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Haptic Inspection of Planetary Soils

with Legged Robots
Hendrik Kolvenbach, Christian Bärtschi, Lorenz Wellhausen, Ruben Grandia and Marco Hutter

Abstract—Planetary exploration robots encounter challenging
terrain during operation. Vision-based approaches have failed to
reliably predict soil characteristics in the past, making it neces-
sary to probe the terrain tactilely. We present a robust, haptic
inspection approach for a variety of fine, granular media, which
are representative of Martian soil. In our approach, the robot
uses one limb to perform an impact trajectory, while supporting
the main body with the remaining three legs. The resulting
vibration, which is recorded by sensors placed in the foot, is
decomposed using the discrete wavelet transform and assigned
a soil class by a Support Vector Machine. We tested two foot
designs and validated the robustness of this approach through
the extensive use of an open-source dataset, which we recorded
on a specially designed single-foot testbed. A remarkable overall
classification accuracy of more than 98% could be achieved
despite various introduced disturbances. The contributions of the
different sensors to the classification performance are evaluated.
Finally, we test the generalization performance on unknown soils
and show that the interaction behavior can be anticipated.

Index Terms—Force and Tactile Sensing, Space Robotics and
Automation, Legged Robots, AI-Based Methods

I. INTRODUCTION

TRAVERSING fine-grained, granular terrain is a challeng-

ing task for mobile robots due to the difficulty of modeling

and anticipating terramechanic effects for control. Especially

during robotic exploration of sandy, remote, and inaccessible

environments, such as the Moon and Mars, estimating the

terrain properties before traversal is crucial in order to avoid

mission hazards or to find an energy-efficient path.

Purely visual analysis of the soil is risky and has caused

significant delays during missions with the Mars Exploration

Rovers (MER) since the subsurface composition and physical

properties of the soil remain largely unknown [1] [2] [3].

For example, NASA’s Spirit rover got immobilized on Mars

after breaking through a solid-looking, crusty surface layer

(duricrust) into the soft sand hidden underneath [3]. Notably,

a recent study using thermal data has found a correlation

between visual thermal data and slip behavior of the Curiosity

rover, yet the robustness of the approach remains to be

evaluated [4].
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Fig. 1: ANYmal is inspecting planetary soil in front of the

system. The robot executes an impact motion with a specially

designed, sensor-equipped foot while keeping the remaining

feet in a safe stance.

Traditionally, sinkage and shear tests are used to extract

terramechanic parameters [5]. These parameters are used in

robot-soil interaction models (i.e. for wheels [6] or legs [7])

to predict the robot’s behavior. However, uncertainty exists in

the terrain parameter estimation and the interaction models,

leading to gaps between observed and estimated performances.

A promising practical approach is to use machine learning

techniques to classify terrain types based directly on experimen-

tal observations and to adapt the robot’s motion accordingly.

Supervised classification of Martian soils for wheeled systems

has been investigated in the past using vibration response [8]

combined with visual data from the robot for supervised [9]

and unsupervised training [10].

Supervised classification of Martian soils has also been

performed with a single leg-wheel hybrid [11]. The wheel con-

sists of five equally spaced ’feet’ which are rigidly connected

to a rimless, spoked wheel. An Inertial Measurement Unit

(IMU) on the stator frame was used to predict slip, while a

camera observing the terrain measured the sinkage. We consider

this work to be closer to wheeled locomotion than legged

locomotion because of the mechanical design of the wheel

with rigid feet.

The supervised classification of terrestrial surfaces has been

investigated for legged systems with the use of machine learning

techniques such as Support Vector Machines [12] [13] [14]

[15], AdaBoost [16], Discriminant Analysis [17], Pitman Yor

Process Mixture of Gaussians [18], Neural Networks [19] and

Random Forests [20]. A good review of terrain classification

methods for legged robots is given by Kertsz [20].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2019.2896732

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

All authors investigated a broad variety of terrestrial materials

such as rubber tiles, carpets, gravel, concrete etc. but only some

included a sand or dirt class which is not further specified [12]

[17] [18] [21]. Therefore, a detailed analysis of the applicability

of classification techniques for legged systems on a variety of

fine-grained, granular media in which terramechanic effects

dominate is missing.

So far, studies focused on (offline) classification based on

a pre-recorded training set of a walking robot and only a

few included online classification with locomotion parameter

adaptation [12] [14]. In all cases, the robot was already in

full interaction with the terrain when classification took place.

Additionally, the authors of [15] found that the performance of

a classifier is largely depended on gait and velocity, increasing

the chance of errors due to a large number of varying parameters

when performing classification while walking.

If the safety of the robotic system is a concern, such as

during extraterrestrial exploration, one would want to know

the safety of a foothold a priori. Similar to humans using their

limbs to inspect the temperature of a lake before swimming

or the slippage or rigidity of an icy patch, we want to use

the limbs of a legged robot to safely inspect the terrain. To

our knowledge, only our group has investigated a dedicated,

single scratching motion on a single-leg testbed to classify

hard surfaces based on qualitative measurements, as seen in

the work of Höpflinger et al [13]. Thus, using the limbs of

an entirely controlled robot to perform a dedicated, haptic

inspection of the environment is not demonstrated so far. In

this context, it remains an open question how such a foot for

soil inspection should be designed.

In this paper, we present a robust classification approach for

dry, granular media which is representative of Martian soils

by using the specifically designed, sensor-equipped feet of a

quadruped robot. We evaluate a point foot design and a passive-

adaptive planar foot design and assess the individual sensor

contributions to the classification performance. We introduce a

foot-soil interaction testbed with a tiltable soil container, with

which we have collected and open-sourced a large dataset on

different soils in order to test the robustness of our approach

quantitatively. We also demonstrate a haptic inspection motion

with a quadruped robot which results in immediate and accurate

knowledge about anticipated terrain behavior without putting

the system at risk. This work is part of a continuing effort to

raise the technology readiness level of dynamically walking

robots for space exploration [22] [23].

A. Paper outline

We describe the design of a sensorized point and adaptive

foot in Sec. II and introduce the testbed, the inspection

maneuver and the soils investigated in this study in Sec. III.

Subsequently, we present the test procedure and the classifica-

tion method in Sec. IV, while we present the results in Sec. V.

Finally, we conclude the work in Sec. VI.

II. POINT AND PLANAR FOOT DESIGN

A. Point foot design

Simplistic point feet are widely used for quadruped robots.

Our robot, ANYmal [24] uses point feet consisting of a nitrile

(a) Point foot (b) Planar foot

Fig. 2: Cross-section view of the sensor-equipped point and

planar feet utilized in this study.

rubber (NBR) sole of elliptical shape, supported by 15mm

of memory foam (Poron XRD) to reduce peak loads during

impact (Figure 2a). The diameter of a foot typically creates

a surface area of 8 cm2 on hard surfaces but can reach up

to 28 cm2 if fully submerged in compressible terrain. A foot

weighs 325 g (including shank). We integrated an in-house

developed 6-Axis Force/Torque (F/T) sensor in the design for

the purpose of this work. The sensor allows for sampling at

400Hz. While this foot design performs well on most hard

terrains, we observed shortcomings on loose and compressible

soils due to high sinkage [25].

B. Planar foot design

We developed a passive adaptive planar foot (Figure 2b) with

a weight of 380 g (including shank) to increase the robot’s

mobility on compressible soils [26]. The design features a

passive ankle joint which can adapt to the terrain up to

±45◦ around pitch axis and ±30◦ around the roll axis. We

manufactured the foot sole out of a natural/styrene-butadiene

rubber (NR/SBR) pad with a surface area of 50 cm2, which

is supported by 12mm of memory foam (Poron XRD). The

foot incorporates two InvenSense ICM-20608-G IMUs in order

to measure the relative orientation of the sole. We placed the

aforementioned 6-Axis F/T sensor in the shank. The IMU data

is sampled at 4 kHz and averaged to 400Hz. The F/T data is

sampled slightly slower at 330Hz compared to the point foot

due to computational limitations. All signals are collected by

an integrated microcontroller and sent via USB at 400Hz.

III. EXPERIMENTAL SETUP

A. Foot-soil interaction testbed

We manufactured a small-scale foot-soil interaction testbed

to collect reproducible datasets in a controlled environment

(Figure 3). The testbed is especially valuable since planetary

soil simulants are a scarce resource and robot-size testbeds

are costly to produce and maintain. The testbed consists of an

impact test mechanism and a tilt mechanism which holds the

soil containers.
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Fig. 3: The foot-soil interaction testbed consists of an impact

test mechanism and a tilt mechanism for the exchangeable soil

container. The sensor-equipped feet are mounted on the sled.

The testbed sensor data and the feet sensor data are collected

by a nearby operator PC (not shown).

The impact test mechanism allows for repetitive drop-tests

from heights up to 310mm (soil surface to the axis of the foot

mount) and 560mm (base plate to the axis of the foot mount).

During testing, a carriage picks up the sled with the attached

foot and releases it once it reaches a user-defined height.

The tilt mechanism enables the rotation of the exchangeable

soil container between 0◦ - 25◦ in roll and pitch, allowing us

to simulate soil inclinations. The soil containers are of a half-

spherical shape to minimize border effects during interaction

with the foot. We manufactured five identical soil containers

with a common interface which allows us to replace the soil

during the dataset acquisition with minimal handling efforts

and without the risk of cross-contamination. The tilt mechanism

is additionally equipped with an ATI Mini58 6-axis F/T sensor.

The impact test mechanism features environmental sensors

such as temperature/humidity (Adafruit BME280) and moisture

(Sparkfun SEN-13322). The sled is equipped with an analog

accelerometer (ADXL 335), a piezo disk, and an absolute linear

position (Sick BCG05-C1QM0199) and rotational encoder

(AMS AS5048A).

The actuators and sensors, besides the F/T sensor, are

connected to a microcontroller on the testbed for real-time

data acquisition purposes. The sensors are used for ground

truth measurements and for guaranteeing a consistent test

environment. The overall system is designed for high stiffness

and placed on a shock-absorbing mat so as to avoid oscillations

which could disturb the classification.

Fig. 4: The soils we investigated in our experiments. The

’bedrock covered in ES-2’ is not visually distinguishable from

ES-2 and is thus not depicted.

B. Robotic inspection motion

We recreated the impact motion to inspect unknown terrain

with the quadruped robot ANYmal. In our experiment, we

placed the robot on the laboratory carpet floor in front of the

soil container.

The three feet of the robot guarantee a stable stance, while

one limb with the sensor-equipped foot reaches ahead to

perform the inspection. By doing so, the robot can safely

examine the terrain without the risk of falling. The force-

controlled motion was created using the ”Free Gait” framework

[27].

C. Soils investigated in this study

The soils used in this study are representative of Martian

regolith, which consists of dust, sand, and rocks. The so-called

Engineering Soils (ES) were created by industry under the su-

pervision of the European Space Agency based on the analysis

of the mechanical properties of regolith encountered during

previous Mars missions [5]. The average soil characteristics

can be found in Table I. The grains are distributed evenly

within the soil. In the following, we give a brief qualitative

assessment of the soils and their potential occurrences on Mars.

• ES-1: Very fine-grained, porous and highly compressible

dust, which often occurs in the form of patches or as a

thin layer on top of other materials.

• ES-2: Silt to very fine sand which appears to be very

common on Mars and is found in particular in the troughs

of ripples and dunes. This soil was in the past found to

be most challenging to traverse with rovers.

• ES-3: A gravelly, medium-coarse sand. The soil is con-

sidered representative for scree, coarse aeolian sands,

and polymodal surficial lag. Coarse scree and aeolian

accumulations occur in terrain with escarpments. Surficial

lag occurs where finer grains have been removed by the

wind, forming a relatively thin layer which protects finer

grains in the subsurface from further erosion [5].

• Bedrock: A solid, rough limestone representative for

exposed bedrock on the surface of Mars. In our experiment,

a large limestone with a thickness of 40mm is rigidly

embedded in ES-3 with an exposed surface.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2019.2896732

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

TABLE I: Physical properties of the soils.

Soil
properties

Soil type

ES-1 ES-2 ES-3 CS

Appearance fine dust fine sand coarse sand coarse sand

Modal grain size [µm] ∼10 - ∼400-600 ∼1000

Min grain size [µm] <∼10 >∼30 >∼30 >∼50

Max grain size [µm] ∼32 ∼125 ∼20.000 ∼2000

Int. friction angle [◦] 34± 4 37± 5 35± 5 -

Cohesion [kPa] 1± 0.5 0.75± 0.75 0.15± 0.15 -

Dry bulk density [g/cm3] 1.2± 0.2 1.5± 0.1 1.6± 0.1 -

In reality on Mars, a mixture of soils can be encountered, and

the subsurface composition may vary from the surface layer.

Hence, we introduce additional soils to test the generalization

capabilities of our approach. We refer to these soils as unknown.

• Coarse sand (CS): A coarse, heterogeneous off-the-

shelf sand which is not representative of Martian soil.

Qualitatively, the soil interaction with the two feet is

similar to ES-3.

• Bedrock covered in ES-2: The aforementioned limestone

is rigidly embedded in ES-2 and covered by a 5−10mm

thick surface layer of fine sand, which simulates under-

lying bedrock, for example in the vicinity of Martian

ripples.

• ES-4 variant: ES-4 is a 0.3 mass ratio mixture of ES-1 and

ES-3. According to the specifications, the admixed larger

grains of gravel within ES-3 should be removed. However,

this was not possible in our case so we could only recreate

a variation of ES-4. The material behavior is highly

dependent on the packing density and varies between very

loose, ES-1 type behavior to highly rigid ES-3/bedrock

type behavior, which is visually indistinguishable.

• Rocks on ES-3: Volcanic boulders are a common sight

on Mars and can disturb classification performance. We

placed volcanic rocks of arbitrary shape and with an

edge length of a few centimeters in ES-3. The rocks are

scattered, not touching, and semi-recessed in the soil. The

rocks were repositioned frequently to achieve different

contact points.

IV. METHOD

A. Dataset collection

We acquired a total of three datasets. Two large datasets

were recorded on the single leg testbed for each foot type

to systematically evaluate their design and the robustness of

the classification against disturbances. A smaller dataset was

recorded with the planar foot on the robot ANYmal to show

the validity of the inspection motion on a real system.

It is essential to prevent over-fitting the model to extrane-

ous signals, so we took special care concerning the testing

procedure. During testing, we kept the filling height of the

containers equal and placed small masses deep in the soil to

achieve equal weight. We raked the soil with a comb-like tool

after each impact. The raking is necessary since the internal

friction angle and the cohesion of the soil depend on the

Fig. 5: Schematic overview of the approach we followed in

our work.

packing density, which would otherwise increase after each

impact. The recreation of similar packing density could only be

done qualitatively, but we consider this variety as a challenge

for the classification algorithm.

On the testbed, we randomly varied the drop height between

40mm to 60mm and adjusted the mass of the lift to 1.44 kg

in order to replicate impact velocities and forces which can

be achieved by the robot. The roll and pitch axis of the soil

container was varied between 0◦ - 25◦ to simulate realistic

conditions. The feet could freely rotate around the lateral axis

of the sled, which resulted in slippage at steep inclinations.

We randomly exchanged the already-prepared soil containers

after a few tests to be invariant to potential sensor drift. During

the exchange, the foot sensors are powered, and we carefully

cleaned the foot with a brush before continuing the experiment.

A set of 175 impact tests was collected with each foot for

each known soil: ES-1, ES-2, ES-3 and the bedrock. Smaller

sets of unknown soils were recorded with the same variations:

CS, ES-4 (loose), ES-4 (compacted), the embedded bedrock in

ES-2 and rocks placed on ES-3. This results in a total amount

of 2600 impacts recorded with the testbed.

With the robot, we repeatedly executed the previously

mentioned impact trajectory. We performed 50 impacts with

the planar foot on non-inclined known soil. A small set of

20 impacts was performed on unknown soil, the CS and the

embedded bedrock in ES-2. This results in a total amount of

240 impacts recorded with the robot.

The minimal post-processing of the acquired foot sensor

data involved the identification of the impact peak and the

extraction of the raw impact oscillation. This results in a signal

length of 200 sample points or 0.5 s per impact. The complete

dataset, named PALPATE (Planetary Soil Impact Dataset), is

openly available for further investigations†.

B. Feature selection

The acquired data consists of six signals for the point foot

(Force/Torque) and 18 signals for the planar foot (Force/Torque,

IMU shank (linear acceleration/angular velocity), IMU sole

(linear acceleration/angular velocity).

†http://www.rsl.ethz.ch/publications-sources/datasets
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TABLE II: Accuracy of the linear SVM classification related

to selected sensor signals for the point* and planar** foot.

Sensor
signal

No. total
Features

Classification accuracy

ES-1 ES-2 ES-3 Bedrock Overall

Force* 309 100% 91% 100% 100% 97.9%

Torque* 309 97% 91% 94% 100% 95.7%

F/T* 618 100% 97% 97% 100% 98.6%

FT** 618 100% 89% 97% 100% 96.4%

IMU Sole** 618 100% 94% 94% 100% 97.1%

IMU Shank** 618 100% 94% 97% 100% 97.9%

IMU Sole&Shank** 1236 100% 94% 97% 100% 97.9%

F/T + IMU Sole&Shank** 1854 100% 97% 97% 100% 98.6%

We decomposed the signals with the Discrete Wavelet Trans-

formation (DWT) using the Daubechies wavelet with four

vanishing moments [28].

Generally, wavelet transformations are well-suited for extract-

ing features from a discontinuous signal as compared to Fourier

transformation, for example. This is because both the frequency

and the temporal information are considered. Wavelets have

been previously used as features for a classification task on a

bipedal robot with good results [14]. We extended this idea

and also transformed the IMU signals by using DWT.

To construct the one-dimensional feature vector, we stacked

the approximation coefficients of the DWTs of all sensor signals

and standardized the data similar to [14]. The number of total

features with respect to the selected sensor signals can be

found in Table II. Alternatively, the unstacked approximation

coefficients can be used as individual feature vectors. This leads

to increased complexity of the training architecture due to the

high amount of available sensors and was thus not followed

in our work.

C. Classification

We trained a one-vs-one Support Vector Machine (SVM)

with a linear kernel on the known soils of each of the three

datasets.

SVMs are known for their robustness against overfitting,

which is especially valuable since our feature vector is relatively

large compared to our sample set. Size-reducing methods for the

feature vector, such as Principle Component Analysis (PCA),

are not needed with this classifier, which results in a highly

detailed descriptor.

More complex Kernels such as quadratic or cubic SVMs

yielded only marginal increases in performance and were

omitted due to increased computational complexity, which

would be a concern when used in a future space mission. We

performed training on 80% of the data of each dataset with

5-fold cross-validation using Matlab’s Statistics and Machine

Learning Toolbox, keeping 20% of the data for validation.

In the next step, we tested the generalization performance

by classifying the previously unknown soils. The schematic

overview of our approach can be seen in Figure 5.

Fig. 6: Classification confusion matrices for the point and

planar foot on the validation dataset of the testbed and the

robot experiment.

V. RESULTS AND DISCUSSION

A. Classification results

The classification accuracy of more than 98% for each

foot for the known soils is remarkable given the disturbances

we introduced during the collection procedure on the testbed

(Figure 6). The IMU signals demonstrate a marginally higher

individual accuracy compared to the F/T signals even though

each sensor achieves an overall accuracy well above 95% (Table

II). The classifier has no difficulties identifying the very soft

ES-1 and the hard bedrock. Confusion is only present between

ES-2 and ES-3, which are also similar to each other when it

comes to the sinkage (Figure 7).

The classification performance of the point foot and planar

foot is the same in the case that all sensor signals are used.

In case only F/T signals are taken into account, the point foot

achieves a slightly higher accuracy. This is intuitively clear due

to the significantly higher sinkage that leads to different impact

dynamics and thus more discriminative features. However, the

high sinkage of the point foot design also decreases locomotion

performance significantly on soft soil as shown in previous

work [25].

The overall classification score achieved with the small

dataset acquired by the robot is very high, with a 95% accuracy.

Misclassification occurred between ES-2 and ES-3 as well as

ES-1 and ES-2. Because of the relatively small size of the

validation dataset, the 10% inaccuracy results from a single

misclassified event. While the predictions are generally accurate,

performing multiple probing motions rather than relying on a

single measurement would further increase confidence in the

measurement. The experiment shows that the dedicated haptic

inspection motion of the robot can be used to classify terrain

in front of the robot.

B. Generalization results

So far, the classifier has only classified soils on which it was

trained. On Mars, soils can be encountered in heterogeneous

mixtures. Hence, we used our trained models to predict the class

labels of unknown soils in order to evaluate the generalization

performance. Figure 8 shows the predicted class distribution

averaged over all samples. It should be noted that the point

foot and planar foot results cannot be directly compared to

each other since the foot soil interaction and impact dynamics

are a function of the shape [7].
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(a) Point foot sinkage (b) Planar foot sinkage

Fig. 7: Sinkage of the point foot (a) and planar foot (b) in mm.

We performed 25 impacts on flat ES-1 (1), ES-2 (2), ES-3

(3), bedrock (4), CS (5), ES-4 variant (loose) (6), ES-4 variant

(compacted) (7), and rocks placed on ES-3 (8).

The point foot can identify the hidden bedrock below ES-2 as a

result of the easy penetration of the surface layer. The point foot

identifies the loosely compacted ES-4 variant as ES-1 and the

highly compacted ES-4 variant as bedrock, which is plausible.

The CS is identified as a soil, with high probability to be ES-3,

to which the soil has a strong resemblance. The point foot

classifier confuses ES-1 and bedrock on the compacted ES-4

variant and ES-1 and ES-3 on the CS which have significantly

different behaviors.

The planar foot creates a more plausible distribution of

classification results. The classifier predicts the loose ES-4

variant as ES-1, the compacted ES-4 variant as either ES-3 or

bedrock and the CS as soil with properties similar to ES-2 or

ES-3. The surface layer on top of the hidden bedrock is not

fully penetrated, so the classifier predicts the soil to be ES-3 or

bedrock. Unclear predictions were only obtained on the rocks

placed on ES-3, especially with the point foot. The rocks were

exposed on the surface and thus significantly disturbed the

detected signals. For instance, the foot could partially hit a

rock, while partly being in contact with the soil, which results

in an interesting bell-shaped probability distribution for the

planar foot. We were able to accurately classify the rocks on

ES-3 when added as a dedicated class, yet the generalization

performance became worse and over-fitted on unknown soils.

Generally, the variety of prediction matches the qualitative

assessment of the foot soil interaction.

Reproducing the results on the smaller dataset collected

with the robot also follows the same trend. Variations due to

slippage were not observed, since only flat soil was tested,

which explains the high accuracy when detecting the bedrock.

Overall, we propose incorporating more inspection maneu-

vers to gain a deeper insight into the behavior of the soil and

detect potential sources of error, such as rocks. The trend we

observe is that our classification method generalizes well and

can be used on previously unobserved soils, especially when

using the planar foot design.

In the case that loose soils such as ES-1 or ES-2 would

be labeled risky or inefficient for traversal, the robot would

successfully manage to avoid these terrains (such as the loose

ES-4 variant) with the trained classifier. On the other hand, the

robot could traverse safe terrain, which visually resembles as

unsafe ES-2 but has rigid bedrock underneath.

VI. CONCLUSIONS

We show that classification of dry, granular media, in which

terramechanic effects dominate, is possible. We demonstrate a

haptic inspection motion with which a quadruped robot can

quickly and safely analyze terrain properties by using one of

its limbs. The classification approach is based on the analysis

of oscillations resulting from a controlled impact on the soil.

These oscillations are sensed by Force/Torque and IMU sensors

in the feet. The classification is performed with a linear Support

Vector Machine which uses the discret wavelet transform of

the sensor signals as features. We validated the robustness of

the classification approach on a dataset acquired on a dedicated

single-foot testbed, which has been open sourced. Various

potential disturbances such as variations in impact velocities,

soil inclination, soil compaction and the occurrence of slip

have been simulated.

Our method achieved an overall classification accuracy of

more than 98% with a dedicated point and planar foot design.

We can show that only a minimum amount of sensors is

necessary in order to achieve a high classification accuracy.

The proposed inspection motion was implemented and

executed on the quadruped robot ANYmal and was able to

classify soils with 95% accuracy. Additionally, the performance

of the prediction on previously unclassified soils shows, that

a qualitative assessment of the expected performance can be

carried out. For example, it was possible to distinguish hard

surfaces underneath a layer of soft-looking soil or visually

indistinguishable soil packing densities.

For the future, we propose to tune the impacts created

on the testbed to closely match the impacts created by the

robot. By training a classifier on a unified dataset acquired

by testbed and robot, the method could be further robustified.

Sampling on a broader variety of soils would potentially create

a finer resolution on the prediction. Additionally, a measure

for the confidence in the predicted class, such as the posterior

probability, could be taken into account. For example, in the

case of low confidence, a strategy for additional sampling,

eventually with different haptic inspection motions, could be

implemented. It remains to be tested whether the proprioceptive

sensors of the robot could achieve the same classification

accuracy.
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(a) Point foot (testbed data) (b) Planar foot (testbed data) (c) Planar foot (robot
experiment)

Fig. 8: The classification labels for unknown soils show that anticipated soil behavior can be predicted. It was possible to

distinguish between highly compressible soils and hard surfaces. (Dataset sizes: 1751, 1502, 503, 204 tests.)
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