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Article

A selective ER-phagy exerts procollagen quality
control via a Calnexin-FAM134B complex
Alison Forrester1,†, Chiara De Leonibus1,†, Paolo Grumati2,†, Elisa Fasana3,†, Marilina Piemontese1,

Leopoldo Staiano1, Ilaria Fregno3,4, Andrea Raimondi5, Alessandro Marazza3,6, Gemma Bruno1,

Maria Iavazzo1, Daniela Intartaglia1, Marta Seczynska2, Eelco van Anken7, Ivan Conte1,

Maria Antonietta De Matteis1,8, Ivan Dikic2,9,* , Maurizio Molinari3,10,** &

Carmine Settembre1,11,***

Abstract

Autophagy is a cytosolic quality control process that recognizes
substrates through receptor-mediated mechanisms. Procollagens,
the most abundant gene products in Metazoa, are synthesized in
the endoplasmic reticulum (ER), and a fraction that fails to attain
the native structure is cleared by autophagy. However, how auto-
phagy selectively recognizes misfolded procollagens in the ER
lumen is still unknown. We performed siRNA interference, CRISPR-
Cas9 or knockout-mediated gene deletion of candidate autophagy
and ER proteins in collagen producing cells. We found that the ER-
resident lectin chaperone Calnexin (CANX) and the ER-phagy
receptor FAM134B are required for autophagy-mediated quality
control of endogenous procollagens. Mechanistically, CANX acts as
co-receptor that recognizes ER luminal misfolded procollagens and
interacts with the ER-phagy receptor FAM134B. In turn, FAM134B
binds the autophagosome membrane-associated protein LC3 and
delivers a portion of ER containing both CANX and procollagen to
the lysosome for degradation. Thus, a crosstalk between the ER
quality control machinery and the autophagy pathway selectively
disposes of proteasome-resistant misfolded clients from the ER.
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Introduction

Macroautophagy (hereafter referred to as autophagy) is a homeostatic

catabolic process devoted to the sequestration of cytoplasmic material

in double-membrane vesicles (autophagic vesicles, AVs) that eventu-

ally fuse with lysosomes where cargo is degraded (Mizushima, 2011).

Autophagy is essential to maintain tissue homeostasis and counter-

acts both the onset and progression of many disease conditions, such

as ageing, neurodegeneration and cancer (Levine et al, 2015).

Substrates can be selectively delivered to AVs through receptor-

mediated processes. Autophagy receptors harbour a LC3 or GABARAP

interaction motif (LIR or GIM, respectively) that facilitate binding of

the cargo to LC3 or GABARAP proteins, which decorate autophago-

somal membranes (Stolz et al, 2014; Rogov et al, 2017). Proteins and

entire organelles or their portions can be targeted to autophagy via

receptor-mediated processes. A notable example is represented by ER-

phagy, a selective form of autophagy in which portions of the ER are

sequestered within AVs and transported to the lysosomes for degrada-

tion (Fregno & Molinari, 2018; Grumati et al, 2018). To date, the yeast

Atg39, Atg40 and the mammalian FAM134B, SEC62, RTN3 and CCPG1

proteins have been identified as ER-phagy receptors (i.e. as LC3-

binding proteins that decorate specific ER subdomains for capture by

AVs) (Khaminets et al, 2015; Mochida et al, 2015; Fumagalli et al,

2016; Grumati et al, 2017; Smith et al, 2018). ER-phagy mediates the
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turnover of ER membranes and promotes recovery after ER stress,

bacterial and viral infections (Khaminets et al, 2015; Chiramel et al,

2016; Fumagalli et al, 2016; Grumati et al, 2017; Lennemann & Coyne,

2017; Moretti et al, 2017; Smith et al, 2018).

ER homeostasis relies on ER quality control mechanisms to

prevent the accumulation of inappropriately folded cargoes within

its lumen. Misfolded proteins are dislocated from the ER to the

cytosol to be degraded by the 26S proteasome, a process known as

ER-associated degradation (ERAD)(Preston & Brodsky, 2017).

However, not all misfolded ER proteins are eligible for ERAD and

thus must be cleared from the ER through other processes. Auto-

phagy-dependent and autophagy-independent lysosomal degrada-

tion of proteins from the ER has also been reported (Ishida et al,

2009; Hidvegi et al, 2010; Houck et al, 2014; Fregno et al, 2018).

However, the mechanism by which misfolded ER luminal proteins

are recognized by the cytosolic autophagic machinery and delivered

to the lysosomes remains to be understood.

Collagens are the most abundant proteins in animals, and type I

and type II collagen (COL1 and COL2) are the major protein compo-

nents of bone and cartilage, respectively (Bateman et al, 2009).

They are synthesized as alpha I and alpha II chains and folded into

triple helices of procollagen (PC) in the ER. Properly folded PCs

associate with the heat shock protein 47 (HSP47) chaperone and

then leave the ER through sub-regions called ER exit sites (ERES),

within COPII-coated carriers, and move along the secretory pathway

(Malhotra & Erlmann, 2015). Previous studies estimated that

approximately 20% of newly synthesized type I PC (PC1) is

degraded by lysosomes as a consequence of inefficient PC1 folding

or secretion (Bienkowski et al, 1986; Ishida et al, 2009). In case of

mutations in PC or HSP47, the fraction of PC degraded increases

significantly (Ishida et al, 2009). Similarly, a fraction of type II PC

(PC2) produced by chondrocytes of the growth plates is degraded

by autophagy, and inactivation of this catabolic pathway results in

PC2 accumulation in the ER and defective formation of the extracel-

lular matrix (Cinque et al, 2015; Bartolomeo et al, 2017; Settembre

et al, 2018). Overall these data clearly indicate that aberrant PC

molecules represent ERAD-resistant substrates where autophagic

clearance emerges as a crucial and physiologically relevant event in

the maintenance of cellular and organ homeostasis. However, to

date, the mechanism by which ER-localized PCs are selectively

disposed of by autophagy is still unknown.

In this study, we sought to uncover the mechanisms that select non-

native PC in the ER lumen for lysosomal delivery and clearance. We

found that the misfolded PC molecules (e.g. HSP47 negative) are cleared

from the ER through FAM134B-mediated ER-phagy. Notably, FAM134B

binds PC molecules in the ER through the interaction with the trans-

membrane ER chaperone Calnexin (CANX) that acts as a specific

FAM134B ER-phagy co-receptor for misfolded PCs. The formation of this

complex allows the selective delivery of PC molecules to the lysosomes.

Results

Autophagy promotes degradation of intracellular procollagens
preventing their accumulation in the ER

Using three different collagen producing cell lines, mouse embryonic

fibroblasts (MEFs) and human osteoblasts (Saos2) stably expressing

the autophagosome membrane marker LC3 fused with GFP (GFP-

LC3) (Kabeya et al, 2000), and rat chondrosarcoma cells (RCS)

immunolabelled for LC3, we observed co-localization of LC3-positive

vesicles (hereafter referred as autophagic vesicles, AVs) with PC1

(MEFs and Saos2) and PC2 (RCS) (Fig 1A–D). Similarly, we observed

the co-localization of PC1 spots with the GFP-tagged double-FYVE

domain-containing protein 1 (DFCP1), which labels sites for

autophagosome biogenesis (omegasomes) (Fig EV1A and B). In vivo,

osteoblasts of the mandible in Medaka fish embryos (stage 40),

showed the presence of AVs containing PC2 molecules (Fig EV1C–E).

When MEFs, Saos2 and RCS cells were treated with the lysoso-

mal inhibitor bafilomycin A1 (BafA1), PC molecules accumulated in

the lumen of swollen endo/lysosomes (LAMP1-positive organelles,

hereafter referred as lysosomes) (Fig 1E–G). These data were vali-

dated by PC1 immuno-electron microscopy (IEM) (Fig 1H). Western

blot analysis confirmed the accumulation of intracellular PCs, as

well as of the autophagy markers LC3-II and SQSTM1/p62, in cells

treated with BafA1 compared to untreated cells (Fig EV2A). BafA1

washout induced a rapid clearance of PC1 and PC2 from lysosomes

of MEFs and RCS, respectively, in line with the notion that PCs are

degraded in this compartment (Fig EV2B and C).

Lysosomal storage disorders (LSDs) are genetic diseases charac-

terized by a defective lysosomal degradative capacity due to muta-

tions in genes encoding for lysosomal proteins. As a result,

lysosomal substrates progressively accumulate within the lumen of

lysosomes causing lysosomal swelling and cell dysfunction. We

sought to determine whether PC molecules accumulate in the lyso-

somes of LSD osteoblasts. Saos2 osteoblasts in which the alpha-L-

iduronidase gene was deleted using CRISPR-Cas9 technology

(CRISPR-IDUA) represent a disease model of mucopolysaccharidosis

type I (MPS I), a lysosomal storage disorder with severe skeletal

manifestations (Oestreich et al, 2015). Similar to cells treated with

BafA1, CRISPR-IDUA showed swollen lysosomes, suggesting an

accumulation of undigested substrates in the lysosomal lumen

(Fig 1I). Most importantly, the level of PC1 in lysosomes, and in the

whole cell lysate, was higher in CRISPR-IDUA Saos2 compared to

control cells (Fig 1I and J).

To verify at which trafficking stage PC became an autophagy

substrate, we performed a temperature shift assay where PC accu-

mulates in the ER during incubation at 40°C, and is released from

the ER upon shift of the temperature to 32°C. U2OS cells expressing

GFP-LC3, mCherry-PC2 and ER marker RDEL-HALO, were imaged

upon shift to 32°C (time 0 s). We observed that PC2 spots formed at

the ER and progressively accumulated GFP-LC3 (Fig 2A and Movie

EV1). Similarly in U2OS cells expressing phosphatidylinositol 3-

phosphate (PtdIns(3)P) -recognition domain construct GFP-2•FYVE,

mCherry-PC2 and ER marker RDEL-HALO, the PC2 was visible at

an area of GFP-2•FYVE-positive ER, and dissociated from the main

tubular ER structure releasing a vesicle positive for ER, GFP-2•FYVE

and PC2 (Fig 2B and Movie EV2). Co-localization between GFP-LC3,

the ER chaperone CANX and PC1 was also observed by Airyscan

super-resolution confocal microscopy (Fig 2C). Similarly, we

observed co-localization of PC1 spots with GFP-DFCP1 and CANX in

MEFs and Saos2 cells (Fig EV3A). We also performed correlative

light electron microscopy (CLEM) and electron tomography of GFP-

LC3 expressing Saos2 cells, showing that PC1 and CANX are found

together in a small vesicle contained within a larger LC3-positive

vesicle (Fig 2D and E). Taken together, these data suggest that PC
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molecules are sequestered within LC3-positive vesicles when they

are still within the ER.

The collagen-specific chaperone HSP47 was excluded from the

AVs containing PC1 in MEFs, strongly suggesting that autophagy

sequesters non-native PC1 molecules in the ER (Fig EV3B), in line

with previous results (Ishida et al, 2009; Cinque et al, 2015). To

further corroborate this notion, we studied two missense mutations

in the COL2A1 protein (R789C and G1152D) that induce misfolding
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Figure 1. PCs are autophagy substrates and accumulate in lysosomes.

A, B Airyscan confocal analysis of PC1 (568, red) co-localization with GFP-LC3 (green) in (A) MEF (B) Saos2. Scale bars = 10 lm. The insets show higher magnification
(A = x4.68; B = x6.76) and single colour channels of the boxed area.

C Airyscan confocal analysis of PC2 (647, red) co-localization with LC3 (488, green) in RCS cells. Scale bars = 10 lm. The insets show higher magnification (x7.33) and
single colour channels of the boxed area.

D Quantification of GFP (A, B) or LC3 (C) vesicles positive for PC1 or PC2, expressed as % of total LC3 (mean � SEM), n = 18 cells (MEFs and Saos2); n = 12 (RCS) from
three independent experiments.

E–G Scanning confocal microscopy analysis of MEFs, Saos2 and RCS cells treated with BafA1, immunolabelled for PC1 or PC2 and LAMP1. Nuclei were stained with Hoechst.
(E, F) Scale bars = 10 lm, (G) Scale bars = 5 lm. The insets show higher magnification (E = x4.99; F = x6.49; G = x2.01) and single colour channels of the boxed area.

H Transmission EM analysis in Saos2 cells, treated with BafA1, showing in detail a lysosome which contains immunolabelled PC1 (with nanogold particles), as
indicated by arrows.

I Scanning confocal microscopy analysis of Saos2 WT and CRISPR-Cas9 IDUA Saos2 at steady state, immunolabelled for PC1 and LAMP1. Nuclei were stained with
Hoechst. Scale bar = 10 lm. The insets show higher magnification (left = x3.09; right = x3.12) and single colour channels of the boxed area. Bar graph shows
quantification of lysosomes containing PC1 expressed as % of total LAMP1 per cell (mean � SEM). n = 31 WT cells, n = 33 CRISPR cells counted; three independent
experiments. Student’s unpaired, two-tailed t-test ***P < 0.0001.

J WT and CRISPR-IDUA Saos2 lysed and analysed by Western blot. Data are representative of three independent experiments.

Source data are available online for this figure.
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Figure 2. Autophagy sequesters PC molecules in the ER.

A, B U2OS expressing (A) GFP-LC3 or (B) GFP-2-FYVE (green), mCherry-PC2 (red) and RDEL-HALO (blue) were imaged live by spinning disc microscopy. Single and merge
channels time-lapse stills at higher magnification (A = x3.93; B = x3.42) from the boxed region are shown on the right. Scale bar = 10 lm.

C Airyscan analysis of Saos2 cells expressing GFP-LC3 (green) and immunolabelled for PC1 (405, blue) and CANX (647, red). The insets show higher magnification
(x5.26) and single colour channels of the boxed area. Scale bar = 10 lm.

D Correlative light electron microscopy (CLEM) and electron tomography of Saos2 cells transfected with GFP-LC3 (green) and labelled for PC1 (568, red and nanogold
particles) and CANX (647, blue). Cells were first imaged by confocal microscopy (top left panel), and then, the same region was retraced in EM (upper middle panel)
and overlay is shown (upper right panel). Arrow indicates a LC3-positive vesicle containing CANX and PC1 molecules.

E Single tomography slice (left panel, taken from boxed are in D at a magnification of x2.84), overlay with immunofluorescence (IF) (central panel) and IF 3D
rendering of AV (green) and the CANX positive vesicle containing gold particles of labelled collagen (blue and white, respectively) inside an AV (right panel).
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of the PC2 triple helix and accumulation within the ER of chondro-

cytes. The mutations cause a type II collagenopathy in humans,

named spondyloepiphyseal dysplasia congenita (SEDC) (Murray

et al, 1989). When expressed in chondrocytes, the R789C and G1152D

mutants were targeted to the lysosomes at higher rates compared

with WT COL2. Notably, pharmacological enhancement of auto-

phagy with the autophagy inducing peptide Tat-BECLIN-1 (Shoji-

Kawata et al, 2013) increased targeting of WT and of mutant PC2

molecules to lysosomes. Opposite results were observed by treating

cells with the autophagy inhibitor SAR405 (Fig EV3C). Taken

together, these data suggest that autophagy preferentially degrades

non-native PC molecules and prevents their accumulation in the ER.

FAM134B is required for autophagy of procollagen

Distinct autophagy-related (ATG) proteins and receptors play an

essential role in autophagosome formation and cargo recognition,

respectively (Suzuki et al, 2017). To characterize the machinery that

enables the delivery of PC molecules to lysosomes, we silenced genes

belonging to different functional autophagy clusters in Saos2 cells

treated with BafA1 and quantified the levels of PC1 within lyso-

somes. As expected, we found that the silencing of all genes tested

involved in AV biogenesis significantly inhibited the delivery of PC1

to the lysosomes. Notably, among autophagy and ER-phagy recep-

tors, we found that FAM134B silencing most effectively inhibited PC1

delivery to lysosomes (Fig 3A). Our siRNA data were further vali-

dated using MEFs knocked out for genes involved in AV biogenesis,

namely Fip200 (Fip200�/�), Atg7 (Atg7�/�) or Atg16l�/� as well as

in MEFs lacking Fam134b expression (CRISPR Fam134b) (Figs 3B

and EV4A). The effect of Fam134b knockout was specific, since MEFs

lacking Sec62 expression (CRISPR Sec62), a different ER-phagy recep-

tor (Fumagalli et al, 2016), showed a normal rate of PC1 delivery to

the lysosomes (Fig 3B, bottom panels). Western blot and immunoflu-

orescence analyses confirmed the accumulation of intracellular PC1

in CRISPR Fam134b MEFs compared to control cells (Fig 4A and B).

Notably, there was not a generalized accumulation of other ER

proteins (VAPA, Sec23a and the soluble ER chaperone protein disul-

phide isomerase [PDI]) (Fig EV4B). The impaired delivery of PC1 to

lysosomes in CRISPR Fam134b MEFs was rescued by reintroducing

WT human FAM134B, but not a FAM134B protein lacking the (LIR)

motif (FAM134Blir), in which interaction with LC3 is abolished

(Khaminets et al, 2015) (Fig 4C). Taken together, these data strongly

suggest a primary role of FAM134B in mediating the delivery of ER-

resident PC molecules to lysosomes.

Calnexin is required for autophagy of procollagen

FAM134B is not predicted to have an ER luminal domain, so a

direct interaction with PC molecules in the ER is unlikely. We also

hypothesized that the PC molecules destined for degradation need

to be selectively recognized by ER quality control machinery in

order to be subjected to FAM134B-mediated ER-phagy. Thus, we

investigated the involvement of ER chaperones in autophagy of PC.

Taking advantage of a published list of putative PC1 and FAM134B

ER interactors (DiChiara et al, 2016; Grumati et al, 2017), we

silenced different ER genes by RNAi. The silencing of the trans-

membrane chaperone CANX most effectively inhibited the delivery

of PC1 to lysosomes in Saos2 cells treated with BafA1 (Fig 5A).

Similar to what we observed in CRISPR Fam134b MEFs, Canx�/�

MEFs showed an accumulation of intracellular PC1 but not of other

ER-resident proteins (VAPA, Sec23a and PDI; Figs 5B and EV4C).

When WT MEFs were treated with BafA1, the intracellular PC1

levels increased as consequence of defective lysosomal degradation

(Fig 5B). Conversely, in Canx�/� MEFs the accumulation of PC1

was evident even in the absence of BafA1 treatment (Fig 5B).

MEFs lacking Canx or Crt (Calreticulin) expression had an impaired

PC1 delivery to lysosomes (Fig 5C). Similarly, MEFs lacking

ERp57, a protein disulphide isomerase that cooperates with CANX

and CRT to ensure a proper folding of proteins (Oliver et al, 1999),

also showed a defective PC1 delivery to lysosomes (Fig 5C). The

binding of CANX and CRT to target substrates occurs through the

recognition of monoglucosylated oligosaccharide residues gener-

ated either by ER glucosidases I and II or by UDP-glucose: glyco-

protein glucosyltransferase (UGT1) proteins (Hebert et al, 1995;

Keller et al, 1998; Soldà et al, 2007). Pharmacological inhibition of

glucosidase activities with castanospermine (CST) or deletion of

Ugt1 in MEFs also inhibited PC1 delivery to lysosomes (Fig 5C).

Taken together, these data indicate that all the components of the

CANX/CRT cycle are required to operate the PC folding quality

control and to select the misfolded PC destined to autophagy.

Procollagens are the main substrates that accumulate in
Fam134b�/� and Canx�/� cells

We performed quantitative proteome analysis using mass spectrome-

try (MS) label-free protein quantification approach in Canx�/� and

Fam134b�/� MEFs versus wild-type MEFs. Canx�/� and Fam134b�/�

samples were prepared and run in parallel in order to minimize the

variability due to the MS calibration and sample preparation. We

identified 95 upregulated and 142 downregulated proteins in

Fam134b�/� MEFs. Specifically, both Col1a1 and Col1a2 peptide

chains were among the most significantly increased (�Log Student’s

t-test P-value: 8.55 and 8.2, respectively, for Col1a1 and Col1a2;

Fig 6A and Dataset EV1). Gene ontology analysis confirmed the

accumulation of collagens in MEFs lacking Fam134b (Fig EV4D). In

Canx�/� cells, we identified 384 upregulated and 278 downregulated

proteins. Col1a1 and Col1a2 peptides were identified as significantly

increased also in Canx�/� MEFs (�log Student’s t-test P-value: 3.06

and 2.37, respectively, for Col1a1 and Col1a2; Fig 6B, Dataset EV1).

Interestingly, only 17 identified peptides were commonly upregu-

lated in both Fam134b�/� and Canx�/� MEFs. Among these, colla-

gens (Col1a1, Col1a2, Col6a1, Col6a2, Col5a1) and collagen

interacting proteins (procollagen C-endopeptidase enhancer 1,

SPARC/osteonectin) were the most represented categories (Fig 6C).

These data clearly show that FAM134B and CANX are important

regulators of PC proteostasis and that they might cooperate for the

selective removal of misfolded procollagens in the ER.

A CANX-FAM134B ER-phagy complex acts as PC
autophagy receptor

Mass spectrometry analysis identified CANX as a putative FAM134B

interactor (Grumati et al, 2017). We confirmed this interaction by

co-immunoprecipitation experiments (Fig 7A and B). CANX has a

N-terminal ER luminal domain, a single transmembrane helix and

a short acidic cytoplasmic tail. FAM134B instead is composed of a
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N-terminal cytosolic domain, a reticulon homology domain

(containing alpha helices and a cytosolic loop) and a C-terminal

cytosolic domain (Fig 7A). Thus, CANX and FAM134B could poten-

tially interact either in the cytosol or in the ER membrane. We found

that the interaction between CANX and FAM134B is lost when co-

immunoprecipitation experiments were performed using a mutant

version of FAM134B that lacked the intramembrane part of the retic-

ulon homology domain, suggesting that FAM134B interacts with

CANX in the ER membrane (Fig 7A and B). Notably, the

FAM134Blir mutant still interacts with CANX in co-immunoprecipi-

tation experiments (Fig 7A and B).

FAM134B-CANX interaction was not modulated by PCs, since it

occurs also in HeLa (Kyoto) cells that do not express significant

amounts of collagens (Hein et al, 2015; Fig EV5A). Functionally,

CANX is not required for FAM134B-mediated ER-phagy, as

FAM134B is recruited to LC3-positive vesicles with the same effi-

ciency in both Canx�/� and WT MEFs (Fig EV5B and C). We postu-

lated that FAM134B interacts with misfolded PC molecules via

CANX. To test this hypothesis, we generated a human osteosarcoma

cell line (U2OS) expressing PC2 molecules tagged with HALO at the

N terminus. HALO-PC2 was normally secreted and, similarly to

endogenous PC2, accumulated in lysosomes upon BafA1 treatment

(Fig EV5D and E) indicating that the presence of the HaloTag did

not alter the intracellular processing of PC2. HA-resin-mediated

pull-down experiments using HA-tagged FAM134B or FAM134Blir

showed that both HALO-PC2 and CANX interact with FAM134B,

irrespective of whether it contained the LIR domain or not (Fig 7C).

Conversely co-precipitation of LC3II was dependent on a functional
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Figure 3. FAM134B is required for autophagy recognition of PC1.

A Bar graph shows quantification of lysosomes (LAMP1+) containing PC1 expressed as % of total number of lysosomes (mean � SEM) in Saos2 cells mock transfected or
transfected with siRNA against the indicated genes and treated with 100 nM BafA1 for 9 h. n = 20 cells per condition; three independent experiments. One-way
ANOVA with Dunnett’s multiple comparisons test performed, ***P < 0.0001.

B MEF cell lines lacking the expression of indicated genes were treated for 12 h with 50 nM BafA1, fixed and immunolabelled for PC1 (568, red) and LAMP1 (488, green).
Scale bar = 10 lm. Insets show magnification of the boxed area. Bar graph (on the left) shows quantification of LAMP1 vesicles positive for PC1, expressed as % of
total lysosomes (mean � SEM), n = 12, 10, 12, 10, 7, 10 cells per genotype, respectively; three independent experiments. One-way ANOVA with Dunnett’s multiple
comparisons test performed and P-value adjusted for multiple comparisons. ns ≥ 0.05, ***P < 0.0001.
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LIR motif in FAM134B (Fig 7C), consistent with previous results

(Khaminets et al, 2015). CST treatment diminished the level of

HALO-PC2 co-precipitated by FAM134B-HA (Fig 7C) without

perturbing the co-precipitation of CANX and LC3II. Taken together,

these data suggest a model by which the interaction of PC

with FAM134B is mediated by CANX and that the selective degrada-

tion of PC mediated by FAM134B is dependent on PC binding to

CANX.
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Figure 4. PC1 accumulates intracellularly in cells lacking Fam134b.

A WT and CRISPR-Cas9 Fam134b knockout MEFs were treated as indicated, lysed and analysed by Western blot with the indicated antibodies. Western blots are
representative of 4 independent experiments.

B WT and CRISPR-Cas9 Fam134b MEFs were immunolabelled for PC1 (568, red), nuclei stained with Hoechst (blue) and analysed by scanning confocal microscopy. Scale
bar = 10 lm.

C CRISPR Fam134b MEF mock, wild-type FAM134B-HA or FAM134Blir-HA transfected were immunolabelled for PC1 (568, red), Lamp1 (488, green) and HA (647, violet)
and analysed by scanning confocal microscopy. Scale bar = 10 lm. Inset panels show magnification of the boxed area. Bar graph shows quantification of Lamp1
vesicles positive for PC1, expressed as % of total lysosomes (mean � SEM), quantification of n = 10 cells per treatment; three independent experiments. One-way
ANOVA with Dunnett’s multiple comparisons test was performed. ns ≥ 0.05, ***P < 0.0001.

Source data are available online for this figure.
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Figure 5. CANX is required for autophagic targeting of PC1.

A Bar graph shows quantification of lysosomes (LAMP1+) containing PC1 expressed as % of lysosomes (mean � SEM) in Saos2 cells mock transfected or transfected
with siRNA against the indicated genes, treated with 100 nM BafA1 for 9 h. n = 18 cells/treatment; three independent experiments. One-way ANOVA with Dunnett’s
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B WT and Canx�/� MEFs were untreated or treated with BafA1 (10 lM) for 6 h, lysed and analysed by Western blot with indicated antibodies. Filamin and b-actin were
used as loading control. Dashed line indicates that unnecessary lanes were removed. Western blot is representative of three independent experiments.

C MEF cell lines lacking the indicated genes were treated for 12 h with 50 nM BafA1 fixed and immunolabelled for PC1 (568, red) and LAMP1 (488, green). CST was
added where indicated. Scale bar = 10 lm. Inset panels show magnification of the boxed area. Bar graph on the right shows quantification of LAMP1 vesicles
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Dunnett’s multiple comparisons test performed and P-value adjusted for multiple comparisons. ***P < 0.0001.

Source data are available online for this figure.
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Discussion

In this work, we have investigated the mechanism by which autop-

hagy selectively recognizes PC molecules destined for degradation

in the ER. We have shown that the ER transmembrane chaperone

CANX, by interacting with FAM134B and LC3, forms a novel ER-

phagy complex with specific protein targeting capabilities. This

complex is responsible for a specific ER clearance mechanism of

PCs and links a non-native large protein within the ER lumen to the

cytosolic autophagy machinery.

Firstly, we have found that silencing genes belonging to function-

ally different complexes involved in autophagosome biogenesis

inhibited lysosomal delivery of PCs, indicating that autophagy is

mediating the delivery of PC to lysosomes.

Secondly, we have identified the ER-resident autophagy receptor

FAM134B as a key mediator of PC delivery to the lysosomes. FAM134B

was recently identified as an ER-phagy receptor that mediates turnover

of portions of the ER via autophagy (Khaminets et al, 2015). Our data

suggest that FAM134B-dependent ER-phagy also functions as an ER

quality control pathway for PCs. Our quantitative proteomic analysis

in Fam134b�/� MEFs suggests that PCs are the main clients of

FAM134B-mediated ER-phagy. The identification of multiple ER-phagy

receptors also suggests that different cargoes might be subjected to dif-

ferent types of ER-phagy. Notably, a recent study showed that the

disruption of CCPG1-mediated ER-phagy leads to the accumulation of

ER insoluble proteins in acinar cells (Smith et al, 2018).

Thirdly, we have demonstrated that the chaperone CANX is a

key player in PC disposal via ER-phagy. CANX is a molecular
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Source data are available online for this figure.
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chaperone that assists the folding of monoglucosylated glycoprotein

in the ER. CANX forms transient but relatively stable complexes

with unfolded ER proteins until they either become folded or are

degraded (Williams, 2006). The genetic or pharmacological inhibi-

tion of ER enzymes that mediate the binding of substrates to CANX

impairs the delivery of PC to lysosomes, suggesting that the N-

glycans-mediated recognition of PC by CANX (and CRT) represents

a prerequisite for PC targeting to autophagosomes. Consistently co-

immunoprecipitation experiments demonstrate that PC2 binding to

FAM134B complex depends on CANX substrate affinity, since it can

be reduced by CST treatment.

It is currently unknown whether additional ER partners also aid

CANX. For example, ERp29, a CANX binding protein, has recently

been shown to mediate the retention of immature PC1 in the ER

(DiChiara et al, 2016).

Finally, we have also provided biochemical evidence indicating

that FAM134B interacts with CANX. This interaction seems to occur

within the ER membrane since it is mediated by the transmembrane

regions of the reticulon homology domain of FAM134B. The reticu-

lon homology domain generates membrane curvature by increasing

the area of the cytoplasmic leaflet (Zurek et al, 2011). The observa-

tion that CANX-FAM134B binding is rather stable and not modu-

lated by PCs suggests that the binding of PC to CANX might induce

a conformational change of the FAM134B reticulon homology

domain that increases ER membrane curvature, favouring vesicle

formation. Indeed, CLEM analysis confirmed the presence of both

PC molecules and CANX within a small vesicle contained within a

large autophagosome, supporting the model by which portions of

the ER containing both CANX and PC1 are sequestered into AVs

(Fig 7D).

Mass spectrometry analyses clearly show that the CANX-

FAM134B interplay is devoted to the degradation of different types

of collagens, suggesting that cells may have evolved a specific

mechanism to cope with the difficulties associated with the produc-

tion and secretion of procollagens in the ER. This is not surprising if

we consider that collagens are the most abundant proteins of our

body (about 25% of our dry weight), and that its production repre-

sents a major task for cells.

We have recently reported that CANX delivers proteasome-resis-

tant polymers of alpha 1-antitrypsin Z (ATZ) to ER subdomains en

route for FAM134B-mediated vesicular transport to the lysosomes

for degradation (Fregno et al, 2018). ATZ clearance, however,

shows substantial differences compared to the quality control auto-

phagy of endogenous PC that we studied in collagen-producing

cells. In particular, delivery of PC molecules to lysosomes fully

relies on components of the autophagosome biogenesis machinery.

Conversely, many of them (e.g. ULK1/2, ATG9 and ATG13) are

dispensable for ATZ clearance, suggesting that the CANX-

FAM134B complex can mediate ER cargo clearance though dif-

ferent vesicular pathways.

Both in quality control autophagy of PC1 and ATZ clearance, the

lectin chaperone CANX delivers the misfolded cargo in ER subdo-

mains to be cleared from cells on stable interactions with FAM134B.

However, other components of the CANX chaperone system (i.e.

CRT, UGT1 and ERp57) cycle are required in quality control auto-

phagy of PC1, but are dispensable for ATZ clearance.

Cumulating evidence delineates a scenario where multiple cata-

bolic pathways ensure efficient removal of misfolded proteins from

the ER lumen, which is crucial to maintain the function of this

biosynthetic organelle. ER-associated-degradation (ERAD) collec-

tively defines the many client-specific pathways engaged by

misfolded proteins generated in the ER for delivery at, and disloca-

tion across the ER membrane preceding clearance by cytosolic

proteasomes (Preston & Brodsky, 2017). An increasing number of

faulty gene products are shown to be excluded from the ERAD path-

ways (Noda & Farquhar, 1992; Fujita et al, 2007; Ishida et al, 2009;

Hidvegi et al, 2010; Houck et al, 2014; Fregno et al, 2018). The vast

heterogeneity of gene products synthesized in the ER lead us to

predict that, like the multiple pathways operating for ERAD, client-

specific pathways also ensure delivery of proteasome-resistant

misfolded proteins to specialized ER subdomains that are eventually

transported to lysosomal compartments for ER-to-lysosome-

associated degradation (ERLAD).

Our results highlight the complexity of quality control path-

ways operating in mammalian cells to surveil the ER lumen and

prevent accumulation of toxic by-products of protein biogenesis.

Lack of ER homeostasis and protein accumulation has been

shown to be an underlying cause for various diseases, opening-up

this pathway for development as a potential therapeutic target.

Materials and Methods

Cell culture, transfections, siRNA and plasmids

Cell culture

MEFs and RCS cell lines were cultured in DMEM with 10% FBS and

1% penicillin/streptomycin at 37°C in 5% CO2. Saos2 and U2OS

cells were purchased from ATCC and cultured in McCoy’s medium

with 15% (Saos2) or 10% (U2OS) FBS and 1% penicillin/strepto-

mycin at 37°C in 5% CO2. For collagen experiments, medium was

supplemented with 50 lg/ml ascorbic acid. Wild-type, Atg5�/� and

Atg7�/� MEFs were gifts from M. Komatsu and N. Mizushima.

Atg16�/� MEFs were from T. Saitoh. Fip200�/� MEFs were from

J.L. Guan. The generation of the Sec62 CRISPR-Cas9 knockout MEF

cell line was previously described (Fumagalli et al, 2016). Canx�/�

MEF cell lines were previously described (Kraus et al, 2010).

Fam134b CRISPR-Cas9 MEF cell line was described in Fregno et al

(2018). Fam134b�/� MEF cell line was described in Khaminets et al

(2015). Crt�/�, Erp57�/� and Ugt1�/� were previously described

(Molinari et al, 2004; Soldà et al, 2006, 2007).

Saos2 IDUA CRISPR-Cas9 cell line was generated as follows: For

construction of the guideRNA-Cas9 plasmid, pSpCas9(BB)-2A-Puro

plasmid (PX459) was obtained from Addgene (Plasmid #62988). To

clone the guide sequence into the sgRNA scaffold, two annealed

oligonucleotides (50-CACCGCAGCTCAACCTCGCCTATG-30, 50-AAA
CCATAGGCGAGGTTGAGCTGC-30) were inserted into the pSpCas9

(BB)-2A-Puro plasmid using BbsI restriction site. Saos2 cells were

transfected with the plasmid using Lipofectamine LTX and Plus

Reagent (Invitrogen, Thermo Fisher Scientific) following a reverse

transfection protocol. Two days after transfection, the medium was

supplemented with 1 lg/ml puromycin. Puromycin-resistant clones

were isolated, and gene KO was verified by sequencing. CRISPR-

IDUA and WT Saos2 cells were kept in medium containing 1 mg/ml

dermatan sulphate (Sigma-Aldrich) for 48 h before any experiment

was performed.
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Transfection

Cells were reverse-transfected using Lipofectamine LTX and PLUS

reagent (Invitrogen) according to manufacturer’s instructions. In

Fig 4C, cells were transfected with JetPrime transfection reagent

(PolyPlus) following the manufacturer’s protocol. For siRNA experi-

ments, siGENOME SMARTpool siRNAs (Dharmacon Thermo Scien-

tific) were transfected to a final concentration of 100 nM and cells

harvested 72 h after transfection.

Plasmids

GFP–LC3 was from Dr. Yoshimori. GFP-2-FYVE was a gift from

Dr. S. Tooze. FAM134Blir-HA and FAM134BDReticulon-HA expres-

sion plasmids were described in Khaminets et al (2015). HALO-PC2

plasmid was generated as follows: pLT007, a vector for CMV

promoter-driven expression of N-terminally HaloTagged Col2a1,

was created by replacing the mCherry tag with the HaloTag in the

mCherry-C2-COL2A1 plasmid (Venditti et al, 2012). Standard tech-

niques were used for construction, transformation and purification

of plasmids. FAM134B-GFP was previously described (Khaminets

et al, 2015). Site-directed mutagenesis plasmids: R789C and G1152D

mutations were created using the Agilent QuikChange XL Site-

Directed mutagenesis kit using the mCherry-PC2 backbone.

Primer sequences were designed with PrimerX online software

and were as follows: R789C forward: 50 CGGTCTGCCTGGG

CAATGTGGTGAGAGAGGATTC 30 and reverse: 50 GAATCCTCTCT
CACCACATTGCCCAGGCAGACCG 30; G1152D forward: 50GGTC
CTTCTGGAGACCAAGATGCTTCTGGTCCTGCTGG 30 and reverse: 50

CCAGCAGGACCAGAAGCATCTTGG TCTCCAGAAGGACC 30.

Immunofluorescence

Cells were seeded on coverslips at least 24 h before treatment and

fixed for 10 min in 4% PFA, or for the detection of endogenous LC3,

fixed for 10 min in ice-cold methanol. Cells were blocked and

permeabilized for 30min in blocking buffer (0.05% (w/v) saponin,

0.5% (w/v) BSA, 50 mM NH4Cl and 0.02% NaN3 in PBS, pH 7.4).

For LAMP1 immunolabelling, 15 mM glycine was added to blocking

buffer. Cells were incubated for 1 h with the following primary anti-

bodies: collagen I (SP1.D8, Hybridoma Bank), collagen II (II-II6B3;

Hybridoma Bank), LAMP1 (Abcam, ab24170) or LAMP1 (Hybri-

doma Bank, 1D4B was deposited to the DSHB by August, J.T.),

CANX (Enzo Life Sciences ADI-SPA-860-D), LC3 (NB100-2220;

Novus Biologicals), HSP47 (Abcam, ab77609); HA (Sigma, H6908),

washed 3 times in PBS; incubated for 45 min with secondary anti-

body (Alexa Fluor–labelled goat anti-rat A11077, goat anti-guinea

pig A11073, goat anti-rabbit A11011/A11008, and goat anti-mouse

A11001, A11004; Life Technologies, Thermo Fisher Scientific);

washed three times in PBS; incubated for 20 min with 1 lg/ml

Hoechst 33342, and finally mounted in Mowiol (Sigma-Aldrich) or

Vectashield (Vector Laboratories) supplemented with 40,6-diami-

dino-2-phenylindole (DAPI).

Medaka stocks

Samples of the Cab strain of wild-type medaka fish were kept and

staged as described previously (Iwamatsu, 2004; Carrella et al,

2015). All studies on fish were conducted in strict accordance with

the institutional guidelines for animal research and approved by the

Italian Ministry of Health; Department of Public Health, Animal

Health, Nutrition and Food Safety in accordance to the law on

animal experimentation (article 7; D.L. 116/92). Furthermore, all

animal treatments were reviewed and approved in advance by the

Ethics Committee at the TIGEM Institute [Pozzuoli (NA), Italy].

Immunofluorescence analysis in Medaka fish embryos

The animals were subjected to anaesthesia before fixation at stage 40

by 2 h of incubation in methanol 100% at room temperature (RT).

Samples were rinsed three times with PTw 1× (1× PBS, 0.1% Tween,

pH 7.3) and then incubated overnight in 15% sucrose/PTW1X at

4°C, and then again incubated overnight in 30% sucrose/PTW1X at

4°C. Cryosections of the larvae were processed for immunostaining

as follows: rehydrated in 1× PBS for 30 min, washed in PBS-0.1%

Triton X-100 and treated with antigen retrieval solution [proteinase

K 20 mg/ml (Sigma-Aldrich, Germany) dissolved in 10 mM Tris pH

8.0, 1 mM EDTA (TE)] for 15 min at 37°C. Cryosections were then

permeabilized with 0.5% Triton X-100 in 1× PBS for 20 min at RT,

rinsed in PBS 0.1% Triton X-100 and moved to blocking solution

[2% BSA, 2% serum, 2% DMSO in PBS-0.1% Triton X-100] for

30 min at RT. Cryosections were incubated with rabbit anti-collagen

type II (Rockland, 1:400) and mouse anti-LC3B (Nanotools, 1:100)

antibodies overnight at 4°C, then washed with PBS-0.1% Triton X-

100 and incubated with secondary antibodies, Alexa-594 anti-rabbit

IgG (1:500), Alexa-488 anti-mouse IgG (1:500; Thermo Fisher) for

1 h at RT. Nuclei were stained with DAPI (1:500).

Chemicals and cell treatments

L-Ascorbic acid (Sigma-Aldrich) was made fresh and used at a final

concentration of 50 lg/ml from the beginning of each experimental

procedure. Bafilomycin A1 (BafA1; Sigma-Aldrich) was used at a

final concentration of 100 nM, and compared to DMSO (Sigma-

Aldrich) as vehicle for 6 h (RCS) or 9 h (Saos2/U2OS). MEFs were

treated with 50 nM bafilomycin for 12 h or 100 nM for 6 h.

Castanospermine (CST; Sigma-Aldrich) was used at a final concen-

tration of 1 mM. CST was added 2 h before BafA1, and ascorbic acid

treatment. SAR405 (Selleckchem) was used at a concentration of

10 lM for 2 h preceding and throughout BafA1 treatment. Tat-

BECLIN-1 (D17, Millipore) was used at 5 lM in acidified media for

4 h then replaced with fresh media for 2 h before harvesting cells.

HaloTag, far red (ex. 650 nm, em. 668 nm) SiR HaloTag ligand

(Promega), available through custom order, incubated in media at

2 mM for 3 h. 0.5 lM TMR (Promega) was added to the media 2 h

pre-fixation for lysosome visualization, or for pulse chase, 20 min at

1 lM, followed by p5030 (Promega). Rutin (Acros Organics) was

used at 10 lg/ml for the duration of live cell imaging.

Confocal microscopy

Scanning laser confocal experiments were acquired using a Zeiss

LSM 800 or Leica TCS SP5 confocal microscope equipped with a

63× 1.4 numerical aperture oil objective. Airyscan microscopy was

performed using a Zeiss LSM 880 confocal microscope, equipped

with Plan-Apochromat 63×/1.4 numerical aperture oil objective and

pixel size of 8.7 nm. Images were subjected to post-acquisition

Airyscan processing. Image acquisition and processing were
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performed with Zen Blue software and co-localization analysis and

image presentation was performed using ImageJ FIJI software or

Photoshop (Adobe).

Live cell imaging

U2OS cells were transiently transfected with mCherry-PC2 and

RDEL-HALO plus GFP-LC3 or GFP-2-FYVE. Cells were incubated on

a Tokai Hit stage top incubator heated stage in 5% CO2 at 40°C in

the presence of far red HALO ligand for 3 h. Immediately prior to

imaging, medium was supplemented with ascorbic acid and rutin

(routinely used to decrease photobleaching). Imaging was initiated

at temperature switch to 32°C. Frames were acquired at 1-s inter-

vals. Imaging was performed on a Nikon Inverted Spinning Disk

confocal with sCMOS Prime95B camera (Photometrics) with pixel

size of 11 lm, using a 100× CFI Plan Apo oil objective with 1.4 NA.

Image acquisition was performed with Metamorph 7.7.6 software

(Molecular Devices, France) and processing in ImageJ FIJI software.

Correlative light electron microscopy (CLEM) and Tomography

Saos2 cells were grown on gridded MatTek glass-bottomed dishes

(MatTek Corporation) transfected with GFP-LC3 and fixed with

0.05% glutaraldehyde in 4% paraformaldehyde (PFA) and 0.1 M

HEPES buffer for 10 min, washed once in 4% PFA, then incubated

in fresh 4% paraformaldehyde in 0.1 M HEPES buffer for 30 min.

Subsequently, cells were incubated for 30 min in blocking buffer

and immunolabelled for collagen I (SP1.D8 Hybridoma Bank) and

CANX (ADI-SPA-860-D Enzo Life Sciences), visualized with Alexa-

Fluor546 fluoro-nanogold Fab’ conjugate (Nanoprobes) and Alexa-

Fluor647 Rabbit Ab, respectively. Nanogold was enlarged using gold

enhancement kit (Nanoprobes) according to manufacturer’s instruc-

tions. Samples were then post-fixed with 1.5% potassium ferri-

cyanide, 1% OsO4 in 0.1 M cacodylate buffer for 1 h on ice and en

bloc stained overnight with 1% uranyl acetate. Samples were dehy-

drated in ethanol and embedded in epoxy resin (SIGMA). After

baking for 48 h at 60°C, the resin was released from the glass cover-

slip by temperature shock in liquid nitrogen. Serial sections (70–

90 nm) were collected on carbon-coated formvar slot grids and

imaged with a Zeiss LEO 512 electron microscope. Images were

acquired with a 2k × 2k bottom-mounted slow-scan Proscan camera

controlled by EsiVisionPro 3.2 software.

For electron tomography, tilted series were acquired with a

200 kV Tecnai G2 20 electron microscope (FEI, Eindhoven) at a

magnification of 11.5 k, resulting in pixel size of 1.95 nm. Single,

tilted image series (� 60° according to a Saxton scheme with the

initial tilt step of 2°) were acquired using Xplorer3D (FEI) with an

Eagle 2,048 × 2,048 CCD camera (FEI). Tilted series alignment and

tomographic reconstructions were done with the IMOD software

package. Image segmentation was done by MIB software (BW

thresholding) and visualized using IMOD.

Transmission electron microscopy

Cells were fixed in 1% glutaraldehyde in 0.2 M HEPES buffer and

then post-fixed in uranyl acetate and in OsO4. After dehydration

through a graded series of ethanol, samples were cleared in propy-

lene oxide, embedded in epoxy resin (Epon 812) and polymerized at

60°C for 72 h. From each sample, thin sections were cut with a

Leica EM UC6 ultramicrotome and images were acquired using a

FEI Tecnai �12 (FEI) electron microscope equipped with Veletta

CCD camera for digital image acquisition.

Immunoprecipitation experiments

HA-tag precipitation: U2OS cells were transiently transfected with

plasmids encoding HALO-PC2 and FAM134B-HA. On the day of

experiment, plates were treated with 1 mM CST where indicated for

2 h, then all plates treated with 100 nM BafA1 and 50 lg/ml ascor-

bic acid for 4 h. Cells were detached with trypsin–EDTA and centri-

fuged. The cell pellets were washed three times with ice-cold PBS

and then resuspended in 1 ml MCLB lysis buffer (1% NP-40,

150 mM NaCl, 50 mM Tris/HCl pH 8). The cell suspension was

lysed by passing it through a 24-G needle for 10-15 times. The

lysates were incubated on ice for 20 min with gentle swirling and

centrifuged at 18,000 g to pellet nuclei and cell debris. The super-

natants were collected and subjected to protein quantification using

BCA protein assay kit (Pierce Chemical). 1 mg of each lysate was

then precipitated using Pierce anti-HA-magnetic beads (Thermo

Fisher Scientific) and rotated at 4°C overnight. The precipitated

proteins were washed three times with MCLB lysis buffer (1%

NP-40, 150 mM NaCl, 50 mM Tris/HCl pH 8) and two times with

the same lysis buffer, detergent free. The protein complexes were

resuspended in 1v/v 2× Laemmli sample buffer and analysed by

SDS–PAGE in a 7–14% gradient gel.

HeLa (Kyoto) cells and U2OS cells were transiently transfected

with empty vector control, FAM134B-HA WT or mutant constructs.

On the day of the experiment, cells were detached with trypsin–

EDTA and centrifuged. Immunoprecipitation experiments were

performed in the same conditions and analysed by SDS–PAGE in a

4–15% Mini-PROTEAN� TGXTM Precast Protein gel.

Western blot analysis

Cells were washed twice with PBS and then scraped in RIPA lysis

buffer (20 mM Tris [pH 8.0], 150 mM NaCl, 0.1% SDS, 1% NP-40,

0.5% sodium deoxycholate) in the presence of PhosSTOP and

EDTA-free protease inhibitor tablets (Roche). Cell lysates were incu-

bated on ice for 30 min, and then, the soluble fraction was isolated

by centrifugation at 16,000 g for 20 min at 4°C. The total protein

concentration in cellular extracts was measured by BCA protein

assay kit (Pierce Chemical). Protein extracts, separated by SDS–

PAGE and transferred onto membranes, were probed with antibod-

ies against COLLAGEN I (Abcam, ab138492 for human cells;

Abcam, ab21286 for mouse cells), LAMP1 (Abcam, ab24170), LC3B

(NB100-2220; Novus Biologicals), CANX (Enzo Life Sciences

ADI-SPA-860-D), HALO (Promega G928A) FAM134B (Sigma,

HPA012077), SQSTM1/p62 (Abnova, H00008878-M01), SEC23A

(PAI-069A; Thermo Fisher Scientific), VAP-A (15275-1-AP, Protein-

tech), PDI (Enzo Life Sciences ADI-SPA-891-F), Filamin (Abcam,

ab76289), TUBULIN (T5168, Sigma-Aldrich) and b-actin (Novus

Biologicals NB600-501), probed with horseradish peroxidase (HRP)-

conjugated goat anti-mouse or anti-rabbit IgG antibody (1:2,000,

Vector Laboratories; 8125, 8114; Cell Signaling Technology) and

visualized with the Super Signal West Dura substrate (Thermo

Fisher Scientific), according to the manufacturer’s protocol.
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Mass spectrometry

Wild-type, Fam134b and Canx knockout MEFs were grown in

DMEM media supplemented with 10% FBS. Cells were lysate in

SDS-lysis buffer (4% SDS in 0.1 M Tris/HCl pH 7.6). Protein

concentration was measured using BCA Kit (Pearce), and 50 lg of

cells lysate was precipitated with ice-cold acetone and resuspended

in 30 ll of GnHCl buffer (6 M guanidine hydrochloride, 50 mM Tris

pH 8.5, 5 mM TCEP, 20 mM chloro-iodoacetamide). For label-free

quantification-based proteome analysis of whole cell lysates,

proteins were in-solution digested with the endopeptidase sequenc-

ing-grade Lys-C (1:100 ratio) for 3 h at 37°C and subsequently with

trypsin (1:100 ratio) overnight 37°C. Digestion was blocked with

TFA 1% final concentration. Collected peptide mixtures were

concentrated and desalted using the Stop and Go Extraction

(STAGE) technique (Rappsilber et al, 2003).

Instruments for LC-MS/MS analysis consisted of a NanoLC 1200

coupled via a nano-electrospray ionization source to the quadru-

pole-based Q Exactive HF benchtop mass spectrometer (Thermo

Scientific). Peptide separation was carried out according to their

hydrophobicity on an in-house packed 20 cm column with 1.9 mm

C18 beads (Dr Maisch GmbH) using a binary buffer system consist-

ing of solution A: 0.1% formic acid (0.5% formic acid) and B: 80%

acetonitrile, 0.1% formic acid (80% acetonitrile, 0.5% formic acid).

2 h gradients were used for each sample. Linear gradients from 5–

38% B were applied with a following increase to 95% B at 400 nl/

min and a re-equilibration to 5% B. Q Exactive HF settings: MS

spectra were acquired using 3E6 as an AGC target, a maximal injec-

tion time of 20 ms and a 60,000 resolution at 200 m/z. The mass

spectrometer operated in a data-dependent mode with subsequent

acquisition of higher-energy collisional dissociation (HCD) fragmen-

tation MS/MS spectra of the 15 most intense peaks. Resolution for

MS/MS spectra was set to 30,000 at 200 m/z, AGC target to 1E5,

max injection time to 25 ms and the isolation window to 1.6 Th.

Statistics

Statistics were performed in GraphPad PRISM software. A two-

tailed, paired and unpaired Student’s t-test was performed when

comparing the same cell population with two different treatments or

cells with different genotypes, respectively. One-way ANOVA and

Dunnett’s post hoc test were performed when comparing more than

two groups relative to a single factor (treatment). A P-value of 0.05

or less was considered statistically significant.

For mass spectrometry analysis, the raw files were processed

using MaxQuant software (Cox et al, 2011). Parameters were set to

default values. Statistical analysis, t-test and GO annotation enrich-

ment were performed using Perseus software (Tyanova et al, 2016).

Data are representative of three independent mass spectrometry

analyses for each genotype.

Expanded View for this article is available online.
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