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Frequency-Aware Model Predictive Control
Ruben Grandia1, Farbod Farshidian1, Alexey Dosovitskiy2, René Ranftl2, Marco Hutter1

Abstract—Transferring solutions found by trajectory optimiza-
tion to robotic hardware remains a challenging task. When
the optimization fully exploits the provided model to perform
dynamic tasks, the presence of unmodeled dynamics renders
the motion infeasible on the real system. Model errors can
be a result of model simplifications, but also naturally arise
when deploying the robot in unstructured and nondeterministic
environments. Predominantly, compliant contacts and actuator
dynamics lead to bandwidth limitations. While classical control
methods provide tools to synthesize controllers that are robust
to a class of model errors, such a notion is missing in modern
trajectory optimization, which is solved in the time domain.
We propose frequency-shaped cost functions to achieve robust
solutions in the context of optimal control for legged robots.
Through simulation and hardware experiments we show that
motion plans can be made compatible with bandwidth limits
set by actuators and contact dynamics. The smoothness of the
model predictive solutions can be continuously tuned without
compromising the feasibility of the problem. Experiments with
the quadrupedal robot ANYmal, which is driven by highly-
compliant series elastic actuators, showed significantly improved
tracking performance of the planned motion, torque, and force
trajectories and enabled the machine to walk robustly on terrain
with unmodeled compliance.

Index Terms—Legged Robots, Optimization and Optimal Con-
trol.

I. INTRODUCTION

TRAJECTORY optimization based on the full dynamics
of a robotic system provides a flexible tool to generate

complex motion plans. It enables the system to exploit the
dynamic capabilities of the robot to achieve a task. State-
of-the-art approaches are able to rapidly find solutions while
incorporating increasingly complex model descriptions, which
allows using trajectory optimization in a Model Predictive
Control (MPC) fashion. However, relying on the specific struc-
ture of the model makes implementation of the synthesized
motion plans prone to modeling errors. Executing motion plans
on hardware has therefore proven to be nontrivial and often
requires manual, task-dependent tuning of cost functions and
constraints to achieve feasible motions.
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Fig. 1. The quadruped robot ANYmal [1] trotting in place on non-rigid
terrain. This experimental setup is used to test the controller’s robustness
against unmodeled contact dynamics.

A major source of modeling error is the treatment of
actuators as perfect torque sources. Any real system is sub-
ject to bandwidth limits and as such is not an ideal torque
source. A similar modeling error occurs when assuming a
rigid contact with the ground. The rigid contact essentially
provides the optimizer with infinite bandwidth control over
the contact forces. This assumption generally does not hold
during locomotion in outdoor environments or on compliant
surfaces as shown in Fig. 1. As a result, motion plans generated
assuming idealized contact and actuator dynamics cannot be
tracked by the hardware, leading to poor tracking performance
or failure of the locomotion controller.

In this paper, we extend MPC methods for legged loco-
motion to situations where the assumptions of rigid ground
and perfect actuators are invalid. The selected baseline model
describes the 6 degrees of freedom Center of Mass (CoM)
dynamics and motion of each leg. Simultaneous optimization
of footstep location and contact interaction is achieved by
having both contact forces and joint velocities as control
inputs. We address the issues of inherent bandwidth limits
in real robots by adapting the cost function to be frequency-
dependent, making it possible to penalize high frequencies
in the motion plans. The solver, therefore, does not have to
reason about the exact details of terrain and actuator dynamics
but will produce solutions that are achievable under the
bandwidth limits. We show that motion plans generated with
our frequency-aware trajectory optimization can be followed
by the hardware more accurately than those generated with a
standard baseline and enables locomotion on compliant terrain.

A. Related work

Local feedback stabilization around a planned motion is
a well-known technique to mitigate modeling errors [2], [3],
[4], [5] and has led to successful soft ground walking for a
bipedal robot [6]. However, especially for dynamic motions,
performance can be increased by providing a high-quality
feedforward term. The effort in this work to improve the
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feasibility of the feedforward term and state reference can
be seen as complementary to local stabilization strategies.
Moreover, disturbances can be rejected by adjusting the motion
plan through fast replanning, reducing the burden on the
feedback controller.

In the case of a series elastic actuator, the dynamics can
be approximated and added to the model. The optimization
algorithm is in those cases able to exploit the properties of
the specific actuator and adding spring-damper elements to
the joints is even known to result in motions that resemble
those found in nature [7]. For series elastic actuators, methods
have been proposed to incorporate bandwidth, torque, and joint
limits in a computationally efficient way [8][9][10]. However,
very often we do not have exact details of actuators and
modeling them would lead to high engineering effort. More-
over, since parts of the underlying actuator dynamics have
very different time constants, smaller timesteps are required.
This leads to slower update rates, preventing such models
from use in MPC with complex systems. Additionally, stability
problems can arise when a limb with stiffly modeled actuators
makes contact with the environment [11]. We avoid such issues
by not explicitly modeling the actuators, but by incorporating
well-known bandwidth limitations up to which the perfect
tracking assumption is valid.

While model parameters for actuators can be obtained
from first principles or through repeated experiments, contact
dynamics are considerably harder to model or predict. A com-
bination of learning a terrain model and trajectory optimization
has been proposed in [12]. However, such methods have not
yet reached real-time capabilities.

In the context of contact invariant optimization, soft contact
models [13] or contact smoothing [14] are used inside trajec-
tory optimization. These models are selected and tuned for
their numerical properties rather than physical accuracy. The
models need to be smooth since the highly coupled interaction
between stiff contact dynamics and slow dynamics of the robot
lead to poor convergence of the algorithms. In the worst case,
this numeric model tuning can lead to highly undesired effects
when the optimizer starts exploiting dynamic properties of the
terrain which are entirely wrong.

Reasoning over higher order terms results in solutions with
a higher degree of continuity, which improves performance
on hardware considerably. This can be achieved by selecting a
smooth parameterization of the solution space as done in spline
based optimization [15], [16], [17], collocation methods [18],
[19], or when using dynamic motion primitives [20]. This,
however, limits the motions that can be expressed and can
often require a problem-specific, manual tuning procedure.
Alternatively, higher derivatives can be selected as the control
inputs in MPC [21]. In Sect. II-D we show that this formu-
lation can be interpreted as a special case of the presented
frequency weighting method.

As an alternative to higher order formulations or explicitly
modeling actuator dynamics, we propose to encode bandwidth
limits through the cost function. A trivial way to do so is
to put extra costs on input signals, but this results in slower
response overall and goes against the desire to perform highly
dynamic motions at the limits of the system. Instead, we intend

to explore a different approach and propose to use a frequency-
dependent cost function [22]. We penalize control actions only
in the high frequency range and combine this idea with a
modern optimal control framework [23], [24].

Frequency-based approaches have been proposed with sev-
eral applications in both the MPC and legged robotic commu-
nities. In [25] constraints on the output spectrum are formed in
the frequency domain. However, the proposed window-based
constraints approach requires previous and future decision
variables, which negatively affects the Riccati-sparsity pattern
exploited in optimal control methods. In [26], a Fourier
transform has been used to find a closed form solution for
momentum compensation of the lower body with the upper
body. In contrast to our setting where the unmodeled dynamics
are unknown, the forces that are to be compensated for are
assumed to be known based on a full rigid body dynamics
model.

B. Contributions

We introduce frequency-dependent cost functions integrated
into modern MPC strategies for legged locomotion. Through
simulation experiments, we study the effect of such a cost
function on the resulting solutions. The proposed method
provides the user with an intuitive way to achieve robust-
ness against unmodeled phenomena like actuator bandwidth
limits and non-rigid contact dynamics. These findings were
successfully validated in hardware experiments on different
grounds. Using frequency-shaped cost functions, we could
improve the robustness of ANYmal while locomoting under
substantial external disturbances coming from external pushes
or unmodeled soft ground.

II. METHOD

First, we discuss uncertainty in the dynamics from a robust-
ness point of view and motivate the particular choice of cost
functions. Afterward, the integration with a Sequential Linear
Quadratic Model Predictive Control (SLQ-MPC) method [24]
is presented. This method, based on Differential Dynamic
Programming, relies on a linear approximation of the dynamics
and a quadratic approximation of the cost function around the
latest trajectory.

For brevity of notation in the current section, and without
loss of generality, we consider the following quadratic cost
function without linear and mixed state-input costs,

J =
1

2

∫ ∞
0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt, (1)

where Q is the positive semi-definite state cost Hessian and
R is the positive definite input cost Hessian.

A. High frequency robustness

Consider a linear plant G(jω) with unstructured multiplica-
tive uncertainty model L(jω),

G̃(jω) = [I + L(jω)]G(jω), (2)

σ̄[L(jω)] < lm(ω), ∀ω ≥ 0, (3)
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Fig. 2. Example of the frequency-shaped cost function for α = 0.01,
β = 0.1, and the standard input costs in the frequency domain. Costs are
normalized by R.

where σ̄ is the maximum singular value of the disturbance
model and lm(ω) is a frequency-dependent upper bound. The
closed loop stability condition for these models is [27],

lm(ω) <
¯
σ[I +GK(jω)−1], (4)

where
¯
σ is the minimum singular value, and GK(jω) is the

transfer function of plant and controller together.
To be robust against large uncertainties at high frequencies,

according to (4), the loop gain, GK(jω), should be kept low.
Intuitively, penalizing inputs at the high frequencies reduces
the feedback gain at those frequencies, which allows for larger
uncertainty magnitude, lm(ω). We therefore propose to use the
following frequency-dependent input weighting

R̃(ω) =

∣∣∣∣1 + βjω

1 + αjω

∣∣∣∣2R, with β > α, (5)

where R is the original input cost, and −β−1 and −α−1
are the zero and pole of the loopshaping transfer function.
A visualization of such cost function is provided in Fig. 2.

Indeed, for Single-Input Single-Output (SISO) systems An-
derson et al. [28] established that the open loop gain at high
frequency under the frequency-shaped cost function (5) is
reduced, i.e., |GKR̃(jω)| < |GKR(jω)| for large ω, where
KR̃ and KR are the Linear Quadratic Regulator gains obtained
under the frequency-shaped cost and baseline cost respectively.
According to (4), the resulting increase in

¯
σ[I +GK(jω)−1]

permits a higher model uncertainty in the stopband.
Unfortunately, to the best of our knowledge, a robustness

proof for Multiple-Input Multiple-Output systems is not avail-
able. Despite that, the intuition that penalizing high frequency
input increases compatibility with actuator bandwidth limits
remains. In this paper, we aim to empirically validate the effect
of using such a cost function.

B. Frequency-shaped cost functions

MPC plans over a receding horizon. The cost function in (5)
therefore needs to be expressed in the time domain as well.
This can be achieved by a state augmentation as described
in [22].

The standard quadratic cost function for the time domain
(1) can be converted to the frequency domain (6) according
to Parseval’s theorem:

J =
1

2π

∫ ∞
−∞

(
x̂(ω)HQx̂(ω) + û(ω)HRû(ω)

)
dω, (6)

where x̂(ω), and û(ω) are the Fourier transform of x(t) and
u(t), and (·)H is the Hermitian transpose of the vector. Here,
it becomes apparent that the standard costs over states and
inputs are constant for all frequencies. To leave the possibility
of having different loopshaping per input dimension, the
frequency-dependent weight matrix in (5) is generalized to

R̃(ω) =

r
∗
1(ω)

. . .
r∗m(ω)

R
r1(ω)

. . .
rm(ω)

 ,
ri(ω) =

1 + βijω

1 + αijω
, βi > αi, (7)

where r∗i (ω) is the complex conjugate of ri(ω). Every input
direction can now have its own shaping function ri. In order
to transfer this new cost function back into the time domain, a
change of variables is required. The filtered inputs, ν̂(ω), are
defined elementwise as

ν̂i(ω) = ri(ω)ûi(ω). (8)

After substitution, we arrive back at a frequency-
independent cost function over the filtered variables in (10).
This cost is then converted back to the time domain in (11),

J =
1

2π

∫ ∞
−∞

(
x̂(ω)HQx̂(ω) + û(ω)HR̃(ω) û(ω)

)
dω (9)

=
1

2π

∫ ∞
−∞

(
x̂(ω)HQx̂(ω) + ν̂(ω)HR ν̂(ω)

)
dω (10)

=
1

2

∫ ∞
0

(
x(t)TQx(t) + ν(t)TRν(t)

)
dt. (11)

C. Implementation

The presence of the filtered inputs ν(t) in the cost func-
tion (11) requires the augmentation of the original problem.
Considering the original system dynamics, ẋ = f(x,u), and
state input constraint, g(x,u) ≤ 0, this can be achieved
in several ways. If r(ω) consists of proper rationals, its
state space realization1, (Ar, Br, Cr, Dr), can be used to
substitute for ν in the cost function. The filter’s internal
dynamics are appended to the system.

J =
1

2

∫ ∞
0

(
xTQx + (Crxr + Dru)TR (Crxr + Dru)

)
dt

(12)[
ẋ
ẋr

]
=

[
f(x,u)

Arxr + Bru

]
, g(x,u) ≤ 0, (13)

If r(ω) consists of improper rationals, the transfer function
s(ω) = r−1(ω) is defined such that ûi(ω) = si(ω)ν̂i(ω). The
state space realization1 of s(ω), (As, Bs, Cs, Ds), is used
to substitute for u in both system dynamics and constraints.
Again, the filter’s internal dynamics are added to the system.

J =
1

2

∫ ∞
0

(
xTQx + νTRν

)
dt (14)[

ẋ
ẋs

]
=

[
f(x,Csxs+Dsν)
Asxs + Bsν

]
, g(x,Csxs+Dsν) ≤ 0, (15)

1State space realizations are computed according to the balanced realization
described in [29]
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Fig. 3. Block diagrams for actuator modeling (a) and frequency shaping (b).
RBD denotes the rigid body dynamics. u∗ and x∗ are the optimized system
input and state references to be tracked by the robot.

The system inputs, u = Csxs +Dsν, are then retrieved after
optimization.

Because the selected class of shaping functions are of rela-
tive degree zero, choosing between these equivalent options is
a numerical consideration. Since the poles of each ri(ω) are in
our case higher than its zeros, the dynamics of Ar are faster
than those of the realization of its inverse, As, we therefore
use the latter formulation.

D. Related methods

The relation with higher order formulations can be under-
stood by considering a shaping function of ri(ω) = jω for
each input in (7) instead of 1+βijω

1+αijω
. The resulting state space

realization is

ẋs = ν, u = xs, (16)

which is equivalent to u̇ = ν, i.e., the auxiliary input is the
derivative of the original input. By selecting ri(ω) = (jω)n,
general n-th order formulations can be retrieved. Higher order
methods can thus be seen as a special case of frequency
shaping. The proposed method considers more general transfer
functions, allowing the user with more flexibility to target a
specific frequency range.

There is, however, a numerical consideration when using
frequency shaping functions that go to infinity as ω goes to
infinity. For such an transfer function s(ω) will be strictly
proper and have a realization with Ds = 0. As can be seen
from the constraints in (15), this results in pure-state con-
straints. This is not a problem in theory, but such constraints
are computationally more expensive to handle than state-inputs
constraints, so we avoid them in practice to achieve fast
replanning.

When using a higher order formulation, inequality con-
straints can be used to put hard limits on the smoothness
of the trajectories. Similar constraints can be placed in the
frequency based method as done in [25]. Such a discussion is
thus rather a preference for designing behavior through costs
or constraints.

The difference between the proposed method and embed-
ding an actuator model can be understood from Fig. 3. When
embedding an actuator model in the system dynamics, one
would interpret the input to that model as the command to
be sent to the robot. However, in the proposed method, the
command sent to the robot is the original input, leaving the
assumed relation between x and u unchanged. In the former,
the optimized state input trajectories, {x∗,u∗} relies on the
accuracy of the actuator model, while in the latter, the filter is
used to restrict input frequency content to a feasible range.

III. EXPERIMENTAL SETUP

A. Problem Formulation

The proposed method is applied to the kinodynamic model
of a quadruped robot, which describes the dynamics of a single
free-floating body along with the kinematics for each leg. The
Equations of Motion (EoM) are given by

θ̇ = T(θ)ω
ṗ =W RB(θ)v

ω̇ = I−1
(
−ω × Iω +

∑4
i=1 rEEi(q)× λEEi

)
v̇ = g(θ) + 1

m

∑4
i=1 λEEi

q̇ = uJ ,

where WRB and T are the rotation matrix of the base with
respect the global frame and the transformation matrix from
angular velocities in the base frame to the Euler angles deriva-
tives in the global frame. g is the gravitational acceleration in
body frame, I and m are the moment of inertia about the CoM
and the total mass respectively. The inertia is assumed to be
constant and taken at the default configuration of the robot.
rEEi is the position of the foot i with respect to CoM. θ is the
orientation of the base in Euler angles, p is the position of the
CoM in world frame, ω is the angular rate, and v is the linear
velocity of the CoM. q is the vector of twelve joint positions.
The inputs of the model are the joint velocity commands uJ
and end effector contact forces λEEi.

The constraints depending on the mode of a leg at that point
in time are formulated as{

vEEi = 0, λEEi ∈ C(n̂, µ), if i is a stance leg
vEEi · n̂ = c(t), λEEi = 0, if i is a swing leg

where vEEi is the end effector velocity in world frame, which
constrains a stance leg to remain on the ground and a swing leg
to follow the predefined curve c(t) in the direction of the local
surface normal, n̂, to avoid foot scuffing with zero contact
force inputs λEEi. This curve ends with a negative velocity
of 0.75 m/s, which is maintained until contact is detected.
The friction cone, C(n̂, µ), is defined by the surface normal
and friction coefficient, µ = 0.7. This constraint is enforced by
projecting the inputs onto the feasible set in the forward rollout
of the SLQ-MPC algorithm. Limitations of such a clamping
strategy are discussed in [30]. In practice, we find that these
constraints are rarely active and that the projection is sufficient
for the motions in this work.

The baseline cost is formulated as a quadratic function

J =

∫ T

0

L(x(t),u(t)) dt+ Φ(x(T ))

L =
1

2
(x− xd)

TQ (x− xd) +
1

2
(u− u0)TR(u− u0)

Φ =
1

2
(x− xd)

TQT (x− xd) , (17)

where xd = [θTdes,p
T
des,ω

T
des,v

T
des,q

T
0 ]T is a desired state

consisting of commanded base pose and twist by the user
and a default configuration for the joints. Inputs are defined
as u = [λEE

T
1 , . . . ,λEE

T
4 ,u

T
j ], and u0 is the equilibrium

input for standing in the default configuration. Φ(·) is the final
state cost, which is a heuristic to approximate the truncated
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Fig. 4. MPC and whole-body control structure overview. The SLQ-MPC
algorithm running on a separate desktop PC sends center of mass (CoM)
and end-effector (EE) reference to the onboard whole-body control structure.
This hierarchical controller computes torque commands based on the listed
priorities.

infinite horizon, and is implemented as a diagonal cost on
the base pose and velocities. L(·, ·) is the intermediate cost
where we use a simple diagonal cost on all state variables and
contact force inputs. For the costs on the joint velocities, a
diagonal matrix is pre- and post-multiplied by the end-effector
Jacobians to define costs over the task space.

B. System integration

In the model described in the previous section, the con-
trol inputs are end-effector forces and joint velocities. To
translate the solution to torque commands, we extract a full
position, velocity, and acceleration plan for CoM and end-
effector trajectories, in addition to the planned contact forces.
This plan is tracked by the hierarchical whole-body control
(WBC) architecture described in [31]. The tasks in decreasing
priority are (1) satisfying the equation of motions and zero
acceleration for contact feet (2) tracking CoM and swing leg
trajectories, and (3) tracking the planned contact forces. The
desired contact forces from the MPC are thus communicated
in two ways: The CoM trajectory dictates the net acting forces,
and force tracking task regulates the internal forces. Without
the latter, contact forces would be redistributed among the
contacts, which would override the planned smoothness of the
trajectories. Additionally, on all priorities, torque limits and
friction cone constraints are imposed as inequality constraints.

The optimal control problem in (17) is solved for a user-
defined gait with the continuous time SLQ-MPC algorithm
described in [23]. We use a receding horizon length of 1.0s,
which results in an MPC update rate of 70Hz for the baseline
method and around 40Hz for the frequency-shaped method.

The MPC runs on a desktop PC with an Intel Core i7-
8700K CPU@3.70GHz hexacore processor and continuously
computes a motion plan from the latest known state through
a real-time-iteration scheme. The WBC runs on the dedicated
onboard PC and tracks the most recent plan. Here, the aug-
mented filter state is propagated as well with the currently
available augmented input plan ν(t). Both nodes communicate
over a local network. An overview of the experimental setup
is provided in Fig. 4.

IV. RESULTS

We study the effects of adopting the cost function in (11)
for the previously described setup under various locomotion
tasks. To see the results at different levels of model errors,
we conduct perfect model simulations, rigid-body simulations,

0 25 50 75 100

Gait cycle [%]

0

0.2

0.4

0.6

0.8

Fig. 5. Ground reaction forces in z-direction for a trotting gait at 0.5m/s
with a period of 0.7 s. The first half of the gait cycle corresponds to the left
front foot and the second half to the left hind foot. As the frequency limit
decreases from infinity (i.e., baseline) to 5, the smoothness of the planned
contact forces increases.
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Fig. 6. Base height for a trotting gait at 0.5m/s with a period of 0.7 s under
different smoothing parameters. In general, the vertical displacement of the
base increases as the controller becomes smoother since it cannot abruptly
increase or decrease the ground reaction forces at the stance feet.

and hardware experiments. When selecting different values for
β, α is selected such that the frequencies in the stopband incur
a cost of 100 times the steady state cost, i.e., α = 0.1β.

A. Perfect model

First, we investigate the effect of the loopshaping on the
contact forces in a simulation that uses the same model as the
MPC. This shows how the resulting trajectories are different
already in the case of no modeling errors. The analyzed gait
is a trot with a duty factor of 0.5, i.e., with no overlap in
stance phases of the diagonal feet, while a forward velocity
of 0.5 m/s is commanded. Fig. 5 shows the ground reaction
forces when selecting different values for β. As seen from
the plot, the baseline method instantaneously applies contact
forces once a foot is in contact. As expected, lowering the
frequency at which costs start to increase, i.e., lowering β−1,
results in increasingly smooth trajectories. The frequency-
shaped method approaches the baseline as β−1 goes to in-
finity. The corresponding base height trajectories are plotted
in Fig. 6. Smoother contact force trajectories require more
vertical displacement of the base, while the baseline produces
the exact amount of force to keep the base level.

B. Physics simulation

The combination of tracking controller and MPC is evalu-
ated in the Open Dynamics Engine (ODE) [32] rigid-body sim-
ulation, where we can vary ground properties in a controlled
way. The model errors, in this case, come from the difference
between rigid-body dynamics and the kinodynamic model, as
well as the assumption of a rigid ground contact when the
terrain is made compliant. ODE allows for simulation of soft
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Fig. 7. Measured and desired contact forces in z-direction during a trot in-
place for various ground properties and cost functions. The columns from
left to right correspond to the baseline, β−1 = 50, and β−1 = 10 cost
functions. The rows, from top to bottom corresponds to ground properties
with kp and kd of {1e6, 100}, {1e5, 50}, and {1e4, 30}. As the compliance
of the terrain increases, the difference between desired forces generated from
the whole-body controller and resulting forces grows.

contacts by modeling2 the ground contact forces as a spring-
damper system. Three different sets of spring-damper param-
eters kp and kd are selected to simulate hard, intermediate,
and soft ground, respectively. For each terrain, three different
cost functions are evaluated: the baseline without frequency
shaping as well as frequency-dependent cost functions with
β−1 = 50 and β−1 = 10. These values were selected based on
Fig. 5 to represent three levels of smoothness in the continuum
of available cost functions. The resulting contact force profiles
for all combinations are shown for a single stance phase in
Fig. 7. Desired and measured contact forces are shown for
a single leg during an in-place trotting motion with a stance
duration of 0.35 seconds.

As the compliance of the terrain increases, the difference
between desired forces generated from the WBC and resulting
forces grows. The WBC uses rigid-body dynamics with a hard
contact assumption to compute desired contact forces. The
difference between desired and measured forces is therefore
a measure of disturbances inserted by additional unmodeled
dynamics, which in general includes the bandwidth limits of
actuators and contact dynamics that we aim to avoid. Table I
shows the force tracking performance averaged over six gait
cycles in Mean Absolute Error (MAE) and Mean Squared
Error (MSE) defined as

MAE =
1

T

∫ T

0

|λ−λdes|dt, MSE =
1

T

∫ T

0

(λ−λdes)2dt.

For all cost functions, tracking performance degrades as the
model error increases. Qualitatively, the baseline controller
suffers from a larger error at the beginning and end of the
contact phase, due to its step-like change in the desired forces.
Even on hard terrain, there is an apparent benefit of loopshap-
ing. The smoother transition between contact phases mitigates
the disturbance generated by contact timing mismatch. Dif-
ferences become most apparent for the soft terrain, where the
smoother trajectory has better performance especially in MSE.

2ODE relaxes the rigid-contact solver such that it implicitly resembles a
spring-damper interaction.

TABLE I
FORCE TRACKING PERFORMANCE MAE (MSE) [N (N2)] FOR DIFFERENT

TERRAIN AND COST FUNCTIONS IN SIMULATION.

Cost function

Terrain {kp, kd} Baseline β−1 = 50 β−1 = 10

Hard {1e6, 100} 4.8 (303.5) 3.6 (58.5) 5.0 (104.2)
Medium {1e5, 50} 5.5 (316.2) 4.6 (110.1) 5.0 (100.4)
Soft {1e4, 30} 13.5 (525.5) 11.6 (286.9) 7.4 (146.5)
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Fig. 8. Foot placement strategy for the baseline (top) and the β−1 = 10
(bottom) cost functions during a trot with increasing velocity commands in
the positive x-direction. Commands start at v = 0m/s and accelerate with
0.05m/s2. Failure occurs at 0.6m/s and 0.9m/s respectively. The footstep
strategy of the baseline method is different from the frequency-aware solution.
While the former minimizes the lateral motion of the center of pressure by
aligning the support polygons (lines), the baseline method does not adapt its
footstep planning based on the velocity.

Furthermore, we examine the locomotion strategy under two
extrema of cost functions. The commanded forward velocity
during a trotting motion is gradually increased until failure
occurs. The foot placement strategies are visualized in Fig. 8.
The plots show footstep locations from a top-view with the
robot starting at the origin. As the velocity increases towards
the right side of the plot, the footstep locations start to differ.
Interestingly, with the smoother cost function of β−1 = 10, the
foot placement strategy is significantly altered and becomes
velocity dependent. Where under the baseline costs the con-
troller chooses a fixed width foot placement, the frequency-
shaped solution places the feet increasingly inwards for higher
velocities. This can be explained by realizing that horizontal
forces, like the normal forces in Fig. 5, smoothly start from
and end at zero. During a switch from one contact pair to
the next, a lateral force is required to make the CoM velocity
change in the direction of the next support line. Under the
frequency-dependent cost function, high lateral forces around
the contact switch are expensive, and a solution where the
supports are more aligned is thus preferred. As the forward
velocity increases, so does the required change in lateral
velocity for a given width. The alignment of support lines
therefore gradually becomes more pronounced.

Remarkably, this results in a significantly higher maximum
velocity of 0.9 m/s versus 0.6 m/s.

C. Hardware

On hardware, we aim to validate the simulation results for
contact force tracking performance on different terrains; The
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TABLE II
FORCE TRACKING PERFORMANCE MAE (MSE) [N (N2)] FOR DIFFERENT

TERRAIN AND COST FUNCTIONS ON HARDWARE.

Cost function

Terrain Baseline β−1 = 50 β−1 = 10

Hard 27.1 (1465.7) 14.7 (785.5) 12.7 (641.4)
Medium 21.4 (1040.1) 19.7 (741.3) 16.0 (555.4)
Soft 30.9 (2308.1) 26.0 (1237.5) 22.0 (824.3)

floor of the lab, a 3.5 cm foam block, and a mattress are
selected to test a rigid, an intermediate and a very compliant
terrain respectively. A force-torque sensor is mounted on the
right front leg to obtain direct measurements of the ground
reaction forces. The resulting measured and desired forces for
different cost function and terrain combinations are shown in
Fig. 9. The plots show the difference between measured and
desired contact forces of the right-front leg during the first
three steps. The MAE and MSE averaged over those first three
gait cycles are given in Table II. On hard terrain, all methods
perform well, and slight differences in tracking performance
occur at the beginning and end of the contact phase. In this
area the β−1 = 10 controller provides the smoothest transition,
resulting in the best MAE and MSE on all terrains. Where in
the simulation experiments we see that a medium amount of
smoothing is best for hard and medium stiff terrain, we do
not see this in the hardware experiments. The difference could
be caused by the series elastic actuators of ANYmal, causing
model errors and bandwidth limits even on hard terrain. For
a step input to the torque level reached during trot, a 90%
rise-time up to 35 ms, equivalent to a bandwidth of around
60 rad/s can be expected [1].

When further reducing the compliance by trotting on the
mattress, the baseline and β−1 = 50 controllers suffer a
substantial decrease in performance. The base height during
the first part of the experiment is shown in Fig. 10. Due to
the significant mismatch between the planned and resulting
contact force with each footstep, the baseline controller loses
base height in a few steps, causing it to fail. The β−1 = 50
cost function does achieve a trot, as shown in the video3, but
strong oscillations are present between the terrain and the feet.
The β−1 = 10 cost function, finally, results in both a stable
trot and a smooth contact interaction.

In the accompanying video, we additionally show the behav-
ior under disturbances. The robot trots in place and has costs
on base deviation from the initial position. We disturb the robot
in the horizontal plane. Qualitatively, the reactive stepping
and push-back behavior differ. Under the baseline method,
the robot reacts to a push by generating lateral forces and
the user experiences instant resistance. The frequency-aware
implementation with β−1 = 10 instead accepts deviation of
the base trajectory and adapts future step location and force
profile to smoothly return to the origin.

V. DISCUSSION

We have shown that a single parameter of a frequency-
dependent cost function provides a handle on a rich variety

3https://youtu.be/RSJgqkk2VRI

of solutions. While the smoothness at the beginning of the
stance phase is not surprising due to the filter, the anticipatory
decrease in force before lifting the foot, as seen in Fig. 5,
shows that the filter and planning are tightly working together.
The additional filter states allow the Riccati-type algorithm to
reason about future state-input constraints, in this case, zero
contact forces during the swing phase, and adapts the strategy
to approach them smoothly. This is remarkable because the
backward pass is projected on those constraints only at the
point in time that they are active. Interestingly we also find that
the foot placement strategy changes significantly. These obser-
vations highlight the fact that embedding frequency awareness
of the MPC is richer than simply filtering the obtained inputs.
As a future work, we will explore ways to change to cost
function online and in this way adapt the locomotion strategy
to the terrain.

For the legs in swing phase, optimizing over joint torque,
which is effectively one derivative higher than optimizing over
joint velocities, can also induce a smoother swing trajectory.
However, obtaining real time performance with the extra
nonlinear effects is challenging. We believe that keeping the
model as simple as possible helps to get a robust solution
working on hardware.

VI. CONCLUSION

We introduced frequency-aware MPC by combining
frequency-dependent cost functions with modern MPC meth-
ods. With simulation experiments, we show that the resulting
smoother force profiles improve tracking performance when
the rigid terrain assumption is relaxed, without the need to
explicitly model it. We validated these results on hardware
and see a similar trend when comparing performance on
various terrains. The method is shown to provide robustness
against unmodeled dynamics of series elastic actuators and
compliant terrains. We demonstrated that with this approach
ANYmal is now able to execute dynamic motions even on
highly compliant terrains.
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