multi-qubit gates could be per-
formed by using lasers to couple two oscillation modes of one ion medi-
ated via the internal states (Methods). A more scalable solution is to 
use local modes of different ions, which can be coupled using the 
Coulomb interaction. For resonant coupling, this generates an opera-
tion analogous to a beam-splitter, allowing a full swap of the oscillator 
states29–31. The latter could be used to realize a non-destructive readout 
of the grid state stabilizers by transferring quantum information to a 
second trapped ion which would then be decoupled from the first 
before fluorescence-based spin readout (see Methods). This would 
allow the implementation of error correction schemes using, for exam-
ple, phase estimation10,21. To successfully concatenate grid states with 
qubit stabilizer codes such as the surface32 or Toric33 codes, an improve-
ment in the approximation to ideal grid states would be required. 
Theoretical results indicate the need for squeezing levels of the order 
of 10–15 dB in both phase space dimensions, with the exact value 
dependent on the chosen error model, the architecture considered and 
the available quality of control. We have previously22 prepared 
squeezed-vacuum states with about 12.59 dB, but improvements in 
both trap stability and optimization of calibration techniques would be 
required to achieve this for both q̂ and p̂ of a grid-state qubit 
(see Methods). While the demonstrated control provides a new route 
for investigating quantum error correction, the availability of two-di-
mensional squeezing also gives the possibility of realizing improved 
sensing of small phase space displacements in both position and 
momentum14.
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MEthods
Dimensionless position and momentum. We choose definitions of dimensionless 
position and momentum such that we have a simple connection to phase space: 

= ωq qˆ ˆm
ħ2 r

 and =
ω

p pˆ ˆ
m ħ
1

2 r
 ; here q pˆ , ˆ

r r
 are the real-space position and momen-

tum operators. Using these definitions we find ⟨ ∣ ∣ ⟩α α α=q̂ Re( ) , 
⟨ ∣ ∣ ⟩α α α=p̂ Im( )  and = /q p i[ ˆ, ˆ] 2. This definition simplifies working with  
position, momentum and displacement operators simultaneously.
Logical operations. We have argued in the main text that the action of the logical 
Pauli operator becomes Hermitian when acting on the ideal code states which still 
holds approximately for approximate code states34. Further, the stabilizer operators 
act as the identity operation on the code states. Therefore we have:
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The logical Pauli operations should fulfil the relation σσ δ σ= + εiˆ ˆ 1i j ij ijk k ; here δij 
is the Kronecker delta and εijk the Levi–Civita symbol. From this relation then the 
usual Pauli commutation and anti-commutation relations follow. We find:

= / = = ≈

= − / − π/ = − − π/ = ≈

= π/ = π/ = ≈

= / − / − π/ = − π/ = ≈

= / π/ = − / + π/ = − ≈ −

= − / − π/ π/ = − / = ≈

D D

D D

D D

D D D

D D D

D D D

�

�

�

X l l S

Y l i l l i l S S

Z i l i l S

X Y l l i l i i l iZ iZ

X Z l i l i l i l iY iY

Y Z l i l i l i l iX iX

ˆ ˆ ( 2) ˆ ( ) ˆ

ˆ ˆ ( 2 ) ˆ ( 2 ) ˆ ˆ

ˆ ˆ ( ) ˆ (2 ) ˆ

ˆ ˆ ˆ ( 2) ˆ ( 2 ) ˆ ( ) ˆ ˆ

ˆ ˆ ˆ ( 2) ˆ ( ) ˆ ( 2 ) ˆ ˆ

ˆ ˆ ˆ ( 2 ) ˆ ( ) ˆ ( 2) ˆ ˆ

(3)

L X L

L X Z L

L Z L

L L L L

L L L L

L L L L

2 2

2 2 † †

2 2

†

†

†

Experimental apparatus. Experiments were performed in a room temperature 
segmented linear Paul trap, based on a stack of laser machined and gold coated 
alumina wafers. A detailed description of the apparatus can be found elsewhere35. 
The ion–electrode distance is around 180 μm and we work at an intermediate 
magnetic field of 119 G (which is motivated by the capability of our setup to operate 
with beryllium as well as calcium ions simultaneously). The presented experiments 
rely on control via the 729 nm laser. We use monochromatic pulses for resonant 
carrier rotations and bi-chromatic pulses for the squeezed pumping as well as the 
SDF pulses, for which the relevant Lamb–Dicke parameter is 0.05. We read out 
our internal states using 397 nm and 866 nm laser light. 854 nm light is used for 
emptying the internal state |1〉 level. A resonant RF drive to our trapping electrode 
is used to implement unconditional oscillator shifts.
Calibration of displacement and squeezing directions. The presented experi-
ments rely on excellent control of the oscillator phase space. This requires a stable 
and well calibrated motional frequency. Additionally we need to be able to refer-
ence the orientation of the squeezed state to the state-dependent force displace-
ment direction and to the direction of the unconditional displacements which are 
implemented by the oscillating drive to a trapping electrode (which we refer to in 
what follows as ‘tickling’36).

The SDF direction and the squeezed state orientation are both defined by the 
difference phase of the red and blue sideband laser components. The creation of 
the squeezed state and the SDF pulse use the exact same electronic and optical 
signal paths, thus their directions stay fixed with respect to each other. In order to 
match the tickle direction to that of the laser force, we create a squeezed oscillator 
state which we first displace using the SDF laser pulse (see Extended Data Fig. 1a, b  
for a schematic of the calibration in phase space). Addition of a carrier π/2-rotation 
before and after the SDF pulse allows the implementation of αD Zˆ ( ˆ)12. Then we 
aim to invert this displacement using the tickling pulse. We probe whether we 
returned to the initially prepared squeezed state by using a bichromatic laser pulse 
simultaneously driving the red and the blue sideband with appropriately chosen 
relative amplitude and phase. This realizes the Hamiltonian σ∝ + . .+H UaUˆ ˆ ˆ ˆ h c

†
 

with ξ=U Sˆ ˆ( ). As described in detail elsewhere22,23,37, this Hamiltonian can be 
viewed as a squeezed version of a motional red sideband inducing flopping between 
neighbouring squeezed-Fock states. The laser will not induce a change of the inter-
nal qubit state if the motion is in the squeezed ground state. Thus in cases where 
we succeed in inverting the unconditional displacement due to the laser we are not 
able to invert the qubit with the bichromatic pulse. We exploit the anisotropic 
nature of the squeezed state by displacing along the squeezed axis in order to cal-
ibrate the duration of the oscillating voltage (see Extended Data Fig. 1a) and along 
the anti-squeezed axis in order to find its phase (Extended Data Fig. 1b).

Calibration of displacement and squeezing amplitudes. The calibration of the 
SDF is based on monitoring the loss of overlap as a function of SDF probe time, 
when it is applied to either the |0〉 or |1〉 Fock states. Using a fit we extract the 
SDF strength. The case of the ground state is described in detail in the appendix 
of ref. 12.

The calibration of the squeezing parameter r is discussed in detail elsewhere22. 
After pumping into the squeezed ground state we apply a blue sideband pulse  
and observe the internal state population as a function of pulse time. The blue 
sideband couples neighbouring Fock states with a Rabi frequency which scales  
as +n 1 26. Fitting the observed oscillations to the expected dynamics for 
a squeezed state using a floated variable r allows us to estimate the amount of 
squeezing.
Motional frequency calibration. We calibrate the motional frequency of 
2π × 1.85 MHz to an accuracy of around 10 Hz (95% confidence interval). 
Frequency drifts of up to 1.8 Hz min−1 are observed, but often these are much 
lower. Nevertheless we recalibrate the motional frequency at least every 5 min. A 
quick, accurate and robust frequency calibration is thus required. Our calibration 
method is shown schematically in Extended Data Fig. 1c. We first ground state 
cool the ion’s motion and then apply an oscillating tickle voltage with frequency 
ωm + δ to one of our trapping electrodes, where δ denotes a small detuning from 
the correct frequency ωm. This tone prepares a coherent state of |α| ≈ 4.3. This is 
followed by a wait time of around 1.4 ms, after which we apply a second oscillat-
ing voltage with opposite phase to the first pulse. The final motional state is then 
probed with a red sideband pulse. In the case δ = 0, the motional state returns to 
the ground state after this sequence and thus the red sideband will not be able to 
invert the internal state of the ion. For δ ≠ 0, the ion ends in an excited motional 
state, and the electronic state has a non-zero probability of being inverted by the 
red sideband pulse. Using a squeezed initial oscillator state and a squeezed basis 
probe pulse22 gives a geometrical advantage for this calibration. Nevertheless the 
method using the ground state proved to be experimentally more robust and 
was therefore used. Our calibration feature takes about 30 s to measure and is 
well fitted with a Lorenzian line shape A/[1 + (2(ω − ωm)/w)2] with a width 
w ≈ 2π × 170 Hz. This calibration method is very similar to the one recently 
presented in ref. 38. It differs mainly in the initial motional state used and the use 
of a final red sideband probe pulse.
Decoherence of motional states. The decoherence of the motional oscillations in 
our trapped-ion system is primarily thought to be caused by noise in the trapping 
potentials. Such noise can fluctuate on various timescales and to characterize its 
exact spectrum is a demanding experimental task. The measured heating rate of 
our trap is around 10 quanta per s for the secular frequencies used in the experi-
ment. Over many years we have observed coherence times for a superposition of 
the Fock states ∣ ⟩ ∣ ⟩+ /( 0 1 ) 2 of between 15 ms and 40 ms (early measurements 
are reported in ref. 35). Frequent frequency calibrations (every five minutes) indi-
cate the presence of slow fluctuations of the order of ±20 Hz between calibration 
measurements. We find that the combined effect of our noise is typically well 
accounted for by simulating the experiments with a purely dephasing Lindblad 
operator Γ +aa a a( (ˆˆ ˆ ˆ))† †  with Γ = 7 − 15 s−1. The close agreement of such a 
simulation with the experiment can be seen in the main part of Fig. 2 and also in 
the results in Figs. 1, 3. But we can not consistently simulate all experiments using 
such a Lindblad term; for example, we observe discrepancies between our lifetime 
measurements and the simulations.
Effective squeezing of grid state qubits. Grid states can be considered in some 
senses to be squeezed in both phase space directions. We can characterize this 
through an effective squeezing parameter which is defined through the measure-
ment of the stabilizer operators as14:

⟨ ⟩
∆ ≈

π











S
1 ln 1

ˆ (4)j
j

2

If we consider the = πDS iˆ ˆ ( 2 )Z  stabilizer acting on the vacuum state squeezed 
along the position direction, then we recover a relation to the standard squeezing 
parameter r as ∆ / = −2 eZ

r2 2 . Thus we can more generally state the effective squeez-
ing in dB for any state as ∆/10log (2 )j10

2 . The values of our stabilizer readouts on 
grid states are ⟨ ⟩ = . ± .Ŝ 0 56 0 01X , ⟨ ⟩ = . ± .Ŝ 0 41 0 01Z  from which we calculate 
∼7.3 dB and ∼5.5 dB of effective squeezing, respectively.

To assess the improvement to our experiment required to reach a value of 10 dB  
squeezing or better in both directions we use numerical simulations. As an example,  
we simulate the creation and stabilizer readout of a logical |1〉L using the following 
assumed conditions:

(1) Doubling the current laser power, leading to 2 improvement in our Rabi 
frequencies.

(2) Shortening the control system decision time of each modular measurement 
from 50 μs to 10 μs.
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(3) Adding one more round of modular measurement for the initial state prepa-
ration and increasing the squeezing to r = 1.4. This leads to the approximate prepa-
ration of the state ∣ ⟩ ∣ ⟩∝ − . + − . + . + . = .D D D Dl l l l r1 [ ˆ ( 1 5 ) 3 ˆ ( 0 5 ) 3 ˆ (0 5 ) ˆ (1 5 )] 1 4L  
with = πl 2 .

(4) Reducing our dephasing rate in the Lindblad operator Γ +aa a a(ˆˆ ˆ ˆ)† †  to 
Γ = 2 s−1.

This simulation leads to effective squeezing of ∼10.05 dB and ∼10.30 dB. 
However this does not include infidelities due to imperfect squeezed state prepa-
ration or mis-calibrations of the SDF pulse.
Measured probability densities. Measurements of probability densities have been 
previously used in trapped ion experiments39–41. Using these methods, the Fourier 
transform of the probability density is assessed experimentally. We zero-pad our 
data before performing the discrete Fourier transform and use bootstrapping in 
order to obtain error bars42.
Logical state readout. The readout is based on the non-commutativity of phase 
space displacements α β β α= αβ ∗

D D D Dˆ ( ) ˆ ( ) e ˆ ( ) ˆ ( )i2 Im( )  and interference of the 
grid states with themselves. This is explained in the following for the lZ readout 
direction and on a ∣ ⟩ ∣ ⟩ ∣ ⟩ψ = = ∑ Dc kl r0 ˆ ( )L k kin  state. The modular measurement 
probability is given by ⟨ ∣ ∣ ⟩ψ ψ± = ± ±P E E( 1) ˆ ˆ

in
†

in , which is given by the overlap of 
the un-normalized post-measurement state of the oscillator ∣ ⟩ψ±Ê in  with itself. 
This post-measurement state consists of two displaced copies of the input  
state ∣ ⟩0 L. One copy is displaced towards negative momentum by α/2 while  
the other copy is displaced in the opposite direction. Only components originat-
ing from the same initial grid state component k, that is, ∣ ⟩D kl rˆ ( )  have signifi-
cant overlap. For each of these the non-commutativity of the displacement 
operators leads to a different phase factor. Using these relations we find 

+ ≈ / + ∑ | |DP l tkl r il tkl r( 1) 1 2(1 cos(2 ) ˆ ( ) )k Z Z  from which − = − +P P( 1) 1 ( 1) 
follows. We can observe this functional form in Fig. 2a. The initial increase of t 
leads first to different phases between the various terms in the sum and the readout 
signal drops. At t = 0.5, which corresponds to readout of ẐL, the phases of each 
term are multiples of 2π and ideally would completely rephase. Due to the finite 
squeezing the overlap ⟨ ∣ ∣ ⟩ ∣ ∣= − −Dr tl r tlˆ ( ) exp( e )Z Z

r2 2  is reduced. The next 
revival occurs at t = 1 corresponding to readout of the stabilizer operator, where 
we see that the overlap dropped even further. Using ∣ ⟩1 L as an input state, the 
different position of the squeezed components changes the geometric phase factors 
by an offset 2πt, leading to a negative revival for t = 0.5. Similar arguments can be 
made for the readouts in the other directions. For example, in the lX case compo-
nents originating from neighbouring grid state components will overlap and these 
overlaps will add up constructively or destructively dependent on the initial relative 
phase between these components. Here revivals will be reduced relative to an ideal 
grid state due to the finite number of displaced components.
State tomography. We reconstruct logical grid states via readout in the three log-
ical Pauli bases ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ρ = + + +� X X Y Y Z Zˆ ( ˆ ˆ ˆ ˆ ˆ ˆ )L L L L L L L L

1
2

. Any measurement will 
yield an expectation value in the range [−1,1] and thus lead to a valid density 
operator. However it is worth noting that state tomography does not assess how 
well we are in the code space. An illustrative example would be the measurement 
of ⟨ ⟩ ⟨ ⟩ ⟨ ⟩= = =X Y Zˆ ˆ ˆ 0L L L   . This result could be obtained either from a fully mixed 
logical grid qubit state given by ρ = �ˆL L

1
2

, or from a motional state which has fully 
decohered. In the first case the stabilizer values would both be +1 while for the 
latter the stabilizer readout would give zero.

As was seen in the previous section the logical readout levels are limited by the 
underlying approximate code states. In particular they depend on how well the 
states are true eigenstates of the two stabilizer operators ŜX , ŜZ . The readout of ŜX , 
X̂L improves with a higher number of squeezed components, while more initial 
squeezing improves the ŜZ  and ẐL readouts. We optimized the experimental code 
states in such a way that readouts of ẐL and X̂L are limited at a similar level. In turn 
the ŶL readout is limited by both the number of components and the squeezing and 
is thus expected to be lower.
Pulse sequences. In Extended Data Table 1 all pulse sequences used to create the 
eigenstates of X̂L, ŶL, ẐL are summarized. Each of the state creation sequences 
starts with the preparation of a squeezed vacuum state ∣ ⟩ ∣ ⟩=r S rˆ( ) 0  with r ≈ 0.9 
corresponding to ∼7.8 dB of squeezing22. The squeezed state serves then as the 
input to a sequence of two modular measurements (Mod)12. In almost all prepa-
rations we make the two sequential modular measurements with identical  
displacements reading out the observable  = ≈ πDQ̂ Re{ ˆ ( 2 )} implemented by 
∼38 μs of SDF laser pulse. This creates the desired ∣ ⟩0 L with c1 = c−1 = c0/2 and 
any other coefficient ck = 0. The other states are created from ∣ ⟩0 L using appro-
priate Pauli operations and teleported gates. For the data presented in Fig. 2 we 
used Pauli operations in order to transform from the +1 eigenstate to the −1 
eigenstate, while in performing process tomography we created the −1 eigenstates 
directly from ∣ ⟩0 L using gate teleportation. These sequences lead to p ≈ 3/8 success 
probability to create ∣ ⟩0 L and ∣ ⟩1 L and to p ≈ 3/16 for the other 4 states. After each 
fluorescence readout we proceed to the next measurement conditional on  

the dark measurement result otherwise we restart the experimental sequence. 
This choice is made using real time decisions implemented using a field-program-
mable gate array (FPGA).

A sample of a full pulse sequence for our experiments is shown in Extended 
Data Fig. 2. Each experiment starts by cooling the ion’s three modes of oscillation, 
using a sequence of precooling, Doppler cooling and electromagneti-
cally induced-transparency cooling. This is followed by pumping of the axial 
motional mode into a squeezed state, using a pulsed scheme where we typically 
use around 20 cycles22. In order to prepare the ∣ ⟩0 L from the created squeezed 
vacuum state, we use two modular measurements (Mod(l)) each consisting of an 
SDF pulse splitting up the oscillator into two components and separating them 
symmetrically by a distance l and a short fluorescence readout of about 60 μs. The 
decision whether or not to restart the experimental sequence dependent on the 
bright or dark detection result takes around 50 μs. The second line of the pulse 
sequence in Extended Data Fig. 2 shows how ∣ ⟩φ+ L is created from ∣ ⟩0 L using the 

π/ π/Û ( 2, 2)L
X

 operation which requires an appropriate carrier π/2-rotation, a 
shorter SDF and a corrective unconditional shift. Then the T-gate is applied and 
finally the Pauli X̂L operation is read out. This sample pulse sequence is used dur-
ing the process tomography experiment for the T-gate. All experiments rely on 
pulse sequences of the same tools combined in different ways.
Process tomography. We create the six input states described in the previous 
section and reconstruct their state via readout in the three Pauli bases: 
ρ σ= ∑ oˆ ˆL

j
k jk k, where j labels the input state number, k the Pauli basis element and 

ojk correspond to the readout results (where we added oj0 = 1/2 for the identity 
basis element). Then we apply the process of interest to each input state and recon-
struct the output state in the same way with λjk the corresponding measurement 
results. An arbitrary physical process connecting input states to output states  
can be expressed in the Pauli basis introducing the process matrix χ: 

ρ ρ σ ρ σ χ= = ∑E( ˆ ) ˆ ˆ ˆ ˆ ˆL L mn L
m

L L
n

mn
in out in . A linear set of equations for the matrix ele-

ments of χmn connects ojk to λjk: λ = βχ with the matrix β calculated from the 
input state measurements ojk. The process matrix χ is Hermitian and non-negative 
definite. To ensure these properties we parametrize χ = T Tˆ ˆ†

 with

=







+
+ +
+ + +
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a tridiagonal matrix43. We find four more constraints on the elements of T̂  follow-
ing from trace preservation of the logical process44. Ensuring these constraints we 
find the ti elements which minimize ∣ ∣χ − λβ 2 using the NMinimise function of 
Mathematica.

The method of process tomography is independent of the chosen grid state 
encoding. We solely specify the methods of input state creation and state tomog-
raphy, and analyse how well the implemented processes realize logical single-qubit 
operations. Nevertheless we have additional knowledge about our code states and 
logical readout and see that a number of effects are not accounted for in process 
tomography. For example, the logical π/2-rotation around the Z axis transforms 
logical ŶL readouts to X̂L readouts. In this case we expect the readout levels to 
increase: and even though in this particular case our realization of the logical qubit 
improves, this will lead to infidelities in the process matrix.

Rescaling of the readout directions in order to account for such imprecision 
is not trivial, because the rotations implemented by gate teleportation typically 
change the underlying states (that is, they result in more squeezed components or 
spread out squeezed states), which in general also changes the logical readout level.

In order to understand the level of process fidelity decrease due to such effects, 
we calculate the process matrix for the ideal process on the ideal approximate code 
states with the experimentally used number of components and parameters l and r.  
From this we calculate the fidelity due to the approximation .F

Ô
App . Further, to 

assess susceptibility to dephasing of our oscillator, we simulate the process tomog-
raphy experiment using the typical level of dephasing present in our experiment, 
and again estimate a fidelity .F

Ô
Sim . We observe that for the Pauli operations all 

features related to the approximate code states drop out in the process tomography. 
Additionally, since the displacement operation is relatively fast, the effects of 
motional dephasing are minimal compared to that incurred during state prepara-
tion and thus this does not influence the process tomography result. For the  
teleported operations the duration is longer, and the readout axes are inter-
changed. In this case, we find that =.F 96%

T̂
App
L

, =.F 93%
T̂
Sim

L
, =

−π/
.F 94%

R̂ ( 2)
App

L
X , 

=
−π/
.F 91%

R̂ ( 2)
Sim

L
X , =

−π/
.F 93%

R̂ ( 2)
App

L
Z , =

−π/
.F 89%

R̂ ( 2)
Sim

L
Z . The differences between 

these values and the experimental fidelities are probably due to mis-calibration.
Logical qubit lifetime. Traditionally two-level qubits are characterized by two 
timescales: T1, the time in which the higher energy state decays; and T2, the time 
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in which a superposition of the two levels dephases. For the logical grid state qubit 
the notion of these two timescales is blurred since the underlying physical states 
are not given by a two-level system. In order to measure a timescale relating to T1, 
we prepare ∣ ⟩0 L and wait for a variable time after which we measure ẐL. Results of 
this measurement as a function of the wait time are shown in Extended Data Fig. 3a 
along with a fit using an exponential decay Ae−t/T with fitting parameters A and T. 
In this measurement we find T = 3.7 ± 0.2 ms. Unlike an energy level qubit this 
measurement does not decay completely to the other level. Instead we end up in 
an equal superposition more like a traditional measurement of T2. In the grid state 
encoding the Hadamard operation can be implemented as a rotation of phase space 
by π/2 (and scaling if ≠ πl 2 ). This is trivially implemented by updating the  
readout directions and scaling in our classical control system. In this sense the 
typical sequence to measure T2 involving preparing ∣ ⟩0 L, applying the Hadamard 
operation, waiting for a fixed duration t and subsequently using an additional 
Hadamard operation followed by readout of ẐL simplifies to the previous experi-
ment. Thus T1 and T2 are essentially the same parameters in the grid state encoding.

Nevertheless we can analyse the lifetime of our qubit with a second measure-
ment, we prepare ∣ ⟩+ L, wait for a duration t and read out X̂L. This can also be 
viewed as an analogue of a Ramsey T2 measurement. The results of this measure-
ment together with the exponential fit are shown in Extended Data Fig. 3b. A 
similar timescale of T = 3.6 ± 0.3 ms is extracted from the fit.

We can compare these logical qubit lifetimes to the decay of our averaged sta-
bilizer readouts ŜX , ŜZ , which we measure for both states, ∣ ⟩0 L, ∣ ⟩+ L. The results 
and timescales are given in Extended Data Fig. 3c–f. We see that the stabilizer 
readouts decay on shorter timescales than the Pauli readouts.
Two qubit gates on encoded qubits. The tools presented in the main text can be 
used to perform a two qubit gate on two logical qubits stored in two motional 
modes of a single ion. Let us assume that we have a single ion and prepared logical 
grid qubit states |Q1〉, |Q2〉 in two of the three modes of oscillation. Let us further 
assume that we manipulated both these modes via the internal ancillary qubit 
levels ∣ ⟩ ∣ ⟩↔0 1 . Then we can implement the circuit given in Extended Data Fig. 4 
which realizes a σ̂L

i-controlled-σ̂L
j operation using carrier rotations and SDF pulses 

as well as unconditional displacements. In our current experimental system only 
the axial motional mode has sufficiently long coherence time to prepare and 
manipulate grid qubit states. Thus before we can implement such a gate we need 
first to improve our trap stability.

An alternative method which is more applicable to performing quantum error 
correction would be to utilize the Coulomb coupling between local modes of two 
ions held in separate potential wells. This could be used in order to implement a 
SWAP-gate operation29–31. Such a SWAP operation could be used to perform a 
non-destructive readout of error information from a grid-state qubit in the fol-
lowing manner. First, the encoded oscillator qubit is swapped to the (quasi-)local 

mode of the ion stored in the neighbouring well by resonant exchange. Second, 
a carrier rotation together with a state-dependent force pulse is applied to the 
second ion which transfers part of the syndrome information into that ion’s inter-
nal state. This could for instance constitute one bit of information required for a 
phase-estimation protocol10. Third, the SWAP operation is repeated, transferring 
the encoded qubit back to ion 1. This procedure extracts one bit of relevant error 
information from the encoded grid qubit into the internal states of ion 2. Fourth, 
the oscillations of the two ions are detuned from each other such that fluorescence 
readout can be performed on ion 2 without destroying the encoded state in ion 1 
(crosstalk of the internal states could be prevented by using ions of two species). 
For the next relevant bit of information the same procedure is repeated using a 
different carrier rotation setting. Multiple internal levels of the second ion could 
be used in order to readout more than one bit of information per swap cycle. The 
extracted information provides information on the oscillator shift up to a certain 
precision. Error recovery could then be performed by applying the opposite shift 
using an appropriate tickling pulse to the encoded qubit.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding authors upon request.
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Extended Data Fig. 1 | Calibration techniques in phase space. 
Here we show how the required properties of the tickling pulse are 
determined (‘calibrated’) and the use of the tickling pulse for motional 
frequency calibrations. a, Matching of the tickling pulse to the SDF 
pulse (see Methods for nomenclature). The squeezed ion motional state 
(dashed state labelled 0) is displaced using an SDF together with two 
π/2 internal state rotations (SDFz). This realizes the displaced squeezed 
state 1. A subsequent tickling pulse is calibrated in order to revert the 
displacement implemented by the laser. After this shift the oscillator is in 
state 2. Whether or not the squeezed state returns to the squeezed vacuum 
can be probed using the squeezed basis analogue of the red sideband22. 

Shown is the case of a laser displacement along the squeezed axis, which 
enhances sensitivity for the tickling coupling strength. b, Similarly, a laser 
displacement perpendicular to the squeezed axis is used to calibrate the 
direction of the tickling pulse. c, Motional frequency calibration. The ion 
is ground state cooled (0), then a coherent state (1) is created by a first 
tickling pulse. The state evolves freely during the wait time T and rotates by  
an angle Tδ, with δ the detuning from the angular motional frequency ωm.  
A second tickling pulse inverts the first displacement. Because of the 
detuning, the final state (3) does not return to the ground state, which can 
be detected applying a red sideband probe pulse.
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Extended Data Fig. 2 | Example of a pulse sequence. This pulse sequence 
is used during process tomography of the T-gate. The blue line shows laser 
pulses based on the 397 nm laser used for cooling and fluorescence 
detection of the internal states. The red line shows manipulations using the 
729 nm laser used for SDF pulses as well as carrier rotations, while the 
black line denotes tickling pulses implemented using an RF voltage.  

The upper row shows the sequence used for preparing ∣ ⟩0 L, including 
initial cooling, squeezed state preparation (‘squeezed pumping’) and 
modular variable measurements (‘Mod(l)’). The lower row shows first the 
implementation of π/ π/Û ( 2, 2)L

X  by gate teleportation (creating Φ| + L
), 

followed by application of a teleported T-gate (‘T̂-gate’) and subsequently 
the readout of the states.



Letter reSeArCH

Extended Data Fig. 3 | Grid qubit lifetime measurements. a–f, States are 
prepared (left column, ∣ ⟩0 L; right column, ∣ ⟩+ L), and after a variable wait 
time the state is read out. The resulting measurement data (blue points 
with s.e.m. error bars) are fitted with an exponential decay Ae−t/T (solid 
line). For prepared state ∣ ⟩0 L: a, readout of ẐL, from which we find 
T = 3.7 ± 0.2 ms; c, readout of ŜX  with T = 0.8 ± 0.1 ms; and e, readout of 
ŜZ  with T = 1.1 ± 0.1 ms. For prepared state ∣ ⟩+ L: b, readout of X̂L with 
T = 3.6 ± 0.3 ms; d, readout of ŜX  with T = 1.0 ± 0.1 ms; f, readout of ŜZ  
with T = 0.7 ± 0.1 ms.
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Extended Data Fig. 4 | Two qubit gate implemented in two modes of a 
single trapped ion. This circuit implements σ̂L

i-controlled  σ± ˆL
j operations 

between two grid state qubits ∣ ⟩Q1  and ∣ ⟩Q2  mediated by one internal 
ancillary qubit ∣ ⟩ ∣ ⟩↔0 1 . The required operations are shown in the left 

circuit, while on the right the equivalent logical operation is shown.  
The sign of the operation is determined by the ancillary qubit readout. 
See Methods for details.
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Extended data table 1 | Creation of code states

Left column, code state type. All states used l ≈ 2.5 while r ≈ 0.9 ≈ 7.8 dB. Middle column,  
measurement results using this type of state are presented in the given figures of the main text. 
Right column, pulse sequence used to create the state. Most states use the same initial sequence 
(seq 0), which is thus defined in the first entry of the table.


