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The +1 Method
Model-Free Adaptive Repositioning
Policies for Robotic Multi-Agent Systems.

Claudio Ruch, Joel Gächter, Jan Hakenberg and Emilio Frazzoli 1

Abstract
Robotic multi-agent systems can efficiently handle spatially distributed tasks in dynamic environments. Problem
instances of particular interest and generality are the dynamic vehicle routing problem and the dynamic traveling
repairman problem. Operational policies for robotic fleets solving these two problems take decisions in an online
setting with continuously arriving dynamic demands to optimize system time and efficiency. They can be classified
along several lines. First, some require a model of the demand, e.g., based on historical information, while others
work model-free. Second, they are designed for different operating conditions from light to heavy system load. Third,
they work in a time-invariant or time-varying setting. We present a novel class of model-free operational policies for
time-varying demands, with performance independent of the load factor and applicable to any number of dimensions, a
combination of properties not achieved by any other operational policy in the literature. The underlying principle of the
introduced policies is to send available robots to recent realizations of the stochastic process that generates service
requests. In simple terms, the strategies rely on sending more than one robot for every service request arriving to the
system. This leads to an advantage in scenarios where demand is non-uniformly distributed and correlated in space an
time. We provide theoretical stability and performance guarantees for both the time-invariant and the time-varying cases
as well as for correlated demand. We verify our theoretical results numerically. Finally, we apply our operational policy
to the problem of mobility-on-demand fleet operation and demonstrate that it outperforms model-based and complex
algorithms across all load ranges despite of its simplicity.

Keywords
Multi-Robot System, Dynamic Traveling Repairman Problem, Dynamic Vehicle Routing Problem, Service-on-Demand,
Anticipative Repositioning, Rebalancing, Dispatching, Autonomous Mobility-on-Demand

Introduction
Groups of robots have been considered for exploration in
space, underwater and on land Leitner (2009); Sutantyo et al.
(2013); Popa et al. (2004); Savla et al. (2007). They were
used for entertainment purposes in Hauri et al. (2014) as well
as considered for defence applications, e.g., in Browning
et al. (2005). Lately, multi-robot systems have gained
additional interest with the rise of the fully autonomous
vehicle which could soon populate cities in large fleets as
shown in Spieser et al. (2014). Two important classes of
problems in this setting are the N-Vehicle Dynamic Traveling
Repairman Problem (N -DTRP) and the N-Vehicle Dynamic
Vehicle Routing Problem (N -DVRP). In the N-DTRP, a
fleet of N robots need to serve requests that appear in a
stochastic environment with minimal wait time and with
highest possible fleet efficiency. Service requests are not
known a priori but appear while time continues. The N -
DVRP is closely related except that service requests are
travel requests in which a customer wants to be transported
from an origin to a destination in the operational domain.
After completing a service, the robot or vehicle is at a
different location in the operational domain as when it started
servicing a request.

An algorithm or operational policy guiding the behavior
of a fleet of robots in a N -DTRP or N -DVRP setting
must guarantee system stability and optimize relevant

performance metrics, e.g., the expected wait time for new
service requests for all possible problem configurations. As
such, it must be able to react to changes in input. A static
optimization of the routes of all robots is in general not
sufficient as information gets available during run-time and
is not known before, see Bullo et al. (2011) for details.

In this work, we focus on four key differentiations of
operational policies. First, a policy can be based on a
(statistical) model of the demand. Such models can be
derived from fundamental problem properties, e.g., constant
distribution over time or build from historical data. This
category of policies is called model-based which is opposed
to model-free. Second, operational policies can be designed
for different system loads that range from light load to heavy
load. In light load, almost no requests occur compared to
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ETH Zürich

Corresponding author:
Claudio Ruch
Institute for Dynamic Systems and Control
ETH Zürich
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the number of robots. In heavy load, operation takes place
close to the system’s stability limit. Operational policies can
be suitable for light-load, heavy-load or a range of loads.
Third, operational policies can be designed for time-invariant
scenarios or be able to cover time-varying load scenarios.
Fourth, operational policies can be suitable or optimized for
correlated demand.

Next to these main categories, the problems can be
extended in many ways, e.g., by adding time constraints
on service, adding service types and priorities, including
moving service requests or recharging constraints for the
robots. Good overviews of the field and the methods can be
found in Gendreau and Potvin (1998); Ritzinger et al. (2016);
Bullo et al. (2011).

An early result belonging to the category of model-based
operational policies was presented in Waisanen et al. (2008)
where both the N -DVRP and N -DTRP are considered
for known and uniform service request distributions and
destination distributions on a square operational domain.
Theoretical bounds for optimal performance are provided
as well as an algorithm that can reach these bounds. An
important member of this family for more general cases is the
m-Stochastic Queue Median Policy presented in Bullo et al.
(2011). If the time-invariant distribution is known, then for a
fleet of m robots the positions of m stochastic medians can
be computed. The policy of placing one robot at one of these
locations which serves all requests appearing in the Voronoi
partition generated by its position is provably optimal under
light load, i.e., when the rate of newly generated requests λ
approaches zero. However, the policy is unstable for higher
arrival rates. Different algorithms for the same problem
have been derived with game theoretic formulations, e.g.,
in Savla and Frazzoli (2010). An important result covering
many load cases is presented in Frazzoli and Bullo (2004).
The proposed Multi-Vehicle Receding Horizon Median/TSP
policy performs optimally under light-load conditions and
maintains high performance under heavy-load conditions.
In Pavone et al. (2011b) and Pavone et al. (2011a), the
approaches for the time-invariant case with known spatial
distribution of requests were formalized to general problems
in two steps. First, an algorithm is used to partition the
operational domain into partitions which are simultaneously
equitable with respect to the request distribution and its
square root, then each robot executes the single-vehicle
”Divide & Conquer” policy in its partition which is based
on consecutive solutions of the traveling salesman problem
in the partition. Several publications attempt to generalize
the setting to cases in which the requests are generated
by time-varying density functions. In Lee et al. (2015),
the authors present an algorithm to keep the robots on the
generators of a Centroidal Voronoi Tesselation for a known,
time-varying request density function. Stochastic gradient
descent methods for cases with known distribution of service
requests are considered in Le Ny and Pappas (2010). Other
examples of gradient descent based methods for coverage
can be found in Schwager et al. (2008) and Cortes et al.
(2004). Finally, also model predictive control methods have
been applied to solve N -DTRP and N -DVRP problems,
mostly in the setting of transportation. Examples can be
found in Miao et al. (2015), Zhang et al. (2016) and Iglesias
et al. (2018).

Model-free operational policies do not require any
past data or knowledge of the service request generating
stochastic process to operate. Two important model-free
policies are presented in Arsie et al. (2009a). Both are based
on the principle that every robot either moves towards its
closest open request or the location minimizing the average
to all requests it has served in the past. They are decentralized
and are demonstrated to converge to a saddle point of the
cost function for the light-load under time-invariant demand.
While convergence to a local minimum is not guaranteed,
it is obtained in many cases. The policy’s performance under
time-varying demand is not investigated. However, its design
clearly does not favor this scenario as the robots converge
to one single position as time continues. For time-varying
demand, the optimal position of robots is a function of time.

Another model-free policy which is adaptive to time-
varying demand is the “Nearest Neighbor” policy mentioned
in Bullo et al. (2011). The policy directs each robot towards
the closest open service request. If there is no open service
request, every robot stops at the current position. To our
knowledge, no theoretical guarantees for this operational
policy are available at this point.

Finally, two operational policies for theN -DTRP problem
are presented in Le Ny and Pappas (2013). The first policy
is a variation of the policy presented in Arsie et al. (2009a)
which provides the same convergence guarantees in light
load and is described to be simpler. The second provably
stabilizes the system as long as it is stabilizable. No
guarantees on performance or robustness are provided.

Statement of Contributions: In this work, we propose
novel class of operational policies which can solve both the
N -DTRP and the N -DVRP. The policies exploit that past
and recent requests locations are good predictors of future
request locations. They utilize this principle by sending
more than one available robot to the locations where a
request appears. The policies are model-free, i.e., they do
not require any knowledge about the stochastic process that
generates new requests. Furthermore, we prove that the
policies stabilize the system in all operating conditions from
light to heavy load as long as the robot fleet size exceeds the
minimal number of robots required for stability. We provide
performance bounds for the time-invariant setting in which
the arrival rate and distribution of requests is constant. Then,
we extend these results and show that if change in request
distribution is reasonably small compared to the arrival rate
of new requests, the performance guarantees hold also for
general time-varying cases. We also show that our proposed
operational policies perform better with increased levels
of correlation in the demand. Then, we computationally
demonstrate the correctness of the obtained guarantees.
Finally, we apply the proposed operational policies to the
mobility-on-demand fleet operation case in simulation. We
do so using the high-fidelity simulation environment Ruch
and Frazzoli (2018) and demonstrate that our operational
policies outperform previous work including model-based,
complex algorithms based on mathematical optimization.

Paper Organization: First, the problem setting is
described in Section Problem Formulation and the proposed
operational policies are described in Section Operational
Policies. In Section Analysis, a detailed analysis of
performance bounds is presented for a time-invariant
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setting and then extended to general time-varying settings
and correlated demand. The results are verified with
computational methods in Section Numerical Verification.
Then the operational policies are applied to the mobility-on-
demand fleet operation problem in Application to Mobility-
on-Demand and a conclusion is presented in Conclusions and
Future Work.

Problem Formulation
The operating domain Ω ⊂ Rn is a non-empty, bounded
and simply connected domain. To facilitate understanding,
we present the entire analysis for the case n = 2 but as the
number of dimensions is never used in the derivations, the
results hold for spaces with any number of dimensions.

In Ω, a fleet of N robots with positions p(t) =
{p1(t), ..., pN (t)} ∈ ΩN is operating during the time t ∈
[0,∞). In the operating domain a stochastic process
generates service requests ri over time that need to be
serviced by the N robots. Request ri is issued at time ti.
Then, wi is the wait time of service request ri, i.e., the time
interval between ti and its service begin. Furthermore, let m
be the number of requests that have arrived to the system up
to and including time t andA(t) = (r1, r2, ..., rm) be the list
of these requests sorted according to their arrival time. We
denote R(t) ∈ N0 as the number of outstanding requests at
time t.

Definition 1: (System Time) The system time is
defined as the long-term average of wait times
W̄ := limt→∞

1
m

∑m
i=1 wi.

All N robots in the system can move in an unconstrained
way in Ω with constant speed v > 0. Stability of the system
is defined as follows according to Pavone et al. (2010):

Definition 2: (Stable Policy) An operational policy π
guiding the movements of the N robots is stable if the
expected number of demands in the system is uniformly
bounded at all times.

Stability also implies that the system time under policy π
does not diverge, i.e., W̄ (π) <∞. We can now define the
first of the problems considered in this work.

Definition 3: (N -DTRP) The service request ri is a tuple
(ti,xi, si) in which ti is the time at which the request is
generated, xi ∈ Ω is the location of the request and si ≥ 0
is the service time of the request. A service request ri is
accounted as serviced if after ti one of the N robots moves
to xi and stays there during a period of si.

The N -DTRP is to find a stabilizing operating policy π
that minimizes W̄ (π).

TheN -DVRP is a generalization of theN -DTRP in which
every request r has an additional destination to which it must
be transported. Formally:

Definition 4: (N -DVRP) The service request ri is a tuple
(ti,xi,yi) in which ti is the time at which the request is
generated, (xi,yi) ∈ Ω× Ω are the origin and destination
of the request ri. A service request ri is serviced if after ti
one of the N robots moves to xi and then directly to yi.

The N -DVRP is to find a stabilizing operating policy π
that minimizes W̄ (π).

The difference between the N -DTRP and the N -DVRP is
that in the latter, a robot servicing request ri is at a different
location yi after ending the service.

In this work, we distinguish three different statuses of the
robots at a given time t. They can be busy serving a target,
in a repositioning task or waiting at the location determined
by the operational policy. For a fleet size of N robots we
partition:

N = Nb(t) +Nr(t) +Nw(t) ∀t

Where Nb(t) robots busy at time t, Nr(t) are repositioning
and Nw(t) are waiting at the location determined by the
operational policy.

The used variables are summarized in Table 1.

N Number of robots
v Constant speed of robots
Ω ⊂ R2 Operating domain of robots
|Ω| |Ω| =

∫
Ω

1dA, area of Ω.
Nb(t) Number of busy robots at time t
Nr(t) Number of robots in a repositioning

task at time t
Nw(t) Number of available robots that have

reached their determined waiting des-
tination at time t

pi(t) ∈ Ω Position of robot i at time t
R(t) ∈ N0 Number of unserved requests at time t.
ri = (ti,xi, si) Request ri with submission time ti,

submission location xi and service
time si

π Operational policy
λ(t) Request arrival rate at time t

λ̄ Long-term average arrival rate.
Table 1. Important variables and notation.

Operational Policies
The presented policy is based on the fact that recent locations
of past service requests are good estimators of future request
locations. As it will be shown in the analysis section this
holds for both time-invariant and time-varying processes and
especially if individual requests are correlated. Therefore,
the proposed operational policy relocates available robots to
the locations where requests have arrived to the system most
recently. Specifically, if a request appears it is serviced by
one robot, another idling robot is sent to the location of the
request if the status of the fleet allows for it. In simple terms,
the principle of the policy can be described with the idea of
sending one “+1” robots to a new request.

We first introduce variables to conveniently describe this
process. A set L is used to to record past request locations:
L := {(i,Λ(i)) : i ∈ {1, ...,m}} where the function Λ
maps indices to locations in the operating domain: Λ :
{1, ...,m} → Ω. The auxiliary function Φ(k) : N→ Ωk

returns the k ≤ m elements of L with the highest index. In
an implementation, Lwould simply be map of time instances
and locations sorted according to the time instances. We
can now define the operational policy for a scenario with m
requests arriving in the order r1, ..., rm for a fleet ofN robots
initially located at positions {p1(0), ..., pN (0)} ∈ ΩN .
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Operational Policy Model-free Anticipative Repositioning

Initialize L← {(j, pj(0))} : j ∈ {1, ..., N}}.
while operating do

L← L ∪ {N + j, rj} ∀ new requests j
Nbusy ← min(R(t) +Nb(t), N)
Nidle ← max(N −Nbusy, 0)
Nserve ← min(R(t), Nidle).
sendToRequests(Nserve)
repositionIdle(Φ(Nidle))

The operational policy can be executed with varying
sampling times depending on what problem must be solved
and what hardware can be used to carry out the computations.
The abstract operation sendToRequests(Nserve)
denotes the process of sending Nserve robots to Nserve
open requests and possibly selecting the requests
to serve if Nserve < R(t). The abstract operation
repositionIdle(Φ(Nidle)) denotes the process of
repositioning Nidle robots to the last Nidle past request
locations. These are tracked in L and accessed with
Φ(Nidle).

Both operations can be carried out in different ways
in a manner adapted to the problem specifications. One
possibility is to complete sendToRequests(Nserve)
solving a bipartite matching problem with Euclidean
or network distances as a cost function between the
robot locations and the open requests. Such a choice
will minimize the sum of distances to reach all open
requests at every time step. Similarly, the operation
repositionIdle(Φ(Nidle)) can be implemented by
solving a bipartite matching problem based with Euclidean
or network distances between the robot locations and
the past request locations Φ(Nidle). Bipartite matching
problems are in general solved with the Hungarian method
as published in Kuhn (1955) or adaptions of it. If the
cost function is a metric, faster algorithms that exploit its
properties are available, e.g., in Agarwal and Varadarajan
(2004). In this work, this specific implementation based on
bipartite matching is used for the computation of numeric
results. However, bipartite matching was not required to
derive theoretical performance guarantees. Having stated the
operational policies, we analyze its properties in the next
section for the case of the N -DTRP.

Analysis
In this section, we derive theoretical results that characterize
Model-free Anticipative Repositioning. We do so for the N -
DTRP but note that the operational policy could also be
applied to the N -DVRP successfully. However, in that case,
the available information on where trips end is not fully
utilized but could be included in augmented versions.

We demonstrate stability for both the cases of a constant
demand profile and a time-varying demand profile, i.e.,
that the expected number of unserviced demands in the
system is bounded at all times. Then, for both constant
and time-varying demand profiles, theoretic guarantees on
performance of the operational policies are presented. For the
sake of brevity, we present a detailed analysis of the theoretic
guarantees for constant request distributions. Then, instead

of repeating the same arguments in the time-varying case, we
show that for requests distributions which change relatively
slow in comparison to the arrival rate of new requests, the
results for time-invariant settings can be fully recovered
in the time-varying case. This first part of the analysis is
done for requests which are identically and independently
distributed (i.i.d.). To conclude the theoretical analysis, we
drop the assumption of i.i.d. service requests and present
insight into the behavior of the proposed operational policy
for the case when service request locations are correlated.
Specifically we look at the case in which a realization of an
arrival at some location in the system leads to another arrival
at the same location with certain probability. We start with
the analysis of stability.

Stability Analysis
Lemma 1: Let S̄ be the average time needed for the
completion of a service request, including the service time
and displacement of the robot to the request location.
Let λ̄ be the average arrival rate of requests. Model-free
Anticipative Repositioning is stable if the fleet size N is
larger than Nstability := S̄λ̄.

Proof. We follow the procedure presented in Treleaven et al.
(2013). Let R̄ be the long-term average number of unserviced
demands, let A(t) be the number of requests arrived in the
system up to time t and Si the service time necessary to serve
request i, then

R̄ = lim
t→∞

1

t

∫ t

0

R(τ)dτ

= lim
t→∞

∑A(t)
i=0 Si
A(t)

lim
t→∞

∫ t

0

λ(τ)dτ

= S̄λ̄ = Nstability

For the second equality, Little’s theorem was used. We
now see that the long-term average of busy robots is S̄λ̄ =
Nstability. If N < Nstability, the robots cannot service all
request and the number of open requests grows unbounded.
If N ≥ Nstability Model-free Anticipative Repositioning is
stable as it continuously assigns robots to service requests.
As the policy does not carry out any repositioning tasks
unless there are idle robots, it is sufficient to consider only
the assignment part of the policy. �

Performance under Constant Demand
In this section, we analyze the operational policy introduced
in Section Operational Policies for a constant demand
profile, i.e., new requests arrive at unknown rate λ > 0 and
at a location sampled from the spatial density f(x) which is
constant in time and for which f(x) = 0, ∀x /∈ Ω.

Our measure of service level is the long term fraction of
requests waiting longer than wmax denoted F̄wmax

. As the
robot can move in the operating domain without constraints
with velocity v, also a maximum distance to a service request
can be defined to have a wait time of smaller than wmax:

Definition 5: F̄wmax
is the long-term fraction of requests

waiting longer than wmax to receive service. The maximal
distance of the closest available robot from a request to have
wait time less than wmax is rmax := v wmax.
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For convenience, we introduce additional notation to
describe the ball containing all points within a certain radius
from a location xc:

Definition 6: The set B(xc, r) denotes as a ball with radius
r centered at xc. Furthermore let Γ(xc, r) be the integral of
f(x) on B(xc, r), i.e.,

Γ(xc, r) :=

∫
B(xc,r)

f(x) dA

As a first step, we show that the operational policy can
drive the wait times arbitrarily low given a sufficiently high
number of robots.

Lemma 2: For any ε > 0 and for any wmax > 0 there exists
a number of robots N ∈ N such that F̄wmax < ε.

Proof. Let Nw(t) be the number of available robots that
have reached their waiting destination at time t. Model-free
Anticipative Repositioning sets the waiting destinations at
time t for the Nidle available robots as the last Nidle points
in Ω where requests occurred before or at t.

After the system has run for a sufficiently long time to
reach steady state, consider the probability that request rj
arriving to the system at time t waits longer than wmax:

Pr(wj > wmax) =∫
Ω

Pr(wj > wmax | xj = x) Pr(xj = x) dA =∫
Ω

Pr(wj > wmax | xj = x) f(x) dA

where Pr(wj > wmax | xj = x) is the conditioned
probability that the waiting time of request j is longer then
wmax, given that the request rj arrives at location x.

Given sufficient idle robots, this probability is equal to the
probability that none of the previous Nw(t) requests arrived
in B(x, rmax) which is exactly (1− Γ(x, rmax))

Nw(t). The
situation is illustrated in Figure 1.

Ω

B(x, rmax)

Figure 1. Contour lines of f are indicated with dotted lines.
Three dark robots are busy or repositioning. Three light robots
(Nw(t) = 3) are waiting at the determined location. A request
arrives at x, it is served in a time smaller than wmax if one of the
Nw(t) robots is positioned within B(x, rmax).

Therefore,

Pr(wj > wmax) =

∫
Ω

(1− Γ(x, rmax))
Nw(t)

f(x) dA

(1)

Note that Γ(xc, r) ∈ [0, 1] because f is a probability
density function. Only values (1− Γ(x, rmax)) ∈ [0, 1) will

contribute to the integral as Γ(x, rmax) = 0⇒ f(x) =
0 ∈ B(x, rmax). Therefore, (1− Γ(x, rmax)) is strictly
decreasing with growing Nw(t) and approaching 0 in the
limit. F̄wmax

is the long-term average of Pr(wj > wmax),
i.e,

F̄wmax
: = lim

t→∞

1

t

∫ t

0

Pr(wj > wmax) dτ

=

∫
Ω

(1− Γ(x, rmax))
N̄w f(x) dA (2)

Where N̄w := limt→∞
1
t

∫ t
0
Nw(τ)dτ is the long term

average number of robots waiting at the location determined
by the operational policy. If the number of robots that are
busy serving requests and which are repositioning to their
wait location is finite, for any ε > 0 and for any wmax > 0
we can ensure large enough N such that N̄w is sufficiently
large to reduce F̄wmax to a value smaller than ε. �

An interesting consequence of this result is that for
discrete time-invariant request distributions, the algorithm
will either not meet a performance requirement F̄wmax < ε
or it will directly drive the wait times to zero.

Corollary 1: Let all request arrive at {1, ..., Q} ∈ ΩQ

distinct points with probabilities p1, ..., pQ such that∑Q
i=1 pi = 1. Furthermore, let all points be pairwise more

distant than rmax. Then, the number of robotsN for a certain
level of performance ε is independent of wmax.

Proof. We evaluate eq. 1 for the discrete distribution and see
that

Pr(wj > wmax) =

Q∑
i=1

(1− pi)Nw(t)pi

independently of rmax. Therefore, for a stringent enough
level of performance wmax it only matters how many points
of action Q there are and how the distribution of requests on
these points is. �

This results highlights one of the strong properties of
the presented operational policy. If the demand pattern is
discrete with certain locations of increased demand and the
performance requirement wmax is strict enough, the policy
will not gradually reduce the wait times but directly drive
them to zero. Many real-world problem instances can be
modeled as such a distinct set of ”centers of action”, e.g, in
surveillance applications, there will be a distinct number of
points of interest, e.g., water ponds in animal surveillance or
gates in security surveillance. Also in mobility-on-demand
applications, requests often originate from certain hot spots,
e.g., a shopping centers or schools.

In the analysis up to this point, we have shown that
with a sufficiently large number of robots, any performance
requirements can be met. Next, we derive lower bounds
on the service levels achieved with the operational policy.
First, we demonstrate that uniformly distributed requests will
result in the poorest performance of the policy.

Lemma 3: Under Model-free Anticipative Repositioning
and for N̄w ≥ 1, F̄wmax

is maximal for the uniform spatial
distribution f(x) = 1

|Ω| , ∀x ∈ Ω.
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The idea of the proof is to apply a transformation to some
density function f which decreases its uniformity. Then, we
show that under this transformation F̄wmax will increase.

Proof. Let f be some probability density function on the
domain Ω. We transform f to obtain the perturbed density
function f̃ by increasing f by a factor δ > 1 in a ball
B(xc, rc) at xc with distance > rmax from the boundary
of Ω. The radius of the ball rc is chosen such that rc <<
wmax v. To maintain the property

∫
Ω
f̃(x)dA = 1, f is

uniformly decreased everywhere else:

f̃(x) ={
δf(x) x ∈ B(xc, rc)

f(x)− 1
|Ω|−|B(xc,rc)| (δ − 1)

∫
B(xc,rc)

f(x)dA otherwise

We assume that f is not exactly zero in the operating domain
for balls with radius larger than rc:∫

B(x,rc)

f(x) dA > 0,∀x ∈ Ω (3)

This technical assumption does not restrict generality and
can be guaranteed by assigning an arbitrarily small and
positive value to f instead of the value zero. This implies
that the possibility of a service request is almost zero but not
exactly zero and corresponds to the nature of the problem
setting.

The transformed density function f̃ is identical to f except
that some density was globally “subtracted” and added at
one specific location. Going from f to f̃ , a less uniform
distribution f̃ was created for which∫

Ω

(
f − 1

|Ω|

)2

dA <

∫
Ω

(
f̃ − 1

|Ω|

)2

dA (4)

Special cases can be found in which eq. 4 is not satisfied.
For these a finite number of identical transformations will
yield a distribution f̃ satisfying eq. 4. We compare the two
expressions for the same number N̄w:

F̄wmax =

∫
Ω

(1− Γ(x, rmax))
N̄w f(x) dA (5)

˜̄Fwmax
=

∫
Ω

(
1− Γ̃(x, rmax)

)N̄w

f̃(x) dA (6)

where Γ̃ =
∫
B(xc,rc)

f̃(x)dA.
For the comparison, the operating domain is divided into

the three areas B(xc, rc), ΩB := B(xc, rmax) \B(xc, rc)
and ΩC =: Ω \ {ΩA ∪ ΩB} as shown in Figure 2.

Without loss of generality, choose a δ > 1 for the
transformation such that

δ

(
1−

∫
B(x,rmax)

f(x)dA

)
< 1,∀x ∈ Ω (7)

Such as choice is always possible since f satisfies eq. 3.
The proof is completed by contradiction. Assume

˜̄Fwmax
> F̄wmax

, then ˜̄Fwmax
− F̄wmax

> 0. As rc is very
small, it follows that |Ω| >> |B(xc, rc)|. Therefore, the
contributions to ˜̄Fwmax

and F̄wmax
from ΩC are equal as in

ΩC it holds that f ≈ f̃ and Γ(x, rmax) ≈ Γ̃(x, rmax).

Ω

ΩA

xc

ΩB

B(xc, rc)

Figure 2. operating domaindivided into the three sets
B(xc, rc), ΩB := B(xc, rmax) \B(xc, rc) and
ΩC =: Ω \ {ΩA ∪ ΩB}

In the areasB(xc, rc) and ΩB , f̃ increases linearly in δ but

the terms
(

1− Γ̃(x, rmax)
)N̄w

and
(

1− Γ̃(x, rmax)
)N̄w

decay to zero with higher order in N̄w. Therefore, consider
the worst case N̄w = 1. The expression ˜̄Fwmax

> F̄wmax
then

reduces to ∫
B(xc,rc)

(
(1− Γ̃)δ − (1− Γ)

)
f dA

+

∫
ΩB

(Γ− Γ̃)fdA > 0

Approximate f with the constant value f̄B in B(xc, rc).
Additionally, note that the second integral is strictly negative
and the first integral is strictly positive. Thus, the first
integral is replaced with the maximum possible value which
is attained for Γ, Γ̃→ 0+. Denoting the area of B(xc, rc) as
Bc, the previous equation further reduces to:

(δ − 1)f̄BBc − δf̄BBc
∫

ΩB

fdA > 0 (8)

Due to Condition 3, the term f̄BBc is strictly positive
and is removed, eq. 8 then can be rearranged to
δ
(

1−
∫

ΩB
fdA

)
> 1 which contradicts the choice of δ

made in eq. 7. �

The result allows to formulate a lower bound on the
performance of the operational policy for some wmax as a
function of the number of robots N :

Theorem 1: For a given waiting timewmax and any constant
distribution f :

F̄wmax(N) ≤
(

1− π(v wmax)2 1

|Ω|

)N−Nstable−N̄r

when using Model-free Anticipative Repositioning.

Proof. We use the formulation from eq. 2 and insert the
worst case distribution f using Lemma 3. Then we compute
the long-term average number of robots which have reached
their wait location N̄w as the number of robotsN subtracting
the long-term average number of robots which are busy with
servicing a task Nstable and the long-term average number
of robots which are in a repositioning task N̄r, which yields
the claim. �

The formulation in Theorem 1 illustrates why one
possible approach to implement the abstract operations
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sendToRequests( Nserve ) and
repositionIdle( Φ(Nidle)) of Model-free Anticipa-
tive Repositioning is to solve bipartite matching problems.
This implementation can be justified as an efficient way to
minimize Nstable and N̄r. Theorem 1 allows to conveniently
determine the median fleet size to have median waiting times
below wmax by setting ε = 1

2 :

Corollary 2: The minimum fleet size to have median waiting
time below wmax is

N =
log( 1

2 )

log
(

1− π(v wmax)2 1
|Ω|

) +Nstable + N̄r

As an example, consider an area of 10× 10 [km] on which
robots drive with a speed of 5 [m/s] and and the median
time-to-service should be 3 [min]. On average, 10 robots are
servicing requests and 10 are in a repositioning task. Then
the formula yields a minimum fleet size of ≈ 57 robots.

Performance under Time-Varying Demand
In this section, we analyze the case of time-varying demand.
The spatial density of origins is now an unknown function
of time: f(x, t), t ≥ 0. Requests arrive at time-varying rate
λ(t). As in the constant demand case f(x, t) = 0 ∀x /∈
Ω, ∀t.

First, we show that with reasonable assumptions, the
performance of the time-invariant case can be recovered.
Then we present an illustrative example in which Model-free
Anticipative Repositioning performs almost optimally while
existing methods designed for time-invariant demand, e.g.,
the algorithms proposed in Arsie et al. (2009b) provide less
performance. Finally, we present an example to demonstrate
the rapid increase in performance with every robot added to
the fleet.

Recovering the Time-Invariant Case First, we introduce a
definition to quantify the change in demand with respect to
time based on Lipschitz continuity:

Definition 7: A demand distribution f(x, t) is Lipschitz
continuous with respect to time with constant γ ≥ 0 if
|f(x, t1)− f(x, t2)| ≤ γ|t1 − t2|, ∀t1, t2 ≥ 0,∀x ∈ Ω.

We are now able to state the conditions under
which Model-free Anticipative Repositioning recovers the
performance guarantees of the time-invariant case under
time-varying demand.

Lemma 4: Let r be a request arriving at time t∗ under time-
varying demand f(x, t) and wr its wait time. The minimum
arrival rate in the temporal neighborhood of t∗ is λ and the
time between arrivals is exponentially distributed. Let s be a
request arriving under time-invariant demand f(x, t∗) and
ws its wait time. Then, for an identical number of waiting
robots Nw(t∗),

Pr(wr > wmax) ≤ Pr(ws > wmax) + τ c

where c is a constant depending only on rmax and f(x, t∗)
and τ has expected value γ

λ and variance γ
λ2 .

Proof. From the proof of Lemma 2, recall the formula for
Pr(ws > wmax):

Pr(ws > wmax) =

∫
Ω

(1− Γ(x, rmax))
Nw(t∗)

f(x, t∗) dA

For request r arriving under time-varying demand, we
assume that the Nw(t∗) relevant requests arrived at
times t1, t2, ..., tNw(t) < t∗. Using the property that the
demand distribution f is Lipschitz continuous, we can
then reformulate Pr(wr > wmax). The arguments of f are
omitted for the sake of brevity:

Pr(wr > wmax)

=

∫
Ω

Nw(t∗)∏
k=1

(1− Γ(xk, rmax, tk)) f dA

≤
∫

Ω

Nw(t)∏
k=1

(
1−

(
(Γ(xk, rmax, t)− rmax

2πγ(t∗ − tk)
))
f dA

≤
∫

Ω

(
1− (Γ(x, rmax, t)− rmax

2πγ(t∗ − t1))
)Nw(t∗)

f dA

≤
∫

Ω

(1− Γ(x, rmax, t))
Nw(t∗) +

rmax
2πγ(t∗ − t1)

Γ(x, rmax, t)
)f dA

= Pr(ws > wmax) + γ(t∗ − t1)

∫
Ω

rmax
2π

Γ(x, rmax, t)
f(x, t∗) dA

= Pr(ws > wmax) + τ c

The first inequality was obtained by using the property of
Lipschitz-continuity, the second by taking the largest time
interval and the third by introducing an upper bound for
the polynomial valid for Nw(t∗) ≥ 1 and Γ ≤ 1. τ := γ(t−
t1) is the highest possible rate of request density change
multiplied by the time interval between the current time and
he arrival time of the earliest request that lead to a robot
reposition command. As time intervals were assumed to be
exponentially distributed with rate λ:

Exp[τ ] =
γ

λ
Var[τ ] =

γ

λ2

�

Corollary 3: In the limit γ
λ → 0+, the performance F̄wmax

of Model-free Anticipative Repositioning is independent of
spatial or temporal changes in the distribution of service
requests.

This result demonstrates that for γ
λ → 0+ the introduced

operational policy offers the same performance guarantees
for time-varying demand as for time invariant demand
despite of its simplicity. Especially, it recovers the results
presented in Lemma 2, Corollary 1, Lemma 3 and Theorem
1 as well as the results regarding fleet sizing in Corollary 2.

An important aspect of this result is that performance
guarantees can be recovered even for fast changing demands
as long as the arrival rate is high enough. Therefore, Model-
free Anticipative Repositioning is able to cover most multi-
robot systems operating under time-varying demand as
many operate under a large number of service requests.
Consider for instance a mobility-on-demand system, e.g., a
conventional taxi system. The 536 San Francisco taxis for
which traces were recorded and published in Piorkowski
et al. (2009) have more than 20, 000 requests on most days,
resulting in an average arrival rate of 0.23 Hz. The typical
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onset period of a demand peak is not less than 30 min
which results in the ratio γ

λ− ≈ 0.0024. As shown in Section
Numerical Verification such a ratio is sufficiently small to
offer the same performance levels as in a time-invariant case.

Example: Time-Varying Demand
For situations with reasonably smooth changes in the
demand profile or smaller inter-arrival periods, many
examples can be found that illustrate the advantages of the
proposed method. Consider Ω to be a ball in which an
invisible request generator moves with small speed ν on a
random walk. It generates one request at random intervals
with time-varying rate λ(t) that are served by the robot on
spot with small service time. In such a case, the robot will
arrive at every request within time νdt

v ≈ 0. The policies
presented in Arsie et al. (2009b) will converge to a waiting
position in the middle of the ball and wait for new request
there. On average, they will thus take r

2v of time to reach a
request. The situation is illustrated in Figure 3.

Ω

Figure 3. A scenario in which small wait times are achieved
under time-varying demand: requests are generated by a
generator moving on a random walk in a circular operational
domain Ω.

Example: Fleet Sizing
As an example to demonstrate how quickly additional
robots in the fleet improve performance, consider the case
N = 1 with only one robot and the series of requests
{rp, rq, rp, rq, ...} arriving at p, q respectively with very long
intervals between each of the requests. p, q ∈ Ω are chosen
such that ||p− q|| = maxs,t∈Ω ||s− t||. Using the presented
operational policy, a request will be served at p and then
position the idle robot at p, thus at the most distant location
to the next request q in the operational domain. The setting
is illustrated in Figure 4. However, adding a second robot
would already recover near-optimal service levels.

Ω

p

q

Figure 4. An example demonstrating the rapid increase of
performance with additional robots: requests arrive at p and q in
a sequence with long time intervals between arrivals. One
single robot will always wait at the point where the request does
not arrive, two robots will drive the wait times to zero.

Performance under Correlated Demand
In literature, the arrivals are typically considered identically
and independently distributed (i.i.d), e.g., in Treleaven et al.
(2013); Arsie et al. (2009b); Bullo et al. (2011). This
viewpoint covers many real-world problems and facilitates
analysis, but it excludes the important case of correlated
samples. Specifically, the case when the realization of a
certain arrival at some location x increases the probability
of an arrival at the same location within a limited amount
of time. In real-world system instances, specifically in the
case of a N-DVRP, this will occur with high frequency. Take
for example the case of a mobility-on-demand transportation
system. If a transportation request at location x is caused
by a customer who is leaving an event, e.g., a dinner party,
then it is likely that another transportation request with the
same origin will occur within a short amount of time. The
realization of the first request increases the probability of a
realization at the same location. Interestingly, the operational
policy presented in this work offers better performance with
increasing levels of correlation in the demand generating
process. In this subsection, we present a brief analysis of
the case of correlated demand. Specifically, we introduce a
general formulation to model correlated demand. Then, we
show that our policy increases the service level in the system
with rising degree of correlation in the stochastic process that
generates the arrivals.

The correlated demand model samples requests from
a service request distribution or from past realizations
depending on a parameter ω. Specifically, the service request
is generated from some time-varying distribution f(x, t)
as in the previously analyzed cases with a probability ω ∈
(0, 1). With probability 1− ω the arrival generated at one of
the past M request locations with uniform distribution. The
number M is an integer for which M > N . In this model,
the probability ω is the likelihood of drawing a sample
independent from previous realizations.

The comparison of correlated and uncorrelated demand is
based on the following assumptions and notation:

• f(x, t) is Lipschitz continuous with respect to time
with constant γ. λ− is the smallest arrival rate in the
period of interest with γ

λ− being small.
• F̄wmax

is the long-term fraction of requests waiting
longer than wmax for some time-varying distribution
of arrivals f(x, t) for ω → 1−

• Ḡwmax(ω) is the long-term fraction of requests waiting
longer than wmax for the same distribution f(x, t) and
ω ∈ (0, 1).

The first result demonstrates that such a setting of
correlated arrivals will not decrease the performance of the
operational policy.

Lemma 5: Ḡwmax
(ω) ≤ F̄wmax

Proof. By Lemma 4, F̄wmax is approximately equal for both
the time-invariant and the time-varying system. By Lemma 2
F̄wmax

depends only on the past N̄w realizations of the arrival
process, but not on their order. As realizations characterizing
Ḡwmax

(ω) and F̄wmax
are identically distributed, the claim

follows. �
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The results shows that correlated demands will not
decrease the service level of the system in any case.
However, there are many cases in which the level of
correlation in the demand increases the service level of the
system as the next result shows. We consider the limit cases
of stringent wait time requirementswmax, small robot speeds
and of a large operating domain:

Lemma 6: Let N̄w ≥ 1. Then, in the limit cases

1. wmax → 0+

2. v → 0+

3. |Ω| → ∞

the waiting times under correlated demand are strictly
smaller than under uncorrelated demand, i.e.,
Ḡwmax

(ω) < F̄wmax
.

Proof. By Theorem 1 F̄wmax is bounded by(
1− π(vwmax)2 1

|Ω|

)N̄w

. As Ḡwmax
(ω) is composed

by a combination of independent samples and correlated
samples, Ḡwmax

(ω) can be bounded by

Ḡwmax(ω) ≤ ω
(

1− π(vwmax)2 1

|Ω|

)N̄w

+ (1− ω)

(
1− N̄w

M

)

The expression Ḡwmax(ω) ≤ F̄wmax can thus be rewritten:

1− N̄w
M
≤
(

1− π(vwmax)2 1

|Ω|

)N̄w

In the cases wmax → 0+, v → 0+ and |Ω| → ∞, the limit
of the expression on the right hand side is one. As N̄w ≤
N < M , the left-hand expression is smaller than one and
Ḡwmax(ω) < F̄wmax . �

The analysis shows that under correlated demand, Model-
free Anticipative Repositioning performs equally well as
under i.i.d. arrivals. Furthermore, the fraction of very
small wait times will be increased with higher degrees of
correlation. Finally, for very large operational domains, e.g.,
a mobility-on-demand problem in a rural area, correlated
demand will also lead to improved service levels of the
system. This is also the case for small maximum wait times
or small velocities. Interestingly, these are exactly the cases
in which limited data is available to implement model-based
policies and in which a system designer may have to rely on
model-free policies.

Numerical Verification

The previous theoretical results were verified numerically.
To do so, an instance of the N -DTRP was implemented
in software and Model-free Anticipative Repositioning was
used to control the fleet of robots. The N -DTRP was
executed in a unit square operational domain 1[m]× 1[m]
with a constant service time of 10[s]. Requests are generated
by a homogeneous Poisson process and constant arrival rate
of 0.005

[
1
s

]
. Robots move freely at speed v = 0.05

[m
s

]
.

Worst-Case Performance
In the first trial, the fraction of requests receiving service
after a period longer than wmax = 5[s] denoted F̄wmax was
determined for a total of 3,000 uniformly distributed service
arrivals. The results were compared to the predicted lower
bound on performance stated by Theorem 1. As it can be seen
in Figure 5, the theoretical bounds are confirmed by the trial.
The gap between the theoretical bound and the simulation at
N = 1 is given by (wmax v)2π

|Ω| and increases with larger |Ω|.

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

N

F̄
w

m
a
x

Simulation
Theoretical Bound

Figure 5. Comparison of simulated values F̄wmax(N) and
theoretical bounds determined in Theorem 1 for Model-free
Anticipative Repositioning.

Uniformity of Request Distributions
According to the result provided in Lemma 3, the case
of a uniform distribution of requests leads to the worst
possible performance of the introduced operational policy.
This relation, proven in theory, is confirmed by analyzing
the results for arrival distributions on a discrete set of
points. In the trial, a discrete set of random points p in the
operation domain of size M = {2, 4, 8, 16, 32} was chosen
and to each of them a random probability pi was assigned
such that

∑M
i=1 pi = 1. Then, a total of 5,000 arrivals was

sampled on the distribution and the N -DTRP was solved
using Model-free Anticipative Repositioning. The results are
shown in Figure 6. They confirm the theoretical statement
that the results improve with increasing non-uniformity of
the distribution.

Time-Varying Demand
Next, the results presented in Lemma 4 were verified. For
this, a trapezoidal distribution of arrivals in one dimension
of the unit square operational domain was chosen. The
distribution is constant in the other dimension. Then, this
trapezoidal distribution was moved back and forth with
velocity ν on the unit square resulting in a time-varying
request density. If the slope of the trapezoid distribution
is chosen to be η, then the change of the distribution
with respect to time for any given point is given by γ ∈
{−νη, 0, νη} and is thus Lipschitz continuous with respect
to time with constant γ = νη. The setting is illustrated in
Figure 7. In the trial, a total of 6,000 requests were served
by a fleet of 20 robots, wmax was chosen to be 2[s]. The
trapezoidal distribution was reduced to a triangle with base
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Figure 6. Comparison of simulated values F̄wmax(N) for
discrete distributions on sets of points of different cardinality
and theoretical bounds determined in Theorem 1 for Model-free
Anticipative Repositioning.

Ω

Figure 7. Visualization of the trapezoidal case to demonstrate
the performance of Model-free Anticipative Repositioning in the
setting of time-varying demand.
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Figure 8. Comparison of simulated values F̄wmax(N) for a
uniform distribution, a static trapezoidal distribution and a
moving trapezoidal distribution for Model-free Anticipative
Repositioning.

length of 0.1[m]. The arrival rate was fixed at 0.005[ 1
s ] and ν

as varied in the range [10−10, 0.5] [ms ], i.e., at the maximum
speed, the period of the time-varying distribution is 4[s]. The
results are shown in Figure 8. It can be seen that for ratios
γ
λ up to ≈ 0.05, the performance of the under time-varying
demand is identical as for a static trapezoidal distribution.
For faster velocities ν, F̄wmax

increases and finally reaches
the value of the uniform distribution.

Correlated Demand
Finally, the results presented in Subsection Performance
under Correlated Demand are verified. As described in the
derivations, a request distribution is considered in which
the arrivals are sampled from some distribution f(x) with
probability ω ∈ (0, 1] and are sampled uniformly from the
last M ∈M realizations of the stochastic process otherwise.
Figure 9 shows the influence of ω on the result for M = 30
for 6,000 service requests. The uncorrelated requests are
drawn from a uniform distribution on a unit square. The
service level of the system increases with decreasing ω and it
always stays below the service level of the nonuniform case.
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Figure 9. Comparison of simulated values F̄wmax(N) for a
uniform distribution with different levels of correlation ω for
Model-free Anticipative Repositioning.

In addition to the numerical verification provided in this
section, a study of a possible application of the proposed
policy to the problem of mobility-on-demand is presented in
the next section.

Application to Mobility-on-Demand
In a one-way mobility-on-demand (MoD) system, customers
request transportation from their current position to some
destination and are served in an on-demand fashion. An
example of an existing MoD system is a conventional
taxi system or a modern ride-hailing service, e.g., Uber
or Lyft. Although these systems play an important role
in today’s transportation infrastructure, their significance in
comparison to public transportation (buses, trains, subways
etc.) and the privately owned motorized vehicle is limited. As
an example, the number of active Uber drivers in the United
States end of 2015 was less than 500,000 as described in
Hall and Krueger (2018). Also, car-sharing schemes where
users drive by themselves are limited in size. As an example,
in the period 2006 – 2010, the estimated worldwide fleetsize
of shared vehicles was estimated to be 33,665 by Shaheen
and Cohen (2013). A negligible number compared to the
total number of private vehicles which exceeded 1 billion in
2011 according to Sousanis (2011).

The availability and legal acceptance of fully self-driving
vehicles would change these dynamics in three principal
ways. First, the costs and limitations of human drivers,
e.g., resting hours, would vanish. Second, the systems
could be centrally coordinated and controlled as there is
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no more autonomy of the driver, this allows to increase
system efficiency as shown in Ruch and Frazzoli (2019).
Finally, true two-way mobility can be offered as vehicles
can be repositioned efficiently to meet future anticipated
demand. For these reasons, with the fully autonomous
vehicle, a new mode of transportation called autonomous
mobility-on-demand (AMoD) would emerge. This novel
mode of transportation would include the benefits of public
transportation such as a lower carbon footprint, affordable
cost and the high share of variable cost for the user.
On the other hand, it would also offer the main benefits
of private transportation, namely on-demand point-to-point
transportation in a private vehicle without taking into account
schedules. Prices of an AMoD system are estimated to be
almost as low as the ones of public transport as shown in
Hörl et al. (2017), therefore it is possible that AMoD systems
will take a mode share possibly as large as the one of private
vehicles today, e.g., between 52% and 66% in Germany and
between 83% and 89% in the United States as estimated in
Buehler (2011).

Such large fleets of vehicles will need to be operated as
efficiently as possible while offering the highest possible
service level to users. Appropriate design, e.g., utilizing
the right fleet sizes is important to achieve an optimal
trade-off between costs, emissions and service level Spieser
et al. (2014). Apart from such static design decisions,
most gains can be achieved by implementing the best
operational policies that guide the behavior of the fleet.
An operational policy must take the decision which robotic
taxi serves an upcoming request and it must handle the
problem of unbalancedness. MoD system have been shown
to become unbalanced due to the spatio-temoral variations
in the demand profile, see, e.g., Pavone et al. (2011c).
This means that some locations get depleted of vehicles,
while others are overfilled and the service level is impacted
negatively. An operational policy must solve this issue by
replacing an appropriate choice and amount of vehicles.
The problem of designing operational policies for MoD
systems to address these issues has been a subject of recent
research. Some solutions are proposed based on network
flow optimization, e.g., Pavone et al. (2011c); Zhang et al.
(2015); Salazar et al. (2018). Others approaches apply model
predictive control (Morari and Lee (1999)) methods, e.g.,
Zhang et al. (2016); Iglesias et al. (2018); Seccamonte
(2019). Finally, some methods also rely on heuristics, e.g.,
Bischoff and Maciejewski (2016) and most recently also
end-to-end reinforcement learning has been proposed in
Fluri Christian (2019).

The operational policy proposed in this work is designed
to solve theN -DTRP and theN -DVRP problems. Moreover,
it is suitable across all load factors and for highly time-
varying settings, which makes its application to MoD fleet
control problems very promising. Therefore, we apply the
policy to the problem of mobility-on-demand fleet control
to demonstrate its effectiveness to non-synthetic problem
instances. Using the high-fidelity transportation simulator
AMoDeus (Ruch and Frazzoli (2018)), we are able to show
that the proposed policy outperforms benchmark policies
for the mobility-on-demand fleet management problem. It
results in very high service levels across all load factors.
The remainder of this section is organized as follows, in

Subsection Compared Operational Policies the operational
policies to be compared to are briefly outlined, then
in Subsection Simulation Environment the setup of the
simulations is described and finally, the results are presented
in Subsection Results.

Compared Operational Policies
The following benchmark operational policies for fleet
control of mobility-on-demand systems were compared to
Model-free Anticipative Repositioning denoted (MFAR).

Adaptive Real-Time Rebalancing Policy (ARRP): This
policy is an implementation of the results published in
Pavone et al. (2011c). The city is divided into a set of
virtual stations on which a complete graph is defined. A
linear program formulation is used to minimize the total
rebalancing distance that is necessary to reach an equilibrium
for each time step. As the linear program exhibits a
totally unimodular constraint matrix, the result is integral.
Therefore, the problem directly delivers the number of
rebalancing vehicles between any pair of virtual stations
in the city and takes into account the number of unserved
requests and the number of arriving customer vehicles.

Global Bipartite Matching Policy (GBM): This opera-
tional policy was described in Ruch and Frazzoli (2018). It
continuously solves a bipartite matching problem between
the locations of open requests and of available vehicles. The
cost assigned to the edges is either Euclidean or network
distance. This policy does not include any rebalancing, i.e.,
vehicles are only moved once requests are open.

No Communications Policy without Sensor Information
(NC1): In this policy presented in Arsie et al. (2009a),
every vehicle moves towards the closest open request when
idle. If there are no open requests, it moves to the location
minimizing the average distance to locations at which it
served requests in the past. The policy is decentralized and
is demonstrated to converge to a saddle point of the cost
function for the light-load under time-invariant demand.
While convergence to a local minimum is not guaranteed,
it is obtained in many cases Arsie et al. (2009a).

No Communications Policy with Limited Sensor Informa-
tion (NC2): In this adapted version of NC1 also presented
in Arsie et al. (2009a), the vehicles only move towards the
open request locations in the Voronoi cell generated by their
position with respect to the position of other vehicles. This
adaption requires local sensor information but limits the
amount of empty distance driven by the vehicles.

Feedforward Fluidic Time-Varying Rebalancing Policy
(FFTVRP): This policy presented in Spieser et al. (2016)
represents a generalization of the policy presented in Pavone
et al. (2011c) to time-varying systems. The policy computes
the minimal cost dispatching using a linear program
generated with a time-varying network flow problem. The
implementation requires a model of hourly request arrivals,
in this comparison perfect knowledge of the demand
distribution was assumed.

Simulation Environment
For comparison of the policies, the simulation environment
AMoDeus Ruch and Frazzoli (2018) was used. AMoDeus
is a high-fidelity traffic simulator based on MATSim
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(Horni et al. (2016)) specifically developed to test
fleet control policies and mobility-on-demand system
instances. AMoDeus is open-source and publicly available,
furthermore it contains benchmark transportation scenarios
which are available online. The scenario of San Francisco
was chosen to conduct the simulations presented in this
work. It is based on a dataset of taxi traces in the city of
San Francisco (Piorkowski et al. (2009)) that were used to
generate a realistic mobility-on-demand customer request
profile. The dataset contains a total of 464,045 customer
trips, which were recorded between May 17, 2008, 03:00:04
to June 10 2008, 02:25:34. For this study, the requests on
Friday, May 30 were chosen, totally 22,479. The simulation
takes place on a detailed city network covering the entire area
of San Francisco.

Results
Three main system characteristics are needed to quanti-
tatively analyze a mobility-on-demand system. First, the
service level offered to customers, mainly characterized by
the statistical distribution of wait times. Depending on the
case, an operator might decide to minimize mean wait times
or possibly minimize high wait times, e.g., the 95% quantile.
Of course, larger fleets will generally have more available
vehicles closer to the locations of upcoming requests. There-
fore, from a service level viewpoint, higher fleet sizes are
desirable. But these come at the cost of increased capital
expenditures. Therefore, they have to be considered as a
variable in the performance analysis. Finally, the vehicles
will cover some distance without a passenger on board which
contributes significantly to operational expenditures. Empty
distance cannot be reduced to zero as shown in Treleaven
et al. (2013). Furthermore, covering empty distance might
lead to an increased service level. Therefore, the empty dis-
tance covered by a fleet of vehicles also has to be considered
in the analysis. A visual comparison of different operational
strategies in the evening at 23:00 pm is shown in Figure
10. It can be seen that the number of open requests for
our suggested operational policy is visibly smaller than for
other operational policies. While this figure already clearly
demonstrates the differences of different operational poli-
cies, a view on the aggregate values of different fleet sizes
gives a clearer impression of the difference in performance.
Figure 11 shows the mean wait time for different operational
policies. The 95% quantile wait times are shown in Figure
12. It can be seen that Model-free Anticipative Reposition-
ing clearly outperforms existing strategies across the entire
system load range, also the ones which use past data in
an internal model. The total empty distances are shown in
Figure 13. As it can be seen, the distances covered by the
fleet when using Model-free Anticipative Repositioning are
in the same range as for other policies.

Conclusions and Future Work
In this work, we have presented a novel operational policy to
solve the N-Vehicle Dynamic Travelling Repairman Problem
and the N-Vehicle Dynamic Travelling Vehicle Routing
Problem. Our proposed policy is model-free, adaptive to
different load factors and adaptive to time-varying demand.
We analytically derived performance guarantees for the case

Figure 10. Visualizations of the AMoD system at 23:00 pm, the
orange heatmap shows outstanding requests. Vehicles are
represented by small dots. Operational policies: MFAR (top left),
NC2 (top right), FFTVRP (bottom left), ARRP (bottom right).
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Figure 11. Mean wait time of different fleet control policies.
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Figure 12. 95% quantile wait time of different fleet control
policies.

of time-invariant demand. Then, we demonstrated that these
performance guarantees also apply to the time-varying case
if the arrival rate of new requests is larger than the time
constant defining the change in the demand distribution with
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Figure 13. Empty Distances of different fleet control policies.

respect to time. Finally, we demonstrated that for the case
of service requests which are not independently distributed,
the operational policy performs better with higher degrees
of correlation between subsequent requests. We provided
numerical confirmation of our derivations. Finally, we argued
that the conditions under which our policy performs well
are encountered in many real-world problem instances,
especially in mobility-on-demand systems. We use our
operational policies to control a fleet of autonomous robotic
taxis in a mobility-on-demand system on the simulation
platform AMoDeus and show that the policy outperforms
both model-free and model-based existing approaches in
terms of service level across the entire range of system loads.
As future work, we plan to develop a distributed version
of the policy, to modify the current version of it to reduce
the empty distance covered and to apply it to a mobility-on-
demand system instance in a non-simulation environment.
We also plan to extend the results such that the distribution of
destinations can be used to further increase the performance
in the case of the N-DVRP. Finally, we will look for related
applications in other domains not directly related to multi-
robot systems.
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