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Abstract

Electric bicycles (e-bikes) are a new addition to bicycle-sharing and may
improve its competitiveness. E-bikes allow for higher speeds at a higher level
of comfort than conventional bicycles and compared to traditional bicycle-
sharing, e-bike-sharing is better positioned to complement or compete with
existing public transportation, or to even challenge established taxi services.

In this paper, eight months of transaction data from a free-floating e-
bike-sharing system in Zurich, Switzerland were used to study the market
position of e-bike sharing and drivers of demand.

The results of the analysis indicate that a large proportion of the trips are
commuting, and that the distance range of e-bike-sharing trips overlaps with
the distance ranges of traditional public transportation and taxi services. In-
tensity of use is sensitive to precipitation. Spatial regression modeling indi-
cates that economic and social activity, public transportation service quality
and the availability of bicycle infrastructure are key drivers of demand for
free-floating e-bike-sharing.

Given the substantial differences in the service compared to traditional
bicycle-sharing, an attempt is made to define a new, fifth generation of
bicycle-sharing schemes.

Keywords: bicycle-sharing, e-bike-sharing, urban transportation, demand
analysis, spatial regression

Submitted to Transportation Research Record (TRR) - Accepted version (08.02.2019)

1



1. Introduction

Since the first bicycle-sharing system was introduced in Amsterdam in
1965, the number of systems has grown substantially all over the world.
Moreover, the services have evolved, using technological advances to address
operational issues and improve the user experience. In the literature, sys-
tems were classified into four generations (Shaheen et al., 2010): the first
generation started with theft-prone free bicycles and continuous innovation
led to fourth generation large-scale schemes like Capital Bikeshare in Wash-
ington, DC, which operate docking stations across large service areas. In
recent years, free-floating services offering access to e-bikes have emerged,
putting into practice a fifth generation of bicycle-sharing.

There are two innovations with this new generation that have brought
about profound changes. While e-bikes allow for longer distances to be trav-
elled at higher speeds and with less exertion (especially in hilly terrain),
re-charging of the battery requires extra service effort or infrastructure. The
free-floating service potentially translates into a better user experience (i.e.
no full stations at the destination and a shorter distance to the actual des-
tination of the journey), but may also result in lower reliability at the trip
origin.

Substantial research has already been conducted to understand user groups,
demand patterns and the market position of existing bicycle-sharing services
(Fishman et al., 2013; Fishman, 2016), finding that bicycle-sharing thrives
where it offers convenient service with a dense network of stations (El-Assi
et al., 2017; Rixey, 2013). In contrast to other shared modes of transporta-
tion, such as car-sharing, bicycle-sharing seems to draw a substantial share
of its demand from traditional public transportation (Fishman et al., 2014a;
Campbell and Brakewood, 2017). Generally, two main customer groups
are served: annual subscribers using it for work trips and leisure travellers
(tourists) only making a few trips per year (Fishman et al., 2015; Wergin and
Buehler, 2017). Spatiotemperal demand patters are not symmetric, making
relocations necessary (Nair et al., 2013). In particular, stations at elevated
locations are unattractive destinations (Faghih-Imani et al., 2017b). The
two innovations of e-bikes and a free-floating service, however, could change
the above patterns. Shared bicycles can become competition for private
cars and taxi services, as the electric motor helps to overcome gradients and
free-floating operations make the service seamless. It has been shown for car-
sharing that such profound changes in the service can lead to substantially
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different (and larger) customer groups and change usage patterns (Becker
et al., 2017a).

In this paper, eight months of transaction data was analyzed from Smide,
a high-end e-bike-sharing system in Zurich, Switzerland. Two statistical
models were used to analyze the data: a) a negative binomial model to in-
vestigate the effects of weather and day of the week on daily bookings and
b) a spatial regression model to connect the number of bookings to spa-
tial attributes, i.e. population and work place density, infrastructure, public
transportation availability and income. The booking data was complemented
with data from the Swiss household travel survey in order to discuss the e-
bike-sharing market and the competitive position of e-bike-sharing compared
to other modes of transportation. The effect of e-bike-sharing on the over-
all transportation system was also discussed. Based on these insights, an
attempt was made to define the next generation of bicycle-sharing services.

2. Background

Bicycle-sharing has seen substantial growth in recent decades, most of
which was due to technology-driven innovations making the services more
attractive and operations more robust. As a result, modern bicycle-sharing
schemes only have few things in common with early implementations like
the White Bikes in Amsterdam in 1965. Shaheen et al. (2010) provide an
overview of early implementations and suggested classifying schemes into
four generations. The first generation offered free access to a fleet of bi-
cycles, which were distributed across a city. However, because the bicycles
did not have locks, the system was prone to theft. Second generation ser-
vices addressed this issue by introducing a coin-deposit system, where users
had to pick up a bicycle at a station, but needed to leave a small deposit.
While this reduced theft, vandalism was still an issue. The third genera-
tion brought user-identification and required substantial deposits to further
reduce theft and vandalism. Pricing schemes were then introduced with
annual subscriptions for frequent users or trip-based charges for leisure trav-
elers. Imbalances in demand led to unfavorable station occupancy (full or
empty), which deteriorated service attractiveness, as did a lack of integration
with public transportation. Fourth generation schemes address such issues
by performing rebalancing of bicycles and integrating payment mechanisms
that can be used to access public transportation services (Fishman et al.,
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2013). Yet, fourth generation schemes still relied on conventional bicycles
and fixed stations.

Impact and drivers of demand for third and fourth generation systems
have been studied extensively in the literature. Most research was aimed at
identifying factors influencing demand patterns, user groups and the impact
on other modes (with a focus on interactions with public transport). A com-
mon approach for identifying drivers of demand is to analyze actual trip data
using (spatial) regression techniques or destination choice models. For New
York City, Noland et al. (2016) and Faghih-Imani and Eluru (2016) identi-
fied population and employment density as drivers of demand. Proximity to
busy subway stations and denser bicycle infrastructure were also found to
increase station utilization. Recent research suggests that the latter is more
important than system size (Médard de Chardon et al., 2017). However, sub-
stantial short-term variations were induced by weather effects, in particular
precipitation (Noland et al., 2016; Faghih-Imani and Eluru, 2016). These
results were confirmed for other cities with the extension that proximity to
restaurants and points of interest increased demand, whereas uphill desti-
nations were traveled to less frequently (El-Assi et al., 2017; Faghih-Imani
et al., 2017b). Caulfield et al. (2017) showed that the patterns also hold for
smaller cities, but with shorter trip distances.

User characteristics associated with membership and use of bicycle-sharing
services were explored using surveys. In Washington, DC, bicycle-sharing
users were found to be mostly younger females with a lower household income
(Buck et al., 2013). The results were extended by Fishman et al. (2014b)
where users in Melbourne and Brisbane lived in smaller activity spaces with
inferior public transportation supply. Proximity to bicycle-sharing stations
and relatively higher incomes were found to increase the propensity for mem-
bership in those two cities. A substantial difference in usage patterns was
found for these locations, where holders of an annual subscription were found
to mostly use the service for commuting, but leisure travellers took longer
and slower trips (Wergin and Buehler, 2017).

Bicycle-sharing has been shown to be competitive in terms of speed for
many trips. In an analysis for New York City, Faghih-Imani et al. (2017a)
compared travel times by bicycle-sharing and taxi. The results indicated
that bicycle-sharing was on par with or faster than taxis for trips less than
3 km (1.86 miles). Yet, bicycle-sharing has become a substitute for public
transportation, with bus ridership decreasing by 2 % after the bicycle-sharing
scheme was expanded into the respective neighbourhoods (Campbell and
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Brakewood, 2017). A similar effect was observed in other studies (Fishman
et al., 2013). Depending on the city characteristics, the low substitution
of private car travel may even translate into a net increase in vehicle miles
travelled, when taking into account relocation of bicycles (Fishman et al.,
2014a). However, substitution of public transport trips is not necessarily
disadvantageous. For free-floating car-sharing, it was found that the replaced
public transportation trips had particularly long travel times or included
transfers (Becker et al., 2017b). In a similar vein, bicycle-sharing may also
be used to complement public transportation, where it is inefficient. Insights
from the Chinese cities of Hangzhou and Ningbo confirm this finding (Yang
et al., 2018).

In recent years, e-bikes have entered the mass-market and have also be-
come part of bicycle-sharing systems. The electric motorization addresses
key limitations of current systems. It allows for higher speeds and thus
longer trip distances and renders it substantially less strenuous to ride up-
hill. Free-floating operations provide more seamless trips and may therefore
attract even higher ridership. In a way, electric motorization places free-
floating e-bike-sharing between conventional bicycle-sharing and free-floating
car-sharing. Riders are still directly exposed to the weather and cannot carry
bulky items, however, the scheme can be used for flexible trips across the
city at the effective speed of a car (and without the need to search for park-
ing). Given these substantial advances in the service, insights gained on user
groups and usage patterns of conventional bicycle-sharing schemes may not
be transferable to free-floating e-bike-sharing (cf. Becker et al. (2017a)). As
a result, mode substitution and impact on vehicle-miles travelled may be
different.

Although the literature on e-bike-sharing is sparse, there are a number
of findings on the effect of e-bikes on travel behavior. Cairns et al. (2017)
observed a decrease in vehicle miles travelled (VMT) of 20 % in a trial in
Brighton, UK, where participants were equipped with e-bikes over a six to
eight week period. Fyhri and Fearnley (2015) reported the results of a trial
in Norway, in which e-bikes were given to 66 randomly selected participants.
The availability of e-bikes increased the amount of cycling, both in terms of
distance and number of trips. De Kruijf et al. (2018) report the results of a
monetary incentive program to stimulate the use of e-bikes in the Netherlands
with the goal to support the shift from car commuting to e-cycling. The
authors found that half of the e-bike trips substituted car trips, while the
other half substituted conventional cycling trips. The high substitution rate
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of private car trips in the Brighton trial and in the study in the Netherlands
suggests that e-bike-sharing might have a different effect on car usage than
traditional bicycle-sharing schemes. A first stated-preference approach on e-
bike-sharing in China further confirmed that e-bike-sharing is attractive for
longer trip distances, but suggested that e-bike-sharing was only attractive
to certain socio-demographic segments (Campbell et al., 2016). De Kruijf
et al. (2018) also find that e-bikes are used for longer distances compared
to traditional bicycles. The shift from car commuting to e-cycling was also
sensitive to socio-demographic and household characteristics.

For e-bike-sharing, no empirical data has been used to test the above
hypotheses thus far. This research aims to address this gap by analyzing
transaction data of a free-floating e-bike-sharing system.

3. Regional Context and Data Source

3.1. Smide E-Bike-Sharing

The analysis in this paper is based on the booking and trip data of a
free-floating e-bike-sharing system in Zürich, Switzerland called “Smide,”
which began operations in October 2016. Smide is a high-end e-bike-sharing
system of “Stromer ST2” e-bikes with an engine power of 800 Watt and a
retail price of CHF 7000 (equal to $7000 US in May 2018). The e-bikes
reach a maximum speed of 45 km/h (approximately 28 mph), however, the
speed was reduced to 35 km/h (approximately 21.7 mph) by the operator
for safety reasons. The booking price is currently CHF 5 for 20 minutes and
usage is charged pro rata on a per-minute basis. 200 e-bikes are part of the
system and the area of operation covers a large share of the municipal area
of the city of Zürich. The user interface consists of a smartphone application
that displays the current positions of the e-bikes and the geofence. Users
can prepay booking time, book and unlock e-bikes, and access the history
of previous bookings. To assist with rebalancing, the system features so
called “bonus zones”. Users who decide to end a booking in a bonus zone
receive five minutes of additional booking time. The system also features one
charging station and users who end a trip at the charging station and plug
in the charging cable also receive a bonus of five minutes. The batteries of
the bikes in the system are regularly changed by the operator such that the
number of bikes with low battery levels are minimized. The battery changes
are done with a cargo e-bike.
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3.2. E-Bike-Sharing Dataset and the Swiss Household Travel Survey

The main dataset analyzed in this paper consisted of 99,094 e-bike-sharing
trips from April to November 2017. After data cleaning (removal of trips
without distances and merging adjacent trips), 72,648 trips remained. To
compare the trip data to alternative urban modes of transportation, addi-
tional data was obtained from the Swiss national household travel survey
of 2015, “Mikrozensus Mobilität und Verkehr 2015” (MZMV) (Swiss Fed-
eral Statistical Office (BFS), 2017a). The MZMV is a computer assisted
telephone interview with a sample size of 57,090 subjects that is conducted
every five years across Switzerland. For each subject, the dataset includes
detailed information about all trips of a randomly chosen day, including dis-
tance, geocoded origins and destinations, and chosen mode of transportation
for all stages of trips (the dataset included 279,173 stages, 12,215 of which
began and ended in the city of Zurich).

3.3. Regional Context

Zürich is a medium-sized city in Switzerland (Central Europe) with ap-
proximately 400,000 inhabitants (political city boundaries) and 1.8 million in-
habitants in its metropolitan area. The Zürich metropolitan area is Switzer-
land’s economic center, where approximately 200,000 people commute to
and more than half use public transportation. Zürich is located in the
Prealps and exhibits a maximum elevation difference of ca. 480 m within
its municipal area. Public transportation service quality is considered very
high, with 4.7 public transportation stops per square kilometre and a reg-
ulation that all residents should be able to reach a public transportation
stop within 400 meters (0.25 miles) from their home location, the city’s goal
is 300 meters (0.19 miles). (For general information about the city refer
to https://www.stadt-zuerich.ch/, last accessed: July 2018.) In 2017,
three bicycle-sharing systems were available in Zürich: O-Bike (meanwhile
discontinued), a station-based system operated by the city of Zürich (aimed
at daily rentals for tourists and without e-bikes), and Smide.

3.4. Trip Times and Elevation Differences

For the descriptive analysis, trip times for potential alternative modes of
transportation were estimated using the Google Directions API (https://
developers.google.com/maps/documentation/directions, last accessed:
July 2018). The trip times for cycling from the Google Directions API turned
out to be a good proxy for e-bike-sharing trips (at the mean, the ratio
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of Google trip times to Smide trip times was 0.97). Elevation differences
along the routes were determined with the Google Elevation API (https://
developers.google.com/maps/documentation/elevation/, last accessed:
July 2018).

3.5. Weather Data

In order to analyze variations of the the number of daily bookings, the
booking data was complemented with weather data. The weather data
was obtained from the Swiss Federal Office of Meteorology and Climatol-
ogy for one representative station in the city of Zürich (i.e. the “Flun-
tern” station). (Weather data for Switzerland can be found here: https:

//www.meteoschweiz.admin.ch/, last accessed: July 2018.)

3.6. Spatial Analysis: Additional Sources and Transformations

To study the effect of spatial characteristics on demand for free-floating
e-bike-sharing, the effect of spatial attributes was analyzed using regression
techniques. To this end, trip start points were aggregated to a 300 meter
grid covering the whole service area (593 zones). It was assumed that this
corresponds to the maximum distance travellers are willing to walk to access
a bike.

In addition, spatial attributes were obtained from various open data
sources: information on population size (popSize in thousands) and work
places (workPlace in thousands) were obtained from the official Swiss popu-
lation and enterprise statistics (Swiss Federal Statistical Office (BFS), 2017b,
2016). The data is available at hectare resolution; for the raster cells, the
corresponding averages were used. Service levels for public transportation is
defined by the Swiss standard SN-640290 (highPTlevel indicates the high-
est level “A”) and were obtained as shapefiles from the Swiss national open
data portal (Swiss open data portal: https://opendata.swiss, last ac-
cessed: July 2018.) Information on the number of holders of the national
season ticket (GA) for public transportation (GAperInh providing the per-
centage of GA holders among the population) is available from the same
source, but only at the level of ZIP codes. Zurich’s 25 ZIP-code areas largely
correspond to subdivisions of the different neighborhoods. Income levels (in-
come in 1 000 CHF) are available for the 34 statistical areas of the city of
Zurich from the city’s open data portal (Open data portal of the city of
Zurich: https://data.stadt-zuerich.ch/, last accessed: July 2018.) For
this analysis, the median taxable annual income of individuals was used (the
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actual gross income usually is substantially higher). From the same source,
the locations of all registered bars and restaurants were obtained and ag-
gregated to the raster cells (gastronomy gives the count per zone). Further
leisure facilities (such as sports facilities or cinemas) are also available, but
their effect was neither significant nor substantial in the later modelling pro-
cess. A shapefile with the city’s bicycle infrastructure was also obtained from
the same source. bikeInfra denotes the total length (in km) of dedicated bicy-
cle infrastructure within the zone. PTpassengers indicates the total number
of people boarding or alighting a bus or tram in the zone during an average
work day (also available from the city’s open data portal). The distances
between the respective zone and the closest urban rail station or the main
train station, respectively, were calculated and indicator variables defined,
which denoted a maximum distance of 200 m to an urban rail station (urban-
Rail200 ) and 500 m to the main train station (HB500 ). The variables are
summarized in Table 1.

Figure 1 shows the spatial distribution of trip start locations. It indicates
that peak demand is in the city center and decreases towards the borders
of the service area. Generally, the drop in demand was more substantial
towards the North and the West. Locations without any rentals correspond
to forests, hills/creeks or railway/motorway infrastructure.
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TABLE 1: Summary of attributes used in demand model.

Variable Min
1st

Quartile
Median Mean

3rd
Quartile

Max

number of rentals 0 12 60 119.3 161 1605
number of rentals per zone (during study period)

popSize 0.0 0.008 0.052 0.073 0.113 0.394
population size per zone (in thousands)

workPlace 0.0 0.003 0.006 0.085 0.470 2.012
number of work places per zone (in thousands)

income 30.1 38.5 42.5 43.2 48.4 60.0
median taxable annual income of individuals per zone (in 1 000 CHF)

gastronomy 0.0 0.0 1.0 3.5 3.0 71
number of registered bars and restaurants per zone

bikeInfra 0.0 0.8 1.3 1.3 1.7 3.5
total length of dedicated bicycle infrastructure per zone (in km)

PTpassengers 0.0 0.0 0.0 3.6 4.9 96.9
number of passengers boarding or alighting a bus or tram during workdays

GAperInh 0.0 2.5 2.7 3.5 4.4 7.8
percentage of holders of a national season ticket for public transport

highPTlevel 22% of the zones
public transport service level A (according to standard SN 640 290

urbanRail200 18% of the zones
closer than 200m to an urban rail station

HB500 3% of the zones
closer than 500m to main train station
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FIGURE 1: Number of reservations (logarithm) per raster cell from yellow (low) to dark
red (high). Zones with no observations are given in grey.
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4. Descriptive Analysis

This section presents descriptive statistics of the booking data and shows
the potential market niche for e-bike-sharing with respect to trip distance.

4.1. Trip Data Overview

Figure 2 presents an overview of the Smide trip data. A mean number
of 305 trips were made on an average day (with a median of 306). The
standard deviation is very high with 142, mainly because the system was
growing strongly between April and July. (The mean number of trips after
July was 364 with a standard deviation of 114.) The mean trip distance
was 2.5 km (1.55 miles) with a mean duration of 10.3 min. Peak demand
was reached between 6 pm and 8 pm and a morning peak was observed
between 7 am and 8 am. The two distinct peaks and the fact that weekdays
exhibited higher demand than weekend days indicate that a significant share
of the demand is commuting. The morning (7 am until 10 am) and the
afternoon (2 pm until 5 pm) accounted for 46% of the total demand (20%
and 26%, respectively), the noon (11 am until 1 pm) accounted for 16%,
and the evening (6 pm until 9 pm) accounted for 25%. Night (10 pm until
1 am) and late night (1 am until 6 am) trips accounted for 12% percent of
the demand (7% and 5%, respectively). The bulk of the demand therefore
arises during times of the day when public transportation service quality is
also high. However, in Zürich, public transportation operation stops at 1 am
on weekdays and there is only a limited late night service on Fridays and
Saturdays. Late at night, traditional public transportation would, therefore,
not be an alternative to Smide.

A histogram of the number of bookings per month is shown in Figure 3.
The system exhibited strong growth between April and July 2017. The
relative share of bookings by time of day remained stable.

One advantage of e-bikes is the lower sensitivity towards terrain eleva-
tions. Figure 2 d) shows the distribution of elevation differences between
destinations and origins. The figure indicates that trips were not primarily
up- or downhill. Thus, e-bikes were used independent of elevation.
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FIGURE 2: Smide trip data overview: (a) % of daily traffic by hour (household travel
survey (MZMV) vs. Smide), (b) trip duration distribution, (c) trip frequencies by day of
the week, (d) elevation difference distribution (desination minus origin).
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FIGURE 3: Histogram of monthly bookings.

Figure 4 shows the spatial distribution of rental starting points in the
city of Zürich. A high concentration of rental starts was observed in district
1. District 1 is the major business district of Zürich, which also includes the
two universities and only accounts for 1.4% of the total population of the city
(5,728 of 423,310 residents). This supports the conclusion that commuters
were a major segment of demand. The spatial distribution changes for night
and late night bookings. At night, a major share of bookings occurred in
district 4, which is one of Zürich’s main nightlife areas.

4.2. Market Segmentation: Analysis of Trip Distributions

In order to analyze the market position of e-bike-sharing, the trip distance
distribution was compared to those of alternative urban modes of transporta-
tion. Figure 5 shows the median, the lower quartile and the upper quartile
of the distance distributions of trips with origins and destinations in the city
of Zürich. The figure shows which modes of transportation served similar
trip distances to e-bike-sharing. The trip data for the alternative modes was
obtained from the Swiss household travel survey from the year 2015 (Swiss
Federal Statistical Office (BFS), 2017a). All trips that started or ended in
the city of Zurich were included in this comparison.

14



FIGURE 4: (a) Spatial distribution of rental start locations (all bookings), and (b) late
night bookings (10 pm until 6 am).

E-bikes and e-bike-sharing trips are in the same distance range as tradi-
tional public transportation (buses and trams), cycling with a private bicycle,
and small motorbikes. Taxi trips are longer than e-bike-sharing trips at the
median, but the distance range of taxi trips is also not atypical for e-bike-
sharing (despite the low sample size, the distance distribution of Zurich taxi
trips was found consistent with the other large cities in Switzerland). The
comparison of modes indicates that e-bike-sharing may be able to substitute
a wide range of trips of other modes of transportation.

Although not the focus of this paper, it is interesting to note that mi-
cromobility (skateboards, kickboards etc.) efficiently fills the gap between
walking and cycling.

4.3. Comparison of E-bike-sharing Trips with Alternative Modes

Smide e-bike-sharing trip times were compared to the alternatives taxi,
transit and walking to show the competitiveness of e-bike-sharing in terms
of speed. Trip times were obtained with the Google Directions API. The
comparison of trip times for the Smide data is shown in Table 2. E-bike-
sharing was amongst the fastest transportation options, and only a taxi would
have been faster at the median. 18.2% of transit trips involved at least one
transfer, and in 18.1% of the cases public transportation was not available.
For transit, walking time was included in Table 2, while for taxi and Smide,
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FIGURE 5: Distance ranges in the urban passenger transportation market: median, and
the upper/lower quartiles.

the time corresponded to the in-vehicle time. Thus, the reported times do
not include a) waiting time for taxis, b) searching time for e-bikes and c)
walking time to the closest e-bike. The time between desired departure time
and actual departure time was also not considered. Thus, the travel times in
Table 2 are generally rather optimistic for all modes.

It is also likely that Smide was only chosen if an e-bike was close to
the desired origin of the trip and therefore, the data is subject to an un-
known amount of censored demand. Thus, as a comparison, 12,215 trips
from the Swiss household travel survey (MZMV) were also analyzed (see
Table 2 “MZMV data”). The Google Directions API was used to generate
proxy travel times for Smide (Google bicycle routing) and the alternative
modes of transportation. For MZMV trips in the city of Zürich, Smide was
the fastest mode at the first quartile, and at the median. At the mean and at
higher quantiles, a private car or taxi was faster. This can be explained by
the fact that an average trip from the Swiss household travel survey is only
1.5 km or 0.93 miles (compared to the average Smide trip distance of 2.5 km
or 1.55 miles) and the car plays out its strengths at longer trip distances.
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TABLE 2: Comparison of Smide trip times with potential alternative modes of transporta-
tion. Trip times for driving, transit, walking were determined with the Google Distances
API. Only trip durations over one minute were considered. The the mode with the shortest
trip time is highlighted.

Unit: min 1st Quartile Median Mean 3rd Quartile
Smide data Smide 6.6 9.7 11 14

Taxi 4.9 7.7 8.3 11.0
Transit 8.9 13.7 14.9 19.8

Walking 13.6 24.5 29.1 40.0
MZMV data Smide* 1.6 3.7 6.2 8.3

Taxi 1.9 4.3 5.4 7.7
Transit 2.9 5.4 7.3 9.6

Walking 3.4 7.9 15.7 21.5
*Google bicycling routing as proxy for Smide.

5. The Effect of Weather and Day of the Week on Daily Bookings

5.1. Methodology

A negative binomial regression model was estimated to analyze the effect
of weather and day of the week on the number of daily bookings (dependent
variable). In order to differentiate between weekend and working days, a
dummy for the weekend days was included in the model. The weather data
included temperature (in degrees Celsius), a precipitation dummy (1 if there
was precipitation), and solar radiation (W/m2). Because the total number
of bookings has greatly increased between April and July, and only stabilized
after July, the models were estimated for a subset of the booking data from
July to November 2017 (see Figure 3). During this period a mean of 364
bookings per day (with a median 356) were made.

5.2. Results

Temperature, precipitation, and the weekend dummy had highly signifi-
cant and substantial effects on the number of bookings (see Table 3). Solar
radiation was significant, but not substantial. The theta parameter of the
negative binomial model indicated that there was significant overdispersion
with respect to a Poisson model and thus a negative binomial model was
appropriate. With the other parameters at the mean, precipitation reduced
the number of bookings by 64 (-17%). On the weekend, demand decreased
by 149 bookings (-37%).
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TABLE 3: Regression models for the number of daily bookings: the effect of temperature,
solar radiation, precipitation and weekend. Coefficients and incidence rate rations (IRR).

Negative
binomial model

Coef. SE IRR
number of bookings
temperature 0.01 ** 0.01 0.01
solar radiation 0.00 * 0.00 0.00
precipitation dummy -0.18 *** 0.03 -0.17
weekend dummy -0.46 *** 0.04 -0.37
Constant 5.84 *** 0.04 -
θ 29.72 *** 3.69

N 152
AIC 1 719
LL model -853.6
LL null model -935.0
McFadden’s Pseudo R2 0.1
Significance codes: 0.1 * 0.05 ** 0.01 ***
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6. The Effect of Spatial Characteristics on Demand

6.1. Methodology
The effect of spatial characteristics on demand was investigated with a

spatial regression model. However, the summary of the variable in Table
1 indicates that the response variable (number of rentals) does not follow
a normal distribution. Hence, a count-data model (e.g. negative binomial)
must be used or the response variable needs to be transformed to allow
application of linear regression. Since Figure 1 already indicates a spatial
structure in the data, the latter option was chosen (spatial models for count
data are still rare in the literature). Thus, a Box-Cox transformation (Box
and Cox, 1964) was applied with λ estimated as 0.303.

The linear regression model is presented in Table 4. Although the rela-
tively large R2

adj indicated a high explanatory power, the model was not valid
given a significant level of spatial autocorrelation of the residuals (Moran I
standard deviate = 2.7, p = 0.006). A Lagrange-Multiplier test (Anselin
et al., 1996) indicated significant spatial dependence for the dependent vari-
able (LMlag = 18.0, df= 1, p < 2.2 · 10−5). However, spatial autocorrelation
of the disturbances was weak (LMerr = 6.9, df= 1, p = 0.01). Therefore, a
linear Cliff-and-Ord-type (Cliff and Ord, 1973) SAR model of the form

y = λWy +Xβ + ε

was estimated. Here, W denotes the row-standardized spatial weights matrix
for eight nearest neighbors. The neighboring zones were chosen to cover
a 300 m buffer around the respective zone, which was assumed to be an
acceptable walking distance for a free-floating bicycle-sharing user. This
way, the SAR model formulation accounted for local spillover effects (e.g.
a bicycle is not available in the origin zone, but in one of the neighboring
zones). An example for the spatial weights is given in Figure 6.

The model was estimated using Maximum Likelihood. Again, the Box-
Cox transformed response variable was used. The results are presented in
Table 4 along with the simple linear regression model. Comparing the AIC
values, the spatial model fit the data substantially better than the simple
regression model described above. Not accounting for spatial autocorrelation
in the disturbances was justified (LMerr = 0.02, p = 0.9).

6.2. Results
The model results (Table 4) provide a range of interesting insights. First,

it was shown that economic and social activity were key drivers of demand
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FIGURE 6: Example for spatial weights used in the SAR model.

for free-floating bicycle-sharing in an area. Interestingly however, sports
facilities, cinemas or event halls did not have a significant effect. A potential
interpretation would be that the latter are usually visited as a couple or
group, for which free-floating e-bikes are a sub-optimal option.

As in earlier research, the bicycle network density had a positive impact.
Although the actual attractiveness of the bicycle mode mostly depended on
the infrastructure along the route, the model showed that a denser infras-
tructure increased bicycle trips. Neighborhoods with higher income levels
showed higher demand, which makes sense given that the cost of the service
is relatively high compared to public transportation (which has zero marginal
cost for season ticket holders).

The model provided insight into the interdependence of free-floating bicycle-
sharing with public transportation services. All indicators related to public
transportation showed a positive effect, i.e. indicating that demand for free-
floating bicycle-sharing was higher in areas well-connected by public trans-
portation and those close to the central station and urban train stations.
This reflects earlier insights on car-sharing (Millard-Ball et al., 2005; Stillwa-
ter et al., 2009) indicating that shared mobility services rely on a functioning
public transportation service, which (1) provides mobility in case the shared
service is unavailable and (2) correlates with lower levels of car-ownership.
In contrast to Stillwater et al. (2009), heavy rail stations showed a partic-
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TABLE 4: Regression models for free-floating bicycle-sharing demand. The number of
departures was Box-Cox transformed before estimation.

simple linear model spatial lag model
Coef. t Coef. z

number of departures
popSize (in thousands) 21.62 *** 9.18 13.18 *** 6.55
workPlace (in thousands) 2.76 *** 3.59 1.63 ** 2.53
highPTlevel (dummy) 2.14 *** 4.45 1.14 *** 2.82
PTpassengers (count) 0.16 *** 5.18 0.16 *** 6.49
income (in 1000 CHF) 0.18 *** 7.10 0.07 *** 3.23
gastronomy (count) 0.13 *** 4.58 0.05 * 1.92
bikeInfra (km) 1.09 *** 3.55 0.89 *** 3.47
urbanRail200 (dummy) 1.54 *** 3.41 0.82 ** 2.14
HB500 (dummy) 4.43 *** 3.70 1.69 * 1.67
GAperInh (percent) 0.28 ** 2.30 -0.06 -0.61
(Intercept) -6.02 *** -5.98 -3.27 *** -3.83
λ - 0.60 *** 15.57

N (Number of zones) 593 593
AIC 3 360 3 192
R2

adj 0.56 -

Significance codes: 0.1 * 0.05 ** 0.01 ***

ularly positive effect on bicycle-sharing demand, which may indicate that a
substantial share of customers use the scheme as an access or egress mode for
train journeys. The interpretation of PTpassengers was less immediate since
the demand matrix for private cars was not available. Hence, PTpassengers
may also be regarded as a proxy for general travel demand, such that the pa-
rameter estimate indicates that free-floating bicycle-sharing follows a similar
spatial distribution of demand as other modes, i.e. it does not only serve a
specific market niche.

To complement the above findings, disaggregated models were estimated
for different start times and weather conditions. Table 5 presents a selection
of these models. While the general trends outlined above still hold for the
disaggregated models, there are a few noteworthy nuances: as expected,
work places do not generate e-bike-share departures during morning times
and weekends. Yet, they increase demand in rainy conditions. In turn,
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restaurants and bars generate demand primarily during weekends and at
night. Most interestingly, the main train station has a significantly positive
effect only during weekends, while at all other times, demand is higher close
to urban rail stations.

It is also interesting to note the high explanatory power of the models
and the fact that there was no clustering of unobserved effects. Given that
demand can be well explained by attributes available from open data, this
model can be used to predict demand and help to design service areas in
other cities too.

7. Limitations

The results obtained in the analysis provide interesting insights, but due
to limited data availability the analysis also exhibits some limitations. The
main limitation of the descriptive analysis is that the data did not allow for
a comparison of total journey times. For Smide, walking time to the nearest
e-bike could be considered in future analyses if the data is available. One
way to approximate walking and searching time would be to analyze the time
difference between opening the application and the time of the booking in
detail. Waiting time for taxis was also not included in the comparison and
thus, the fairness of the comparison between taxis and e-bikes hinges on the
actual difference between waiting time for taxis and searching and walking
time for e-bikes.

The data from Smide is from 2017, while the data of the household travel
survey is from 2015. However, no substantial changes in travel patterns have
been observed within these two years.

The Smide booking data did also not contain detailed information about
the users such as sex, season ticket availability and other socio-demographic
and household characteristic. For future studies, it would be interesting to
combine booking data with survey data to investigate the influence of these
variables on usage patterns.

The negative binomial model of the effect of weather and day of the
week on daily bookings was based on data from July to November, which
excludes the coldest time of the year in Zurich (which is from December until
February). This was due to the strong growth of the system. The effect of
temperature may be stronger if it falls below a certain threshold (which could
occur in the colder months of the year). One way to use the full dataset could
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have been to account for the growth of the system by using an auto-regressive
moving average (ARMA) model.

8. Discussion

The descriptive spatial analysis (rental start locations in the main busi-
ness district during the day), the times of the bookings (a distinct morning
and afternoon peak), and the regression model of daily bookings (a 37% re-
duction of trips on weekends) indicated that a major share of the demand
were commuting trips. Unsurprisingly, precipitation was also a factor affect-
ing demand of e-bike-sharing (-17% demand on days with precipitation). The
comparison of trip times of e-bike-sharing with alternative modes of trans-
portation showed that e-bikes were one of the fastest urban transportation
options. This is not surprising as Smide e-bikes reach speeds of 35 km/h
(21.7 mph) without much effort by the cyclist. This is a major advantage
compared to traditional bicycle-sharing systems, especially in countries and
cities where the value of travel time savings (VTTS) is high. High VTTS
also justify higher prices for e-bike-sharing compared to traditional bicycle-
sharing.

During the night when traditional public transportation service is not
available or has a low service quality, e-bike-sharing is, to some extent, used
as a substitute. This is not surprising, as taxi prices are comparatively high
in Zürich (a 10 minute trip costs approximately CHF 30). Furthermore,
Smide likely also complements traditional public transportation for origin-
destination pairs with inefficient public transportation supply. This result
may be of interest to public transportation providers that seek to offer a
cost efficient transportation service during the night, when demand and op-
erational costs of traditional public transportation do not justify (frequent)
service.

The results of the spatial regression model show that economic and social
activity were key drivers of demand for free-floating e-bike-sharing, which is
consistent with the descriptive analysis. Bicycle network density and pub-
lic transportation service quality have a positive impact on demand. This
indicates that e-bike-sharing systems complement traditional public trans-
portation. The results also have implications for investigations of potential
network effects for (electric) bicycle-sharing, as bicycle infrastructure and a
adequate public transportation service level may be necessary conditions for
the scalability of bicycle-sharing systems.
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The analysis conducted in this paper also showed that e-bike-sharing is
able to complement traditional public transportation. In an urban setting,
the range of typical e-bike-sharing trips largely overlaps with traditional pub-
lic transportation, which indicates that e-bike-sharing caters to the same
market segment with respect to trip distances.

9. Conclusion

Bicycle-sharing has seen considerable innovation since the “fourth gener-
ation” systems described by Shaheen et al. (2010). High smartphone pene-
tration, the capability to offer location-based services on a software level and
sophisticated applications have made efficient free-floating systems possible.
Bicycles can be located via smartphone and thus, docking stations and fixed
user interfaces have become optional. Users can be identified by being reg-
istered online, and locking and unlocking can also be done via smartphone.
E-bikes are changing the landscape of bicycle-sharing by allowing for greater
distances with more comfort for the cyclist. The combination of these factors
are likely to make bicycle-sharing much more competitive compared to earlier
systems, becoming serious competition for established public transportation
and taxi services. Furthermore, dynamic pricing (e.g. via bonus zones) can
be used to assist re-balancing, which lowers operational cost. The leap from
“fourth generation” systems is considerable and thus, these systems can be
seen as “fifth generation” systems.

In terms of generalizability, the case of Zurich may be special insofar as
the wages are comparatively high (the median monthly gross salary is ap-
proximately CHF 7700, which corresponded to $7700 US in May 2018). In
addition, public transportation quality is considered very high, while bicy-
cling infrastructure is comparable to other European cities of similar size.
Due to its geographic location in the Prealps, terrain elevation differences
may more pronounced than in other cities. The comparatively high income
combined with terrain elevation differences could make Zurich particularly
suitable for a high-end e-bike-sharing system such as Smide. However, high
wages also translate to higher operational costs and a similar system would
also be possible with cheaper e-bikes. Furthermore, the general trend in the
e-bike market goes towards lower prices at the same level of quality. Thus, a
similar system would be thinkable in many cities in the developed world.

E-bike-sharing may potentially be an environmentally efficient way to
cater to spatially dispersed transportation demand for a large range of trips
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distances in urban areas. As a novel form of public transportation, e-bike-
sharing efficiently complements traditional public transportation and taxi
services at comparable speeds and can be an alternative when traditional
urban public transportation systems are too cost intensive.
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