
ETH Library

Scalable and Efficient Virtual
Memory Sharing in Heterogeneous
SoCs with TLB Prefetching and
MMU-Aware DMA Engine

Conference Paper

Author(s):
Kurth, Andreas ; Vogel, Pirmin; Marongiu, Andrea; Benini, Luca

Publication date:
2018

Permanent link:
https://doi.org/10.3929/ethz-b-000292549

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/ICCD.2018.00052

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-5613-9544
https://orcid.org/0000-0001-8068-3806
https://doi.org/10.3929/ethz-b-000292549
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/ICCD.2018.00052
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Scalable and Efficient Virtual Memory Sharing in
Heterogeneous SoCs with TLB Prefetching and

MMU-Aware DMA Engine
Andreas Kurth∗, Pirmin Vogel∗, Andrea Marongiu†∗, and Luca Benini∗†

∗Integrated Systems Laboratory, ETH Zurich, Switzerland
lastname@iis.ee.ethz.ch
†University of Bologna, Italy

c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.
Accepted for publication in Proceedings of the 36th IEEE International Conference on Computer Design (ICCD), October 7-10, 2018, Orlando, FL, USA.

Abstract—Shared virtual memory (SVM) is key in hetero-
geneous systems on chip (SoCs), which combine a general-
purpose host processor with a many-core accelerator, both for
programmability and to avoid data duplication. However, SVM
can bring a significant run time overhead when translation
lookaside buffer (TLB) entries are missing. Moreover, allowing
DMA burst transfers to write SVM traditionally requires buffers
to absorb transfers that miss in the TLB. These buffers have to
be overprovisioned for the maximum burst size, wasting precious
on-chip memory, and stall all SVM accesses once they are full,
hampering the scalability of parallel accelerators.

In this work, we present our SVM solution that avoids the
majority of TLB misses with prefetching, supports parallel burst
DMA transfers without additional buffers, and can be scaled
with the workload and number of parallel processors. Our
solution is based on three novel concepts: To minimize the rate of
TLB misses, the TLB is proactively filled by compiler-generated
Prefetching Helper Threads, which use run-time information to
issue timely prefetches. To reduce the latency of TLB misses,
misses are handled by a variable number of parallel Miss Han-
dling Helper Threads. To support parallel burst DMA transfers
to SVM without additional buffers, we add lightweight hardware
to a standard DMA engine to detect and react to TLB misses.
Compared to the state of the art, our work improves accelerator
performance for memory-intensive kernels by up to 4× and by
up to 60 % for irregular and regular memory access patterns,
respectively.

I. INTRODUCTION

In heterogeneous systems on chip (HeSoCs), a general-
purpose multicore CPU, the host, is co-integrated with pro-
grammable many-core accelerators (PMCAs) on a single die.
This design holds the promise of combining the versatility
of the host CPU with the energy efficiency and computing
performance of the highly parallel accelerators.

One of the major difficulties in programming HeSoCs
is having to explicitly manage the multi-level, non-uniform
memory system. On the host, coherent caches and virtual
addresses make the memory hierarchy completely transparent to
the application programmer. On the PMCA, however, scratchpad
memories (SPMs) are often preferred to hardware-managed
caches for the implementation of on-chip memory hierarchies.
SPMs are physically addressed and data transfers to and from
them are controlled by software, preferably using direct memory
access (DMA) transfers.

This work was partially funded by the EU’s H2020 projects HERCULES
(No. 688860) and OPRECOMP (No. 732631).

To alleviate this difficulty and to enable sharing of linked
data structures, the Heterogeneous System Architecture Founda-
tion [1] pushed an architectural model where host and PMCAs
communicate via coherent shared virtual memory (SVM). For
coherency with the host data caches, most SoCs today offer
accelerators access to coherent interconnects [2], [3]. For the
translation of virtual addresses, there are two main approaches:
In the all-hardware approach followed by many embedded
SoC vendors, a full-fledged input/output memory management
unit (IOMMU) translates addresses autonomously [4], [5]. It
is comprised of a translation lookaside buffer (TLB), parallel
hardware page table walkers (PTWs), transaction and data
buffers, and coherent page table caches. The alternative is a
hybrid hardware-software design, which consists of a TLB
controlled by software (e.g., by a kernel driver on the host [6],
[7] or directly by the accelerator [8]). We subsequently refer
to the former class of IOMMUs as conventional and to the
second class as hybrid. While conventional IOMMUs have the
advantage of being transparent to the PMCAs and of offering
the minimal latency for handling an isolated TLB miss, they
have three significant drawbacks:

First, parallel, interleaved accesses by PMCAs to independent
virtual addresses require parallel PTWs. While the number of
parallel accesses is a time-variant run-time property of programs
executed by the PMCAs, the number of PTWs is a fixed design
parameter in conventional IOMMUs. To accommodate a wide
range of parallel workloads, the number of parallel hardware
PTWs must be overprovisioned, wasting hardware resources in
most use cases.

Second, enabling DMA engines to access SVM in conven-
tional IOMMUs requires a data buffer in the IOMMU to absorb
write bursts to addresses that miss in the TLB. This buffer
requires a significant amount of memory: it must have at least
the size of the largest DMA burst, and is usually even larger
because no more SVM accesses (by any master, not just the
missing DMA engine) can be processed once (and as long as)
that buffer is full.

Third, a conventional IOMMU manages its TLB purely
reactively: new entries are set up only after a TLB miss.
While some IOMMUs [9], [5] can speculate on future memory
accesses based on past access patterns, doing so is very inac-
curate for nonlinear, interleaved access patterns and negatively

affects performance [9]. Misses can thus occur frequently,
and high-performance conventional IOMMUs include coherent
data caches for page table entries [5] to reduce the latency of
handling a TLB miss. If the TLB was managed by software
threads in the PMCA instead (as in hybrid IOMMUs), it would
be possible for those threads to set up TLB entries ahead of time
based on run-time information inside the PMCA. Research on
data caches [10], [11] has long shown that prefetchers that know
the running program and its status can be far more accurate
than those that can only see a stream of memory addresses.

The hybrid design, on the other hand, theoretically does not
have these drawbacks. However, the state-of-the-art implemen-
tation [8] features only a single PTW thread, only supports
DMA bursts that are guaranteed not to miss (e.g., by locking
the corresponding TLB entries), and does not perform any
prefetching.

In this work, we resolve these limitations. To the best of our
knowledge, this work is the first to:

1) implement accurate, compiler-generated prefetching for
a shared TLB (§ IV-A), which significantly reduces the
rate of TLB misses,

2) offer a flexible number of parallel TLB miss handlers
(§ IV-B), which keeps the miss handling latency constant
for scalable parallel workloads, and

3) offer shared virtual memory accessible by DMA transfers
without additional buffers (§ IV-C).

Compared to the state-of-the-art hybrid IOMMU [8], our
contributions improve the PMCA performance for memory-
intensive kernels by up to 4× and by up to 60 % for irregular and
regular memory access patterns, respectively (§V-C). Compared
to using data buffers to absorb bursts from DMA engines, our
solution requires two orders of magnitude less memory (§V-D)
and scales better, as it only stalls the missing DMA engine.

II. RELATED WORK

The vast majority of commercial systems today features
conventional IOMMUs [5], [12], [13], [14] to completely
abstract the SVM implementation from the PMCAs. While
simple to use, that approach is limited in scalability (handling
parallel misses and absorbing burst transfers) and efficiency
(reactive TLB management).

a) Parallel TLB miss handling and page table walking:
The fixed number of shared hardware PTWs puts an upper
bound on the scalability of conventional IOMMUs to parallel
accelerators. A recent study [9] has shown that an integrated
GPU with 8 parallel compute units (CUs) quickly saturates the
miss handling capabilities of an IOMMU with 16 hardware
PTWs, after which the GPU’s performance becomes bounded by
TLB miss handling latency. To avoid this, the current proposal
for address translation on GPUs [15], [4] is to add one MMU
before the L1 cache in every CU. Each such CU MMU has
its private TLB and either has its own PTW [4] or shares a
highly-threaded PTW [15]. As this approach adds a significant
amount of hardware, its parameters (e.g., TLB size, number
of PTWs) must be carefully balanced at hardware design time
to neither present a bottleneck for SVM-heavy applications

nor reduce the compute-per-area ratio for applications that
use SVM in a lighter way. The miss handling throughput of
hybrid IOMMUs, where page table walks are performed by
software threads, on the other hand, can be scaled at run time by
scheduling PTWs when required. However, efficiently managing
a TLB shared by many parallel processing elements (PEs) and
notifying individual PE with low latency about handled misses
is not trivial. For this reason, current hybrid SVM solutions [8],
[6] only feature a single PTW thread. In this work, we show
how to efficiently manage a shared TLB with multiple software
PTW threads.

b) Handling bursts missing in the TLB: The buffers in
conventional IOMMUs that absorb write bursts missing in the
TLB [5] are another limiting factor for accelerators based on
DMA transfers: When (and as long as) the limit on outstanding
misses is reached, the IOMMU cannot translate any further
transactions, even if they would hit. This creates backpressure
from the IOMMU slave port to the connected master ports,
stalling each master port on its next SVM access. Hybrid
IOMMUs, on the other hand, signal the TLB miss back to
the master and drop the transaction [7]. This allows to handle
misses on a shared TLB in a much more scalable way: instead
of creating congestion on shared resources (e.g., buffers in the
IOMMU, interconnect), the transaction that missed stays in
the source memory, keeping shared resources clear for other
accesses. To support this, the DMA engine must be able to
keep track of bursts that missed and reissue them when the
miss has been handled. In this work, we introduce a lightweight
hardware extension that adds this feature for a standard DMA
engine.

c) Reducing TLB misses through prefetching: Reducing the
number of TLB misses is another effective way to reduce the run
time overhead of SVM, orthogonal to reducing the miss handling
latency. There are two independent strategies to achieve this:
The first is to increase the capacity of the TLB, for which both
conventional and hybrid IOMMUs feature multi-level TLBs [5],
[7]. The second is to ensure the timelineness of TLB entries,
e.g. through prefetching. Prefetching for shared TLBs is not
yet well-understood: Some conventional IOMMUs feature a
very simple prefetcher, which adds two subsequent pages to the
TLB in case of a miss to the first [5]. However, this prefetcher
is deactivated by default because it harms performance in most
cases [5]. Prefetching is also supported by the PCIe Address
Translation Services [16], but a recent study [9] examined a
benchmark with low locality, found that having a GPU prefetch
eight contiguous pages degrades performance by up to 3×,
and concluded that research on application-aware prefetching
is required. In this work, we design and implement accurate
prefetching for a shared TLB, which significantly reduces the
rate of TLB misses. We focus on linked data structures (LDSes),
which are the predominant source of scattered memory accesses
in many programs. Our design is inspired by the following
prefetchers for data caches.

Prefetchers that get information about the running program
from software [10], [17], [18], [11], [19], [20], [21], [22] are
far more effective than heuristic hardware units [23], [24]

for LDSes: Heuristic hardware prefetchers for LDSes identify
pointers as they are loaded from memory, prefetch their content
before they are dereferenced, and store it in a separate pointer
cache [24] or in the data cache of the processor [23]. All
pointers identified by the heuristic hardware are prefetched
recursively, which leads to a low prefetch accuracy, consequently
polluting the cache and decreasing performance in many cases.
To improve prefetch accuracy, the hardware prefetcher in
hybrid hardware/software prefetchers [20], [11] is controlled
by software, e.g., from the main processor through special
instructions to identify useful prefetches [20] or by running a
separate prefetching program [11]. Prefetch code can be written
manually by a developer [10], [19] or generated automatically
by a compiler [18], [17], [21], [22], through static or dynamic
profiling or both. Compilers can accurately identify pointers
and prioritize their prefetching according to dependencies. Once
prefetchers for LDSes are accurate, their effectiveness is limited
by memory latency, as prefetch targets in LDSes depend on
earlier pointer dereferences. As a dedicated hardware prefetcher
co-located with the processor has the same memory latency
as the processor itself, pure software prefetchers have been
explored instead [19], [17], [21], [22]. Prefetches inserted inline
with the actual program code [17], however, are limited to
targets that are known when that line of code is executed.
Otherwise, the actual program has to be stalled while the
pointers leading to the prefetch target are followed. A promising
alternative is to run an additional prefetching thread on the
same multithreaded processor core [25], [19] or on another core
in the same processor [21], [22]. Another important advantage
of these separate prefetcher threads is that their throughput can
be scaled to the demands of the application at compile-time or
at run-time or both, especially for the high degree of parallelism
offered by PMCAs. A key difficulty of software prefetches
executed by another thread is the timeliness of the prefetches,
which is why prefetching threads have primarily been explored
for coarse-grained prefetching [22], [21].

While there are a number of works using heuristic hardware
units for TLB prefetching [26], [27], [28], this work (to the best
of our knowledge) is the first to use compiler-generated software
threads for TLB prefetching. For the first time, this allows to
accurately prefetch TLB entries for LDSes. Compared to the
related compiler-generated software prefetchers, our solution
is novel in how it issues fine-grained, timely prefetches into a
shared resource (the TLB) in a scalable way without causing
negative interference.

III. TARGET ARCHITECTURE TEMPLATE

The heterogeneous system targeted in this work combines
two architecturally different processors in a single chip. As
shown in Fig. 1, the HeSoC is composed of a general-purpose
multi-core CPU (the host) and a domain-specific PMCA. The
host CPU features a cache-coherent memory hierarchy, runs a
full-fledged operating system, and manages inputs and outputs
of the HeSoC. The PMCA complements the host by offering
high computational performance and efficiency for specific
application domains.

Coherent Interconnect

Host
Processor

MMU

CPU

L2 $

MMU

CPU

L1 $

Interconnect

Main Memory

Programmable
Many-Core Accelerator

L2 Mem

Cluster
L1 Mem

Shared L1 I$

L1 Data Memory

B
ank

B
ank

B
ank

B
ank

DMA

Low-Latency Interconnect

Hybrid
IOMMU

NI

Cluster
L1 Mem

NI

Cluster
L1 Mem

PE PE

L2 $

L1 $

Heterogeneous System on a Chip (HeSoC)

Memory Controller

Fig. 1. Template of the target architecture.

The PMCA we consider uses a multi-cluster design [29], [30]
to enable architectural scaling. In each cluster [31], multiple
PEs share an L1 data SPM and an L1 instruction cache [32],
both multi-banked (twice as many banks as PEs), through a
low-latency logarithmic interconnect [33]. Multiple clusters are
attached to the main network of the PMCA, through which
they share an L2 SPM.

The off-chip main dynamic random access memory (DRAM)
is physically shared by the host and the PMCA. To exploit
data locality, both host and PMCA keep the most frequently
accessed data in fast, local storage of their internal memory
hierarchy. While the host relies on hardware-managed caches,
the PMCA uses multi-channel, high-bandwidth DMA engines
and double-buffering schemes to overlap data movement with
computation on data in the L1 SPMs. The widely-adopted
AXI4 protocol is used between host and PMCA and on the
network in the PMCA.

The IOMMU allows the PMCA to share the virtual memory
space of an application running on the host. It is a hybrid
design [7], consisting of a TLB of configurable size completely
managed by software running on the PMCA. The TLB is fully
associative and processes look-ups within a single clock cycle.
In case of a TLB miss, the IOMMU stores the metadata in a
hardware queue, responds with an error, drops the transaction,
and processes the next one. In case of a TLB hit, the IOMMU
translates the virtual address to a physical one, forwards the
transaction through the master port, and processes the next
transaction.

One PE of the PMCA manages the TLB in the IOMMU.
Upon a TLB miss, it reads the metadata of the missing
transaction from the hardware queue in the IOMMU, walks the
page table of the offloaded process, replaces an older TLB entry
with the new translation, and notifies the PE that encountered
the miss, which then retries the memory access. As the memory
access latency in page table walks dominates the miss handling
latency, this software PTW has about the same latency as a
dedicated hardware PTW [8].

PEs within a cluster execute in a single program multiple
data (SPMD) fashion and share a multi-ported, multi-banked

instruction cache [33]. They can exchange data with low
latency and low congestion through the L1 data memory,
which also offers an atomic test-and-set read-modify-write
operation. A dedicated event unit within the cluster supports
interrupts, barriers, and software-triggered events for low-
overhead synchronization.

Each cluster includes a DMA engine optimized both in
throughput and area for transfers from or to the cluster’s
tightly-coupled SPMs [34]. It supports up to 16 outstanding
AXI4 bursts with only minimal internal buffers thanks to the
low-latency connection to the SPMs. Each PE has a private
command interface on the DMA engine, which allows multiple
PEs to simultaneously enqueue DMA transfers without the
need for synchronization. The control unit of the DMA engine
internally arbitrates between the per-PE command interfaces.
PEs can enqueue coarse-grained transfer commands (up to
64 KiB), which are split up by the control unit into fine-grained
bursts (up to 2 KiB) to meet alignment requirements and to
facilitate time-multiplexing of downstream AXI resources. As
soon as a coarse-grained transfer is complete, the DMA engine
notifies the PE via the event unit.

IV. IMPLEMENTATION

In this section, we detail our compiler-generated TLB
prefetchers, which significantly reduce the rate of TLB
misses (§ IV-A), our scalable multi-threaded TLB miss handlers,
which keep the TLB miss handling latency constant for scalable
parallel workloads (§ IV-B), and our hybrid-IOMMU-capable
DMA engine, which can handle TLB misses without additional
data buffers (§ IV-C).
A. Helper Thread Prefetching

As TLB miss handlers are dominated by memory latency,
frequent TLB misses inevitably entail a large run time overhead.
As a consequence, managing the TLB solely by reacting on
misses is not sufficient. Instead, TLB entries could be set up
ahead of the instant they are used in a prefetching manner.

The following observations motivate our prefetcher design:
• It shall not rely solely on run-time information (e.g.,

memory content, memory access patterns). This is the
black-box approach taken by hardware prefetchers, which
is not accurate for LDSes.

• It shall not rely solely on compile-time information
(e.g., algorithms, data structures) because this neglects
all dynamic information (e.g., data-dependent memory
accesses, delays due to interference) required for timely
prefetches.

• It shall be portable across applications. While software
prefetches can be inserted manually, doing so effectively
requires in-depth knowledge of the target platform and
laborious analysis of the application. Prefetch insertion
shall be fully automatic, not burdening developers.

• It shall exploit the cluster architecture of the PMCA, where
tightly-coupled L1 SPM allows to share the state of PEs
with low latency and little interference.

• Its prefetching throughput shall be scalable at compile-
time (because different programs have different memory

Worker Thread (WT)
#pragma omp parallel for
for (unsigned i=0; i<N; ++i) {
 wt_state[thread_id] = i;

 elem_t e = elems[i];

 process(&e);
 elems[i] = e;
}
_omp_for_nnn_complete = true;

Prefetching Helper Thread (PHT)
while (!_omp_for_nnn_complete) {
 for (unsigned i_wt=0;
 i_wt<N_WTS; ++i) {

 target = wt_state[i_wt];

 prefetch(&elems[target]);
 }
}

Shared L1 I$

L1 Data SPM

B
ank

B
ank

B
ank

B
ank

DMA

Low-Latency Interconnect

NI

PE
0

PE
1

PE
N -1WT WT PHT

run-time information for PHT,
automatically inserted by compiler

run-time info for PHT, auto-inserted by compiler

compile-time information on data structure and
mem. accesses, used by compiler in PHT generation

iteration over all WTs participating in the parallel for

The WTs communicate
run-time information to
the PHTs via the
tightly-coupled L1 SPM.

prefetch target aligned to WT loop position

prefetch generated by compiler
from memory access in original WT code

The PHT is automatically
generated by the compiler
based on compile-time
information in the original
WT code.

Fig. 2. The concept of prefetching with closely-coupled helper threads using
the example of a very simple parallel for loop.

access patterns and intensities) and at run-time (due to
phase-based program behavior [35]).

Combined, these considerations led us to the concept of
prefetching with closely-coupled helper threads shown in Fig. 2.
Our execution model assumes that part of the PEs in a PMCA
cluster are statically allocated to executing the original appli-
cation workload. The workload is distributed among as many
Worker Threads (WTs) according to the semantics of parallel
programming models such as OpenMP [36]. The remaining
PEs in the cluster are statically allocated to execute Prefetching
Helper Threads (PHTs), which our compiler automatically
generates by stripping down the code of the WTs: The idea
is to remove all statements that do not access SVM and do
not determine the address or the occurrence of an SVM access,
and to replace SVM accesses in the remaining code with a
call to a prefetch method. Additionally, the compiler inserts
store instructions to the L1 SPM into the WT to share its state
of execution and load instructions into the PHT to read the
execution state. The prefetch method does not modify the TLB
itself; rather, it checks if a page is currently in the TLB and,
if it is not, informs the standard TLB miss handlers (through
the queue of TLB misses) that a TLB entry must be set up
ahead of the moment when a worker thread actually requires
the data on a page. Prefetching TLB accesses are described in
more detail in § IV-A2.

Prefetches are issued conditionally on the current position of
the WT relative to the current position of the PHT. For example,
a fixed window wherein prefetches are issued can be defined:
Assume wk is the position of WT k in a parallel loop and d
and D are the minimum and maximum prefetching distances,
respectively. Then the PHT has to make sure that the position of
its next prefetch for WT k, pk, fulfills wk + d ≤ pk ≤ wk +D.
If pk > wk + D, then the PHT is ahead of WT k by more
than the maximum prefetching distance and the PHT will not
issue a prefetch. If pk < wk + d, then the PHT is behind the
minimum prefetching distance and the PHT will set pk to a

position inside the window. When pk is inside the window, the
PHT will prefetch at pk and then increment pk.

1) Compiler Algorithm to Generate PHTs: The compiler
algorithm to generate a PHT from the code for a WT comprises
two stages: The first stage recursively traverses the abstract
syntax tree (AST) of the body compound of the WT. In a
forward pass, a data dependency graph (DDG) for each SVM
variable (i.e., a variable that dereferences a pointer to SVM,
possibly through other variables and pointers) is constructed.
In a backward pass, memory accesses to DDG leaf nodes are
rewritten as prefetches and all statements that are not in the
DDG of an SVM variable are removed. The second stage
recursively traverses the modified AST and prunes redundant
prefetches.

The forward pass is recursively invoked on an AST node
and scope tuple, where the scope is a list of variables together
with their DDG. It creates the PHT for the given AST node
by constructing a DDG for each SVM variable and invoking
the backward pass afterwards. The forward pass essentially
distinguishes two classes of AST nodes: Declarations extend
the scope of the subsequent nodes, and assignments modify
the DDG of their left-hand side variable. Compounds establish
a local scope, within which the children of the compound are
first modified in forward order by the forward pass, then in
backward order by the backward pass.

The backward pass is also invoked on an AST node and
scope tuple. Based on the DDG of each variable, it rewrites
dereferences of SVM pointers that are leaf nodes into prefetches
and removes all statements that are not in the DDG of an
SVM variable. It distinguishes three classes of AST nodes:
Conditionals and loops add a control flow dependency to
variables they reference. Declarations remove the declared DDG
node from the scope (since the variable is undeclared before
the declaration). Finally, assignments are either replaced by
prefetches, left intact, or dropped completely, based on whether
their left- and right-hand sides contain SVM variables.

2) Hardware Requirements: A prefetch load or store is
slightly different from a regular memory access: upon a hit in the
TLB, a prefetch transaction must not be forwarded downstream
the memory hierarchy but instead be directly replied by the
IOMMU as hit (with don’t-care data in case of a load, since data
returned by prefetch loads is ignored). A prefetch that misses
in the TLB is not different from a regular miss to the hybrid
IOMMU: it responds with a miss and drops the transaction.
Conventional IOMMUs cannot support prefetches, since they
lack the possibility to drop transactions and the masters using
them lack the support for reacting to miss responses. Whether
a load or store is a prefetch can be determined by a single bit
sent with the request. Our implementation uses one bit in the
AXI4 user field.

B. Multi-Threaded TLB Miss Handling

In the original implementation of the hybrid IOMMU we
are using, TLB misses (only metadata) were enqueued by
the IOMMU in a hardware queue [8]. This leftover from
conventional IOMMUs presented a centralized bottleneck not

required by the design, so we removed it and instead let PEs
add an entry to a software queue located in the L1 data memory
of their cluster upon a TLB miss. This atomic queue supports
multiple parallel consumers and producers, and we implemented
the atomicity with one enqueue mutex and one dequeue mutex
based on the test-and-set functionality of the L1 memory.

For algorithms that make heavy use of SVM (especially
those processing LDSes), a single miss handling thread (MHT)
cannot cope with the rate at which WTs enqueue misses. In
this case, the rate at which TLB misses are handled becomes
the bottleneck. As an MHT is dominated by memory latency
of the page table walking steps, the way to increase the miss
handling rate is to let multiple MHTs work on different pages
in parallel.

Two aspects are central for the design of the parallel MHTs:
(1) given the sequence of misses in the queue, which MHT
handles which miss, and (2) which MHT modifies which TLB
entry.

For distributing misses among the MHTs, the simplest
approach would be to let each MHT dequeue a miss, walk
the page table, reconfigure a TLB entry, and wake up the PE
that enqueued the miss. However, as two subsequent misses
frequently go to the same page due to data locality (for an
individual PE, e.g., with DMA bursts, but also for multiple PEs
with shared data), this approach is not effective: Whenever a
MHT dequeues a miss to a page that another MHT is already
working on, it wastes run time and memory bandwidth on
a redundant page table walk, and it wastes TLB capacity by
setting up a redundant entry. Ideally, each MHT would dequeue
all misses on the same page, walk the page table, and then
wake up all PEs waiting for that page. However, this would
require each MHT to traverse the entire miss queue (which
can contain dozens of entries), locking both mutexes while it
rearranges the queue without the misses to that page. This can
take hundreds of clock cycles, during which no other PE can
enqueue or dequeue misses.

Neither wasteful redundant miss handling nor making the
miss queue a sequential bottleneck are acceptable, and our
design avoids both: The MHTs share their state, i.e., which
page each MHT is currently working on and which PEs it
is going to wake up, through one word per MHT in the L1
data memory. When MHT A dequeues a miss, it first checks
if another MHT is already working on the same page. If so,
A tells the other MHT to also wake up the PE that caused
the miss A just dequeued and dequeues another miss. If no
other MHT works on the same page, A performs a prefetch
memory access to the page to check whether the page has not
been mapped since the miss. If the prefetch misses, A sets its
state to that page and walks the page table. When A is done, it
reads its state (which may have been updated in the meantime
by other MHTs) and wakes up all assigned PEs.

Modifying a TLB entry takes two writes because virtual
and physical page frame number together are longer than one
data word. To avoid inconsistencies, the MHTs must thus
ensure mutual exclusion when modifying a TLB entry. Any
two different TLB slots are indepedent, though, so an MHT

should not preclude another from simultaneously modifying a
different slot. As both TLB levels are highly associative, MHTs
have multiple options for the placement of each TLB entry.
To make effective use of associativity, the MHTs should agree
upon one replacement order per set. These three requirements
can be met by using one atomic counter per TLB set, located
in memory shared by all MHTs, which determines the index of
the entry to be replaced next in a set. An MHT determines the
set number from the virtual page frame number, increments the
atomic counter of that set, and modifies the entry at the index
returned by the counter. If the number of MHTs is comparable
to the nmuber of entries per set, the MHT must additionally
lock the entry it modifies.

C. Hybrid-IOMMU-Capable DMA Engine

A hybrid IOMMU requires all masters that use it to be
capable of tolerating TLB misses and keep track of which
transactions missed. The DMA engine, however, was originally
not designed to deal with error responses in a recoverable way
and reported a transfer as complete as soon as it had received
the final read or write response of the last burst, regardless of
whether all bursts were successful or not. Thus, when a PE
saw the completion of a transfer it started, it had no way to tell
whether all data read or written were valid at the destination.
To guarantee data integrity, all TLB entries required for the
completion of a transfer (which can touch up to 17 4 KiB pages)
had to be locked before the transfer could be programmed to
the DMA engine and unlocked after it had completed. As the
TLB is shared by multiple clusters, this limited the number
of DMA transfers that could be enqueued at a given time and
substantially reduced the effective data transfer bandwidth.

If the DMA engine can keep track of bursts that missed
in the TLB and restart them after the miss has been handled,
DMA transfers through the hybrid IOMMU can be much more
efficient and scalable: An AXI burst may not cross a page,
so each burst requires exactly one TLB entry at the instant
its request arrives at the IOMMU. Requests of consecutive
bursts can arrive back-to-back at the IOMMU, so multiple TLB
entries need to be present only for a short time interval for an
entire transfer spanning multiple pages to succeed.

To make the DMA engine compatible with the hybrid
IOMMU, we designed and implemented a retirement buffer that
keeps track of in-flight bursts. An entry in the buffer contains
all metadata required to uniquely identify and reissue a burst:
cluster-external and -internal address, length, AXI ID, DMA
transfer ID, and whether it was a read or a write. When the
AXI interface of the DMA engine sends a request, it adds a
new entry to the retirement buffer, and when it receives the
final response of a burst, it reports the success or failure of the
burst with the responded AXI ID to the retirement buffer.

The retirement buffer must keep the order in which bursts
were issued (because AXI bursts with the same ID are ordered)
and must be able to complete bursts with different AXI IDs in
any order. For these reasons, the retirement buffer can not be a
simple FIFO queue. An alternative would be to have one FIFO
queue per AXI ID, but this would waste hardware since every

length R/Waddresses
external internal

IDs
AXI DMA

state next

tail

head

[Byte]

0x2468 1000
0x2468 0ef0

0x2468 0ff0 0x3 55c0 16

240
256

0x3 55d0
0x3 54c0

Free
Reissuable

Failed
Reissuable

In Flight
Peeked
Peeked

Free

0x2462 3...

0x2462 3...

0x2497 1...

(...)

(...)
(...)

(...)

(...)
(...)

7
6

5

0
4

1

1
4

2

1
1

3

0
1

0

0
0

1

Fig. 3. Organization of the burst retirement buffer.

queue would need to have the capacity to store the maximum
number of in-flight transfers.

Instead, our retirement buffer is a linked list implemented
in hardware as shown in Fig. 3: The list entries are stored in
a small register file that has as many words as the maximum
number of in-flight transfers. Every word is wide enough to
store the burst metadata mentioned above, the state of the entry
(free, in-flight, failed, peeked, reissuable), and the index of
the next burst entry. Additionally, the retirement buffer stores
the index of the head, where order-preserving peek and pop
operations start, and of the tail, where a new in-flight transfer
gets enqueued.

The retirement buffer has three main interfaces: one to the
AXI transfer unit of the DMA, one to the internal control unit
of the DMA, and one to the PE control interface of the DMA.
From the transfer unit, the retirement buffer receives commands
to add a new in-flight transaction at the tail of the queue, to
free a successful transaction, or to mark a transaction as failed.
In the latter two cases, the buffer is traversed from the head,
modifying the first non-free transaction that matches the given
AXI ID.

To the DMA control unit, the retirement buffer reports the
current number of in-flight and failed bursts and provides the
metadata of the next reissuable burst. When at least one burst
has failed, the control unit stops issuing new bursts from its
queue and waits for all in-flight bursts to complete. Once there
are no more in-flight bursts, the control unit reissues bursts as
soon as they are reissuable until there are no more failed (and
in-flight) bursts. As soon as this is the case, the control unit
resumes regular operation by issuing bursts from its queue.

From the PE control interface, the cluster-external address
of the first (ordered by request, not response) burst with state
‘failed’ can be read and bursts can be marked as reissuable.
For this, a PE reads a DMA register to get the failing external
address (or 0 if there is none). Upon such a read, the retirement
buffer marks all ‘failed’ bursts with the same page frame
number as ‘peeked’ (so that the same page is not reported
twice). Meanwhile, the PE determines the missing physical
address and adds it to the TLB. When it is done, it writes
the handled virtual address to the same DMA register, upon
which the retirement buffer marks all ‘failed’ or ‘peeked’ bursts
with the same page frame number as ‘reissuable’. Bursts are
then reissued by the control unit in the order of their original
requests.

V. RESULTS

In this section, we evaluate the performance of our SVM
system implemented on an evaluation platform (§V-A) under
various conditions (§ V-B) to demonstrate its significant
improvements over the state of the art and identify its limits
(§ V-C). Additionally, we discuss how our hybrid-IOMMU-
capable DMA engine can save a vast amount of hardware
buffers compared to conventional IOMMUs and standard DMA
engines (§V-D).

A. Evaluation Platform

Our evaluation platform is based on the Xilinx Zynq-7045
SoC, which features a dual-core ARM Cortex-A9 CPU, which
we use as host processor, and programmable logic, which we
use to implement the cluster-based PMCA described in § III.
The PEs within a cluster share 8 KiB L1 instruction cache
and 256 KiB tightly-coupled L1 data SPM, both split into 16
banks. Ideally, every PE can access one 32-bit word in the L1
SPM per cycle. Every cluster features a multi-channel DMA
engine that is parametrized to have up to 8 AXI 4 read or write
bursts in flight at any time, enabling fast movement of data
between L1 and L2 memory or shared DRAM. The PMCA is
attached to the host as a memory-mapped device, interfaced
through a kernel-level driver and a user-space runtime. The
host and the PMCA share 1 GiB of DDR3 DRAM. The hybrid
IOMMU features a two-level TLB: The L1 TLB features 32
entries, is fully associative, and translates addresses within a
single cycle. The L2 TLB features 256 entries, is 8-way set
associative, and translates addresses within up to 6 cycles. The
IOMMU connects the PMCA to the Accelerator Coherency
Port (ACP) of the Zynq, allowing the PMCA to access the
shared main memory coherent to the data caches of the host.

This platform enables us to study and evaluate the system-
level integration of a PMCA in a HeSoC. Thus, we did not
optimize the PMCA for implementation on the FPGA; the
FPGA should be seen as an emulator instead of a fully-
optimized accelerator. We adjusted the clock frequencies of the
different components to obtain ratios similar to a real HeSoC
with host and PMCA running at 2133 MHz and 500 MHz,
respectively. The DDR3 DRAM is clocked at 533 MHz.
Measuring an actual implementation rather than simulating
models ensures all aspects and parameters of the evaluated
system—including those we did not elaborate in detail in this
paper or might have overlooked—are correctly represented in
the results.

B. Benchmark Description

To evaluate the performance of our SVM system under
various conditions including identifying its limits, we have
used two entirely different, configurable benchmark applications.
They were obtained by extracting critical phases from real-
world applications suitable for implementation on a HeSoC,
and by parametrizing them over a large parameter space. They
exhibit main-memory access patterns representative for various
application domains.

a) Pointer Chasing (PC): This benchmark operates on
graphs, stored as vertices linked by pointers. It is representative
for wide variety of pointer-chasing applications from the graph
processing domain [37]. Prominent examples include breadth-
first or shortest path searching, clustering, and PageRank. Due
to the irregular and data-dependent access pattern to shared
memory and low locality between references, PC represents a
worst-case scenario for a virtual memory subsystem. However,
SVM is crucial to allow implementations of PC applications
at reasonable effort and performance, because offloading a PC
application to an accelerator without SVM requires modifying
all pointers in a graph. In the benchmark, the host builds up a
graph and stores its vertices in a single array in main memory.
Every vertex holds the number of successors, a pointer to an
array of successor vertex pointers, and a configurable amount
of payload data. At the offload, the host passes a pointer to
the vertex array and the number of vertices to the PMCA. On
the PMCA, all WTs share the work of traversing the vertex
array. For each vertex, a WT reads the number of successors
and copies the payload data and successor pointers to a buffer
in L1 SPM using DMA transfers. The WT then performs a
configurable number of computation cycles on the payload and
writes the payload to all successors in shared main memory
again using DMA transfers.

b) Stream Processing (SP): This benchmark operates on
a sequence of data, transferred from and to main memory in
regularly strided blocks. It is representative for applications
that work on streams of data, and examples range from simple
one-dimensional filtering of audio data, over two- and three-
dimensional image and video filters, to tensor operations in
neural networks. In the benchmark, the host allocates one buffer
of configurable size for both input and output (to maximize
locality) and then passes the pointer to the buffer and the
dimensions of the data blocks to the PMCA. On the PMCA,
the WTs share the work of performing a configurable number
of computation cycles on each block. Both input and output
block are double-buffered in L1 SPM, so that compute and
data transfer always overlap.

C. Benchmark Results

In the following plots, we compare the performance of our
implementation and the prior state of the art (SoA) to an
ideal IOMMU, which translates every address within a single
cycle—an unbiased, although practically unreachable baseline.
The SoA implementation is from [8], extended to multiple
threads on the PMCA. For the relative performance on the y-
axis, higher values are better. We evaluate different operational
intensities on the x-axis by changing the number of computation
cycles per data as described above. The operational intensity
of an actual program depends both on the algorithm and the
hardware executing it, and this sweep over a range of intensities
characterizes our SVM implementation for a given memory
access pattern but independent of a very specific program and
processing architecture.

a) Pointer Chasing (PC): Fig. 4 shows the performance of
PC normalized to an ideal IOMMU over different operational

Fig. 4. Pointer Chasing (PC) results for different operational intensities.

intensities in cycles per byte. For example, a single-precision
floating-point implementation of the PageRank algorithm has
an operational intensity of 1.2 cycles/B given a floating-point
unit (FPU) with a divider and around 10 cycles/B for a reduced-
precision fixed-point implementations if no FPU is available.

In the prior SoA, the DMA engine cannot handle TLB misses,
so the software must ensure the TLB entries used by a DMA
transfer are not replaced while that transfer is running. This
locking is the bottleneck of the SoA implementation (first curve
in legend order), and limits its performance to less than 50 %
below 10 cycles/B. For very high operational intensities, the
implementation becomes compute-bound and approaches ideal
performance. Our hybrid-IOMMU-compatible DMA engine
(‘vDMA’, all other curves) removes that bottleneck. The second
curve is limited by the miss handling throughput of the single
MHT for low operational intensities. Replacing one of the
WT with another MHT (third curve) resolves this bottleneck.
This is effective for low operational intensities, but the missing
WT reduces performance in the compute-bound limit. Adding
another MHT (not drawn) does not further improve performance
because two MHTs are sufficient to handle the misses caused
by six WTs. Instead, we replace one of the WTs by a PHT
(fourth curve), which causes TLB entries to be set up ahead
of the instant the WTs need them. This is very effective in
the memory-bound case, increasing performance by another
20 to 30 %. The fourth curve is now prefetch-limited: the single
PHT cannot always prefetch early enough, because the PHT
itself needs to dereference pointers to determine prefetch targets.
Any dereference that causes a TLB miss will block the PHT
until the miss is resolved. Thus, replacing another WT with an
MHT helps increasing performance in memory-bound cases
by an additional 20 %.

Depending on the operational intensity, one of the configura-
tions is optimal. However, as MHTs and PHTs can be inserted
in software, e.g., at compile time based on profiling runs or
even at run time for largely varying operational intensities, our
work significantly improves performance for all operational
intensities by making optimal use of PEs. The last curve shows
the overall optimum configuration. For crucial operational

Fig. 5. Stream Processing (SP) results for different operational intensities.

intensities around 1 cycles/B, our work improves performance
by 4 x compared to the SoA. For common intensities (arguably
below 10 cycles/B), our work improves the SoA performance
by at least 50 %.

b) Stream Processing (SP): Fig. 5 shows the performance of
SP normalized to an ideal IOMMU over different operational
intensities. For example, a one-dimensional FIR filter with N co-
efficients requires N/2 multiply-accumulate operations (MACs)
per transferred data word (each word transferred once in, once
out), and a matrix-matrix multiplication requires 1 MAC per
transferred data word for large matrices. Assuming MACs on
the data format are natively supported by the PMCA, the PMCA
may compute tens, hundreds, or even thousands of MACs per
cycle, depending on the number and architecture of its parallel
PEs. Thus, stream processing kernel-architecture combinations
may be found anywhere on the x-axis of Fig. 5.

In the prior SoA (first curve in legend order), a WT setting
up a DMA transfer ensures that no TLB misses occur during the
transfer by explicitly setting up TLB entries and locking them
during the transfer. For memory-bound kernels, this is slightly
more performant than handling misses by the hybrid-IOMMU-
compatible DMA engine (second curve), because the latter
stalls on every miss. (If that performance difference was larger,
TLB entries could be set up in advance also for the vDMA. In
contrast to the prior SoA, where locks on TLB entries had to
be coded manually to avoid deadlocks, instructions for setting
up TLB entries in advance for the vDMA can be inserted
automatically at compile time.) For a range of more compute-
intensive kernels, however, this locking is the bottleneck of the
SoA implementation, and removing it improves performance by
up to 35 %. When only few cycles are executed per transferred
byte, performance is dominated by the memory latency in
handling TLB misses. Adding another MHT (not drawn) does
not change this, because only the input data stream requires one
new page at a time. Instead, we replace one of the WTs with a
PHT (third curve), which increases performance by 20 to 40 %
in the memory-bound case. This configuration is limited by the
throughput of the MHT, and because the PHT causes more than
one page to be outstanding in the miss queue, there is now work

for another MHT. Indeed, adding another MHT (fourth curve)
increases performance by another 40 %, up to the point where
it limited by the throughput of the PHT in the memory-bound
case and by the five WTs in the compute-bound case. Adding
another PHT might increase performance even further, but the
current PHT generation algorithm does not support distributing
the prefetches for a single memory access stream among two
PHTs.

The last curve shows the overall optimum of all configurations
of our work. Our work improves performance compared to the
SoA by up to 60 % for memory-intense kernels, and reduces
the overhead compared to an ideal IOMMU to below 25 % for
any operational intensity. Our work also reduces the operational
intensity at which that overhead is below 10 % to ca. 4 cycles/B.
As the optimal configuration again can be selected at compile
time or even changed at run time, our work significantly
improves performance over the full spectrum of operational
intensities also for very regular memory access patterns by
replacing WTs with MHTs or PHTs when it improves overall
performance.

D. Hardware Requirements of Hybrid-IOMMU-Capable DMA

Making the DMA engine compatible with the hybrid IOMMU
not only improves performance compared to the SoA, it also
dramatically reduces the amount of memory required to buffer
DMA bursts that miss in the TLB. Our DMA engine is
parametrized to have up to 8 AXI 4 read or write bursts in flight
at any time. Each burst can transfer up to 2 KiB. The total
maximum amount of data in flight is 16 KiB, and a buffer of
this size would be required to enable other masters to continue
accessing SVM in the worst case scenario where 8 write bursts
miss in the TLB. The retirement buffer in our DMA engine
stores just the metadata of each burst: 32 bit for the virtual
start address, 16 bit for the local start address, 3 bit for the ID,
8 bit for the length of the burst, and 3 bit for the status of the
burst; less than 8 B in total. Thus, the retirement buffer requires
just 64 B for the same TLB miss tolerance as the 16 KiB data
buffer—a factor 256 less.

VI. CONCLUSION

In this work, we presented and evaluated our scalable and
efficient SVM solution for HeSoCs. It is based on a hybrid
IOMMU and advances the state of the art in three important
ways: First, compiler-generated PHTs proactively fill the TLB
to minimize the rate of TLB misses. Second, a variable number
of parallel PHTs handle TLB misses to scale the miss handling
throughput with the demand. Third, a hybrid-IOMMU-capable
DMA engine supports parallel burst DMA transfers to SVM
without additional buffers. Compared to the state of the art,
our work improves PMCA performance for memory-intensive
kernels by up to 4× for irregular and by up to 60 % for regular
memory access patterns. Compared to using data buffers to
absorb bursts from DMA engines in a conventional IOMMU,
our solution requires two orders of magnitude less memory
and scales better, as it only stalls the missing DMA engine.
In the future, we plan to explore compiler-generated PHTs

for kernels that mandate speculative prefetching, improve per-
thread miss handling throughput by supporting out-of-order
page table walking, and avoid stalling the entire DMA on a
TLB miss while maintaining memory order guarantees.

ACKNOWLEDGMENTS

The authors thank J. Weinbuch for his work on multi-threaded
TLB miss handling during his Master’s Thesis.

REFERENCES
[1] HSA Foundation, “HSA Foundation,” 2012, www.hsafoundation.com.
[2] J. Stuecheli et al., “CAPI: A coherent accelerator processor interface,” IBM

Journal of R&D, vol. 59, Jan 2015.
[3] J. Goodacre, “The evolution of the ARM architecture towards big data and the

data-centre,” in VHPC ’13.
[4] B. Pichai et al., “Architectural support for address translation on GPUs: Design-

ing memory management units for CPU/GPUs with unified address spaces,” in
ASPLOS ’14.

[5] ARM Ltd., “ARM CoreLink MMU-500 system memory management unit,” Tech-
nical reference manual, 2016.

[6] M. Lavasani et al., “An FPGA-based in-line accelerator for memcached,” IEEE
CAL, vol. 13, 2014.

[7] P. Vogel et al., “Lightweight virtual memory support for zero-copy sharing
of pointer-rich data structures in heterogeneous embedded SoCs,” IEEE TPDS,
vol. 28, 2017.

[8] P. Vogel et al., “Efficient virtual memory sharing via on-accelerator page table
walking in heterogeneous embedded SoCs,” ACM TECS, vol. 16, Sep. 2017.

[9] J. Vesely et al., “Observations and opportunities in architecting shared virtual
memory for heterogeneous systems,” in IEEE ISPASS ’16.

[10] A. Roth et al., “Effective jump-pointer prefetching for linked data structures,” in
ISCA ’99.

[11] H. Al-Sukhni et al., “Compiler-directed content-aware prefetching for dynamic
data structures,” in IEEE PACT ’03.

[12] Intel Corp., “The compute architecture of Intel Processor Graphics Gen9,” 2015.
[13] G. Kornaros et al., “I/O virtualization utilizing an efficient hardware system-level

memory management unit,” in ISSoC ’14.
[14] Xilinx Inc., “Zynq UltraScale+ MPSoC data sheet: Overview,” Advance Product

Specification, 2017.
[15] J. Power et al., “Supporting x86-64 address translation for 100s of GPU lanes,” in

IEEE HPCA ’14.
[16] PCI-SIG, “PCIe Address Translation Services (ATS),” Standard Spec., Jan. 2009.
[17] C.-K. Luk et al., “Automatic compiler-inserted prefetching for pointer-based

applications,” IEEE TC, vol. 48, Feb 1999.
[18] M. Karlsson et al., “A prefetching technique for irregular accesses to linked data

structures,” in IEEE HPCA ’00.
[19] I. Ganusov et al., “Efficient emulation of hardware prefetchers via event-driven

helper threading,” in IEEE PACT ’06.
[20] E. Ebrahimi et al., “Techniques for bandwidth-efficient prefetching of linked data

structures in hybrid prefetching systems,” in IEEE HPCA ’09.
[21] J. Lee et al., “Prefetching with helper threads for loosely coupled multiprocessor

systems,” IEEE TPDS, vol. 20, Sept 2009.
[22] S. W. Son et al., “A compiler-directed data prefetching scheme for chip multipro-

cessors,” in PPoPP ’09.
[23] R. Cooksey et al., “A stateless, content-directed data prefetching mechanism,” in

ASPLOS ’02.
[24] J. Collins et al., “Pointer cache assisted prefetching,” in ACM/IEEE MICRO ’02.
[25] C.-K. Luk, “Tolerating memory latency through software-controlled pre-execution

in simultaneous multithreading processors,” in ISCA ’01.
[26] A. Saulsbury et al., “Recency-based TLB preloading,” in ISCA ’00.
[27] G. B. Kandiraju et al., “Going the distance for TLB prefetching: An application-

driven study,” in ISCA ’02.
[28] D. Lustig et al., “TLB improvements for chip multiprocessors: Inter-core cooper-

ative prefetchers and shared last-level TLBs,” ACM TACO, vol. 10, Apr. 2013.
[29] D. Melpignano et al., “Platform 2012, a many-core computing accelerator for

embedded SoCs,” in ACM/IEEE DAC ’12.
[30] Kalray S.A., “MPPA MANYCORE,” 2014.
[31] D. Rossi et al., “Energy-efficient near-threshold parallel computing: The PULPv2

cluster,” IEEE Micro, vol. 37, Sept 2017.
[32] I. Loi et al., “The quest for energy-efficient I$ design in ultra-low-power clustered

many-cores,” IEEE TMSCS, vol. 4, Apr 2018.
[33] I. Loi et al., “Exploring multi-banked shared-L1 program cache on ultra-low

power, tightly coupled processor clusters,” in ACM CF ’15.
[34] D. Rossi et al., “Ultra-low-latency lightweight DMA for tightly coupled multi-core

clusters,” in ACM CF ’14.
[35] T. Sherwood et al., “Discovering and exploiting program phases,” IEEE Micro,

vol. 23, Nov 2003.
[36] A. Marongiu et al., “Simplifying many-core-based heterogeneous SoC program-

ming with offload directives,” IEEE TII, vol. 11, Aug 2015.
[37] Y. Guo et al., “How well do graph-processing platforms perform? An empirical

performance evaluation and analysis,” in IEEE IPDPS ’14.

