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Using TNT-NN to unlock the fast full spatial 
inversion of large magnetic microscopy data 
sets
Joseph M. Myre1* , Ioan Lascu2, Eduardo A. Lima3, Joshua M. Feinberg4, Martin O. Saar5,6  
and Benjamin P. Weiss3

Abstract 

Modern magnetic microscopy (MM) provides high-resolution, ultra-high-sensitivity moment magnetometry, with the 
ability to measure at spatial resolutions better than 10−4 m and to detect magnetic moments weaker than 10−15 Am2 . 
These characteristics make modern MM devices capable of particularly high-resolution analysis of the magnetic 
properties of materials, but generate extremely large data sets. Many studies utilizing MM attempt to solve an inverse 
problem to determine the magnitude of the magnetic moments that produce the measured component of the 
magnetic field. Fast Fourier techniques in the frequency domain and non-negative least-squares (NNLS) methods 
in the spatial domain are the two most frequently used methods to solve this inverse problem. Although extremely 
fast, Fourier techniques can produce solutions that violate the non-negativity of moments constraint. Inversions in 
the spatial domain do not violate non-negativity constraints, but the execution times of standard NNLS solvers (the 
Lawson and Hanson method and Matlab’s lsqlin) prohibit spatial domain inversions from operating at the full spatial 
resolution of an MM. In this paper, we present the applicability of the TNT-NN algorithm, a newly developed NNLS 
active set method, as a means to directly address the NNLS routine hindering existing spatial domain inversion meth-
ods. The TNT-NN algorithm enhances the performance of spatial domain inversions by accelerating the core NNLS 
routine. Using a conventional computing system, we show that the TNT-NN algorithm produces solutions with residu-
als comparable to conventional methods while reducing execution time of spatial domain inversions from months to 
hours or less. Using isothermal remanent magnetization measurements of multiple synthetic and natural samples, we 
show that the capabilities of the TNT-NN algorithm allow scans with sizes that made them previously inaccesible to 
NNLS techniques to be inverted. Ultimately, the TNT-NN algorithm enables spatial domain inversions of MM data on 
an accelerated timescale that renders spatial domain analyses for modern MM studies practical. In particular, this new 
technique enables MM experiments that would have required an impractical amount of inversion time such as high-
resolution stepwise magnetization and demagnetization and 3-dimensional inversions.
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Introduction
Modern magnetic microscopes (MMs) have been devel-
oped to analyze the microscale natural remanent mag-
netization and rock magnetic properties of rocks and 
minerals (Harrison and Feinberg 2009) and are capable 
of high-resolution, high-sensitivity measurements on 
geologic samples (Weiss et  al. 2007b). MMs encompass 
superconducting quantum interference device (SQUID), 
magnetic tunnel junction (MTJ), giant magnetoresist-
ance (GMR) sensors, and quantum diamond microscopes 
(QDMs). MMs are capable of measuring samples with 
magnetic moments weaker than 10−15  Am2 (Fong et  al. 
2005; Weiss et al. 2007a; Oda et al. 2016; Lima and Weiss 
2016) at spatial resolutions on the order of micrometers 
(Liu et al. 2002; Liu and Xiao 2003; Liu et al. 2006; Hank-
ard et al. 2009; Lima et al. 2014; Glenn et al. 2017).

MM has been applied to investigations of ultrafine-
scale magnetostratigraphy (Oda et  al. 2011; Noguchi 
et al. 2017a), shock remanent magnetization (Gattacceca 
et al. 2006, 2010), rock magnetism (Hankard et al. 2009; 
Kletetschka et  al. 2013), studies of nebular magnetism 
using chondrules (Fu et al. 2014), and the paleointensity 
of the magnetic field of Earth (Weiss et al. 2007a; Fu et al. 
2017; Weiss et al. 2018) and Mars (Weiss et al. 2008). The 
high-resolution capability of MMs can yield extremely 
large data sets. Analyzing these data sets is dominated by 
solving an inversion problem, which obtains the distribu-
tion of magnetic sources from the measured magnetic 
field. As with mapping of magnetic fields of magnetiza-
tion, retrieving magnetization from magnetic fields is 
non-unique without the use of other constraints and can 
be computationally expensive (Weiss et  al. 2007b; Lima 
and Weiss 2016).

Weiss et al. (2007b) describe three formulations of the 
least-squares inversion problem to obtain the magnetic 
sources of a sample from MM magnetic field measure-
ments: unrestricted, unidirectional, and uniform. Unre-
stricted solutions obtain the three vector components 
of Q dipoles at fixed positions within the sample from P 
measurements of the vertical (z) component of the mag-
netic field. Obtaining a solution at the full resolution of 
the scan necessitates solving an underdetermined linear 
least-squares problem with an infinite number of possible 
solutions. This type of solution is typically appropriate 
for scans of unidirectional natural remanent magneti-
zation (NRM). Unidirectional solutions determine the 
magnitudes of Q dipoles at fixed positions within the 
sample from P measurements of the z-component of the 
magnetic field. For a full resolution solution, this requires 
solving a linear least-squares problem. This problem is 
well determined as all of the dipole orientations are fixed 
in any one direction (described by the angles θ and φ in 
spherical coordinates), but their magnitudes are allowed 

to vary independently. Because all dipoles share an ori-
entation, it is reasonable to impose a non-negativity 
constraint to all dipoles once all dipoles share a posi-
tive orientation. To solve numerical problems with such 
a constraint, it is natural to use a non-negative least-
squares (NNLS) solver. This type of solution is typi-
cally most applicable for scans of saturation isothermal 
remanent magnetization (SIRM). Solutions provided by 
NNLS are naturally smooth and should be regarded as 
approximations of the true physical system (a common 
stance in numerical modeling). This is particularly true 
if some dipoles remain in the “negative” orientation or 
are misaligned relative to the primary orientation after 
the sample acquires an SIRM due to sample anisotropy 
or interactions between remanence carriers. In such a 
case, those dipoles in the unidirectional solution would 
be constrained to zero or approximated to their compo-
nent in the SIRM orientation. The more a sample vio-
lates the unidirectionality and positivity assumptions of 
the unidirectional inversion, the more the solution can 
be regarded as an approximation. Uniform solutions are 
obtained by requiring all dipole orientations and magni-
tudes to be identical. This gives rise to a problem with P 
measurements of the z-component of the magnetic field 
and only three unknowns. For MM data, this is often 
severely overdetermined.

Early approaches to solving the inversion problem 
to reconstruct magnetic sources from measured mag-
netic fields focused on frequency domain techniques 
and required idealized physical scenarios (Vestine 
and Davids 1945; Hughes and Pondrom 1947). Subse-
quent studies removed previously necessary assump-
tions that constrained the geometry of the magnetic 
sample (Smith 1959; Helbig 1963; Bhattacharyya 1967; 
Talwani 1965) and reduced computational complex-
ity (Lourenco and Morrison 1973). These approaches 
used the Cooley–Tukey fast Fourier transform algo-
rithm (Cooley and Tukey 1965), which enabled the fast 
Fourier transform to be implemented on modern com-
puters. Focusing on the frequency domain was sensi-
ble because the computational cost of using the spatial 
domain was much greater than that of the Cooley–
Tukey algorithm. Frequency domain methods were 
then extended for application to MM data (Chatrap-
horn et al. 2002; Egli and Heller 2000; Fleet et al. 2001; 
Roth et al. 1989; Sepulveda et al. 1994; Tan et al. 1996; 
Wikswo 1996). However, these techniques were devel-
oped to produce magnetization solutions composed 
of only two components and they could typically only 
produce unique solutions for special cases. From physi-
cal first principles, Lima and Weiss (2009) extended 
the Fourier-based technique of Lourenco and Morri-
son (1973) to reproduce vector field maps of magnetic 
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samples from single component measurements. Lima 
et  al. (2013) improved upon this work by regularizing 
the inverse problem, dampening noise, and enhancing 
processing speed.

An unavoidable consequence of applying Fourier tech-
niques to SIRM data (to obtain a unidirectional solution) 
is the potential violation of non-negativity constraints. A 
typical method to handle Fourier solution components 
that violate non-negativity is to threshold those variables 
to zero. This can yield solutions that are not smooth and 
may not be physically valid. Because Fourier techniques 
operate in the frequency domain, it can be difficult to 
impose solution constraints that are related to the spatial 
domain. Such a constraint could be as simple as restrict-
ing valid solution variables to the spatial domain of a 
sample.

Weiss et  al. (2007b) developed the first spatial inver-
sion technique capable of producing unique solutions 
composed of three component magnetic distributions. 
This technique uses the equivalent source formalism 
(Dampney 1969; Emilia 1973) to represent the inverse 
problem in a least-squares manner. Specifically, the unre-
stricted solution can be obtained via unconstrained least-
squares and the unidirectional and uniform solutions 
are obtained by NNLS. The uniform problem is typically 
extremely overdetermined for MM data and can be con-
sidered relatively simple to solve computationally. In con-
trast, the unrestricted and unidirectional problems can 
be computationally challenging. Because the unrestricted 
problems are underdetermined, they are not guaranteed 
to be unique without additional constraints. All other 
factors being equal, unidirectional problems are smaller 
than unrestricted problems by a factor of ∼  3 because 
the orientation is known and only the determination of 
dipole magnitudes remain. Unidirectional problems are 
also well-determined, which allows a unique solution to 
be obtained. Despite these positive characteristics, unidi-
rectional problems can necessitate a significant amount 
of computational work due to the quantity of data 
acquired by the high-resolution of MM devices.

Addressing the NNLS problem within the unidirec-
tional formulation has proven to be computationally 
expensive, requiring two months of computation time 
to produce a solution for the inversion of a single sam-
ple (Weiss et al. 2007b). A number of modifications were 
made to the computational approach to attain tractable 
computation for NNLS methods, with each modifica-
tion imposing some degree of undesirable consequences 
regarding the resulting inverse solution. Although the 
continuous increase in the speed of modern computers 
diminishes the necessity of these modifications when 
solving the original inversions of Weiss et  al. (2007b), 
improvements in high-resolution magnetism acquisition 

yield continuously larger data sets which keep these 
modifications relevant.

For example, a second pseudo-spatial technique, 
developed by Usui et  al. (2012), blends spatially local-
ized Backus–Gilbert averaging kernels (Backus and 
Gilbert 1968) with the subtractive optimally localized 
averages (SOLA) method (Pijpers and Thompson 1992). 
The Usui et al. (2012) approach avoids the high compu-
tational requirements of the spatial inversion technique 
of Weiss et  al. (2007b) by performing some significant 
computation in the frequency domain. Specifically, it 
approximates a matrix inversion with a periodic bound-
ary approximation and FFT. In some cases, this style of 
pseudo-spatial method has been shown to be almost 
as fast as methods that operate purely in the frequency 
domain (Pijpers 1999). Further, Pijpers (1999) shows 
that the spatial resolution of the SOLA method can 
approach that of the acquisition device. However, Usui 
et  al. (2012) state that the shape of their averaging ker-
nels used to invert geologic data suggest a spatial reso-
lution of ∼ 1 mm. In fact, Usui et al. (2012) successfully 
produced magnetization models with a spatial resolution 
of ∼ 1 mm. For MMs to obtain well resolved field meas-
urements, the spatial resolution of MM spatial inversion 
solutions are limited to approximately half the sensor-to-
sample distance. Considering this limitation, the spatial 
resolution of most published MM data is on the order of 
0.1 to 0.15 mm or less.

Ultimately, determining the effective spatial resolu-
tion of an inversion of MM data is a complex problem 
(Lima et  al. 2006). Several factors affect spatial resolu-
tion (e.g., sensor-to-sample distance, sensor active area/
volume, signal-to-noise ratio, mapping step size, regular-
ization strategy used), which make comparison of inver-
sion methods delicate, particularly when evaluating data 
obtained using different MM systems. Thorough discus-
sions of the relationships between these factors are pro-
vided by Chatraphorn et  al. (2002); Fleet et  al. (2001); 
Lima et  al. (2006, 2014); Lima and Weiss (2016); Oda 
et al. (2016); Egli and Heller (2000), and Roth and Wik-
swo Jr (1990).

The fundamental goal of any scheme for inverting MM 
data is to quickly determine the magnetic sources within 
the entire spatial domain of the sample without reduc-
ing resolution. Existing methods have had to make com-
promises on speed, resolution, sample completeness, 
or physical validity, thereby hindering the full capabili-
ties of the inversion method. In this paper, we focus on 
the NNLS problem at the heart of unidirectional spatial 
inversion, as it provides an excellent avenue toward high-
resolution unique solutions.

Here, we present the first application of TNT-NN 
(Myre et al. 2017a), a novel active set NNLS algorithm for 
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large problems, to the inversion of real-world MM data, 
using the unidirectional inversion technique of Weiss 
et  al. (2007b). Active set NNLS algorithms share the 
idea of constructing an “active set” of variables that are 
fixed at zero to not violate the non-negativity constraint. 
TNT-NN is an active set NNLS algorithm that exhib-
its significant performance enhancement over previous 
active set algorithms. These enhancements are primarily 
enabled by two means: (1) by improving the construction 
of the active set and (2) by enhancing the method used 
to solve the core least-squares problem. Through the use 
of TNT-NN to solve the core NNLS problem, the inver-
sion scheme of Weiss et al. (2007b) can be applied to MM 
data using the spatial resolution of the MM device, with-
out the need to compromise the physical validity of the 
inverse solutions.

The TNT-NN algorithm is used to obtain the magnetic 
sources of four samples; a synthetically magnetized Uni-
versity of Minnesota logo, a 30 µ m thin section of basalt 
from the Mauna Loa volcano (Weiss et  al. 2007a, b), a 
30–60 µ m thin section of ferromanganese crust (Noguchi 
et al. 2017a), and a 100 µ m thin section of a speleothem 
from Spring Valley Caverns in South East Minnesota, 
USA (Dasgupta et al. 2010). We show that the TNT-NN 
algorithm is a suitable update to the spatial inversion 
technique developed by Weiss et  al. (2007b) due to its 
enhanced performance and numerical accuracy.

Existing computational roadblocks 
and circumvention efforts
Investigating existing least-squares techniques to analyze 
MM data reveals two hurdles with undesirable conse-
quences: extremely large data sets and inefficient solv-
ers for the core non-negative least-squares problem. 
Strategies to overcome these hurdles are outlined in the 
remainder of this Section.

Large data sets
The spatial resolution of MMs enables a high number of 
scanning measurements to be made for a given sample 
area, resulting in the generation of large data sets. For 
example, a 35 mm × 35 mm area, scanned with a 100 µ m 
resolution, produces 122,500 measurements.

A well-determined problem, consisting of 106 elements 
(1000 ×  1000) does not typically present a significant 
computational challenge. However, in the NNLS prob-
lem, the spatial least-squares inversions are analyzing 
magnetic data that require the construction of the inter-
action (Jacobian) matrix for the entire scanned area. This 
quickly increases the problem size for non-trivial (non-
uniform) inverse problems, so that a scan producing 
105 elements yields a 105 × 105 ( 1010 element) Jacobian 
matrix. A Jacobian matrix of this scale can have storage 

requirements approaching 100  GB. Attempting to per-
form mathematical operations on such large matrices 
with a typical desktop computer often causes a phenom-
enon known as thrashing (Denning 1968). Thrashing is 
the inability to store the entirety of a data buffer within 
fast access memory, causing repeated data transfers with 
larger capacities but slower memory access. The over-
head caused by data transfer leaves the processor unable 
to perform useful computation due to data starvation. 
This effectively reduces the performance of the computer 
system to that of the slower memory, which acts as a bot-
tleneck. Contemporary computer systems have approxi-
mately a six order of magnitude difference in access time 
between typical RAM (on the order of 10−9 s) and hard 
disk drive (on the order of 10−3 s) systems.

Because the Jacobian matrices created during the spa-
tial inversion process have significant memory require-
ments, it has thus far been necessary to implement 
computational strategies to avoid thrashing. These strate-
gies include specimen division and dipole thresholding. 
Both are methods for reducing the size of the data set 
used in the MM inversion problem, with the secondary 
effect of creating a smaller core least-squares problem 
that reduces the time needed to find a solution. Unfor-
tunately, both strategies produce approximations of the 
solution.

Specimen subdivision splits the MM measurements 
into subsections. The inversion of the sample is then 
performed by inverting the subsections separately. With 
sufficiently small divisions, the overall memory require-
ments of the Jacobian matrix are reduced to the point 
where thrashing is minimized. Solving these subsections 
is also more computationally tractable than for the sam-
ple as a whole due to the reduction in overall variables. By 
subdividing the sample and finding the inverse solution 
of each subdivision separately, the magnetic interactions 
between subsections are ignored. Consequently, this 
method violates the mathematical theory of the inversion 
problem, which requires that the spatial domain of the 
magnetic sources within a sample to be finite and fully 
encapsulated by the inversion problem domain (compact 
support) to ensure a unique solution (Baratchart et  al. 
2013; Lima et al. 2013).

The consequence of not accounting for magnetic 
source interactions across subdivisions is highlighted 
as artifacts at boundaries between subdivisions. These 
artifacts appear as high solution residuals that are spa-
tially associated with subdivision boundaries. The spatial 
locality of subdivision artifacts is due to the interaction 
strength of magnetic sources diminishing as the inverse-
square of the distance between sources. This means that 
the magnetic sources from the opposing subdivision that 
are close to the boundary have a significant effect on 
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the field at the boundary that is not incorporated when 
using specimen subdivision to achieve computational 
tractability.

Thresholding the long range interactions of each dipole 
allows interactions that fall below a specified threshold to 
be withheld from computation. Excluding other dipoles 
from consideration means that their associated entries 
in the Jacobian matrix are fixed at zero. Inversion meth-
ods for large data sets from satellite magnetic fields com-
monly apply this type of thresholding (Purucker et  al. 
1996).

Dipole interaction thresholding was applied by Weiss 
et  al. (2007b) to form a sparse approximation of the 
Jacobian, A, as A† . By creating a sparse approximation, 
A† , overall data storage requirements are reduced. This 
reduction scales with the degree of sparsity of A† . The 
computation of A† is accelerated compared to the com-
putation of A since A† effectively reduces the problem 
size and allows sparse methods to be used. The reduction 
in computation time to form A† also reduces the overall 
computation time for uniform inverse solutions, which 
are dominated by the computation of A.

The ability to use sparse matrix methods offers an 
alluring reason to use A† in lieu of A. Weiss et al. (2007b) 
exploit sparse methods and solve A† using the more com-
putationally efficient lsqlin function in Matlab, which 
uses a preconditioned conjugate gradient routine at its 
core, instead of the lsqnonneg NNLS function for dense 
problems. However, the solutions obtained using A† are 
approximate solutions, just as A† is an approximation of 
A.

Inefficient active set least‑squares solvers
The core of the MM unidirectional and uniform inversion 
routines is an NNLS solver. The primary Matlab NNLS 
solver (lsqnonneg) is implemented using the seminal 1974 
Lawson and Hanson NNLS (LH-NNLS) algorithm (Law-
son and Hanson 1995). The LH-NNLS algorithm can eas-
ily be considered the most widely used NNLS algorithm 
as it is consistently provided by popular software pack-
ages, including the widely used computer algebra system 
Matlab, GNU R (Mullen and van Stokkum 2012), and 
scientific tools for Python (scipy) (Jones et  al. 2001). It 
is also repeatedly encountered in the reference literature 
as the recommended method for solving non-negative 
least-squares problems (Aster et  al. 2011; Parker 1994; 
Xiong and Kirsch 1992).

The LH-NNLS algorithm is an active set strategy 
that attempts to find solutions to the NNLS prob-
lem. This constrained NNLS problem can be stated as 
minx||Ax − b||2, such that x ≥ 0 , where A is the m× n 
system of equations, b is the solution vector of measured 

data, and x is the vector of obtained parameters that min-
imizes the L 2-norm of the residual.

The LH-NNLS algorithm determines constrained vari-
ables by iterating through the set of variables one at a 
time, which commonly results in slow convergence. The 
Fast NNLS (FNNLS) algorithm developed by Bro and 
De Jong (1997) improves upon the LH-NNLS algorithm 
by avoiding redundant computations and allowing the 
programmer to load an initial active set of constrained 
variables. Using small real and synthetic test suites, Bro 
and De Jong report that FNNLS reduces execution time 
compared to NNLS by factors of 2–5.

Recently, graphics processing units (GPUs) have been 
exploited as high performance computing devices (Walsh 
et  al. 2009) to improve runtime performance over CPU 
implementations of the LH-NNLS algorithm (Luo and 
Duraiswami 2011). Like CPU algorithms, the problem 
size that the GPU algorithm is capable of solving is lim-
ited by the available memory. The amount of memory 
available on contemporary GPUs is fixed and typically 
less than 10GB. This is a fraction of the memory space 
that is required for the inversion of MM data (which can 
easily surpass 100  GB). Recent GPU technology from 
NVIDIA enables the GPU to operate on data stored in 
host memory. However, operating on data in host mem-
ory, external to the GPU, incurs a significant performance 
penalty, similar to thrashing, due to additional access and 
transfer time.

Overcoming computational roadblocks
Storing large data sets
Thrashing between main memory and hard disk storage 
can easily be avoided by using a computer system with 
sufficient main memory to meet the storage require-
ments of the data set of interest. Desktop computers with 
sufficient memory to avoid thrashing when handling sys-
tems of this size are somewhat rare, but they are not out 
of reach for the majority of researchers. A contemporary 
computer built to handle the largest MM data sets pre-
sented in this paper would cost less than $10,000 (USD) 
and would not require any special training. Computing 
resources of this nature are commonly available at the 
computational centers of many research institutions.

A new non‑negative least‑squares algorithm: TNT‑NN
The TNT-NN algorithm (Myre et al. 2017a) is an active 
set method that is capable of solving large NNLS prob-
lems much faster than prior methods. TNT-NN improves 
upon existing methods through intelligent construction 
and modification of the active set and by incorporating 
an enhanced solver strategy to address the central least-
squares problem.
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Due to the convexity (i.e., a local minimum must be a 
global minimum) of the least-squares objective function 
(Boyd and Vandenberghe 2004) the TNT-NN algorithm 
can take an “algorithmic license” to guess what variables 
compose the active set without the risk of becoming 
locked into a local minimum. The suitability of the vari-
ables is determined by ranking them by their gradients 
(their change between iterations). Those variables with 
the largest positive gradients are tested by moving them 
into the unconstrained set first. This allows the active set 
to be modified by a large amount of variables in a single 
iteration. In contrast, other common active set methods 
typically modify the active set by a single variable per 
iteration (Lawson and Hanson 1995; Bro and De  Jong 
1997). The ability to modify the active set by many vari-
ables in a single iteration allows the TNT-NN algorithm 
to reduce the total number of iterations necessary for 
convergence.

In active set methods, solving the core unconstrained 
least-squares problem is independent from the con-
struction of the active set. To accelerate the core uncon-
strained least-squares solver, Myre et al. (2018) developed 
the TNT algorithm. The TNT algorithm implements the 
Cholesky factor of the normal equations as a precondi-
tioner to a left-preconditioned conjugate gradient normal 
residual (PCGNR) method (Saad 2003). PCGNR can be 
thought of as a computationally cheap mechanism that 
iteratively improves the solution. The normal equations 
are explicitly formed to create the preconditioner for 
CGNR. The numerical issues typically associated with 
the normal equations and the condition number of the 
problem are thereby avoided.

The condition number of a matrix A , κ(A) , is the ratio 
of the largest to the smallest singular values of A and it 
can be used as indicator of numerical inaccuracies in 
solutions (Cline et al. 1979). A numerical “rule of thumb” 
states that when solving a system of equations, Ax = b , 
“one must always expect to lose log10κ(A) digits in com-
puting the solution” (Trefethen and Bau  III 1997, Lec. 
12). The normal equations are particularly susceptible to 
this issue as κ(ATA) = κ(A)2 . TNT only explicitly forms 
the normal equations to generate the preconditioner.

Myre et  al. (2018) show that TNT obtains solutions 
two to sixteen times faster than other conventional solv-
ers and that TNT consistently produces solutions where 
the L 2-norm of the solution residual is on the order of 
10−15 for ill-conditioned problems ( κ >= 108 ) and 10−28 
for well-conditioned problems ( κ < 108 ). For well-deter-
mined and well-conditioned problems, the L 2-norm of 
the TNT solution residual is always less than or equal to 
those of alternative methods while also decreasing execu-
tion time in the majority of tests.

Using TNT as the core unconstrained least-squares 
solver, TNT-NN likewise yields solutions where the L 2-
norm of the solution residual is always less than or equal 
to those of alternative methods for well- and overde-
termined and well-conditioned problems. Myre et  al. 
(2017a) show that with TNT, TNT-NN can outperform 
the execution time performance of the relatively more 
modern FNNLS method by up to a factor of 180 when 
solving small systems up to 25000× 25000 and by more 
than 40 times when solving a larger ( 45000× 45000 ) 
system.

Application to synthetic and natural samples
We compare the least-squares inversions of MM scans of 
four samples using LH-NNLS, lsqlin, and TNT-NN. We 
restrict our comparisons to results obtained using LH-
NNLS and lsqlin as all previously reported spatial inver-
sion results have been obtained using these methods.

Comparing TNT-NN to LH-NNLS could be consid-
ered unfair due to the age of the LH-NNLS algorithm. 
We consider the comparison necessary as LH-NNLS is 
the routine that is most consistently used throughout 
other published spatial inversions that do not circumvent 
the computational hurdles described earlier.

We analyze the spatial least-squares inversion solu-
tions of one synthetic and three natural samples: a syn-
thetic University of Minnesota (UMN) logo, a 30 µ m thin 
section of basalt from the Mauna Loa volcano (Weiss 
et  al. 2007a, b), a 30–60 µ m thin section of ferroman-
ganese crust from the Takuyo–Daigo Seamount (Nogu-
chi et  al. 2017a), and a 100 µ m thin section of a calcite 
speleothem from Spring Valley Caverns in South East 
Minnesota, USA (Dasgupta et  al. 2010). The synthetic 
UMN logo inversion is small enough to be solved using 
LH-NNLS and TNT-NN. The basalt thin section inver-
sions are solved using lsqlin (combined with sample sub-
division) and TNT-NN. LH-NNLS is prohibitively slow 
for solving anything that is significantly larger than the 
synthetic UMN MM scan. The ferromanganese crust and 
speleothem MM data are large enough to be considered 
intractable for the LH-NNLS and lsqlin methods with-
out significant modification. As such, only the TNT-NN 
method is used to perform these inversions.

All samples share the same SIRM dipole orientation, 
( 0◦ , 0◦ ), in ( θ , φ ), where θ is the polar angle and φ is the 
azimuthal angle. Solving unidirectional problems, where 
( θ , φ ) are unknown, requires solving an additional, but 
independent, inversion problem to determine orienta-
tion. Because the process of determining orientations is 
independent of the unidirectional problem to determine 
the distribution and magnitude of magnetic sources, we 
do not address it here.
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Although we vary the spatial resolution of the NNLS 
solutions across these samples, we restrict the best pos-
sible spatial resolution to half the sensor-to-sample 
distance. This allows the NNLS method to obtain well 
resolved sources without inducing instabilities. This 
constraint is solely due to the physics of the problem 
being solved. On its own, NNLS has no inherent spatial 
constraints.

Each real-world sample presented here is composed 
of data from a single MM scan. We then use different 
numerical methods to invert the scan (or alternatively, a 
cropped region of the scan). As differences between MM 
devices and scanning conditions can yield different spa-
tial resolutions, we do not make direct comparisons of 
inversions result quality between different samples.

All inversions (using LH-NNLS, lsqlin and TNT-NN) 
were performed using Matlab 2017b and a single com-
pute node on the Mesabi supercomputer at the Min-
nesota Supercomputing Institute. This compute node 
consists of dual 12 core Intel Haswell E5-2680v3 pro-
cessors at 2.5 GHz with up to 1 TB of memory. None of 
the analyses presented in this paper require more than 
365 GB of memory. Comparable computing systems are 
available at most computing centers or easily purchased 
for $10,000 (USD) or less.

For each sample, the performance of each technique is 
compared in terms of execution time and the root mean 
square (RMS) of the solution residual. We also examine 
the calculated bulk magnetic moments of the solutions 
for these samples. In all cases the bulk magnetic moment 
is calculated as the sum of the ( θ , φ ) component of all 
solution dipoles. In the synthetic UMN logo case, we 
compare the calculated moment to the known moment. 
For the natural samples, we compare the calculated 
moments to experimentally measured moments.

Synthetic UMN logo
The use of simple alphanumeric characters, simple sym-
bols, and institutional logos as baselines for numerical 
experimentation is common practice (Baratchart et  al. 
2013; Egli and Heller 2000; Lima et  al. 2006; Lima and 
Weiss 2009; Lima et al. 2013) as these synthetic data sets 
often represent worst-case scenarios when testing new 
methods. In particular, synthetic samples of this nature 
allow the inverse solution to be exactly known which 
enables an examination of how robust the inversion 
method is when solving problems of varying difficulty. 
MM data for this synthetic sample are created numeri-
cally using Matlab R2017a. Originally presented by Myre 
et al. (2017a), the process starts by generating a synthetic 
2-dimensional magnetic source map. An image is treated 
as a discretized set of square magnetic sources from 
which magnetic field maps are calculated. The synthetic 

MM scan is then obtained as the vertical component 
of the magnetic field, Bz , at a height, h, above the syn-
thetically created and irregularly shaped set of magnetic 
sources.

We created a synthetic saturation isothermal remanent 
magnetization (SIRM) scan of the UMN logo by convert-
ing a 67× 50 pixel grayscale image of the UMN logo to 
a magnetic source map. By introducing negative values 
in the image, the final synthetic SIRM sample will have 
points roughly mimicking magnetic sources that have 
failed to align with the saturating field.

By imposing a non-negativity constraint on such 
sources, the solution to the inversion problem is a unique 
distribution of magnetic sources [the unidirectional 
problem (Weiss et  al. 2007b; Baratchart et  al. 2013)]. 
Without the non-negativity constraint, the solutions to 
the inversion problem to obtain the magnetic sources 
are non-unique [the unrestricted problem (Weiss et  al. 
2007b; Baratchart et al. 2013)]. In fact, any magnetic field 
map can be modeled by unidirectional sources without 
the non-negativity (also known as unidimensional) con-
straint (Baratchart et al. 2013).

The following is an outline of the process used to cre-
ate the synthetic SIRM scan of the UMN logo. The values 
in the original grayscale image range from 0 to 255. To 
create the set of magnetic sources requiring the appli-
cation of the non-negativity constraint, we multiply the 
few grayscale values less than 75 by −1 . Those grayscale 
values in the image less than 75 correspond to relatively 
low-intensity background shading pixels in the origi-
nal image. All of the values are then scaled such that the 
maximum value of the logo is 4.3233× 10−11 , and the 
minimum value of the logo is −1.4788× 10−12 , which is 
in the typical range of magnetization intensity for natu-
ral samples measured in Am2 . All orientations are in the 
±z-direction (i.e., in or out of the page), where the sign of 
the converted grayscale value determines the orientation 
in the z-direction. These new pixel values are then treated 
as magnetic sources (each source is 100× 100 µm2 for 
this synthetic sample) and used to calculate the vertical 
component of the magnetic field, Bz , at a height, h above 
the synthetic magnetic sources.

We address six scenarios, all of which share the same 
spatial dimension (6.7 mm × 5 mm), resolution (100 µm), 
MM scan height (200 µm), dipole spacing (100 µm), and 
total number of solution dipoles (3350): (1) solving the 
simulated synthetic UMN logo without negativity con-
straint violations using LH-NNLS and TNT-NN, (2) solv-
ing the simulated synthetic UMN logo without negativity 
constraint violations and with Gaussian white noise cor-
ruption using LH-NNLS and TNT-NN, (3) solving the 
simulated synthetic UMN logo with negativity constraint 
violations using LH-NNLS and TNT-NN, (4) solving 
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the simulated synthetic UMN logo with negativity con-
straint violations and Gaussian white noise corruption 
using LH-NNLS and TNT-NN, (5) solving the simulated 
synthetic UMN logo with higher magnitude negativity 
constraint violations using LH-NNLS and TNT-NN, (6) 
solving the simulated synthetic UMN logo with higher 
magnitude negativity constraint violations and Gaussian 
white noise corruption using LH-NNLS and TNT-NN. 
All solutions obtain dipoles oriented out of page, e.g., (0◦ , 
0 ◦ ) in ( θ , φ ). The known synthetic magnetic source distri-
butions for these scenarios are shown in Fig. 1.

In scenarios where the simulated MM scan is cor-
rupted by Gaussian white noise (2, 4, and 6), we measure 
the amount of signal degradation using the signal-to-
noise Ratio (SNR) reported in decibels (dB) as

where σ 2
signal is the variance of the (noiseless) synthetic B z 

field and σ 2
noise is the variance of the noise. For scenarios 

incorporating noise, we use an SNR of 40 dB.
For scenarios 1 and 2, we modify our original syn-

thetic SIRM creation procedure to ensure no violations 
of the non-negativity constraint. We do this by taking 
the absolute value of the original synthetic SIRM mag-
netic source map. For scenarios 5 and 6, we modify our 
original synthetic SIRM creation procedure to create 
more, and higher magnitude, negativity constraint viola-
tions (relative to scenarios 3 and 4). We do this by first 
switching all values in the original grayscale image from 
1 to 45 from positive to negative. We then scale the nega-
tive values of the logo to such that the minimum value 
is −7.55× 10−12 and scale the positive values such that 
the maximum value is 4.3233× 10−11 . Like the synthetic 
sources created for scenarios 3 and 4, the values obtained 
in the modified magnetic source maps are in the typi-
cal range of magnetization intensity for natural samples 
measured in Am2 . The modified magnetic source maps 

(1)SNR = 10log10

(

σ 2
signal/σ

2
noise

)

,

are then used to calculate the simulated MM scans of the 
B z field.

We report the magnetic moment, the residual RMS, 
and error of each solution in Table 1. The solution error 

Fig. 1 Known magnetic source distributions for scenarios 1 and 2 (a), scenarios 3 and 4 (b), and scenarios 5 and 6 (c). Note the nonlinear colorbar 
spacing in b and c. The field of view for each image is 6.7 mm × 5 mm, dipole orientation is out of page, and units are Am2 for all images

Table 1 Summary of  the  unidirectional synthetic UMN 
logo inversion results

The first column shows the methods used to obtain the magnetic source 
distribution. The second column shows the scenario with which the results are 
associated. The third column lists the moment, m. The fourth column provides 
the residual RMS of the NNLS fits with the B z  field. The final column reports the 
error of the NNLS solution relative to the known solution

Method Scenario m (Am2) Residual RMS 
(nT)

Error ( Am2)

LH-NNLS 1 9.36× 10
−9

3.15× 10
−13

3.51× 10
−25

TNT-NN 1 9.36× 10
−9

2.39× 10
−13

2.54× 10
−25

Known solu-
tion

1 9.36× 10
−9 – –

LH-NNLS 2 9.51× 10
−9 0.89 2.56× 10

−12

TNT-NN 2 9.51× 10
−9 0.89 2.56× 10

−12

Known solu-
tion

2 9.36× 10
−9 – –

LH-NNLS 3 9.42× 10
−9 2.27 5.16× 10

−12

TNT-NN 3 9.42× 10
−9 2.27 5.16× 10

−12

Known solu-
tion

3 9.28× 10
−9 – –

LH-NNLS 4 9.53× 10
−9 2.37 5.78× 10

−12

TNT-NN 4 9.53× 10
−9 2.37 5.78× 10

−12

Known solu-
tion

4 9.28× 10
−9 – –

LH-NNLS 5 1.07× 10
−8 23.6 6.01× 10

−11

TNT-NN 5 1.07× 10
−8 23.6 6.01× 10

−11

Known solu-
tion

5 8.51× 10
−9 – –

LH-NNLS 6 1.07× 10
−8 23.5 6.01× 10

−11

TNT-NN 6 1.07× 10
−8 23.5 6.01× 10

−11

Known solu-
tion

6 8.51× 10
−9 – –
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is calculated as the L 2-norm of the difference between 
the known magnetic source distribution and the mag-
netic source distribution obtained as the inverse solution. 
As seen in Table 1, these measures are identical for LH-
NNLS and TNT-NN.

For all scenarios of these synthetic MM scans, the 
inverse solutions produced by each method are similar 
and are a good visual match to the known solutions, as 
seen in Figs.  2, 3, and 4. Any differences between LH-
NNLS and TNT-NN can be attributed to numerical 
noise, which typically becomes an issue when comput-
ing with values near or below the machine epsilon, which 
is 2−53 (approximately 1.11× 10−16 ) on a computer 
using IEEE 754 double precision floating point numbers 
(Higham 2002).

The synthetic samples created with this method pre-
sent an algorithmic “worst-case scenario” as the correct 
solution is a piecewise step function with sharp discon-
tinuities. Any method that minimizes the L2-norm, like 
least-squares, will act as a smoothing low-pass filter and 
spread out the solution in space. This leads to the crea-
tion of nonphysical sources in the solution. These sources 
can artificially inflate the net magnetic moment of the 
solution. This can be seen in the results from all scenar-
ios in Table 1, where the LH-NNLS and TNT-NN solu-
tions produce higher magnetic moments than that of the 
known solution.

Figure  2 shows results from scenarios 1 and 2. Both 
methods quickly produce solutions to scenario 1 with 
errors nine orders of magnitude below the machine epsi-
lon. Scenario 1 is computationally attractive as the NNLS 
solvers should terminate in a single iteration with a valid 
solution (e.g., there are no variables requiring constraint). 
The addition of noise in scenario 2 introduces variables 
that violate the non-negativity constraint. This incurs 
additional NNLS solver iterations to obtain a valid solu-
tion. The noise also causes nonphysical magnetic sources 
to be obtained in the least-squares solutions. These non-
physical sources increase the magnetic moment, residual 
RMS, and error of the solutions.

Figure  3 shows results from scenarios 3 and 4. The 
introduction of noise in scenario 4 causes nonphysi-
cal magnetic sources to be obtained in the least-squares 
solutions. These nonphysical sources slightly increase 
the magnetic moment, residual RMS, and error of the 
solutions.

Figure 4 shows results from scenarios 5 and 6. Enhanc-
ing negativity causes a corresponding enhancement of 
the difference between the known and obtained magnetic 
moment. The introduction of noise in scenario 6 does 
not have the same effect seen in scenario 4. Nonphysical 
magnetic sources are still obtained in the least-squares 
solutions, but these are much smaller in magnitude as the 

magnitude of the primary solution dipoles is enhanced 
to compensate for the enhanced negativity. The balance 
between noise and negativity yields a negligible differ-
ence in magnetic moment, residual RMS, and error of the 
solutions obtained by LH-NNLS and TNT-NN.

The performance of these two methods diverges when 
considering the amount of execution time necessary for 
each to obtain a solution. The multiplicative factor of 
improvement in execution time for TNT-NN relative 
LH-NNLS is shown in Fig. 5, reported as speedup (Lilja 
2000, Ch. 2.5). We calculate speedup as

where exec(LH-NNLS) is the LH-NNLS execution time 
and exec(TNT-NN) is the TNT-NN execution time.

The degree to which TNT-NN enhances performance 
over LH-NNLS is dependent on many factors, some of 
which include problem size, number of constraints, and 
condition number. The results in Fig.  5 show that, on 
average, TNT-NN provides a 623-fold improvement in 
execution time for the synthetic UMN logo scenarios 
with sample variables requiring constraint (scenarios 
3–6). Restated, TNT-NN is capable of reducing 1  h of 
LH-NNLS computation time for synthetic MM inversion 
problems to approximately 5.78 s, on average.

Hawaiian basalt
This 30 µ m thin section of tholeiitic basalt was collected 
from the Hawaiian Scientific Drilling Project (HSDP) 2 
core through the Mauna Kea Volcano, Hawaii. These MM 
data were collected using the scanning SQUID micro-
scope at the MIT Paleomagnetism Laboratory. The bulk 
moment of the sample was also measured using a 2G 
Enterprises 755 Rock Magnetometer in the same labora-
tory. Collection and composition details for this sample, 
as well as the experimental conditions used to obtain the 
MM data, are provided by Weiss et al. (2007b).

Weiss et al. (2007b) measured the NRM and SIRM of 
this basalt thin section. To obtain unidirectional inverse 
solutions in a timely manner, it was found necessary to 
crop the spatial domain to a 13.6 mm × 19.1 mm region 
around the sample and apply dipole thresholding to 
exploit sparse matrix techniques using the lsqlin routine, 
reducing computation time to several weeks. Further 
reductions in execution time required the use of sample 
subdivision to perform piecewise inversions.

We restrict our numerical analyses to the SIRM 
measurements of this sample (Fig.  6), using lsqlin and 
TNT-NN. Due to the prohibitive performance of the 
lsqlin method, we restrict our lsqlin analyses to two 
scenarios at full measurement resolution (dipole spac-
ing of 100  µm): (1) a piecewise scenario where five 

(2)speedup =

exec(LH-NNLS)

exec(TNT-NN)
,
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Fig. 2 Comparison of SIRM magnetic sources for synthetic MM data of the UMN logo for scenarios 1 (a–f) and 2 (g–l): a, g simulated synthetic SIRM 
B z  field in nT calculated from the UMN logo, b, h inverted magnetic sources from the TNT-NN method, c, i inverted magnetic sources from the 
LH-NNLS method, d, j known magnetic sources used to produce the synthetic MM scan (negative values are difficult to discern as their magnitudes 
are approximately an order of magnitude less than the positive values), e, k difference between the TNT-NN and known solutions, f, l difference 
between the LH-NNLS and known solutions. The field of view for each image is 6.7 mm × 5 mm, dipole orientation is out of page, and the units of 
b–f and h–l are Am2
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Fig. 3 Comparison of SIRM magnetic sources for synthetic MM data of the UMN logo for scenarios 3 (a–f) and 4 (g–l): a, g simulated synthetic SIRM 
B z  field in nT calculated from the UMN logo, b, h inverted magnetic sources from the TNT-NN method, c, i inverted magnetic sources from the 
LH-NNLS method, d, j known magnetic sources used to produce the synthetic MM scan (negative values are difficult to discern as their magnitudes 
are approximately an order of magnitude less than the positive values), e, k difference between the TNT-NN and known solutions, f, l difference 
between the LH-NNLS and known solutions. The field of view for each image is 6.7 mm × 5 mm, dipole orientation is out of page, and the units of 
b–f and h–l are Am2
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Fig. 4 Comparison of SIRM magnetic sources for synthetic MM data of the UMN logo for scenarios 5 (a–f) and 6 (g–l): a, g simulated synthetic SIRM 
B z  field in nT calculated from the UMN logo, b, h inverted magnetic sources from the TNT-NN method, c, i inverted magnetic sources from the 
LH-NNLS method, d, j known magnetic sources used to produce the synthetic MM scan (negative values are difficult to discern as their magnitudes 
are approximately an order of magnitude less than the positive values), e, k difference between the TNT-NN and known solutions, f, l difference 
between the LH-NNLS and known solutions. The field of view for each image is 6.7 mm × 5 mm, dipole orientation is out of page, and the units of 
b–f and h–l are Am2
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equally sized horizontal subdivisions (approximately 
13.6  mm ×  4.3  mm) are solved independently and (2) 
using the same 13.6  mm ×  19.1  mm cropped region 
used by Weiss et  al. Using TNT-NN we address two 
scenarios at full measurement resolution (dipole spac-
ing of 100  µm): (1) the same 13.6  mm ×  19.1  mm 
cropped region used by Weiss et  al.and (2) using the 
full 19.0 mm × 25.0 mm measurement domain.

Results are shown in Fig. 7 and Table 2. In Table 2, we 
also include results from the Fourier method of Lima 
et al. (2013) and the measured moment using a 2G. The 
original SIRM field map was bilinearly interpolated to 
produce a 500 ×  400 field map as input to the Fourier 
method which then produced a 500×400 distribution 
of magnetic sources with a dipole spacing of 50 µ m as 
described in (Lima et al. 2013).

For these MM data, TNT-NN offers marked enhance-
ments over lsqlin. We find an acceptable match 
between the numerically obtained magnetic moment 
of the basalt SIRM using TNT-NN, lsqlin, the Fourier 
method, and the measured moment using a 2G. The 
residual RMS values produced by TNT-NN are two 
orders of magnitude lower than that produced by the 
piecewise lsqlin solution. This is due to multiple factors. 
Two partial factors are (1) TNT-NN does not exclude 
any dipole interactions and (2) the lsqlin routine exhibit 
a slow convergence rate leading to early termina-
tion which produces solutions with elevated residuals. 
Relative to lsqlin, TNT-NN primarily improves solu-
tion residuals by solving the full spatial domain of the 
sample to avoid nonphysical artifacts at subdivision 

boundaries, ultimately yielding solutions that are more 
physically representative.

The piecewise inversions of the cropped 
13.6 mm × 19.1 mm domain using lsqlin require 52.3 min 
to calculate a solution. Because these piecewise inver-
sions are independent, they can be solved concurrently, 
requiring a total inversion time that is approximately the 
same as the time required to solve a single subdivision. 
If it is necessary to solve the piecewise inversions serially 
due to computer systems limits the total execution time 
is scaled by the number of subdivisions. In this analysis, 
the serial execution time is approximately 261.3 min.

In contemporary computing systems equipped with 
sufficient memory, lsqlin can be used to solve the entirety 
of the 13.6 mm × 19.1 mm spatial domain of the sample 
without the need for sample subdivision. Without subdi-
visions, the high-residual interfaces in the lsqlin solution 
are removed. This allows the lsqlin method to produce 
solution residuals similar to those of the TNT-NN. How-
ever, this incurs a significant increase in computation 
time, from 52.3 min for a single subdivision to 59.2 h for 
the whole spatial domain. This is an increase over the 
piecewise computation time by a factor of approximately 
70.

Solving the same cropped 13.6 mm × 19.1 mm domain 
in its entirety using TNT-NN requires only 40.98  min, 
which is less than the time required to solve a single sub-
division of one fifth of the problem. This is an improve-
ment of 20% and 600% over the concurrent and serial 
lsqlin execution times, respectively. The residual RMS is 
also improved by two orders of magnitude. Compared to 
using lsqlin to solve the full spatial domain, the computa-
tion time required by TNT-NN to obtain a solution with 
nearly equivalent residual RMS is 86.7 times less.

Expanding the spatial problem domain to the full 
measurement domain (19.0 mm × 25.0 mm) and solving 
for dipoles spaced at the sampling resolution (100 µ m 
spacing) almost doubles the number of active variables, 
from 25,976 to 47,500. While this improves the residual 
RMS, the improvement is not as significant as the shift 
away from using subdivisions for piecewise inversion. For 
the minor improvement in residual RMS, there is a 1.31 h 
penalty on total execution time to compute the solution, 
almost 200% longer. Despite the increase in problem 
size, there is no need to address the scan in a piecewise 
manner.

Ferromanganese crust
The ferromanganese crust thin section was collected 
from the Takuyo–Daigo Seamount (22◦41.04′  N 153◦

14.63′  E, at a depth of 2239  m below the water surface) 
as sample HPD#954-R10. This sample is 19 ×  19  mm, 
30–60 µ m in thickness, and has previously been used 

Fig. 5 Relative execution time performance enhancement provided 
by TNT-NN over LH-NNLS for scenarios 1 through 6. Relative 
enhancement is reported as speedup, which is the ratio of the 
LH-NNLS to TNT-NN execution times. The least amount of speedup 
provided by TNT-NN over LH-NNLS is 10.3. This occurs in scenario 1 
where there are no variables requiring constraint
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for paleomagnetic study by Noguchi et  al. (2017b). The 
SIRM MM data were obtained using a Scanning SQUID 
Microscope at the Geologic Survey of Japan, National 
Institute of Advanced Industrial Science and Technology 
(Oda et al. 2016). Hysteresis loops were measured with a 
Princeton Measurement Corporation Alternating Gradi-
ent Force Magnetometer at the same laboratory. The first 
use of this thin section for MM experimentation was by 
Noguchi et  al. (2017a), who also provide additional col-
lection, composition, and MM experimental conditions.

We restrict our comparisons to the SIRM measure-
ments of this sample (Fig.  8), using lsqlin and TNT-
NN. We address three scenarios: (1) using 25% of the 
2-dimensional spatial sampling resolution (200  µ m 
dipole spacing) over the entire 32.1 mm × 30.1 mm meas-
urement domain (the same scenario presented by Nogu-
chi et al. (2017b)), (2) using a dipole spacing of 160 µ m, 
which is approximately half the sensor-to-sample dis-
tance (319 µm), over a 23.1  mm ×  24.1  mm cropped 

region around the sample, and (3) using a dipole spacing 
of 160 µ m over the entire 32.1 mm × 30.1 mm measure-
ment domain. Due to the prohibitive performance of the 
lsqlin method, we restrict our lsqlin analyses to scenario 
2. We use TNT-NN to address all three scenarios.

Results are shown in Fig. 9 and Table 3. In all scenarios, 
the numerical methods obtain magnetic sources with 
similar remanence magnetization (the arithmetic mean 
of these is 4.62 ×10−8  Am2 ). These results are on the 
same order of magnitude, but slightly less than the meas-
ured remanence magnetization for this sample obtained 
by experimental hysteresis (7.52 ×10−8  Am2 , found by 
Noguchi et  al. (2017b, Table  S1)). lsqlin produces the 
highest residual RMS value of all scenarios due to early 
termination (reaching the maximum number of itera-
tions). TNT-NN yields lower residual RMS values that 
are similar for all three inversion scenarios. For these 
scenarios, the largest solution residual RMS is caused by 
decreasing the inverse solution resolution and scan area 

Fig. 6 At left is a reflected light photo of the Hawaiian basalt thin section. At right is the SIRM B z  field map (the positive z-direction is out 
of page) obtained with a scanning SQUID in nT at a 100 µ m resolution with a sensor-to-sample distance of 200 µ m. The B z  field of view is 
19.0 mm × 25.0 mm
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Fig. 7 Comparison of SIRM magnetic sources within the Hawaiian basalt thin section. a The piecewise inverse solution produced using lsqlin using 
sample subdivision (for a cropped 13.6 mm × 19.1 mm region of the original scan). b The inverse solution produced using TNT-NN for a cropped 
13.6 mm × 19.1 mm region of the original scan. The lsqlin solution for the same scenario is visually identical. c The inverse solution produced using 
TNT-NN for the full 19.0 mm × 25.0 mm scan region cropped to a 19.1 mm × 13.6 mm view. d Solution residuals for (a). High-magnitude residuals 
at subdivision interfaces are evident as blue fringing-fields at the sample boundaries. e Solution residuals for (b). The lsqlin solution residuals for the 
same scenario are visually identical. f Solution residuals for (c). The field of view of each image is 13.6 mm × 19.1 mm, dipole orientation is out of 
page, and units are Am2 for a–c and nT for d–f 
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(scenario 2). Reducing the field of view so there is less 
area surrounding the sample causes a small increase in 
solution residual RMS. It is unlikely that this increase is 
significant enough to affect interpretation, as can be seen 
by comparing Fig. 9b, e to 9c, f, respectively.

All numerical solutions appear to increase in blurri-
ness from the right to the left across the sample area. The 
original inversion published by Noguchi et  al. (2017b, 

Figure S8) exhibits the same trait. There are multiple fac-
tors that could be responsible for this trait, including an 
irregular sample surface or inconsistent sensor-to-sample 
distance. Because the original sample varied in thickness 
from 30–60 µ m, it is possible that the sample surface was 
not coplanar with the surface of the SSM sensor path. 
This would result in an inconsistent sensor-to-sample 
distance and ultimately an inconsistent spatial resolution.

For conventional NNLS methods, scenarios 1 and 2 are 
solvable, albeit on a scale comparable to problems that 
required computation times of “several weeks” (Weiss 
et  al. 2007a) or several days in these analyses [see the 
Hawaiian basalt inversion in Weiss et al. (2007b)]. Alter-
native methods could reduce computation time at the 
cost of solution residuals (like those in the piecewise lsq-
lin basalt solution shown in Fig. 7d). Here, lsqlin required 
5.26 times more computation time than TNT-NN to 
solve scenario 2. For TNT-NN, solving scenarios 1, 2, 
and 3 required 0.94, 1.18, and 7.89 h, respectively. This is 
slightly more than 10 h of cumulative computation time.

Speleothem
Speleothems have shown to be excellent natural record-
ers of magnetic signals (Latham et  al. 1979; Morinaga 
et  al. 1985, 1989; Osete et  al. 2012; Strauss et  al. 2013; 
Font et  al. 2014; Bourne et  al. 2015; Lascu et  al. 2016; 
Jaqueto et al. 2016; Ponte et al. 2017; Zhu et al. 2017) as 
they are able to capture and preserve within their calcite 
matrix, detrital magnetic minerals from airborne par-
ticles, drip water or stream water from flood events as 
well as in situ iron oxy-hydroxide precipitates (Lascu and 
Feinberg 2011; Denniston and Luetscher 2017).

The stalagmite analyzed here, SVC982, originates from 
Spring Valley Caverns (SVC) in Fillmore County, Minne-
sota, USA, in the Root River watershed of the Upper Mis-
sissippi Valley. Additional field site and sample collection 
details are provided by Dasgupta et al. (2010). A 100 µ m 
thin section from the top ∼ 5 cm of the speleothem was 
prepared for SQUID microscopy using non-magnetic 
equipment and binding materials. In order to obtain a 
unidirectional field map suitable for inversion, the sample 
was magnetized using a 1 T field oriented perpendicular 
to the thin section plane, which resulted in the specimen 
acquiring a SIRM.

The MM data were collected using the scanning 
SQUID microscope at the MIT Paleomagnetism Labora-
tory. SQUID microscope measurements were performed 
inside a magnetically shielded environment (ambient field 
< 100 nT), using a high-precision scanning stage, which 
allowed data collection along a square grid with 100 µ m 
spacing. The sensor-to-sample distance was 200  µ m. 
Typical scan times for a ∼ 10 cm2 area were 16.5 h. The 
bulk moment of the sample was also measured using a 

Table 2 Summary of  the  unidirectional basalt inversion 
parameters and results

The first column shows the method used to obtain results: the numerical 
method or a 2G Enterprises Superconducting Rock Magnetometer (2G, shown 
in the final row). The second column, P, is the number of sample points collected 
by the scanning SQUID microscope. We set the number of dipoles, equal to the 
number of samples for each inversion. The third and fourth columns give the 
unidirectional orientation of the dipoles as used for NNLS analysis. The fifth 
column lists the moment, m. The final column provides the residual RMS of the 
NNLS fits with the B z  field. 2G data were obtained from Weiss et al. (2007b)

Method P θ ( ◦) φ ( ◦) m (Am2) Residual 
RMS (nT)

lsqlin piecewise 25976 0 0 1.6× 10
−6 1140

lsqlin 25976 0 0 2.7× 10
−6 75.8

TNT-NN 25976 0 0 2.7× 10
−6 27.3

TNT-NN 47500 0 0 3.1× 10
−6 16.2

Fourier 200000 0 0 2.5× 10
−6 685

2G – 0± 1 0± 1 2.2× 10
−6 –

Fig. 8 Ferromanganese crust SIRM B z  field map (the positive 
direction is out of page) obtained by scanning SQUID in nT at a 
100 µ m resolution with a sensor-to-sample distance of 319 µ m. The 
field of view is 30.1 mm × 32.1 mm
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Fig. 9 Comparison of SIRM magnetic sources within the ferromanganese crust thin section. All inversions were performed using TNT-NN. a The 
SIRM magnetic moments found using a dipole spacing of 200 µ m, and cropped to a 23.1 mm × 24.1 mm field of view, b the SIRM magnetic 
moments found using a 23.1 mm × 24.1 mm cropped view and a magnetic source resolution of half the sensor-to-sample distance (160 µ m 
dipole spacing), c the SIRM magnetic moments found using the full 30.1 mm × 32.1 mm view and a magnetic source resolution of half the 
sensor-to-sample distance (160 µ m dipole spacing) shown using the same 23.1 mm × 24.1 mm field of view as a and b, d solution residuals of a, e 
solution residuals of b, and f solution residuals of c. Dipole orientations are out of page and units are Am2 for a–c and nT for d–f 

Table 3 Summary of the unidirectional ferromanganese crust inversion parameters and results

The first column shows the method used to obtain results: the numerical method or hysteresis (shown in the final row). The second column shows the scenario with 
which the parameters and results are associated. The third column, P, is the number of sample points collected by the scanning SQUID microscope. The fourth column, 
Q, is the number of dipoles in the solution of each inversion. The fifth and sixth columns give the unidirectional orientation of the dipoles as used for NNLS analysis. 
The seventh column lists the moment, m. The final column provides the residual RMS of the NNLS fits with the B z  field. Hysteresis data were obtained from Noguchi 
et al. (2017b, Table S1)

Method Scenario P Q θ ( ◦) φ ( ◦) m (Am2) Residual RMS (nT)

TNT-NN 1 96621 24000 0 0 4.85× 10
−8 2.48× 10

−1

lsqlin 2 55671 21600 0 0 4.38×10
−8 5.72× 10

−1

TNT-NN 2 55671 21600 0 0 4.38× 10
−8 3.56× 10

−1

TNT-NN 3 96621 37600 0 0 4.85× 10
−8 2.35× 10

−1

Hysteresis – – – 0 0 7.52× 10
−8 –
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2G Enterprises Rock Magnetometer at the Institute for 
Rock Magnetism in the Department of Earth Sciences at 
the University of Minnesota.

The magnetic minerals within this speleothem are rela-
tively sparse due to depositional layering, seen in Fig. 10. 
Although this sparse spatial distribution of magnetic 

material gives rise to a similarly sparse inverse solution, 
the problem itself is still dense because the Jacobian 
matrix is dense.

Results are shown in Table  4 and Fig.  10. We find an 
acceptable match between the numerically obtained 
magnetic moment of the speleothem SIRM using 

Fig. 10 Inversion results for the SVC982 speleothem: a an image of the SVC982 speleothem, b the SIRM B z  field map (the positive direction is out 
of page) obtained by scanning SQUID in nT with the color range scaled to show all the flood layers (the maximum intensity is 3256.4 nT), c the SIRM 
magnetic moments found using the TNT-NN unidirectional inversion (dipoles out of page) in Am2 with 100 µ m dipole spacing, and d the solution 
residuals in nT. The high-magnitude residuals located in the upper right of (d) are attributable to contamination present during scanning SQUID 
data acquisition. The field of view for the bottom three images is 50.1 mm × 18.1 mm
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TNT-NN, the Fourier method, and the measured 
moment using a 2G. Due to sample dimensions and 
instrument configuration, it was necessary to magnetize 
the sample in the orientation of speleothem growth. The 
bulk measured moment could be smaller due to the elon-
gated nature of the sample, which is not optimal for the 
2G coil configuration, which is designed for equidimen-
sional samples. The moment could also be affected by the 
differing numerical and experimental orientations, due 
to possible magnetic anisotropy of the sample. Two addi-
tional numerical reasons contribute to the moment of the 
TNT-NN solution being higher than the moment of the 
Fourier solution: (1) the nonphysical sources introduced 
by TNT-NN inflate the net magnetic moment, and (2) 
the Fourier solution has variables that do not conform to 
the non-negativity constraint which deflate the net mag-
netic moment of the solution. However, we are not trying 
to perfectly match the experimental results. Instead, the 
purpose of this comparison is to determine whether the 
numerical results are physically reasonable.

The solution residual RMS for this inversion is the 
same order of magnitude as the residual RMS values for 
the ferromanganese crust inversions and two orders of 
magnitude lower than the TNT-NN residual RMS val-
ues for the basalt inversions. The residual RMS produced 
using TNT-NN is lower than that of the Fourier solution; 
however, both are the same order of magnitude.

One source of high-magnitude residuals in the speleo-
them inverse solution can be traced to contamination of 
the MM scanning environment, outside the sample area 
(Fig.  10). Removing the magnetic sources and residuals 
that are not associated with the sample is easily done in 
postprocessing. Accounting for the interactions of the 
sample dipoles with the contamination dipoles remains 
non-trivial. Removing the solution residuals in the spatial 
vicinity of the contamination only reduces overall resid-
ual RMS by 0.169 nT to 0.599 nT.

The remaining sources of high-magnitude residuals 
are magnetic sources that are high-magnitude relative 
to the remainder of the sample. This difference in mag-
netic source magnitude is significant enough to appear as 
a sharp discontinuity. Such interfaces are a major source 

of residuals for methods that minimize the L2-norm, 
like NNLS, as those methods will naturally smooth such 
interfaces.

This is the largest spatial inversion solved to date, by a 
factor of 2.26 (the ferromanganese crust scenario 2 pre-
sented here is the second largest). Despite the scale of 
this problem, TNT-NN required just over 24 h of compu-
tation time to produce a solution.

Discussion
To achieve reasonable computation times, prior 
approaches to solving the unidirectional MM inverse 
problem used lsqlin in lieu of LH-NNLS and to incorpo-
rate techniques to reduce computational difficulty (sam-
ple subdivision, dipole thresholding, reducing resolution, 
etc.). TNT-NN provides a transformative method for 
accelerating the computation of the full spatial unidirec-
tional MM inverse problems, without the need to modify 
the problem in a manner that reduces resolution or the 
physicality of the solution. For all samples, synthetic and 
natural, the TNT-NN method consistently offers per-
formance enhancement over alternative methods via 
reduced execution time and solution residual, as seen in 
Fig. 11.

TNT-NN always requires less time to produce a solu-
tion than the other methods tested. For the synthetic 
UMN logo problem, TNT-NN and LH-NNLS produced 
identical solutions but TNT-NN was 623 times faster, 
on average. Using lsqlin to solve the piecewise Hawai-
ian basalt inversion problem yields the closest execution 
time to TNT-NN. The execution time required of lsq-
lin to solve the Hawaiian basalt inversion problem in its 
entirety increases to 59.2 h when solving it in its entirety, 
86.7 times slower than TNT-NN.

The computation time spent by TNT-NN to obtain 
solutions for the ten inversion scenarios presented here 
totals 1.54 days. Approximately 87% of the total com-
putation time was spent on two of the largest problems, 
requiring 24.36 and 7.89  h, respectively. The remaining 
problems were all solved in under 1.5 h each.

Table 4 Summary of the unidirectional speleothem inversion parameters and results

The first column shows the method used to obtain results: the numerical method or a 2G Enterprises Superconducting Rock Magnetometer (2G, shown in final row). 
The second column, P, is the number of sample points collected by the scanning SQUID microscope. The third column shows that we set the number of dipoles, Q, 
equal to the number of samples for this inversion. The fourth and fifth columns give the unidirectional orientation of the dipoles as used for NNLS analysis. The sixth 
column lists the moment, m. The final column provides the residual RMS of the NNLS fits with the B z  field

Method P Q θ ( ◦) φ ( ◦) m (Am2) Residual RMS (nT)

TNT-NN 90681 90681 0 0 2.16× 10
−8 7.68× 10

−1

Fourier 90681 90681 0 0 1.43× 10
−8 9.54× 10

−1

2G – – 90 270 1.33× 10
−8 –
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The trivial synthetic UMN logo inversion problem is 
the only case where a competing method matches the 
residual RMS produced by the TNT-NN solution. For the 
more computationally intense natural samples, only the 
small inversions of the Hawaiian basalt and ferromanga-
nese crust were attempted using an alternative method. 
Other scenarios were considered large enough to be 
intractable and computational tactics violating physical-
ity (piecewise inversion and dipole thresholding) were 
undesirable.

Relative to the piecewise lsqlin Hawaiian basalt solu-
tion, the residual RMS of other solutions are two orders 
of magnitude lower. When using lsqlin to solve the 
entire spatial domain of the Hawaiian basalt and fer-
romanganese crust samples, the residual RMS is the 
same order of magnitude as that of TNT-NN. However, 
this incurs additional computation time relative to the 
TNT-NN method. The TNT-NN algorithm exhibits a 
minor increase in residual RMS for tested scenarios that 
increase the spatial domain (field of view) around the 
sample or reduce resolution. The characteristics of the 
residual RMS produced by TNT-NN can be attributed to 
the design of the TNT-NN algorithm.

The core least-squares solver used in TNT-NN (simply 
named TNT) will, under perfect circumstances, solve the 
preconditioned system of equations in a single iteration. 
Because computers cannot yet avoid numerical rounding 
errors, it is more common that TNT will iterate as long 
as the residual is decreasing. The computational cost of 
these iterations is relatively low compared to calculating 
the TNT preconditioner. As such, early termination has 
not been found to be necessary in practice (Myre et  al. 
2018).

Different types of regularization are introduced by the 
TNT-NN method and by Fourier method of Lima et al. 
(2013). Whereas both methods assume a fixed direction 
for the magnetization as a general regularization strat-
egy, the TNT-NN method selects a solution by imposing 
strict non-negativity on the solution and stopping after a 
convergence criterion is met (no improvement in solu-
tion residual); similarly, Wiener deconvolution and win-
dowing/filtering further regularize the inverse problem 
in the Fourier domain. Which regularization scheme per-
forms best depends on the specific data being inverted 
and whether the underlying assumptions of each scheme 
(e.g., non-negativity and smoothness of the solution) are 
expected based on additional information about the sam-
ple. In particular, the overall smoothness of the solution 
should be carefully analyzed as downward continuation 
of the magnetic data from the measurement plane to the 
sample plane is intrinsic to this type of inverse problem. 
Thus, one should determine the amount of regulariza-
tion needed by assessing whether fine-scale changes and 
peaking in the solution are real or stem from noise mag-
nification at higher spatial frequencies. When available, 
additional information on the magnetization, such as net 
moment measurements, can further guide the choice of 
regularization parameter(s).

The TNT-NN method is able to produce solutions to 
all of the samples using the full spatial domain with-
out the need to avoid any computational roadblocks. 
However, undesirable effects appear in the solutions. 
Without incorporating any regularization techniques, 
least-squares methods, and any method minimizing 
the L2-norm, will produce smooth solutions. The con-
sequence of a smooth solution is that high frequency 

Fig. 11 Execution time (left) and residual RMS (right) results are shown for all samples. For these samples TNT-NN always produces a solution in less 
execution time than alternative methods. Like many linear algebra methods, TNT-NN execution time is strongly linked to problem size. Excluding 
trivial problems (the synthetic UMN logo), TNT-NN always produces residual RMS values that are less than or equal to those produced by competing 
methods. Without violating compact support, the residual RMS value produced by TNT-NN for a given sample is relatively consistent. Variations in 
resolution or increasing the measurement domain around the sample provides less than an order of magnitude improvement in residual RMS



Page 21 of 26Myre et al. Earth, Planets and Space           (2019) 71:14 

signals can be lost. In this sense, least-squares methods 
act like low-pass filters. This low-pass filtering effect is 
highly likely to occur at the edge of sample, where sharp 
discontinuities are present. The effect manifests as a 
nonphysical “halo” in the spatial solution that begins 
near discontinuities and diminishes in magnitude with 
sampling distance from the sample. These nonphysical 
sources can artificially elevate the net moment of the 
solution. Without additional constraints or regulariza-
tion this effect will persist.

The haloing effect is most apparent in the low-resolu-
tion synthetic UMN logo spatial solutions. The smooth 
transition of the halo region is evident in Fig. 12, where 
a transect of the TNT-NN and known solutions, and 
the difference thereof, for scenario 3 of the synthetic 
UMN logo are shown. The spatial basalt and ferroman-
ganese crust solutions also exhibit haloing but it is not 
immediately apparent. Haloing is not obvious in the 
spatial solution for the SVC982 speleothem sample, but 
it is present in low intensities along the depositional 
bands.

Fourier techniques (Lima et  al. 2013; Baratchart et  al. 
2013) produce high-quality solutions faster than spatial 
domain techniques. However, an issue similar to halo-
ing exists in Fourier solutions. This issue is nonphysical 
artifacts that manifest as over- and undershoot at sharp 
interfaces (Hewitt and Hewitt 1979). This was originally 
discovered by Wilbraham in 1848 but has since come 
to be known as Gibb’s phenomenon (Gottlieb and Shu 
1997). In the context of unidirectional MM inverse prob-
lem, undershoot would qualify as a non-negativity con-
straint violation.

When comparing TNT-NN and Fourier solutions for 
the Hawaiian basalt sample (Fig. 13), it is seen that under-
shoot violating non-negativity occurs at sample bounda-
ries. More accurately, undershoot occurs at strong 
gradients in the solution (a strong difference in adjacent 
magnetic moments). This can be seen when comparing 
the TNT-NN and Fourier solutions for the speleothem 
sample (Fig.  14). For this sample, undershoot does not 
occur at sample boundaries, instead it is localized to iso-
lated strongly magnetic grains. Despite the presence of 
undershoot, the Fourier method produces high-quality 
solutions. These solutions could potentially be exploited 
as a “starting point” to reduce computation time for spa-
tial domain inversion using TNT-NN.

Nonphysical “halos” introduce correspondingly non-
physical magnetic sources in the solution. Despite many 
of these sources being relatively low magnitude, together 
they affect the bulk moment of the solution. This can be 
seen in all least-squares results presented here as bulk 
moment typically increases with the number of dipoles. 
As more solution dipoles are available, more dipoles can 
be artificially “inflated” in the nonphysical halo. Fourier 
solutions obtained using postwindowing can also have 
low magnitude, nonphysical magnetic sources intro-
duced to the solution. Postwindowing acts as a low-pass 
filter acting to smooth the solution at sharp discontinui-
ties by spreading the solution in space.

Ultimately, TNT-NN is capable of solving the full 
unidirectional MM inverse problem on timescales that 
are less than or equal to the time required to perform 
the data acquisition scan using an MM. This provides a 
means to effectively steer experimentation.

Fig. 12 Horizontal transects through the center of the synthetic UMN logo results for scenario 3. Shown at left are the TNT-NN solution and known 
solution and at right is the difference thereof. Without additional regularization, least-squares methods act as low-pass filters which produce 
solutions that are naturally smooth. This can manifest as a “spreading” of the solution in space as seen at the right. This behavior does not allow the 
least-squares solution to fully capture the sharp interfaces in the known solution
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Future directions
We recognize at least three avenues to improve the 
use of the TNT-NN method for analyzing MM scans: 
incorporating regularization techniques into TNT-NN, 
parallelizing the TNT-NN method, and preloading the 
TNT-NN active set.

Incorporating regularization techniques into TNT-
NN has the potential to reduce the low-pass filtering 
effects (haloing) of the least-squares method at the core 
of the inversion process. This should improve solutions 
at high gradient transitions, like those typically found 
at edges of samples. Current techniques and software 
that are potentially applicable for this purpose include 
a 1-norm regularization with sparsity prior (Bach et al. 
2011), the min-TV regularizer from L1 Magic (Candès 
et al. 2006), and Matlab CVX (Grant et al. 2008, 2013).

Second, the problem sizes TNT-NN is capable of 
solving, as well as the execution time performance of 
TNT-NN, could be increased with a parallel implemen-
tation for large-scale distributed memory computer 
systems. Such an implementation could exploit exit-
ing parallel linear algebra routines for such machines 
(Blackford et  al. 1997). Additional performance 
improvements might be found in modern multi- or 
many-core heterogeneous computing systems incorpo-
rating computational accelerators, like General Purpose 
Graphics Processing Units (GPGPUs) (Walsh et  al. 
2009), and related linear algebra routines (Tomov et al. 
2010a, b; Dongarra et al. 2014).

Third, it is possible that combining the frequency 
domain inversion technique (Lima et al. 2013; Baratchart 
et  al. 2013) and the TNT-NN spatial domain technique 
could lead to a more accurate and balanced inversion 
method. This balanced approach would use the extremely 
fast frequency domain technique to generate an initial 
starting point for the TNT-NN method. The frequency 
domain solution, x , would be the initial TNT-NN solu-
tion and the variables that fulfill x <= 0 would load the 
initial TNT-NN active set. With this starting point, the 
number of TNT-NN iterations to convergence should be 
reduced and the runtime performance of the TNT-NN 
method should improve.

Improving the dynamic nature of MMs likewise 
improves the dynamic nature of MM experimentation. 
The prohibitively long time required to produce results 
has made experiments requiring the analysis of very large 
MM scans and large quantities of MM scans challenging. 
Significantly reducing analysis time enables these types 
of experiments to be performed. For example, stepwise 
demagnetization studies requiring a number steps that 
might have previously taken months to solve could now 
be reduced to the time required to perform the demag-
netization and MM scan steps.

The spatial inversion of large-scale high-resolu-
tion MM scans is also enabled through TNT-NN. 
The need to address such data sets will continue with 
the development of novel applications and improve-
ments in sampling resolution of MM devices. Recently 

Fig. 13 A comparison of spatial and frequency domain inversion results for the Hawaiian basalt sample showing a the SIRM magnetic moments 
found using the TNT-NN unidirectional inversion (dipoles out of page) with 100 µ m dipole spacing, b the SIRM magnetic moments found using the 
Fourier technique of Lima et al. (2013) with 100 µ m dipole spacing, and c the Fourier solution where only the dipoles violating the non-negativity 
constraint (undershoot) are shown. The TNT-NN solution was obtained using an a 19.0 mm × 25.0 mm spatial domain and the Fourier solution was 
obtained using a 20.0 mm × 25.0 mm spatial domain. The cropped field of view for all images is 13.6 mm × 19.1 mm. All units are Am2
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developed quantum diamond microscopes (QDMs) 
(Glenn et  al. 2017) have improved sampling resolu-
tion beyond standard MMs to 5 µ m, with sensitivities 
comparable to scanning SQUID microscopes. QDMs 
can produce data sets 100 times larger than prior MMs 
for the same scan area. Accelerated inversion schemes 
are critical to these large address data sets. Finally, a 

novel application of MMs is the combination of micro-
to-nano tomography and MM scanning to determine 
the magnetic moments of an assemblage of particles 
in a 3D matrix (deGroot et  al. 2018). These magnetic 
moments are determined using a least-squares formu-
lation, so for any studies of this nature TNT could offer 
enhanced performance. TNT-NN could do the same 
for any similar studies examining SIRMs.

Fig. 14 A comparison of spatial and frequency domain inversion results for the SVC982 speleothem showing a the SIRM magnetic moments 
found using the TNT-NN unidirectional inversion (dipoles oriented out of page) with 100 µ m dipole spacing, b the SIRM magnetic moments found 
using the Fourier technique of Lima et al. (2013) with 100 µ m dipole spacing (dipoles oriented out of page), and C the Fourier solution where only 
non-negativity constraint violations (undershoot) are shown (bottom). The field of view for all images is 50.1 mm × 18.1 mm. All units are Am2
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Conclusions
This work demonstrates that the TNT-NN algorithm is a 
worthwhile extension to the existing spatial least-squares 
unidirectional inversion method. TNT-NN significantly 
reduces computation time and solution residual for all 
presented non-trivial inversions. For trivial inversions, 
alternative methods are capable of producing equivalent 
solution residuals but they are unable to match the runt-
ime performance of TNT-NN. The TNT-NN method 
provides a powerful extension to the spatial least-
squares inversion of MM data as it is a key component 
to overcoming the computational roadblocks that have 
previously accompanied spatial MM inversions while 
accelerating processing time and reducing solution resid-
ual. With TNT-NN, the time required to obtain magnetic 
source maps from MM scans can be reduced to less than 
the time required to perform the scan itself. Matching 
these timescales establishes a scanning and processing 
pipeline, where analysis can begin as soon as MM scan-
ning is complete and inversion results are obtained in the 
time it takes to complete a second scan.
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