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Real-time Wide-baseline Place Recognition using
Depth Completion

Fabiola Maffra, Lucas Teixeira, Zetao Chen and Margarita Chli

Abstract—Place recognition is an essential capability for
robotic autonomy. While ground robots observe the world from
generally similar viewpoints over repeated visits, other robots,
such as small aircraft, experience far more different viewpoints,
requiring place recognition for images captured from very
wide baselines. While traditional feature-based methods fail
dramatically under extreme viewpoint changes, deep learning
approaches demand heavy runtime processing. Driven by the
need for cheaper alternatives able to run on computationally
restricted platforms, such as small aircraft, this work proposes
a novel real-time pipeline employing depth-completion on sparse
feature maps that are anyway computed during robot localization
and mapping, to enable place recognition at extreme viewpoint
changes. The proposed approach demonstrates unprecedented
precision-recall rates on challenging benchmarking and own
synthetic and real datasets with up to 45◦ difference in view-
points. In particular, our synthetic datasets are, to the best of
our knowledge, the first to isolate the challenge of viewpoint
changes for place recognition, addressing a crucial gap in the
literature. All of the new datasets are publicly available to aid
benchmarking.

Index Terms—Aerial Systems: Perception and Autonomy,
Visual-Based Navigation, SLAM, Localization, Recognition

I. INTRODUCTION

S IMULTANEOUS Localization And Mapping (SLAM)
refers to the process of building a map of the robot’s

workspace, while keeping track of its pose within it. In cases
where SLAM estimation fails or drifts, it is essential to deter-
mine whether the robot has visited the current location in a
previous occasion triggering relocalization. While originating
from the problem of loop-closure detection, Place Recognition
is also essential in multi-robot tasks, informing each robot
where the others are. In scenarios, where multiple robots work
in collaboration to carry out a given task, the scene is usually
observed from very different viewpoints and assessing scene
similarity from images captured under such wide baselines
(e.g. ground to air) is known to be a very challenging task.

Place Recognition is commonly addressed using visual cues.
It was the advent of real-time monocular systems for SLAM

Manuscript received: September, 10, 2018; Revised November, 26, 2018;
Accepted January, 9, 2019.

This paper was recommended for publication by Editor Jonathan Roberts
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the Swiss National Science Foundation (SNSF, Agreement
no. PP00P2 157585) and NCCR Robotics.

Authors are with the Vision for Robotics Lab, ETH Zurich, Zurich
8092, Switzerland (e-mail: fmaffra@mavt.ethz.ch; lteixeira@mavt.ethz.ch;
chenze@ethz.ch; chlim@ethz.ch).

This letter has supplementary downloadable material (datasets) available
at www.v4rl.ethz.ch/research/datasets-code.html. A video with results of the
proposed algorithm is available at https://youtu.be/iwxbxAsCJbM.

Digital Object Identifier (DOI): see top of this page.

Fig. 1. A loop in the synthetic Corvin dataset correctly detected by the
proposed approach, despite the large change in viewpoint (45◦).

that paved the way towards the use of SLAM onboard small
UAVs (Unmanned Aerial Vehicles). While many successful
strategies for performing Place Recognition using range sen-
sors have been proposed in the literature [1], these sensors
are usually heavy and power greedy, severely reducing the
endurance of small UAVs or even exceeding their payload
capacity. For UAVs restricted to small payloads and as a result,
limited computational capabilities, the employment of vision-
based approaches comes as a natural choice for automating
their navigation.

Motivated by the challenges of place recognition from aerial
imagery, in this paper we specifically study the problem of
Place Recognition under extreme changes in viewpoint. While
still addressing common challenges in Place Recognition,
such as illumination and situational changes, here, we push
our method to the limits by testing on dramatic changes in
viewpoint and showing that feature-based methods can still
play a key role, enabling practical use in many common
scenarios, such as 3D reconstruction of archaeological sites
and collaborative multi-robot SLAM. Fig.1 shows a successful
loop-closure detected using the proposed approach designed to
address extreme changes in viewpoint.

The main contributions of this paper are:

• a novel real-time pipeline for loop-closure detection that
employs depth-completion to enable feature-based match-
ing between images captured from very different view-
points. As such, this paper advocates and demonstrates
that feature-based approaches are still useful for matching
images across very wide baselines, while maintaining
computation affordable for autonomous UAV navigation.

• new photo-realistic datasets exhibiting dramatic view-
point changes in simulation, isolating for the first time the
problem of viewpoint changes in Place Recognition from
other challenges, such as scale variance, dynamicity of
the scene, and illumination. In addition to these synthetic
datasets, we also release real datasets capturing similarly
large viewpoints using aerial and ground footage.
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II. RELATED WORK

Most recent state-of-the-art SLAM systems, such as ORB-
SLAM [2], employ image retrieval techniques to enable large-
scale place recognition. A Bag-of-Words (BoW) approach
combined with an inverted-file-index [3] or its more compact
representations, such as Fisher Vectors [4] or Vectors of Lo-
cally Aggregated Descriptors (VLAD) [5] are usually applied
to efficiently search for loop-closure candidates in a database
of images containing all previous experiences of the robot. The
widely known BoW approach relies on discretizing the feature-
descriptors’ space to build a dictionary of visual words that
are then used to describe new images by converting locally
invariant feature-descriptors into a BoW representation. Al-
though several well-performing feature-based algorithms have
been proposed for place recognition [6], [7], the extraction of
unique and repeatably recognizable features has proven to be
far from trivial [8]. In fact, extreme changes in appearance
can pose a significant challenge for feature-based approaches.
As a result, approaches using range sensors [1] or structural
descriptors [9] have been proposed exploiting the fact that
geometry offers better invariance to viewpoint changes when
occlusion is not present.

Current feature-based BoW approaches try to circumvent
major changes in appearance by using high-quality feature
detectors and descriptors, such as SIFT [10] and SURF [11].
However, these features still fail when large changes in view-
point occur, and are typically too expensive to be employed
in real-time applications, for example onboard a small UAV.
Affine SIFT features [12] handle large image distortions by
generating multiple affine transformations of an image before
applying traditional SIFT. However, their increased invariance
comes at a prohibitively high computational cost of two orders
of magnitude slower than SIFT. By generating a mesh of the
current robot’s surroundings, the work in [13], makes use of a
3D map provided by SLAM and identifies the most prominent
plane in each image computing only one affine transformation,
as orthophoto. This enables the creation of a single view of the
scene, while using a computationally cheap binary descriptor
and avoiding the need for computing multiple transformations
of the same image.

While purely 2D image-based approaches can offer the
ability to localize images even if local feature matching fails,
these methods are usually considered unsuitable for accurate
visual localization. 3D structure-based approaches offer more
precise pose estimation, becoming a natural choice for visual
place recognition methods, which require the recovery of the
6-DoF camera pose. Sattler et al. [14] combine both methods
by querying an image database to retrieve a set of related
images depicting the same place and performing a small-scale
Structure From Motion (SFM) to obtain a local 3D recon-
struction around a query image. 3D structure-based techniques
assume that the scene is represented by a 3D model, usually
obtained from SFM [15] or SLAM [16], and the camera
pose can be obtained using a PnP solver [17] in a RANSAC
scheme [18]. Another widely used approach is to use LIDAR
sensors to obtain the 3D structure of the environment in very
fine resolution. SegMatch [1], for example, performs place

recognition using 3D laser data using the concept of segment
matching. Despite the reduced amount of noise, these maps
are usually sparser than maps obtained using vision-based
approaches, and as already mentioned, range sensors are still
too heavy and often too power-consuming to be carried on a
small UAV.

More recently, Convolutional Neural Networks (CNNs)
have been successfully demonstrated to extract robust feature
descriptors for place recognition [19] or even to regress a 6-
DoF pose directly from images [20]. While shown to produce
impressive results even under extreme changes in appearance,
deep learning techniques, however, usually rely on powerful
GPUs, rendering them too computationally expensive to run
onboard a small aircraft. Besides this, they also rely on very
large, annotated datasets, which are very hard to obtain.

III. METHODOLOGY

In the proposed Place Recognition pipeline, illustrated in
Fig. 2, we assume that vision-based SLAM running onboard
the robot provides, for each image entering the pipeline, a
sparse 3D map of the location and, optionally, its 2D features
(i.e. keypoints and descriptors). When a new image arrives, a
map densification step generates a denser 3D map from the
sparse 3D map provided by SLAM using a depth completion
approach. New image features can be detected for Place
Recognition if the user desires different features from the
ones used in SLAM. All features get converted into a BoW
representation in order to search for loop-closure candidates
that have similar appearance to the query image. A candi-
date filtering step refines and removes erroneous loop-closure
candidates by exploiting covisibility information captured by
SLAM. Any remaining loop-closure candidates proceed to a
geometric check, where geometric compatibility between the
query and each candidate is evaluated by using all their 2D
features and their denser 3D maps. If the geometric check
succeeds, a loop-closure is deemed as detected and the pipeline
returns the loop-closure match with the most keypoints in
agreement with the query.

Sections III-A, III-B and III-D describe briefly the main
steps of the pipeline already introduced in [21], while Section
III-C focuses on the main novelty of this paper, the use of
depth-completion to improve the establishment of 3D-3D and
3D-2D correspondences during geometric checks, which is the
key component enabling feature-based matching across images
of very different viewpoints.

Fig. 2. The proposed pipeline for Place Recognition employing depth
completion with appearance and geometric checks to determine whether the
current image Q forms a loop closure with an image in the database containing
past robot experiences.
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A. Loop-Closure Candidates Retrieval

Following the approach suggested by Galvez and Tardos [7],
a hierarchical BoW visual vocabulary is formed by discretizing
the feature-descriptors’ space into a set of visual words. When
a new query image arrives, local features, such as BRISK or
SURF, are extracted and converted to a BoW representation,
used to retrieve a set of database images similar to the
current image. The BoW descriptor is scored based on its
distance to database entries, using a ‘term frequency-inverse
document frequency’ (tf-idf) weighting scheme [6] to suppress
commonly occurring words.

The decision of the feature detector and descriptor to
be used is left open in the proposed framework, as this
decision affects the trade-off between precision and recall.
While SIFT [10] and SURF [11] features can be used in the
pipeline, for example, their bigger accuracy comes at the cost
of longer run-times, when compared to binary features, such
as BRISK [22] and ORB [23]. As BRISK features require low
computational cost, being more suitable for UAV navigation,
here we use BRISK for our experiments.

B. Candidate Filtering

As geometric checks are usually expensive, here covisibility
information captured by SLAM is firstly used to refine and
remove erroneous loop-closure candidates suggested by the
BoW descriptors when querying the image database. Fol-
lowing the same approach as in [2], the proposed pipeline
implements a covisibility graph, where each node is a frame
and an edge between two nodes exists if they share enough
observations of the same 3D points in the SLAM map. As a
simplification, in case of loop-closure detection the covisibility
graph is not updated, keeping only covisibility information
at the frames’ neighbourhood. At first, the minimum score
Smin between the query and its neighbours in the covisibility
graph is recorded, and any candidate which scores lower
than 75% of Smin is excluded from the list of candidates.
While [2] removes all candidates lower than Smin avoiding
false-positive at all costs, here we employ a more permissive
filter in order to recover candidate images taken from more
distinct viewpoints subject to strict checks later on. As many
overlapping frames exist, when querying the database, many
images will exhibit a high score when compared to the query
image. These overlapping images are taken into account by
summing up the scores of the images that are neighbours
in the covisibility graph. Any loop-closure candidate scoring
higher than 75% of the best score will proceed to the next
step. A candidate loop image is accepted if three consecutive
loop candidates are consistent. Two frames are defined to be
covisibility-consistent if they share at least one frame among
their covisibility neighbours. More details about this approach
can be found in [2].

C. Map Densification using Depth Completion

During the geometric check, geometric consistency be-
tween the query and the candidate is evaluated by computing
the query’s pose in the candidate’s coordinate frame. This

procedure requires the establishment of 3D-3D or 3D-2D
correspondences between the query-candidate pair. Assuming
that the scene is represented by a 3D map, and each 3D
point is associated with one or more local descriptors in the
image space, 3D-3D and 3D-2D correspondences are obtained
via descriptors matching in the image space. However, under
extreme viewpoint changes, feature-based image matching is
strongly affected by affine distortions and occlusions, resulting
in a reduced number of correspondences between the query’s
and the candidate’s keypoints. Besides this, it must be noted
that only keypoints successfully tracked by SLAM have a 3D
landmark associated with them. As such, only a small number
of keypoints carrying 3D information arrives to the geometric
check. By using a depth completion for map densification, in-
terpolated 3D landmarks can be estimated for the 2D keypoints
that have no depth-estimates yet, improving the establishment
of 3D-3D and 3D-2D correspondences for images captured
across very wide baselines.

Fig. 3 illustrates the map densification pipeline, which
consists of a depth completion step, shown in Figs. 3a-3b,
followed by the creation of the interpolated 3D landmarks,
illustrated in Fig. 3c. Our map-densification algorithm, takes
as input the camera pose, the 3D landmarks visible by this
camera (dark green) and the 2D keypoints (red), for which
we want to calculate an interpolated landmark. A dense mesh
of the 3D landmarks is first computed (in purple in Fig. 3a)
using the open-source mesh-generation pipeline of [24]. A
depth image, of the same size as the camera image is obtained
by rendering this mesh into the image plane and extracting
the depth-buffer of the render engine, as shown in Fig. 3b,
illustrating the 2D keypoints in red and the projections of the
3D landmarks in the image in green. Any 2D keypoints lying
over a pixel with depth information, have their corresponding
3D landmarks estimated, in camera coordinates, by using the
pixel’s coordinates and the depth value on that pixel, using
Equation (1). Any remaining 2D keypoints cannot have a
3D landmark established. Fig. 3c shows, in blue, the new,
interpolated 3D landmarks added to create a denser map of
the scene.

Pc = (X,Y, Z) =

(
(u− u0) ∗ d

fu
,
(v − v0) ∗ d

fv
, d

)
, (1)

where (u, v) is the position of the detected keypoint, u0 and
v0 are the pixel coordinates of the camera’s optical center, fu
and fv are the focal length in u- and v-direction, respectively,
and d is the depth provided by the mesh at the pixel (u, v).

(a) (b) (c)
Fig. 3. The map-densification process: the green 3D landmarks are used to
estimate the depth of the red 2D keypoints by creating a mesh (in purple)
in (a), and projecting it in a depth image visible in (b). This results to the
additional blue 3D landmarks in (c).

While it is possible to extract all the keypoints needed for
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Place Recognition during SLAM, only a reduced number of
them, represented in bright green in Fig. 3, can be tracked
in order to keep its real-time performance. With OKVIS [25]
(the SLAM system used in our experiments), for example, we
can usually track about 400 landmarks while maintaining real-
time performance, however, about 1000 keypoints were used
here for Place Recognition. As such, the map-densification
approach focuses in estimating the 3D landmarks for the
keypoints that were ignored or not successfully tracked by
SLAM. However, if the type of keypoints and descriptors
used for Place Recognition is different from the one used
during SLAM, new features need to be detected. In this case,
the map densification will try to estimate a 3D landmark for
every newly detected keypoint. One advantage of the latter
case is a better decoupling between the SLAM method and
Place Recognition.

Another advantage of the proposed map-densification ap-
proach is that it can handle arbitrarily sparse maps, which
can contain certain amount of noise, while traditional depth-
completion algorithms, such as [26], rely on good quality and
not very sparse depth images as input in order to create a dense
depth image. Here, we opted to use a mesh-based approach
to create a dense depth image out of the 3D landmarks
provided by SLAM. A higher quality representation of the
scene is then obtained using the mesh generation pipeline
of [24], which applies a Delaunay triangulation followed
by an outlier removal to create a 3D triangle mesh out
of the 3D landmarks provided by SLAM. Assuming local
planarity among neighbouring vertices of the mesh, outlier
removal is performed by comparing the value of a vertex
with the centroid of the vertex’s neighbourhood. In case of
a large disagreement the vertex is eliminated. This approach
prioritizes high-quality depth estimations instead of a full
representation of the mesh, and holes can exist at points with a
high local depth uncertainty. While very efficient in removing
outliers, the use of a sparse 3D map together with the local
planarity assumption create a smooth mesh of the environment,
eliminating details in small areas with a large depth variation.
However, as demonstrated in [13] and [24], this approach was
already proven to work well in man-made environments, where
locally planar structures are usually present. Besides this, this
mesh generation approach takes about 7 ms per frame to create
a 3D mesh out of the 3D landmarks, rendering it suitable for
real-time applications.

D. Geometric Check
The BoW approach does not use any geometric information

for image retrieval, accepting two images as a match if they
present a similar collection of words. As geometry was shown
to play a key role in identifying true loop-closures, here
we employ the geometric checks proposed in our previous
work [21]. Geometric consistency between a query-candidate
pair is evaluated by computing the query’s pose in the can-
didate’s coordinate frame. If a pose PC

Q can be successfully
estimated, the candidate is accepted as a loop-closure for the
query.

When testing for geometric consistency, we first search for
feature correspondences between the query Q and a candidate

C using only keypoints with associated 3D landmarks. If
enough 3D correspondences are found, we attempt to estimate
a similarity transformation (i.e. translation, rotation and scale)
between the query and the candidate using Horn’s method
[25] in a RANSAC scheme [18]. If a transformation that
satisfies a minimum threshold on the average reprojection error
is found, the candidate is accepted as a loop-closure for the
query. In this case, PC

Q can be easily recovered by multiplying
the candidate’s pose on his own coordinate system by the
similarity transformation. However, if a transformation cannot
be estimated or not enough 3D-3D matches can be found,
the set of correspondences to be considered is expanded by
searching for feature correspondences between the candidate’s
keypoints with 3D landmark associated and all the keypoints in
the query Q. If enough 3D-2D matches are found, we attempt
to directly estimate the pose PC

Q using the 3D-2D matches
[17]. If this succeeds, a loop-closure is deemed as detected.
We repeat this process to all loop-closure candidates and select
the candidate match with biggest number of inliers.

IV. DATASETS

In this work, two types of datasets are used to evaluate
the proposed method. To isolate the problem of viewpoint
changes in place recognition, while keeping full control of the
test conditions, we set up a photo-realistic simulation. Finally,
tests are conducted also in real conditions, using datasets
recorded with hand-held cameras and aerial robots, exhibiting
very different viewpoints, such as air-ground matching.

A. Photo-realistic Synthetic Datasets

Large scale outdoor experiments using real robots are the
best way to validate a place recognition algorithm. However,
such data lacks not only the ground-truth of the robot’s
poses but also the 3D model of the environment. Traditional
methods of constructing ground-truth poses, such as with
GPS or laser tracking, estimate the robot’s position with
an accuracy of several centimetres at best, but can also
be up to a few meters inaccurate. Even more problematic
is the orientation estimation of the camera that is usually
unknown or only roughly estimated in post-processing. In
order to guarantee good ground-truth for the loop-closures,
some datasets are manually annotated, such as in [21]. By
making use of synthetic datasets, ground-truth information is
easily obtained, allowing quantitative evaluation of the method
by automatically estimating the ground-truth.

Fig. 4. The Left image shows the result of our simulation and the right is an
actual picture taken from the same place with a consumer camera.

In order to create our synthetic datasets, we use 3D models
obtained by photogrammetric reconstruction. We create UAV
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(a) L’Agout in Castres (b) 0◦view (c) 15◦view (d) 30◦view (e) 45◦view
Fig. 5. L’Agout dataset: 3D photometric reconstruction of medieval houses. In (a), a picture of the location shows houses of about 15m height by 100m
width in total and a depth variation of 3m among the facades. In (b)-(e) are example images from L’Agout dataset at 0◦, 15◦, 30◦ and 45◦, respectively.

(a) Corvin Castle

0°

15°

30°

45°

(b) angles side view (c) 0◦view (d) 30◦view (e) 45◦view
Fig. 6. Corvin dataset: 3D photometric reconstruction of Corvin Castle (a). In (b), the different viewpoints used to record the synthetic datasets, and in (c),
(d) and (e), example images from Corvin dataset at 0◦, 30◦ and 45◦, respectively, are shown.

trajectories using the Rotors UAV physical simulator [27]
and the RGBD images are produced by the Blender render
engine. Fig. 4 shows that our simulation produces images
that are very similar to the real ones. This approach on
dataset generation produces visual-inertial measurements that
reproduce the Skybotix VI-Sensor with resolution of 752×480
pixels, the same resolution as in the outdoor real datasets.
Defining as loop a pair of images with more than 50% of
overlap and using the ground-truth poses provided by the
physical simulator, we were able to easily distinguish (and
annotate) the image-pairs that constitute loops.

Namely, we construct the following datasets:
The L’Agout 0◦ & 15◦ & 30◦ & 45◦ dataset was produced

using aerial pictures of “Maisons sur l’Agout” visible in Fig.
5, depicting medieval houses with balconies over the river
Agout. We produce 4 sequences of 100 meters with a laterally
moving drone carrying a camera facing the houses at 0◦ (i.e.
pointing forwards), 15◦ from the horizon, 30◦, and 45◦ as
shown in Fig. 6b. It is important to highlight that the position
of the drone was chosen in a way that the camera frustum is
completely filled by the buildings in order to guarantee that
the only difference between these sequences happens in the
viewpoint, without any changes in scale.

The Corvin 0◦ & 30◦ & 45◦ dataset was produced using
aerial footage of the Corvin Castle visible in Figs. 4 and 6.
We produced 3 sequences at 0◦, 30◦, and 45◦, while doing a
300-meter circular flight around the castle. These sequences
capture a scene composed of a large range of different depths.

B. Outdoor Real Datasets

While we focus our real world experiments on publicly
available datasets, we also construct a new air-ground dataset,
which we make publicly available together with the new
synthetic datasets. All real datasets used in this paper were
recorded using a Skybotix VI-Sensor, using only one camera
and one IMU in a hand-held setup or mounted on an AscTec
Hexacopter Neo for different viewpoints. The datasets are:

Shopping street 1 dataset [21] 7−→ Ground-Ground is a
hand-held dataset with the camera revisiting the same location
with very similar viewpoints in a busy shopping street in
Zurich.

OldCity dataset [13] 7−→ Ground-Ground consists of
two walking sequences of 230m in the old city of Zurich,
presenting a more complex scenario due to the presence
of narrow passages in this area, providing wide range of
viewpoints of the same places.

Clausius street dataset [21] 7−→ Air-Air is a dataset
recorded along a residential street with the camera mounted on
the UAV, facing the buildings of one street side, while perform-
ing lateral movements with the UAV in both directions. The
two air sequences exhibit large viewpoint changes, perceptual
aliasing and strong lighting changes.

Clausius street dataset 7−→ Air-Ground was recorded in
the same street, with the air sequence taken from the previous
dataset, while a new hand-held sequence was recorded on the
same day. This is the most challenging real dataset because of
its extreme viewpoint changes.

V. EXPERIMENTAL RESULTS

We benchmark the proposed pipeline against three state of
the art place recognition algorithms that are suitable for UAV
navigation, referred to here as BoBW [7], ORTHO [13] and
VTPR, a modified version of [21] for ease of comparisons.
In particular, VTPR here, corresponds to the methodology of
[21], albeit using the same feature descriptors (i.e. BRISK
instead of BRISK-48-bytes) as used in our method, as well
as small modifications in the candidate filtering step. This
strategy reveals the true power of map densification, which
is also the main contribution of this work. It should be
noted, however, that with these modifications VTPR achieves
slightly better results than the original method of [21]. The
use of BoBW with ORB [23] features in [2], was shown to
provide scale and rotation invariance, while keeping real-time
capabilities. ORTHO makes use of BRISK [22] features and
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minimizes the effect of viewpoint changes by using a mesh-
based approach to create orthophotos projecting the image to
the most salient plane in the scene.

Although the decision of the feature detector and descriptor
to be used is left to open in the proposed pipeline, here
we choose to run our experiments using BRISK features,
which provide a good matching performance at a very low
computational cost. To build a visual vocabulary as in [7],
we discretize a BRISK descriptors’ space using 6000 images,
different from the ones used for testing, depicting indoor and
outdoor environments. A vocabulary of 1 million words is
generated by building a vocabulary tree with 10 branches and
6 depth levels. The same vocabulary is used throughout all the
experiments, demonstrating the robustness of the method.

A. Narrow viewpoint changes

We test the proposed pipeline and the selected algorithms on
narrow baselines in order to validate our algorithm on publicly
available datasets against the state of the art in conditions that
existing algorithms are designed for.

First, we record the precision-recall curves for all algorithms
on the Shopping Street 1 dataset, which depicts a planar scene
at small viewpoint changes. All the algorithms perform well in
this dataset, with the proposed method presenting the highest
recall (0.96) at precision 1, against 0.94 for both BoBW and
VTPR, and 0.78 for ORTHO.

Precision-recall curves for the Old City dataset are visible
in Fig. 7. This dataset exhibits both small and challenging
viewpoint changes. As such, all algorithms can recover correct
loops in areas with small changes in viewpoint, while main-
taining perfect precision. However, the proposed method can
also recover correct loops in areas with challenging viewpoint
changes, achieving recall 0.79 at precision 1 and outper-
forming all others algorithms Example loop-closure detections
using the proposed approach in the Shopping Street 1 and Old
City datasets are shown in Fig. 8a and 8b, respectively.

The methods were also tested in the Air-Air Clausius Street
dataset. The loop-closures detected by our approach and a
correct match are illustrated in Fig. 9. While the proposed
approach detects one false positive loop, BoBW and ORTHO
detect only few correct matches and much more false positives
in this dataset. VTPR detects about half of the loops detected
by the proposed approach, as can be seen in comparison to the
results in [21], however, without any false positive detections.

B. Image Retrieval and Candidate Filtering in wide viewpoint
changes

In our exploration towards robust loop-closure detection
under large viewpoint changes, the first step was to deter-
mine whether our image retrieval algorithm works in these
conditions and how many of the top candidates we need
in order to guarantee a good chance of having at least
one correct candidate in the set passed on to the geometric
check. Fig. 10 shows the percentage of queries with at least
one correct candidate before and after the candidate-filtering
step, while varying the number of images retrieved from the
image database. Note that the candidate filtering step not

only removes erroneous candidates, but also filters out some
correct loop-closure candidates. Empirically, retrieving the top
30 most similar images to a query from the image database
is enough to provide enough correct candidates for the next
steps of the pipeline. Despite the decrease from 97% (before
candidate filtering) to about 88% (after candidate filtering) in
the percentage of queries with at least one correct candidate
in L’Agout 0◦-45◦ sequence matching, most of the queries
can still provide correct candidates for the geometric check,
without much compromise in performance.
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Fig. 7. Precision-Recall Curves for the Old City dataset, showing that the
proposed approach outperforms BoBW and ORTHO in scenarios where these
algorithms are designed for, planar scenes (in the case of ORTHO) and narrow
viewpoint changes.

(a) Shopping Street 1: small viewpoint changes

(b) Old City: more challenging viewpoints
Fig. 8. Example loop-closures from the Shopping Street 1 and Old City
datasets.

(a) Loop-closure in the Air-Air Clausius Street dataset

(b) UAV trajectories (in red and blue) and detected loops (in bright green)
Fig. 9. Loop closures in the Air-Air Clausius Street dataset: in (a), is an
example loop-closure detected using the proposed method and in (b), the
trajectories followed by the UAV, and the loops correctly detected between
them. A false loop detection is shown in the dashed green line.
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C. Wide viewpoint changes

In order to evaluate how the proposed method performs
with increasing changes in viewpoint, we first test for loop-
closures within the L’Agout dataset. We test the sequence
at 0◦ against all others (i.e. 15◦, 30◦ or 45◦). Except for
the neighbours of the current position, that depict the same
place and cannot be detected, no self-loops exist along a
single sequence. However, as all images entering the pipeline
are tested for loop-closures before being inserted into the
database of images, false positive detections are still possible
inside one sequence. Fig. 11a shows the precision-recall curves
for L’Agout for all the algorithms. Although all algorithms
perform well at 15◦ of viewpoint changes (i.e. 0◦-15◦), both
VTPR and the proposed method achieve the highest recall
(0.97) for perfect precision. At 30◦, both methods achieve a
recall of 0.72 for perfect precision against 0.21 for ORTHO,
while BoBW fails to detect loop-closures. The robustness of
the proposed algorithm in viewpoint changes becomes evident
at larger angles. At 45◦, the proposed approach achieves
recall of 0.54 for perfect precision against 0.38 for VTPR,
representing an improvement of 42% with relation to the latter
one, while both BoBW and ORTHO fail quickly. Fig. 13 shows
a correct loop-closure detected in the L’Agout 0◦-45◦ dataset,
using the proposed approach.

We repeat the same experiment for the Corvin dataset,
which captures a scene with strong depth variations. We record
precision-recall curves for the sequence at 0◦ against the one at
30◦ and at 45◦. As evident in Fig. 11b, these datasets present
great challenges for all algorithms, with BoBW and ORTHO
failing quickly. While VTPR achieves, a recall of 0.5 at 30◦

and 0.04 at 45◦ viewpoint changes for perfect precision, the
proposed method achieves a recall of 0.71 at 30◦ and 0.14 at
45◦ for the same precision. This represents an improvement
of 40% at 30◦ and 250% at 45◦ of viewpoint changes,
when compared to VTPR. Fig. 14 depicts correct loop-closure
detections, in the Corvin dataset, using the proposed approach.

The methods were also tested in the Air-Ground Clausius
Street dataset. While our approach detects one false positive
loop and many correct loops, as shown in Fig. 12, BoBW,
ORTHO and VTPR detect only very few correct matches (less
than 5) and few more false positives.

VI. TIMINGS

As consecutive frames are usually very similar, loop-closure
detection does not need to be attempted at every frame, so in
practice, runtime in the range of 1-5 Hz is enough for real-life
applications. In the worst-case scenario, where all candidates
entering the geometric check are tested for loop-closure, the
proposed algorithm runs at 5Hz on average on a single core
Intel i7 2.8GHz, allowing real-time place recognition within
a SLAM system. Setting a maximum of 50 image-candidates
at the end of the image-retrieval step, we avoid compromising
the timings in cases of longer robot trajectories (resulting to
larger image databases). In reality, even faster performance is
expected as the geometric check can abort as soon the first
suitable candidate is found.
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Fig. 10. The percentage of queries with at least one correct loop-closure
candidate to be passed on to the geometric check for different viewpoint
changes. We provide curves both before and after the candidate-filtering step
used for efficiency, while varying the number of top images retrieved from
the image database. The higher the percentage achieved, the better the chance
of discovering the correct loop-closure after the geometric check.
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(a) L’Agout dataset
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(b) Corvin dataset
Fig. 11. Precision-Recal Curves in the L’Agout dataset in (a) using different
viewpoint variations (from 0◦ to 15◦, 30◦ and 45◦), and in the Corvin dataset
in (b) while varying the viewpoints from 0◦ to 30◦ and to 45◦.

(a) Loop-Closure in the Air-Ground Clausius Street dataset

(b) UAV trajectory (in red and blue) and detected loops (in bright green)
Fig. 12. Air-Ground Clausius Street dataset: In (a), example loop-closure
detected using the proposed method and in (b) the trajectory followed by the
UAV and by the hand-held setup, and the loops correctly detected between
them. A false loop detection in the dashed green line.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

Fig. 13. An example loop-closure detection in the L’Agout dataset using the
proposed approach for a change in viewpoint from 0◦ to 45◦.

Fig. 14. Example loop-closure detections in the Corvin dataset using the
proposed approach. A viewpoint change from 0◦ to 45◦ illustrates the extent
of the challenge in this dataset.

VII. CONCLUSION

This paper proposes a new place recognition pipeline capa-
ble of addressing dramatic changes in viewpoint (of up to
45◦), while maintaining robustness at smaller angles, from
narrow baselines. It relies on a depth-completion approach
to improve the establishment of 3D correspondences during
geometric checks, enabling feature-based matching across
images captured from very wide baselines.

Evaluation on synthetic and real datasets with both hand-
held and aerial footage, reveals that the proposed method
achieves significant improvement in precision and recall in
comparison to the state of the art, while keeping onboard com-
putation affordable for autonomous UAV navigation, demon-
strating that feature-based techniques still have a lot to offer
in place recognition at extreme viewpoint changes.

To the best of our knowledge, the new synthetic datasets
presented here are the first to completely isolate the problem
of viewpoint changes for place recognition, closing a crucial
gap in the literature. To facilitate further research on this topic,
our datasets are publicly available.
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