

Surrogate models for uncertain dynamical systems: applications to earthquake engineering

Bruno Sudret

Chair of Risk, Safety and Uncertainty Quantification

ETH Zurich

Symposium on Uncertainty Quantification in Computational Geosciences

BRGM (Orléans, France) – January 16th, 2018

Chair of Risk, Safety and Uncertainty quantification

The Chair carries out research projects in the field of uncertainty quantification for engineering problems with applications in structural reliability, sensitivity analysis, model calibration and reliability-based design optimization

The Chair carries out research projects in the field of uncertainty quantification for engineering problems with applications in structural reliability, sensitivity analysis, model calibration and reliability-based design optimization

Research topics

- Uncertainty modelling for engineering systems
- Structural reliability analysis
- Surrogate models (polynomial chaos expansions, Kriging, support vector machines)
- Bayesian model calibration and stochastic inverse problems
- Global sensitivity analysis
- Reliability-based design optimization

http://www.rsuq.ethz.ch

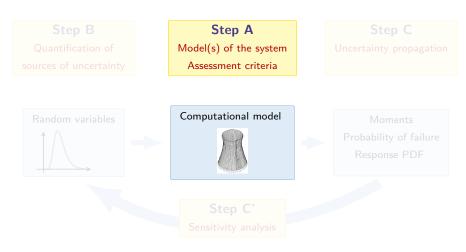
The Chair carries out research projects in the field of uncertainty quantification for engineering problems with applications in structural reliability, sensitivity analysis, model calibration and reliability-based design optimization

Research topics

- Uncertainty modelling for engineering systems
- Structural reliability analysis
- Surrogate models (polynomial chaos expansions, Kriging, support vector machines)
- Bayesian model calibration and stochastic inverse problems
- Global sensitivity analysis
- Reliability-based design optimization

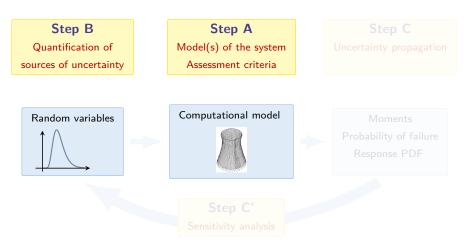
http://www.rsuq.ethz.ch

Global framework for uncertainty quantification



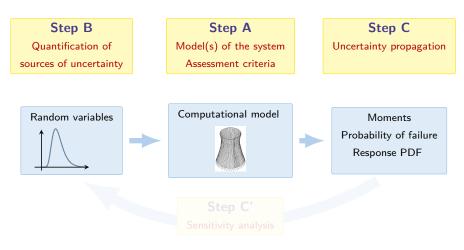
B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models - contributions to structural reliability and stochastic spectral

Global framework for uncertainty quantification



B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models - contributions to structural reliability and stochastic spectral

Global framework for uncertainty quantification



B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models - contributions to structural reliability and stochastic spectral

Global framework for uncertainty quantification



B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models - contributions to structural reliability and stochastic spectral

Surrogate models for uncertainty quantification

A surrogate model $\tilde{\mathcal{M}}$ is an approximation of the original computational model \mathcal{M} with the following features:

- It is built from a limited set of runs of the original model \mathcal{M} called the experimental design $\mathcal{X} = \{x^{(i)}, i = 1, \dots, n\}$
- It assumes some regularity of the model ${\mathcal M}$ and some general functional shape

Surrogate models for uncertainty quantification

A surrogate model $\tilde{\mathcal{M}}$ is an approximation of the original computational model \mathcal{M} with the following features:

- It is built from a limited set of runs of the original model \mathcal{M} called the experimental design $\mathcal{X} = \left\{ \boldsymbol{x}^{(i)}, \, i = 1, \, \dots, n \right\}$
- It assumes some regularity of the model ${\mathcal M}$ and some general functional shape

Surrogate models for uncertainty quantification

A surrogate model $\tilde{\mathcal{M}}$ is an approximation of the original computational model \mathcal{M} with the following features:

- It is built from a limited set of runs of the original model \mathcal{M} called the experimental design $\mathcal{X} = \left\{ \boldsymbol{x}^{(i)}, \, i = 1, \, \dots, n \right\}$
- It assumes some regularity of the model ${\mathcal M}$ and some general functional shape

Name	Shape	Parameters
Polynomial chaos expansions	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum a_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(oldsymbol{x})$	a_{lpha}
	$R \xrightarrow{\alpha \in \mathcal{A}} M$	
Low-rank tensor approximations	$\begin{split} \tilde{\mathcal{M}}(\boldsymbol{x}) &= \sum_{l=1}^{R} b_l \left(\prod_{i=1}^{M} v_l^{(i)}(x_i) \right) \\ \tilde{\mathcal{M}}(\boldsymbol{x}) &= \boldsymbol{\beta}^T \cdot \boldsymbol{f}(\boldsymbol{x}) + Z(\boldsymbol{x}, \omega) \end{split}$	$b_l,z_{k,l}^{(i)}$
Kriging (a.k.a Gaussian processes)	$\tilde{\mathcal{M}}(\boldsymbol{x}) = \boldsymbol{\beta}_{n}^{T} \cdot \boldsymbol{f}(\boldsymbol{x}) + Z(\boldsymbol{x}, \boldsymbol{\omega})$	$oldsymbol{eta},\sigma_Z^2,oldsymbol{ heta}$
Support vector machines	$ ilde{\mathcal{M}}(m{x}) = \sum_{i=1}^n a_i K(m{x}_i, m{x}) + b$	$oldsymbol{a},b$

Ingredients for building a surrogate model

- Select an experimental design X that covers at best the domain of input parameters: Latin hypercube sampling (LHS), low-discrepancy sequences
- Run the computational model *M* onto *X* exactly as in Monte Carlo simulation

• Smartly post-process the data $\{\mathcal{X}, \mathcal{M}(\mathcal{X})\}$ through a learning algorithm

Name	Learning method	
Polynomial chaos expansions sparse grid integration, leas compressive sensin		
Low-rank tensor approximations	alternate least squares	
Kriging	maximum likelihood, Bayesian inference	
Support vector machines	quadratic programming	

Ingredients for building a surrogate model

- Select an experimental design X that covers at best the domain of input parameters: Latin hypercube sampling (LHS), low-discrepancy sequences
- Run the computational model *M* onto *X* exactly as in Monte Carlo simulation

• Smartly post-process the data $\{\mathcal{X}, \mathcal{M}(\mathcal{X})\}$ through a learning algorithm

Name	Learning method	
Polynomial chaos expansions	sparse grid integration, least-squares, compressive sensing	
Low-rank tensor approximations	alternate least squares	
Kriging	maximum likelihood, Bayesian inference	
Support vector machines	quadratic programming	

Advantages of surrogate models

Usage

$$\mathcal{M}(m{x}) ~pprox ~ ilde{\mathcal{M}}(m{x})$$
 hours per run seconds for 10^6 runs

Advantages

- Non-intrusive methods: based on runs of the computational model, exactly as in Monte Carlo simulation
- Construction suited to high performance computing: "embarrassingly parallel"

Advantages of surrogate models

Usage

 $\mathcal{M}(m{x}) ~pprox ~ ilde{\mathcal{M}}(m{x})$ hours per run seconds for 10^6 runs

Advantages

- Non-intrusive methods: based on runs of the computational model, exactly as in Monte Carlo simulation
- Construction suited to high performance computing: "embarrassingly parallel"

Challenges

- Need for rigorous validation
- Communication: advanced
 mathematical background

Advantages of surrogate models

Usage

 $\mathcal{M}(m{x}) ~pprox ~ ilde{\mathcal{M}}(m{x})$ hours per run seconds for 10^6 runs

Advantages

- Non-intrusive methods: based on runs of the computational model, exactly as in Monte Carlo simulation
- Construction suited to high performance computing: "embarrassingly parallel"

Challenges

- Need for rigorous validation
- Communication: advanced mathematical background

Efficiency: 2-3 orders of magnitude less runs compared to Monte Carlo

Outline

1 Introduction

2 Polynomial chaos expansions

PCE in a nushell Why brute-force PCE fails in dynamics?

3 PC-NARX expansions

NARX model Calibration of a PC-NARX model Application to Bouc Wen model

4 Fragility curves

Theory Application: steel frame

Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991); Xiu & Karniadakis (2002); Soize & Ghanem (2004); Lemaître & Knio (2010)

- Consider the input random vector X (dim X = M) with given probability density function (PDF) $f_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{M} f_{X_i}(x_i)$
- Assuming that the random output $Y = \mathcal{M}(\mathbf{X})$ has finite variance, it can be cast as the following polynomial chaos expansion:

$$Y = \sum_{\boldsymbol{\alpha} \in \mathbb{N}^M} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X})$$

where :

- $\Psi_{\alpha}(X)$: basis functions
- y_{α} : coefficients to be computed (coordinates)
- The PCE basis $\{\Psi_{oldsymbol{lpha}}(X),\,oldsymbol{lpha}\in\mathbb{N}^M\}$ is made of multivariate orthonormal polynomials

Computing the coefficients by least-square minimization

Isukapalli (1999); Berveiller, Sudret & Lemaire (2006)

Principle

The exact (infinite) series expansion is considered as the sum of a truncated series and a residual:

$$Y = \mathcal{M}(\boldsymbol{X}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X}) + \varepsilon_{P} \equiv \boldsymbol{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{X}) + \varepsilon_{P}(\boldsymbol{X})$$

where : $\mathbf{Y} = \{y_{\boldsymbol{\alpha}}, \, \boldsymbol{\alpha} \in \mathcal{A}\} \equiv \{y_0, \, \dots, y_{P-1}\}$ (*P* unknown coef.)

$$oldsymbol{\Psi}(oldsymbol{x}) = \{\Psi_0(oldsymbol{x}), \, \ldots \,, \Psi_{P-1}(oldsymbol{x})\}$$

Least-square minimization

The unknown coefficients are estimated by minimizing the mean square residual error:

$$\left(\hat{\mathbf{Y}} = rg \min \mathbb{E} \left[\left(\mathbf{Y}^{\mathsf{T}} \mathbf{\Psi}(oldsymbol{X}) - \mathcal{M}(oldsymbol{X})
ight)^2
ight]$$

Computing the coefficients by least-square minimization

Isukapalli (1999); Berveiller, Sudret & Lemaire (2006)

Principle

The exact (infinite) series expansion is considered as the sum of a truncated series and a residual:

$$Y = \mathcal{M}(\boldsymbol{X}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X}) + \varepsilon_{P} \equiv \boldsymbol{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{X}) + \varepsilon_{P}(\boldsymbol{X})$$

where : $\mathbf{Y} = \{y_{\alpha}, \, \alpha \in \mathcal{A}\} \equiv \{y_0, \, \dots, y_{P-1}\}$ (*P* unknown coef.)

$$oldsymbol{\Psi}(oldsymbol{x}) = \{\Psi_0(oldsymbol{x}), \, \ldots \,, \Psi_{P-1}(oldsymbol{x})\}$$

Least-square minimization

The unknown coefficients are estimated by minimizing the mean square residual error:

$$\left(\hat{\mathbf{Y}} = rg\min \mathbb{E} \left[\left(\mathbf{Y}^{\mathsf{T}} \mathbf{\Psi}(oldsymbol{X}) - \mathcal{M}(oldsymbol{X})
ight)^2
ight]$$

An estimate of the mean square error (sample average) is minimized:

$$\hat{\mathbf{Y}} = \arg\min_{\mathbf{Y} \in \mathbb{R}^{P}} \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{x}^{(i)}) - \mathcal{M}(\boldsymbol{x}^{(i)}) \right)^{2}$$

Procedure

- Select a truncation scheme, e.g. $\mathcal{A}^{M,p} = \left\{ oldsymbol{lpha} \in \mathbb{N}^M \ : \ |oldsymbol{lpha}|_1 \leq p
 ight\}$
- Select an experimental design and evaluate the model response

$$\mathsf{M} = \left\{\mathcal{M}(oldsymbol{x}^{(1)}),\,\ldots\,,\mathcal{M}(oldsymbol{x}^{(n)})
ight\}^{\mathsf{T}}$$

Compute the experimental matrix

$$\mathbf{A}_{ij} = \Psi_j \left(\boldsymbol{x}^{(i)} \right) \quad i = 1, \dots, n \; ; \; j = 0, \dots, P-1$$

Solve the resulting linear system

$$\hat{\mathbf{Y}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{M}$$

An estimate of the mean square error (sample average) is minimized:

$$\hat{\mathbf{Y}} = \arg\min_{\mathbf{Y} \in \mathbb{R}^{P}} \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{x}^{(i)}) - \mathcal{M}(\boldsymbol{x}^{(i)}) \right)^{2}$$

Procedure

- Select a truncation scheme, e.g. $\mathcal{A}^{M,p} = \left\{ oldsymbol{lpha} \in \mathbb{N}^M \ : \ |oldsymbol{lpha}|_1 \leq p
 ight\}$
- Select an experimental design and evaluate the model response

$$\mathsf{M} = \left\{\mathcal{M}(oldsymbol{x}^{(1)}), \, \ldots \,, \mathcal{M}(oldsymbol{x}^{(n)})
ight\}^{\mathsf{T}}$$

Compute the experimental matrix

$$\mathbf{A}_{ij} = \Psi_j \left(\boldsymbol{x}^{(i)} \right) \quad i = 1, \dots, n \; ; \; j = 0, \dots, P-1$$

Solve the resulting linear system

$$\hat{\mathbf{Y}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{M}$$

An estimate of the mean square error (sample average) is minimized:

$$\hat{\mathbf{Y}} = \arg\min_{\mathbf{Y} \in \mathbb{R}^{P}} \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{x}^{(i)}) - \mathcal{M}(\boldsymbol{x}^{(i)}) \right)^{2}$$

Procedure

- Select a truncation scheme, e.g. $\mathcal{A}^{M,p} = \left\{ oldsymbol{lpha} \in \mathbb{N}^M \ : \ |oldsymbol{lpha}|_1 \leq p
 ight\}$
- Select an experimental design and evaluate the model response

$$\mathsf{M} = \left\{\mathcal{M}(oldsymbol{x}^{(1)}), \, \ldots \,, \mathcal{M}(oldsymbol{x}^{(n)})
ight\}^{\mathsf{T}}$$

Compute the experimental matrix

$$\mathbf{A}_{ij} = \Psi_j \left(\boldsymbol{x}^{(i)} \right) \quad i = 1, \dots, n \; ; \; j = 0, \dots, P-1$$

Solve the resulting linear system

$$\hat{\mathbf{Y}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{M}$$

An estimate of the mean square error (sample average) is minimized:

$$\hat{\mathbf{Y}} = \arg\min_{\mathbf{Y} \in \mathbb{R}^{P}} \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{x}^{(i)}) - \mathcal{M}(\boldsymbol{x}^{(i)}) \right)^{2}$$

Procedure

- Select a truncation scheme, e.g. $\mathcal{A}^{M,p} = \left\{ oldsymbol{lpha} \in \mathbb{N}^M \ : \ |oldsymbol{lpha}|_1 \leq p
 ight\}$
- Select an experimental design and evaluate the model response

$$\mathsf{M} = \left\{\mathcal{M}(oldsymbol{x}^{(1)}), \, \ldots \,, \mathcal{M}(oldsymbol{x}^{(n)})
ight\}^{\mathsf{T}}$$

• Compute the experimental matrix

$$\mathbf{A}_{ij} = \Psi_j \left(\boldsymbol{x}^{(i)} \right) \quad i = 1, \dots, n \; ; \; j = 0, \dots, P-1$$

Solve the resulting linear system

$$\hat{\mathbf{Y}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{M}$$

Simple is beautiful !

B. Sudret (Chair of Risk, Safety & UQ)

Error estimators

• In least-squares analysis, the generalization error is defined as:

$$E_{gen} = \mathbb{E}\left[\left(\mathcal{M}(\boldsymbol{X}) - \mathcal{M}^{\mathsf{PC}}(\boldsymbol{X})\right)^{2}\right] \qquad \qquad \mathcal{M}^{\mathsf{PC}}(\boldsymbol{X}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X})$$

- The empirical error based on the experimental design ${\mathcal X}$ is a poor estimator in case of overfitting

$$E_{emp} = \frac{1}{n} \sum_{i=1}^{n} \left(\mathcal{M}(\boldsymbol{x}^{(i)}) - \mathcal{M}^{\mathsf{PC}}(\boldsymbol{x}^{(i)}) \right)^2$$

Error estimators

• In least-squares analysis, the generalization error is defined as:

$$E_{gen} = \mathbb{E}\left[\left(\mathcal{M}(\boldsymbol{X}) - \mathcal{M}^{\mathsf{PC}}(\boldsymbol{X})\right)^{2}\right] \qquad \qquad \mathcal{M}^{\mathsf{PC}}(\boldsymbol{X}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X})$$

- The empirical error based on the experimental design ${\cal X}$ is a poor estimator in case of overfitting

$$E_{emp} = \frac{1}{n} \sum_{i=1}^{n} \left(\mathcal{M}(\boldsymbol{x}^{(i)}) - \mathcal{M}^{\mathsf{PC}}(\boldsymbol{x}^{(i)}) \right)^2$$

Error estimators

In least-squares analysis, the generalization error is defined as:

$$E_{gen} = \mathbb{E}\left[\left(\mathcal{M}(\boldsymbol{X}) - \mathcal{M}^{\mathsf{PC}}(\boldsymbol{X})\right)^{2}\right] \qquad \qquad \mathcal{M}^{\mathsf{PC}}(\boldsymbol{X}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X})$$

- The empirical error based on the experimental design ${\cal X}$ is a poor estimator in case of overfitting

$$E_{emp} = \frac{1}{n} \sum_{i=1}^{n} \left(\mathcal{M}(\boldsymbol{x}^{(i)}) - \mathcal{M}^{\mathsf{PC}}(\boldsymbol{x}^{(i)}) \right)^{2}$$

Leave-one-out cross validation

 From statistical learning theory, model validation shall be carried out using independent data

$$E_{LOO} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\mathcal{M}(\boldsymbol{x}^{(i)}) - \mathcal{M}^{PC}(\boldsymbol{x}^{(i)})}{1 - h_i} \right)^2$$

where h_i is the *i*-th diagonal term of matrix $\mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$

Outline

1 Introduction

Polynomial chaos expansions PCE in a nushell Why brute-force PCE fails in dynamics?

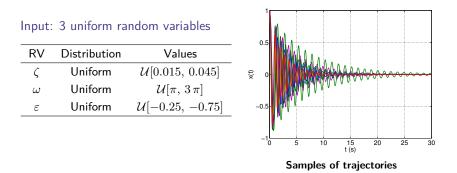
- OPC-NARX expansions
- **4** Fragility curves

Why brute-force PCE fails in dynamics?

Non-linear SDOF Duffing oscillator

$$\ddot{x}(t) + 2\,\omega\,\zeta\,\dot{x}(t) + \omega^2\,\left(x(t) + \varepsilon\,x^3(t)\right) = 0$$

Initial conditions: x(0) = 1, $\dot{x}(0) = 0$

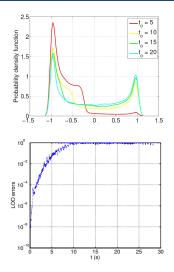


Time-frozen PCE

$$(\zeta, \omega, \varepsilon) = (0.03, 8.92, -0.34)$$
 $(\zeta, \omega, \varepsilon) = (0.04, 3.18, -0.33)$

Why time-frozen PCE does not work?

- The map ξ → M(ξ,t) becomes increasingly non linear with time
- The time-frozen distribution of the output at time t₀ becomes more complex (*e.g.* multimodal)
- Expansions of higher degree would be required to keep sufficient accuracy with time
- For a fixed experimental design, the LOO error blows up



Outline

1 Introduction

2 Polynomial chaos expansions

OPC-NARX expansions

NARX model Calibration of a PC-NARX model Application to Bouc Wen model

4 Fragility curves

Some literature

- Multi-elements PCEs: decomposition of the random space into non-overlapping sub-elements
 Wan & Karniadakis, 2005
- Constant phase interpolation: responses interpolated in the phase space

Witteveen & Bijl, 2008

- Asynchronous time integration: intrusive transformed time variable introduced to reduce variability
 Le Maître et al., 2010
- Time-dependent PCEs: new random variables added on-the-fly
 Gerritsma et al., 2010
- PC flow map composition: long-term response obtained by composing intermediate PCE-based flow maps
- PC-NARX: future state determined by current and past states

Spiridonakos & Chatzi, 2015

Some literature

- Multi-elements PCEs: decomposition of the random space into non-overlapping sub-elements
 Wan & Karniadakis, 2005
- Constant phase interpolation: responses interpolated in the phase space

Witteveen & Bijl, 2008

- Asynchronous time integration: intrusive transformed time variable introduced to reduce variability
 Le Maître et al., 2010
- Time-dependent PCEs: new random variables added on-the-fly Gerritsma et al., 2010
- PC flow map composition: long-term response obtained by composing intermediate PCE-based flow maps
- PC-NARX: future state determined by current and past states

Spiridonakos & Chatzi, 2015

Nonlinear AutoRegressive with eXogenous input model

NARX model

Billings, 2013

Based on a time-dependent input excitation x(t) and corresponding system response y(t), the dynamics is captured through:

$$y(t) = \mathcal{F}(x(t), \ldots, x(t-n_x), y(t-1), \ldots, y(t-n_y)) + \varepsilon_t$$

where:

- $z(t) = (x(t), \ldots, x(t n_x), y(t 1), \ldots, y(t n_y))^{\mathsf{T}}$ is the vector of current and past values
- n_x and n_y denote the maximum input and output time lags
- $\varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2(t))$ is the residual error
- $\mathcal{F}(\cdot)$ is a functional of NARX terms, usually linear-in-parameters:

$$y(t) = \sum_{i=1}^{n_g} \vartheta_i g_i(\boldsymbol{z}(t)) + \varepsilon_t$$

PC-NARX model

Spiridonakos et al., 2015a,2015b

Computational model with uncertainties

$$y(t, \boldsymbol{\xi}_x, \boldsymbol{\xi}_s) \stackrel{\text{def}}{=} \mathcal{M}(x(t, \boldsymbol{\xi}_x), \boldsymbol{\xi}_s)$$

- ξ_x : uncertainty in the input excitation
- ξ_s : uncertainty in the system

PC-NARX expansion

$$y(t,\boldsymbol{\xi}) = \sum_{i=1}^{n_g} \vartheta_i(\boldsymbol{\xi}) g_i(\boldsymbol{z}(t)) + \varepsilon_g(t,\boldsymbol{\xi}) \qquad \boldsymbol{\xi} = (\boldsymbol{\xi}_x, \boldsymbol{\xi}_s)$$

The NARX stochastic coefficients $\vartheta_i(\boldsymbol{\xi})$ are represented by PCEs:

$$\vartheta_i(\boldsymbol{\xi}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}_i} \vartheta_{i, \boldsymbol{\alpha}} \, \psi_{\boldsymbol{\alpha}}(\boldsymbol{\xi})$$

PC-NARX model

Spiridonakos et al. , 2015a,2015b

Computational model with uncertainties

$$y(t, \boldsymbol{\xi}_x, \boldsymbol{\xi}_s) \stackrel{\text{def}}{=} \mathcal{M}(x(t, \boldsymbol{\xi}_x), \boldsymbol{\xi}_s)$$

- ξ_x : uncertainty in the input excitation
- $\boldsymbol{\xi}_s$: uncertainty in the system

PC-NARX expansion

$$y(t,\boldsymbol{\xi}) = \sum_{i=1}^{n_g} \vartheta_i(\boldsymbol{\xi}) g_i(\boldsymbol{z}(t)) + \varepsilon_g(t,\boldsymbol{\xi}) \qquad \boldsymbol{\xi} = (\boldsymbol{\xi}_x, \boldsymbol{\xi}_s)$$

The NARX stochastic coefficients $\vartheta_i(\boldsymbol{\xi})$ are represented by PCEs:

$$\vartheta_i(\boldsymbol{\xi}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}_i} \vartheta_{i, \boldsymbol{\alpha}} \, \psi_{\boldsymbol{\alpha}}(\boldsymbol{\xi})$$

PC-NARX model

$$y(t,\boldsymbol{\xi}) = \sum_{i=1}^{n_g} \sum_{\boldsymbol{\alpha} \in \mathcal{A}_i} \vartheta_{i,\boldsymbol{\alpha}} \, \psi_{\boldsymbol{\alpha}}(\boldsymbol{\xi}) \, g_i(\boldsymbol{z}(t)) + \varepsilon(t,\boldsymbol{\xi})$$

Interpretation

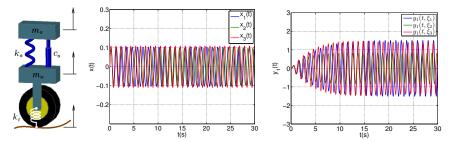
- PC-NARX is a NARX model in which each (random) coefficient is expanded as a PCE
- Compared to time-frozen PCE, a specific dynamics of the random coefficients is imposed
- Similar to flow map composition since the response at current instant is used to predict the response at future instants

Experimental design

Data

- N realizations of the input excitation, cast as $(x_k[1], \ldots, x_k[T])^{\mathsf{T}}, k = 1, \ldots, N$ (T time instants)
- The corresponding system response computed by a simulator, cast as $(y_k[1], \ldots, y_k[T])^{\mathsf{T}}$

Example: quarter car model



Deterministic NARX calibration

For a particular realization $\boldsymbol{\xi}_k$

Select NARX model (candidate terms):

$$z(t) = (x(t), \dots, x(t - n_x), y(t - 1), \dots, y(t - n_y))^{\mathsf{T}}$$

$$\phi(t) = \{g_i(z(t)), i = 1, \dots, n_g\}^{\mathsf{T}}$$

- Use least angle regression (LARS) to select the best explanatory subset of terms
- Compute the coefficients ϑ_k by ordinary least-squares

Prediction error (of model #k on trajectory l)

$$\varepsilon_l^{\#k} = \frac{\sum_{t=1}^T (y(t, \xi_l) - \hat{y}^{\#k}(t, \xi_l))^2}{\sum_{t=1}^T (y(t, \xi_l) - \bar{y}(t, \xi_l))^2}$$

Common NARX basis

Premise

To expand the NARX coefficients onto a PC basis, it is necessary to have a common NARX model for all trajectories

Procedure

- Select K ≤ N trajectories ("NARX learning set"), e.g. with the strongest non linear behaviour (peak displacement, velocities, etc.)
- Determine the sparse deterministic NARX models for realizations $k=1,\,\ldots\,,K,$ which leads to $P\leq K$ different possible models called $\#1,\,\ldots\,,\#P$
- Compute the NARX coefficients of the N trajectories, for each model #p, and evaluate an average error:

$$\varepsilon_p = \frac{1}{N} \sum_{k=1}^{N} \varepsilon_k^{\#p}$$

• Select the final best NARX model that minimizes ε_p

PCE of the NARX coefficients

PCE calibration

• Once a common NARX basis has been found, *N* realizations of the NARX coefficients are available:

$$\mathcal{ED} = \{\vartheta_{i,k}, i = 1, \dots, n_g; k = 1, \dots, N\}$$

$$artheta_i(oldsymbol{\xi}) = \sum_{oldsymbol{lpha} \in \mathcal{A}_i} artheta_{i,oldsymbol{lpha}} \psi_{oldsymbol{lpha}}(oldsymbol{\xi})$$

PC-NARX prediction

- For a new realization of the input parameters ξ₀, the NARX coefficients are first evaluated from PCEs
- Then they are plugged into the NARX model

Bouc-Wen model

Governing equations

Kafali & Grigoriu (2007), Spiridonakos & Chatzi (2015)

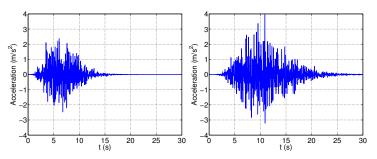
$$\begin{split} \ddot{y}(t) &+ 2\,\zeta\,\omega\,\dot{y}(t) + \omega^2(\rho\,y(t) + (1-\rho)\,z(t)) = -x(t), \\ \dot{z}(t) &= \gamma\dot{y}(t) - \alpha\,\left|\dot{y}(t)\right| \,\left|z(t)\right|^{n-1}z(t) - \beta\,\dot{y}(t)\,\left|z(t)\right|^n, \end{split}$$

 $x(t) = q(t, \boldsymbol{\alpha}) \sum_{i=1} s_i (t, \boldsymbol{\lambda}(t_i)) U_i$

Excitation

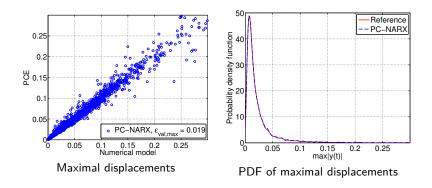
x(t) is generated by a probabilistic ground motion model

Rezaeian & Der Kiureghian (2010)



Bouc-Wen model: prediction

Bouc-Wen model: prediction



Outline

1 Introduction

- 2 Polynomial chaos expansions
- **③** PC-NARX expansions

Fragility curves Theory Application: steel frame

Introduction to fragility curves

- Earthquake engineering aims at assessing the performance of structures and infrastructures w.r.t recorded or potential quakes
- Due to uncertainties in the localization, magnitude, structural behaviour and resistance, etc. probabilistic approaches are commonly used

Fragility curves

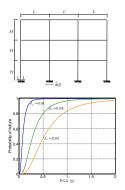
For a given performance criterion $g \leq g_{adm}$, the fragility curve represents the conditional probability of failure given an intensity measure IM:

$$\mathsf{Frag}(IM; \, g_{adm}) = \mathbb{P}\left(g \ge g_{adm} \,|\, IM\right)$$

Example

- $g = \max_{k} \max_{t_i \in [0,T]} |\delta_{t_i}^k|$ (k-th interstorey drift)
- *IM*: peak ground acceleration (PGA), pseudo-spectral acceleration (PSa), cumulative absolute velocity (CAV), etc.

Fragility curves



Classical approach

- Select a set of ground motions (recorded / synthetic)
- Compute the transient structural response (finite element analysis)
- Assume a parametric shape for the fragility curve, *e.g.* a lognormal shape:

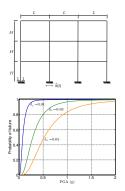
$$\mathsf{Frag}(IM;\,\delta_o) = \mathbb{P}\left(\Delta \ge \delta_o \,|\, IM\right) = \Phi\left(\frac{\log IM - \alpha}{\beta}\right)$$

• Fit the parameters (α, β) form data

Limitations

- Predefined shape of the curve
- Subject to epistemic uncertainties when the number of ground motions is small

Fragility curves



Classical approach

- Select a set of ground motions (recorded / synthetic)
- Compute the transient structural response (finite element analysis)
- Assume a parametric shape for the fragility curve, *e.g.* a lognormal shape:

$$\mathsf{Frag}(IM;\,\delta_o) = \mathbb{P}\left(\Delta \ge \delta_o \,|\, IM\right) = \Phi\left(\frac{\log IM - \alpha}{\beta}\right)$$

• Fit the parameters (α, β) form data

New proposal

- Use non parametric statistics for the fragility curves
- Use surrogate models of the transient analysis based on polynomial chaos expansions

Parametric methods

Linear regression (LR)

Probabilistic demand model:

$$\log \Delta = A \, \log IM + B + \zeta \, Z \qquad Z \sim \mathcal{N}(0, 1)$$

- A and B determined by ordinary least squares estimation in a log-log scale
- Results in a lognormal-like fragility curve:

$$\widehat{\mathsf{Frag}}(IM; \, \delta_o) = \mathbb{P}\left[\log \Delta \ge \log \delta_o\right] = 1 - \mathbb{P}\left[\log \Delta \le \log \delta_o\right]$$
$$= \Phi\left(\frac{\log IM - \left(\log \delta_o - B\right)/A}{\zeta/A}\right).$$

Maximum likelihood estimation (ML)

Shinozuka et al. (2000)

• Lognormal shape:

$$\widehat{\mathsf{Frag}}(IM;\,\delta_o) = \Phi\left(\frac{\log IM - \log \alpha}{\beta}\right)$$

• Estimation of α and β by maximum likelihood for each δ_o :

$$\mathcal{L}\left(\alpha,\beta,\left\{IM_{i}\right\}_{i=1}^{N}\right) = \prod_{IM_{i}:\,\Delta_{i}\geq\delta_{o}}\left[\widehat{\mathsf{Frag}}(IM_{i};\,\delta_{o})\right]\prod_{IM_{i}:\,\Delta_{i}<\delta_{o}}\left[1-\widehat{\mathsf{Frag}}(IM_{i};\,\delta_{o})\right]$$

B. Sudret (Chair of Risk, Safety & UQ)

Ellingwood (2001)

Parametric methods

Linear regression (LR)

Probabilistic demand model:

$$\log \Delta = A \, \log IM + B + \zeta \, Z \qquad Z \sim \mathcal{N}(0, 1)$$

- A and B determined by ordinary least squares estimation in a log-log scale
- Results in a lognormal-like fragility curve:

$$\widehat{\mathsf{Frag}}(IM;\,\delta_o) = \mathbb{P}\left[\log\Delta \ge \log\delta_o\right] = 1 - \mathbb{P}\left[\log\Delta \le \log\delta_o\right]$$
$$= \Phi\left(\frac{\log IM - \left(\log\delta_o - B\right)/A}{\zeta/A}\right).$$

Maximum likelihood estimation (ML)

Lognormal shape:

$$\widehat{\mathsf{Frag}}(IM;\,\delta_o) = \Phi\left(\frac{\log IM - \log \alpha}{\beta}\right)$$

• Estimation of α and β by maximum likelihood for each δ_o :

$$\mathcal{L}\left(\alpha,\,\beta,\,\left\{IM_i\right\}_{i=1}^N\right) = \prod_{IM_i:\,\Delta_i \ge \delta_o} \left[\widehat{\mathsf{Frag}}(IM_i;\,\delta_o)\right] \prod_{IM_i:\,\Delta_i < \delta_o} \left[1 - \widehat{\mathsf{Frag}}(IM_i;\,\delta_o)\right]$$

B. Sudret (Chair of Risk, Safety & UQ)

Surrogates for dynamical systems

Ellingwood (2001)

Shinozuka et al. (2000)

Non parametric methods

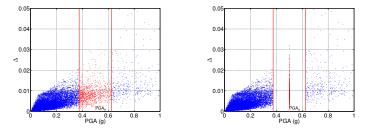
Binned Monte Carlo estimate

Mai, Konakli & Sudret, Frontiers Struct. Civ. Eng., (2017)

• Suppose N_s analyses are available for $IM = IM_o$, with N_f such that $\Delta \ge \delta_o$. The fragility curve in this point could be estimated by Monte Carlo simulation:

$$\widehat{\mathsf{Frag}}(IM_o) = \frac{N_f(IM_o)}{N_s(IM_o)}$$

• From the data cloud, a bin centered on IM_o is considered, and points within the beam are "projected" onto the vertical line $IM = IM_o$ by linearization $\widetilde{\Delta_j}(IM_o) = \Delta_j \frac{IM_o}{IM_j}$.



Kernel density estimation

Fragility curves as a conditional CCDF

Mai et al., Frontiers Struct. Civ. Eng., (2017)

$$\mathsf{Frag}(a;\,\delta_o) = \mathbb{P}\left(\Delta \ge \delta_o | IM = a\right) = \int_{\delta_o}^{+\infty} f_{\Delta}(\delta | IM = a) \,\mathrm{d}\delta$$

where:

$$f_{\Delta}(\delta|IM = a) = \frac{f_{\Delta,IM}(\delta, a)}{f_{IM}(a)}$$

Kernel density estimation

The joint- and the marginal PDFs are estimated by:

$$\hat{f}_X(x) = \frac{1}{Nh} \sum_{i=1}^N K\left(\frac{x-x_i}{h}\right) \qquad \hat{f}_X(x) = \frac{1}{N|H|^{1/2}} \sum_{i=1}^N K\left(H^{-1/2}(x-x_i)\right)$$

NB: Use of a constant bandwidth in the logarithmic scale

Mai, C., Polynomial chaos expansions for uncertain dynamical systems – Applications in earthquake engineering, PhD Thesis, ETH ich. 2016

B. Sudret (Chair of Risk, Safety & UQ)

Kernel density estimation

Fragility curves as a conditional CCDF

Mai et al., Frontiers Struct. Civ. Eng., (2017)

$$\mathsf{Frag}(a;\,\delta_o) = \mathbb{P}\left(\Delta \ge \delta_o | IM = a\right) = \int_{\delta_o}^{+\infty} f_{\Delta}(\delta | IM = a) \,\mathrm{d}\delta$$

where:

$$f_{\Delta}(\delta|IM = a) = \frac{f_{\Delta,IM}(\delta,a)}{f_{IM}(a)}$$

Kernel density estimation

• The joint- and the marginal PDFs are estimated by:

$$\hat{f}_{X}(x) = \frac{1}{Nh} \sum_{i=1}^{N} K\left(\frac{x - x_{i}}{h}\right) \qquad \hat{f}_{X}(x) = \frac{1}{N|\boldsymbol{H}|^{1/2}} \sum_{i=1}^{N} K\left(\boldsymbol{H}^{-1/2}(\boldsymbol{x} - \boldsymbol{x}_{i})\right)$$

NB: Use of a constant bandwidth in the logarithmic scale

Mai, C., Polynomial chaos expansions for uncertain dynamical systems – Applications in earthquake engineering, PhD Thesis, ETH Zurich, 2016

B. Sudret (Chair of Risk, Safety & UQ)

Outline

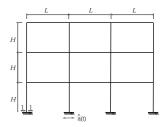
1 Introduction

2 Polynomial chaos expansions

③ PC-NARX expansions

 Fragility curves Theory
 Application: steel frame

Application : steel frame



- 2D steel frame submitted to synthetic ground motions
- Synthetic earthquakes generated in time domain

Parameter	Distribution	Mean	Standard deviation	C.o.V
f_y (MPa)	Lognormal	264.2878	18.5	0.07
E_0 (MPa)	Lognormal	210000	630	0.03

Stochastic ground motion

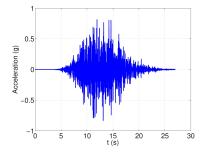
Stochastic excitation

Obtained by a modulated filtered white noise process

Rezaeian & Der Kiureghian (2010)

$$x(t) = q(t, \boldsymbol{\alpha}) \sum_{i=1}^{n} s_i \left(t, \boldsymbol{\lambda}(t_i) \right) \cdot \xi_i \qquad \xi_i \sim \mathcal{N}(0, 1)$$

- Parameters of the filter $\boldsymbol{\lambda} = (\omega_{mid}, \omega', \zeta_f)^{\mathsf{T}}$ are calibrated on recorded signals
- Global parameters (Arias intensity I_a , duration D_{5-95} , strong phase peak t_{mid}) are transformed into the parameters α of the modulation function $q(t, \alpha)$ (e.g. gamma distribution)



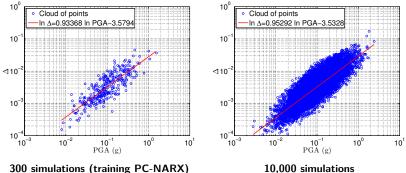
Stochastic ground motion

Parameters of the excitation

Parameter	Distribution	Support	Mean	Standard deviation
I_a (s.g)	Lognormal	$(0, +\infty)$	0.0468	0.164
D_{5-95} (s)	Beta	[5, 45]	17.3	9.31
t_{mid} (s)	Beta	[0.5, 40]	12.4	7.44
$\omega_{mid}/2\pi$ (Hz)	Gamma	$(0, +\infty)$	5.87	3.11
$\omega'/2\pi$ (Hz)	Two-sided exponential	[-2, 0.5]	-0.089	0.185
ζ_f (.)	Beta	[0.02, 1]	0.213	0.143

Training and validation data

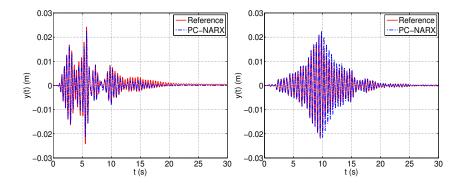
- Reference solution: Monte Carlo sampling of 10,000 non linear transient analyses
- PC-NARX: 300 samples



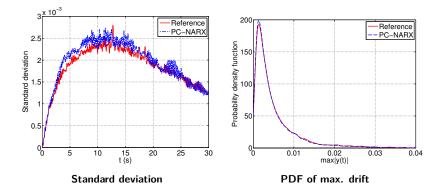
10.000 simulations

Two trajectories (first floor displacement)

- Reference solution: Monte Carlo sampling of 10,000 non linear transient analyses
- PC-NARX: 300 samples



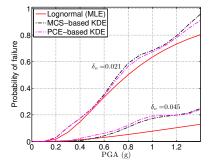
Statistics of the first floor drift



Fragility curve – maximal drift

- Reference solution: Monte Carlo sampling of 10,000 non linear transient analyses
- PC-NARX: 300 samples

Fragility curves

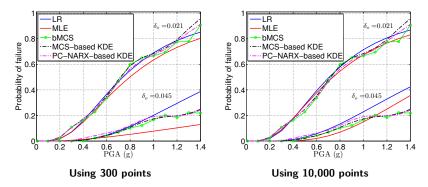


Kernel density estimation

Fragility curve – maximal drift

- Reference solution: Monte Carlo sampling of 10,000 non linear transient analyses
- PC-NARX: 300 samples

Fragility curves



Conclusions

- Polynomial chaos expansions are facing challenging issues when modelling time-dependent systems such as arising in structural dynamics
- A non-intrusive approach based on NARX models (from structural identification) and sparse PCE is proposed
- The accuracy is remarkable on the statistical moments (mean/std. deviation), PDF of the maximum output, but also on particular trajectories
- The method was successfully used for computing fragility curves in earthquake engineering applications

Conclusions

Questions ?

Chair of Risk, Safety & Uncertainty Quantification

www.rsuq.ethz.ch

www.uqlab.com

Thank you very much for your attention !

Conclusions

References

M Shinozuka, M Feng, J Lee, and T Naganuma.

Statistical analysis of fragility curves. J. Eng. Mech., 126(12):1224–1231, 2000.

B. Ellingwood.

Earthquake risk assessment of building structures. Reliab. Eng. Sys. Safety, 74(3):251–262, 2001.

S. Rezaeian and A. Der Kiureghian.

Simulation of synthetic ground motions for specified earthquake and site characteristics. *Earthq. Eng. Struct. Dyn.*, 39(10):1155–1180, 2010.

C. V. Mai.

Polynomial chaos expansions for uncertain dynamical systems – Applications in earthquake engineering. PhD thesis, ETH Zürich, Switzerland, 2016.

C.-V. Mai, M. D. Spiridonakos, E.N. Chatzi, and B. Sudret.

Surrogate modeling for stochastic dynamical systems by combining nonlinear autoregressive with exogeneous input models and polynomial chaos expansions.

Int. J. Uncer. Quant., 6(4):313-339, 2016.

C.-V. Mai, K. Konakli, and B. Sudret.

Seismic fragility curves for structures using non-parametric representations. Frontiers Struct. Civ. Eng., 11(2):169–186, 2017.