
ETH Library

The use of biotite trace element
compositions for fingerprinting
magma batches at Las Cañadas
volcano, Tenerife

Journal Article

Author(s):
Sliwinski, Jakub ; Ellis, Ben S.; Dávila-Harris, Pablo; Wolff, John A.; Olin, Paul H.; Bachmann, Olivier

Publication date:
2017-01

Permanent link:
https://doi.org/10.3929/ethz-b-000326411

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Bulletin of Volcanology 79(1), https://doi.org/10.1007/s00445-016-1088-2

Funding acknowledgement:
166281 - Understanding eruptive and post-eruptive processes in rhyolites via lithium (Li) isotopes (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-3069-9978
https://doi.org/10.3929/ethz-b-000326411
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00445-016-1088-2
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


RESEARCH ARTICLE

The use of biotite trace element compositions for fingerprinting
magma batches at Las Cañadas volcano, Tenerife

J. T. Sliwinski1 & B. S. Ellis1 & P. Dávila-Harris2 & J. A. Wolff3 & P. H. Olin4
&

O. Bachmann1

Received: 10 June 2016 /Accepted: 27 November 2016 /Published online: 6 December 2016
# Springer-Verlag Berlin Heidelberg 2016

Abstract Accurate identification of individual volcanic
events in the field is crucial for constraining eruption volumes
and calculating recurrence intervals between eruptive epi-
sodes. Due to complexities of pyroclastic transport and depo-
sition and intra-unit textural variability, such identification can
be challenging. We present a novel method for fingerprinting
ignimbrites via trace element chemistry (V, Co, Nb) in biotite
by laser ablation inductively coupled plasma mass spectrom-
etry (LA-ICP-MS). Using samples from the alkaline magmat-
ic series of Tenerife, we are able to demonstrate (1) clustering
of previously characterized units into distinct, homogeneous
groups based on V, Co, and Nb concentrations in biotite, de-
spite the presence of extreme variation and zonation in other
trace elements (Ba, Sr, Rb) that indicate complex petrogenetic
processes, and (2) biotite compositions are similar throughout
a deposit and relatively independent of stratigraphic height or
juvenile clast texture (crystal-rich vs crystal-poor). Our results
show that trace elements in biotite can be used to fingerprint

eruptions and correlate geographically separated volcanic de-
posits, including those preserved in offshore turbidite records.

Keywords Stratigraphy . Tenerife . Alkalinemagmatism .

Trace element chemistry . Biotite

Introduction

Constraining the eruptive history of a volcano is a first-order
requirement for understanding its behavior and associated
hazards, particularly with respect to the magnitude and recur-
rence rate of eruptive events. Reconstructing eruptive flux
(i.e., time/volume relations) relies upon confident correlation
of deposits from individual eruptions in both distal and prox-
imal areas and across a variety of depositional environments
from the caldera margins to deep-sea settings (Menard 1956;
Martí et al. 1994; Schmincke and Sumita 1998). For the larg-
est and most explosive eruptions, the complexity associated
with pyroclastic transport and deposition of ignimbrites ham-
pers both correlation on the basis of field appearance and
volume estimates based on a real extent (Branney and
Kokelaar 2002; Mason et al. 2004). A solution to this comes
in the form of geochemical and isotopic studies which can be
used to Bfingerprint^ or identify magma batches and discrim-
inate them from one another. Fingerprinting can be achieved
by examining major and trace elements in bulk rock, glass, or
minerals (Waters 1961; De Silva and Francis 1989; Smith
et al. 2002; Shane et al. 2003; Ukstins-Peate et al. 2003;
Harangi et al. 2005; Smith et al. 2011b; Ellis et al. 2012),
radiogenic isotopic (Francalanci et al. 1993), or paleomagnetic
signatures (Ort et al. 2015). Such studies are increasingly
coupled with high-precision geochronology, most typically
using 40Ar/39Ar or the U/Pb isotopic systems to distinguish
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the products of individual eruptions (McIntosh et al. 1990;
Schoene et al. 2010; Mark et al. 2014; Wotzlaw et al. 2014).

While geochemical methods can be powerful, efforts to
fingerprint ignimbrites may be complicated as many ignim-
brites are known to show compositional zonation as a result of
fractional crystallization, pre-eruptive magma mixing (Dorais
et al. 1991; Bryan et al. 1998; Eichelberger et al. 2000; Bryan
et al. 2002; Olin 2007), or remelting a cumulate pile via the
heat and volatile flux from a recharging magma (Bachmann
et al. 2014; Forni et al. 2015; Sliwinski et al. 2015; Wolff et al.
2015). While many styles of compositional zonation may oc-
cur, a commonly observed form is early erupted, crystal-poor,
and more evolved material followed by late-erupted, crystal-
rich, and less evolved material (Lipman 1967; Hildreth 1979;
Hildreth 1981; Wolff and Storey 1984; Wörner and
Schmincke 1984; Mahood and Hildreth 1986; Bachmann
et al. 2014; Williams et al. 2014). In such cases, significant
differences in bulk major and trace element concentrations are
observed between the two types of eruptive products, as are
differences in glass chemistry. This complexity in the field and
in composition hinders attempts to geochemically link widely
separated deposits, which necessitates a fingerprintingmethod
that is robust and unaffected by chemical gradients. Mineral
major and trace element compositions are a good candidate
and have been the focus of multiple studies.

Biotite chemistry in particular has been recognized as a
powerful correlation tool by several authors, all focusing on
major element chemistry within chemically unzoned
ignimbrites and bentonites. Desborough et al. (1973) used
electron probe microanalysis (EPMA) of biotites to correlate
volcanic units in the Eocene Green River Formation (USA).
Yen and Goodwin (1976) followed up on this work, using X-
ray fluorescence (XRF) analyses on bulk biotite separates.
Later, in a case study from the Central Andes, de Silva and
Francis (1989) demonstrated both the correlation and
anticorrelation among a group of homogeneous ignimbrites
by biotite major elements in a way that helped to constrain
eruptive volume estimates. Haynes et al. (1995) similarly used
EPMA to distinguish Ordovician bentonite layers in Sweden
and the USA, demonstrating the ability of biotites to retain
compositional information even following heavy alteration.
More recently, the same method was used by Smith
et al. (2011b) and Shane et al. (2003) to correlate vol-
canic ashes from the Toba eruptions and the Okataina/
Taupo volcanic zones, respectively. In the present study,
we further investigate biotite, this time utilizing laser
ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS) analysis of trace elements from a suite of
petrographically complex, zoned, and unzoned phono-
lites on the island of Tenerife (Canary Islands, Spain).
We evaluate the signatures recorded by biotite trace el-
ement compositions and the extent to which these com-
positions may be used for correlation purposes.

Geological background

The island of Tenerife is located at the center of the Canary
Islands, a hotspot-related ∼Miocene–recent ocean island ar-
chipelago located 750 km west of the Moroccan coast. The
eruptive history of Tenerife began with a succession of basal-
tic to basanitic shield lavas (at least as old as 11.6 Ma), which,
following a period of repose, gave rise to more evolved
trachyphonolitic to phonolitic products at ∼3 Ma (Ancochea
et al. 1990; Ancochea et al. 1999). The western islands, in-
cluding Tenerife, are constructed upon ∼7 km of tholeiitic
Jurassic oceanic crust and several kilometers of sediments
from the African passive margin. There is no evidence of
significant contribution of these reservoirs into Canarian
magmas (Robertson and Stillman 1979; Hoernle 1998).

Voluminous phonolitic ignimbrites and fallout deposits
erupted from the Las Cañadas caldera (Fig. 1) on Tenerife
from 1.8 Ma onwards. They form thick pyroclastic sequences
on the southern flanks of the island (Bandas del Sur, Fig. 1)
and in the caldera wall. This phase of activity comprises the
upper group of the Las Cañadas edifice (Martí et al. 1994) and
is further subdivided into three cycles (the Ucanca, Guajara,
and Diego Hernández formations, see Edgar et al. (2007)),
with each cycle, in turn, consisting of numerous ignimbrites
and pumice fall deposits (Walker 1981; Wolff 1985; Blanco
1989; Martí et al. 1990; Mitjavila 1990; Martí et al. 1994;
Bryan et al. 1998; Bryan et al. 2002; Brown et al. 2003;
Edgar et al. 2007; Dávila-Harris 2009; Dávila-Harris et al.
2013). Caldera-forming volcanism characterized many units
in these cycles, leaving overlapping caldera structures at the
center of the island, the largest of which led into eruptive
hiatuses of hundreds of thousands of years (Martí et al.
1994; Dávila-Harris 2009). Deposition of ignimbrites is clear-
ly topographically controlled, as the southeastern and south-
western deposits form two disconnected sequences separated
by the Roque del Conde massif (Fig. 1).

The field appearance of southern Tenerife ignimbrites can
be highly variable, both between and within units. Units may
differ, for example, on the basis of color, crystal content, lithic
horizons, degree of welding, juvenile clast component, and
amount of associated fall deposits. Within units, similar vari-
ability may occur. For example, the Granadilla Member is
remarkably homogeneous in appearance (e.g., low phenocryst
abundance, low abundance of lithics and juvenile clasts) and
only mildly zoned in chemical composition (Wolff and Storey
1984; Bryan 2006), while the Adeje, Abrigo, Poris, and
Enramada units display strong textural and chemical zonation
between subunits (Bryan et al. 1998; Edgar et al. 2002; Brown
et al. 2003; Dávila-Harris 2009; Dávila-Harris et al. 2013) and
often contain juvenile clasts of variable chemical and textural
character (Fig. 2). Mixing plays a prominent role in the evo-
lution of Tenerife magmas, as evidenced by the presence of
compositional bands in pumices (Edgar et al. 2002), frequent
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coexistence of multiple crystal assemblages (mafic and
evolved) within single ignimbrites (Wolff 1985) as well as
mineral zoning patterns indicating growth under variable
chemical conditions (Albert et al. 2015). Degree of welding
varies greatly between units, and some (e.g., the Arico
Member) additionally feature variably welded zones with a
range of coloration (Brown et al. 2003). Although at first
glance, the diversity in products seems to aid in distinguishing
one unit from another, the intra-ignimbrite diversity may ac-
tually serve to complicate potential correlations, particularly if
outcrops are widely spaced and record different facies of a
given ignimbrite.

Regarding mineralogy and geochemistry, phonolites of
southern Tenerife share many similarities despite their vari-
ability in field appearance. Bulk major element compositions
are comparable across the island with minor variations in SiO2

(Wolff et al. 2000; Edgar et al. 2002; Brown and Branney
2004a; Bryan 2006; Dávila-Harris et al. 2013), while trace
elements (e.g., Ba, Sr) may vary by orders of magnitude
(Edgar et al. 2002; Dávila-Harris et al. 2013; Sliwinski et al.
2015). Nb and Zr compositions can be used to identify two
distinct phonolite series within the Diego Hernández
Formation (Wolff et al. 2000; Edgar et al. 2007). The miner-
alogy of these phonolites shows minor variability around a
consistent assemblage of anorthoclase-sanidine + salite + bi-
otite + magnetite + titanite ± ilmenite ± sodalite-haüyne ±

nepheline (Wolff 1985; Bryan et al. 2002; Edgar et al.
2007). Many units contain crystals derived from mixing with
mafic magmas, such as kaersutite, plagioclase, titanaugite, and
olivine (Wolff 1985). Feldspar and pyroxene grains are often
zoned in both major and trace elements (Bryan et al. 2002;
Sliwinski et al. 2015). While these authors present biotite ma-
jor element data, biotite trace element variations have been
underexplored and are therefore the focus of this work.

Methods

Juvenile clasts were collected from all three eruptive cycles in
southern Tenerife (Fig. 1, Table 1). In particular, the Abrigo,
Caleta, Arafo, Poris, and Aldea Members of the Diego
Hernández Formation (representing the latest eruptive cycle)
were sampled, as well as the Arico and GranadillaMembers of
the Guajara (middle) cycle. The Monjas, Mocán, Adeje,
Barco, San Juan, Agua, Morro, Enramada, Morteros, and
Gaviotas ignimbrites (Dávila-Harris 2009) of the Ucanca
Formation were also sampled. Biotite phenocrysts were ob-
tained from crushed juvenile clasts which were selected based
on the lack of physical alteration or compositional banding.
When necessary, dilute methylene iodide (ρ = 2.8 g cm−3) was
used to prepare a heavy mineral separate of the sample. Biotite
phenocrysts were then mounted in epoxy and polished with
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diamond paste. Imaging of compositional zoning was done by
scanning electron microscopy (SEM) in backscatter electron
(BSE) mode (Fig. 3).

Major elements in biotite were obtained by electron micro-
probe (EPMA) at ETH Zürich using a JEOL JXA-8200 at
15 kVacceleration voltage with 15 nA current and 5 μm spot
size. Peak and background counting times were 20 s for all
elements (F, Na, Mg, Al, K, Ti, Si, Fe, Mn, and Ba). All
analyses were corrected with a Phi-Rho-Z scheme and nor-
malized to 22 O. Data quality was monitored using secondary
standards from ETH’s standard collection, including a natural
biotite (H043) and synthetic phlogopite (H088).

Trace elements were obtained by LA-ICP-MS at ETH
Zürich using a 193-nm Resonetics ArF excimer laser coupled
with a Thermo Element XR ICP-MS. Analysis parameters
were 30-μm spot size, ∼3.5 J cm−2, three cleaning pulses;
5 Hz repetition rate; 20-s background measurement; and 32-
s ablation time. Analyses were bracketed and drift corrected
with NIST-612 or NIST-610 synthetic glass standard and
monitored using the GSD-1G basaltic glass standard. Data
were normalized to internal standard element Al or Si

obtained by EPMA (with no appreciable difference between
the results of the two standardizations; see supplement S2) and
reduced in the MATLAB-based SILLS program (Guillong
et al. 2008). Because of low variability of Al2O3 and SiO2

concentrations, average values per unit were used. When
EPMA data were not available, an Al2O3 value of 13 wt%
(representing the overall average of Tenerife biotites) was
used. Reproducibility of homogeneous glass standards yields
precision better than 5% relative standard deviation (RSD) for
elements well above the limit of detection.

Results

Biotite grains in all units vary between equant and elongated
habits, span a size range of 0.1–5.0 mm, and contain inclu-
sions of apatite, oxides, and melt. Complex zoning patterns
are visible by BSE and can be subdivided into four categories:
(1) simple grains with no BSE brightness variations; (2) grains
with two or more distinct and sharply delineated zones with
clear differences in BSE brightness (Fig. 3e, f); (3) grains with
irregular, zoning textures, consistent with a history involving
resorption (Fig. 3a–d); and (4) grains with any combination of
the above characteristics. All pumice samples contain both
homogeneous biotites and those with complex zonation. It is
noteworthy that while the co-occurrence of zoned and
unzoned biotites is common, the proportions of the two types
may vary markedly from unit to unit.

Major elements

Major and trace elements in biotite are reported in Table 2.
Biotites typically contain 35–39 wt% SiO2 and 11–14 wt%
Al2O3 and have Mg number (100 × [mol Mg] / [mol Mg +
Fe]) between 55 and 76 (Fig. 4). TiO2 among Bandas del Sur
biotites varies between ~5 and 8 wt% and may show a 1–
2 wt% spread within individual units. The stark BSE zonation
apparent in some biotites (Fig. 3) is not strongly reflected in
major element chemistry. Although some distinctions may be
made between units based on major elemental compositions,
biotites in many units overlap (Fig. 4).

Trace elements

Both incompatible (e.g., Rb) and compatible (e.g., Sr, Ba)
trace elements vary greatly in biotites from units of the
Tenerife system (Figs. 5 and 6). Rb, inversely correlated with
Ba and Sr, shows a threefold to fivefold range in most units,
while Ba and Sr vary over nearly two orders of magnitude. It is
worth noting here that in Ba–Sr space, the population of all
Tenerife biotites forms two trends: a high Ba trend (slope
~2700) and a low Ba trend (slope ~500). Such trends were
known from bulk-rock data (Ablay et al. 1998; Olin 2007) and

Fig. 2 Field appearance of the a Adeje and b Arico ignimbrites. Note
variability in juvenile clast components: Crystal-rich (xr) clasts (some-
times banded) co-exist with crystal-poor (xp) clasts
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were also observed in feldspars among a subset of the units
sampled here (Sliwinski et al. 2015).

While concentrations of some trace elements vary enor-
mously, others exhibit relatively low variability in these bio-
tites, particularly V, Co, and Nb (Table 2, S1). However, their
concentrations can differ significantly between different ig-
nimbrites (Figs. 6 and 7, Table 2), allowing fingerprinting.
V, Co, and Nb concentrations are largely unaffected by com-
plex zoning in biotites, while Ba and Sr concentrations may
vary by orders of magnitude along a well-defined trend
(Fig. 6). Repeated analysis of multiple samples within units
(with variable crystal contents) suggests that V–Co–Nb con-
centrations are unaffected by crystallinity (see Poris and Arico
units) or by spatial separation of outcrops (e.g., large lateral
distance between sampling outcrops within Poris, Caleta,
Arafo, Aldea, and Arico Members). Only biotites from the
Monjas and Mocán units, which notably contain low modal
proportions of biotite (necessitating heavy liquid separation),
display extremely heterogeneous trace element compositions,
potentially due to entrainment of xenocrysts. Biotites from the
La Caleta and Arafo units (both in the Diego Hernandez

Formation II of Edgar et al. (2007)) plot in overlapping fields,
which are distinct from those of other Diego Hernández units
(e.g., El Abrigo, Poris, Aldea). Ten samples from the Poris
unit (representing a wide range in crystallinities and many
sampling locations) display more variability in V than other
southern Tenerife units but are still relatively restricted and
discernible in the Co and Nb dimensions (Figs. 6 and 7).
However, some overlap does occur between the Abrigo and
Poris units, suggesting that multiple lines of evidence are oc-
casionally necessary (e.g., geochronology, glass data, whole
rock data) in order to make a positive identification.

Discussion

These complex biotites from Tenerife record a rich magmatic
history, involving disequilibrium textures, extreme composi-
tional variability in some trace elements, and remarkable ho-
mogeneity in others. The paths to such characteristics are
discussed below.

Table 1 Unit coordinates and
ages Unit Cyclea Age ± σ (Ma) Eastingb Northingb Ref. Location

El Abrigo DHF III 0.169 ± 0.001 345,398 3,101,985 Brown et al. (2003) 17

La Caleta DHF II 0.221 ± 0.005 354,765 3,109,920 Brown et al. (2003) 16

Arafo DHF II 347,889 3,129,886 15

349,751 3,130,197

Poris DHF I 0.271 ± 0.006c 355,506 3,110,406 Brown et al. (2003) 14

348,027 3,129,242

345,600 3,101,800

Aldea DHF I 0.334 ± 0.005 354,789 3,109,421 Edgar et al. (2007) 13

348,206 3,127,793

Granadilla Guajara 0.600 ± 0.007 349,748 3,113,411 Brown et al. (2003) 12

Arico Guajara 0.668 ± 0.008 359,220 3,116,004 Brown et al. (2003) 11

352,218 3,116,736

Monjas Ucanca 1.310 ± 0.006 349,675 3,110,449 Dávila-Harris (2009) 10

Mocan Ucanca 1.494 ± 0.008 350,152 3,109,934 Dávila-Harris (2009) 9

Adeje Ucanca 1.559 ± 0.014 329,381 3,110,568 Dávila-Harris et al. (2013) 8

Barco Ucanca 1.601 ± 0.008 352,526 3,111,143 Dávila-Harris (2009) 7

San Juan Ucanca 1.50 ± 0.03 326,269 3,110,808 Huertas et al. (2002) 6

325,634 3,111,563

Agua Ucanca Unknown 330,410 3,110,856 5

Morro Ucanca Unknown 330,410 3,110,856 4

Enramada Ucanca 1.661 ± 0.02 328,508 3,109,600 Dávila-Harris (2009) 3

Morteros Ucanca Unknown 328,508 3,109,600 2

Gaviotas Ucanca 1.84 ± 0.07 326,988 3,110,134 Huertas et al. (2002) 1

DHF Diego Hernandez Formation
a Eruptive cycles according to Edgar et al. (2007)
b UTM zone 28R, datum WGS84
cMember 9 of Brown et al. (2003) and BUpper Gray Member^ of Bryan et al. (1998)
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Biotites as recorders of petrogenetic processes

It has recently been suggested that the crystal-rich juvenile
clasts observed in many Tenerife ignimbrites (e.g., Arico,
Adeje; Fig. 2) are produced via remobilization of a crystal-
rich Bmushy^ portion at the base of the magma reservoir fol-
lowing recharge by hotter magma. Evidence for this process
has been presented in the form of whole rock compositions
(Wolff et al. 2015) and from mineral chemistry, particularly in
feldspar (Sliwinski et al. 2015). The striking zoning patterns
of biotites with embayed BSE darker core and the BSE
brighter rim are consistent with such an origin involving re-
mobilization from an evolved cumulate pile that was reheated
and partially remelted. The extreme variability in the compat-
ible elements (e.g., Ba increasing by a factor of up to 50 from
the core to the rim of a single biotite) not only suggests locally
enriched melts following this melting event (Sliwinski et al.
2015; Wolff et al. 2015) but also agrees with abundant evi-
dence for mixing of different magma batches made on
Tenerife (Wolff 1985; Araña et al. 1994; Ablay et al. 1998;
Bryan et al. 2002; Edgar et al. 2002; Olin 2007).

In this dynamic and open system, the restricted variability
of Nb, V, and Co among and within biotites preserved in
samples with large variations in chemical compositions and
crystallinities is a remarkable feature. In particular, bimodal
units (e.g., the Arico, Poris) which contain dark, crystal-rich
clasts and light, crystal-poor clasts vary dramatically in whole

rock trace element composition (Fig. 8; see also Dávila-Harris
2009; Sliwinski et al. 2015) but only nominally in biotite trace
element (Nb, Co, V) composition (Figs. 7 and 8c). It implies
that such elements are not partitioned strongly between melt
and crystals (bulkD ~1) while biotite is crystallizing. To coun-
terbalance the abundance of alkali feldspars, which have very
low partition coefficients for these elements, some quantity of
minerals such as Fe–Ti oxides, clinopyroxene, amphibole, and
titanite, in which those elements partition more strongly, is
needed. These minerals are typically not modally abundant,
but as the partition coefficients can be high, a few modal
percent of those phases are sufficient to keep bulk D ~1.
Trace transition metals, for example, partition into pyroxene
and biotite with Ds in the range of ~1–10 (Ewart and Griffin
1994) but only account for ~5% of the crystallizing assem-
blage, meaning that they contribute a maximum of ~0.5 to the
bulk D. Titanite has a partition coefficient of 32–43 for Nb
(Olin and Wolff 2012), while spinel has partition coefficients
in the range of 10–50 for trace metals (Luhr and Carmichael
1980; Villemant 1988). However, these phases only comprise
a 1–2% of the mineral assemblage and so contribute a
maximum of ~1 to bulk D for these elements. Furthermore,
experimental work on the Abrigo Member suggests that the
onset of oxide and titanite crystallization precede and follow
biotite crystallization, respectively (Andújar et al. 2008), indi-
cating that their competition with biotite for the same trace
elements is limited. Finally, while feldspar crystallization
drives up incompatible element concentrations (e.g., Nb), the
bulk of this modally dominant phase crystallizes after biotite,
and Nb signatures remain relatively stable in biotite.

As mentioned previously, there is ample evidence for
recharge/mingling preserved in lavas and ignimbrites on
Tenerife, and we can infer from the frequency of Holocene
and historic basaltic eruptions (Carracedo et al. 2007; Solana
2012) that Tenerife magma reservoir(s) would have been ex-
posed to more primitive input at some or all stages of evolu-
tion. As mafic magmas tend to have higher V content
than the phonolites (~250–400 ppm, compared to <100
for the phonolites; Thirlwall et al. 2000; Sliwinski et al.
2015), such mafic recharge would be easily recorded in
biotite. The fact that they typically show limited varia-
tion suggests that mafic recharge is limited in terms of
mass (although very visible when it occurs as it leaves
clear petrographic marks in the form of mingling or
multiple phenocryst assemblages). The fact that mafic
recharge is volumetrically not dominant does not mean
that mixing is uncommon; the addition of intermediate
magmas (phonotephrites) from the lower crustal MASH
zone commonly happens (i.e., zones of melting,
assimilation, storage, and homogenization; see Hildreth
and Moorbath 1988), and it forms the bulk of the
subvolcanic reservoir, where the phonolites differentiate
(Sliwinski et al. 2015).
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Table 2 Biotite major and trace element compositions

Sample 15TF10 15TF16 15TF19 15TF21 15TF23 15TF26

Unit Morro San Juan Agua Morteros Monjas Mocan

Major elements (wt%, 2σ)

SiO2 37.91 0.53 36.99 0.77 35.85 0.74 36.97 0.50 36.70 1.77 36.60 1.42

Al2O3 12.55 0.45 11.88 0.73 12.78 0.59 13.69 0.25 12.06 1.50 11.90 1.05

MgO 15.19 0.54 17.39 0.42 15.44 0.37 14.43 0.62 16.63 2.12 16.58 1.51

FeO 14.19 0.51 10.95 0.66 13.25 0.54 14.55 1.61 12.02 2.17 12.17 2.14

TiO2 5.53 0.51 6.15 0.67 6.18 0.50 6.13 0.80 6.07 1.01 5.54 1.45

MnO 0.79 0.07 0.36 0.09 0.55 0.14 0.38 0.14 0.45 0.25 0.58 0.31

Na2O 0.91 0.04 1.36 0.10 1.22 0.17 0.90 0.14 1.27 0.24 1.17 0.31

K2O 8.96 0.19 8.14 0.26 8.18 0.41 8.95 0.20 8.40 0.23 8.53 0.51

BaO 0.08 0.18 0.86 0.42 0.91 0.74 0.08 0.13 0.55 0.64 0.46 0.70

F 0.51 0.08 1.26 0.20 0.46 0.27 0.28 0.09 1.13 0.67 1.17 0.52

Sum 96.10 1.09 94.09 0.77 94.35 0.91 96.07 1.26 94.15 0.89 93.53 0.50

Mg number 65.61 1.48 73.90 1.27 67.51 1.27 63.88 3.50 71.10 6.20 70.82 5.35

n 9 10 11 8 11 8

Trace elements (ppm, 2σ)

P 26 15 27 18 37 21 35 20 40 18 46 32

Ca 575 222 673 502 555 373 773 370 544 90 599 375

Sc 4.0 0.7 5.1 1.7 3.6 1.3 4.5 1.2 4.2 1.8 4.3 1.7

V 93 8 70 38 59 26 205 33 84 66 75 80

Co 7.8 0.6 2.0 8.9 1.8 4.7 40.8 3.8 5.7 15.8 1.7 4.3

Zn 572 190 311 117 431 133 361 97 408 210 841 1878

Ga 28 5 27 5 25 3 27 5 26 5 30 6

Rb 298 147 191 297 220 53 495 166 205 131 300 199

Sr 1.2 1.8 2.4 6.5 3.2 4.3 2.8 3.8 10.5 38.8 2.6 6.4

Y 0.1 0.2 0.2 0.4 0.5 1.6 0.1 0.2 0.3 0.7 0.3 0.4

Zr 15 4 8 14 27 67 37 9 14 19 16 56

Nb 134 13 64 71 120 28 156 13 98 73 101 164

Cs 2.6 6.8 2.4 15.9 1.7 3.6 2.7 3.9 0.8 1.4 2.5 5.1

Ba 638 2302 6460 6000 6915 7401 546 1559 5931 7896 3486 4576

La 0.1 0.5 0.3 1.2 0.7 2.9 0.1 0.2 0.3 0.8 0.5 1.1

Ce 0.5 2.6 0.4 1.6 6.3 31.3 0.7 2.2 2.5 12.0 2.6 4.4

Pb 0.3 0.4 0.2 0.3 1.0 3.7 0.6 0.1 0.4 0.6 1.3 6.2

n 24 28 22 24 22 22

Sample 15TF27 15TF49 15TF52 15TF34

Unit Mocan Barco Pegueros Arico

Major elements (wt%, 2σ)

SiO2 35.86 1.25 38.26 0.59 36.75 0.77 38.29 0.51

Al2O3 12.73 0.88 12.45 0.53 12.43 0.51 12.45 0.35

MgO 14.81 2.76 16.85 0.40 17.16 0.55 15.95 0.81

FeO 14.40 3.62 11.51 0.80 10.56 0.48 13.57 1.34

TiO2 5.61 1.44 6.23 0.65 6.81 0.78 5.18 0.76

MnO 0.59 0.25 0.42 0.13 0.32 0.07 0.68 0.20

Na2O 0.93 0.25 1.23 0.16 1.41 0.13 0.95 0.10

K2O 8.85 0.37 8.44 0.38 8.19 0.41 8.96 0.14

BaO 0.11 0.23 0.47 0.54 0.61 0.65 0.04 0.07

F 0.65 0.42 0.96 0.09 1.01 0.21 0.81 0.10

Sum 93.90 0.93 95.85 0.78 94.24 1.02 96.07 0.71

Mg number 64.63 9.88 72.30 1.62 74.33 1.08 67.70 3.19
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Biotites as correlation tools

The limited variation of V, Nb, and Co in biotites in this study
provides a useful means of distinguishing magma batches,
particularly in cases where EPMA provides ambiguous

correlation data. In this case, the improved ability to distin-
guish biotites from different units provides the potential to
correlate pyroclastic units across the island from the Bandas
del Sur to the north side of Tenerife, where increased rainfall
and more rapid weathering negatively affects exposure

Table 2 (continued)

n 21 9 11 10
Trace elements (ppm, 2σ)
P 35 18 39 42 40 41 31 25
Ca 604 169 602 298 517 148 593 257
Sc 3.0 1.5 5.8 1.1 4.3 0.6 2.3 0.5
V 181 87 101 29 81 6 140 14
Co 13.9 17.2 1.3 0.3 3.3 0.3 5.3 0.3
Zn 480 152 341 113 281 71 535 131
Ga 28 8 25 5 25 3 29 5
Rb 403 343 176 103 171 47 373 112
Sr 2.1 3.9 0.9 1.4 10.5 9.6 0.4 1.0
Y 0.1 0.2 0.2 0.4 0.1 0.3 0.5 3.3
Zr 22 21 10 5 11 4 12 8
Nb 148 62 73 8 82 4 120 6
Cs 2.6 11.2 0.5 0.7 0.4 0.2 1.4 0.6
Ba 898 2098 5850 8071 4827 4511 198 444
La 0.2 0.9 0.3 1.2 0.1 0.4 0.5 3.1
Ce 0.3 1.0 0.7 2.7 0.2 0.9 0.7 3.0
Pb 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2
n 25 31 18 30

Sample 12_030 12_031 12_001 12_010 12_019 12_043 12_045
Unit Arico Arico Enramada Adeje Gaviotas Poris Poris
Major elements (wt%, 2σ)
SiO2 36.65 0.68 36.96 1.54 37.98 0.90 38.13 0.87 37.68 0.49 36.70 0.80 34.98 1.17
Al2O3 13.33 0.28 13.22 0.56 12.82 0.33 12.60 0.55 13.07 0.29 13.61 0.36 13.57 0.65
MgO 15.67 0.48 15.92 1.01 16.20 0.59 16.92 0.61 15.32 0.47 14.20 0.57 14.39 0.51
FeO 11.33 0.69 11.33 0.97 10.95 0.45 10.51 0.41 12.99 0.48 14.36 1.09 14.23 1.46
TiO2 7.46 0.65 7.28 1.22 7.40 0.54 6.94 0.86 6.34 0.66 6.38 1.16 6.29 1.56
MnO 0.38 0.07 0.39 0.11 0.34 0.06 0.34 0.11 0.52 0.07 0.49 0.14 0.45 0.22
Na2O 1.23 0.11 1.23 0.18 1.14 0.10 1.33 0.16 0.95 0.09 0.81 0.10 0.89 0.12
K2O 7.84 0.37 8.02 0.88 8.62 0.53 8.37 0.36 8.98 0.19 9.03 0.43 8.73 0.55
BaO – – – – – – – – – – – – – –
F – – – – – – – – – – – – – –
Sum 93.89 1.12 94.35 2.33 95.45 2.54 95.15 0.99 95.84 0.80 95.58 1.06 94.15 1.04
Mg number 71.14 1.49 71.46 2.44 72.52 0.84 74.15 1.01 67.77 1.11 63.81 2.24 64.32 2.86
n 9 34 31 14 25 31 9

Trace elements (ppm, 2σ)
P 80 41 97 88 86 40 81 30 83 39 92 48 34 13
Ca 705 335 537 82 619 311 – – 551 245 635 224 659 195
Sc – – – – – – – – – – – – 2.9 0.8
V 170 13 168 20 121 6 81 8 106 8 258 38 252 52
Co 4.9 0.7 4.9 0.6 12.2 0.9 3.3 0.5 21.8 1.2 14.2 4.6 19.5 9.5
Zn 305 49 320 107 256 29 272 43 422 22 431 91 429 170
Ga – – – – – – – – – – – – 26 7
Rb 166 44 187 111 131 43 167 38 383 75 227 52 291 190
Sr 4.5 3.9 4.2 6.1 0.7 0.6 12.2 9.5 8.3 4.4 10.2 19.9 15.6 33.2
Y 0.4 1.0 0.3 0.3 0.2 0.5 0.3 0.6 0.2 0.2 0.2 0.3 0.1 0.1
Zr – – – – – – – – – – – – 26 9
Nb 105 8 107 12 75 5 79 6 193 13 162 12 156 30
Cs 0.4 0.2 0.5 0.5 1.4 6.5 0.5 0.9 1.3 0.5 0.7 0.3 1.0 1.0
Ba 14,751 11,757 12,368 15,804 2157 3785 5239 4347 1039 1575 4994 10,488 4766 11,026
La 0.4 1.6 0.2 0.8 0.2 0.9 0.2 0.7 0.2 0.8 0.2 0.9 0.1 0.2
Ce 0.5 3.0 0.4 1.9 0.6 2.4 0.5 1.5 4.6 36.9 0.6 2.5 0.3 0.8
Pb 0.4 0.4 0.4 0.9 0.3 0.1 0.3 0.1 0.6 1.1 0.6 0.6 0.5 0.2
n 33 50 31 15 23 48 22
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quality. More generally, this approach can be used to correlate
distal ashes back to their sources, up to thousands of

kilometers away (Smith et al. 2011b). Furthermore, biotite
compositions may aid in linking offshore and subaerial
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deposits, as well as correlating volcaniclastic turbidites (par-
ticularly those that are associated with the degradation of vol-
canic edifices and are interlayered with volcanic ash). With
volcanic islands such as the Canaries being commonly affect-
ed by large landslides (Watts and Masson 1995; Schmincke
and Sumita 1998; Hunt et al. 2014; Le Friant et al. 2015), the
utility of such indicators is clear. Finally, in order to determine
accurate eruption volumes, it is necessary to piece together
offshore pyroclastic deposits, given that much of the volume
in a pyroclastic density current may bypass deposition on land
and end up in the sea (Brown and Branney 2004b). The anal-
ysis of trace elements in biotite provides additional, often
more discriminating, information for these purposes and also
sheds light on magmatic processes as discussed above.

Geochemical correlations are typically done by major ele-
ment chemistry in glass or minerals or by trace element chem-
istry in glass. While powerful, these techniques have a few
drawbacks that may be complemented by an additional

method. Major element chemical variations in minerals are
limited by stoichiometry, which allows easier quality control
of data and limits the extent of element mobility during anal-
ysis. Since major element analysis is anyways necessary for
the internal calibration of LA-ICP-MS measurements (i.e.,
counts registered by the mass spectrometer must be anchored
to a major element concentration), this means that obtaining
both major element and trace element data on minerals is
usually more straightforward than for glass. However, the rel-
atively low degree of major element variability in minerals
compromises the discriminating potential of the elements
(Fig. 4). Trace elements, alternatively, offer large variations
between samples, and a broad array of discriminating ele-
ments is available for study by LA-ICP-MS. Many authors
have successfully demonstrated the use of trace elements in
glass to fingerprint ignimbrites (e.g., Sarna-Wojcicki et al.
1984; Westgate et al. 1994; Pearce et al. 1996; Shane 2000;
Harangi et al. 2005; Smith et al. 2011a; Szymanowski et al.
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2015; Vidal et al. 2015; Donato et al. 2016), but we note that
there are some circumstances in which trace elements in glass
or whole rock do not accurately resolve different events
(Fig. 8). For the successful analysis of glass, one must be able
to find relatively clean and unaltered glass shards, which may
be difficult in dark, devitrified, microcrystalline, or weathered

samples. Even if an ignimbrite is unaltered and unwelded,
analysis of clean glass compositions may be hindered by the
presence of microcrysts that are often more abundant and
more difficult to identify during data reduction than mineral/
melt inclusions in minerals. Furthermore, the composition of
glass may differ dramatically within the same unit (Forni et al.
2016). In this study, Vand Co signals in glass are particularly
susceptible to contamination by oxide microlites, while Nb
signals may be influenced by fractional crystallization
(Fig. 8a). Attempting to correlate by whole rock compositions
is additionally complicated by variations in crystal content and
subsequent large variations in trace element concentrations
(Fig. 8b). In such cases, application of biotite trace element
chemistry may help to resolve ambiguities in glass data and
complement more traditional methods of stratigraphic corre-
lation (Fig. 8c).

Limitations

Due to the fact that Nb, Co, and V have different valence states
and ionic radii and partition strongly into some minerals, the
consistency of their signature is remarkable. The use of these
elements as discriminators in biotite must be considered on a
case-by-case basis, for the following reasons:
1. Co-crystallization of large amounts of a phase that strong-

ly partitions a given element, will preclude that element’s
utility as a discriminator in biotite.

2. Compositional effects may influence the partition coeffi-
cients of these elements in biotite (Hazen and Wones
1972; Dymek 1983). This effect was also documented
by Stepanov and Hermann (2013), who in compiling par-
tition coefficients for Nb into biotite from various sources
(Nash and Crecraft 1985; Acosta-Vigil et al. 2010) noted a
direct relationship between TiO2 (1.18–5.59 wt%) and
DNb (0.15–9.21). If the partition coefficient of an element
into biotite drops too much below 1, the concentrations
will decrease and the precision at which we can distin-
guish groups of biotite from different sources will be sig-
nificantly affected.

3. Even if the above criteria are satisfied, a given trace ele-
ment signature may still be unresolvable between units,
due to similar parent and petrogenetic histories. A combi-
nation of different discriminators is therefore favored.

4. Given that the co-crystallizing mineral assemblage affects
the trace element budget and that the major element chem-
istry of biotite affects its trace element preferences, other
discriminators (each with appreciable concentrations in
biotite) may prove helpful in other systems. For example,
calc-alkaline suites have not been explored in this study
and warrant a closer look with other trace element dis-
criminators (e.g., Sc, Cr, Mn, Ni, Cu, Zn, Zr, Hf, and Ta
could be analyzed along with V, Nb, and Co).
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Conclusions

Here, we present an improvement in geochemical fingerprint-
ing for correlation purposes in volcanology by analyzing trace
metals and high field strength elements in biotite grains by
LA-ICP-MS. We find that biotite crystals in the deposits from
individual eruptions preserve distinct trace element signatures.
In detail,

1. Bandas del Sur/southern Tenerife biotites are remark-
ably complex and zoned, especially in Ba, Rb, and Sr.
Such zoning indicates periods of recharge/mixing, and
potentially the remelting of a cumulate pile, but has
little effect on trace transition metal concentrations.

2. Trace transition metals (e.g., V, Co, Nb) are homogeneous
within biotites from individual eruptions and act as fin-
gerprints of magma batches on Tenerife. This homogene-
ity is observed both across multiple sampling locations
and independently of the petrologic complexity of an ig-
nimbrite. Such homogeneity suggests that the bulk D for
these elements is ~1, at least during the crystallization of
biotite.

3. When coupled with major element chemistry, glass com-
positions, and geochronology, biotite trace element anal-
ysis represents a powerful geochemical tool for correlat-
ing magma batches (deposits) around the slopes of the
volcano and into the offshore turbidite record.
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