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Abstract—This paper focuses on ultra-low power embedded
classification of neural activities. The machine learning (ML)
algorithm has been trained using evoked local field potentials
(LFPs) recorded with an implanted 16×16 multi-electrode array
(MEA) from the rat barrel cortex while stimulating the whisker.
Experimental results demonstrate that ML can be successfully
applied to noisy single-trial LFPs. We achieved up to 95.8% test
accuracy in predicting the whisker deflection. The trained ML
model is successfully implemented on a low-power embedded
system with an average consumption of 2.6 mW.

Index Terms—Neuroscience, Machine Learning, Brain-chip
Interface, Image Processing, Bio-sensors, Implantable Sensors

I. INTRODUCTION

We continuously receive inputs from the environment,
which we process and elaborate in our brain to make decisions
and perform actions. Over the past decades, scientists have
aimed to reconstruct sensory and other stimuli from the
electrical activity of neurons. This field is referred as neural
decoding. Many animal experiments are conducted for this
purpose. Especially interesting are the studies on barrel cortex
of rodents due to its distinctive cellular structure, organization,
and functional significance [1], [2].
In order to investigate the activity of neurons, many non-
invasive techniques are currently available, such as fMRI,
EEG, etc. They work at low spatiotemporal resolution and
have limited applications in brain-machine interfacing. Be-
sides, the data acquired, which represent the activity of large
portions of the brain, are also affected by noise coming from
other parts of the body. Implantable neural probes [3], [4]
provide a promising solution for acquiring localized signals
from a specific population of neurons, or even from one
single neuron [5]. Single metal-based electrodes were firstly
used. However, with recent technological developments, high-
density multi-electrode arrays (MEAs) based on CMOS pro-
cess became the state-of-the-art [6]. They were introduced for
large-scale high-resolution in vitro and, only very recently, in
vivo applications [7]–[10].
The data acquired by these miniaturized electrode matrices are
meaningless if not further processed and analyzed to extract
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actionable information. In recent years, researchers have de-
veloped the powerful tool of ML and large neural networks
(NNs) are successfully trained to solve challenging tasks. An
example to be mentioned is the shape recognition task using
simulated data of rodent whisker array [11]. However, to
the best of our knowledge, no related work has been done
using biological data recorded from barrel cortex. Furthermore,
large NNs are computationally very expensive and require
a huge amount of data sets [12]. Instead, more traditional
approaches, such as support vector machines (SVMs) or naive
Bayes classifiers, perform remarkably and are routinely used
on smaller data sets. Their computational demands are much
more affordable, allowing embedded analysis on low-power
micro-controllers [13], [14].
In this paper, we present a novel approach for embedded
classification of single-trial evoked LFPs recorded using a
16×16 electrode array sensor from rat barrel cortex while
stimulating a whisker. The sensor is implanted in vivo in an
anesthetized animal and 2D images are recorded over time
at seven cortical depths under the scalp using three stimula-
tion protocols. The classification method decodes the cortical
activity and infers the received stimulus. Experimental results
with images recorded from rat brain using this new generation
of implantable sensors demonstrate that ML methods can
successfully and accurately discern neural activity patterns
providing useful information for the decoding. We evaluated
several features and classifiers (i.e. decision tree, SVM, k-NN,
etc.) to identify the best approach in terms of accuracy and
noise robustness. Moreover, the selected features and classifier
are implemented on a low-power embedded system, which will
allow in the future, together with the innovative CMOS-based
MEAs, real-time low-power processing of neuronal data on a
miniaturized implantable system [15].

II. BACKGROUND AND SYSTEM OVERVIEW

Whiskers in rodents play a central role in collecting infor-
mation about the surrounding environment and objects [1].
Therefore, a successful inference of the received stimulus is
helpful for localization and object recognition. The informa-
tion collected by a whisker is transmitted to the barrel cortex,
which is located in the primary somatosensory cortex. It is



Fig. 1: Needle-PCB (a) used for data acquisition. The record-
ing electrode array has 16×16 recording electrodes (b) spaced
by 15 µm (c). Sensor provided by TU Berlin.

Fig. 2: Acquisition of evoked LFP responses from rat barrel
cortex (S1) upon whisker deflection. Figure derived from [16].

organized into a topographic map and different cortical regions
are responsible for specific parts of the body. In case of
whisker barrels, the topographical organization is identical to
that of the mystacial pad where the major facial whiskers are
located [1], [2]. The stimulation of a whisker activates the
corresponding neuronal population, generating evoked LFPs,
the shape and the intensity of which vary according to the type
of stimulus.
The barrel cortex is organized into seven layers, considering in
this paper the layers Va and Vb as separate layers. The record-
ings of evoked LFPs are performed in vivo on anesthetized
rats using intra-cortical electrodes, which provide less noisy
and highly localized signals. However, the intra- and inter-
individual variation of bio-signals poses enormous challenges
for signal decoding.
In this paper, the data are acquired using 16×16 MEAs (Fig. 1)
inserted into rat barrel cortex while stimulating the principal
whisker, which is identified to be the most responsive whisker
for that specific barrel field, using a piezoelectric bender
(Fig. 2). We evaluated and implemented ML approaches, able
to accurately infer the stimulation amplitude, on a low-power
embedded system.

III. DATA SET
The evoked LFPs are recorded from the barrel cortex of a

single Wistar rat at the University of Padova. The recordings
are performed at 15 µm resolution with a 16×16 CMOS-
based sensor array [7] shown in Fig. 1. The sensory tip is
inserted into the whisker barrel, while the principal whisker is
stimulated by means of a piezoelectric bender. The whisker is
deflected repeatedly by providing pulse stimuli of 5ms, while
the signals are recorded from the topologically correspondent
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Fig. 3: Single-trial LFP images (a). One-dimensional signal (b)
is obtained by averaging the images over time. The stimulus
is applied at 0 ms.

receptive field in the barrel cortex.
The acquired data are two-dimensional images of 16×16
pixels over time. For each trial, 69 frames are recorded with
1.6 ms frame rate. The value of each pixel reflects the ampli-
tude of the LFP signal in response to the whisker deflection.
The matrix of electrodes is implanted into the cortex perpen-
dicularly to the surface of the scalp. Each recording site senses
the change of voltage due to the firing of neighboring neurons.
Three stimulation amplitudes are applied to the piezoelectric
bender, more precisely 0.5V, 1.0V and 1.4V. The respective
deflection displacement, angle, linear velocity and angular
velocity are listed in Table I.
The frames were recorded at seven different depths. More
precisely, the bottom row of the sensory matrix is placed at
200 µm in Layer I, 350 µm in Layer II, 500 µm in Layer III,
750 µm in Layer IV, 1100 µm in Layer Va, 1500 µm in
Layer Vb, and 1750 µm in Layer VI, under the scalp. For
convenience, in this work the layers are numbered from 1 to
7 with layers Va, Vb and VI corresponding to 5, 6 and 7,
respectively. 80 trials were recorded from each depth for each
stimulation amplitude, yielding 3×80×7 data points in total.
Fig. 3 demonstrates an example trial with 1.4V stimulation
amplitude showing some images and the averaged signal over
time for Layer 7.

IV. STIMULATION CLASSIFICATION
The decoding of the neural activities is translated into

stimulation classification, following the work in [17]. The goal
of this paper is to design an ML model robust to noise and
able to accurately infer what kind of stimulation is received by
the animal based on the LFPs recorded with the MEA sensor.

1) Pre-processing: The data are recorded for 100 ms after
the stimulation delivery. The main response peak and the
following positive rebound happen within roughly the first
60 ms. With the perspective of an embedded implementation

TABLE I: Stimulation parameters using the piezoelectric ben-
der. Linear and angular displacement (±∆x and ±∆θ) and
velocities (v and vθ) of the principal whisker’s deflection are
shown for each stimulation amplitude ∆Vpzl.

∆Vpzl (V) ±∆x (µm) ±∆θ (◦) v (mm/s) vθ (◦/ms)

0.5 53.0 2.0 44 1.7
1 106.0 4.2 88 3.5
1.4 150.6 6.0 125 5.0
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Fig. 4: Matrix subdivision for feature extraction.

on a resource-limited micro-controller, only the data of the
first 60 ms, i.e. the first 38 time points, after the stimulation
onset are retained. The images are then filtered spatially using
a 2D Gaussian kernel (size 5×5, σ = 0.6) and replication
padding for image boundaries.

2) Feature Extraction: The selection of features plays a key
role as it can compromise the accuracy of the classifier. The
first extracted features are the mean value and the standard
deviation of the images at each time point. These features
provide the information of the overall trend of the evoked
signal. Moreover, in order to capture the spatial information
the images are divided horizontally into two and three sub-
matrices (Fig. 4), as the response arises from Layer IV and
spreads towards the other layers [1]. The average value and
the standard deviation are computed for each sub-matrix over
time. In addition, the difference between the mean values of
the sub-matrices is calculated for each image to provide gra-
dient information. Finally, 2D cross-correlation is performed
between subsequent frames as shown in Fig. 5. The maximum
correlation value (pointed by the red arrow) is extracted and
its distance to the center of the image (x and y pixels) is used
as feature. These components provide information about the
direction and the intensity of the response propagation in the
cortex. The template size is 10×10, as a trade-off between the
computational complexity and the accuracy of the extracted
information. In fact, the bigger the template size, the higher the
computational demand, while the signal-to-noise ratio (SNR)
is lower in smaller templates.
Moreover, the following features are extracted [16], [18]:

• Response Peak Amplitude (RPA): difference in voltage
between Response Peak (RP) and Response Onset (RO).

• Positive Rebound (PR): absolute maximum positive value
in voltage after the main response peak.

• Response Onset Latency (ROL): time delay between
stimulus onset and RO.

• Response Peak Latency (RPL): time delay between stim-
ulus onset and RP.

• time-normalized LFP (tLFP): Area Under Curve (AUC)
divided by the main Response Duration (RD).

Fig. 6 shows these features on an example trial. Note that
these characteristics are studied in literature on average signals
of several trials. Instead, in this paper single-trial LFPs are
treated. Hence, the signals in consideration are much more
affected by pseudo-random physiological noise.

A. Algorithmic Procedures
The classification of stimulation amplitude is performed

independently for each cortical layer, since the application
requires the operator to implant the electrodes into a specific
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Fig. 5: 2D cross-correlation between subsequent frames.
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Fig. 6: Additional features extracted from the average signal.

layer, then perform the experiments. 240 data points are
available for each layer. The data sets are further divided
into 80% for training and cross-validation (CV) and 20% for
testing.
5-fold CV is performed on the training set exploring several
classifiers, i.e. decision trees, discriminant analysis, support
vector machines, nearest neighbor classifiers and ensemble
classifiers to identify the one which gives the best performance
and determine the layer where the task is best fulfilled.
Subsequently, all the possible combinations of the extracted
features are evaluated to find the ones which best fulfill the
task. Finally, the obtained model is tested on the testing set
after tuning the hyper-parameters.

B. Embedded Implementation
All processing steps have been implemented on an embed-

ded low-power system to enable real-time data processing. The
selected ultra-low power micro-controller is Ambiq Apollo2
with ARM Cortex-M4F processor, 256 kB RAM, 1 MB Flash
memory, and a 14 bit ADC at up to 12 MS/s. The CMSIS-
DSP library is exploited whenever it is possible.
The Gaussian filter is separable and has been implemented
as such to reduce the computational effort. Functions such
as arm_mean_f32, arm_std_f32, and arm_sub_f32
are used to extract the statistical features and the gradients.
Whereas the 2D cross-correlation is implemented exploiting
the 1D correlation function of CMSIS library.
The ADC is configured to acquire (16·16)·38 = 9728 samples
at (16 · 16)/(1.6 ms) = 160 kHz, since 38 frames are used in
the designed classification model, and the frame rate is 625 Hz.

V. EXPERIMENTAL RESULTS
After the comparison among different classifications in

different layers, the best performance is reached in Layer 7
with Ensemble Subspace Discriminant (ESD). Analyzing the
best results for each layer, the statistical features, such as
the mean and the standard deviation, and the gradients are
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Fig. 7: Confusion matrices. ESD with subspace dimension of
44 and 22 learning cycles on Layer 7. The features are the
mean values of 2 sub-matrices, RPA, PR, RPL, and tLFP.
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mostly included for better performance in all layers. Instead,
the information provided by cross-correlation is less relevant.
The subdivision of images into 3 sub-matrices resulted less
useful for the task, yielding that detailed spatial information
of LFP in case of stimulation classification is not crucial. In the
best performance of each layer, the most frequently included
feature is PR, followed by RPA, ROL, and tLFP.
Furthermore, the ESD is re-trained on Layer 7 by dividing the
images into 2 sub-matrices and including the mean, RPA, PR,
RPL, and tLFP. The model is re-trained by jointly tuning the
two hyper-parameters. The best performance is obtained by
setting subspace dimension to 44 and number of learners to
22 with CV accuracy and test accuracy reaching respectively
98.44% and 95.83%. The confusion matrices are shown in
Fig. 7. The designed model is further implemented on Apollo2
with 141 kB RAM usage and 202 kB occupied Flash memory.
The ADC acquires 9728 samples in 81 ms consuming 4 mW,
while the model takes 119 ms for pre-processing, feature
extraction, and classification, with an average consumption of
2.6 mW (Table II and Fig. 8). The execution time has the same
order of magnitude as the biological time in which the sensory
information reaches the cognitive areas of the animal [1].

TABLE II: Execution time on Apollo2.
Steps Functions Time (ms)
Data acquisition ADC sampling 81
Preprocessing Gaussian filtering 63
Feature Extraction mean2, RPA, PR, RPL, tLFP 9
ESD predict 47

VI. CONCLUSIONS
This paper proposed and evaluated a highly accurate ML

approach to perform embedded stimulation classification on
evoked LFPs recorded from rat barrel cortex while deflecting
the principal whisker. The outcome of the paper is that ML
can successfully perform automatic classification on extremely
noisy data such as the single-trial LFPs and accurately infer the
type of the external stimulus received by the animal, overcom-
ing the problem of intra-individual variability of bio-signals.
The system is online capable and for future improvements we
plan to acquire more data from different animals using more
stimulation types to train a model robust to noise due to inter-
individual variability among subjects.
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