
DISS. ETH NO. 25546

Planning for Autonomous Micro-Aerial
Vehicles with Applications to Filming and

3D Modeling

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH Zürich

(Dr. sc. ETH Zürich)

presented by

Benjamin Hepp

Diplom-Physiker
Ruprecht-Kalrs-Universität-Heidelberg

born 20.05.1986
citizen of Germany

accepted on the recommendation of

Prof. Dr. Otmar Hilliges

Prof. Dr. Marc Pollefeys
Dr. Neel Joshi

2018

Abstract

Camera equipped micro aerial vehicles (MAVs), and in particular
multi-copters, have become affordable and abundant in recent years
both in the professional and in the consumer sector. They are used
in areas as diverse as recreation, filming, structural inspection and
monitoring for agriculture. Their success can be attributed to their
relatively simple mechanical and electronic design, their flexibility in
terms of possible motion and their smooth dynamics which are easy
to handle from a control perspective.
In most of these use cases the MAVs are still deployed in a manual

fashion where one or more human experts steer the MAV or perform
related work. This can be partly attributed to the difficulty of au-
tonomous flight in GPS-denied environments. However, even with a
good GPS signal the design of autonomous systems requires the in-
corporation of domain knowledge from the corresponding use case.
This is very challenging as this knowledge of experts is often intu-
itive and non-formal. In this thesis we demonstrate the design of such
systems that take sensory information and provide a sequence of deci-
sions to solve the given task. We will identify and formalize the goals
for solving the task and the constraints that need to be fulfilled and
incorporate both into a planning scheme that will provide us with a
sequence of decisions to achieve the goals.
In the first part of the thesis we will focus on a framework that

allows us to generate flight trajectories that demonstrate smooth and

iii

pleasant motion of the camera. The constraints come in the form
of the MAV dynamics and the goals are derived from a keyframe
based description of the desired film composition. This leads to a
constrained optimization problem over the MAV trajectory that we
can solve with non-linear programming.
The second part of the thesis introduces a system that provides

flight paths to capture an image collection that is suitable for recon-
structing high quality 3D models of a user-defined region of interest.
Here the major constraints are battery time of the MAV and collision
free motion. We formulate this task as a submodular orienteering
problem on a graph of possible viewpoints and provide an approxi-
mate solver.
The third and final part of the thesis looks at the autonomous

exploration of unknown environments. Here, the goal is to discover
as much surface in as little time as possible. To achieve this goal
we define an expert policy with full knowledge of the environment
and train a 3D convolutional neural network to imitate this expert
policy. The resulting model can then be used to explore an unknown
environment.

iv

Zusammenfassung

In den letzten Jahren konnte ein Preisrückgang und eine entsprechende
Zunahme von Drohnen mit Kameras beobachtet werden. Hierbei han-
delt es sich insbesondere um Multikopter die sowohl im professionellen
als auch im privaten Sektor zum Einsatz kommen. Die Verwendung
umfasst eine weite Bandbreite von Unterhaltung und Filmen über
Strukturüberwachung im Baugewerbe bis hin zu Beobachtung und
Kontrolle in der Landwirtschaft. Der Erfolg solcher Drohnen kann
auf mehrere Faktoren zurückgeführt werden: ihren einfachen mecha-
nischen und elektronischen Aufbau; die Erreichbarkeit beliebiger Orte;
ihre kontinuierliche Dynamik die eine einfache Regelung und Steuerung
erlaubt.
In den meisten dieser Anwendungsfälle erfolgt der Einsatz der Drohnen

manuell durch ein oder mehrere Personen welche die Steuerung und
unterstützende Funktionen übernehmen. Die manuelle Steuerung kann
teilweise damit erklärt werden, dass der autonome Flug von Drohnen
in Umgebungen ohne GPS Empfang mit hohen Schwierigkeiten ver-
bunden ist. Doch auch wenn ein gutes GPS Signal vorhanden ist
muss beim Entwurf von autonomen Systemen entsprechendes Fach-
wissen bezüglich des Einsatzbereiches und der Zielsetzung einfliessen.
Da dieses Fachwissen oft auf viel Erfahrung basiert ist der Entwurf
solcher Systeme sehr schwierig. In dieser Arbeit demonstrieren wir
den Entwurf solch autonomer Systeme: aufgrund von Sensor-Daten
trifft das System eine Abfolge von Entscheidungen um die Zielset-

v

zung zu erreichen. Für eine gegebenen Anwendungsfall werden wir die
Zielsetzung und nötige Einschränkungen identifizieren. Diese werden
dann in einer Planungs-Methode integriert welche die erforderlichen
Entscheidungsschritte zum Erreichen der Zielsetzung berechnet.
Der erste Teil der Arbeit befasst sich mit einem System welches die

Erzeugung von Flugtrajektorien mit kontinuierlicher und angenehmer
Kamerabewegung ermöglicht. Die Einschränkungen sind hier durch
die Dynamik der Drohne gegeben und die Zielsetzung leitet sich aus
einer Beschreibung der Filmkomposition an einigen Schlüsselstellen
ab. Diese Formulierung führt zu einem Optimierungsproblem mit
Zwangsbedingungen über die Flugtrajektorie und kann mit Nichtlin-
earer Programmierung gelöst werden.
Im zweiten Teil der Arbeit beschäftigen wir uns mit der Aufnahme

von Bildern welche die Rekonstruktion von qualitativ hochwertigen
3D Modellen ermöglicht. Zu diesem führen wir ein System ein welches
Flugtrajektorieren erzeugt während denen geeignete Bilder aufgenom-
men werden um einen Bereich von Interesse zu rekonstruieren. Ein-
schränkungen sind vor allem durch die Batterielaufzeit der Drohne
und kollisionsfreie Flugpfade gegeben. Wir formulieren und lösen die
Aufgabenstellung als ein sogenanntes submodular orienteering Prob-
lem welches auf einem Graph möglicher Kamerakonfigurationen definiert
ist.
Im dritten und letzten Teil der Arbeit betrachten wir die autonome

Erkundung unbekannter Gebiete. Hier ist das Ziel möglichst viel
Oberfläche in möglichst kurzer Zeit zu entdecken. Um diese Zielset-
zung zu erreichen definieren wir eine Expertenstrategie welche alle
Informationen über das unbekannte Gebiet kennt. Wir trainieren
dann ein künstliches neuronales Netzwerk um die Expertenstrategie
nachzuahmen. Das neuronale Netzwerk kann dann verwendet werden
um ein unbekanntes Gebiet zu erkunden.

vi

Acknowledgement

First I would like to thank my advisor, Otmar Hilliges, for his advise
and guidance in the academic process and for giving me the chance
to do a Ph.D. in his group despite time constraints on my side. In his
group I had a lot of freedom to choose what I was working on which
allowed this thesis to span several topics of my own interest. Thanks
also to Marc Pollefeys and Neel Joshi for joining my Ph.D. committee.
Thanks to Fabrizio for our joint suffering on the Deformables project.

I am grateful that I had two great office mates, Christoph and Jie.
Thanks to Tobi for endless discussions on Manifolds and other top-
ics. I really enjoyed the gaming sessions and pizza evenings with
Christoph, Jie and Emre. Thanks to Christoph, Fabrizio, Stephan
and Tobi for our joint work. And of course thanks to Adrian, Manuel,
Velko, Wookie and all other AIT members.
Furthermore I want to thank all collaborators, Matthias Nießner,

Neel Joshi, Sudipta N. Sinha, Dey Debadeepta, Ashish Kapoor, Moritz
Baecher and Bernhard Thomaszewski. I also appreciate all the help
and discussion with other members of AIT and ETH in general.
I also want to say thanks for all the administrative support from

ETH.
I am grateful for Caroline and her constant support during my time

in the AIT group. Last but not least I want to thank my parents and
siblings for their support and especially my parents for feeding me
oatmeal when I was a kid. I am sure it helped.

vii

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Design Choices . 4
1.3 Challenges and Contributions 8
1.4 Thesis Outline . 11
1.5 Publications . 12

2 Background 15
2.1 Trajectory Planning 15
2.2 Occupancy Mapping 21
2.3 3D Reconstruction . 22
2.4 Submodular Optimization 27
2.5 Artificial Neural Networks 30

3 Optimization-Based Planning of Quadrotor Trajectories 33
3.1 Introduction . 34

3.1.1 Overview & Contribution 35
3.2 Related Work . 36

3.2.1 MAVs in HCI 36
3.2.2 Video Stabilization & Camera Path Planning . 36
3.2.3 Computational Design 37
3.2.4 Robotic Behavior and Trajectory Generation . 37

3.3 Notation . 39

ix

Contents

3.4 System Overview . 39
3.5 Method . 41

3.5.1 Approximate Quadrotor Model for Trajectory
Generation . 42

3.5.2 Trajectory Generation 43
3.5.3 Optimizing for Human Objectives 45

3.6 Implementation . 51
3.7 Results and Application Scenarios 53

3.7.1 Light Painting 54
3.7.2 Racing . 55
3.7.3 Aerial Videography 56

3.8 Technical details . 58
3.8.1 Quadrotor Model 58
3.8.2 Quadrotor Control 59
3.8.3 Validity of Approximate Quadrotor Model . . . 61

3.9 Discussion . 64

4 Trajectory Planning for Multi-View Stereo Reconstruction 65
4.1 Introduction . 66
4.2 Related work . 71
4.3 System Overview . 75
4.4 Method . 81

4.4.1 Optimizing viewpoint trajectories 81
4.4.2 Submodular voxel information 82
4.4.3 Maximizing the submodular formulation 84
4.4.4 Viewpoint candidate graph 86

4.5 Results . 97
4.5.1 Synthetic scenes 97
4.5.2 Comparison with Roberts et al. 98
4.5.3 Viewpoint score comparison 99
4.5.4 Comparison with regular baseline patterns . . . 100
4.5.5 Real scenes . 102

4.6 Discussion . 111
4.7 Implementation details 113
4.8 Algorithms for viewpoint graph generation 115

x

Contents

4.9 Additional results . 118
4.9.1 Submodular optimization results 118
4.9.2 Performance comparison when not including im-

ages from initial coarse scan 118
4.9.3 Effect of number of viewpoints for simple base-

line methods 118
4.9.4 Comparison of times for different methods . . . 119

5 Learning a Viewpoint Utility Score 127
5.1 Introduction . 128
5.2 Related work . 129
5.3 Problem Setting and Overview 131
5.4 Predicting View Utility 134

5.4.1 World model 134
5.4.2 Oracle utility function 135
5.4.3 Learning the utility function 136
5.4.4 3D Scene Exploration 139
5.4.5 Dataset . 141

5.5 Experiments . 145
5.5.1 ConvNet architectures and training 145
5.5.2 Evaluation . 145
5.5.3 Model performance on different datasets 146
5.5.4 Comparison with baselines 147
5.5.5 Noisy input sensor 149
5.5.6 Additional results on real data 151

5.6 Discussion . 153

6 Conclusion 155
6.1 Future Work . 157

Bibliography 161

xi

Chapter 1

Introduction

In recent year micro aerial vehicles (MAVs) have become affordable
and abundant both in the professional and in the consumer sector.
We can nowadays find MAVs in numerous applications: racing as a
recreational activity, hobby and high-end filming applications, struc-
tural inspection work on construction sites and historic buildings or
transport machinery like trains and planes, inspection and exploration
of hard to reach or hazardous environments, security surveillance of
large properties, inspection and monitoring for agriculture but also
for plant- and wild-life in protected areas and 3D modeling of land-
scapes, buildings or heritage sites. The majority of these MAVs are in
the form of multi-copters and their success and widespread adoption
can be attributed to their relatively simple mechanical and electronic
design, their smooth dynamics that are easy to handle from a control
perspective and the flexibility in terms of space that they can reach.
Despite this proliferation of MAVs most of their use cases are still

performed in a manual way, i.e. there is one or multiple human experts
steering the MAV or performing other support work. To some extent
this can be attributed to the fact that robust autonomous flight in
GPS-denied environments (i.e. indoor or crowded urban areas with

1

Chapter 1 Introduction

bad signal quality) is still an open research problem and no off-the-
shelf solutions exist. However, another challenging aspect is the de-
sign of autonomous systems that incorporate the necessary domain
knowledge which is often intuitive and non-formal.
In this thesis we try to bridge this gap between usage of MAVs and

their autonomous deployment. We design systems that plan trajecto-
ries or sequences of decisions for MAVs with applications in the areas
of filming, 3D modeling and exploration and we put them in context
to related work from trajectory optimization, sensor placement, active
vision and sequential decision making.

1.1 Problem Statement

The schematic in Fig. 1.1 depicts the parts of a robotic system used
for a specific task. There are basically two ways to solve a given task
in this setting: 1) Use a human expert with domain knowledge to
control the robot. Here the human expert plans and performs the
necessary steps to reach the goal. 2) Design a system that plans and
autonomously performs the necessary steps to reach the goal. Here
the system designer incorporates required domain knowledge into the
system.
While a large part of perception and control, in particular lower

levels, can be formulated and developed in a task independent man-
ner there is usually a significant portion that is specific or at least
needs to be adapted to the task at hand. As such a designer for a
planning system has to tackle and solve problems both in the area
of perception and control but also in translating the often intuitive
domain knowledge into an algorithmic approach.
In this thesis we tackle the problem of designing such planning sys-

tems that can incorporate sensory information and provide a sequence
of decisions to solve the task at hand. We demonstrate this design
process for tasks in the area of filming, 3D modeling and exploration.
In each case we will identify goals that we want to achieve and con-
straints that we need to fulfill. We will then incorporate these goals

2

1.1 Problem Statement

Figure 1.1: The schematic depicts the parts of a robotic system used
for a specific task. In this thesis we focus on designing
planning systems for autonomous robots by showing ex-
amples in filming and 3D modeling.

and constraints into a planning scheme that will generate a trajectory
or sequence of decisions leading to the goal.
In the case of filming the goals are a smooth and pleasing motion

of the camera and aesthetic aspects of the composition that we try
to put in a formal setting. The constraints come in the form of the
MAV dynamics, the coarse composition of the scene and the subject
to be filmed and obstacles that need to be avoided. We will formulate
the planning problem as a constrained optimization problem over the
trajectory of the MAV discretized in time.
For the 3D modeling task the goal is to reconstruct a high-quality

model of the scene. This will results in the task of selecting a se-
quence of camera viewpoints that will be used for the Structure from
Motion (SfM) and Multiview-Stereo (MVS) processing and can be
traversed within the maximum flight time of the MAV. The set of
resulting images should fulfill certain criteria so that our resulting 3D
model is accurate and complete. We formulate this as maximizing
the information captured by the set of images. When this notion of

3

Chapter 1 Introduction

information is modeled so that the contributed information of differ-
ent measurements is independent of each other this information score
often exhibits a property called submodularity [1]. The related sensor
placement problem where the aim is to maximize a coverage function
has been studied intensely in the literature for the submodular setting
[1]. Our task is different in that we try to find a trajectory of sensor
positions that fulfills a travel budget while maximizing a submodular
function and is known as submodular orienteering.
The exploration task is somewhat related to the 3D modeling task

but in contrast we want to choose the next image viewpoint without
a prior model of the scene. Here, the 3D model is updated on the fly
and parts of the scene will be completely unknown. A good notion of
information should then capture the expected distribution of surface
in the scene so that measurements are taken that discover more sur-
face and not free space. Typically such systems create an occupancy
map that is updated with each new measurement. After each update
the system chooses from a set of new measurement positions the one
with the maximum expected information gain. This information gain
measure is usually hand-crafted and based on a raycast into the oc-
cupancy map. However, it is difficult to incorporate prior knowledge
about a scene into such a measure and as a result different informa-
tion gain measures work well on different types of scenes. Instead
we formulate the computation of the information gain function in a
data-driven fashion by making use of an expert policy during training
that has access to ground truth models of the scene.

1.2 Design Choices

In the previous section we discussed the problems and task that we
are investigating in this thesis. Here we discuss possible options and
explain our choices regarding hardware platform, planning algorithms
and data representations.

4

1.2 Design Choices

Hardware Typical examples of robotic platforms are wheel-driven
ground robots which can carry heavy loads and can provide long run-
ning times on battery but their movement range is limited to the
ground and even small steps can be an insurmountable obstacle. Thus
a ground based robot is strongly constrained in the space that it can
reach which is of high importance for tasks such as filming or large
scale 3D modeling where a high flexibility in the camera placement
is desired. As an example, a wheel-driven robot is unable to acquire
images from parts of a building’s surface that are not visible from the
ground or that are too far away or have very steep viewing angles from
those ground positions. This will often prevent the computation of
distance values for these surfaces. Another platform are autonomous
planes. These can carry a downward looking camera and provide
image data for large areas in a short time. However, these planes
usually have to fly at altitudes of 100m to prevent collisions as their
dynamics strongly constrain maneuverability and an obstacle recogni-
tion system would have to be very fast. This makes them unsuitable
to provide close-up footage of surface details that are not observable
from a birds-eye perspective. Their dynamics also make them unsuit-
able for tasks where a position should be kept or only changed slowly
such as in filming. A third option is that of a multi-copter, i.e. a drone
capable of vertical take off and landing and motion along 4 degrees of
freedom (DOFs) (i.e. 3 position DOFs and 1 rotation DOFs). A gimbal
mounted camera can provide full 6 DOF for the camera placement.
This allows for arbitrary camera motion that is only temporally con-
strained by the dynamics of the system making it suitable to filming
as well as taking images from above as well as from the side of a build-
ing enabling the creation of 3D models of a whole building including
parts that are not observable from the ground and parts that are not
observable from a plane at high altitudes. This flexibility comes at
the price of a lower range and battery time compared to a plane and
less lifting capability than a ground robot but for the tasks at hand
we deem the advantages to clearly outweigh the disadvantages.
Possible sensors include normal color or grayscale cameras, stereo

cameras, depth cameras or laser range scanners (also known as LI-

5

Chapter 1 Introduction

DARs). Clearly, for filming we desire a high-quality color camera
but for other tasks such as 3D modeling or exploration other sensors
are also suitable and we briefly discuss them here. Laser range scan-
ners offer very high accuracy and allow direct distance measurements
both indoors and outdoors. Unfortunately, their cost and weight make
them a unsuitable for many applications, especially in an airborne set-
ting. Depth cameras are a cheaper alternative and also provide direct
distance measurements through projected light or via time-of-flight
measurements. However, they suffer from degraded performance in
outdoor scenarios with direct sunlight and provide restricted ranges
of distance measurements. Stereo cameras do not suffer from degrada-
tion in outdoor scenarios but are less accurate due to ambiguity when
establishing dense correspondences between the image pair and similar
to depth cameras provide only a limited distance range. In contrast
to these sensors color or grayscale cameras can not provide direct
distance measurements. However, similar to a stereo camera, mul-
tiple images from different positions can provide information about
the structure of a scene. Often the process is split into two steps:
First the camera position and orientations are computed based on
sparse correspondences of salient feature points, this process is called
Structure from Motion (SfM). In the second step, known as Multi-
View Stereo (MVS) dense correspondences are established between
the known cameras and used to triangulate the depth of individual
pixels Because of their flexibility, low weight and affordable price we
chose an RGB camera as the primary sensor.

Planning Algorithms The choice of robotic platform (and sensor)
imposes constraints on the flight trajectory in terms of the dynamics
and the travel budget due to limited battery life. These constraints
have to be accounted for when planning for a sequence of decisions,
i.e. selecting the set of positions at which the camera should take an
image. At the same time the camera motion should achieve a goal,
i.e. the set of selected image positions should maximize some notion of
information about the scene, so that we make the best use of the avail-

6

1.2 Design Choices

able budget. We distinguish two different formulations of the goal. In
tasks such as filming the continuous camera motion is of interest for
the goal (i.e. smooth footage and composition of each frame) whereas
in other tasks such as 3D modeling and exploration only a sparse set
of camera positions is of interest for the task (a good set of image
viewpoints). In the first case we model the planning as a continuous
optimization problem. In the second case we model the planning as
a discrete optimization problem and we will see connections to the
fields of sensor placement and orienteering.

Data Representation When it comes to the 3D modeling and explo-
ration task the most common, explicit representations for 3D models
are triangular meshes and occupancy maps. Triangular meshes are
collections of triangles that make up the surface of an object. They
are the de facto standard in graphics applications as they can repre-
sent arbitrary shapes and levels of detail. In robotic applications how-
ever, triangular meshes have the disadvantage that they only record
information about the surface of a scene but they do not posses any
information about occupied, free or unknown space. While occupied
space can be inferred from closed and waterproof meshes it is often
difficult to acquire such meshes in a robust manner. In any case a
distinction between free and unknown space is not possible. A rep-
resentation that allows this distinction is that of an occupancy map.
Here the space is typically divided into a regular grid of cube-shaped
voxels with a fixed size. Each voxel can then carry information about
its occupancy (i.e. how much of its volume is occupied) and about
its certainty (i.e. how certain or probable is its occupancy). While
an occupancy map can be stored memory-efficient in a hierarchical
fashion in the form of an octree the memory requirements are still
approximately cubic to the inverse cube length of a voxel. Thus a
triangular mesh and an occupancy map offer different advantages and
disadvantages and in this thesis we are interested in both of them.
Renderings of both representations for the same scene are shown in
Fig. 1.2. Fundamentally, both representations can be created from

7

Chapter 1 Introduction

Figure 1.2: Shown on the left is a color image of a church. The
middle pane shows a rendering of a mesh representation
and the right pane shows a rendering of the occupancy
map representation.

depth images (i.e. images where each pixel value represents the dis-
tance from camera projection center to the object visible in the pixel)
so in both cases we need to acquire a set of depth images from our
scene.

1.3 Challenges and Contributions

In this thesis we develop components for developing autonomous sys-
tems aimed at quadrotors. These components include a local tra-
jectory generation framework, an occlusion-aware system to compute
viewpoint sequences for 3D modelling and a novel, data-driven ap-
proach to compute functions based on local views of incomplete occu-
pancy maps. Here we describe these components and corresponding
contributions in more detail.

Optimization-Based Planning of Quadrotor Trajectories The gen-
eration of trajectories for quadrotors and other MAVs is an interesting
and timely problem as the control of an MAV equipped with a gimbal-

8

1.3 Challenges and Contributions

controlled camera is non-trivial even for experienced users. Further-
more, it is not a priori clear what constitutes a good trajectory in dif-
ferent application scenarios. If we take filming as an example, a novice
user might want to just film a small number of interesting points in
sequence with little regard for timing while an expert user could spec-
ify a timing that the MAV should closely follow while giving freedom
to the path the MAV follows. To encompass different requirements
a flexible framework is necessary that incorporates a model of the
MAV to ensure that the generated trajectories can be followed with
high fidelity. To address these difficulties we propose an optimization-
based framework that leverages non-convex optimization to generate
feasible trajectories for quadrotors. The framework is able to incor-
porate user-provided high-level goals such as visually pleasing video
shots, optimal racing trajectories or aesthetically pleasing motion (see
Chapter 3).

Trajectory Planning for Multi-View Stereo Reconstruction Step-
ping away from filming another interesting use case for camera equipped
MAVs is the creation of 3D models due to their flexibility and rela-
tively low hardware and operating costs. In particular the generation
of detailed 3D models for crowded urban scenarios is challenging even
with the combinations of camera-equipped cars and planes due to non-
observable regions. We conjecture that with the emerging success of
virtual and augmented reality headsets (AR/VR) and the increase of
autonomous MAVs and autonomous vehicles there will be a high de-
mand for capturing high-quality 3D models of our surroundings. This
will facilitate the blending of the virtual and real world for AR/VR
applications and the safe operation of autonomous robots. However,
recording image sets with high overlap and coverage that facilitate
high-quality 3D reconstructions is challenging even for expert users.
In this setting we contribute an optimization strategy for autonomous
urban 3D modeling with MAVs that incorporates travel budget and
free-space constraints and maximizes the observed surface in a volu-
metric, occlusion-aware representation of the scene. This is enabled

9

Chapter 1 Introduction

by the formulation of a submodular coverage function for a set of
images and a novel algorithm for solving the resulting submodular
orienteering problem. In this context we also provide a quantitative
comparison with other methods (see Chapter 4).

Learning a viewpoint utility score Finally, a related problem is the
autonomous exploration of unknown environments. Compared to the
setting described above we do not have a strong prior knowledge
about the area that we want to map such as in mapping of caves
or catastrophic sites or indoor environments. Autonomous mapping
and exploration in this setting is particularly challenging as we need to
account for safe motion of the robot and also want to map the environ-
ment efficiently in terms of required time. At the same time we want
to incorporate vague prior knowledge about typical 3D structures.
To address these challenges we propose to learn a utility function for
scoring viewpoints in a partly observed volumetric map. Instead of
hand-crafting heuristics of our prior knowledge we devise a multi-scale
representation of the map that can be fed into a 3D convolutional neu-
ral network and train it to match the output of an oracle with access
to the ground truth map The learned utility function is then used to
descide on the next viewpoint during exploration (see Chapter 5).
To summarize, in this thesis we describe several case studies of de-

signing planning systems for different vision-related tasks. The chal-
lenges arise from the need to translate task-specific domain knowledge
into identifiable goals and constraints for an autonomous system. We
believe that this work provides a detailed discourse on these tasks
and the corresponding transfer of domain knowledge and also serves
as a reference for the development of autonomous systems for related
tasks. In addition we report promising directions for future work that
we discuss in Chapter 6.

10

1.4 Thesis Outline

1.4 Thesis Outline

The structure of this thesis is as follows:

Chapter 2 gives an overview of techniques and methods that provide
the foundations for the following chapters. The topics covered
range from 3D modeling over trajectory planning to neural net-
works. Due to the large span of topics the description is kept
concise and references for further reading are given.

Chapter 3 introduces an algorithm for generating flight trajectories
that follow a sparse set of 3D locations provided by a user. These
3D locations can be augmented with desired viewpoints that a
gimbal-controlled camera should film. Additionally, we include
the possibility for the user to define obstacles and certain aes-
thetic properties of the film composition. We formulate a contin-
uous, non-linear optimization problem that we solve to compute
the desired trajectories.

Chapter 4 describes a system for generating flight trajectories to ef-
ficiently scan 3D models of building-scale structures in urban,
crowded environments. These flight plans can be readily ex-
ecuted on an MAV equipped with a gimbal-controlled camera
and the resulting images can be used to perform Structure-from-
Motion and Multi-View Stereo to acquire a digital 3D model of
the scanned scene.

Chapter 5 approaches the problem of exploring an unknown environ-
ment with a robotic camera. To this end an expert policy is
defined by using ground-truth information of the scene. The
expert policy is used to generate training data that is used to
learn a utility function that predicts the usefulness of a new
view. The utility function is modeled as a 3D convolutional
neural network and based on a multi-scale representation of a
3D occupancy map.

11

Chapter 1 Introduction

Chapter 6 concludes the thesis and puts it in context with open ques-
tions and interesting directions for future work.

The core contributions of the thesis are contained in Chapter 3, 4
and 5. Because of the different application domains presented in each
chapter we present a separate section covering related work in each
chapter.

1.5 Publications
The core contributions of this thesis are based on the following pub-
lications:

• Christoph Gebhardt∗, Benjamin Hepp∗, Tobias Nägeli, Stefan
Stevsic, Otmar Hilliges.
Airways: Optimization-Based Planning of Quadrotor
Trajectories according to High-Level User Goals.
Conference on Human Factors in Computing Systems (CHI),
2016.

• Benjamin Hepp, Debadeepta Dey, Sudipta N. Sinha, Ashish
Kapoor, Neel Joshi, Otmar Hilliges.
Learn-to-Score: Efficient 3D Scene Exploration by Pre-
dicting View Utility.
European Conf. on Computer Vision (ECCV), 2018.

• Benjamin Hepp, Matthias Niessner, Otmar Hilliges.
Plan3D: Viewpoint and Trajectory Optimization for Aerial
Multi-View Stereo Reconstruction.
Accepted for publication in Transactions on Graphics (TOG),
ACM, 2018.

Further publications that were conducted during the course of my
PhD research but are out of scope of this thesis are listed below:

∗These authors contributed equally to the work

12

1.5 Publications

• Benjamin Hepp∗, Tobias Nägeli∗, Otmar Hilliges.
Omni-directional person tracking on a flying robot using
occlusion-robust ultra-wideband signals.
Int. Conf. on Intelligent Robots and Systems (IROS), 2016.

• Moritz Bächer, Benjamin Hepp∗, Fabrizio Pece∗, Paul G. Kry,
Bernd Bickel, Bernhard Thomaszewski, Otmar Hilliges.
DefSense: Computational Design of Customized De-
formable Input Devices.
Conference on Human Factors in Computing Systems (CHI),
2016.

• Ankit Gupta∗, Benjamin Hepp∗, Mustafa Khammash.
Noise induces the population entrainment of incohernt
uncoupled intracellular oscillators.
Cell Systems, 3(6), 2016.

• Benjamin Hepp, Ankit Gupta, Mustafa Khammash.
Adaptive Hybrid Simulations for Multiscale Stochastic
Reaction Networks.
The Journal of Chemical Physics, 142(3), 2015.

∗These authors contributed equally to the work

13

Chapter 2

Background

In this chapter we will cover basics that are necessary to understand
the following chapters and will point the reader to additional refer-
ences for more details. We start by introducing methods for trajectory
planning that will be used later on. Next we explain the concept of oc-
cupancy maps and their construction and representation as an octree.
The following section will give an overview of submodular optimiza-
tion and orienteering and relevant work in that field. After this we will
give an overview of 3D modeling including camera modeling, Struc-
ture from Motion and Multi-View Stereo. Finally, we finish with a
quick overview on 3D convolutional neural networks and how to train
them.

2.1 Trajectory Planning

Here we look at the problem of finding a trajectory or a path from a
start configuration (i.e. the position and orientation of a robot) to a
goal configuration or a set of goal configurations. We assume that we
are given a map denoting free and occupied (or unknown) space so
that we can determine if a path would lead to a collision.

15

Chapter 2 Background

We denote the configuration space as C and a metric measuring
the distance or cost of going from one configuration to another as
Cost : C × C → R. Let Collision : C → 0, 1 be a function that tells us
if a specific configuration would lead to a collision (1) or not (0). We
overload this function with a second variant Collision : C × C → 0, 1
that tells us if a path from one configuration to another one would
lead to a collision. Furthermore, we assume that we have a model
Step of the robot that returns the next configuration given an input
u ∈ U where U is the input space:

Step : C × U → C . (2.1)

Note that we assume a fixed time discretization of the model. The task
of finding a path from a start configuration cs to a goal configuration
gs is then formulated as

min p∈P

i=|P|∑
i=1

Cost(Pi−1, Pi) (2.2)

such that

P0 = cs

P|P| = cg

Collision(Pi−1,Pi) = 0 ∀i ∈ 0, . . . , |P|
∃u ∈ U : Step(Pi−1, u) = Pi ∀i ∈ 1, . . . , |P|

, (2.3)

where P is the set of all finite sequences of C. In general this problem
is very hard to solve as the configuration space can be of high dimen-
sion and the function Collision is often highly non-convex. We point
out here that the underlying formulation leading to (2.2) is often a
discretization of the continuous robot dynamics by direct collocation
[2, 3].

Nonlinear Programming In certain situations the problem (2.2) can
be solved by nonlinear programming solvers. In the general case these
solvers will require an initial trajectory (which is often required to ful-
fill the constraints) and will only find a local minimum around this

16

2.1 Trajectory Planning

initial path. This local minimum can be far worse than the global
minimum depending on the initial path and the constraints and find-
ing a good initial path is a difficult problem itself (if we know how
to find a good initial path we are basically reducing the problem to
a local minimization problem). In chapter 3 we use this approach
to compute trajectories for a quadrotor that are designed to be visu-
ally pleasing and observe objects of interest in a scene. As described
here we discretize the continuous dynamics and solve the resulting
nonlinear program by Sequential Quadratic Programming (SQP).

Mixed-Integer Programming Another approach is to formulate the
problem as a mixed-integer program by splitting the space into convex
regions and introducing categorical variables that indicate to which
convex region each piece of the trajectory belongs. The problem can
then be solved by an off-the-shelf solver for mixed-integer semidefinite
programs [4]. While these solvers can be very efficient in finding a
global optimum the mixed-integer problem is NP-complete and thus
there is no guarantee that a solution will be found. However, one
should note that after an initial feasible solution has been found one
can simply stop the optimization after a computational or time budget
has been expended and go forward with the best solution found so far.
We also point out here that the problem itself is slightly relaxed as
the set of convex regions often does not cover the full space.

Randomized Planning In chapter (4) we need to plan trajectories
through an urban crowded scene. As mentioned earlier a nonlinear
programming solver can only find a locally optimal solution and es-
pecially when many obstacles are present such a solution can be con-
siderably worse than the optimal one. Instead we resort to sampling
based planning to solve Eq. (2.2). In particular we use the RRT∗
method [5, 6, 7]. The core idea is to incrementally build a tree of con-
figurations that will eventually connect the start configuration (root
of the tree) with the goal configuration. To this end we need an ad-
ditional function Steer : C × C → U which takes configurations c1 ∈ C

17

Chapter 2 Background

and c2 ∈ C and returns an input u ∈ U that moves the robot from c1
towards c2. This can be formulated as an optimization problem:

Steer(c1, c2) = argminu∈UCost(Step(c1, u), c2) , (2.4)

but for simpler models we can invert the derivative of the model dy-
namics Step, linearize it at c1 and solve for the input u ∈ U that
moves us in the direction of c2 − c1.
We first explain the simpler RRT algorithm and then extend it

to RRT∗. RRT works as follows: Initially, the tree T consists only
of the root (the start configuration). In each iteration we sample a
random configuration crand ∈ C from our configuration space such
that Collision(crand) = 0 (this sampling is often biased towards the
goal configuration). We search for the configuration

cnearest = argminc∈TCost(c, crand) (2.5)

that is closest to crand according to Cost . Next we compute a new
configuration that is moving towards crand:

unext = Steer(cnearest, crand) (2.6)
cnext = Step(cnearest, unext) . (2.7)

If Collision(cnearest, cnext) = 0 we add cnext to the tree T with cnearest
as its parent node. In [8] the authors show that RRT provides proba-
bilistic completeness meaning that given enough iterations the proba-
bility of finding a solution, which fulfills certain regularity conditions,
converges to 1.
However, in [6, 7] the authors demonstrate that RRT does not pro-

vide an optimality guarantee and introduce the variant RRT∗ that
provides a asymptotic optimality under suitable conditions, i.e. given
enough iterations the cost of the found solution converges to the global
optimum. RRT∗ improves upon RRT in two ways: 1) if there exists
a node cmin in the neighborhood of cnext with a smaller distance from
it than cnearest then cmin becomes the parent of cnext; 2) every node c
in the neighborhood of cnext which can be reached from cnext with a

18

2.1 Trajectory Planning

Figure 2.1: Shown is a figure from [7] that shows a tree built by
RRT on the left side and a tree built by RRT∗ on the
right side. The yellow square is the start configuration,
the pink square the set of goal configurations, the red
rectangles are obstacles and the red line represents the
best found path. Clearly, RRT∗ found a more optimal
solution than RRT.

lower accumulated cost than so far is reconnected to cnext, i.e. its new
parent becomes cnext. The algorithm is given in Alg. 1. An example
of a built tree and the best found path for RRT and RRT∗ is shown
in Fig. 2.1.

19

Chapter 2 Background

Algorithm RRT∗:
Input: Start configuration cstart
Input: Goal configuration cgoal
Input: Number of iterations N
Output: Tree T
T ← cstart; for i ← 0 to N do

crand ← Sample from C;
cnearest ← Nearest node in T ;
unext ← Steer(cnearest, crand);
cnext ← Step(cnearest, unext);
if Collision(cnearest, cnext) = 0 then

Continue to next iteration;
end
// Check for a better connection;
cmin ← cnearest;
NearNodes ← Nodes in T from neighborhood of cnew;
for c ∈ NearNodes do

if Collision(c, cnext) = 0 and AccCost(c) + Cost(c, cnext) <
AccCost(cmin) + Cost(cmin, cnext) then

cmin ← c;
end

end
Add edge cmin → cnext to T ;
// Rewiring of the tree;
for c ∈ NearNodes do

if Collision(cnext, c) = 0 and
AccCost(cnext) + Cost(cnext, c) < AccCost(cnext) then

Set cnext as the new parent of node c;
end

end
end

End
Algorithm 1: RRT∗ algorithm. AccCost(c) returns the accumu-
lated cost from the cstart to c which can be easily stored in the tree T .
Note that the choise of the neighborhood is crucial for the optimal-
ity guarantee (see [7]) and that both the nearest neighbor and the
neighborhood search can be implemented as efficient approximate
searches without breaking the asymptotic optimality from [7].

20

2.2 Occupancy Mapping

2.2 Occupancy Mapping

One way to represent a 3D model is to discretize space into finite
volumes that we call voxels and assign each voxel a set of properties
describing it. Typically the space is discretized into a grid of equally
sized cubes and each voxel bears a property called occupancy. The
occupancy can be interpreted in two ways: 1) assuming that all vox-
els are either fully occupied (i.e. contain a solid object) or fully free
the occupancy describes the probability P (o) that a voxel is occu-
pied, 2) it describes what fraction of the volume of a voxel is occupied
(i.e. contains some solid object). For case 2) another property is usu-
ally assigned to each voxel that describes the number of observations
or the certainty of the occupancy value. Here we will focus on in-
terpretation 1) as it is commonly used in robotic applications. More
details on interpretation 2) will be given in Sec. 5.4.1 where we will
use it.
Representing an occupancy map as a dense grid of voxels requires

memory that grows linear with the mapped volume which grows cubic
with the length along the longest dimension of the mapped space.
Mapping a space of 100m × 100m × 100m already requires 1 billion
voxels (i.e. 1 GB if the occupancy is represented as a single-precision
floating point number). In particular on mobile robotic platforms
such memory requirements can already surpass the system capacity.
However, when mapping typical scenes we observe that often large
contiguous volumes are free, occupied or unobserved (i.e. share the
same occupancy value). This allows the use of a hierarchical data
structure instead of a dense grid of voxels. An octree is used as it
implicitly captures the layout of the voxel grid and can represent large
cubes with homogeneous occupancy values. Each node of the octree
has an occupancy value and references to its eight children nodes. If
the children nodes are uninitialized this means that all the volumes
represented by the children share the same occupancy value that is
stored in the node. Instead of saving a leaf (or size) property with
each node we fix the maximum volume of the octree by specifying
its voxel size and the maximum tree depth (i.e. 16). A node is then

21

Chapter 2 Background

simply identified as a leaf node if it is at the maximum tree depth.
For a voxel size of 0.1m this allows for a volume of size approximately
6.5km× 6.5km× 6.5km.
To map a scene with an occupancy map we start by initializing

the voxels with an initial occupancy value of 0.5. We assume that
we are given a depth image from a known camera pose with known
intrinsics (otherwise we can compute the camera pose and depth image
as described in Sec. 2.3). For each pixel of the depth image we iterate
over all voxels that intersect with the ray starting from the projection
center of the camera towards the 3D point p represented by the pixel.
We update all voxels that the ray passes through in a probabilistic
manner according to an inverse sensor model:

L(o|z) =

{
locc the 3D point p is within the voxel
lfree otherwise

, (2.8)

where L(n|z) is the log odds ratio of a voxel being occupied given
a single measurement z. We refer the reader to [9] for more details.
By representing both the sensor model and the occupancy value as a
log odds ratio (i.e. L(o) = P (o)/¬P (o)), the update of the occupancy
with a new measurement is a simple addition:

L(o|z1:t) = L(o|z1:t−1) + L(n|z) , (2.9)

where L(o|z1:t) is the log odds ratio of the occupancy given t measure-
ments z1, . . . , zt. We follow [9] and use locc = 0.85 and lfree = −0.4
(which corresponds to a probability of 0.7 for a 3D point within the
voxel and 0.4 otherwise).

2.3 3D Reconstruction

The process of generating a 3D model of an object or scene is called
3D reconstruction. Here we look at the 3D reconstruction from a set
RGB images. This task is often split into two steps:

22

2.3 3D Reconstruction

1. In the Structure from Motion step the camera pose of each image
is computed together with a sparse set of 3D points in the scene.

2. In the Multi-View Stereo (MVS) process a disparity or depth
map is generated for each image by computing and filtering
pixel-wise correspondences with other images.

Finally, the resulting depth maps can be combined into a volumetric
[9] or mesh-based [10] representation.

Notation Here we define some notation to ease the following discus-
sion:

p ∈ R3 A point p in 3 dimensional Euclidean space.

z ∈ R2 An image point in 2 dimensional Euclidean space.

v ∈ SE(3) A camera viewpoint or pose v describes a rigid transforma-
tion in the 3 dimensional Euclidean space from world coordinate
frame to the viewpoint coordinate frame. This is known as the
extrinsic parameters of a camera view. It is commonly repre-
sented as a R4×4 matrix or a unit quaternion together with a
translation vector in R3. When represented as a 4 × 4 matrix
M a point p coordinates can be transformed by matrix multi-
plication of M with its homogeneous representation.

Tv : R3 → R3 Transforms a point in world coordinate frame to the
local coordinate frame of a camera with viewpoint v.

θ ∈ RK The intrinsic parameters θ of the camera. Depending on the
camera model these can comprise focal lengths, principal points
and distortion coefficients.

πθ : R3 → R2 Projects a point in a camera local coordinate frame onto
the image plane of the camera with intrinsic parameters θ.

23

Chapter 2 Background

Structure From Motion Structure from Motion is the process of
extracting the camera poses vj from a set of images. Here we give a
high level description of the steps and refer to the literature for details
[11, 12, 13, 14].
First we identify 2D keypoints z in each image and extract feature

descriptors for each of them. These keypoints should be at corners of
the gradient image so they can be found and localized in other images.
Next we match feature descriptors between images. To enable this the
ideal feature descriptor should be orientation- and scale-independent
to enable matching of images from different viewpoints. Additionally,
it is desirable that the descriptor is invariant to a homography so that
we can match viewpoints that look from a different angle onto the
surface of the keypoint. After matching features between two images
we can compute a homography or a fundamental matrix relating the
two images. This is done in a robust way, e.g. using RANSAC. By
requiring a minimum number of inliers the resulting relation can be
geometrically verified.
Now given all these relations the task is to recover the camera poses

vj . The resulting camera poses are only defined up to a similarity
transform: The scale is ambiguous due to the projective geometry of
a camera and there are 6 degrees of freedom for choosing a coordinate
system. This is usually addressed by initially computing the relative
pose of two images with a fixed baseline vector (3 rotation DOFs
and 1 scale DOF) and putting one of the images at the origin of the
coordinate system (3 translation DOFs). Choosing a good initial pair
is a difficult problem in itself. The relative pose itself can be computed
by decomposing the homography or fundamental matrix. Using the
camera poses we can triangulate the common feature points to get a
set of initial 3D points pi. The initial poses vj and 3D points pi make
up the initial reconstruction.
Based on this reconstruction further images can be added one by

one by solving a Perspective-n-Point problem of the keypoints z in the
new image and the corresponding 3D points pi in the reconstruction.
Again this is usually done in a robust way and geometrically verified.
After computing the pose of the new image we can try to triangu-

24

2.3 3D Reconstruction

late matching feature points without a corresponding 3D point. The
reconstruction is then extended by the new pose and 3D points.

Bundle Adjustment When adding more and more images the es-
timated camera poses vj will drift due to accumulation of errors of
the triangulated 3D points pi. To remedy this Bundle Adjustment
is performed regularly with the growing reconstruction. In Bundle
Adjustment all 3D points are projected into the images that observed
them. These projections are the observations whereas the correspond-
ing keypoints are the measurements. Bundle Adjustment itself is then
the minimization of the residuals between observations and measure-
ments where the the camera intrinsics, camera extrinsics and the 3D
points are free variables to be optimized:

P,V, θ =argmin{p̂1,...,p̂N},{v̂1,...,v̂M},θ̂

N∑
i

M∑
j

r2
i,j,p̂i,v̂j ,θ̂

(2.10)

ri,j,p,v,θ =

{
πθ(Tvj (pi))− zi,j if 3D point i is observed in view j

0 otherwise
,

where N is the number of 3D points pi, M is the number of camera
viewpoints vj , zi,j ∈ R2 is the observed projection of 3D point pi
in camera view vj and all camera views share the same intrinsic pa-
rameters θ. This optimization will distribute the accumulated errors
between all camera poses and 3D points and result in a better and
more robust reconstruction. To further increase robustness against
outliers the squared residual is often replaced with a robust loss func-
tion.

Multi-View Stereo Given camera poses of multiple images we want
to compute a disparity or depth map for each of these images. This
is known as Multi-View Stereo and is a generalization of dense stereo
matching to multiple images. Here we provide a quick overview and
refer the reader to the literature for details [11, 12, 15, 16, 17, 18].

25

Chapter 2 Background

In dense stereo matching we are given two images A,B observing
the same scene and their relative pose. The goal is to compute for one
or both images a disparity value or depth value for each pixel. Of-
ten the first step in the process is to rectify both images, i.e. project
both images onto a common image plane, such that epipolar lines are
horizontal and at the same vertical position in the other image. For
each pixel in image A we can search for a matching pixel in image
B within a window of no and maximum disparity. In block matching
stereo the determination of pixel matches is done by computing a sim-
ilarity measure between small windows around the pixels. To compute
this similarity a key assumption in many methods is that of fronto-
parallel patches, i.e. the patch is assumed to be parallel to the image
plane. Many similarity measures can be used such as sum of absolute
differences, sum of squared differences or normalized cross-correlation
but also rank-based measures or learned measures [19, 20].
We note here that the stereo matching problem is an ill-posed prob-

lem. This can be easily seen for the case of two images of a white
homogeneous surface where matching is ambiguous. Another funda-
mental problem is that of handling pixels in image A that are oc-
cluded in image B. To reduce these ambiguities one can post-process
the resulting disparity maps. Another option is to introduce prior in-
formation, such as smoothness assumptions, is to use global methods
such as graph cuts or dynamic programming that reason over more
than one pixel. These methods typically work on a cost volume were
the similarity is computed for each pixel and each disparity.
The problems of occlusions and ambiguities in the stereo matching

of two images can be remedied by incorporating more images. These
additional images might feature different occlusions or disambiguate
multiple hypothesis of a pixel disparity. This is often done by fil-
tering along the multiple depth maps that were computed. Another
approach is to compute matching cost volumes for multiple images in
inverse depth space. Filtering can then be performed on these cost
volumes and can provide additional robustness. Instead of the filter-
ing approach one can also select views that are most promising for
depth map computation [21, 22]. Another successful paradigm devi-

26

2.4 Submodular Optimization

ated from the depth map based reconstruction and instead tried to
reconstruct a set of 3D patches that is consistent over multiple views
[15]. In recent state-of-the art methods the patch-match framework
[23] was adapted to the stereo matching problem with great success
[22, 24, 17, 18]. In this framework we start with a randomly initial-
ized or uninitialized depth map and insert depth values from sparse
3D points that were computed in the Structure from Motion step. In
each iteration depth values from pixels are propagated to their neigh-
bors and overwrite their depth values if this reduces the matching cost.
After the propagation new depth values are sampled at each pixel and
overwrite the previous depth value if the new depth value reduces the
matching cost. Due to the parallel nature of the framework it allows
for efficient implementations on modern GPUs. In addition to the
depth estimates one can also incorporate normal estimates for each
pixel to handle non-fronto-parallel surfaces. Going even further the
patch-match framework can be extended to perform pixel-wise view
selection by formulating a probabilistic model that is approximately
inferred with each patch-match iteration [24, 14].

2.4 Submodular Optimization
Submodular optimization is common in the field of sensor placement
where the task is to find the best sensor configuration according to
some metric with respect to a certain budget, e.g. a maximum number
of sensors [1]. The property submodularity refers to a diminishing
returns property that occurs in many tasks. This means that the
selection of a sensor will provide less and less additional use on top
of the already selected sensors as their number grows. To give a
formal definition let S be a set of possible sensor configurations, i.e.
the positions where a sensor can be deployed. A function f : 2S → R
is called submodular iff it fulfills the following property:

For everyA,B ∈ 2S with A ⊆ B and x ∈ S : (2.11)
f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) .

27

Chapter 2 Background

Many tasks in sensor placement and related areas can be formulated
as an optimization problem over sets:

X = arg max
X⊆S

(f(X)) (2.12)

such that b(X) ≥ 0 ,

where the objective function f specifies how good a selection of sensors
is and the function b : 2S → R is a constraint on the selection of
sensors. A common example for b is a cardinality constraint b(X) =
N − |X| requiring that at most N ∈ N sensors are selected.

Greedy Selection In general the optimization problem in 2.12 is NP-
complete [1], however, if the objective function in 2.12 is submodular
many approximate solution methods have been proposed that often
provide a theoretical guarantee on the optimality of the approximate
solution. One prominent example for the problem with a cardinality
constraint is the greedy selection of sensors based on their incremental
improvement ∆f of f :

∆f(x, Y) = f(Xi ∪ {x})− f(Xi) . (2.13)

The greedy selection is then recursively defined as:

X0 = ∅ (2.14)
xi+1 = arg max

x∈S\Xi

∆f(x,Xi)

Xi+1 = Xi ∪ {xi+1} .

The approximate solution is then given by XN ∈ 2S and we are guar-
anteed that

f(XN) ≥ (1− 1/e)f(X∗) , (2.15)

where X∗ ∈ S2 is the optimal solution [25, 1].

28

2.4 Submodular Optimization

Lazy Evaluation It is easy to see that the number of evaluations of
f required for the greedy algorithm is O(N |S|) as we need to greed-
ily select N elements and for each selection we need to evaluate the
function f for O(|S|) different elements. Unfortunately, in many ap-
plications the set |S| is large and the evaluation of f is expensive.
However, we can speed up the computation in many cases by exploit-
ing the submodular property of f . To this end we keep a list Li of the
elements in S such that the elements are sorted in descending order
according to ∆f(·, Xi). Given the sorted list Li it is easy to select the
next greedy element as

xi+1 = L0 (2.16)

as the element with the highest incremental improvement ∆f is at
the beginning of the list. The important observation is now that we
only need the first element in the list to be the one with the highest
∆f value and we can compute the next list Li+1 with this prop-
erty without recomputing all ∆f values. Recall that the submodular
property tells us that ∆f(x,Xi+1) ≤ ∆f(x,Xi) as Xi ⊂ Xi+1. We
can now look at the first element in the list, compute the new value
∆f(x,Xi+1) and move the element along the list until the next ele-
ment has a smaller value. We do not need to look at the following
values as they can only have decreased. We repeat this until the first
element does not have to be moved and obtain a list Li+1 where the
first element is the one with the highest ∆f . In many practical appli-
cations this lazy evaluation can save computational costs of an order
of magnitude or more.

Orienteering The problem when one is not only interested in a se-
lected set of sensors X ⊆ S but also in a route that connects those
sensors is called orienteering [26]. The connectivity between sensors
is modeled by a graph G = (S,E) where E are the edges connecting
sensors. We can still express the problem with (2.12) by incorporat-
ing the requirement of having a route along the sensors in X into the
constraint b(X) ≥ 0. In most instances of orienteering there is a max-

29

Chapter 2 Background

imum budget Lmax ∈ R that can be used. The constraint function
b(X) can then be written as

b(X) =Lmax − L(X) (2.17)

L(X) =

{
Length of shortest route of X if route exists
∞ if no route exists

.

(2.18)

As in the set cover problem described above there exist many ap-
proximate solution approaches for the orienteering problem where the
cost function is submodular [27, 28, 29, 30]. Typically these methods
are still impractical for the problems considered in this thesis or re-
quire certain properties of the cost function, such as strong locality,
that do not hold for vision based systems which provide long sensing
ranges.

2.5 Artificial Neural Networks

Artificial neural networks (ANNs) have become the default choice of
machine learning models for image related and recently also 3D data
related tasks. Here we give a very coarse idea of these models as they
are relevant for the content presented in Chapter 5. For a compre-
hensive introduction and overview we refer the reader to the excellent
Deep Learning book by Goodfellow et al. [31].
The key idea of ANNs is to use a series of differentiable operations

to transform the input data to the desired output in a non-linear way.
Some of these operations are parametrized. By also defining a differ-
entiable loss on this output we can use automatic differentiation to
compute the gradient of the loss with respect to the parameters and
perform stochastic gradient descent to decrease the loss. Although
the relationship of loss and parameters is typically highly non-convex
empirically good local minima can be found by ensuring suitable ini-
tialization of the parameters and using well-tested combinations of

30

2.5 Artificial Neural Networks

operations. One notable and simple operation is the matrix multipli-
cation of inputs with a weight matrix. This is also known as a fully
connected layer and often includes the addition of a bias vector. It is
usually followed by a non-linearity such as a tanh, sigmoid or rectified
linear unit (ReLU). However, when multiple fully connected layers
are used on image data and the intermediate representations are also
large the number of parameters in the weight matrix quickly explode.
An alternative and very important operation for image or volumetric
3D data is the convolution (or correlation) with a weight kernel which
has only a small number of parameters (depending on the kernel size)
and already provides an often desired translational invariance.

31

Chapter 3

Optimization-Based Planning
of Quadrotor Trajectories

This chapter is based upon our work in [32]. Here we propose a
computational design tool that allows end-users to create advanced
quadrotor trajectories with a variety of application scenarios in mind.
Our algorithm allows novice users to create quadrotor based use-cases
without requiring deep knowledge in either quadrotor control or the
underlying constraints of the target domain. To achieve this goal we
propose an optimization-based method that generates feasible trajec-
tories which can be flown in the real world. Furthermore, the method
incorporates high-level human objectives into the planning of flight
trajectories. An easy to use 3D design tool allows for quick specifi-
cation and editing of trajectories as well as for intuitive exploration
of the resulting solution space. We demonstrate the utility of our
approach in several real-world application scenarios, including aerial-
videography, robotic light-painting and drone racing.

33

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

3.1 Introduction

In recent years micro-aerial vehicles (MAVs), in particular Quadro-
tors, have seen a rapid increase in popularity both in research and
the consumer mainstream. While the underlying mechatronics and
control aspects are complex, the recent emergence of simple to use
hardware and easy programmable software platforms has opened the
door to widespread adoption and enthusiasts have embraced MAVs
such as the AR.Drone or DJI Phantom in many compelling scenarios
including aerial photo- and videography. Furthermore, the HCI com-
munity has begun to explore these drones in interactive systems such
as sports assistants [33, 34, 35] or display [36] of content.
Clearly there is a desire to use such platforms in a variety of applica-

tion scenarios. Current SDKs already give novices access to manual or
waypoint based control of MAVs, shielding them from the underlying
complexities. However, this simplicity comes at the cost of flexibility.
For instance, flying a smooth, spline-like trajectory or aggressive flight
maneuvers, for example to create an aerial light show (e.g., [37, 38]),
is tedious or impossible with waypoint based navigation. These limits
exist because manufacturers place hard thresholds on the dynamics
to ensure flight stability for inexperienced pilots.
More importantly, state-of-the-art technologies offer only very lim-

ited support for users who want to employ MAVs to reach a certain
high-level goal. This is maybe best illustrated by the most success-
ful application area – that of aerial videography. What a few years
ago was limited to professional camera crews, requiring cost-intensive
equipment like a helicopter, can now, in principle, be done by end-
users with a MAV and an action camera. However, producing high-
quality aerial footage is not an easy task – it demands attention to
the creative aspects of videography such as frame composition and
camera motion (cf. [39]). In the case of airborne cameras, an operator
needs to fly smoothly, accurately and safely around a camera target.
Furthermore, the target has to be framed properly alongside further
creative considerations. Thus this is a difficult task and typically re-
quires at least two experienced operators – one pilot and a camera

34

3.1 Introduction

man (cf. [40]). Our method tackles this problem by enabling a single
novice user to fly challenging trajectories and still create aesthetically
pleasing aerial footage.

Figure 3.1: System workflow schematically. (1) User sketches
keyframes. (2) An optimization method generates a fea-
sible trajectory. (3+4) The user can quickly iterate over
the trajectory and explore the solution space of feasible
trajectories via a physics simulation or a rendered pre-
view (see Fig. 3.2, D). (5) Final trajectory can be flown
with a real MAV.

3.1.1 Overview & Contribution

Embracing the above challenges we propose a computational method
that enables novice end-users to create quadrotor use-cases without
requiring expertise in either low-level quadrotor control or specific
knowledge in the target domain. The core contribution of our method
is an optimization-based solution that generates feasible trajectories
for flying robots while taking high-level user goals such as visually
pleasing video shots, optimal racing trajectories or aesthetically pleas-
ing MAVmotion into consideration. Furthermore, we develop an easy-
to-use tool that allows for straightforward specification of flight tra-
jectories and high-level constraints. Our approach guides the users
in exploring the resulting design space via a 3D user interface and
allows for quick iteration until finding a solution which fits best with
the user’s intentions.
We demonstrate the flexibility of our approach in three real-world

35

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

scenarios including aesthetically pleasing aerial-videos, robotic light-
painting and drone racing.

3.2 Related Work

3.2.1 MAVs in HCI

With MAVs becoming consumerized the HCI community has begun
to explore this design space. FollowMe [41] is a MAV that follows a
user and detects simple gestures via a depth camera, whereas others
have proposed using head motion for MAV control [42], while [36] pro-
pose a simple, remote controlled flying projection platform. Several
setups have been proposed that turn such MAVs into flying, personal
companions. For example, to act as jogging partner [34] or general
purpose sports coach [33], or as an actuated and programmable piece
of sports equipment [35].
Commercially available drones, targeted at the consumer market,

shield the user form low-level flight aspects and provide simple man-
ual control (e.g. using smartphones as controller) or waypoint based
programmatic navigation as well as GPS based person following. This
dramatically lowers the entry barrier for novices but also limits the
ceiling of achievable robotic behavior. Our approach also aims for
simplicity but gives more power to the users, enabling even novices
to design and implement complex flight trajectories, concentrating on
the high-level goals of the application domain.

3.2.2 Video Stabilization & Camera Path Planning

Improving the visual quality of end-user produced content is a goal
we share with post production video stabilization. Inspired by early
work which formulates the problem and discusses the aesthetics of
cinematography [43] a number of approaches employ computer vision
methods to estimate the original, jerky camera path. Based on this a
new, smooth path is computed to generate stabilized video [44, 45] and

36

3.2 Related Work

even time-lapse footage [46] from the source material. Camera path
planning has also been studied extensively in the context of virtual
environments using constraint based [47, 48] or probabilistic [49] meth-
ods. However, these methods are not limited by real-world physics and
hence can produce arbitrary camera trajectories and viewpoints. Our
approach differs from the above as we propose a forward method that
gives the user full control over the creative aspect of camera planning
while simultaneously optimizing for physical feasibility of the flight
path and cinematographic objectives. A 3D simulation lets the user
explore the design space before flying the actual trajectory and hence
helps in understanding the trade-offs to consider.

3.2.3 Computational Design

Sharing the goal of unlocking areas that previously required significant
domain knowledge to novice users, the HCI and graphics communities
have proposed several methods that give novice users control over aes-
thetic considerations while achieving functionality. Recent examples
include digitally designed gliders [50] and kites [51] with optimized
aerodynamic properties. At the core of these approaches are sophis-
ticated simulations or analytical models of the problem domain that
carefully balance accuracy and rapid responses to ensure interactiv-
ity while maintaining guarantees (e.g., physical stability). We build
on domain knowledge from the robotics and MAV literature and pro-
pose an interactive design tool for complex MAV behavior usable by
non-experts.

3.2.4 Robotic Behavior and Trajectory Generation

Automating the design of robotic systems based on high-level func-
tional specifications is a long-standing goal in robotics, graphics and
HCI. Focussing on robot behavior only, simple direct touch and tan-
gible UIs [52], and sketch based interfaces to program robotic systems
[53, 54] have been proposed. Visual markers have been used to con-
trol robots explicitly, for example as kitchen aides [55], or implicitly

37

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

[56, 57], to schedule tasks for robots in-situ which are then collected
and executed asynchronously.

Generating flight trajectories for MAVs is well-studied in robotics.
In particular, the control aspects of aggressive and acrobatic flight
is an active area of research (e.g., [58]). Mellinger et al.’s work on
generating minimum snap trajectories [59] is the most related to ours.
While they specify a trajectory as a piecewise polynomial spline be-
tween keyframes, we discretize the trajectory into small piecewise lin-
ear steps. The result is a more intuitive formulation of the optimiza-
tion problem, making the incorporation of additional constraints and
objectives much easier. We extend the approach in [59] by optimiz-
ing trajectories for flyability and for high-level human objectives. We
place the users in the loop and provide easy-to-use tools to design
quadrotor trajectories according to high-level objectives.

Joubert et al. [60] share a similar goal in proposing a design tool
that allows novice users to specify a camera trajectory, simulate the
result, and execute the motion plan. In contrast to our work, their
method does not automate feasibility checking but delegates the cor-
rection of violations to the user. Furthermore, our method allows
to treat keyframes as soft instead of hard constraints, allowing to
trade off feasibility against keyframe matching. We also incorporate
a larger number of high-level user constraints, such as additional cin-
ematographic goals and collision-free trajectories, into the algorithm
– requiring a different formulation of the optimization problem. Fi-
nally, we demonstrate the gain in generality in our approach in the
additional use cases of light writing and aerial racing.

38

3.3 Notation

3.3 Notation

m ∈ R Quadrotor mass.

Iψ ∈ R Quadrotor moment of inertia about body z-axis.

r ∈ R3 Quadrotor center of mass.

ψ ∈ R Quadrotor yaw angle along world z-axis.

F ∈ R3 Force acting on the quadrotor center of mass.

g ∈ R3 Gravity force aligned with the world z-axis.

Mψ ∈ R Torque acting on the quadrotor along the body z-axis.

3.4 System Overview

We propose an end-to-end system that allows users to generate motion
plans for quadrotors that are ’flyable’ and adhere to high-level human-
specified objectives for a variety of application scenarios. Fig. 3.1
illustrates the design process.
Using for example a LeapMotion controller the user specifies keyframes,

each consisting of a position and a time (1). The optimization al-
gorithm generates an initial ’flyable’ trajectory from these inputs,
i.e., one that lies within the physical capabilities of the underlying
quadrotor hardware (2). The method aims to find a solution that
goes through all specified keyframes, however the user may now ad-
just both a keyframe’s position and timing as well as other parameters
such as the overall flight time, the optimization’s objective (e.g., min-
imization of velocity) or the extend to which the generated trajectory
should follow the optimization’s objective versus the position of the
specified keyframes (3). This can result in trajectories that do not
directly meet the user inputs but are the best trade-off between the
potentially conflicting use-case specific constraints. A built-in physics
simulation allows the user to virtually fly the quadrotor and thus pro-
vides a better understanding of the expected real-world behavior and
enables rapid iteration of trajectories (4). This tool already enables

39

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

the design of various flight-maneuvers for example designing an aerial
race-course or a light-show (please see video for an illustration of the
design process and results).

Figure 3.2: Planning of aerial video shots. (A) User specifies sparse
keyframe positions connected by straight lines (purple).
(B) For each keyframe the user also specifies a desired
camera target (yellow). (C) We generate a smooth and
collision free motion plan alongside gimbal control in-
puts (dark red). (D) Virtual preview allows for rapid
prototyping showing the current camera frustum and a
camera preview.

However, the goal of our work is to enable more complex end-user
scenarios as well. To this end we have extended our method to also
integrate high-level aesthetic constraints that are not necessarily di-

40

3.5 Method

rectly associated with the basics of quadrotor control. Fig. 3.2 illus-
trates how our tool can be used to plan aerial videography shots. In
this case, the user designs an initial camera trajectory around one or
several targets. In addition to the keyframes the user specifies tar-
gets which shall be captured by the on-board camera (Fig. 3.2, B).
Our algorithm generates both a quadrotor trajectory and a gimbal
trajectory within the physical bounds. To acquire visually pleasing
footage our method incorporates cinematographic constraints such as
smooth camera and target motion, smooth transitions between multi-
ple targets and reduction of perspective distortions. Furthermore, the
algorithm takes obstacle information into account and automatically
routes the trajectory through free-space (see Fig. 3.2, C). It would
also be straightforward to integrate other constraints such as limits of
the coverage of a tracking system or government flight regulations.
In order to better understand the implications of the camera plan-

ning our tool allows the user to virtually fly the shot by dragging the
virtual quadrotor along the trajectory (Fig. 3.2, D). For each point
in time the tool renders the scene as it would be captured in reality.
The user can then edit the plan and iterate over different alternatives.
Once satisfied the generated trajectories for quadrotor and gimbal can
be deployed as a reference to be followed by a real quadrotor.

3.5 Method

So far we have discussed the proposed design tool at a high-level and
focused on how the user accomplishes certain tasks.
We now introduce the underlying method we use to generate tra-

jectories. To be able to reason about flight plans computationally, a
model of the quadrotor and its dynamics are needed. This is a com-
plex and challenging topic and we refer the reader to the Appendix
for the full non-linear model that is needed to control the position
and dynamics of the robot during flight (please see also [61]). The full
model directly relates the inputs of a quadrotor to its dynamics – this
however makes trajectory generation a challenging problem and inte-

41

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

grating such a highly non-linear model into an optimization scheme is
complicated, incurs high computational cost and negates convergence
guarantees [59]. However, for most application scenarios considered
here a full non-linear treatment is not necessary as demonstrated by
our results. In particular if the goal is to generate trajectories only
(i.e., position and velocities) rather than the full control inputs as
in [59]. Therefore, we present a linear approximative model of the
quadrotor and detail the optimization-based algorithm based on it.

3.5.1 Approximate Quadrotor Model for Trajectory
Generation

When generating a trajectory we want to ensure that it can be followed
by a quadrotor, i.e. a flight plan where each specified position and
velocity can be reached within the time limits without exceeding the
limits of the qudrotors inputs.
Therefore, we chose to approximate the quadrotor as a rigid body,

described by its moment of inertia only along the world frame z-axis
(i.e. we ignore pitch and roll of the quadrotor):

mr̈ = F +mg ∈ R3 (3.1)

Iψψ̈ = Mψ ∈ R,

where r describes the center of mass of the quadrotor, ψ is the yaw
angle of the quadrotor, m is the mass of the quadrotor, Iψ is the
moment of inertia about the body-frame z-axis, F is the the force
acting on the quadrotor and Mψ is the torque along the z-axis. This
approximation allows to generate trajectories in the flat output space
of the full quadrotor model (see Appendix for more details).
In addition to the equations of motion we introduce bounds on the

maximum achievable force and torque:

umin ≤ u ≤ umax ∈ R4, (3.2)

where u = [F,Mψ]T is the input of the system.

42

3.5 Method

With this model it is not possible to exploit the full dynamic agility
of a quadrotor. As an example, consider the situation of acceler-
ating straight upwards by rotating all motors at maximum speed.
To now also rotate around the body-frame z-axis we would have to
lower the speed of motors 2 and 4, reducing the total thrust of the
quadrotor. Currently we do not incorporate this coupling between the
translational and rotational dynamics into the bounds Eq. (3.2) of our
approximate linear model Eq. (3.1). Therefore, to still ensure that a
quadrotor can follow trajectories generated on base of this approxima-
tion conservative bounds are required. Nonetheless, our results and
applications demonstrate that these bounds still allow the quadro-
tor’s agility to be sufficiently rich for many use cases. We refer the
interested reader to the Appendix for details on how to choose these
bounds.
For trajectory generation we rewrite the approximate model as a

first-order dynamical system and discretize it in time with a time-
step ∆t assuming a zero-order hold strategy, i.e. keeping the inputs
constant in between stages:

xi+1 = Adxi +Bdui + cd, (3.3)

where xi = [r, ψ, ṙ, ψ̇]T ∈ R4 is the state and ui is the input of the
system at time i∆t. The matrix Ad ∈ R8x8 propagates the state x
forward by one time-step, the matrix Bd ∈ R8x4 describes the effect
of the input u on the state and the vector cd ∈ R8 that of gravity
after one time-step.

3.5.2 Trajectory Generation

With this approximate quadrotor model in place we can now discuss
the optimization scheme to generate trajectories. The user specifies
M keyframes describing a desired position kj at a specific time-point
η(j)∆t, where η : N → N maps the index of the keyframe to the
corresponding time-point. In the case of mouse-based user input we
assume constant time between consecutive positions. To compute a

43

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

feasible trajectory over the whole time horizon [0, tf] we discretize
time with a time-step ∆t into N stages. The variables we optimize
for are the quadrotor state xi and the inputs ui of the system Eq. (3.3)
at each stage i∆t.

The first goal of our optimization scheme is then to follow the user
inputs as closely as possible, expressed by the cost

Ek =

M∑
j=1

||rη(j) − kj ||2. (3.4)

A small residual of Ek indicates a good match of the planned quadro-
tor position and the specified keyframe. The bounds Eq. (3.2) together
with Eq. (3.3) and Eq. (3.4) can then be formulated as a quadratic
program

minimize
X

1

2
XTHX + fTX (3.5)

subject to AineqX ≤ bineq
and AeqX = beq ,

where X denotes the stacked state vectors xi and inputs ui for each
time-point, H and f contain the quadratic and linear cost coefficients
respectively which are defined by Eq. (3.4) , Aineq , bineq comprise
the linear inequality constraints of the inputs Eq. (3.2) and Aeq , beq
are the linear equality constraints from our model Eq. (3.3) for each
time-point i ∈ 1, . . . , N . Note that this optimization problem is a
specialization of the general trajectory generation problem Eq. (2.2)
described in Section 2.1. Problem Eq. (3.5) has a sparse structure
and can be readily solved by most optimization software packages.
However, this problem is ill-posed and the result for a particular set
of keyframes might be counterintuitive at first. Since we only mea-
sure the match of quadrotor position at the keyframe times the state
at other time-points is not constrained in any way except for the
quadrotor dynamics. Therefore a straight path between two keyframe
positions is as good as a zig-zag pattern if it is feasible. An example

44

3.5 Method

of this is shown in Fig. 3.4. To attain better results we have to further
regularize the solution.
In many robotics application one goal is to minimize energy expen-

diture and this is often done by penalizing non-zero inputs or in other
words attempting to reach desired positions with minimal wasted ef-
fort. For end-user applications, for example in the context of a racing
game, one can also aim to attain smooth trajectories by penalizing
higher derivatives of the quadrotor’s position with respect to time
such as acceleration (2nd) or jerk (3rd). We introduce the cost

Ed =

N∑
i=q

||Dq

xi

. . .

xi−q

 ||2, (3.6)

where Dq is a finite-difference approximation of the q-th derivative
from the last q states. Since the term jerk is not commonly known
outside of engineering fields an intuition is to think of high values of
jerk as a feeling of discomfort caused by too sudden motion. Humans
tend to plan motion by minimizing the norm of jerk [62] and thus,
minimizing jerk results in motion plans that appear pleasant to a
human.
The combined cost E = λkE

k + λdE
d with weights λk|d is still a

quadratic program and enables us to generate trajectories that are
feasible and that are optimal in the sense of Eq. (3.5). While still
relatively basic in functionality this already enables a variety of use-
cases such as aerial light-shows and racing-games as illustrated in the
next section.

3.5.3 Optimizing for Human Objectives

With the basics in place we now turn our attention to including high-
level human objectives into the optimization. As a running example
we will consider the task of planning an aerial video-shot but we would
like to emphasize that many other tasks such as 3D reconstruction or

45

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

projector based augmented reality could be implemented in the same
way.
We have already discussed how this process works from the user’s

perspective in the system overview. Here the user provides additional
camera targets that should be recorded at a specific time (see Fig.
3.2). Furthermore, we assume that the quadrotor is equipped with
a gimbal that we can control programmatically. From a cinemato-
graphic standpoint, the most pleasant viewing experience is conveyed
by the use of either static cameras, panning ones mounted on tripods
or cameras placed onto a dolly (cf. [39]). Changes between these shot
types can be obtained by the introduction of a cut or jerk-free tran-
sitions, i.e. avoiding sudden changes in acceleration. Furthermore,
it is desirable to introduce saliency constraints or in other words we
want not only the camera path to be smooth but also want to keep
the target motion within the image frame as steady as possible and
constrain it’s motion to smooth motion.
To achieve these high-level objectives, we include a target posi-

tion for each stage into the optimization variable. Analogous to the
quadrotor position we introduce a cost term Et that measures the
deviations of user-specified keytarget points from the target positions
at the corresponding stages. We penalize higher temporal deriva-
tives (acceleration and jerk) of the target position by including finite
differences in the cost term Et,d. To link the quadrotor and target
trajectories we introduce a simple gimbal model:

ψ̇g = ug,ψ

φ̇g = ug,φ

[ψg,min , φg,min]T ≤ [ψg , φg]T ≤ [ψg,max , φg,max]T

ug,min ≤ [ug,ψ, ug,φ]T ≤ ug,max ,

where the inputs ug,ψ, ug,φ represent the angular velocities of the yaw
ψg and pitch φg of the gimbal and both the inputs and the absolute
angles are bounded according to the physical gimbal. The bounds
specify the limits on the absolute angles and the angular velocities.

46

3.5 Method

To ensure a smooth motion of the gimbal we introduce a cost Eg

on temporal finite differences of the yaw and pitch angles analogous
to Eq. (3.6). We do not incorporate the attitude of the quadrotor
into our gimbal model and therefore the bounds have to be chosen
conservatively.
The angle between the current camera direction pl and the direction

of the target pd is depicted in Fig. 3.5. The error is then computed
by

αerr = cos−1
(

pd · pl

|pd||pl|

)
(3.7)

pd = rt − r and pl =

cosφg cos(ψ + ψg)

cosφg sin(ψ + ψg)

sinφg

 ,
where r is the quadrotor position, rt is the target position and ψ is
the pitch angle of the quadrotor.
Deviations of the camera direction from the desired target are pe-

nalized by

Ec =

N∑
i=1

(
αierr

)2
, (3.8)

where αerri is the camera angle error at stage i. Here the separation
of target trajectory from the camera direction might seem surprising
but it gives more flexibility as the user can choose the weights of the
importance of target keypoints and the camera direction separately.
The final aesthetic cost is related to perspective effects. Viewpoints

that are to high or low relative to the recorded object of interest
lead to skew and results in strong vanishing lines in the image. This
is illustrated in Fig. 3.6. While this effect maybe desired in some
situations (imagine an overhead shot) we allow the user to supress

47

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

these types of distortions by optionally including a skewness cost Es:

serr =
b1
b2
− 1 =

(pd + h̃/2) · pd

(pd − h̃/2) · pd

− 1

h̃ =

{
h, if pd,3 >= pt,3

−h, else
,

Es =

N∑
i=1

(
sierr

)2 (3.9)

(3.10)

where h is a vertical vector pointing from the center of the target to
the upper edge of the bounding box and sierr is the skewness error at
stage i. In the computation we distinguish the case of a quadrotor
flying above the target and the case of flying below a target.
Summing up the individual cost terms gives results in the final cost

E =
∑
i={k,s,t,g,c} λiE

i Unfortunately αerr and serr are non-linear in
the variables of the motion plan and in consequence minimizing E
can no longer be written as a quadratic program. We describe how
we minimize E in the implementation section.
By penalizing snap of the quadrotor position and jerk of the camera

motion the combined cost results in aesthetically pleasing footage (see
the accompanying video). We can now generate a motion plan for a
quadrotor that follows a target trajectory with the camera. To further
support novice users we included an approximate collision-free scheme
that can be used to keep a minimum distance from the target or stay at
a safe distance from obstacles. Again we refer to the implementation
section for details. Note that this only works for static objects where
the position is known at the time of trajectory generation.

48

3.5 Method

Figure 3.3: Our approximated quadrotor model with position r, yaw
angle ψ), world frame (xW , yW , zW), the moment acting
on the quadrotor along the world frame z-axisMyaw and
the force F acting on the center of mass of the quadrotor.

Figure 3.4: Same trajectory, optimized to only follow the keyframes
(A) and to follow keyframes as well as minimizing snap
on each stage of the optimization problem (B).

49

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

Figure 3.5: (A) camera direction pl and distance pd. (B) effect of
minimizing camera angle error αerr w.r.t. the target rt
in the center of the FOV of the camera.

Figure 3.6: (A) Illustration of skewness error, where b1 and b2 are
the distances to the upper and lower edge of the tar-
get bounding box. (B+C) Perspective without skewness
correction (B) and with (C). Note that target is centered
in both images.

50

3.6 Implementation

3.6 Implementation

In this section we describe how we implemented the different compo-
nents of our system. We start with describing the iterative quadratic
programming scheme, then explain the onboard controller and the
quadrotor hardware and finally show how we realized the design tool.

Iterative Quadratic Programming To solve the non-linear problem
described above we resort to a scheme of iterative quadratic program-
ming (IQP). The general idea is to linearly or quadratically approxi-
mate the problem around the current estimate of the solution. This
approximate system is then solved and a better, consistent estimate of
the solution is found. These iterative schemes usually converge within
a few iterations despite the cost functions not being convex anymore.
In our concrete implementation we start with an initial guess of the
trajectory by interpolating the quadrotor positions and the camera
targets between the keyframes. We also enforce all initial equality
constraints to be fulfilled. As the proposed energies are usually non-
convex a good initial guess is important to find a good solution. For
each major iteration of our solver we build the H and f matrices of a
quadratic program. This is done by quadratically approximating each
of the cost terms around the trajectory X, note that this does not af-
fect the quadratic terms in E. We also assemble the bounds and
equality and inequality constraints and linearize them analogously.
The fully assembled system is a sparse quadratic program and can be
solved by most optimization packages. The solution gives us a change
dX of the current motion plan. We perform a line search with the
step length α to find a new motion plan Xnext = X +αdX. We lower
α until we find a Xnext with a cost C(Xnext) < C(X). This step is
necessary as the cost of the approximated quadratic program is only
an approximation of the real residual. An empirically derived serves
as termination criteria.

51

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

Figure 3.7: Aerial camera shot of a toy castle. Top row: planned
trajectory in our design tool. Bottom row: flown trajec-
tory.

Obstacle Avoidance: We approximate each obstacle as a static sphere
with a radius or and introduce a non-convex constraint ||r ≥ or||2.
We linearize these constraints in each IQP iteration for each stage in
time around the current trajectory X. Although we cannot guaran-
tee global optimality of the resulting trajectories, this approach can
be helpful for planning trajectories in scenes with known geometry
and many objects. More advanced collision avoidance schemes, po-
tentially taking dynamic targets into consideration (e.g., [63]), could
be included in future work.

Algorithm Performance: To evaluate the performance of our opti-
mization scheme we measured the time necessary to generate differ-
ent trajectories. The runtime of the algorithm depends on the flight
duration, the number of keyframes and the constraints which are in-
corporated into the optimization problem. Typical run times (Intel
Core i7 4GHz CPU, Matlab’s quadprog solver) are ∼1 sec for pure
QPs (e.g., the trajectory in Fig. 3.8 had a flight time of 30 sec and
was generated in 1.4 sec) and tens of sec for IQPs (e.g., the trajec-
tory in Fig. 3.7 had a flight time of 20 sec and was generated in 14
sec). Optimizing over a receding horizon which is shifted along the

52

3.7 Results and Application Scenarios

trajectory may be a fruitful strategy to speed up the algorithm. An-
other idea would be to split a trajectory in overlapping and reasonable
constrained sub-trajectories and optimize them separately. Both ap-
proaches would negate the global optimality property of generated
trajectories, requiring evaluation of real-world feasibility.

Onboard Control and Hardware: Once we generate trajectory con-
trol inputs these can be transmitted to a real quadrotor. Our real-time
control system builds on the PIXHAWK autopilot software [64]. De-
sired positions along the motion plan, camera look-at vectors and tar-
get trajectories are transmitted from a ground-station via the Robot
Operating System (ROS). An LQR (Linear-quadratic regulator) run-
ning on a dedicated single-board computer computes the necessary
forces and moments to track the motion plan. These forces are then
translated into low-level rotor and gimbal speeds by further controllers
running on a PX4 FMU. We created result figures using two differ-
ent quadrotor platforms: the 3DR Solo and a custom-build Pixhawk-
based platform.
Design Tool: The 3D trajectory design tool has been implemented

as Unity 3D tool which allows for easy adaptation and integration of
a variety of IO devices. A further advantage of this design decision
is that it is easy to develop augmented reality applications such as
mixing real and virtual quadrotors in a racing scenario. We have in-
terfaced the design tool with our optimization algorithm implemented
using the Matlab optimization toolbox.

3.7 Results and Application Scenarios

Despite having used camera planning as running example we note that
our method is general and can be applied in many different applica-
tion scenarios. In particular, the discrete nature of the proposed IQP
scheme makes it straightforward to incorporate application specific
constraints. In this section we want to illustrate a number of interac-
tive usage scenarios which we have implemented using our method.

53

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

Figure 3.8: (A) Handwritten input. (B) Initial feasible trajectory
can be overly smooth. (C) After iteration a feasible and
visually pleasing trajecory is found. (D) Final result
flown by MAV and captured via long-exposure photog-
raphy.

3.7.1 Light Painting

Quadrotors have already been used in entertainment settings, in par-
ticular to create spectacular aerial light shows (cf. [37]). However,
creating such complex and coordinated flight patterns is not possible
with consumer grade technologies and hence has not been accessible
to the end-user. Our tool allows for straightforward end-user design
of such creative scenarios.
One such example is illustrated in Fig. 3.8. Here the user provides

input position constraints by writing or sketching the desired shape.
Our method then generates a feasible trajectory which as a side-effect

54

3.7 Results and Application Scenarios

of minimizing snap also smooths the input strokes. However, the
generated trajectory may not coincide with the desired output e.g.
because it linearly interpolates the keyframes so that handwriting may
not be legible anymore (see Fig. 3.8, B). The user can correct for this
by changing the parameters of the optimization scheme (e.g., weights
of the energies) or by adjusting keyframe positions and timings.
Once satisfied the trajectory can be flown by a real robot. In Fig.

3.8 we have mounted a bright LED to the robot and captured the
flight path via long-exposure photography.

3.7.2 Racing

Another interesting application domain is that of aerial racing. First
person drone racing is an emerging sport that requires a lot of exper-
tise in manual quadrotor control. Our tool can bring this within reach
of the end-user. As a proof of concept we have developed a simple
aerial racing game. In this scenario a user can design a free-form race
course, specifying length, curvature and other parameters as well as
overall race-time.
For the race itself we implemented a semi-manual flight mode for

which we changed the position controller, by remapping the feedfor-
ward term (mr̈d) of Eq. (3.14) to the joystick of a game controller.
Thereby, the user can choose the direction and the strength of the
feedforward-force allowing him to deviate with the quadrotor from
the generated reference trajectory. Users can then, for instance, take
a short cut in a curve or fly the trajectory with a higher velocity than
generated by the optimization method. The score is calculated as a
function of the deviation from the generated trajectory and the time
needed to complete all laps. In other words, the player who man-
aged to stay on the trajectory as fast as possible will win. We note
that by manipulating the underlying controller, it would be possible
to introduce further video game concepts such as player strength bal-
ancing into real-world quad racing. For example, allowing a player to
temporarily race on a faster reference trajectory than his opponents.

55

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

3.7.3 Aerial Videography
Our main results stem from the application scenario of aerial videog-
raphy. We have already mentioned the technical details and how
we incorporate cinematographic goals into our optimization scheme.
Here we briefly summarize a number of interesting and challenging
video-shots (best viewed in video).
Fig. 3.7 illustrates a shot where a quadrotor flies over a toy castle

and at the same time records it. Here the gimbal has to smoothly track
the target just as the quadrotor swoops over the object and turns
around its own axis once reaching the highest point. Such a shot
composition is difficult to achieve manually due to the complicated
quadrotor-camera-target coordination.
Even with conventional cameras, composition of multi target shots

is a very challenging task. Aerial-videography makes this even more
difficult due to the many degrees of freedom and complex geometric
dependencies requiring coordination for smooth, jerk-free transitions
from one to the next target while airborne. In Fig. 3.10 we illustrate
a sliding shot, transitioning between targets – the two actors – while
the camera is moving from left to right and steadily rising in altitude.
Throughout the entire trajectory the oerientations of quad and camera
never remain constant, yet the camera targets are kept in focus and
the transitions are smooth. Flying such a trajectory manually would
only be possible with two operators, one for steering the camera, the
other the quadrotor.

56

3.7 Results and Application Scenarios

Figure 3.9: Two player aerial racing. User input is weighted with
automatic control to adjust difficulty.

Figure 3.10: Multi target shot. Top row: frames of the video se-
quence shot by the onboard camera. Bottom row: ac-
cording quadrotor positions shown in the preview of
the design tool.

57

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

3.8 Technical details

In the work proposed here we use an approximation of a full, non-
linear quadcopter model for the optimization-based generation of tra-
jectories. However, the resulting trajectories need to be flown by a
real quadcopter and hence one must relate the approximate model
to the full model of the quadcopter. Here we briefly summarize the
modeling and control aspects necessary for replication of our method.
A full introduction to this topic is beyond the scope of this work and
we refer the interested reader to [61].

3.8.1 Quadrotor Model

A quadrotor is a robot with four identical rotors which generate a
thrust and a moment orthogonal to the square they span. Our quadro-
tor model closely follows [59]. To describe the configuration of a
quadrotor we define its position as the location of the center of mass
in an inertial world coordinate frame (xW , yW , zW), and its attitude
as the rotation of the body-fixed frame (xB , yB , zB) with respect to
the world frame (see Fig. 3.11). The rotation matrix from body to
world frame is then given by RBW = [xB yB zB] ∈ SO(3). Each
rotor of the drone has an angular speed ωi and produces a force Fi
and moment Mi, according to

Fi = kFω
2
i , Mi = kMω

2
i ,

where kF and kM are constants specific to the rotors. Therefore, the
control input to the quadrotor can be written as u where u1 is the
net force in zB direction and u2, u3, u4 are the moments in xB , yB ,
zB direction acting on the quadrotor. The input can be expressed in

58

3.8 Technical details

terms of the rotor speeds ω1, ω2, ω3, ω4:
u1

u2

u3

u4

 =

kF kF kF kF

0 kFL 0 −kFL
−kFL 0 kFL 0

kM −kM kM −kM

ω2
1

ω2
2

ω2
3

ω2
4

 , (3.11)

where L is the distance from the axis of rotation of the rotors to the
center of mass of the quadrotor.
The position of the quadrotor in the world frame can be specified

according to Newton’s equation of motion governing the acceleration
of a mass point:

mr̈ = u1zB +mg ∈ R3, (3.12)

where r is the position vector, g = [0, 0,−g]T is the gravity vector
pointing along the −z axis of the world frame, g is the gravitational
constant and m is the mass of the quadrotor.
The Euler rotation equations are

MB = Iω̇BW + ωBW × IωBW ∈ R3, (3.13)

where MB = [u2, u3, u4]T = [ωx, ωy, ωz]
T is the moment vector acting

on the quadrotor in the body frame, ωBW is the angular velocity of
the body frame in the world frame and I is the moment of inertia of
the quadrotor in the body frame.

3.8.2 Quadrotor Control
As can be seen from the equations Eq. (3.11), Eq. (3.12) and Eq. (3.13),
the quadrotor configuration has 6 degrees of freedom but only 4 ac-
tuators. Therefore it is an underactuated system and cannot follow
arbitrary trajectories in the configuration space. However, Mellinger
et al. show that the system is flat [65] with respect to the 4 flat out-
puts [r, ψ]T and thus a quadrotor can follow trajectories in this space,
given that the corresponding inputs are bounded to values that the

59

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

quadrotor can achieve [59]. This flat output space is the configuration
of our approximate quadrotor model.
We use the linear controller from [63] to generate the corresponding

inputs for the quadrotor. The desired thrust along the z-axis of the
body frame is computed as

Fd = −K(x− xd) +m(gzw + r̈d), (3.14)

where x = [r, ṙ]T is the actual and xd the desired position and ve-
locity of the quadrotor and m(gzw + r̈d) the feedforward term which
compensates for gravity and known accelerations. The state feedback
matrix K is computed using a linear quadratic control strategy with
integral action.

The desired force Fd already defines two degrees of freedom of the
quadrotor attitude. Using the nonlinear control strategy on SO(3)
described in [66] we employ the desired yaw angle ψd to compute the
desired attitude RBWd of the quadrotor:

zBd =
Fd
||Fd||

yBd =
zBd × [cos(ψd), sin(ψd), 0]T

||zBd × [cos(ψd), sin(ψd), 0]T ||
xBd = yBd × zBd

RBWd = [xBd,yBd, zBd],

where yBd are the desired x- and y-axis of the body frame. To control
the attitude we can now calculate the desired moment vector MBd in
xB ,yB , zB direction,

eR =
1

2
vee
(
RTdRBW −RTBWRd

)
eω = R−1BW (ωBW − ωBWd)

MBd = −KReR −Kωeω,

where RBW is the actual rotation of the quadrotor, eR is the rotation
error, ωBW , ωBWd are the angular and desired angular velocity, eω is

60

3.8 Technical details

the angular velocity error and vee is the vee map from so(3) → R3.
From Fd and MBd we can calculate the input u and thereby the
velocities of the rotors needed to reach the desired position and yaw
angle:

u1 = Fd · zB (3.15)

[u2, u3, u4]T = MBd,

where Eq. (3.15) is the projection of the desired thrust Fd on the
actual z-vector of the body frame zB . Finally, using Eq. (3.11) we
can compute the angular velocities ωi corresponding to the input u.

3.8.3 Validity of Approximate Quadrotor Model

Following the approach in [67], we assume that the rotational dynam-
ics of a quadrotor are fast compared to its translational dynamics thus
we can describe the behavior of the quadrotor by the thrust vector ur
and the moment uψ along the body-frame z-axis. In the following we
will only refer to the norm ur of the force vector ur
Let Fmax be the maximum force and Mmax be the maximum mo-

ment each motor can produce. Then the bound on the maximum
possible thrust that the quadrotor can achieve (i.e. all motors full on)
is

ur ≤ ur,max = 4Fmax

and the bound on the maximum possible moment (i.e. two motors
rotating in same direction full on and the other two off) is

uψ ≤ uψ,max = 2Mmax.

Because the force and moment are coupled it is not possible to achieve
full thrust ur,max and full moment uψ,max at the same time.
Let us now assume a stricter bound on the maximum moment of

the quadrotor:
uψ ≤ uψ,lim = βuψ,max

61

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

where β ∈ [0, 1]. If we want to be able to achieve a moment of uψ,lim
at all times we have to take into account that in the extreme case two
motors will be limited to a force of Flim = (1− β)Fmax and thus the
bound on the thrust of the quadrotor is

ur ≤ ur,lim = (2 + 2(1− β))Fmax =

(
1− β

2

)
ur,max.

For example, if β = 0.2, i.e. bounding the moment to 20% of the
quadrotors maximum moment the quadrotor can still achieve 90% of
its maximum thrust at all times. These limits still allow the agility of
a quadrotor to be sufficient for many use cases.

62

3.8 Technical details

Figure 3.11: A quadrotor in 3D with its flat outputs (position r, yaw
angle ψ), world (xW , yW , zW) and body frame (xB ,
yB , zB), the rotational velocities of the quadrotor in
each dimension (ωx, ωy, ωz), the distance L from the
axis of rotation of a rotor to the center of mass of the
quadrotor, as well as the thrust forces Fi and angular
velocities ωi of each rotor.

63

Chapter 3 Optimization-Based Planning of Quadrotor Trajectories

3.9 Discussion
The optimization framework proposed in this chapter has proven to
be powerful and versatile however there are of course a number of
limitations. First, our goal is to enable non-expert users to design
arbitrary MAV use cases. While the method is generic and designed to
be extensible it does require expertise and effort to formalize further
objectives (that we have not treated so far) and to integrate them
into the algorithm. We believe that our high-level design tool bridges
the gap between the underlying optimization algorithm and end-user
goals sufficiently well. Nonetheless it is an interesting future research
question how end-users could extend not only the use-cases we have
demonstrated but also the optimization itself.
Currently all our application scenarios depend on a high precision

indoor tracking system. This is a limiting factor as one would of
course like to fly many of the examples outdoors using GPS sensing.
To this end our method is generic and could be made to work with any
localization system, in particular with GPS position data in outdoor
scenarios. However, we have not implemented this and of course the
localization accuracy would impact the exact results.
In summary we have proposed a user in the loop design tool for the

creation of aerial robotic behavior. At its core lies an optimization-
based algorithm that integrates low-level quadrotor control constraints
and high-level human objectives. Therefore, we used a linear approx-
imation of the quadrotor model enabling us to generate trajectories
subject to the physical limits of a quadrotor. Stating the problem as
discrete, additionally permits the easy incorporation of high-level con-
straints to support the user, for instance, in the creation of pleasing
aerial footage. This allows users to concentrate on the creative and
aesthetic aspects of the task at hand and requires little to no exper-
tise in quadrotor control or the target domain. We have demonstrated
the flexibility and utility of our approach in three different use cases
including aerial videography, light painting and racing.

64

Chapter 4

Trajectory Planning for
Multi-View Stereo
Reconstruction

In chapter 3 we described a system that allows generation of flight
trajectories for quadrotors with specific applications such as filming.
While this system can produce trajectories for many use cases it needs
a description of the intended behavior in the form of a sequence of
desired quadrotor configurations or desired camera views during the
flight. Generating such a keyframe description can be a difficult task
in itself. Here we look at the problem of producing such a sequence of
desired quadrotor configurations for producing 3D reconstructions in
urban, crowded scenes. This chapter is based upon our work in [68].
We introduce a new method that efficiently computes a set of view-

points and trajectories for high-quality 3D reconstructions in outdoor
environments. Our goal is to automatically explore an unknown area,
and obtain a complete 3D scan of a region of interest (e.g., a large
building). Images from a commodity RGB camera, mounted on an
autonomously navigated quadcopter, are fed into a multi-view stereo

65

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

reconstruction pipeline that produces high-quality results but is com-
putationally expensive. In this setting, the scanning result is con-
strained by the restricted flight time of quadcopters. To this end,
we introduce a novel optimization strategy that respects these con-
straints by maximizing the information gain from sparsely-sampled
view points while limiting the total travel distance of the quadcopter.
At the core of our method lies a hierarchical volumetric representation
that allows the algorithm to distinguish between unknown, free, and
occupied space. Furthermore, our information gain based formulation
leverages this representation to handle occlusions in an efficient man-
ner. In addition to the surface geometry, we utilize the free-space in-
formation to avoid obstacles and determine collision-free flight paths.
Our tool can be used to specify the region of interest and to plan
trajectories. We demonstrate our method by obtaining a number of
compelling 3D reconstructions, and provide a thorough quantitative
evaluation showing improvement over previous state-of-the-art and
regular patterns.

4.1 Introduction

High-quality 3D reconstructions lie at the heart of many applications
in computer graphics, AR/VR, robotics and GIS, architectural and
urban planning. Motivated by this need for high-quality 3D mod-
els, techniques for the acquisition of building-scale geometry have
rapidly advanced. Even with monocular cameras, 3D reconstructions
of impressive quality can be attained using state-of-the-art multi-view
stereo (MVS) methods [69, 70, 13, 71, 14, 18, 72, 73]. However, the
final reconstruction quality depends to a large degree on the availabil-
ity and quality of the set of input images [74, 75] (more is not always
better).
Given the emergence of small and affordable aerial robots (MAVs),

equipped with high resolution cameras, it is a natural choice to lever-
age these for image acquisition. In fact several commercial applica-
tions exist for this task (e.g., Pix4D [76] or Agisoft PhotoScan [77]).

66

4.1 Introduction

(A) Initial Pattern (B) Initial Reconstruction (C) Viewpoint Planning (D) Final Reconstruction

Figure 4.1: Depicted is our pipeline for 3D reconstruction
of building-scale scenes with commercially available
quadrotors. (A) A user defines the region of interest
(green) on a map-based interface and specifies a pat-
tern of viewpoints (orange), flown at a safe altitude. (B)
The pattern is traversed and the captured images are
processed resulting in an initial reconstruction and oc-
cupancy map. (C) We compute a viewpoint path that
observes as much of the unknown space as possible ad-
hering to characteristics of a purposeful designed cam-
era model. The viewpoint path is only allowed to pass
through known free space and thus the trajectory can be
executed fully autonomously. (D) The newly captured
images are processed to attain the final high-quality re-
construction of the region of interest. The method is
capable of capturing concave areas and fine geometric
detail.

67

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Due to safety and absence of detailed environmental information (e.g.,
obstacles) such tools revert to flying regular grid-like patterns or cir-
cles at a safe overhead distance. However, the resulting viewpoints are
in many cases insufficient for high quality 3D reconstruction: parts of
the building such as walls and convex areas underneath overhangs may
be occluded from overhead and images captured from far away may
lack information important for reconstruction of fine details. Further-
more, such acquisition strategies do not directly account for complete
coverage of the scene and do not explicitly reason about the choice
of viewpoints with respect to expected feature matching quality and
baseline between viewpoints. Moreover, current MAVs are battery
constrained to 10-15 minute flight time, making intelligent viewpoint
selection an even more pressing issue.
In this chapter, we propose an algorithm for the automated plan-

ning of viewpoint tours for aerial 3D scanning. We demonstrate its
utility in the context of building-scale dense 3D reconstructions. We
pose this problem in a mathematical optimization framework, based
on the objective of maximizing information in terms of observed space
weighted by uncertainty from as few viewpoints as possible. This ob-
jective results in minimizing unobserved space. Starting from a coarse
input scan the method selects a small number of viewpoints, each pro-
viding additional information about the environment, and considers
constraints in terms of stereo matching, flight time of the MAV and
collision freedom. The resulting plan can be flown by a real quadcopter
and the images are processed via a SfM & MVS pipeline [13, 14, 18]
to attain high-quality 3D models.
The above optimization problem involves instances of the coverage

set problem for viewpoint selection and the traveling salesman prob-
lem for path planning. Both problems are known to be NP-hard [78].
In order to make the problem computationally tractable, we introduce
an approximated camera model to measure the expected information
gain (IG) contribution from an individual viewpoint, independently
from all other viewpoints. While this camera model does not accu-
rately represent monocular viewpoints in MVS settings, it allows us to
formulate the problem with a submodular objective function [1], mak-

68

4.1 Introduction

ing the computation feasible while giving good approximation bounds.
We show that both model and problem approximation yield very good
results in practice, and can be effectively combined with an edge selec-
tion strategy during trajectory generation that favors camera motion
which will lead to good sparse matches and hence good camera pose
estimates.
We have developed a simple pipeline that is depicted in Fig. 4.1.

This pipeline allows novice users to reconstruct building-scale out-
door scenes with little prior knowledge and effort. Based on a
user-specified region of interest and no-fly zones a simple overhead
pattern is flown for bootstrapping. An initial reconstruction from
the collected images is used for planning a sequence of viewpoints
through free space and within the maximum travel budget. Finally,
the trajectory is flown and a dense 3D model is attained via MVS
reconstruction. We have produced a number of reconstructions in-
cluding a free-standing office building, a historical downtown building
in cluttered environment, and an entire renaissance church . Further-
more, we evaluate our method quantitatively using a 3D game engine
and show that it outperforms both regular patterns and the previous
state-of-the art [80].
In summary, we contribute: i) an optimization criteria that is based

on volumetrically-represented information content and that maximizes
information about uncertain space subject to a travel budget and
free-space constraints; ii) a camera-model that makes the optimiza-
tion problem suitable for a sub-modular formulation, iii) a recursive
strategy to approximately solve the sub-modular optimization prob-
lem, iv) a quantitative comparison with strong baselines on synthetic
scenes and qualitative results on three varied and challenging outdoor
scenes, v) an open-source user interface (see Fig. 4.2) that allows visu-
alization of the scanned occupancy maps and 3D reconstructions and
handling of the viewpoint graph and path planning [79].

69

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Figure 4.2: Shown is the user interface for our method. The interface
allows the visualization of the region of interest (yellow
lines), the occupancy map (grey boxes), the 3D recon-
struction in form of a Poisson mesh or point cloud. For
inspection and debugging purposes direct voxel selection
via mouse or raycasting is supported as well. Further-
more the interface allows to control viewpoint genera-
tion, motion path computation and the computation of
viewpoint paths. The user interface is available as open
source code [79].

70

4.2 Related work

4.2 Related work

Our work builds upon a large body of work in the computer graphics
and robotics literature. Here we review the most salient work in aerial
3D scanning, path planning and monocular 3D reconstruction.

3D Reconstruction: SfM and MVS The theory behind structure
from motion (SfM) and multi-view stereo reconstruction (MVS) meth-
ods [81, 11] forms the foundation for an impressive diversity of image-
based 3D reconstruction approaches. SfM methods can now obtain
city-scale reconstructions from unstructured image collections [82, 83,
84, 85, 86] with remarkable levels of quality [87, 75, 88, 15, 89]. Many
of these algorithms are now publicly available as open source projects.
For example, CMPMVS [69], MVE [13], SMVS [71], COLMAP [14,
18], or as commercial solutions, such as Pix4D [76] or Agisoft Photo-
scan [77]. A very recent work by Knappitsch et al. [73] provides an
overview of state-of-the-art SfM and MVS methods, and introduces an
impressive benchmark dataset along with an evaluation for such ap-
proaches. We incorporate domain knowledge about the SfM and MVS
process into our planning algorithm but our method is agnostic to
the exact underlying SfM and MVS implementation.

Image Selection for MVS It has been shown that the quality and
speed of most MVS algorithms significantly depends on the selection
of input images and not all input images contribute equally to recon-
struction quality, leading to unnecessary processing time if all images
are used. Using too many images can even lead to degraded quality
in the reconstruction [74]. Most MVS pipelines use relatively simple
techniques to select images such as k-nearest images. Several auto-
matic techniques for image selection have been proposed based on
heuristics [90] or on contours [91]. More recently, Hornung et al. [21]
proposed a method that incrementally selects images based on max-
imizing coverage of a proxy geometry. It has also been proposed to
leverage viewpoint entropy (similar to IG in active vision) for view

71

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

selection in image-based rendering [92]. While not directly focusing
on MVS an image selection process based on covariance propagation
has been proposed for incremental SfM [93]. However, all these tech-
niques either expect a complete set of already captured input images
or update the 3D reconstruction on-the-fly, making them unsuitable
for our settings of finding the best viewpoints for dense aerial 3D
reconstruction.

RBG-D Reconstruction In addition to monocular methods, many
3D reconstruction approaches are inspired from range sensing tech-
nology. A fundamental component is the volumetric fusion work by
Curless and Levoy [94] whose implicit surface representation is at
the core of most prominent real-time RGB-D reconstruction methods,
such as Kinect Fusion [95] and many others [96, 97, 98]. Poisson Sur-
face reconstruction is another widely used 3D reconstruction method,
where the 3D surface is defined by an energy minimization problem
over an implicit, volumetric function [99, 10].

Aerial 3D reconstruction Several commercial tools aid users in flight
planning and processing of aerial imagery for 3D reconstruction [76,
100]. However, these tools only produce regular overhead patterns
that have to be flown at a safe obstacle-free altitude. Due to a lack
of any prior model information these tools are also incapable of rea-
soning about coverage and viewpoint quality, limiting the resulting
3D reconstruction completeness and quality. A number of systems
leverage MAV-mounted RGB-D sensors to create 3D reconstructions
in real-time [101, 102, 103, 104]. However, these focus on the re-
construction method and do not consider the problem of planning
trajectories for reconstruction.

Exploration and active vision Planning trajectories through (par-
tially) unknown scenes is a classic problem in the robotics literature
(see [105] for a recent review). Frontier-based exploration algorithms
[106] are often used for autonomous mapping and exploration of the

72

4.2 Related work

(A) (B) (C) (D)

Figure 4.3: Overview: (A) The method is initialized via images from
a regular overhead pattern (not shown). (B) We gener-
ate a set of viewpoint candidates (yellow) and use a sub-
modular optimization formulation to find an optimized
viewpoint path maximizing information about uncertain
space (voxels in red). (C) The planner generates a free-
space trajectory and takes constraints on SfM &MVS re-
construction such as preference for fronto-parallel views
and matching quality into consideration. Where neces-
sary viewpoints for sparse matching (cyan) are inserted.
(D) The final, high quality reconstruction is attained via
a SfM & MVS pipeline [13, 14, 18].

environment using stereo [107], RGB-D, or monocular cameras [108].
The goal in our work differs since we are not only interested in a
coarse map for navigation but in a dense, high-quality 3D scan of
building-scale scenes.
Scanning an a priori unknown scene is a challenging problem due

to the lack of available information and absence of useful priors. An
interesting approach to guide the recording process was proposed in
[109] where an online SfM system is combined with measures for re-
dundancy and sampling distance to give live feedback on the expected
reconstruction quality to a user. However, in our context we are al-
ready given an initial coarse model of the scene and reason about the
whole recording sequence in volumetric space before executing it. In
active vision approaches, planning of the next view is done on-the-
fly by incorporating information from previous scans, an approach
known as next-best-view (NBV) and itself an instance of the set cov-

73

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

erage problem which is NP-hard. Much work has been dedicated to
efficient approximations [78] which have been utilized for 3D scan-
ning [110, 111, 112, 113]. Similar to our formulation such approaches
leverage information gain (IG) as optimization quantity. Another in-
teresting approach uses two independent cameras that can collaborate
to form a stereo pair [114]. In contrast to our work these approaches
either aim for establishing a coarse map for navigation or have not
shown high quality dense reconstruction resulting from planned view-
points.
In graphics, several approaches for quality driven and automated

3D scanning have been proposed including NBV approaches using
volumetric [115] and poisson mesh based [116] metrics for scanning
quality. Fan et al. [117] propose view- and path-planning algorithms
to scan collections of small objects using a structured light scanner.
Xu et al. [118] propose a method for automatic scanning of indoor
scenes but focus on guiding the scanning process via object recog-
nition and scene understanding. While these works share our goal
of optimizing for reconstruction quality, all of them are designed for
structured light scanners, robotic arms, or wheeled robots and com-
paratively small scenes and hence are not applicable in the context of
aerial, monocular (offline) scanning.
In photogrammetry, the task of finding the best viewpoints for ac-

curate 3D scanning is known as the photogrammetric network design
problem (NDP). Early work [119] already highlights the difficulties
of the problem including high non-linearity and multi-modality which
makes it difficult to model in typical optimization frameworks. Model-
based approaches [120] and such driven by model uncertainty [121]
have been proposed but only deal with the geometric aspect of the
task in highly-controlled environments and idealized localization set-
tings (i.e., using fiducial markers) but do not consider the influence of
texture and appearance on SfM and MVS pipelines.
The methods in Hoppe et al. [122] and Bircher et al. [123] use a

prior mesh to reason about coverage of the scene; however, they only
use the mesh for collision checking which might be insufficient for
non-watertight meshes with unobserved parts. Their main goal is to

74

4.3 System Overview

find viewpoints that cover the whole scene, whereas we maximize the
observed information about a specific object of interest. Once budget
constraints like the number of viewpoints or flight-time are introduced
such approaches may lead to arbitrarily bad viewpoint selections. The
work in [124] performs reconstruction online by iteratively capturing
a planned sequence of next-best-views and computing depth maps
with a fast Multi-View-Stereo method. In contrast our focus is not
on planning in an online fashion but on reconstructing a high quality
surface model at building scale. The method in [80] is most similar to
ours in spirit. The authors also formulate the viewpoint selection as
a submodular optimization problem. However, to solve the problem
the authors perform two problem approximations resulting in a mixed-
integer linear program that is solved with an off-the-shelf solver. Due
to these approximations it is not clear whether any approximation
bound can be given for the original problem. More importantly, in all
our experiments the solver never finds the optimum and it is up to
the user to decide how long to run the optimization. For reasonable
runtimes of 10 minutes we observe that our approach consistently
outperforms this method.
To the best of our knowledge, the view selection and path optimiza-

tion problem for dense aerial reconstruction has not been formulated
in the same way as proposed here and has not been solved in the same
efficient manner as we do.

4.3 System Overview

The aim of our method is to automate high-quality 3D scanning of
building-scale scenes using commodity quadrotors equipped with a
single RGB camera. To this end, we have developed a simple pipeline,
illustrated in Fig. 4.1 and 4.3, which is built on a mathematical op-
timization formulation for viewpoint and trajectory planning. In the
following, we provide an overview of the workflow from a user’s per-
spective and then detail the planning algorithm.
First, a user defines a region of interest (ROI) and specifies a simple

75

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

and safe overhead pattern via a map-based interface to acquire an
initial set of images. In urban environments, it is also possible to
specify no-fly zones in order to avoid other buildings, powerlines, and
to adhere to airspace regulations. The quadrotor flies this regular
pattern and records an initial set of images. These recordings are then
processed via a state-of-the-art SfM and MVS pipeline by Schönberger
et al. [14, 18] to attain camera poses together with depth and normal
maps for each viewpoint. To generate a 3D surface reconstruction,
the depth maps are fused into a dense point cloud, and utilizing the
Poisson Surface Reconstruction method [10] a mesh is extracted (Fig.
4.3, A).
It is important to note that this initial reconstruction is highly

inaccurate and incomplete since the viewpoints stem from a simple,
regular pattern, flown at relatively high altitude to avoid collisions.
In addition to the initial reconstruction, we compute a volumetric

occupancy map containing occupied, free-space, and unobserved vox-
els. Each voxel also carries with it a measure of observation quality.
We describe this occupancy map in more detail at the end of this
section. Our occupancy map is based on the implementation from [9].
The occupancy map (Fig. 4.3, B) is used during planning to reason

about free-space and collision freedom as well as approximation of the
observable surface area from any given viewpoint and the (remaining)
uncertainty about the scene. The main objective of our optimization
formulation is to maximize total information (i.e. certainty about vox-
els in the region of interest) while staying within the travel budget of
the quadrotor and respecting constraints imposed by SfM and MVS.
Intuitively, the total information corresponds to the observation count
of all voxels within the region of interest. In theory, given lamber-
tian surfaces, once all voxels have been observed multiple times (from
different non-grazing angles) the entire surface can be reconstructed
with high quality. This goal has to be traded-off with limited bat-
tery time of the robot and computational cost as the evaluation of all
possible viewpoints during planning is clearly infeasible.
Furthermore, it has been shown that at some point adding views

yields diminishing returns [125, 74, 21]. Therefore, we propose an

76

4.3 System Overview

efficient way to generate and evaluate viewpoint candidates (see Fig.
4.3, B) during planning, alongside a method to find a sequence of
‘good’ viewpoints to be flown in order to maximize reconstruction
quality.
Fig. 4.3, C shows the output of our planning method, where view-

points that were added due to their contributed information are ren-
dered in blue. Additional viewpoints that were added to ensure that
the SfM & MVS backend can register all images into a single recon-
struction are rendered in cyan. The edges are color-coded to signal
MAV progress along the path. The plan is then executed by the drone
and the acquired images are used to update the 3D model (Fig. 4.3, D).
Note how convex areas underneath the front-porch and garage roofs
have been carved and how overall detail has been increased. However,
there are still parts of the scene that have not been reconstructed
properly. This is due to approximations simplifying assumptions in
our formulation. We discuss these limitations in 4.6.

Volumetric Occupancy Map The occupancy map OM is essential in
distinguishing between occupied, free and unobserved space. This is
encoded by an occupancy value oc(τ) ∈ [0, 1] for each voxel τ ∈ OM .
Here we overload the term occupancy to encompass both a known
occupancy and an unknown occupancy, i.e. a value close to 0 encodes
a known empty voxel, a value close to 1 encodes a known occupied
voxel and a value close to 0.5 encodes an unknown voxel.
We initialize the occupancy map with occupancies of σ = 0.5 (i.e. un-

known). From each viewpoint, we cast a ray through the center of each
pixel until we reach the 3D point given by the depth value [94, 9]. The
occupancy of each traversed voxel is updated according to an inverse
sensor model (see Sec.4.7 for more details). The size of a voxel is
vs = 0.2m in all our experiments. We denote the position of a voxel τ
as τ.p. In the following we only consider voxels inside the region of
interest when computing the viewpoint information. For illustration
purposes we show an example of an occupancy map together with the
corresponding dense point cloud in Fig. 4.4.

77

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Figure 4.4: Visualization of an occupancy map. The occupancy map
is rendered with a jet colormap by the height of the
voxels. Here we render transparent voxels to illustrate
the alignment with the corresponding dense point cloud.

78

4.3 System Overview

Number of Images for 3D Reconstruction As discussed in the re-
lated work section it it not always beneficial for the final 3D recon-
struction to include additional images. In fact a very high number
of images will often lead to a 3D reconstruction of lower quality than
one from a moderate number of images.
Such detrimental effects can be explained by first realizing that

Multi-View Stereo is an inherently ambiguous process because dense
correspondences between pixels from different images are established
based on appearance alone. These correspondences will inevitably
contain errors. While such errors are reduced by cross checking or
regularization of depth and normal maps they cannot be fully elim-
inated. When including more and more images the number of such
errors will increase. At some point more images will provide no more
or very little additional surface information while the number of er-
rors keeps increasing. Thus an increasing number of images can have
detrimental effects on the final reconstruction. We demonstrate this
experimentally on the reconstruction of a building facade as shown in
Fig. 4.5. We recorded a video of a building facade and retrieved sets
of 100, 200 and 500 images by extracting frames uniformly in time.
In Fig. 4.5 we can see that the reconstructions become more noisy
with more images. Note that these experiments were performed with
Colmap [14, 18].
These results demonstrate that it is not enough to simply take an

excessive amount of images of a scene but instead a moderate number
of good images should be captured. Our system implicitly achieves
this goal due to our saturating coverage function as detailed in the
next Section.

79

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Using 100 images

Using 200 images

Using 500 images

Figure 4.5: Quality comparison of 3D reconstruction with different
numbers of images. Shown are 3D reconstruction of a
building facade from 100, 200 and 500 images. We see
that already 100 images result in a good reconstruction
and an increasing number of images leads to detrimen-
tal effects on the reconstruction quality. Note that the
images were extracted uniformly in time from the same
video sequence.

80

4.4 Method

4.4 Method

In this section, we discuss our optimization framework to obtain view-
point trajectories for 3D scanning. One difficulty that presents itself
is that the final objective of 3D reconstruction quality cannot be mea-
sured directly due to the absence of ground-truth data and the offline
nature of the SfM and MVS pipeline. Hence, we require a surrogate
quantity that can be used for optimization. At the core of our method
lies an objective function based on the total information gained by
the collection of viewpoints along a computed trajectory. We first
introduce the formal optimization problem and then discuss how an
approximate camera model can be leveraged to modify the original
problem to allow for efficient maximization.

4.4.1 Optimizing viewpoint trajectories

The high-level goal is to find an optimized subset of viewpoints, from a
larger set of candidate views, that maximizes the information gained
about the 3D surface of the scene.
We assume that we are given a graph G = (C,M) of viewpoint

candidates C alongside observed voxels and motionsM between view-
points as edges. Each viewpoint v ∈ C has an associated position and
orientation denoted as v.p and v.q. We require each of the motions
in M to be collision-free and that the connected viewpoints can be
matched later on in the MVS pipeline. We detail the construction of
this graph in Sec. 4.4.4.
The goal of the method is to generate a trajectory (i.e. a path

through a subset of the nodes in the candidate graph) for the quad-
copter that yields good reconstruction quality and fulfills robot con-
straints . In our case we are given a maximum travel distance of
Lmax . Let VP = (vp1, . . . , vpn) be the sequence of viewpoints to
be traversed during image capture where vpi ∈ C. We denote with
L(VP) the geometric length of the trajectory VP and with S the set
of all sequences VP .

81

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Formally, we want to solve the following optimization problem:

VP∗ = argmax
VP∈S

I (VP) (4.1)

such that L(VP) ≤ Lmax ,

where I (VP) is our objective function that measures the amount of
information contributed by the respective viewpoints. This optimiza-
tion problem is equivalent to Eq. (2.12) described in Section 2.4. We
can write the objective function as a sum over the information of each
non-free-space voxel

I (VP) =
∑

τ∈OM\OM free

VI (τ,VP) (4.2)

OM free = {τ ∈ OM : oc(τ) ≤ ocfree} , (4.3)

where VI (τ,VP) is our camera measurement model and specifies
how much information of voxel τ is contributed by the traversed view-
points VP (details in Sec. 4.4.2) and ocfree is a lower threshold that
determines when a voxel is considered to be free space (see Appendix
for details).
Solving Eq. Eq. (4.1) is in general prohibitively expensive for non-

trivial real world problems [1] since the total information of a voxel
depends on the set of all traversed viewpoints. As our viewpoint
graphs contain 5, 000 − 10, 000 viewpoints it is computationally in-
feasible to enumerate all these viewpoint sets to find the best one.

4.4.2 Submodular voxel information

To make the problem tractable, we approximate the contributed infor-
mation of a voxel by assuming that a single viewpoint v can directly
provide information about the 3D surface, i.e., for a single voxel τ and
viewpoint v the contributed information can be written as vi(τ, v). We
do this by incorporating terms that encourage close-up and fronto-
parallel views. The computation of the contributed information is

82

4.4 Method

detailed in Sec. 4.4.4 (see Eq. Eq. (4.7)) and depends on the incidence
angle of the observation ray and the normal of the voxel.
Clearly, this model is far from reality since it entirely ignores the

stereo-matching process and does not explicitly encourage the selec-
tion of images from diverse viewpoints. However, it does allow us to
re-formulate our optimization problem in a way that it exploits sub-
modularity in the objective function and therefore allows for more
efficient maximization of the problem [1]. Note that to explicitly in-
corporate stereo matching into the objective function we would want
a view to give a high incremental objective value if another view can
be matched to it. Let A,B ⊂ 2S , A ⊂ B and x ∈ S \ B where S is
the set of all possible camera poses. Let us assume that B contains
a view that allows good stereo matching with x while A contains no
such view. To incorporate stereo matching into the objective function
I : 2S → R we would like to have I(B ∪x)− I(B)� I(A∪x)− I(A).
We see that such a function is not submodular as it would violate the
submodularity condition I(B ∪ x)− I(B) ≤ I(A ∪ x)− I(A).
We can finally write the total information of a voxel τ contributed

by a set of viewpoints as

VI (τ,VP) = min

(
1,
∑
v∈VP

vi(τ, v)

)
, (4.4)

where the min ensures that the total information for each voxel satu-
rates at 1. It is easy to see that this objective function is submodular
[1] by writing the information gain resulting from adding v to the
viewpoint sequence VP :

IG(τ, v,VP) = VI (τ, {v} ∪VP)−VI (τ,VP) (4.5)
= min (vi(τ, v), 1−VI (τ,VP)) . (4.6)

We note that VI (τ,VPA) ≤ VI (τ,VPB) for VPA ⊆ VPB and thus
the submodular property IG(τ, v,VPA) ≥ IG(τ, v,VPB) is fulfilled.
As mentioned above, our submodular objective function does not

directly incorporate stereo matching. We would like to encourage the

83

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

optimization to select multiple views of the same voxel to account
for the requirements of stereo matching. To this end we reduce the
contributed information per viewpoint by a discount factor ξ. This
encourages on average 1/ξ cameras to observe the same point, leading
to good MVS reconstructions in practice. Please also note that our
formulation continues to enforce stereo matching constraints via the
edge selection strategy discussed in Sec. 4.4.4.

4.4.3 Maximizing the submodular formulation

Our camera model exposes desirable structure in the optimization
problem Eq. Eq. (4.1). Since the individual viewpoints now provide
diminishing returns given other additional viewpoints and more view-
points can never reduce the total information, the objective function
I (VP) is both monotone and submodular. While the problem is still
NP-complete in general, submodularity provides guarantees on the
approximation quality of a greedy algorithm for the when we are al-
lowed to select a fixed number of viewpoints [1]. This guarantee does
not hold anymore when we introduce a travel/time budget constraint
on the path through the selected viewpoints . By combining the
greedy algorithm and the cost-benefit algorithm [29, 126] and choosing
the better solution we are guaranteed to be within (1− 1/e)/2 ' 0.32
of the optimal solution. However, the cost-benefit algorithm requires
|C| evaluations of the contributed information vi(τ,VP) for each
added viewpoint and thus does not scale well with an increasing set
of viewpoint candidates and an increasing travel/time budget. The
algorithm proposed in [27] also solves the submodular optimization
problem with a travel-budget constraint. The algorithm fixes a start
and end viewpoint and follows a recursive strategy by selecting a mid-
dle viewpoint and splitting the trajectory into a first (start to middle)
and second part (middle to end). The travel-budget is also split into
a portion for the first and second part. The first and second part are
then computed by taking a recursive step. Interestingly, the authors
are able to provide an approximation ratio of logO∗ for this algorithm
where O∗ is the optimal value of the objective function. However, the

84

4.4 Method

algorithm is severely restricted in practice as it enumerates all possi-
ble middle nodes and all possible splits of the travel-budget (which is
assumed to be integer valued) for each recursion step. Also note that
the objective and the contributed information of each viewpoint are
assumed to be integer valued (otherwise we could just scale all in-
formation values to achieve a better approximation ratio). In our
setting with real-valued budgets and travel costs and a high number
of viewpoint candidates this algorithm is not feasible.
We introduce a practical adaptation of the method in [27] to solve

Eq. Eq. (4.1). In all our experiments this method performs favorably
and always achieves a better solution than the greedy method. Note
however, that our solution is only an approximation as the problem
is still NP-complete in general.
Our approach can be seen as striking a middle-ground between the

greedy algorithm and the cost-benefit algorithm. When observing the
greedy algorithm one usually sees that the next viewpoint being picked
is very far away from already selected viewpoints. This makes sense
as viewpoints far away will have little overlap with already selected
viewpoints and there is no penalty for large distances between selected
viewpoints. This often leads to suboptimal selections as much of the
viewpoint budget is used up very early and later on viewpoints can
only be selected very close to the travel paths between the earlier
viewpoints. On the other hand, the cost-benefit algorithm usually
ends up selecting viewpoints that are very close to existing viewpoints
due to the penalty of choosing viewpoints with large distances to the
already selected ones. This often results in clusters of viewpoints with
low coverage. Our method will typically also pick new viewpoints that
are far away from existing viewpoints as we do not directly penalize
distances in the selection. However, after selecting a viewpoint we
split the budget into a first part (before reaching that viewpoint) and
a second part (after reaching that viewpoint). We then recursively
continue selecting further viewpoints in the first part and only later
continue with the second part.
Our method proceeds as follows: the budget is split into a first and

second part and a middle node (viewpoint) is selected. A recursion

85

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

step is made for the first part and the second part. In contrast to
[27] we only perform an equal split of the budget for the first and
second part and select as the middle node the viewpoint with the
highest information gain that is reachable with the current budget.
The recursion naturally ends when no new viewpoint can be reached
with the available budget. Additionally, we adjust the budget for the
recursion of the second part to make use of all remaining budget after
the recursion of the first part has finished. A formal description of
the method is given in Alg. 2. In Fig. 4.6 we show an example of a
viewpoint path computed with our method.

4.4.4 Viewpoint candidate graph

In this section we detail the generation of the candidate viewpoint
graph including computation of contributed information per viewpoint
and generation of free-space motion paths. The candidate viewpoint
graph G consists of a large number of candidate viewpoints and the
corresponding observed voxels as nodes and free space motions be-
tween viewpoints as edges. Note that we first generate the set of
candidate viewpoints and afterwards compute motion paths between
them.
Ideally, the set of candidate viewpoints should consist of all camera

poses that are useful for reconstructing the surface in the region of
interest. At the same time the set should be as small as possible to
enable faster computation on the set. We note that a pair of images
with a fixed baseline will be visually more similar if the images are
taken far away from the region of interest. Thus the candidate gen-
eration process (see Alg. 3 in Appendix) is designed to perform a
denser sampling of viewpoints inside or in the vicinity of the region
of interest and a less dense sampling for viewpoints far away from the
region of interest. The set of candidate viewpoints is seeded ei-
ther by the manually specified viewpoints or those stemming from an
earlier iteration of the planning algorithm. These initial candidates
are also added to an exploration queue. To sample new 3D candidate
positions we take the first 3D position from the exploration queue

86

4.4 Method

Figure 4.6: Visualization of a viewpoint path computed with our
method. The viewpoints on the path are rendered as
transparent blue camera frustums (green cameras were
added to fulfil the sparse matching constraint as de-
scribed in Sec. 4.4.4). The motion segments are ren-
dered with a heat colormap by distance from the start
viewpoint. Also shown is a dense point cloud of the scene
within the region of interest (yellow lines).

87

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

and generate 6 new positions by adding an offset in the −x, +x, −y,
+y, −z and +z direction respectively. The resulting positions are
discarded if they are too close to existing viewpoint candidates or
do not lie in free space, otherwise they are added to C and to the
exploration queue. The orientation of new viewpoints is determined
by random sampling with a bias towards the region of interest.
A viewpoint is considered to lie in free space if the occupancy of

all voxels intersecting with the drone’s bounding box is below the
threshold ocfree (see Appendix for more details).
We furthermore require the camera orientation to fall within the

limits of the physical camera (i.e., camera roll φ = 0 and pitch θ ∈
[−π/2, 0]). We run this procedure until no more new viewpoints can be
added or we reach a maximum viewpoint budget. For typical scenes,
5, 000 - 10, 000 viewpoint candidates are generated (see Fig. 4.3, B).
Importantly G is not arranged in a uniform grid. Instead we let the

sampling offset between neighboring viewpoints grow with increasing
distance from the region of interest. This prevents an explosion in the
number of viewpoints for larger scenes.
In Fig. 4.7 we visualize an example of a viewpoint graph. As can

be seen the graph is not arranged in a uniform grid and has a higher
density close to the region of interest. In Fig. 4.8 the corresponding
motions of the viewpoint graph for a single viewpoint are shown.

Viewpoint information

After generating viewpoint candidates, we compute the visible voxels
for each viewpoint needed to evaluate the corresponding contributed
information by ray-casting into the occupancy map. Compared to
a simple rendering of the coarse Poisson mesh from the initial scan
the ray-cast ensures that we handle occlusions by objects that were
not reconstructed (i.e. unknown voxels). Note that this operation is
fairly expensive but only has to be performed once for each viewpoint
candidate.
The information vi(τ, v) contributed by observing a voxel τ with

88

4.4 Method

Figure 4.7: Visualization of a viewpoint graph with 6000 viewpoints.
The viewpoints in the graph are rendered as transparent
yellow camera frustum. The viewing direction of the
viewpoints is biased towards the region of interest and
the density of viewpoints is higher close to the region of
interest. Note that for visualization purposes we only
show the edges (i.e. motions) of a single vertex in the
graph. Also shown is a dense point cloud of the scene
within the region of interest (yellow lines).

89

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Figure 4.8: Visualization of motions in the viewpoint graph. The
viewpoints in the graph are rendered as transparent yel-
low camera frustum. The motions are rendered as line
segments connecting the viewpoints. Note that for visu-
alization purposes we only show the edges (i.e. motions)
of a single vertex in the graph. Also shown is a dense
point cloud of the scene within the region of interest
(yellow lines).

90

4.4 Method

viewpoint vp is then given by

vi(τ, v) =
1

ξ
vi i(τ, v)vir(τ, v) (4.7)

vi i(τ, v) = exp(−βFi max(γ − βTi , 0°))

vir(τ, v) = exp(−βFr max(px(τ, v)− βTr , 0px)) ,

where vi i(τ, v) and vir(τ, v) are incidence- and resolution-dependent
factors respectively, γ = arccos((v.p − τ.p) · n(τ, v)) is the angle be-
tween the incident viewing ray and the surface normal (extracted from
the mesh) and px(τ, v) = fvs

d(τ.p,v.p) is the number of pixels that a
fronto-parallel voxel stretches if projected onto the viewpoint’s image
plane with a focal length f . Note that d : R3 × R3 → R refers to
the Euclidean distance. Both factors have the same functional form:
a constant value of 1 up to a certain threshold βTi , βTr followed by
an exponential decrease with falloff factors βFi , βFr . We empirically
determined the following values to work well on a number of scenes:
βTi = 25°, βFi = 1

25° , β
T
r = 6px, βFr = 1

3px . These values are used for
all our experiments.
In Fig. 4.9 we visualize the ray-cast obtained from a camera view-

point. Voxels that are hit by the ray-cast are colored from gray to red
with gray indicating a low and red indicating a high value of vi(τ, v).
Note that we compute the normal of a voxel in a per-viewpoint

fashion. This is accomplished by rendering the Poisson mesh of the
initial reconstruction from the corresponding viewpoint for which we
are computing the voxel information. Furthermore, we consider the
voxel’s projected size to account for the physical camera resolution.
Clearly, the voxel information vi depends on the quality of the ini-
tial Poisson mesh. However, as our incidence factor vi i shows a flat
response around an incidence angle of 0° (i.e. looking parallel to the
surface normal) the voxel information vi is only slightly effected by
small amount of noise in the normals of the Poisson mesh. To handle
normals that are close to creases of the surface, we compare the dis-
tance of camera to mesh and camera to voxel. If these distances differ
too much (≥ 0.5m) we assume an unknown normal and set the inci-

91

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Figure 4.9: Visualization of the ray-cast obtained from a single cam-
era viewpoint. The corresponding camera viewpoint is
colored in red (lower right part of the image) and the
occupancy map within the region of interest is rendered
in gray. Voxels that are hit by the ray-cast are colored
from gray to red with red indicating a higher value of
vi(τ, v). Also shown is a dense point cloud of the scene
and the region of interest as yellow lines.

92

4.4 Method

dence factor vi i(τ, v) to 0.2. This incentivizes multiple observations of
the voxel for these ambiguous situations. An alternative to rendering
the Poisson mesh from each viewpoint would be to compute a single
view-independent normal for each voxel by searching for the nearest
triangle in the Poisson mesh. However, this has certain limitations
such as forcing a single normal for a voxel that is part of a crease of
the surface. With our view-dependent normal computation the voxel
can have different normals depending from which side it is viewed.
To accelerate the computation of the contributed information by

a viewpoint we perform the ray-casting operation on a GPU using an
image plane with a resolution of 600× 450 and using a focal length of
f = 345px, equivalent to that of the physical camera. We assume rays
have an infinitesimal width and shoot a ray through the center of each
pixel of the image plane. In our current setting a single voxel with
edge-length of 0.2m projects onto one pixel at a distance of 0.2m·f

1px '
70m.

Free-space motion paths

The final step in computing the viewpoint candidate graphG is to con-
nect nodes via traversable edges (see Alg. 4 in Appendix)). Traversable
refers to a path along which the drone’s bounding box does not inter-
sect with any non-free voxel. To this end we move the bounding box
along the path with a maximum step-length of l, bounding the viola-
tion of the obstacle check to a maximum distance of

√
3l. By choosing

the bounding box dimensions appropriately, we can ensure, up to the
limits of the initial reconstruction, that the path is obstacle free and
can be flown safely. For computational efficiency, we first attempt to
connect viewpoints via straight lines. If an obstacle is encountered,
we employ the rapidly exploring random trees (RRT∗) algorithm [7]
to find a free-space motion consisting of piecewise linear segments. A
voxel is determined to be in free space if its occupancy is below the
threshold ocfree (see Appendix for more details).

93

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Sparse Matching
On most scenes, and inline with findings from the MVS literature,
we attain high quality dense depth maps from relatively few images.
However, in building-scale scenes clusters of views can be very far
apart, making global registration of depth maps impossible. In or-
der to account for this issue, we furthermore include a heuristic that
will introduce additional viewpoints for registration and naturally in-
tegrates into our viewpoint candidate graph. To this end, we define
a criterion based on the visible voxels in each viewpoint. To speed
up the computation, we render the occupancy map at a lower reso-
lution and count the voxels obs(v) visible from a viewpoint v. Two
viewpoints v1 and v2 are then called matchable if:

|obs(v1) ∩ obs(v2)| ≥ α(|obs(v1)|+ |obs(v2)|)/2 , (4.8)

ensuring that there is enough overlap of visible voxels between two
viewpoints. We only insert motions into the viewpoint graph G if the
two connected viewpoints are matchable. Incorporating this matching
heuristic has proven to be very effective in our synthetic and real-
world experiments. In all our experiments, we use a value of α = 0.4.
Once a matchable motion path is found we add an edge with a weight
equal to the motion distance to the graph G.

94

4.4 Method

Procedure recursiveGreedy is
Input: V , Vs, Ve, B
Output: V P
Vm ← Viewpoint with maximum information gain that is still
reachable with budget B.
if Vm == ∅ then

Return ()
end
V P 1 ← recursiveGreedy(V ∪ {Vm}, Vs, Vm, B/2)
B1 ← Compute travel length of V P 1

B2 ← B −B1

V P 2 ← recursiveGreedy(V ∪ V P 1, Vm, Ve, B2)
V P←(Vs) + V P 1 + (Vm) + V P 2 + (Ve)

end
Algorithm 2: Recursive greedy algorithm to maximize the op-
timization problem in Eq. Eq. (4.1). The recursive proce-
dure takes the set of viewpoints V currently on the path VP
(i.e. V = {v ∀ v ∈ VP}) and the start viewpoint Vs, end viewpoint
Ve and budget B of subproblem as input. It returns the view-
point path for the subproblem. The initial call of the procedure
is recursiveGreedy(∅, Vi, Vi, Btotal), where Vi is the viewpoint with
the overall maximum score and Btotal is the full travel budget of the
quadrotor. The middle viewpoint Vm can be computed in an efficient
manner by keeping a sorted list of IG and evaluating them in a lazy
fashion (see Appendix for more details). A viewpoint is reachable
with the current travel budget if the travel distance from Vs to Vm
and from Vm to Ve does not exceed the budget B.

95

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Grasslands (small) Grasslands (large)

Street Courtyard

Figure 4.10: Overview of synthetic scenes used for evaluation.
Shown in yellow is the bounding box of the region of
interest together with the transparent voxel represen-
tation and the mesh representation of the scene. The
Grasslands scenes on the left demonstrates interesting
geometry that is mostly observable from easily acces-
sible viewpoints. In contrast the Street and Courtyard
scenes contain simpler geometry but many surfaces can
only be observed from viewpoints between the buildings
which are difficult to access.

96

4.5 Results

4.5 Results

In this section, we discuss experiments conducted to evaluate our
method both quantitatively and qualitatively, on real and synthetic
data. Evaluating methods for building-scale robotic 3D reconstruc-
tion poses many significant challenges. First, comparative evaluation
on real scenes is challenging due to changing conditions such as light-
ing, weather conditions, surrounding objects and modifications of the
object itself that can occur over the course of hours. Furthermore,
groundtruth information is typically not available for building size
scenes. Therefore we report qualitative results from three challenging
real-world examples, a renaissance church scene, an office building
and a historic building. We also report quantitative results from a
thorough evaluation on synthetic scenes from a state of the art ren-
dering engine∗.
The method proposed in here consists of many parts such as the

robotic platform itself, the planning algorithm and the SfM/MVS
pipeline. To unpack the influence of our core contribution (the plan-
ning algorithm) we compare our method with several strong baselines,
including a state-of-the art method [80], in an ablative manner. First,
we repeat the experiment in [80] to compare results from the end-to-
end reconstruction of the full system including the SfM/MVS pipeline.
Next we evaluate the relative performance to [80] with respect to the
main optimization objective of achieved total viewpoint information
(score). Finally, we compare our method with several strong base-
lines using reconstructions from recorded depth images to remove the
influence of the SfM/MVS pipeline.

4.5.1 Synthetic scenes

We evaluate our method on four synthetic scenes stemming from the
Infinity Blade: Grass lands environment† and the Urban City envi-

∗http://www.unrealengine.com
†https://www.unrealengine.com/marketplace/

infinity-blade-plain-lands

97

http://www.unrealengine.com
https://www.unrealengine.com/marketplace/infinity-blade-plain-lands
https://www.unrealengine.com/marketplace/infinity-blade-plain-lands

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

ronment‡ from the Unreal Engine Marketplace. In the Grass lands
environment we use a small region of interest as used in [80] and a
large region of interest. The scenes from the Urban City environment
are blocks of houses where the inner facades of the building are diffi-
cult to observe. An overview of the scenes and the regions of interest
is shown in Fig. 4.10.
To evaluate our algorithm’s performance when reconstructing a

dense point cloud we closely follow the procedure established in [73].
We resample the ground truth mesh until the area of each triangle
is below a certain threshold (0.5m × 0.5m). From each triangle 100
points are sampled and the resulting point cloud is resampled on a
voxel grid with a voxel size of vs/2 = 0.05m by taking the mean of the
points found within the same voxel. The resulting point cloud repre-
sents our ground truth. The reconstructed point cloud is resampled on
the same voxel grid. To compare both point clouds we compute two
quantities, the precision P and the recall R, where precision quantifies
how many reconstructed points are close to a ground truth point and
recall quantifies how many ground truth points are close to a recon-
structed point. A point is close to another point if their distance is
less or equal to δ = 0.1m. Both quantities can be combined in the F1
score F = 2 P·R

P+R which is a common performance measure for binary
classification. We refer the reader to [73] for more details.

4.5.2 Comparison with Roberts et al.

Here we compare our reconstruction results with our reimplementa-
tion of [80] using our objective function. Like the authors we use
Gurobi§ to solve the resulting mixed-integer linear program and allow
a runtime of 10 minutes. We observe that running Gurobi for much
longer times does not improve the resulting score significantly (see
Appendix 4.9.3). We show reconstruction results using ground-truth
depth maps and end-to-end results when performing dense reconstruc-

‡https://www.unrealengine.com/marketplace/urban-city
§http://www.gurobi.com/

98

https://www.unrealengine.com/marketplace/urban-city
http://www.gurobi.com/

4.5 Results

tion using Multi-View-Environment (MVE) [13].
We perform the comparison on the same Grasslands (small) scene

as in [80] and allow a travel budget of 900m. [13] We use 20 im-
ages arranged in a circular pattern to compute the initial reconstruc-
tion. [80] As shown in Table 4.1 our method improves upon [80]
in both experimental settings. In Fig. 4.11 we qualitatively compare
the reconstruction results using the end-to-end dense reconstruction,
showing that our method can recover more surface details.

Using ground-truth depth maps
Method Precision Recall F-Score

Roberts et al. [80] 97.22 62.53 76.11
Ours 96.56 67.16 79.22

Using full SfM/MVS pipeline
Method Precision Recall F-Score

Roberts et al. [80] 81.83 64.91 72.39
Ours 80.29 72.17 76.02

Table 4.1: Quantitative comparison of the final reconstruction on the
synthetic scene Grass lands (small) with a small region of
interest and a travel budget of 900m. Here we included
the images from the initial scan when performing recon-
struction. The best F-Score value is highlighted in bold.
Note that Roberts et al. [80] refers to our reimplementa-
tion using our objective function.

4.5.3 Viewpoint score comparison
Here we directly compare our optimization method with the approach
in [80] using our objective function. Recall that the optimization ob-
jective is a submodular viewpoint score describing how much surface
of a scene has been covered and the solution space is restricted by

99

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

a budget constraint. We use the Grasslands (small) scene and the
Grasslands (large) scene and measure the achieved viewpoint score
for different travel budgets. We ran the method from [80] for 10min
while our method took less than 10min in all cases.
The results in Fig. 4.12 show that our method consistently achieves

a higher viewpoint score compared to [80]. In particular for larger
scenes we can observe an increased difference in scores, suggesting
that our method scales better to larger scenes. This is supported
by later experiments on different scenes where Gurobi was unable to
find a solution within a runtime of 60 minutes unless we reduced the
number of considered viewpoints.

4.5.4 Comparison with regular baseline patterns

We compare reconstruction results against strong baselines, including
regular patterns such as circles, meanders and hemispheres of differ-
ent size and our reimplementation of [80] using our objective func-
tion. Note that the hemisphere pattern is computed based on our
knowledge of free-space and our viewpoint graph and as such is more
advanced than patterns used in current commercial tools. For the
simpler one-shot baseline patterns (i.e. circle and meander) we choose
the number of images to record for the 3D reconstruction in a best
practice manner. In the Appendix 4.9.3 we show that including addi-
tional images does not necessarily improve and indeed often degrades
the reconstruction performance.
We use three different scenes, Grasslands (large), Street and Court-

yard. For the Grasslands (large) scene we allow a travel budget of
1500m and use a circle pattern with 20 viewpoints for the initial re-
construction. For the Street and Courtyard scenes we allow a travel
budget of 2700m and use 30 images arranged in a meander pattern so
that our volumetric mapping can carve away more space between the
buildings. Unfortunately, these scenes have repetitive textures which
lead to many erroneous artifacts when we run the MVS pipeline end-
to-end which make a comparison meaningless. To mitigate this issue
we use rendered depth images along the computed viewpoint path

100

and fuse them into a dense point cloud by restricting the maximum
distance, incidence angle and requiring at least 3 nearby depth mea-
surements to reconstruct a point. We compute the precision, recall
and F-Score on the resulting dense point cloud as described above.
In Fig. 4.13 we show qualitative comparison of the reconstructions.

The measured quantities are shown in Table 4.2, Table 4.3 and Table
4.4. Our method yields higher F-scores than all other methods. The
advantage of our method compared to a relatively simple hemisphere
pattern becomes apparent in the more realistic Street and Courtyard
scenes where a hemisphere pattern can not provide viewpoints that
cover the inner facades of the buildings as they are shielded by the
opposite buildings. Our method in contrast puts viewpoints within
the free space between the buildings and also surrounding them to
cover all surfaces. This is reflected in the higher recall and F-score
compared to the hemisphere patterns.

Method Precision Recall F-Score
Small circle (35m radius) 77.29 13.26 22.64
Large circle (70m radius) 72.55 3.92 7.44

Small meander (70m× 70m) 44.68 20.00 27.64
Large meander (140m× 140m) 43.60 20.57 27.95
Small hemisphere (60m radius) 85.64 51.40 64.24
Large hemisphere (75m radius) 81.49 50.41 62.29

NextBestView / Greedy 90.63 44.56 59.74
Adaptation of Roberts et al. [80] 87.87 50.03 63.76

Ours 90.57 57.70 70.49

Table 4.2: Quantitative comparison of the final reconstruction on the
synthetic scene Grass lands (large) with a large region of
interest and a travel budget of 1500m. Here we included
the images from the initial scan when performing recon-
struction. The best F-Score value is highlighted in bold.

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Method Precision Recall F-Score
Small circle (50m radius) 86.98 15.88 26.86
Large circle (75m radius) 83.21 6.50 12.06

Small meander (85m× 100m) 61.48 11.34 19.15
Large meander (100m× 115m) 66.09 10.60 18.26
Small hemisphere (60m radius) 91.34 63.95 75.23
Large hemisphere (75m radius) 90.06 42.35 57.61

NextBestView / Greedy 94.23 68.46 79.30
Adaptation of Roberts et al. [80] 93.60 70.42 80.37

Ours 93.92 71.69 81.31

Table 4.3: Quantitative comparison of the final reconstruction on the
synthetic scene Courtyard with a travel budget of 2700
m. Here we included the images from the initial scan
when performing reconstruction. The best F-Score value
is highlighted in bold.
Note that we had to limit the number of viewpoints used
in our implementation of Roberts et al. [80] to 3000.
Otherwise Gurobi was not able to find any solution within
a runtime of 60 minutes.

4.5.5 Real scenes

In this section we discuss results acquired from real scenes and give
a qualitative comparison with baselines from regular patterns as used
in commercial tools. All reconstructed models shown here were com-
puted with COLMAP [14, 18]. which showed subjectively better re-
sults than MVE [13].

Church

Fig. 4.14 shows results for the church scene, acquired with a total of
160 images. The initial flight pattern uses 20 viewpoints arranged in
an ellipse. Based on the initial reconstruction a viewpoint path with

102

4.5 Results

Method Precision Recall F-Score
Small circle (50m radius) 84.37 16.91 28.17
Large circle (75m radius) 77.96 6.06 11.24

Small meander (85m× 100m) 56.94 12.01 19.83
Large meander (100m× 115m) 60.38 11.15 18.82
Small hemisphere (60m radius) 90.55 74.51 81.75
Large hemisphere (75m radius) 86.48 35.59 50.43

NextBestView / Greedy 90.99 78.18 84.10
Adaptation of Roberts et al. [80] 88.19 77.17 82.31

Ours 94.12 82.28 87.80

Table 4.4: Quantitative comparison of the final reconstruction on
the synthetic scene Street with a travel budget of 2700
m. Here we included the images from the initial scan
when performing reconstruction. The best F-Score value
is highlighted in bold.
Note that we had to limit the number of viewpoints used
in our implementation of Roberts et al. [80] to 4000. Oth-
erwise Gurobi was not able to find any solution within a
runtime of 60 minutes.

140 viewpoints and a maximum flight time of 10 minutes was planned
(see Fig. 4.1) and flown.
We also compare our final result with two baselines, a small ellipse

(Baseline 1) and a large ellipse (Baseline 2) in In Fig. 4.14. Both
patterns contain the same total of 160 images as ours. It is evident
that the baselines are not able to recover the same amount of detail as
ours. Furthermore, geometric concavities such as the portal are much
better resolved by our method. We show a further view of the church
in Fig. 4.15 where fine geometric details such as pane separators of the
windows are visible. Note that we chose a constant number of view-
points to provide a fair comparison. While the baseline methods could
also record many more images this does often degrade performance as

103

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

we demonstrate in the Appendix 4.9.3.

Further results

We show results from two further real-world experiments in Fig. 4.15,
an office building with a very regular geometry and a historic building
in a cluttered urban area showing the versatility of our method. For
better comparison of details some areas are highlighted and enlarged.
For the sake of brevity, we only show the best baseline for comparison.
Note the additional geometric details in our result compared to the

baseline, in particular around windows, the stairs and sharp corners
of the historic building. Even for the more regular and locally smooth
geometry of the office building we see improved detail for the objects
on the roof of the building and also surrounding the windows and
along the roof line.
In both cases the total number of viewpoints was 80 and the max-

imum flight time was 10 minutes. We show the viewpoint paths in
Fig. 4.16.

104

4.5 Results

Grasslands (small)

Roberts et al. [80] Ours

Figure 4.11: Qualitative comparison of our adaptation of [80] and
our method on an end-to-end dense reconstruction of
the Grasslands (smal l) scene. Here we included the
images from the initial scan when performing recon-
struction. The first row shows the geometry without
color whereas the second row shows the texture mapped
reconstruction. The method of [80] generates a view-
point path that fails to capture some geometry infor-
mation. Note that the missing geometry information
also leads to distorted or erroneous textures. Note that
Roberts et al. [80] refers to our reimplementation using
our objective function.

105

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

1000 2000 3000
Travel budget

8000

10000

12000

S
co

re

Roberts et al.
Ours

1000 2000 3000
Travel budget

20000

30000

40000

50000

60000

S
co

re
Roberts et al.
Ours

Grasslands (small) Grasslands (large)
Figure 4.12: Comparison of submodular optimization methods on

the synthetic scenes Grasslands (small) and Grasslands
(large) using our objective function. Note that we
would except both methods to saturate to the same
value for an ever increasing budget. Thus we are in par-
ticular interested in the performance at intermediate
budgets. As can be seen our method performs better
for both scenes and all budgets but the improvement is
much more pronounced in the larger scenes with more
viewpoint candidates.

.

106

4.5 Results

Grasslands (large)

Street

Courtyard View #1

Courtyard View #2

Hemisphere (60m) Roberts et al. [80] Ours

Figure 4.13: Qualitative comparison of reconstructed meshes. For
different scenes we show results from a hemisphere pat-
tern, our adaptation of [80] and our method. Here we
included the images from the initial scan when per-
forming reconstruction. Both the hemisphere pattern
and [80] have missing points or lower point densities
in some regions leading to bulging in the computed
Poisson mesh. In contrast the reconstruction for our
method shows less bulging. Compared to the hemi-
sphere pattern our method shows more detailed texture
and geometry in the lower facades of the building.

107

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Baseline 1 Baseline 2 Ours Baseline 1 Baseline 2 Ours

Figure 4.14: Our result for the church scene. The top row shows
color renderings and the bottom row shows normal ren-
derings. In particular in the normal renderings a lot of
detailed structures are visible that are smoothed out or
corrupted in baseline reconstructions.

108

4.5 Results

Figure 4.15: Results of our method. Top row: Historic building
scene. Middle row: Office building. Bottom row:
Church scene. Note that in all cases, the baseline and
our approach use the same number of view points; 80,
80, and 160 views, respectively.

109

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Historic building Office building

Figure 4.16: Our planned viewpoint trajectories for the Historic
building and the Office building. The viewpoints se-
lected by our algorithm are rendered in blue and the
additional sparse matching viewpoints necessary to en-
sure a successful reconstruction are shown in cyan. The
edges are color-coded to signal MAV progress along the
path from black to red.

110

4.6 Discussion

4.6 Discussion

We have proposed a method for the automated planning of view-
points and safe free-space trajectories for acquisition of aerial images
for dense monocular reconstruction. At the heart of our method lies a
mathematical optimization formulation that explicitly reasons about
observed and free, occupied and unobserved space. A volumetric oc-
cupancy grid is used to compute information gained from observing
parts of the scene which in turn is used to compute an optimized set of
viewpoints. Furthermore, the framework incorporates domain knowl-
edge about SfM & MVS pipelines into the formulation such as pre-
ferring fronto-parallel views and ensuring viewpoints can be matched
well. An approximate camera-model that allows us to decouple view-
points from each other allows for a sub-modular and hence efficient
implementation.
We have demonstrated the versatility of our method using a number

of varied scenes ranging from a renaissance church to a modern office
building. Our method produces high-quality reconstructions and can
recover high-fidelity geometric and texture detail, and is capable of
resolving even difficult parts of buildings such as concave portals, roofs
and other overhangs. Furthermore, using synthetic scenes we have
shown quantitatively that our method outperforms baselines such as
a hemisphere pattern and the prior state-of-the-art.
As mentioned before our resulting reconstructions are not perfect.

This is due to several issues that are at play: First, a SfM/MVS re-
construction is a complicated process that is very hard to model and
thus our planned sequence of viewpoints does not necessarily lead to
the expected reconstruction outcome based on our modeling assump-
tions. Second, the sequence of viewpoints is limited by the travel
budget which was set to 900 seconds in this case. Third, the dynamic
range in the images is limited and surfaces under the porch are very
dark and might even saturate for different viewpoints. Fourth, The
set of possible viewpoints is finite due to sampling and we also require
some distances from obstacles to prevent collisions (in this case 1m
distance from every mesh triangle in the scene, i.e. also 1m above the

111

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

ground). Finally, the dense point cloud from the MVS reconstruction
might show inhomogeneous and low densities that lead to smooth arcs
instead of sharp edges in the Poisson reconstruction of the mesh.
A major limitation of our work is the need to split the scanning

procedure into two phases, i.e. we first coarsly scan the scene from
a safe altitude, then perform necessary computations and planning
and finally follow the planned trajectory to capture images for the
final high quality reconstruction. The time required for computation
and planning (in our case this is around 30 − 60min dependent on
the number of initial images and the desired quality level) often re-
quires a second visit to the site which can be inconvenient or even
prohibitive (if the scene or environmental conditions change quickly).
While simple regular baseline patterns do not require a computation
step the quality of the resulting reconstructions strongly depends on
the structure of the scanned scene and for most buildings the need
to fly at high altitudes (to avoid obstacles) results in steep viewing
angles. We show a comparison of the required times in Sec. 4.9.4.
Hence single-shot approaches with online planning or next-best-view
selection would be desirable but may rely on robust and fast Structure
from Motion and Multi View Stereo approaches both of which remain
fruitful areas of future work.

112

4.7 Implementation details

4.7 Implementation details

Occupancy Map

As is typical in occupancy mapping [127, 9] we integrate depth maps
into the occupancy map by updating the occupancy of each tra-
versed voxel according to a beam-based inverse sensor model. We
use an occupation probability for reflected beams of 0.7 and an occu-
pation probability for transmitted beams of 0.4. Occupancy values are
clamped to the range [0.12, 0.97]. A voxel is considered to be free if
it’s occupation probability is below ocfree = 0.25. We refer the reader
to [9] for more details.

Recursive greedy method

In Alg. 2 the first step of the recursive procedure is to compute the
middle viewpoint Vm for the next recursion level. This viewpoint
must be reachable with the current budget, i.e. the sum of the travel
distance from Vs to Vm and from Vm to Ve must not exceed the budget.
Additionally, from these viewpoints we want to select the one with the
maximum information gain given the current viewpoints on the path
V .
To speed up this computation we keep a separate list that stores for

each viewpoint a tuple of the viewpoint index and the corresponding
information gain given the current viewpoint set. Initially the list
contains the information gain given an empty viewpoint set and is
sorted with descending information gains. Each recursion step receives
a copy of this list so that subsequent updates only effect the following
recursion steps. When searching for the next middle viewpoint we
iterate through the list starting from the beginning. If a viewpoint is
not reachable from the current Vs and Ve we skip it. Otherwise we
update the information gain value and perform a single bubble sort
iteration (i.e. push the entry back in the list) until the list is sorted
again. We continue this until we reach a viewpoint that does not
need to be reordered. This is the reachable viewpoint with maximum

113

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

information gain.
This procedure is well established for greedy submodular optimiza-

tion [1]. As the information gain is submodular it can only decrease
(or stay equal) with additional viewpoints. Thus, after recomputing
the information gain of a viewpoint it can only move backwards in
the list. Importantly, if we recompute the information gain and the
viewpoint keeps a higher information gain than the next viewpoint
it must be the viewpoint with the maximum information gain as all
information gains of subsequent viewpoints can only decrease (or stay
equal). This lazy evaluation strategy typically results in only a cou-
ple of information gain computations that are necessary. We observed
speed ups in the order of 10− 20 compared to a non-lazy evaluation.

Dense Reconstruction Pipeline

We use standard structure from motion and multi-view stereo pipelines
(MVE [13] for synthetic experiments and Colmap [14, 18] for outdoor
experiments) to generate our models. We capture images by flying
a DJI Matrice 100 drone with an onboard-computer. After land-
ing, we perform structure from motion and multi-view stereo com-
putations and filter the resulting depth-maps spatially by fusing the
point-clouds, yielding a geo-referenced 3D model via incorporation of
the image GPS coordinates. The depth maps are ray-casted into an
occupancy map as described in Sec. 4.3. In cases where our model
was initialized from a previous iterations, we fuse data into a single
occupancy map. Finally, we generate a mesh from the dense point
cloud using Screened Poisson Reconstruction [10].

Trajectory flight

Our planned trajectories are piecewise linear segments and the trajec-
tories are flown via pure pursuit path tracking [128] with a desired ve-
locity of 3m/s and a short lookahead distance of 2m leading to smooth
motion. Note that we slow down at each viewpoint to take high res-
olution images without motion blur (i.e. when the next viewpoint is

114

4.8 Algorithms for viewpoint graph generation

within a 3m distance we reduce the desired velocity to 0.5m/s). We
consider this in our viewpoint path optimization by adding a heuristic
budget cost of 3s for each viewpoint.

4.8 Algorithms for viewpoint graph
generation

The formal description for our viewpoint generation and motion com-
putation can be found in Alg. 3 and Alg. 4, respectively. The pro-
cedure addViewpointAtPosition samples an orientation and adds the
resulting viewpoint to the viewpoint graph and the exploration front.
An orientation is sampled by sampling a yaw and a pitch angle (roll
is fixed to zero). Both angles are sampled in the same manner by
first computing the angle pointing towards the center of the region
of interest and then adding an offset. The offset is sampled from a
zero-mean gaussian with a standard deviation equal to the angular
range resulting from the axis-aligned bounding box of the region of
interest.

115

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Procedure generateViewpoints is
Input: List of initial viewpoints V0
Input: Minmum number of viewpoints min_viewpoints
Output: List of viewpoints V
exploration_front ← V0;
while |exploration_front| > 0 or |V| < min_viewpoints do

if |exploration_front| > 0 then
ref_vp ← random sample from V;
exploration_front ← V \ ref_vp;
for direction ← 6 axial directions do

step_size ← computeStepSize(ref_vp);
p ← ref_vp.p+ step_size ∗ direction;
addViewpointAtPosition(p);

end
else

p ← random sample from allowed_space;
addViewpointAtPosition(p);

end
end

end
Algorithm 3: Shown is the algorithm for generation the viewpoint
candidate graph. The term axial directions refers to the −x, +x,
−y, +y, −z, +z directions.

116

4.8 Algorithms for viewpoint graph generation

Procedure findMotions is
Input: List of viewpoints V
Input: Number of neighbours to consider K
Output: Dictionary M : {v1, v2} → m mapping two

viewpoints to a motion m
for v1 ∈ V do

N ← find K nearest neighbours of v1;
for v2 ∈ N do

m← findMotion(v1, v2);
if m is a motion then

M ←M ∪ {{v1, v2} : m};
end

end
end

end
Algorithm 4: Shown is the algorithm for finding free-space motions
between viewpoints in the viewpoint candidate graph.

117

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

4.9 Additional results

4.9.1 Submodular optimization results

To estimate the effect of runtime length of Gurobi for the baseline
method [80] we ran Gurobi for selected travel budgets (900m, 1800m)
on the Grassland scene with small region of interest for 60 minutes.
The resulting improvement in score was less than 1% in both cases.

4.9.2 Performance comparison when not including
images from initial coarse scan

Here we report additional results when not including the images from
the initial coarse scan for performing the 3D reconstruction. On the
Grasslands (small) scene the F-score achieved by [80] is F = 71.74
(P = 91.12, R = 59.15) whereas our method improves upon this with
an F-score of F = 76.95 (P = 89.64, R = 67.41). In Fig. 4.18
we qualitatively compare the reconstruction results, showing that our
method can recover more surface details.
In Tab. 4.5, Tab. 4.6 and Tab. 4.7 we show quantitative results for

our experiments when not including the images from the initial coarse
scan.
The corresponding qualitative results are shown in Fig. 4.19.

4.9.3 Effect of number of viewpoints for simple
baseline methods

In our experiments we use a fixed number of viewpoints for the static
baseline methods which do not require an initial scan (i.e. circle and
meander patterns). To show that our choice of a limited number of
viewpoints does not lead to an unfair bias we compare reconstructions
resulting from different numbers of viewpoints in Tab. 4.8. The re-
sults show that for all patterns but the large meander pattern (which
performs poorly in both cases) the performance is lower when using
the larger number of viewpoints.

118

4.9 Additional results

Method Precision Recall F-Score
Small circle (35m radius) 77.29 13.26 22.64
Large circle (70m radius) 72.55 3.92 7.44

Small meander (70m× 70m) 44.68 20.00 27.64
Large meander (140m× 140m) 43.60 20.57 27.95
Small hemisphere (60m radius) 86.43 46.84 60.76
Large hemisphere (75m radius) 79.35 48.77 60.41

NextBestView 91.53 22.08 35.58
Adaptation of Roberts et al. [80] 88.61 46.44 60.94

Ours 89.72 50.70 64.79

Table 4.5: Quantitative comparison of the final reconstruction on the
synthetic scene Grass Lands with a large region of interest
and a travel budget of 1500m. Here we did not include
the images from the initial scan when performing recon-
struction. The best F-Score value is highlighted in bold.

4.9.4 Comparison of times for different methods
In table Table 4.9 we show approximate required times for the simple
one-shot methods and the other methods requiring an initial flight.
Note that the one-shot methods take less field-experiment time than
the other methods. However, the resulting reconstructions also have
a lower quality and just flying longer does not allow us to increase the
quality as shown in the previous section.

119

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Method Precision Recall F-Score
Small circle (50m radius) 86.98 15.88 26.86
Large circle (75m radius) 83.21 6.50 12.06

Small meander (85m× 100m) 61.48 11.34 19.15
Large meander (100m× 115m) 66.09 10.60 18.26
Small hemisphere (60m radius) 91.07 66.35 76.77
Large hemisphere (75m radius) 90.19 44.03 59.17

NextBestView 94.58 63.67 76.32
Adaptation of Roberts et al. [80] 92.93 72.15 81.23

Ours 93.59 74.30 82.84

Table 4.6: Quantitative comparison of the final reconstruction on the
synthetic scene Courtyard with a travel budget of 2700 m.
Here we did not include the images from the initial scan
when performing reconstruction. The best F-Score value
is highlighted in bold.
Note that we had to reduce the number of viewpoints used
in the method from Roberts et al. [80] to 3000. Otherwise
Gurobi was not able to find any solution within a runtime
of 60 minutes.

120

4.9 Additional results

Method Precision Recall F-Score
Small circle (50m radius) 84.37 16.91 28.17
Large circle (75m radius) 77.96 6.06 11.24

Small meander (85m× 100m) 56.94 12.01 19.83
Large meander (100m× 115m) 60.38 11.15 18.82
Small hemisphere (60m radius) 90.38 76.52 82.87
Large hemisphere (75m radius) 86.65 37.25 52.10

NextBestView 94.97 75.42 84.07
Adaptation of Roberts et al. [80] 93.69 79.27 85.88

Ours 94.25 84.95 89.36

Table 4.7: Quantitative comparison of the final reconstruction on the
synthetic scene Street with a travel budget of 2700 m.
Here we did not include the images from the initial scan
when performing reconstruction. The best F-Score value
is highlighted in bold.
Note that we had to reduce the number of viewpoints used
in the method from Roberts et al. [80] to 4000. Otherwise
Gurobi was not able to find any solution within a runtime
of 60 minutes.

121

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Method Precision Recall F-Score
Small circle (25m radius, 120 views) 76.90 60.14 67.50
Small circle (25m radius, 240 views) 52.72 48.69 50.63
Large circle (50m radius, 120 views) 78.47 76.69 77.57
Large circle (50m radius, 240 views) 50.27 61.48 55.31

Small meander (50m× 50m, 144 views) 64.13 50.18 56.31
Small meander (50m× 50m, 256 views) 51.11 39.10 44.31
Large meander (75m× 75m, 144 views) 49.53 12.27 19.67
Large meander (75m× 75m, 256 views) 47.20 14.01 21.60

Table 4.8: Quantitative comparison of the final reconstruction on the
synthetic scene Grass Lands with a small region of inter-
est. Shown are results for the one-shot baseline methods
with different numbers of viewpoints. One can observe
that the performance of the MVS reconstruction often
decreases when more than 200 viewpoints are included.

Method Flight time Computation time Total time
One-shot 10min 0min 10min

With initial scan 20min 30− 60min 50− 80min

Table 4.9: Flight and experiment times for the different methods
compared in this thesis. Shown are estimated flight, com-
putation and total field experiment times for the one-shot
methods and the other methods requiring an initial scan.
Note that the computation time depends on the specific
scene. As we can see the one-shot method takes much less
time.

122

4.9 Additional results

Figure 4.17: Viewpoints used for comparison in Table 4.8. Shown
from top to bottom: Circle with 25m radius, circle with
50m radius, Meander with 50m side length, meander
with 75m side length. From left to right: Medium num-
ber of viewpoints, high number of viewpoints.

123

Chapter 4 Trajectory Planning for Multi-View Stereo
Reconstruction

Grasslands (small)

Roberts et al. [80] Ours

Figure 4.18: Qualitative comparison of our adaptation of [80] and
our method on an end-to-end dense reconstruction of
the Grasslands (smal.) scene. Here we did not include
the images from the initial scan when performing re-
construction. The first row shows the geometry with-
out color whereas the second row shows the texture
mapped reconstruction. The method of [80] generates
a viewpoint path that fails to capture some geometry
information. Note that the missing geometry informa-
tion also leads to distorted or erroneous textures. Note
that Roberts et al. [80] refers to our reimplementation
using our objective function.

124

4.9 Additional results

Grasslands

Street

Courtyard View #1

Courtyard View #2

Hemisphere (60m) Roberts et al. [80] Ours

Figure 4.19: Qualitative comparison of reconstructed meshes. For
different scenes we show results from a hemisphere pat-
tern, our adaptation of [80] and our method. Here we
did not include the images from the initial scan when
performing reconstruction. Both the hemisphere pat-
tern and [80] have missing points or lower point den-
sities in some regions leading to bulging in the com-
puted Poisson mesh. In contrast the reconstruction for
our method shows less bulging. Compared to the hemi-
sphere pattern our method shows more detailed texture
and geometry in the lower facades of the building.

125

Chapter 5

Learning a Viewpoint Utility
Score

The system in chapter 4 can compute flight plans that result in com-
pelling 3D reconstructions it has the limitation of requiring an initial
flight to generate a coarse prior 3D model. This can be undesirable
in certain situations such as limited or difficult access to the area of
interest or strong time constraints. Here we look at the problem of
reconstructing and exploring an unknown scene without requiring an
initial scan. This chapter is based upon our work in [129] .
When free space in the scene is approximately known, an offline

planner can generate optimal plans to efficiently explore the scene.
However, for exploring unknown scenes, the planner must predict and
maximize usefulness of where to go on the fly. Traditionally, this has
been achieved using handcrafted utility functions. We propose to learn
a better utility function that predicts the usefulness of future view-
points. Our learned utility function is based on a 3D convolutional
neural network. This network takes as input a novel volumetric scene
representation that implicitly captures previously visited viewpoints
and generalizes to new scenes. We evaluate our method on several

127

Chapter 5 Learning a Viewpoint Utility Score

large 3D models of urban scenes using simulated depth cameras. We
show that our method outperforms existing utility measures in terms
of reconstruction performance and is robust to sensor noise.

5.1 Introduction

Quadrotors, drones, and other robotic cameras are becoming increas-
ingly powerful, inexpensive and are being used for a range of tasks in
computer vision and robotics applications such as autonomous naviga-
tion, mapping, 3D reconstruction, reconnaissance, and grasping and
manipulation. For these applications, modeling the surrounding space
and determining which areas are occupied is of key importance.
Recently, several approaches for robotic scanning of indoor [130] and

outdoor [131, 68] scenes have been proposed. Such approaches need
to reason about whether voxels are free, occupied, or unknown space
to ensure safety of the robot and to achieve good coverage w.r.t. their
objective function (e.g. coverage of the 3D surfaces [131]). Model-
based approaches require approximate information about free space
and occupied space, which is typically acquired or input manually.
This prevents such approaches from being fully autonomous or de-
ployed in entirely unknown scenes [132]. Model-free approaches can
be applied in unknown environments [133, 110, 134, 135]. Irrespective
of the type of approach used, all algorithms require a utility func-
tion that predicts how useful a new measurement (i.e. depth image)
would be. Based on this utility function a planner reasons about the
sequence of viewpoints to include in the motion plan. This utility
function is often a hand-crafted heuristic and hence it is difficult to
incorporate prior information about the expected distributions of 3D
geometry in certain scenes.
We propose to devise a better utility function using a data-driven

approach. The desired target values for our utility function stem
from an oracle with access to ground truth data. Our learned utility
function implicitly captures knowledge about building and geometry
distributions from approporiate training data and is capable of pre-

128

5.2 Related work

dicting the utility of new viewpoints given only the current occupancy
map. To this end we train a 3D ConvNet on a novel multi-scale voxel
representation of an underlying occupancy map, which encodes the
current model of the environment. We then demonstrate that the
learned utility function can be utilized to efficiently explore unknown
environments.
The input to our network relies only on occupancy and hence ab-

stracts away the capture method (i.e. stereo, IR depth camera, etc.).
While our training data consists of perfect simulated depth images
we demonstrate in our experiments that our learned model can be
used with imperfect sensor data at test time, such as simulated noisy
depth cameras or stereo data. The approach is not limited to envi-
ronments with a fixed extent and generalizes to new scenes that are
substantially different from ones in the training data. Our approach
outperforms existing methods, that use heuristic-based utility func-
tions [132, 134, 135] and is more than 10× faster to compute than the
methods from [134, 135].

5.2 Related work

Exploration and mapping are well studied problems. We first discuss
theoretical results and then describe approaches in the active vision
domain and finally work in 3D vision.

Submodular sensor placement: In the case of a priori known en-
vironments and a given set of measurement locations, much work is
dedicated to submodular objective functions for coverage [136, 25].
Submodularity is a mathematical property enabling approximation
guarantees on the solution using greedy methods. While work exists
on dynamic environments where the utility of future measurements
can change upon performing a measurement [137, 138], these meth-
ods are usually difficult to scale to large state and observation spaces,
which we considered in this chapter as they are common in computer
vision applications.

129

Chapter 5 Learning a Viewpoint Utility Score

Next-best-view and exploration: In the next-best-view setting, the
set of measurement locations is often fixed a priori as in the sub-
modular coverage work described above. The work in this area is
usually concerned with defining good heuristic utility functions and
approximating the coverage task to make it computationally feasi-
ble [78, 110, 111, 112, 113]. A number of heuristics is explicitly com-
pared in [134, 135], and a subset of these is computed and used as a
feature vector by Choudhury et al. [139] to imitate an approximately
optimal strategy with ground-truth access.
Based on an a priori fixed set of camera poses and a binary input

mask of already visited poses Devrim et al. [140] use reinforcement
learning to regress a scalar parameter used in the selection algorithm
for the next view. In contrast to our work the approach is concerned
with a priori known, fixed environments and camera poses making it
suitable for inspection planning.
In active vision, a large body of work is concerned with exploration

through only partially known scenes. Frontier-based algorithms [106]
are used for autonomous mapping and exploration of the environment
using stereo [107], RGB-D, or monocular cameras [108]. Heng et al.
[133] propose a method which alternates between exploration and op-
timizing coverage for 3D reconstruction.
All of the approaches discussed above either define or are based

on heuristics to decide on the utility of the next measurement or
require prior knowledge of environment and possible camera poses.
Instead of hand-crafting a utility function our work is concerned with
learning such a function that can outperform existing hand-crafted
functions and is computationally cheaper to evaluate. Additionally,
our approach does not need a priori knowledge of the map.

3D convolutional neural networks: A large body of work in com-
puter vision is concerned with processing of 3D input and output
data using convolutional neural networks. In some cases this data
stems from RGB-D images such as in Song et al. [141] where the
goal is to detect objects. In other contexts, volumetric input in the
form of binary occupancy labels or signed distance functions are used

130

5.3 Problem Setting and Overview

for diverse tasks such as shape classification and semantic voxel label-
ing [142, 143], surface completion [144], hand pose estimation [145], or
feature learning [146]. These works are concerned with passive tasks
on uniform input grids of fixed dimensions, containing the object or
surface of interest. This prevents reasoning across large distances or
requires one to reduce the level of detail of the input.
Different representations of occupancy grids have been proposed

to mitigate the trade-off of large uniform input dimensions and level
of detail [143]. However, in the context of our work the occupancy
map is often not very sparse as it is generated by casting rays into
a tri-state map and updating continuous values which results in very
few homogeneous regions which would benefit from the formulation
by Riegler et al. [143]. Also related to our work are approaches to
multi-view reconstruction [147] where the output is predicted based
on a sequence of input images. In contrast to our work Liu et al.
[148] reconstruct small objects in a fixed size volume whereas we are
concerned with large city scenes containing several buildings.

5.3 Problem Setting and Overview

Our work is concerned with the automatic exploration of an a priori
unknown 3D world with the ultimate goal of reconstructing the sur-
faces of the scene in an efficient manner. To this end the exploring
agent executes a loop of alternating sense and act operations as de-
picted in Fig. 5.1. After a measurement is taken (i.e. in the form of a
depth image) it is integrated into an occupancy map. A planner (de-
scribed in Section 5.4.4) has a set of reachable candidate viewpoints
and queries a utility function for each of them. The utility function
in turn provides a score for each viewpoint indicating how useful the
viewpoint is for the exploration task. The planner then decides to
move to the viewpoint with the highest score. Here we focus on the
utility function and its corresponding input representation.
In Fig. 5.2 we illustrate the desired characteristic of the utility func-

tion. Note that the utility function has to score a viewpoint only based

131

Chapter 5 Learning a Viewpoint Utility Score

Figure 5.1: This diagram shows the exploration loop. After perform-
ing a new measurement (i.e. a depth image) the map is
updated. This map is used to generate a volumetric rep-
resentation that is fed into the utility function (in our
case a learned 3D CNN). The planner can query the util-
ity function on a set of candidate viewpoints. Based on
the computed utility scores the planner then select the
viewpoint to which the agent will move and perform a
new measurement. In this chapter we focus on the parts
depicted in green: The volumetric representation and
the corresponding learned utility function.

on the current map information. In Fig. 5.2 the camera is surrounded
by some space, already known to be free (white) and part of the sur-
face has been observed (blue). The next viewpoint is restricted to the
known free space, whereas moving into unknown space (light green)
could lead to collisions. The main difficulty stems from the fact that
the utility function needs to predict how much unknown surface can
be discovered from a new viewpoint. Much work has been dedicated
to developing and studying various heuristics to compute a score that
quantifies the expected value of possible viewpoints [134, 135].
We propose a data-driven approach where we use supervised learn-

132

5.3 Problem Setting and Overview

Figure 5.2: The exploration task (here depicted in 2D for clarity) is
to discover occupied surface voxels (shown here in blue).
Voxels are initially unknown (shown here in light green)
and get discovered by taking a measurement, e.g., shoot-
ing rays from the camera into the scene. Voxels that
are not surface voxels will be discovered as free voxels
(shown here in white). Each possible viewpoint has a
corresponding utility value depending on how much it
contributes to our knowledge of the surface (shown here
in dark green). To decide which viewpoint we should go
to next, an ideal utility score function would tell us the
expected utility of viewpoints before performing them.
This function can then be used in a planing algorithm to
visit a sequence of viewpoints with the highest expected
utility.

ing to find a utility function that imitates an oracle. The oracle has
access to the ground truth map and can compute the true utility
score. For this task we introduce a map representation consisting of
multi-scale sub-volumes extracted around the camera’s position. For
all possible viewpoints this data is fed into a 3D ConvNet at training
time together with the oracle’s score as a target value. Intuitively, the
model learns to predict the likelihood of seeing additional surface vox-
els for any given pose, given the current occupancy map. However,
we do not explicitly model this likelihood but instead provide only
the oracle’s score to the learner. We experimentally show that our
formulation generalizes well to new scenes with different object shape

133

Chapter 5 Learning a Viewpoint Utility Score

and distribution and can handle input resulting from noisy sensor
measurements.
We follow related work [134, 135, 140] and evaluate our method on

simulated but high-fidelity environments. This allows for evaluation of
the utility function and reduces the influence of environmental factors
and specific robotic platforms. Our environments contain realistic
models of urban areas in terms of size and distribution of buildings.
Furthermore it is important to note that our technique only takes
occupancy information as input and does not directly interface with
raw sensor data. In addition we test our approach on real data from
outdoor and indoor scenes to demonstrate that our method is not
limited to synthetic environments.

5.4 Predicting View Utility

We first formally define our task and the desired utility function and
then introduce our method for learning and evaluating this function.

5.4.1 World model

We model the world as a uniform voxel grid V with resolution r. A
map M is a tuple M = (Mo,Mu) of functions Mo : V → [0, 1],
Mu : V → [0, 1] that map each voxel v ∈ V to an occupancy value
Mo(v) describing the fraction of the voxel’s volume that is occupied
and an associated uncertainty valueMu(v), i.e. 1 for total uncertainty
and 0 for no uncertainty. Maps change over time so we denote the
map at time t as Mt.
After moving to a viewpoint p the camera acquires a new mea-

surement in the form of a depth image and the map M is updated.
We denote the updated map as M |p. The uncertainty is updated
according to

Mu|p(v) = exp(−η)Mu(v) , (5.1)

134

5.4 Predicting View Utility

where η ∈ R>0 describes the amount of information added by a sin-
gle measurement. This is a simple but effective measure providing a
diminishing information gain of repeated measurements. Note that
Mu|p(v) ≤ Mu(v) so uncertainty decreases with additional measure-
ments. As is typical in occupancy mapping [127, 9] we update the
voxel occupancies Mo(v) according to a beam-based inverse sensor
model. Please see Sec. 5.4.4 for details on initialization of the map.

5.4.2 Oracle utility function

To select viewpoints, we need a utility function that assigns scores to
all possible viewpoints at any time. We first introduce an oracle utility
function with access to the ground truth (set of true surface voxels)
during evaluation. It returns the desired true utility measure. We will
then learn to imitate the oracle without access to ground truth.
We characterize a good viewpoint as one that discovers a large

amount of surface voxels. Let ObsSurf(M) be the total number of
observed surface voxels in map M weighted by their associated cer-
tainty value:

ObsSurf(M) =
∑
v∈Surf

(1−Mu(v)) , (5.2)

where Surf ⊆ V is the set of ground truth surface voxels, i.e. all
voxels that intersect the surface. Note that ObsSurf(M) increases
monotonically with additional measurements because the certainty of
voxels can only increase according to Eq. Eq. (5.1).
The decrease in uncertainty of surface voxels with a new measure-

ment defines the oracle’s utility score. We express this score as a
function of the current map M and the camera pose p:

s(M,p) = ObsSurf(M |p)−ObsSurf(M)

=
∑
v∈Surf

(−Mu|p(v) +Mu(v)) =
∑
v∈Surf

(1− exp(−η))Mu(v) ≥ 0 .

(5.3)

135

Chapter 5 Learning a Viewpoint Utility Score

5.4.3 Learning the utility function

Computing the utility score introduced in Eq. 5.3 for any viewpoint
requires access to the ground truth map. Our goal is to predict s(M,p)
without access to this data so we can formulate a regression problem
that computes score values given occupancy maps as input.

Multi-scale map representation

We propose to make predictions directly based on the occupancy map,
rather than based on a temporal sequence of raw inputs. This occu-
pancy map encodes our knowledge of already observed surfaces and
free space and ultimately can be used to build up a map for both
navigation and 3D reconstruction.
For use in a 3D ConvNet the map has to be represented with

fixed dimensionalities. Here a trade-off between memory consump-
tion, computational cost, reach and resolution arises. For example,
extracting a small high resolution grid around the camera would con-
strain information to a small spatial extent whereas a grid with large
spatial extent would either lead to rapid increase in memory con-
sumption and computational cost or would lead to drastic reduction
in resolution.
To mitigate this issue we introduce a multi-scale representation by

sampling the occupancy map at multiple scales as depicted in Fig.
5.3. For each scale l ∈ {1, . . . , L} we extract values on a 3D grid of
size Dx ×Dy ×Dz and resolution 2lr (orange points in Fig. 5.3). On
scale l the map values are given by averaging the 2l closest voxels (gray
rectangles in Fig. 5.3). This can be done efficiently by representing the
map as an octree. The 3D grids are translated and rotated according
to the measurement pose p and we use tri-linear interpolation of the
map values to compute the values on the grid. This representation
allows us to capture both coarse parts of the map that are far away
from the camera but still keep finer detail in its direct surroundings.
Furthermore, it provides an efficient data representation of fixed size,
suitable for training of a 3D ConvNet. We denote the multi-scale

136

5.4 Predicting View Utility

Figure 5.3: Local multi-scale representation of an occupancy map.
For clarity of presentation we shows the 2D case for a
grid of size 2 × 2. The occupancy map is sampled with
3D grids at multiple scales centered around the camera
position. Sample points on different scales are shown in
orange and their extent in gray.

representation by x(M,p) ∈ RDx×Dy×Dz×2L. Note that the factor
2 stems from extracting the occupancy and the uncertainty value on
each scale.

In Fig. 5.5 we show visualizations of the multi-scale representation
for a grid size of 16. Shown are horizontal slices of the 3D grid repre-
sentation at a fixed height for random samples from the Neighborhood
dataset. The multiscale representation allows us to get an idea about
the surrounding of the camera pose: From Fig. 5.5 we can infer that
there is a building at the lower right corner and on the larger scales we
can even see that there is also a building in the upper left corner. We
show visualization of other grid sizes in Fig. 5.4, Fig. 5.6 and Fig. 5.7.
We selected a grid size of 16 as the best trade-off between captured
detail and computation and storage requirements.

137

Chapter 5 Learning a Viewpoint Utility Score

Figure 5.4: Example of multi-scale representation for grid size of 8.
Shown are horizontal slices of the 3D grid representation
at a fixed height. This example is a random sample
from the Neighborhood dataset (grid size 8 with L = 5
scales). Top row: Occupancies. Bottom row: Certainties
(i.e. 1−vu). Left column: Smallest scale. Right column:
Largest scale. Black represents 0, white represents 1.

ConvNet Architecture

We now describe our proposed model architecture used to learn the de-
sired utility function f : RDx×Dy×Dz×2L → R. The general architec-
ture is shown in Fig. 5.8 and consists of a number Nc of convolutional
blocks followed by two fully connected layers with ReLu activations.
Each convolutional block contains a series of Nu units where a unit
is made up of a 3D convolution, followed by Batch-Norm, followed by
ReLu activation. Each 3D convolution increases the number of feature
maps by Nf . After each block the spatial dimensions are downscaled
by a factor of 2 using 3D max-pooling. The first fully connected layer
has Nh1 hidden units and the second one has Nh2 hidden units. Note
that we do not separate the input data at different scales so that the
network can learn to combine data on different scales. More details
on the exact architecture are provided in Sec. 5.5.1.

138

5.4 Predicting View Utility

Figure 5.5: Example of multi-scale representation for grid size of 16.
Shown are horizontal slices of the 3D grid representation
at a fixed height. This example is a random sample
from the Neighborhood dataset (grid size 16 with L = 4
scales). Top row: Occupancies. Bottom row: Certainties
(i.e. 1−vu). Left column: Smallest scale. Right column:
Largest scale. Black represents 0, white represents 1.

We use a weight-regularized L2 loss

L(X,Y ; θ) =

N∑
i=1

‖f(Xi)− Yi‖22 + λ ‖θ‖22 , (5.4)

where θ are the model parameters, λ is the regularization factor and
(Xi, Yi) for i ∈ {1, . . . , N} are the samples of input and target from
our dataset.

5.4.4 3D Scene Exploration

To evaluate the effectiveness of our utility function, we implement a
next-best-view (NBV) planning approach, to sequentially explore a 3D
scene. Here we provide details of our world model and our methods
for execution of episodes for the data generation phase and at test
time.

139

Chapter 5 Learning a Viewpoint Utility Score

Figure 5.6: Example of multi-scale representation for grid size of 32.
Shown are horizontal slices of the 3D grid representation
at a fixed height. This example is a random sample
from the Neighborhood dataset (grid size 32 with L = 3
scales). Top row: Occupancies. Bottom row: Certainties
(i.e. 1−vu). Left column: Smallest scale. Right column:
Largest scale. Black represents 0, white represents 1.

We assume exploration of the world occurs in episodes. To initialize
a new episode, the camera pose at time t0 is chosen randomly in free
space such that no collision occurs and the camera can move to each
neighboring viewpoint without collision. A collision occurs if a bound-
ing box of size (1m, 1m, 1m) centered at the camera pose intersects
with any occupied or unknown voxel. Initially, all voxels v ∈ V are
initialized to be unknown, i.e. Mu

t0(v) = 1,Mo
t0(v) = vo,prior ∀v ∈ V ,

where vo,prior is a prior assumption on the occupancy and we use
vo,prior = 0.5 throughout this work. To enable initial movement of
the camera we clear (i.e. set to free space) a bounding box of (6m)3

around the initial camera position.
At each time step t, we evaluate each potential viewpoint with our

utility function, and move to the viewpoint p∗(t) that gives the best

140

5.4 Predicting View Utility

expected reward according to:

p∗(t) = argmaxp∈P (t)u(Mt,p) , (5.5)

where P (t) is the set of potential viewpoints and u(·) is the utility
function in use.
At the start of each episode the set of potential viewpoints only

contains the initial viewpoint. At each time step the set P (t) is ex-
tended by those neighbors of the current viewpoint that do not lead to
a collision. We ignore potential viewpoints if they have already been
observed twice. Each viewpoint has 9 neighbors, 6 of them being pos-
itive and negative translations of 2.5m along each axis of the camera
frame, 2 rotations of 25°, clock-wise and counter-clockwise along the
yaw axis, and a full turnaround of 180° along the yaw axis. We keep
pitch and roll angles fixed throughout.
After moving to a new viewpoint, the camera takes a measurement

in the form of a depth image and the map is updated . Note that
we use ground truth depth when generating training data but later
demonstrate that we can use noisy depth images and even stereo depth
at test time.
Note that we assume that the utility function is submodular. While

this is true for the oracle utility it is not necessarily the case for other
utility functions (i.e. our learned model). Nevertheless, this assump-
tion allows us to perform lazy evaluations of the utility function [1]
.

5.4.5 Dataset

To learn the utility function f(x), approximating the oracle (see Eq. 5.3)
we require labeled training data. Our data should capture large ur-
ban environments with a variety of structures typical for human-made
environments. To this end we chose models from the 3D Street View
dataset [149]. These models feature realistic building distributions
and geometries from different cities. Additionally, we chose a large
scene from a photo-realistic game engine (https://www.unrealengine.

141

https://www.unrealengine.com
https://www.unrealengine.com

Chapter 5 Learning a Viewpoint Utility Score

com) containing small buildings in a suburban environment, including
trees, smaller vegetation and power lines. All environments are shown
in Fig. 5.9. Note that we only use data from Washington2 to train our
model. While Washington1 and Paris are similar in terms of building
height the building distribution and geometry is clearly different. A
particular challenge is posed by the SanFrancisco scene which includes
tall buildings never seen before in Washington2. Similarly, the build-
ings and vegetation in the Neighborhood scene are unlike anything
seen in the training data.
We generate samples by running episodes with r = 0.4m until time

te = 200 and selecting the best viewpoint p according to the oracle’s
score at each time step. For each step t we store tuples of input
x(M,p) and target value from the oracle s(M,p) for each neighboring
viewpoint.
Note that we record samples for each possible neighbor of the cur-

rent viewpoint (instead of only the best selected viewpoint). This is
necessary as our predictor will have to provide approximate scores for
arbitrary viewpoints at test time. We record a total of approximately
1, 000, 000 samples and perform a 80/20 split into training and vali-
dation set. To encourage future comparison we will release our code
for generating the data and evaluation.

142

https://www.unrealengine.com
https://www.unrealengine.com

5.4 Predicting View Utility

Figure 5.7: Example of multi-scale representation for grid size of 64.
Shown are horizontal slices of the 3D grid representation
at a fixed height. This example is a random sample
from the Neighborhood dataset (grid size 64 with L = 2
scales). Top row: Occupancies. Bottom row: Certainties
(i.e. 1−vu). Left column: Smallest scale. Right column:
Largest scale. Black represents 0, white represents 1.

143

Chapter 5 Learning a Viewpoint Utility Score

4x4x2x648x8x4x32
16x16x8x6

2048 128 32

Figure 5.8: Our architecture for an input size of 16 × 16 × 8 with
L = 3 scales resulting in 2L = 6 channels. The model
consists of blocks (made up of multiple units each per-
forming 3D convolution, batch-norm and ReLu) followed
by downscaling using 3D max-pooling. This pattern is
performed until we arrive at a data volume with spatial
dimension 4×4×2. This is reshaped into a single vector
followed by two fully connected layers with ReLu acti-
vation and a final linear layer predicting a scalar score
value.

Figure 5.9: Normal rendering of environments. From left to right:
Washington2, Washington1, Paris, SanFrancisco, Neigh-
borhood.

144

5.5 Experiments

5.5 Experiments

We describe our ConvNet architecture and then show different evalu-
ations of our method.

5.5.1 ConvNet architectures and training

We evaluated different ConvNet variants by varying Nc, Nu and Nf .
We also tried modifications such as using residual units [150, 151].
Here we report results on the best performing model with input size
16× 16× 8 (Nc = 2, Nu = 4, Nf = 8, L = 3, Nh1 = 128, Nh2 = 32),
denoted as Ours in the rest of the section. Training of the model
is done with ADAM using a mini-batch size of 128, regularization
λ = 10−4, α = 10−4 and the values suggested by Kingma et al. [152]
for the other parameters. Dropout with a rate of 0.5 is used after fully-
connected layers during training. Network parameters are initialized
according to Glorot et al. [153] (corrected for ReLu activations). We
use early stopping when over-fitting on test data is observed.

5.5.2 Evaluation

Our evaluation consists of three parts. First we evaluate our model on
datasets generated as described in Sec. 5.4.5 and report spearman’s
rho to show the rank correlation of predicted scores and ground truth
scores. Following this, we compare our models with previously pro-
posed utility functions from [132, 134, 135]. We use the open-source
implementation provided by [134, 135] and report results on their best
performing methods on our scenes, ProximityCount and AverageEn-
tropy. We also compare with a frontier-based function measuring the
number of unobserved voxels visible from a viewpoint as in [133, 154].
For this comparison we use simulated noise-free depth images for all
methods. Finally, we evaluate our models with depth images per-
turbed by noise and depth images produced by stereo matching in a
photo-realistic rendering engine.

145

Chapter 5 Learning a Viewpoint Utility Score

To demonstrate the generalization capability of our models we use
four test scenes (column 2-5 in Fig. 5.9) that show different building
distribution and geometry than the scene used to collect training data.
We also perform the experiments on the training scenes where the
exploration remains difficult due to random start poses and possible
ambiguity in the incomplete occupancy maps.
To compute score and efficiency values, we run 50 episodes with

r = 0.4m until te = 200 for each method and compute the sample
mean and standard deviation at each time step. To enable a fair
comparison, we select a random start position for each episode in
advance and use the same start positions for each method.
In order to report a single metric of performance for comparison we

compute the area under the curve of observed surface versus time (see
plots in Fig. 5.10):

eff =

te∑
t=0

ObsSurf(Mt) . (5.6)

We call this metric Efficiency as it gives a higher score to a method
that discovers surface early on.

5.5.3 Model performance on different datasets

Here we evaluate the performance of our model on data collected from
different scenes as described in Sec. 5.4.5. The model was trained on
the training set of Washington2 and we report Spearman’s rho as well
as the loss value from Eq. Eq. (5.4) in Tab. 5.1.
The Spearman’s rho shows a clear rank correlation even for the

Neighborhood scene which features building distribution and geometry
significantly different from Washington2 which was used to generate
training data. Interestingly, the model shows a high rank correla-
tion for the SanFrancisco scene which features tall buildings and thus
requires our model to generalize to different occupancy map distribu-
tions at high viewpoints.

146

5.5 Experiments

Evaluation on different datasets

Method
Scene W2

train
W2
test W1 P S N

Spearman’s rho 0.88 0.87 0.83 0.69 0.73 0.48
Loss value 0.25 0.28 0.43 0.63 0.60 0.93

Table 5.1: Spearman’s rho and loss values for our model on the dif-
ferent datasets. Despite the different building distribution
and geometry of the test scenes (i.e. all scenes but Wash-
ington2) compared to training data Spearman’s rho value
shows a high rank correlation with the oracle score. This
is even the case for the Neighborhood scene which features
building shapes and trees unlike any in the training data.
Scene names are abbreviated as W2 for Washington2, W1
for Washington1, P for Paris, S for SanFrancisco and N
for Neighborhood.

5.5.4 Comparison with baselines

In Table 5.2 we compare the performance of our models against re-
lated hand-crafted utility functions [132, 134, 135]. Our method con-
sistently outperforms the existing functions in terms of the efficiency
measure, and as shown in Table 5.3, is faster to compute than other
methods.

We also show plots of observed surface voxels vs. time for our model,
the oracle with access to ground truth and baseline methods in Fig.
5.10. Note that the scenes shown have not been used to generate
any training data. The results show that our method performs better
compared to the baseline methods at all time steps. Additionally the
behavior of our method is consistent over all scenes while the perfor-
mance of the baselines varies from scene to scene. The progression of
reconstructed 3D models is shown by the renderings of the occupancy
map at different times.

147

Chapter 5 Learning a Viewpoint Utility Score

Evaluation on different scenes

Method
Scene W2 W1 P S N

Frontier 0.40 0.29 0.57 0.09 0.27
AverageEntropy [134] 0.26 0.36 0.32 0.30 0.50
ProximityCount [134] 0.52 0.47 0.37 0.23 0.60
Ours 0.91 0.88 0.87 0.77 0.74
Oracle (GT access) 1.00 1.00 1.00 1.00 1.00

Table 5.2: Comparison of Efficiency metric. Our method achieves a
higher value than the other utility functions on all scenes
showing that our learned models can generalize to other
scenes. Note that the model is trained only on data
recorded from Washington2. Efficiency values are nor-
malized with respect to the oracle for easier comparison.
Scene names are abbreviated as W2 for Washington2, W1
for Washington1, P for Paris, S for SanFrancisco and N
for Neighborhood.

Computation time per step
Frontier ProximityCount AverageEntropy Ours

Time in s 0.61 5.89 8.35 0.57

Table 5.3: Comparison of computation time per step. Our method
is as fast as a simple raycast in the Frontier method and
more than 10× faster than ProximityCount and Aver-
ageEntropy.

148

5.5 Experiments

Figure 5.10: Results on all test scenes. Top row: Visualization of
the underlying mesh model. Row 2-4: Reconstructed
3D models at different time steps. Shown are only oc-
cupied voxels and the color coding indicates the voxel
position along the z-axis. Bottom row: Plot of observed
surface voxels vs. time for all methods, the oracle with
access to ground truth and the baseline methods. Our
method performs the best and approaches the oracle’s
performance. Best viewed in color and zoomed in.

5.5.5 Noisy input sensor

While all our training is done on simulated data using ground truth
depth images our intermediate state representation as an occupancy

149

Chapter 5 Learning a Viewpoint Utility Score

Evaluation using noisy depth images (normalized)
Noise none low medium high very high stereo
eff 1.00 0.99 1.01 0.99 1.02 0.99

Table 5.4: Comparison of our method using noisy depth images. Ef-
ficiency values are normalized to the noise-free case. For
the noise cases 40% of pixels in each depth image were
dropped and each remaining pixel was perturbed by nor-
mal noise (σ = 0.1m for low, σ = 0.2m for medium,
σ = 0.5m for high, σ = 1.0m for very high). In the
case of stereo matching we used a photo realistic render-
ing engine to generate stereo images with a baseline of
0.5m. A disparity and depth image was computed using
semi global matching [155]. Note that all values have a
standard deviation of u 0.03.

map makes our models robust to the noise characteristics of the in-
put sensor. Here we evaluate the performance of our models at test
time with depth images perturbed by noise of different magnitude.
Additionally we test our models with depth images computed from a
virtual stereo camera. To this end we utilize a photorealistic game
engine to synthesize RGB stereo pairs and compute depth maps with
semi-global matching.

Episodes were run with noisy depth images and the viewpoint se-
quence was recorded. We replayed the same viewpoint sequences and
used ground truth depth images to build up an occupancy map and
measure the efficiency. Resulting Efficiency values are listed in Table
5.4. One can see that our method is robust to different noise levels.
More importantly, even with depth images from the virtual stereo
camera, resulting in realistic perturbations of the depth images , our
method does not degrade.

150

5.5 Experiments

Evaluation on additional real data
Frontier ProximityCount [134] Ours Oracle (GT access)

Outdoor 0.46 0.58 0.90 1.00
Indoor 0.44 0.52 0.78 1.00

Table 5.5: Comparison of Efficiency metric on the additional real
data. Our method achieves a higher value than the other
utility functions on both ourdoor and indoor scenes. Note
that in both cases the model was trained on data recorded
from a single scene that was different from the evaluation
scene. Efficiency values are normalized with respect to
the oracle for easier comparison.

5.5.6 Additional results on real data
To show that our method is general and also works with real scenes we
conducted additional experiments on high-fidelity 3D reconstructions
of buildings and on the 2D-3D-S indoor dataset [156] that was acquired
with a Matterport∗ camera. Result are shown in Tab. 5.5, Fig. 5.11
and Fig. 5.12. For the outdoor case we trained our model on the
church (Fig. 5.11a) and evaluated on the historic building (Fig. 5.11.c).
Despite the differences of both buildings in terms of geometry and
scale (the historic building is about 2x smaller in each dimension)
our model is able to generalize. For the indoor case we trained on
Area1 and evaluated on Area5b of the 2D-3D-S indoor dataset [156].
Both experiments demonstrate that our method also works with real
detailed scenes.

∗https://matterport.com/

151

https://matterport.com/

Chapter 5 Learning a Viewpoint Utility Score

Figure 5.11: Shown are example explorations on real outdoor data
– (a) Picture of church scene. (b) Occupancy map of
the church scene (training data) (200 steps). (c) Pic-
ture of historic building scene. (d) Occupancy map of
the historic building scene (evaluation) (100 steps). (e)
Performance plot for the historic building scene. Color
coding of observed voxels: High uncertainty (red) and
low uncertainty (cyan).

Figure 5.12: Shown are example explorations on real indoor data –
(a) Occupancy map of S3Dis Area5b (400 steps). (b)
Performance plot for S3Dis Area5b (training on Area1).
Color coding of observed voxels: High uncertainty (red)
and low uncertainty (cyan).

152

5.6 Discussion

5.6 Discussion
We presented an approach for efficient exploration of unknown 3D en-
vironments by predicting the utility of new views using a 3D ConvNet.
We input a novel multi-scale voxel representation of an underlying oc-
cupancy map, which represents the current model of the environment.
Pairs of input and target utility score are obtained from an oracle that
has access to ground truth information. Importantly, our model is able
to generalize to scenes other than the training data and the underly-
ing occupancy map enables robustness to noisy sensor input such as
depth images from a stereo camera. Experiments indicate that our
approach improves upon previous methods in terms of reconstruction
efficiency.
Limitations of our method include dependence on the surface voxel

distribution in the training data. In future work, it would be inter-
esting to see how the method performs on vastly different geometries
such as rock formations and other natural landscapes. Similarly, our
model is bound to the map resolution and mapping parameters used
in the training data.
Another limitation is the underlying assumption on a static scene.

A dynamic object such as a human walking in front of the camera
would lead to occupied voxels that do not correspond to a static ob-
ject. While these voxels can change their state from occupied to free
after additional observations if the human walked away the intermedi-
ate occupancy map can lead to utility predictions that are not desired.
A possible solution to address this problem is to identify and segment
dynamic objects in the depth maps before integrating them into the
occupancy map.

153

Chapter 6

Conclusion

In this thesis we described the design of planning systems for quadro-
tors in various use cases. While being targeted to specific use cases
these case studies also provide a reference for the development of other
autonomous systems in related areas. We conclude this thesis by giv-
ing a discussion on the previous chapters and clarifying the contribu-
tions.
In Chapter 3 we introduced a trajectory generation framework pro-

viding smooth and pleasant camera motion for a camera-equipped
quadrotor. In this setting we are given a high-level description of
the quadrotor flight in terms of keyframes with desired positions or
look-at targets at specific times. We used direct collocation to tran-
scribe the trajectory generation problem. Without additional non-
linear terms and constraints the resulting optimization problem is a
quadratic program and can be solved efficiently. However, our frame-
work is flexible and allows the integration of additional non-linear
costs and constraints, typically at the cost of increased computation
time. For this case we introduced a sequential quadratic programming
scheme and we demonstrated the flexibility of our framework on dif-
ferent use cases. Our framework can readily be adapted and extended

155

Chapter 6 Conclusion

for other application scenarios.
Following this, in Chapter 4 we developed a system to generate flight

plans allowing efficient image capture for high-quality 3D reconstruc-
tions in urban and crowded settings. In this setting we are given a
prior coarse scan of the region of interest and want to compute a set
of viewpoints for a final high-quality 3D reconstruction. In addition
to the task of selecting a suitable set of viewpoints we are constrained
by the battery time of the quadrotor and the necessity of only per-
forming collision-free motion. To solve the problem we introduced
a submodular viewpoint utility that takes occlusions by occupied or
unknown space into account. We handled collision-free motion us-
ing sampling-based planning with fast collision checks using the prior
occupancy map. We then formulated the task as a submodular orien-
teering problem. and proposed an approximate solver that performs
favorable in comparison to other approaches. The resulting 3D models
demonstrated very high surface detail and we showed that quantita-
tively our method also compares favorably to other approaches. In-
dividual components of our system such as the submodular viewpoint
utility, our planning strategy for free-space motion and our solver for
submodular orienteering problems can be used independently in other
systems.
Finally, in Chapter 5 we tackled the problem of autonomously ac-

quiring initial coarse 3D models of unknown scenes. In this setting the
quadrotor iterates between moving to new viewpoints and integrat-
ing measurements into an occupancy map. State-of-the-art methods
compute a heuristic viewpoint utility based on ray-casts into the oc-
cupancy map to decide on the next viewpoint to visit. We proposed to
learn the viewpoint utility and formulated the next-best-view strategy
as an imitation learning problem. By introducing a viewpoint-aligned,
multi-scale and volumetric representation we were able to harness the
expressive power of 3D convolutional neural networks and showed that
our trained models significantly outperform the state-of-art. Further-
more, our models can generalize to scenes with considerably different
geometry than the training data. Our demonstrated approach of find-
ing utility functions by posing the task as an imitation learning prob-

156

6.1 Future Work

lem of an oracle policy can be adapted to other use cases whenever
an expert policy can be defined on the ground truth data that is not
available at evaluation time.

6.1 Future Work
Despite much work and progress in the area of planning for autonomous
systems the design of such systems is still a difficult endeavor. While
solutions exist for individual blocks, such as low-level control, global
path planning, state estimation, object perception and mapping, they
often make too specific assumptions or can fail in corner cases. When
putting these components together in a closed-loop system the emer-
gent behavior can lead to unexpected situations and failure of these
components.

General Directions We see two key challenges that remain a fruitful
area for further research in the domain of autonomous systems design:

• In the case of dynamic environments with multiple independent
agents the system needs to plan and reason over uncertain and
coarse predictions of the other agents. The challenge is to model
the other agents at a level of abstraction that allows fast com-
putation and captures enough modalities of the other agents
behavior to make robust and safe decisions.

• Much work in the planning domain does not focus on the per-
ception component with the implicit assumption that it will be
almost perfectly solved at some point in the future. We feel that
this might never happen. Instead, both parts should be consid-
ered jointly by reasoning over uncertainties and occlusions from
the perception component.

Apart from these general direction we identified specific promising
areas of future research that we believe are worth undertaking. Here
we give an overview of these avenues.

157

Chapter 6 Conclusion

Trajectory Planning In terms of trajectory planning there still ex-
ists a disconnect between global planning and local planning. One
approach for global planning is building a graph over a regular state
lattice or other state decompositions such as visibility graphs [157]. A
plan or path is then computed by performing a search in the graph.
These graphs usually contain no kinematics or dynamics to make the
computation feasible. The path is then passed to a local planner that
incorporates kinematic and dynamic constraints and uses the global
path as a warm start for the optimization. The disconnect manifests
itself when the global planner finds a path that turns out to not be
feasible in the local planner. While kinematics and dynamics can be
integrated into sampling based approaches such as the family of RRT
methods [5, 6, 7] the level of detail of the dynamic and kinematic
constraints has a strong impact on the computational cost. In many
cases it is infeasible to incorporate a full model and again the problem
is split into a global and local planning approach. What is missing is
a feedback loop from the local planner to the global planner to inform
about feasible paths. However, it is not enough to simply invalidate
a single path but the whole homotopy of the path has to be invali-
dated to prevent unnecessary local planning of similar paths. It is not
directly clear how this can be handled in a sampling based planner
but a promising approach could be to backtrack along the invalidated
path of the tree and check if all children still belong to the same ho-
motopy. This check could be approximated by testing for obstacles
between the children. We can perform this backtracking until we find
a node that leads to other homotopies and prune the branch with the
homotopy that was invalidated.

Trajectory Planning for Multi-View Stereo Reconstruction In terms
of planning for Multi-View Stereo reconstruction we only touched the
potential of performing iterative reconstructions. In this context a
very fruitful direction would be to learn a good metric that informs
whether stereo matching of two views would result in good depth
maps. We conjecture that using the relative pose and both images

158

6.1 Future Work

as features would allow to learn such a metric and there might be
an opportunity to use existing reconstructions from datasets. Even
if only sparse reconstructions are available many stereo matched and
triangulated pixels could be invalidated based on the sparse geometry.
Another interesting direction is the use of a fast online SfM and MVS
system to enable on-the-fly computation of the next best view.

Learning a Viewpoint Utility Score Our work on learning utility
functions for exploration also suggests several directions for future
work. We used our learned utility function to implement a greedy
next-best-view algorithm. However, our utility function could be used
to develop more sophisticated policies that look multiple steps ahead.
In addition, our approach could be extended to be used in a gener-
ative way to predict future states of the 3D occupancy map or to
predict 2D depth maps for unobserved views. This could be used for
model completion or hole-filling which has numerous applications in
computer vision and robotics.

159

Bibliography

[1] Krause, A., Golovin, D.: Submodular function maximization.
Tractability: Practical Approaches to Hard Problems 3 (2012)
8

[2] Betts, J.T.: Practical methods for optimal control and estima-
tion using nonlinear programming. Volume 19. Siam (2010)

[3] Kelly, M.: An introduction to trajectory optimization: how to
do your own direct collocation. SIAM Review 59 (2017) 849–904

[4] Deits, R., Tedrake, R.: Footstep planning on uneven terrain
with mixed-integer convex optimization. In: Humanoid Robots
(Humanoids), 2014 14th IEEE-RAS International Conference
on, IEEE (2014) 279–286

[5] LaValle, S.M.: Rapidly-exploring random trees: A new tool for
path planning. (1998)

[6] Karaman, S., Frazzoli, E.: Incremental sampling-based algo-
rithms for optimal motion planning. Robotics Science and Sys-
tems VI 104 (2010) 2

[7] Karaman, S., Frazzoli, E.: Sampling-based algorithms for op-
timal motion planning. The international journal of robotics
research 30 (2011) 846–894

161

Bibliography

[8] Kuffner, J.J., LaValle, S.M.: Rrt-connect: An efficient approach
to single-query path planning. In: Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Conference on.
Volume 2., IEEE (2000) 995–1001

[9] Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Bur-
gard, W.: OctoMap: An efficient probabilistic 3D mapping
framework based on octrees. Autonomous Robots (2013) Soft-
ware available at http://octomap.github.com.

[10] Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruc-
tion. ACM Transactions on Graphics (TOG) 32 (2013) 29

[11] Hartley, R., Zisserman, A.: Multiple view geometry in computer
vision. Cambridge university press (2003)

[12] Szeliski, R.: Computer vision: algorithms and applications.
Springer Science & Business Media (2010)

[13] Fuhrmann, S., Langguth, F., Moehrle, N., Waechter, M., Goe-
sele, M.: Mve—an image-based reconstruction environment.
Computers & Graphics 53 (2015) 44–53

[14] Schönberger, J.L., Frahm, J.M.: Structure-from-motion revis-
ited. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2016)

[15] Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview
stereopsis. IEEE transactions on pattern analysis and machine
intelligence 32 (2010) 1362–1376

[16] Furukawa, Y., Hernández, C., et al.: Multi-view stereo: A
tutorial. Foundations and Trends® in Computer Graphics and
Vision 9 (2015) 1–148

[17] Galliani, S., Lasinger, K., Schindler, K.: Massively parallel mul-
tiview stereopsis by surface normal diffusion. In: Proceedings of
the IEEE International Conference on Computer Vision. (2015)
873–881

162

http://octomap.github.com

Bibliography

[18] Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pix-
elwise view selection for unstructured multi-view stereo. In:
European Conference on Computer Vision (ECCV). (2016)

[19] Hirschmuller, H., Scharstein, D.: Evaluation of cost functions
for stereo matching. In: Computer Vision and Pattern Recog-
nition, 2007. CVPR’07. IEEE Conference on, IEEE (2007) 1–8

[20] Zbontar, J., LeCun, Y.: Computing the stereo matching cost
with a convolutional neural network. In: Proceedings of the
IEEE conference on computer vision and pattern recognition.
(2015) 1592–1599

[21] Hornung, A., Zeng, B., Kobbelt, L.: Image selection for im-
proved multi-view stereo. In: Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE
(2008) 1–8

[22] Bailer, C., Finckh, M., Lensch, H.P.: Scale robust multi view
stereo. In: European Conference on Computer Vision, Springer
(2012) 398–411

[23] Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.:
Patchmatch: A randomized correspondence algorithm for struc-
tural image editing. ACM Transactions on Graphics (ToG) 28
(2009) 24

[24] Zheng, E., Dunn, E., Jojic, V., Frahm, J.M.: Patchmatch based
joint view selection and depthmap estimation. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recog-
nition. (2014) 1510–1517

[25] Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis
of approximations for maximizing submodular set functions—i.
Mathematical programming 14 (1978) 265–294

[26] Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The
orienteering problem: A survey. European Journal of Opera-
tional Research 209 (2011) 1–10

163

Bibliography

[27] Chekuri, C., Pal, M.: A recursive greedy algorithm for walks
in directed graphs. In: Foundations of Computer Science, 2005.
FOCS 2005. 46th Annual IEEE Symposium on, IEEE (2005)
245–253

[28] Singh, A., Krause, A., Guestrin, C., Kaiser, W., Batalin, M.:
Efficient Planning of Informative Paths for Multiple Robots. In:
IJCAI. (2007)

[29] Zhang, H., Vorobeychik, Y.: Submodular optimization with
routing constraints. In: AAAI. (2016) 819–826

[30] Tschiatschek, S., Singla, A., Krause, A.: Selecting sequences of
items via submodular maximization. In: AAAI. (2017) 2667–
2673

[31] Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT
Press (2016) http://www.deeplearningbook.org.

[32] Gebhardt, C., Hepp, B., Nägeli, T., Stevšić, S., Hilliges, O.:
Airways: Optimization-based planning of quadrotor trajecto-
ries according to high-level user goals. In: Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems,
ACM (2016) 2508–2519

[33] Higuchi, K., Shimada, T., Rekimoto, J.: Flying Sports Assis-
tant: External Visual Imagery Representation for Sports Train-
ing. In: Augmented Human International Conference (AH ’11),
ACM (2011) 7:1—-7:4

[34] Mueller, F.F., Muirhead, M.: Jogging with a quadcopter. In:
Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems. CHI ’15, New York, NY, USA,
ACM (2015) 2023–2032

[35] Nitta, K., Higuchi, K., Rekimoto, J.: HoverBall: Augmented
Sports with a Flying Ball. In: Augmented Human International

164

http://ijcai.org/Proceedings/07/Papers/355.pdf
http://www.deeplearningbook.org

Bibliography

Conference (AH ’14). AH ’14, New York, NY, USA, ACM (2014)
13:1—-13:4

[36] Scheible, J., Hoth, A., Saal, J., Su, H.: Displaydrone: a flying
robot based interactive display. In: ACM International Sympo-
sium on Pervasive Displays (PerDis ’13), New York, New York,
USA, ACM Press (2013) 49

[37] ArsElectronica: Spaxels (2012) http://www.aec.at/spaxels/.

[38] Cannes Festival: New Directors’ Showcase. Video (2012)

[39] Mascelli, J.V.: The five C’s of cinematography: motion picture
filming techniques. Silman-James Press (1998)

[40] Diaz, T.: Lights, drone... action. Spectrum, IEEE 52 (2015)
36–41

[41] Naseer, T., Sturm, J., Cremers, D.: Followme: Person following
and gesture recognition with a quadrocopter. Proc. IROS (2013)

[42] Higuchi, K., Rekimoto, J.: Flying Head: Head-synchronized
Unmanned Aerial Vehicle Control for Flying Telepresence. In:
SIGGRAPH Asia 2012 E-Tech. SA ’12, New York, NY, USA,
ACM (2012) 12:1—-12:2

[43] Gleicher, M.L., Liu, F.: Re-cinematography: Improving the
camerawork of casual video. ACM Trans. Multimedia Comput.
Commun. Appl. 5 (2008) 2:1–2:28

[44] Grundmann, M., Kwatra, V., Essa, I.: Auto-directed video
stabilization with robust l1 optimal camera paths. In: Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference
on. (2011) 225–232

[45] Liu, S., Yuan, L., Tan, P., Sun, J.: Bundled camera paths for
video stabilization. ACM Trans. Graph. 32 (2013) 78:1–78:10

165

http://www.aec.at/spaxels/

Bibliography

[46] Kopf, J., Cohen, M.F., Szeliski, R.: First-person hyper-lapse
videos. ACM Trans. Graph. 33 (2014) 78:1–78:10

[47] Christie, M., Machap, R., Normand, J.M., Olivier, P., Pickering,
J.: Virtual camera planning: A survey. In: Smart Graphics,
Springer (2005) 40–52

[48] Yeh, I.C., Lin, C.H., Chien, H.J., Lee, T.Y.: Efficient camera
path planning algorithm for human motion overview. Computer
Animation and Virtual Worlds 22 (2011) 239–250

[49] Li, T.Y., Cheng, C.C.: Real-time camera planning for naviga-
tion in virtual environments. In Butz, A., Fisher, B., Krüger, A.,
Olivier, P., Christie, M., eds.: Smart Graphics. Volume 5166 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2008) 118–129

[50] Umetani, N., Koyama, Y., Schmidt, R., Igarashi, T.: Pteromys:
Interactive design and optimization of free-formed free-flight
model airplanes. ACM Trans. Graph. 33 (2014) 65:1–65:10

[51] Martin, T., Umetani, N., Bickel, B.: Omniad: Data-driven
omni-directional aerodynamics. ACM Trans. Graph. 34 (2015)
113:1–113:12

[52] Yoshida, S., Shirokura, T., Sugiura, Y., Sakamoto, D., Ono, T.,
Inami, M., Igarashi, T.: RoboJockey: Designing an Entertain-
ment Experience with Robots. IEEE computer graphics and
applications (2015) 1

[53] Liu, K., Sakamoto, D., Inami, M., Igarashi, T.: Roboshop:
Multi-layered sketching interface for robot housework assign-
ment and management. In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. CHI ’11, New
York, NY, USA, ACM (2011) 647–656

[54] Sakamoto, D., Honda, K., Inami, M., Igarashi, T.: Sketch and
run. In: ACM SIGCHI, New York, New York, USA, ACM Press
(2009) 197

166

Bibliography

[55] Sugiura, Y., Sakamoto, D., Withana, A., Inami, M., Igarashi,
T.: Cooking with robots. In: ACM SIGCHI, New York, New
York, USA, ACM Press (2010) 2427

[56] Kato, J., Sakamoto, D., Igarashi, T.: Phybots: A toolkit for
making robotic things. In: Proceedings of the Designing Inter-
active Systems Conference. DIS ’12, New York, NY, USA, ACM
(2012) 248–257

[57] Zhao, S., Nakamura, K., Ishii, K., Igarashi, T.: Magic cards: A
paper tag interface for implicit robot control. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’09, New York, NY, USA, ACM (2009) 173–182

[58] Lupashin, S., D’Andrea, R.: Adaptive fast open-loop maneuvers
for quadrocopters. Autonomous Robots 33 (2012) 89–102

[59] Mellinger, D., Kumar, V.: Minimum snap trajectory genera-
tion and control for quadrotors. In: Robotics and Automation
(ICRA), 2011 IEEE International Conference on, IEEE (2011)
2520–2525

[60] Joubert, N., Roberts, M., Truong, A., Berthouzoz, F., Hanra-
han, P.: An interactive tool for designing quadrotor camera
shots. ACM Transactions on Graphics (TOG) 34 (2015) 238

[61] Mahony, R., Kumar, V., Corke, P.: Multirotor Aerial Vehi-
cles: Modeling, Estimation, and Control of Quadrotor. IEEE
Robotics & Automation Magazine 19 (2012) 20–32

[62] Flash, T., Hogan, N.: The coordination of arm movements: an
experimentally confirmed mathematical model. The journal of
Neuroscience 5 (1985) 1688–1703

[63] Alonso-Mora, J., Naegeli, T., Siegwart, R., Beardsley, P.: Col-
lision avoidance for aerial vehicles in multi-agent scenarios. Au-
tonomous Robots 39 (2015) 101–121

167

Bibliography

[64] Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F.,
Pollefeys, M.: PIXHAWK: A micro aerial vehicle design for
autonomous flight using onboard computer vision. Autonomous
Robots 33 (2012) 21–39

[65] Faiz, N., Agrawal, S.K., Murray, R.M.: Trajectory planning of
differentially flat systems with dynamics and inequalities. Jour-
nal of Guidance, Control, and Dynamics 24 (2001) 219–227

[66] Lee, T., Leok, M., McClamroch, N.H.: Nonlinear robust track-
ing control of a quadrotor uav on se (3). Asian Journal of Control
15 (2013) 391–408

[67] Nägeli, T., Conte, C., Domahidi, A., Morari, M., Hilliges, O.:
Environment-independent formation flight for micro aerial ve-
hicles. In: Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on. (2014) 1141–1146

[68] Hepp, B., Nießner, M., Hilliges, O.: Plan3d: Viewpoint and tra-
jectory optimization for aerial multi-view stereo reconstruction.
arXiv preprint arXiv:1705.09314 (2017)

[69] Jancosek, M., Pajdla, T.: Multi-view reconstruction preserving
weakly-supported surfaces. In: Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, IEEE (2011)
3121–3128

[70] Fuhrmann, S., Langguth, F., Goesele, M.: Mve-a multi-view
reconstruction environment. In: GCH. (2014) 11–18

[71] Langguth, F., Sunkavalli, K., Hadap, S., Goesele, M.: Shading-
aware multi-view stereo. In: European Conference on Computer
Vision, Springer (2016) 469–485

[72] Schöps, T., Schönberger, J.L., Galliani, S., Sattler, T.,
Schindler, K., Pollefeys, M., Geiger, A.: A multi-view
stereo benchmark with high-resolution images and multi-camera
videos. In: Proc. CVPR. Volume 3. (2017)

168

Bibliography

[73] Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and
temples: Benchmarking large-scale scene reconstruction. ACM
Transactions on Graphics (2017)

[74] Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.:
A comparison and evaluation of multi-view stereo reconstruction
algorithms. In: Computer vision and pattern recognition, 2006
IEEE Computer Society Conference on. Volume 1., IEEE (2006)
519–528

[75] Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.:
Multi-view stereo for community photo collections. In: Com-
puter Vision, 2007. ICCV 2007. IEEE 11th International Con-
ference on, IEEE (2007) 1–8

[76] Pix4D: Pix4d. https://pix4d.com/ (2017)

[77] Agisoft, L.: Agisoft photoscan user manual: Professional edition
(2014)

[78] Chen, S., Li, Y., Kwok, N.M.: Active vision in robotic systems:
A survey of recent developments. The International Journal of
Robotics Research 30 (2011) 1343–1377

[79] Hepp, B.: Plan3d open source code. https://github.com/
bennihepp/Quad3DR (2018)

[80] Roberts, M., Truong, A., Dey, D., Sinha, S., Kapoor, A., Joshi,
N., Hanrahan, P.: Submodular trajectory optimization for aerial
3d scanning. arXiv preprint arXiv:1705.00703 (2017)

[81] Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.:
Bundle adjustment—a modern synthesis. In: International
workshop on vision algorithms, Springer (1999) 298–372

[82] Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: explor-
ing photo collections in 3d. In: ACM transactions on graphics
(TOG). Volume 25., ACM (2006) 835–846

169

https://pix4d.com/
https://github.com/bennihepp/Quad3DR
https://github.com/bennihepp/Quad3DR

Bibliography

[83] Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from
internet photo collections. International journal of computer
vision 80 (2008) 189–210

[84] Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.:
Building rome in a day. In: 2009 IEEE 12th international con-
ference on computer vision, IEEE (2009) 72–79

[85] Agarwal, S., Snavely, N., Seitz, S., Szeliski, R.: Bundle adjust-
ment in the large. Computer Vision–ECCV 2010 (2010) 29–42

[86] Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore bun-
dle adjustment. In: Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, IEEE (2011) 3057–3064

[87] Goesele, M., Curless, B., Seitz, S.M.: Multi-view stereo revis-
ited. In: Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on. Volume 2., IEEE (2006) 2402–
2409

[88] Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., Thoen-
nessen, U.: On benchmarking camera calibration and multi-
view stereo for high resolution imagery. In: Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, Ieee (2008) 1–8

[89] Fuhrmann, S., Goesele, M.: Floating scale surface reconstruc-
tion. ACM Transactions on Graphics (TOG) 33 (2014) 46

[90] Farid, H., Lee, S., Bajcsy, R.: View selection strategies for
multi-view, wide-base stereo. Technical report, Technical Re-
port MS-CIS-94-18, University of Pennsylvania (1994)

[91] Kutulakos, K.N., Dyer, C.R.: Recovering shape by purposive
viewpoint adjustment. In: Computer Vision and Pattern Recog-
nition, 1992. Proceedings CVPR’92., 1992 IEEE Computer So-
ciety Conference on, IEEE (1992) 16–22

170

Bibliography

[92] Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Automatic
view selection using viewpoint entropy and its application to
image-based modelling. In: Computer Graphics Forum. Vol-
ume 22., Wiley Online Library (2003) 689–700

[93] Haner, S., Heyden, A.: Covariance propagation and next best
view planning for 3d reconstruction. In: Computer Vision–
ECCV 2012. Springer (2012) 545–556

[94] Curless, B., Levoy, M.: A volumetric method for building com-
plex models from range images. In: Proceedings of the 23rd
annual conference on Computer graphics and interactive tech-
niques, ACM (1996) 303–312

[95] Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim,
D., Davison, A.J., Kohi, P., Shotton, J., Hodges, S., Fitzgib-
bon, A.: Kinectfusion: Real-time dense surface mapping and
tracking. In: Mixed and augmented reality (ISMAR), 2011 10th
IEEE international symposium on, IEEE (2011) 127–136

[96] Nießner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-
time 3d reconstruction at scale using voxel hashing. ACM Trans-
actions on Graphics (TOG) 32 (2013) 169

[97] Chen, J., Bautembach, D., Izadi, S.: Scalable real-time volu-
metric surface reconstruction. ACM Transactions on Graphics
(TOG) 32 (2013) 113

[98] Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt,
C.: Bundlefusion: Real-time globally consistent 3d recon-
struction using on-the-fly surface re-integration. arXiv preprint
arXiv:1604.01093 (2016)

[99] Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface recon-
struction. In: Proceedings of the fourth Eurographics sympo-
sium on Geometry processing. Volume 7. (2006)

[100] Robotics, D.: 3dr site scan. https://3dr.com/ (2017)

171

https://3dr.com/

Bibliography

[101] Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: Real-time
photo-realistic 3d mapping for micro aerial vehicles. In: 2011
IEEE/RSJ International Conference on Intelligent Robots and
Systems. (2011) 4012–4019

[102] Loianno, G., Thomas, J., Kumar, V.: Cooperative localization
and mapping of mavs using rgb-d sensors. In: Robotics and
Automation (ICRA), 2015 IEEE International Conference on,
IEEE (2015) 4021–4028

[103] Sturm, J., Bylow, E., Kerl, C., Kahl, F., Cremer, D.: Dense
tracking and mapping with a quadrocopter. Unmanned Aerial
Vehicle in Geomatics (UAV-g), Rostock, Germany (2013)

[104] Du, J., Mouser, C., Sheng, W.: Design and evaluation of a
teleoperated robotic 3-d mapping system using an rgb-d sensor.
IEEE Transactions on Systems, Man, and Cybernetics: Systems
46 (2016) 718–724

[105] Scaramuzza, D., Achtelik, M.C., Doitsidis, L., Friedrich, F.,
Kosmatopoulos, E., Martinelli, A., Achtelik, M.W., Chli, M.,
Chatzichristofis, S., Kneip, L., et al.: Vision-controlled micro
flying robots: from system design to autonomous navigation
and mapping in gps-denied environments. IEEE Robotics &
Automation Magazine 21 (2014) 26–40

[106] Yamauchi, B.: A frontier-based approach for autonomous ex-
ploration. In: Computational Intelligence in Robotics and Au-
tomation, 1997. CIRA’97., Proceedings., 1997 IEEE Interna-
tional Symposium on, IEEE (1997) 146–151

[107] Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier,
L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous
mapping and exploration using a quadrotor mav. In: Intelli-
gent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, IEEE (2012) 4557–4564

172

Bibliography

[108] Shen, S., Michael, N., Kumar, V.: Autonomous multi-floor
indoor navigation with a computationally constrained mav. In:
Robotics and automation (ICRA), 2011 IEEE international con-
ference on, IEEE (2011) 20–25

[109] Hoppe, C., Klopschitz, M., Rumpler, M., Wendel, A., Kluckner,
S., Bischof, H., Reitmayr, G.: Online feedback for structure-
from-motion image acquisition. In: BMVC. Volume 2. (2012)
6

[110] Kriegel, S., Rink, C., Bodenmüller, T., Suppa, M.: Efficient
next-best-scan planning for autonomous 3d surface reconstruc-
tion of unknown objects. Journal of Real-Time Image Processing
10 (2015) 611–631

[111] Wenhardt, S., Deutsch, B., Angelopoulou, E., Niemann, H.: Ac-
tive visual object reconstruction using d-, e-, and t-optimal next
best views. In: 2007 IEEE Conference on Computer Vision and
Pattern Recognition, IEEE (2007) 1–7

[112] Forster, C., Pizzoli, M., Scaramuzza, D.: Appearance-based
active, monocular, dense reconstruction for micro aerial vehicles.
In: Robotics: Science and Systems (RSS). (2014)

[113] Dunn, E., Frahm, J.M.: Next best view planning for active
model improvement. In: BMVC. (2009) 1–11

[114] Mendez, O., Hadfield, S., Pugeault, N., Bowden, R.: Taking
the scenic route to 3d: Optimising reconstruction from moving
cameras. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. (2017) 4677–4685

[115] Khalfaoui, S., Seulin, R., Fougerolle, Y., Fofi, D.: An efficient
method for fully automatic 3d digitization of unknown objects.
Computers in Industry 64 (2013) 1152–1160

[116] Wu, S., Sun, W., Long, P., Huang, H., Cohen-Or, D., Gong,
M., Deussen, O., Chen, B.: Quality-driven poisson-guided au-
toscanning. ACM Transactions on Graphics 33 (2014)

173

Bibliography

[117] Fan, X., Zhang, L., Brown, B., Rusinkiewicz, S.: Automated
view and path planning for scalable multi-object 3d scanning.
ACM Transactions on Graphics (TOG) 35 (2016) 239

[118] Xu, K., Huang, H., Shi, Y., Li, H., Long, P., Caichen, J., Sun,
W., Chen, B.: Autoscanning for coupled scene reconstruction
and proactive object analysis. ACM Trans. Graph. 34 (2015)
177:1–177:14

[119] Fraser, C.: Network design considerations for non-topographic
photogrammetry. Photogrammetric Engineering and Remote
Sensing 50 (1984) 1115–1126

[120] Mason, S., et al.: Heuristic reasoning strategy for automated
sensor placement. Photogrammetric engineering and remote
sensing 63 (1997) 1093–1101

[121] Olague, G., Mohr, R.: Optimal camera placement for accurate
reconstruction. Pattern Recognition 35 (2002) 927–944

[122] Hoppe, C., Wendel, A., Zollmann, S., Pirker, K., Irschara, A.,
Bischof, H., Kluckner, S.: Photogrammetric camera network
design for micro aerial vehicles. In: Computer vision winter
workshop (CVWW). Volume 8. (2012) 1–3

[123] Bircher, A., Alexis, K., Burri, M., Oettershagen, P., Omari, S.,
Mantel, T., Siegwart, R.: Structural inspection path planning
via iterative viewpoint resampling with application to aerial
robotics. In: Robotics and Automation (ICRA), 2015 IEEE
International Conference on, IEEE (2015) 6423–6430

[124] Huang, R., Zou, D., Vaughan, R., Tan, P.: Active image-based
modeling. arXiv preprint arXiv:1705.01010 (2017)

[125] Waechter, M., Moehrle, N., Goesele, M.: Let there be color!
large-scale texturing of 3d reconstructions. In: European Con-
ference on Computer Vision, Springer (2014) 836–850

174

Bibliography

[126] Wolsey, L.A.: An analysis of the greedy algorithm for the sub-
modular set covering problem. Combinatorica 2 (1982) 385–393

[127] Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT
press (2005)

[128] Coulter, R.C.: Implementation of the pure pursuit path tracking
algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh
PA Robotics INST (1992)

[129] Hepp, B., Dey, D., Sinha, S.N., Kapoor, A., Joshi, N., Hilliges,
O.: Learn-to-score: Efficient 3d scene exploration by predicting
view utility. In: The European Conference on Computer Vision
(ECCV). (2018)

[130] Xu, K., Zheng, L., Yan, Z., Yan, G., Zhang, E., Nießner, M.,
Deussen, O., Cohen-Or, D., Huang, H.: Autonomous recon-
struction of unknown indoor scenes guided by time-varying ten-
sor fields. ACM Transactions on Graphics 2017 (TOG) (2017)

[131] Roberts, M., Dey, D., Truong, A., Sinha, S., Shah, S., Kapoor,
A., Hanrahan, P., Joshi, N.: Submodular trajectory optimiza-
tion for aerial 3d scanning. In: International Conference on
Computer Vision (ICCV) 2017. (2017)

[132] Vasquez-Gomez, J.I., Sucar, L.E., Murrieta-Cid, R., Lopez-
Damian, E.: Volumetric next-best-view planning for 3d object
reconstruction with positioning error. International Journal of
Advanced Robotic Systems 11 (2014) 159

[133] Heng, L., Gotovos, A., Krause, A., Pollefeys, M.: Efficient visual
exploration and coverage with a micro aerial vehicle in unknown
environments. In: ICRA. (2015)

[134] Isler, S., Sabzevari, R., Delmerico, J., Scaramuzza, D.: An in-
formation gain formulation for active volumetric 3d reconstruc-
tion. In: 2016 IEEE International Conference on Robotics and
Automation (ICRA), IEEE (2016) 3477–3484

175

http://ieeexplore.ieee.org/document/7139309/
http://ieeexplore.ieee.org/document/7139309/
http://ieeexplore.ieee.org/document/7139309/

Bibliography

[135] Delmerico, J., Isler, S., Sabzevari, R., Scaramuzza, D.: A com-
parison of volumetric information gain metrics for active 3d ob-
ject reconstruction. Autonomous Robots (2017) 1–12

[136] Feige, U.: A threshold of ln n for approximating set cover.
JACM (1998)

[137] Golovin, D., Krause, A.: Adaptive submodularity: Theory
and applications in active learning and stochastic optimization.
JAIR (2011)

[138] Hollinger, G.A., Englot, B., Hover, F.S., Mitra, U., Sukhatme,
G.S.: Active planning for underwater inspection and the benefit
of adaptivity. IJRR (2012)

[139] Choudhury, S., Kapoor, A., Ranade, G., Scherer, S., Dey, D.:
Adaptive information gathering via imitation learning. Robotics
Science and Systems (2017)

[140] Devrim Kaba, M., Gokhan Uzunbas, M., Nam Lim, S.: A
reinforcement learning approach to the view planning problem.
In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. (2017) 6933–6941

[141] Song, S., Xiao, J.: Deep sliding shapes for amodal 3d object
detection in rgb-d images. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. (2016)
808–816

[142] Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T.,
Nießner, M.: Scannet: Richly-annotated 3d reconstructions of
indoor scenes. http://arxiv.org/abs/1702.04405 (2017)

[143] Riegler, G., Ulusoy, A.O., Geiger, A.: Octnet: Learning deep 3d
representations at high resolutions. In: Conference on Computer
Vision and Pattern Recognition (CVPR). (2017)

176

https://arxiv.org/pdf/1003.3967v4.pdf
https://arxiv.org/pdf/1003.3967v4.pdf
http://journals.sagepub.com/doi/abs/10.1177/0278364912467485
http://journals.sagepub.com/doi/abs/10.1177/0278364912467485

Bibliography

[144] Dai, A., Qi, C.R., Nießner, M.: Shape comple-
tion using 3d-encoder-predictor cnns and shape synthesis.
http://arxiv.org/abs/1612.00101 (2016)

[145] Ge, L., Liang, H., Yuan, J., Thalmann, D.: 3d convolutional
neural networks for efficient and robust hand pose estimation
from single depth images. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. (2017)
1991–2000

[146] Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J.,
Funkhouser, T.: 3dmatch: Learning local geometric descrip-
tors from rgb-d reconstructions. In: CVPR. (2017)

[147] Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3d-
r2n2: A unified approach for single and multi-view 3d object
reconstruction. In: European Conference on Computer Vision,
Springer (2016) 628–644

[148] Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for
depth estimation from a single image. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.
(2015) 5162–5170

[149] Zamir, A.R., Wekel, T., Agrawal, P., Wei, C., Malik, J.,
Savarese, S.: Generic 3d representation via pose estimation
and matching. In: European Conference on Computer Vision,
Springer (2016) 535–553

[150] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning
for image recognition. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2016)

[151] He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in
deep residual networks. In: European Conference on Computer
Vision, Springer (2016) 630–645

177

Bibliography

[152] Kingma, D., Ba, J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014)

[153] Glorot, X., Bengio, Y.: Understanding the difficulty of training
deep feedforward neural networks. In: Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and
Statistics. (2010) 249–256

[154] Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.:
Receding horizon" next-best-view" planner for 3d exploration.
In: Robotics and Automation (ICRA), 2016 IEEE International
Conference on, IEEE (2016) 1462–1468

[155] Hirschmuller, H.: Stereo processing by semiglobal matching and
mutual information. IEEE Transactions on pattern analysis and
machine intelligence 30 (2008) 328–341

[156] Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2d-3d-
semantic data for indoor scene understanding. arXiv preprint
arXiv:1702.01105 (2017)

[157] LaValle, S.M.: Planning algorithms. Cambridge university press
(2006)

178

	1 Introduction
	1.1 Problem Statement
	1.2 Design Choices
	1.3 Challenges and Contributions
	1.4 Thesis Outline
	1.5 Publications

	2 Background
	2.1 Trajectory Planning
	2.2 Occupancy Mapping
	2.3 3D Reconstruction
	2.4 Submodular Optimization
	2.5 Artificial Neural Networks

	3 Optimization-Based Planning of Quadrotor Trajectories
	3.1 Introduction
	3.1.1 Overview & Contribution

	3.2 Related Work
	3.2.1 MAVs in HCI
	3.2.2 Video Stabilization & Camera Path Planning
	3.2.3 Computational Design
	3.2.4 Robotic Behavior and Trajectory Generation

	3.3 Notation
	3.4 System Overview
	3.5 Method
	3.5.1 Approximate Quadrotor Model for Trajectory Generation
	3.5.2 Trajectory Generation
	3.5.3 Optimizing for Human Objectives

	3.6 Implementation
	3.7 Results and Application Scenarios
	3.7.1 Light Painting
	3.7.2 Racing
	3.7.3 Aerial Videography

	3.8 Technical details
	3.8.1 Quadrotor Model
	3.8.2 Quadrotor Control
	3.8.3 Validity of Approximate Quadrotor Model

	3.9 Discussion

	4 Trajectory Planning for Multi-View Stereo Reconstruction
	4.1 Introduction
	4.2 Related work
	4.3 System Overview
	4.4 Method
	4.4.1 Optimizing viewpoint trajectories
	4.4.2 Submodular voxel information
	4.4.3 Maximizing the submodular formulation
	4.4.4 Viewpoint candidate graph

	4.5 Results
	4.5.1 Synthetic scenes
	4.5.2 Comparison with Roberts et al.
	4.5.3 Viewpoint score comparison
	4.5.4 Comparison with regular baseline patterns
	4.5.5 Real scenes

	4.6 Discussion
	4.7 Implementation details
	4.8 Algorithms for viewpoint graph generation
	4.9 Additional results
	4.9.1 Submodular optimization results
	4.9.2 Performance comparison when not including images from initial coarse scan
	4.9.3 Effect of number of viewpoints for simple baseline methods
	4.9.4 Comparison of times for different methods

	5 Learning a Viewpoint Utility Score
	5.1 Introduction
	5.2 Related work
	5.3 Problem Setting and Overview
	5.4 Predicting View Utility
	5.4.1 World model
	5.4.2 Oracle utility function
	5.4.3 Learning the utility function
	5.4.4 3D Scene Exploration
	5.4.5 Dataset

	5.5 Experiments
	5.5.1 ConvNet architectures and training
	5.5.2 Evaluation
	5.5.3 Model performance on different datasets
	5.5.4 Comparison with baselines
	5.5.5 Noisy input sensor
	5.5.6 Additional results on real data

	5.6 Discussion

	6 Conclusion
	6.1 Future Work

	Bibliography

