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Introduction

Global framework for uncertainty quantification

Step A
Model(s) of the system

Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Moments
Probability of failure

Response PDF

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – contributions to structural reliability and stochastic spectral

methods (2007)
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Introduction

Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational model M
with the following features:

• It is built from a limited set of runs of the original model M called the
experimental design X =

{
x(i), i = 1, . . . , n

}
• It assumes some regularity of the model M and some general functional shape
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• It is built from a limited set of runs of the original model M called the
experimental design X =

{
x(i), i = 1, . . . , n

}
• It assumes some regularity of the model M and some general functional shape

Name Shape Parameters
Polynomial chaos expansions M̃(x) =

∑
α∈A

aα Ψα(x) aα

Low-rank tensor approximations M̃(x) =
R∑
l=1

bl

(
M∏
i=1

v
(i)
l

(xi)

)
bl, z

(i)
k,l

Kriging (a.k.a Gaussian processes) M̃(x) = βT · f(x) + Z(x, ω) β , σ2
Z , θ

Support vector machines M̃(x) =
n∑
i=1

aiK(xi,x) + b a , b
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Introduction

Ingredients for building a surrogate model

• Select an experimental design X that covers at best
the domain of input parameters: Latin hypercube
sampling (LHS), low-discrepancy sequences

• Run the computational model M onto X exactly as
in Monte Carlo simulation

• Smartly post-process the data {X ,M(X )} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,
compressive sensing

Low-rank tensor approximations alternate least squares

Kriging maximum likelihood, Bayesian inference

Support vector machines quadratic programming
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Introduction

Advantages of surrogate models

Usage
M(x) ≈ M̃(x)

hours per run seconds for 106 runs

Advantages
• Non-intrusive methods: based on

runs of the computational model,
exactly as in Monte Carlo
simulation

• Construction suited to high
performance computing:
“embarrassingly parallel”
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Outline
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2 Polynomial chaos expansions
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Polynomial chaos expansions PCE in a nushell

Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991); Xiu & Karniadakis (2002); Soize & Ghanem (2004); Lemâıtre & Knio (2010)

• Consider the input random vector X (dim X = M) with given probability
density function (PDF) fX(x) =

∏M

i=1 fXi (xi)

• Assuming that the random output Y =M(X) has finite variance, it can be
cast as the following polynomial chaos expansion:

Y =
∑
α∈NM

yα Ψα(X)

where :
• Ψα(X) : basis functions
• yα : coefficients to be computed (coordinates)

• The PCE basis
{

Ψα(X), α ∈ NM
}

is made of multivariate orthonormal
polynomials
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Polynomial chaos expansions PCE in a nushell

Computing the coefficients by least-square minimization

Isukapalli (1999); Berveiller, Sudret & Lemaire (2006)

Principle
The exact (infinite) series expansion is considered as the sum of a truncated
series and a residual:

Y =M(X) =
∑
α∈A

yαΨα(X) + εP ≡ YTΨ(X) + εP (X)

where : Y = {yα, α ∈ A} ≡ {y0, . . . , yP−1} (P unknown coef.)

Ψ(x) = {Ψ0(x), . . . ,ΨP−1(x)}

Least-square minimization
The unknown coefficients are estimated by minimizing the mean square
residual error:

Ŷ = arg min E
[(

YTΨ(X)−M(X)
)2]
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Polynomial chaos expansions PCE in a nushell

Discrete (ordinary) least-square minimization

An estimate of the mean square error (sample average) is minimized:

Ŷ = arg min
Y∈RP

1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2
Procedure

• Select a truncation scheme, e.g. AM,p =
{
α ∈ NM : |α|1 ≤ p

}
• Select an experimental design and evaluate the

model response
M =

{
M(x(1)), . . . ,M(x(n))

}T

• Compute the experimental matrix
Aij = Ψj

(
x(i)) i = 1, . . . , n ; j = 0, . . . , P − 1

• Solve the resulting linear system

Ŷ = (ATA)−1ATM

Simple is beautiful !
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Polynomial chaos expansions PCE in a nushell

Error estimators

• In least-squares analysis, the generalization error is defined as:

Egen = E
[(
M(X)−MPC(X)

)2] MPC(X) =
∑
α∈A

yα Ψα(X)

• The empirical error based on the experimental design X is a poor estimator in
case of overfitting

Eemp = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

)2
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[(
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)2] MPC(X) =
∑
α∈A

yα Ψα(X)

• The empirical error based on the experimental design X is a poor estimator in
case of overfitting

Eemp = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

)2
Leave-one-out cross validation

• From statistical learning theory, model validation shall be carried out using
independent data

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

1− hi

)2

where hi is the i-th diagonal term of matrix A(ATA)−1AT
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Polynomial chaos expansions Why brute-force PCE fails in dynamics?
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Polynomial chaos expansions Why brute-force PCE fails in dynamics?

Why brute-force PCE fails in dynamics?

Non-linear SDOF Duffing oscillator

ẍ(t) + 2ω ζ ẋ(t) + ω2 (x(t) + ε x3(t)
)

= 0

Initial conditions: x(0) = 1, ẋ(0) = 0

Input: 3 uniform random variables

RV Distribution Values
ζ Uniform U [0.015, 0.045]
ω Uniform U [π, 3π]
ε Uniform U [−0.25, −0.75]

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

t (s)

x
(t

)

Samples of trajectories
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Polynomial chaos expansions Why brute-force PCE fails in dynamics?

Time-frozen PCE

(ζ, ω, ε) = (0.03, 8.92,−0.34) (ζ, ω, ε) = (0.04, 3.18,−0.33))
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Polynomial chaos expansions Why brute-force PCE fails in dynamics?

Why time-frozen PCE does not work?

• The map ξ 7→ M(ξ, t) becomes increasingly
non linear with time

• The time-frozen distribution of the output
at time t0 becomes more complex (e.g.
multimodal)

• Expansions of higher degree would be
required to keep sufficient accuracy with
time

• For a fixed experimental design, the LOO
error blows up

0 5 10 15 20 25 30
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

t (s)

L
O

O
 e

rr
o
rs

B. Sudret (Chair of Risk, Safety & UQ) Surrogates for dynamical systems BRGM – January 16th, 2018 14 / 39



PC-NARX expansions

Outline

1 Introduction

2 Polynomial chaos expansions
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PC-NARX expansions

Some literature

• Multi-elements PCEs: decomposition of the random space into
non-overlapping sub-elements Wan & Karniadakis, 2005

• Constant phase interpolation: responses interpolated in the phase space
Witteveen & Bijl, 2008

• Asynchronous time integration: intrusive transformed time variable introduced
to reduce variability Le Mâıtre et al., 2010

• Time-dependent PCEs: new random variables added on-the-fly Gerritsma et al., 2010

• PC flow map composition: long-term response obtained by composing
intermediate PCE-based flow maps Luchtenburg et al., 2014

• PC-NARX: future state determined by current and past states
Spiridonakos & Chatzi, 2015
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PC-NARX expansions NARX model

Nonlinear AutoRegressive with eXogenous input model

NARX model Billings, 2013

Based on a time-dependent input excitation x(t) and corresponding system
response y(t), the dynamics is captured through:

y(t) = F (x(t), . . . , x(t− nx), y(t− 1), . . . , y(t− ny)) + εt

where:
• z(t) = (x(t), . . . , x(t− nx), y(t− 1), . . . , y(t− ny))T is the vector of current

and past values
• nx and ny denote the maximum input and output time lags
• εt ∼ N (0, σ2

ε(t)) is the residual error
• F(·) is a functional of NARX terms, usually linear-in-parameters:

y(t) =
ng∑
i=1

ϑi gi(z(t)) + εt
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PC-NARX expansions NARX model

PC-NARX model Spiridonakos et al. , 2015a,2015b

Computational model with uncertainties

y(t, ξx, ξs)
def= M(x(t, ξx), ξs)

• ξx : uncertainty in the input excitation
• ξs : uncertainty in the system

PC-NARX expansion

y(t, ξ) =
ng∑
i=1

ϑi(ξ) gi(z(t)) + εg(t, ξ) ξ = (ξx, ξs)

The NARX stochastic coefficients ϑi(ξ) are represented by PCEs:

ϑi(ξ) =
∑
α∈Ai

ϑi,α ψα(ξ)
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PC-NARX expansions NARX model

PC-NARX model

y(t, ξ) =
ng∑
i=1

∑
α∈Ai

ϑi,α ψα(ξ) gi(z(t)) + ε(t, ξ)

Interpretation
• PC-NARX is a NARX model in which each (random) coefficient is expanded

as a PCE

• Compared to time-frozen PCE, a specific dynamics of the random coefficients
is imposed

• Similar to flow map composition since the response at current instant is used
to predict the response at future instants
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PC-NARX expansions Calibration of a PC-NARX model

Experimental design
Data

• N realizations of the input excitation, cast as
(xk[1], . . . , xk[T ])T , k = 1, . . . , N (T time instants)

• The corresponding system response computed by a simulator, cast as
(yk[1], . . . , yk[T ])T

Example: quarter car model
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PC-NARX expansions Calibration of a PC-NARX model

Deterministic NARX calibration

For a particular realization ξk

• Select NARX model (candidate terms):

z(t) = (x(t), . . . , x(t− nx), y(t− 1), . . . , y(t− ny))T

φ(t) = {gi(z(t)), i = 1, . . . , ng}T

• Use least angle regression (LARS) to select the best explanatory subset of
terms Efron et al. , 2004

• Compute the coefficients ϑk by ordinary least-squares

Prediction error (of model #k on trajectory l)

ε#k
l

=

T∑
t=1

(y(t, ξl)− ŷ#k(t, ξl))2

T∑
t=1

(y(t, ξl)− ȳ(t, ξl))2
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PC-NARX expansions Calibration of a PC-NARX model

Common NARX basis

Premise
To expand the NARX coefficients onto a PC basis, it is necessary to have a
common NARX model for all trajectories

Procedure
• Select K ≤ N trajectories (“NARX learning set”), e.g. with the strongest non

linear behaviour (peak displacement, velocities, etc.)

• Determine the sparse deterministic NARX models for realizations
k = 1, . . . ,K, which leads to P ≤ K different possible models called
#1, . . . ,#P

• Compute the NARX coefficients of the N trajectories, for each model #p, and
evaluate an average error:

εp = 1
N

N∑
k=1

ε#p
k

• Select the final best NARX model that minimizes εp
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PC-NARX expansions Calibration of a PC-NARX model

PCE of the NARX coefficients

PCE calibration
• Once a common NARX basis has been found, N realizations of the NARX

coefficients are available:

ED = {ϑi,k, i = 1, . . . , ng; k = 1, . . . , N}

• ng different sparse PC expansions are built from this experimental design,
using least-angle regression (LAR) Blatman & Sudret, 2011

ϑi(ξ) =
∑
α∈Ai

ϑi,α ψα(ξ)

PC-NARX prediction
• For a new realization of the input parameters ξ0, the NARX coefficients are

first evaluated from PCEs
• Then they are plugged into the NARX model
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PC-NARX expansions Application to Bouc Wen model

Bouc-Wen model

Governing equations Kafali & Grigoriu (2007), Spiridonakos & Chatzi (2015)

ÿ(t) + 2 ζ ω ẏ(t) + ω2(ρ y(t) + (1− ρ) z(t)) = −x(t),
ż(t) = γẏ(t)− α |ẏ(t)| |z(t)|n−1 z(t)− β ẏ(t) |z(t)|n ,

Excitation
x(t) is generated by a probabilistic ground motion model Rezaeian & Der Kiureghian (2010)

x(t) = q(t,α)
n∑
i=1

si (t,λ(ti)) Ui
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PC-NARX expansions Application to Bouc Wen model

Bouc-Wen model: prediction
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PC-NARX expansions Application to Bouc Wen model

Bouc-Wen model: prediction
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Fragility curves
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Fragility curves Theory

Introduction to fragility curves
• Earthquake engineering aims at assessing the

performance of structures and infrastructures w.r.t
recorded or potential quakes

• Due to uncertainties in the localization, magnitude,
structural behaviour and resistance, etc. probabilistic
approaches are commonly used

Fragility curves
For a given performance criterion g ≤ gadm, the fragility curve represents the
conditional probability of failure given an intensity measure IM :

Frag(IM ; gadm) = P (g ≥ gadm | IM)

Example
• g = max

k
max
ti∈[0,T ]

|δkti | (k-th interstorey drift)

• IM : peak ground acceleration (PGA), pseudo-spectral acceleration (PSa),
cumulative absolute velocity (CAV), etc.
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Fragility curves Theory

Fragility curves
L
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Classical approach
• Select a set of ground motions (recorded / synthetic)

• Compute the transient structural response (finite
element analysis)

• Assume a parametric shape for the fragility curve,
e.g. a lognormal shape:

Frag(IM ; δo) = P (∆ ≥ δo | IM) = Φ
( log IM − α

β

)
• Fit the parameters (α, β) form data

Limitations
• Predefined shape of the curve
• Subject to epistemic uncertainties when the number of ground motions is small
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Fragility curves Theory

Fragility curves
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Classical approach
• Select a set of ground motions (recorded / synthetic)

• Compute the transient structural response (finite
element analysis)

• Assume a parametric shape for the fragility curve,
e.g. a lognormal shape:

Frag(IM ; δo) = P (∆ ≥ δo | IM) = Φ
( log IM − α

β

)
• Fit the parameters (α, β) form data

New proposal
• Use non parametric statistics for the fragility curves
• Use surrogate models of the transient analysis based on polynomial chaos

expansions
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Fragility curves Theory

Parametric methods
Linear regression (LR) Ellingwood (2001)

• Probabilistic demand model:
log ∆ = A log IM +B + ζ Z Z ∼ N (0, 1)

• A and B determined by ordinary least squares estimation in a log-log scale
• Results in a lognormal-like fragility curve:

F̂rag(IM ; δo) = P [log ∆ ≥ log δo] = 1− P [log ∆ ≤ log δo]

= Φ
(

log IM − (log δo −B) /A
ζ/A

)
.

Maximum likelihood estimation (ML) Shinozuka et al. (2000)

• Lognormal shape:

F̂rag(IM ; δo) = Φ
(

log IM − logα
β

)
• Estimation of α and β by maximum likelihood for each δo:

L
(
α, β, {IMi}Ni=1

)
=

∏
IMi: ∆i≥δo

[
F̂rag(IMi; δo)

] ∏
IMi: ∆i<δo

[
1− F̂rag(IMi; δo)

]
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Fragility curves Theory

Non parametric methods

Binned Monte Carlo estimate Mai, Konakli & Sudret, Frontiers Struct. Civ. Eng., (2017)

• Suppose Ns analyses are available for IM = IMo, with Nf such that ∆ ≥ δo.
The fragility curve in this point could be estimated by Monte Carlo simulation:

F̂rag(IMo) = Nf (IMo)
Ns (IMo)

• From the data cloud, a bin centered on IMo is considered, and points within
the beam are “projected” onto the vertical line IM = IMo by linearization
∆̃j(IMo) = ∆j

IMo

IMj
.
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Fragility curves Theory

Kernel density estimation

Fragility curves as a conditional CCDF Mai et al. , Frontiers Struct. Civ. Eng., (2017)

Frag(a; δo) = P (∆ ≥ δo|IM = a) =
+∞∫
δo

f∆(δ|IM = a) dδ

where:
f∆(δ|IM = a) = f∆,IM (δ, a)

fIM (a)

Kernel density estimation
• The joint- and the marginal PDFs are estimated by:

f̂X (x) = 1
Nh

N∑
i=1

K
(
x− xi
h

)
f̂X (x) = 1

N |H|1/2

N∑
i=1

K
(
H−1/2(x− xi)

)
NB: Use of a constant bandwidth in the logarithmic scale

Mai, C., Polynomial chaos expansions for uncertain dynamical systems – Applications in earthquake engineering, PhD Thesis, ETH

Zurich, 2016
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Fragility curves Application: steel frame
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Fragility curves Application: steel frame

Application : steel frame

L
H
H
H

a(t)^

L L

1 1

• 2D steel frame submitted to
synthetic ground motions

• Synthetic earthquakes generated in
time domain

Parameter Distribution Mean Standard deviation C.o.V
fy (MPa) Lognormal 264.2878 18.5 0.07
E0 (MPa) Lognormal 210000 630 0.03
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Fragility curves Application: steel frame

Stochastic ground motion

Stochastic excitation
• Obtained by a modulated filtered white noise process Rezaeian & Der Kiureghian (2010)

x(t) = q(t,α)
n∑
i=1

si (t,λ(ti)) · ξi ξi ∼ N (0, 1)

• Parameters of the filter
λ = (ωmid, ω′, ζf )T are calibrated
on recorded signals

• Global parameters (Arias intensity
Ia, duration D5−95, strong phase
peak tmid) are transformed into the
parameters α of the modulation
function q(t,α) (e.g. gamma
distribution)
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Fragility curves Application: steel frame

Stochastic ground motion

Parameters of the excitation

Parameter Distribution Support Mean Standard deviation
Ia (s.g) Lognormal (0, +∞) 0.0468 0.164
D5−95 (s) Beta [5, 45] 17.3 9.31
tmid (s) Beta [0.5, 40] 12.4 7.44

ωmid/2π (Hz) Gamma (0, +∞) 5.87 3.11
ω′/2π (Hz) Two-sided exponential [-2, 0.5] -0.089 0.185
ζf (.) Beta [0.02, 1] 0.213 0.143
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Fragility curves Application: steel frame

Training and validation data

• Reference solution: Monte Carlo sampling of 10,000 non linear transient
analyses

• PC-NARX: 300 samples
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Fragility curves Application: steel frame

Two trajectories (first floor displacement)

• Reference solution: Monte Carlo sampling of 10,000 non linear transient
analyses

• PC-NARX: 300 samples
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Fragility curves Application: steel frame

Statistics of the first floor drift
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Fragility curves Application: steel frame

Fragility curve – maximal drift

• Reference solution: Monte Carlo sampling of 10,000 non linear transient
analyses

• PC-NARX: 300 samples

Fragility curves
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Fragility curves Application: steel frame

Fragility curve – maximal drift

• Reference solution: Monte Carlo sampling of 10,000 non linear transient
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Fragility curves
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Conclusions

Conclusions

• Polynomial chaos expansions are facing challenging issues when modelling
time-dependent systems such as arising in structural dynamics

• A non-intrusive approach based on NARX models (from structural
identification) and sparse PCE is proposed

• The accuracy is remarkable on the statistical moments (mean/std. deviation),
PDF of the maximum output, but also on particular trajectories

• The method was successfully used for computing fragility curves in earthquake
engineering applications
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Conclusions

Questions ?

Chair of Risk, Safety &
Uncertainty Quantification

www.rsuq.ethz.ch

www.uqlab.com

Thank you very much for your attention !
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