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Abstract

Robust and accurate visual localization is a fundamental
capability for numerous applications, such as autonomous
driving, mobile robotics, or augmented reality. It remains,
however, a challenging task, particularly for large-scale
environments and in presence of significant appearance
changes. State-of-the-art methods not only struggle with
such scenarios, but are often too resource intensive for cer-
tain real-time applications.

In this paper we propose HF-Net, a hierarchical local-
ization approach based on a monolithic CNN that simulta-
neously predicts local features and global descriptors for
accurate 6-DoF localization. We exploit the coarse-to-
fine localization paradigm: we first perform a global re-
trieval to obtain location hypotheses and only later match
local features within those candidate places. This hier-
archical approach incurs significant runtime savings and
makes our system suitable for real-time operation. By lever-
aging learned descriptors, our method achieves remark-
able localization robustness across large variations of ap-
pearance. Consequently, we demonstrate new state-of-the-
art performance on two challenging benchmarks for large-
scale 6-DoF localization. The code of our method will be
made publicly available.

1. Introduction

The precise 6-Degree-of-Freedom (DoF) localization of
a camera within an existing 3D model is one of the core
computer vision capabilities that unlocks a number of re-
cent applications. These include autonomous driving in
GPS-denied environments and consumer devices with aug-
mented reality features, where a centimeter-accurate 6-DoF
pose is crucial to guarantee reliable and safe operation and
fully immersive experiences, respectively. More broadly,
visual localization is a key component in computer vision
tasks such as Structure-from-Motion (SfM) or SLAM. This
growing range of applications of visual localization calls for
reliable operation both indoors and outdoors, irrespective of
the weather, illumination or seasonal changes.

Robustness to large perceptual changes, in terms of illu-
mination, viewpoint, or between weather conditions or sea-
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Figure 1. HF-Net working principle. We start by performing
global matching, which helps us to remain computationally effi-
cient and improves the robustness in challenging situations. Then,
using powerful local features lets us establish reliable correspon-
dences and estimate an accurate 6-DoF pose.

sons, is therefore critical, along with limited computational
resources. Maintaining a model that allows accurate local-
ization in multiple conditions, while remaining compact, is
thus of utmost importance. In this work, we investigate
whether it is actually possible to robustly localize in large-
scale changing environments with constrained resources of
mobile devices. More specifically, we aim at estimating the
6-DoF pose of a query image w.r.t. a given 3D model with
the highest possible accuracy.

Current leading approaches mostly rely on estimating
correspondences between 2D keypoints in the query and
3D points in a sparse model using local descriptors. This
direct matching is either robust but intractable on mo-
bile [40, 44], or optimized for efficiency but fragile [24].
In both cases, the robustness of classical localization meth-
ods is limited by the poor invariance of hand-crafted lo-
cal features. Recent features emerging from convolutional
neural networks (CNN) exhibit unrivalled robustness at a
low compute cost. They have been, however, only re-
cently [41] applied to the visual localization problem, and
only in a dense, expensive manner. Learned sparse descrip-
tors [12, 29] promise large benefits that remain yet unex-
plored in localization.

Alternative localization approaches based on image re-
trieval have recently shown promising results in terms of
robustness and efficiency. As such, [32] demonstrated the
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benefits of an intermediate retrieval step at small-scale and
using off-the-shelf components, thus not reaching the scal-
ability required by city-scale localization.

In this paper, we propose a Hierarchical Feature Net-
work (HF-Net) – an approach that bridges the gap between
robustness and efficiency by leveraging recent advances in
deep learning. The principle of our method is depicted in
Figure 1. At its core, our approach is a CNN that jointly
estimates local and global features to localize in a hierarchi-
cal manner. Similar to how humans localize, we employ a
natural coarse-to-fine pose estimation process that is highly
efficient and scales well with large environments. Global
features first capture a wide context of the image, which
provides robustness to perceptual aliasing while enabling
a scalable coarse initial search. Learned local features
are then used to estimate precise correspondences with the
model for the accurate estimation of the pose. They carry
a powerful representation of the visual information through
fewer but more repeatable keypoints associated with highly
matchable local descriptors. This enables a faster, yet pre-
cise, local search. The joint prediction of both scales within
a single network maximizes the sharing of computation
across the tasks for an efficient inference online. Overall,
our contributions are as follow:

– We set a new state-of-the-art in several public bench-
marks for large-scale localization with an outstanding
robustness in particularly challenging condition, e.g.
across seasons;

– We introduce HF-Net, a monolithic neural network
which efficiently predicts hierarchical features for
a fast and robust localization;

– We employ a novel multitask distillation procedure
to train HF-Net in a flexible way that matches the ac-
curacy of the teacher method with an unparalleled ef-
ficiency.

2. Related work
In this section we review other works that relate to dif-

ferent components of our approach, namely: visual local-
ization, scalability, feature learning, and deployment on re-
source constrained devices.

6-DoF visual localization methods have traditionally been
classified as either structure-based or image-based. The for-
mer perform direct matching of local descriptors between
2D keypoints of a query image and 3D points in a 3D SfM
model. These methods are able to estimate accurate poses,
but often rely on exhaustive matching and are thus com-
pute intensive [40, 34]. As the model grows in size and
perceptual aliasing arises, this matching becomes ambigu-
ous, impairing the robustness of the localization, especially

under strong appearance changes such as day-night. An-
other group of approaches attempts to directly regress the
pose from the image [20, 18] or to classify it to a spatial
bin [46]. Image-based methods are related to image re-
trieval and are only able to provide an approximate pose up
to the database discretization, which is not sufficiently pre-
cise for many applications. They are however significantly
more robust than direct local matching as they rely on the
global image-wide information [2, 5]. Robustness comes
at the cost of increased compute, as state-of-the-art image
retrieval is based on large deep learning models.

Scalable localization often deals with the additional com-
pute constrains by using features that are inexpensive to ex-
tract, store, and match together [7, 22, 30]. These improve
the runtime on mobile devices but further impair the ro-
bustness of the localization, limiting their operations [24]
to stable conditions. Hierarchical localization [17, 26, 32]
takes a different approach by dividing the problem into a
global, coarse search followed by a fine pose estimation.
Recently, [32] proposed to search at the map level using
image retrieval and localize by matching hand-crafted local
features against retrieved 3D points. As we discuss further
in Section 3, its robustness and efficiency are limited by the
underlying local descriptors and heterogeneous structure.

Learned local features have recently been developed in
attempt to replace hand-crafted descriptors. Dense pixel-
wise features naturally emerge from CNNs and provide
a powerful representation used for image matching [9]
and localization [41]. Matching dense features is how-
ever intractable with limited computational power. Sparse
learned features, composed of keypoints and descriptors,
provide an attractive drop-in replacement to their hand-
crafted counterparts and have recently shown outstanding
performance [12, 29, 14]. They can easily be sampled from
dense features, are fast to predict and thus suitable for mo-
bile deployment. CNN keypoint detections have also been
shown to outperform classical methods, although they are
notably difficult to learn. SuperPoint [12] learns from self-
supervision, while DELF [28] employs an attention mecha-
nism to optimize for the landmark recognition task.

Deep learning on mobile. While learning some building
blocks of the localization pipeline improves performance
and robustness, deploying them on mobile devices is a non-
trivial task. Recent advances in multi-task learning allow
to efficiently share compute across tasks without manual
tuning [19, 8, 39], thus reducing the required network size.
Distillation [16] can help to train a smaller network [31]
from a larger one that is already trained. It is however usu-
ally not applied in a multi-task setting.

To the best of our knowledge, our approach is the first of
its kind that combines the developments in the aforemen-
tioned fields, notably scalable localization, learned features



and multi-task learning, while retaining both efficiency and
robustness. The method we propose seeks to leverage the
synergies of those algorithms to deliver a competitive large-
scale localization solution and bring this technology closer
to real-time, online applications with constrained resources.

3. Hierarchical Localization

We aim at maximizing the robustness of the localiza-
tion while retaining tractable computational requirements.
Our method is loosely based on the hierarchical localization
framework first introduced in [32]. For the sake of com-
pleteness we present its overview in this section.

Prior retrieval. We perform a coarse search at the map
level by matching the query with the database images us-
ing their global descriptors. The k-nearest neighbors (NN),
called prior frames, represent candidate locations in the
map. This search is efficient given that there are far fewer
database images than points in the 3D model.

Covisibility clustering. The prior frames are clustered
based on the 3D structure that they co-observe. This
amounts to finding connected components, called places,
in the covisibility graph that links database images to 3D
points in the model.

Local feature matching. For each place, we successively
match the 2D keypoints detected in the query image to the
3D points contained in the place, and attempt to estimate a
6-DoF pose with a PnP geometric consistency check within
a RANSAC scheme. This local search is also efficient as
the number of 3D points considered is significantly lower
for the place than for the whole model. The algorithm stops
as soon as a valid pose is estimated.

Discussion. In the work of [32], a large state-of-the-art
network for image retrieval, NetVLAD, is distilled into
a smaller model, coined MobileNetVLAD (MNV). This
helps to achieve given runtime constraints while partly re-
taining the accuracy of the original model. The local match-
ing step is however based on SIFT [23], which is expen-
sive to compute and generates a large number of features,
making this step particularly expensive. As such, while this
method exhibits good performance in small-scale environ-
ments, it does not generalize well to large-scale denser mod-
els. Additionally, SIFT features have been shown to be out-
performed by recent learned features, especially in case of
large illumination changes [14, 29, 12, 27]. Lastly, a sig-
nificant part of the computation of local and global descrip-
tors is redundant, as they are both based on the image low-
level features. The heterogeneity of hand-crafted features
and CNN image retrieval is thus computationally subopti-
mal and could be critical on resource-constrained platforms.
We address these issues and achieve improved robustness,
scalability and efficiency.

4. Proposed Approach
In this section, we describe the proposed HF-Net archi-

tecture and training in more details. We start by motivating
the use of learned features together with a homogeneous
network structure for HF-Net. Then, we introduce in Sec-
tion 4.1 the architecture and explain our design choices. Fi-
nally, Section 4.2 describes our novel training procedure.

We start by proposing learned features as a replacement
for hand-crafted features like SIFT. Recent methods like Su-
perPoint [12] have shown to outperform this popular base-
line in terms of keypoint repeatability and descriptor match-
ing, which are both critical for localization. Some learned
features are additionally significantly sparser than SIFT,
thus reducing the number of keypoints to be matched and
speeding up the matching step. We show in Section 5.1
that a combination of state-of-the-art networks in image re-
trieval and local features naturally achieves state-of-the-art
localization. This approach particularly excels in extremely
challenging conditions, such as night-time queries, outper-
forming competitive methods by a large margin along with
a smaller 3D model size.

While the inference of such neural networks is signifi-
cantly faster than computing SIFT on GPUs, it still remains
a large computational bottleneck for the proposed hierar-
chical localization approach. With the goal of improving
the ability of this method to run online on mobile devices,
we introduce here a novel neural network for hierarchical
features, HF-Net, enabling an efficient coarse-to-fine local-
ization. It detects keypoints and computes local and global
descriptors in a single shot, thus maximizing sharing of
computations, but retaining performance of a larger base-
line network.
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Figure 2. The HF-Net architecture. Our novel architecture takes
image as an input and provides three outputs in a single shot. It
computes a global descriptor using a NetVLAD layer. Then, it
produces a map with keypoints detection scores and dense key-
points descriptors. All three heads are trained in a single training
procedure with automatic loss weighting [19] from two teacher
networks (marked in blue).



4.1. HF-Net architecture

Convolutional neural networks exhibit a hierarchical
structure by design. This paradigm fits well the joint pre-
dictions of local and global features and comes at low ad-
ditional runtime costs. The HF-Net architecture (Figure 2)
is composed of a single encoder and three heads predicting:
i) keypoint detection scores, ii) dense local descriptors and
iii) a global image-wide descriptor. This sharing of com-
pute is natural: in state-of-the-art image retrieval networks,
the global descriptors are usually computed from the aggre-
gation of local feature maps, which might be useful for the
prediction of local features.

The encoder of HF-Net is a MobileNet [31] backbone, a
popular architecture optimized for mobile inference. Sim-
ilarly as MNV [32], the global descriptor is computed by
a NetVLAD layer [2] on top of the last feature map of
MobileNet. For the local features, the SuperPoint [12] ar-
chitecture is appealing for its efficiency, as it decodes the
keypoints and local descriptors in a fixed non-learned man-
ner. This is much faster than applying transposed convolu-
tions to upsample the features. It predicts dense descriptors
which are fast to sample bilinearly and allows the runtime
to be quasi-independent from the number of detected key-
points. On the other hand, patch-based architectures like
LF-Net [29] apply a Siamese network to an image patch
around each keypoint independently, resulting in a compu-
tational cost proportional to the number of detections.

For its efficiency and flexibility, we thus adopt the Super-
Point decoding scheme for keypoints and local descriptors.
Note that this architecture is independent from the training
process, and can be sparsely or densely supervised. The lo-
cal feature heads branch out from the MobileNet encoder
at an earlier stage than the global head, motivated by the
requirement for a higher spatial resolution in order to re-
tain spatially discriminative features. It also stems from the
intuition that local features are on a lower semantic level
than image-wide descriptors, and thus require fewer convo-
lutions.

4.2. Training process

Data scarcity. Local and global descriptors are often
trained with metric learning using ground truth positive
and negative pairs of local patches and full images. These
ground truth correspondences are particularly difficult to
obtain at the scale required to train large CNNs. While
global supervision naturally emerges from local correspon-
dences, there is currently no such dataset that simulta-
neously i) exhibits a sufficient perceptual diversity at the
global image level, e.g. with various conditions such as day,
night, seasons, and ii) contains ground truth local corre-
spondences between matching images. These correspon-
dences are often recovered from the dense depth [29] com-

puted from a SfM model [36, 38], which is intractable to
build at the scale required by image retrieval.

Data augmentation. Self-supervised methods that do not
rely on correspondences, such as SuperPoint, require heavy
data augmentation, which is key for the local descriptor to
learn a proper invariance. While data augmentation often
captures well the variations in the real world at the local
level, it can break the global consistency of the image and
make the learning of the global descriptor very challenging.

Multi-task distillation is our solution to this data problem.
We propose to employ distillation to learn the representation
directly from an off-the-shelf trained teacher model. This
alleviates the above issues, with a simpler and more flexi-
ble training setup that allows the use of arbitrary datasets,
as infinite amount of labeled data can be obtained from the
inference of the teacher network. Directly learning to pre-
dict the output of the teacher network additionally eases the
learning task, allowing to directly train a smaller student
network. We note an interesting similarity with SuperPoint,
whose detector is training by bootstrapping, supervised by
itself through the different training runs. This process could
also be referred as self-distillation, and shows the effective-
ness of distillation as a practical training scheme.

The supervision of local and global features can origi-
nate from different teacher networks, resulting in a multi-
task distillation training that allows to leverage state-of-the-
art teachers. Furthermore, recent advances in multi-task
learning enable to train a student that accurately and op-
timally copies all teachers without any manual tuning of
weights balancing the loss [19].

More generally, our formulation of the multi-task distil-
lation can be applied to any applications that requires mul-
tiple predictions while remaining computationally efficient,
particularly in settings where ground truth data for all tasks
is expensive or impossible to collect.

5. Experiments

In this section, we present experimental evaluations of
the building blocks of HF-Net and of the network as a
whole. We want to prove its applicability to large-scale
localization problems in challenging conditions while re-
maining computationally tractable. We first perform in Sec-
tion 5.1 a thorough evaluation of current top-performing
classical and learning-based methods for local feature de-
tection and description. Our goal is to explain how these in-
sights influenced the design choices of HF-Net presented in
Section 5.2. We then evaluate in Section 5.3 our method on
challenging large-scale localization benchmarks [34] and
demonstrate the advantages of the coarse-to-fine localiza-
tion paradigm. To address our real-time localization focus,
we conclude with runtime considerations in Section 5.4.



5.1. Local features evaluation

We start our evaluation by investigating the performance
of local matching methods under different settings on two
datasets, HPatches [4] and SfM [29], that provide dense
ground truth correspondences between image pairs for both
2D and 3D scenes.

Datasets. HPatches [4] contains 116 planar scenes con-
taining illumination and viewpoint changes with 5 image
pairs per scene and ground truth homographies. SfM is a
dataset built by [29] composed of photo-tourism collections
collected by [15, 42]. Ground truth correspondences are
obtained from dense per-image depth maps and relative 6-
DoF poses, computed using COLMAP [36]. We select 10
sequences for our evaluation and for each randomly sam-
ple 50 image pairs with a given minimum overlap. A met-
ric scale cannot be recovered with SfM reconstruction but
is important to compute localization metrics. We therefore
manually label each SfM model using metric distances mea-
sured in Google Maps.

Metrics. We compute and aggregate pairwise metrics de-
fined by [12] over all pairs for each dataset. For the detec-
tors, we report the repeatability and localization error of the
keypoint locations. Both are important for visual localiza-
tion as they can impact the number of inlier matches, the re-
liability of the matches, but also the quality of the 3D model.
We compute nearest neighbor matches between descriptors
and report the mean average precision and the matching
score. The former reflects the ability of the method to re-
ject spurious matches. The latter assesses the quality of the
detector and the descriptor together. We also compute the
recall of pose estimation, either a homography for HPatches
or a 6-DoF pose for the SfM dataset, with thresholds of
3 pixels and 3 meters respectively.

Methods. We evaluate the classical detectors Difference of
Gaussian (DoG) and Harris [13] and the descriptor Root-
SIFT [3]. For the learning-based methods, we evaluate
the detections and descriptors of SuperPoint [12] and LF-
Net [10]. We additionally evaluate a dense version of
DOAP [14] and the feature map conv3_3 of NetVLAD [2]
and use SuperPoint detections for both. More details are
provided in the appendix.

Detectors. We report the results in Table 1. Harris exhibits
the highest repeatability but also the highest localization er-
ror. Conversely, DoG is less repeatable but has the lowest
error, likely due to the multi-scale detection and pixel re-
finement. SuperPoint seems to show the best trade-off be-
tween repeatability and error.

Descriptors. DOAP outperforms SuperPoint on most
metrics. NetVLAD shows good pose estimation but poor
matching precision on SfM, which is disadvantageous when
the number of keypoints is limited or the inlier ratio im-

HPatches SfM
Rep. MLE Rep. MLE

DoG 0.438 1.00 0.284 1.20
Harris 0.531 1.18 0.511 1.46
SuperPoint 0.496 1.04 0.508 1.46
LF-Net 0.466 1.14 0.448 1.46

Table 1. Evaluation of the keypoint detectors. The repeatabil-
ity (rep.) and mean localization error (MLE) are reported for the
HPatches and SfM datasets.

HPatches SfM
(keypoints / descriptors) Homography MS mAP Pose MS mAP
Root-SIFT 0.707 0.301 0.592 0.713 0.192 0.224
LF-Net 0.712 0.303 0.515 0.631 0.205 0.186
SuperPoint 0.822 0.456 0.797 0.744 0.337 0.403
Harris / SuperPoint 0.662 0.425 0.702 0.620 0.325 0.265
SuperPoint / DOAP - - - 0.767 0.363 0.466
SuperPoint / NetVLAD 0.67 0.460 0.720 0.751 0.320 0.262

Table 2. Evaluation of the local descriptors. For both datasets,
the matching score (MS) and mean Average Precision (mAP) are
reported, in addition to the homography correctness for HPatches
and the pose accuracy for the SfM dataset.

portant, e.g. for localization. Overall, it stands that learned
features outperform hand-crafted ones.

Interestingly, SuperPoint descriptors perform poorly
when applied to Harris detections, although the latter is also
a corner detector with high repeatability. This hints that
learned descriptors can be highly coupled with the corre-
sponding detections.

LF-Net and SIFT, both multi-scale approaches with sub-
pixel detection and patch-based description, are outper-
formed by dense descriptors like DOAP and SuperPoint. A
simple representation trained with the right supervision can
thus have more effect than a complex and computational-
heavy architecture. We note that SuperPoint requires sig-
nificantly fewer keypoints to estimate a good quality pose,
which brings considerable benefits for runtime-sensitive ap-
plications.

5.2. Implementation details

Motivated by the results presented in Section 5.1, this
section briefly introduces the design and implementation of
HF-Net. Below, we explain our choices of the distillation
teacher models, training datasets and improvements to the
baseline 2D-3D local matching.

Teacher models. In Section 5.1, we showed that both
SuperPoint and DOAP deliver similarly high performance,
superior to the conventional hand-crafted descriptors. We
therefore evaluate their impact on the localization task in
Section 5.3. Results show that the former is more robust to
day-night appearance variations, as its training set included
low-light data. We eventually chose it as the supervisor
teacher network for the descriptor head of HF-Net.

Training data. In this work, we target urban environments
in both day and night conditions. To maximize the perfor-
mance of the student model on this data, we select training



data that fits this distribution. We thus train on 185k im-
ages from the Google Landmarks dataset [28], containing
a wide variety of day-time urban scenes, and 37k images
from the night and dawn sequences of the Berkeley Deep
Drive dataset [47], composed of road scenes with motion
blur. We found the inclusion of night images in the training
dataset to be critical for the generalization of the global re-
trieval head to night queries. For example, a network trained
on day-time images only would easily confuse a night-time
dark sky with a day-time dark tree. We also train with pho-
tometric data augmentation but use the targets predicted on
the clean images.

Efficient hierarchical localization. In [32], the authors
identified the local 2D-3D matching as the most demand-
ing part of the pipeline. Our system significantly improves
on the efficiency of their approach. As such, spurious local
matches are filtered out using a modified ratio test that only
applies if the first and second nearest neighbor descriptors
correspond to observations of different 3D points, thus re-
taining more matches in highly covisible areas. In addition,
the number of retrieved images in each cluster is truncated
to a fixed value by discarding additional frames, reducing
the 2D-3D matching runtime for easy queries without im-
pacting difficult ones. We use efficient kd-trees for both
global and local matching and the fast P3P-RANSAC im-
plementation of Kneip et al. [21].

5.3. Large-scale localization

Now, taking into account the insights gathered in Sec-
tions 5.1 and 5.2, we present the evaluations of HF-Net on
three challenging large-scale datasets introduced by [34].

Datasets. Each dataset is composed of a sparse SfM model
built with a set of reference images. The Aachen Day-Night
dataset based on [35] contains 4, 328 day-time database im-
ages from a European old town, and 824 and 98 queries
taken in day and night conditions respectively. The Robot-
Car Seasons dataset [25] is a long-term urban road dataset
that spans multiple city blocks. It is composed of 20, 862
overcast reference images and a total of 11, 934 query im-
ages taken in multiple conditions, such as sun, dusk, and
night. Lastly, the CMU Seasons dataset [6] was recorded in
urban and suburban environments over a course of 8.5 km.
It contains 7, 159 reference images and 75, 335 query im-
ages recorded in different seasons. This dataset is of sig-
nificantly lower scale as the queries are localized against
isolated submodels containing around 400 images each.

Large scale model construction. SfM models built by
COLMAP [36, 38] using RootSIFT are provided by the
dataset authors. These are however not suitable when lo-
calizing with methods based on different feature detectors.
We thus build new 3D models with keypoints detected by
HF-Net. The process is as follows: i) We perform 2D-2D

matching between reference frames using our features and
an initial filtering ratio test, ii) The matches are further fil-
tered using two-view geometry filtering within COLMAP,
iii) 3D points are triangulated using the provided ground
truth reference poses. Those steps result in a 3D model with
the same scale and reference frame as the original one.

Comparison of model quality. The HF-Net Aachen model
contains fewer 3D points (684, 990 vs 1, 899, 775 for SIFT)
and fewer 2D keypoints per image (2, 576.0 vs 10, 229.5 for
SIFT). However, a larger ratio of the original 2D keypoints
is matched (0.370 vs 0.249 for SIFT), and each 3D point is
on average observed from more reference images. Match-
ing a query keypoint against this model is thus more likely
to succeed, showing that our feature network produces 3D
models more suitable for localization.

Methods. We evaluate HF-Net combined with our hi-
erarchical localization method. We also consider sev-
eral localization baselines evaluated by the benchmark au-
thors. Active Search (AS) [33] and City Scale Localiza-
tion (CSL) [40] are both 2D-3D direct matching meth-
ods representing the current state-of-the-art in terms of ac-
curacy. DenseVLAD [45] and NetVLAD [2] are image
retrieval approaches. The recently-introduced Semantic
Match Consistency (SMC) [44] relies on semantic segmen-
tation for outlier rejection. It assumes known gravity direc-
tion and camera height and, for the RobotCar dataset, was
trained on the evaluation data using ground truth seman-
tic labels. We additionally introduce two baselines derived
from our method. Both are too computationally-intensive
for the applications that we target, although still faster than
other baselines. They nevertheless illustrate the benefits of
hierarchical localization. NV+SIFT uses NetVLAD for the
global retrieval and RootSIFT as local features, and is an
upper bound to the MNV+SIFT method of [32]. NV+SP
uses NetVLAD retrieval and SuperPoint features and is an
upper bound to our HF-Net.

Metrics used in this evaluation are defined by the bench-
mark [34]. We evaluate the pose recall at different position
and orientation thresholds that depend on the sequences.

Overall results. Table 3 shows the localization results
for the different methods. On the Aachen dataset, our pro-
posed HF-Net outperforms all the realistic methods for both
fine- and coarse-precision regimes. It performs particularly
well on night-time images (Figure 4), where the perfor-
mance drop w.r.t day-time queries is significantly smaller
than for direct matching methods, which suffer from the in-
creased ambiguity of the matches. On the RobotCar dataset,
it performs similarly to other methods on the dusk sequence
where the accuracy tends to saturate. In the more challeng-
ing sequences, image retrieval methods tend to work best,
while direct matching methods perform poorly. Hierarchi-
cal localization gives better results than both in the fine-
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AS 57.3 / 83.7 / 96.6 19.4 / 30.6 / 43.9 44.7 / 74.6 / 95.9 25.0 / 46.5 / 69.1 0.5 / 1.1 / 3.4 1.4 / 3.0 / 5.2 55.2 / 60.3 / 65.1 20.7 / 25.9 / 29.9
CSL 52.3 / 80.0 / 94.3 24.5 / 33.7 / 49.0 56.6 / 82.7 / 95.9 28.0 / 47.0 / 70.4 0.2 / 0.9 / 5.3 0.9 / 4.3 / 9.1 36.7 / 42.0 / 53.1 8.6 / 11.7 / 21.1
DenseVLAD 0.0 / 0.1 / 22.8 0.0 / 2.0 / 14.3 10.2 / 38.8 / 94.2 5.7 / 16.3 / 80.2 0.9 / 3.4 / 19.9 1.1 / 5.5 / 25.5 22.2 / 48.7 / 92.8 9.9 / 26.6 / 85.2
NetVLAD 0.0 / 0.2 / 18.9 0.0 / 2.0 / 12.2 7.4 / 29.7 / 92.9 5.7 / 16.5 / 86.7 0.2 / 1.8 / 15.5 0.5 / 2.7 / 16.4 17.4 / 40.3 / 93.2 7.7 / 21.0 / 80.5
HF-Net (ours) 75.7 / 84.3 / 90.9 40.8 /55.1 / 72.4 22.1 / 69.0 / 94.4 26.5 / 58.5 / 86.1 0.7 / 4.6 / 14.8 1.4 / 9.3 / 20.5 39.6 / 89.7 / 95.7 30.9 / 73.3 / 86.6
NV+SP 79.7 / 88.0 / 93.7 40.8 / 56.1 / 74.5 22.8 / 70.1 / 96.2 26.3 / 66.1 / 92.6 1.8 / 11.9 / 31.3 1.8 / 12.3 / 26.6 40.4 / 90.6 / 97.5 31.5 / 75.6 / 91.0
NV+SIFT 82.8 / 88.1 / 93.1 30.6 / 43.9 / 58.2 55.6 / 83.5 / 95.3 46.3 / 67.4 / 90.9 4.1 / 9.1 / 24.4 2.3 / 10.2 / 20.5 63.9 / 71.9 / 92.8 28.7 / 39.0 / 82.1
SMC - - 53.8 / 83.0 / 97.7 46.5 / 74.6 / 95.9 6.2 / 18.5 / 44.3 8.0 / 26.4 / 46.4 75.2 / 82.1 / 87.7 44.6 / 53.9 / 63.5

Table 3. Evaluation of the localization on the Aachen Day-Night, RobotCar Seasons, and CMU Seasons datasets. We treat NV+SP as
our upper bound for HF-Net. Additionally, we include SMC which is about two orders of magnitude slower and was fine-tuned on the
RobotCar dataset.

Figure 3. Cumulative distribution of position errors for the Aachen night (left), RobotCar night (center) and CMU suburban (right)
datasets. On Aachen HF-Net performs close to our upper bound NV+SP and is superior than other global retrieval and matching based
approaches. On RobotCar, HF+Net performs worse than NV+SP, which suggests a limitation of a distilled global descriptor. SMC performs
particularly well, it was however fine-tuned using images from this dataset. On CMU, the hierarchical localization shows a significant boost
over other methods, particularly for strict distance thresholds.

precision regime while maintaining a decent recall for larger
error thresholds. On the CMU datasets, HF-Net exhibits the
highest recall on the medium- and coarse-precision regimes,
even compared to SMC. Cumulative plots for the three most
challenging sequences are shown in Figure 3. Together, HF-
Net and NV+SP set new state-of-the-art performance in the
Aachen and CMU datasets for both efficient and expensive
computation regimes.

Upper bounds We observe that NV+SIFT consistently out-
performs AS, although both methods are based on Root-
SIFT features. This shows that our hierarchical approach
with a coarse initial prior brings significant benefits, espe-
cially in challenging conditions where image-wide infor-
mation helps disambiguate matches. Comparing NV+SP
and NV+SIFT, SuperPoint brings significant performance
gains over SIFT in the coarse regime as well as in chal-
lenging sequences. We however observe a drop in the fine-
precision regime, which might be caused, as highlighted in
Section 5.1, by the lower localization accuracy of the Su-
perPoint keypoints compared to DoG.

Thresh NV+SP NV+HF-Net NV+DOAP HF-Net

Day
0.25m 79.7 81.2 80.0 75.7
0.5m 88.0 88.2 88.5 84.3
5m 93.7 94.2 93.3 90.9

Night
0.5m 40.8 40.8 34.7 40.8
1m 56.1 56.1 52.0 55.1
5m 74.5 76.5 72.4 72.4

Table 4. Ablation study on the Aachen dataset. We evaluate the
localization with NetVLAD and different local features.

Ablation study permits us to understand the performance
of each method better. The results are presented in Table 4.
Interestingly, local HF-Net descriptors perform better than
the SuperPoint model that was used to train them (compare
NV+SP with NV+HF). This demonstrates the benefits of
multi-task distillation. Comparing NV+DOAP and NV+SP
shows that DOAP performs slightly better during the day,
but it is significantly worse at night. Finally, comparison
of HF-Net with NV+HF-Net shows that HF-Net global de-
scriptors have a somewhat limited capacity compared to the
original NetVLAD and are limiting the performance partic-
ularly during the day.

Failure cases Overall, HF-Net performs very similarly to
NV+SP, except in the RobotCar night sequences, where
the distilled global retrieval performs poorly on blurry low-
quality images. This highlights a clear limitation of our ap-
proach: on large, self-similar environment, the model ca-
pacity of HF-Net becomes the limiting factor. A complete
failure of the global retrieval directly translates into a fail-
ure of the hierarchical localization. This contrasts with [32],
which reported limitations coming from local SIFT fea-
tures, but with a model of smaller scale.

5.4. Runtime evaluation

The proposed HF-Net algorithm was developed keeping
the computational constraints in mind. We thus provide in-



HF-Net (ours) AS NV+SIFT
HF-Net Global search Covisibility Local search PnP+RANSAC Total SIFT Loc. Total SIFT NetVLAD Loc. Total

Aachen Day 15 51 5 163 9 243 263 112 375 263 92 1264 1356
Night 15 52 5 170 18 260 263 132 395 263 92 1563 1655

RobotCar Dusk 19 53 1 58 4 135 189 283 472 189 91 294 385
Night 19 55 1 103 38 216 189 1021 1210 189 91 554 645

Table 5. Timings [ms] of HF-Net, AS, and NV+SIFT. CNN inference (HF-Net and NetVLAD) and SIFT extraction are performed on the
GPU, and all other operations on the CPU. The detailed runtime of HF-Net shows that most time is spent on the local search. In case of a
low success rate, such as for RobotCar Night, the runtime of AS grows significantly. For NV+SIFT, the dense Aachen SIFT model returns
a large number of points per cluster, which dramatically increases the execution time. SIFT extraction, required by both AS and NV+SIFT,
is expensive even on GPU and intractable on CPU (exceeds 3500ms).

Figure 4. Successful (top) and failed (bottom) HF-Net queries.
The top query was successfully retrieved by a HF-Net global de-
scriptor despite the appearance change. Then, it was successfully
matched by HF-Net local descriptors. SIFT descriptors failed in
this case. The bottom query failed as local matching did not find
enough consistent correspondences because of visual aliasing.

sights into the runtime of our method and compare it with
baselines presented in Section 5.3. The evaluations were
performed on a PC equipped with an Intel Core i7-7820X
CPU (3.60GHz) CPU, 32GB of RAM and an NVIDIA
GeForce GTX 1080 GPU.

HF-Net and baseline methods The results presented in
Table 5 demonstrate that our hierarchical coarse-to-fine ap-
proach scales well on large-scale datasets. The global
retrieval step permits to successfully narrow down the
set of potential candidate correspondences, which enables
tractable 2D-3D matching. The subsequent geometric veri-
fication of matches is fast, as HF-Net local descriptors yield
a high inlier ratio and, consequently, few RANSAC iter-
ations. Overall, HF-Net achieves the frequency of about
4 Hz, which makes it suitable for real-time applications.

When compared to baseline methods, HF-Net delivers
lower runtimes, particularly for large-scale models (e.g.
RobotCar), where global retrieval cuts the cost of search
in the entire model. Furthermore, we can notice that the
time of 2D-3D matching strongly depends on the dataset
– the denser the covisibility graph is, the more 3D points
are retrieved and matched per prior frame, which increases
the runtime. The sparser HF-Net models yield clusters with
fewer 3D points, whereas NV+SIFT struggles with a dense

Aachen model. Furthermore, a large failure rates causes the
AS runtime to grow quickly, while HF-Net is less affected.

Finally, we compare the inference time of HF-Net (less
than 20ms) with the NV+SP baseline (about 90ms for
NetVLAD and 25ms for SuperPoint). The distilled and
homogeneous structure of HF-Net saves computation time
even compared to the original SuperPoint detector and de-
scriptor alone.

Accuracy-computation trade-off Large-scale evaluations
of HF-Net show that NN searches, particularly the local 2D-
3D matching, consume the majority of time. We want, how-
ever, to emphasize that there exists an easily-tunable trade-
off between runtime and accuracy. The options include
pruning of the local graph to limit the 2D-3D matching time
or using approximate kd-trees. They permit to achieve fur-
ther speed-ups with a marginal performance loss.

6. Conclusion
In this paper, we have presented HF-Net – a hierarchical

localization approach that is designed for robust but com-
putationally tractable localization. Our method follows a
coarse-to-fine localization paradigm. First, it performs a
global image retrieval to obtain a set of prior frames. The
retrieved frames are clustered into places using the covis-
ibility graph of a 3D database model. Then, we perform
local 2D-3D matching within the candidate places to obtain
an accurate 6-DoF estimate of the camera pose.

Our method is centered around HF-Net, a novel network
architecture that permits to predict feature locations, local
features and a global descriptor in a single shot. We pro-
pose to train it using a multi-task distillation procedure,
with close-to-optimal loss weighting and carefully selected
teacher networks. Our localization solution outperforms
state-of-the-art methods on several large-scale 6-DoF lo-
calization benchmarks, that include day-night queries and
substantial appearance variations across weather conditions
and seasons. Furthermore, the lightweight architecture of
HF-Net reduces its computational requirements and makes
it suitable for real-time operation. Those results validate our
approach and demonstrate the usefulness of a monolithic
CNN to perform hierarchical localization.



Appendix

We provide here additional experiment details and qual-
itative results.

A. HF-Net Implementation

A.1. Network Architecture

HF-Net is built on top of a MobileNetV2 [31] encoder
with depth multiplier 0.75. The local heads are identical to
the original SuperPoint [12] and branch off at the layer 7.
The global head is composed of a NetVLAD layer [2] and a
dimensionality reduction, implemented as a multiplication
with a learnable matrix, in order to match the dimension of
the target teacher descriptor. The global head is appended to
the MobileNet layer 18. The detailed architecture is shown
in Figure 5.
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Figure 5. Detail of the HF-Net architecture, consisting of a Mo-
biletNet encoder and three heads predicting a global descriptor, a
dense local descriptor map, and keypoint scores.

A.2. Training details

The images from both Google Landmarks [28] and
Berkeley Deep Drive [47] are resized to 640×480 and con-
verted to grayscale. We found RGB to be detrimental to the
performance of the local feature heads, most likely because
of the limited bandwidth of the encoder. As photometric
data augmentation, we apply Gaussian noise, motion blur
in random directions, and random brightness and contrast
changes.

The losses of the global and local descriptors are the L2
distances with their targets. For the keypoints, we apply the
cross-entropy with the target probabilities (soft labels). We
found hard labels to perform poorly, likely due to their spar-
sity and the smaller size of the student network. The three

losses are aggregated using the multi-task learning scheme
of Kendall et al. [19].

The MobileNet layers are initialized with weights pre-
trained on ImageNet [11]. The network is implemented
with Tensorflow [1] and trained for 85k iterations with the
RMSProp optimizer [43] and a batch size of 32. We use an
initial learning rate of 10−3, which is successively divided
by ten at iterations 60k and 80k.

B. Local Feature Evaluation

B.1. Setup

The images of both HPatches [4] and SfM [29] datasets
are resized so that their largest dimension is 640 pixels. The
metrics are computed on image pairs and follow the defini-
tions of [12, 29]. A keypoint k1 in an image is deemed
correct if its reprojection k̂1 in a second image lies within a
given distance threshold ε to a second detected keypoint k2.
Additionally, k1 is matched correctly if it is correct and if
k2 is its nearest neighbor in descriptor space.

For HPatches, we detect 300 keypoints for both key-
point and descriptor evaluations, and set ε = 3 pixels.
The homography is estimated using the OpenCV function
findHomography and considered accurate if the aver-
age reprojection error of the image corners is lower than
3 pixels. For the SfM dataset, due to the extensive tex-
ture, 1000 keypoints are detected. The keypoint and de-
scriptor metrics use correctness thresholds ε of 3 and 5, re-
spectively. The 6-DoF pose is estimated with the function
solvePnPRansac, and deemed correct if its ground truth
is within distance and orientation thresholds of 3 m and 1◦,
respectively.

For DoG, Harris [13], and SIFT [23], we use the im-
plementations of OpenCV. For SuperPoint [12] and LF-
Net [29], we use the implementations provided by the au-
thors. For NetVLAD, we use the implementation of [10]
and the original model trained on Pittsburgh30k. Dense
descriptors are obtained by normalizing the feature map
conv3_3 before the ReLU activation. For DOAP [14],
we use the trained model provided by the authors. As
we are mostly interested in dense descriptors for run-time
efficiency, we disable the spatial transformer and enable
padding in the last layer, thus producing a feature map four
times smaller than the input image. We found the model
trained on HPatches with spatial transformer to give the best
results and thus only evaluate DOAP on the SfM dataset.
As a post-processing, we apply Non-Maximum Suppres-
sion (NMS) with a radius of 4 to both Harris and Super-
Point. Sparse descriptors are sampled from the dense maps
of SuperPoint, NetVLAD, and DOAP using bilinear inter-
polation.



B.2. Qualitative Results

We show in Figures 6 and 7 detected keypoints and their
corresponding matches on the HPatches and SfM datasets,
respectively.

C. Large-scale Localization

C.1. Model Quality

Extended statistics of models built with SIFT and HF-
Net for the Aachen Day-Night, RobotCar Seasons, and
CMU Seasons datasets, are provided in Table 6. We also
report the track length, i.e. number of observation per 3D
point, as defined by [37]. The metrics for the CMU dataset
are aggregated over the models of the slices corresponding
to the urban and suburban environments. For SIFT, some
metrics cannot be computed on the CMU model as the key-
points that are not matched were not provided.

Aachen RobotCar CMU
SIFT HF SIFT HF SIFT HF

# 3D points 1,900K 685K 6,869K 2,956K 961K 597K
# Keypoints per image 10,230 2,576 4,409 970 - 1,446
Ratio of matched keypoints [%] 18.8 33.8 39.4 59.4 - 41.2
Track length 5.85 5.87 5.34 4.04 - 4.19

Table 6. Statistics of 3D models built with SIFT and HF-Net.

C.2. Implementation Details

We now provide additional details regarding the imple-
mentation of our hierarchical localization pipeline. For all
datasets, we reduce the dimensionality of the global de-
scriptors predicted by both NetVLAD and HF-Net to 1024
dimensions using PCA, whose parameters are learned on
the reference images, independently for each dataset. A to-
tal of 10 prior frames are retrieved and clustered. The size of
each cluster is limited to 5, additional frames are discarded.
For both SuperPoint and HF-Net, NMS with radius 4 is ap-
plied to the detected keypoints in the query image and 2k
of them are retained. When performing local matching, our
modified ratio test uses a threshold of 0.9. PnP+RANSAC
uses a threshold on the reprojection error of 10 pixels for
Aachen, 5 pixels for CMU (due to the lower image size),
and 12 pixels for RobotCar (due to the lower keypoint local-
ization accuracy of SuperPoint and HF-Net). The estimated
pose is deemed correct when the number of inliers is larger
than a threshold, whose value is 12 for Aachen and CMU,
and 15 for Robotcar.

C.3. Evaluation Process

The method and baselines introduced in this work are
evaluated on all three datasets by the benchmark’s au-
thors [34], who also generated the plots shown in the main
paper. For Active Search [33], City Scale Localization [40],

DenseVLAD [45], and NetVLAD [2], we use the evaluation
reported in the paper introducing the benchmark.

The evaluation of Semantic Match Consistency [44]
(SMC) is the one reported in the original paper. We do not
directly compare this method to the ones introduced in the
present work, nor to the benchmark baselines, as SMC as-
sumes a known camera height, and, more importantly, relies
on a semantic segmentation CNN which was trained on the
evaluation dataset of RobotCar. We emphasize that our HF-
Net never encountered any test data during training, and that
it was evaluated on the three datasets using the same trained
model.

C.4. Qualitative Results

Visual results of HF-Net on the Aachen Day-Night,
RobotCar Seasons, and CMU Seasons datasets are shown
in Figures 8, 9, and 10, respectively. We additionally show
comparisons with NV+SIFT in Figures 11 and 12.
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Figure 6. Qualitative results on the HPatches dataset. Keypoints (green if repeatable, red if not repeatable, blue if not visible in the other
image) and inlier matches are shown for SIFT (left), SuperPoint (center) and HF-Net (right).

Figure 7. Qualitative results on the SfM dataset for SIFT (left), SuperPoint (center) and HF-Net (right).



Figure 8. Localization with HF-Net on Aachen night. For each image pair, the left image is the query and the right image is the retrieved
database image with the most inlier matches, as returned by PnP+RANSAC. We show challenging successful queries (left), failed queries
due to an incorrect global retrieval (center), and failed queries due to incorrect or insufficient local matches (right).

Figure 9. Localization with HF-Net on RobotCar night and night-rain. For each image pair, the left image is the query and the right
image is the retrieved database image with the most inlier matches, as returned by PnP+RANSAC. We show challenging successful queries
(left), failed queries due to an incorrect global retrieval (center), and failed queries due to insufficient local matches (right).



Figure 10. Localization with HF-Net on CMU suburban. For each image pair, the left image is the query and the right image is the
retrieved database image with the most inlier matches, as returned by PnP+RANSAC. We show challenging successful queries (left), failed
queries due to an incorrect global retrieval (center), and failed queries due to insufficient local matches (right).

Figure 11. Comparison between HF-Net and NV+SIFT on Aachen night. Each row corresponds to one query for which HF-Net returns
the correct location but NV+SIFT fails. We show the matches with one retrieved database image, labeled by PnP+RANSAC as inliers
(green) and outliers (red). We show the inliers of HF-Net (left), all the matches of HF-Net (center), and all the matches of NV+SIFT
(right). HF-Net generates significantly fewer matches than SIFT, thus reducing the computational footprint of the local matching. At the
same time, more of its matches are inliers, increasing the robustness of the localization. The higher inlier ratio reduces the number of
required RANSAC iterations.



Figure 12. Comparison between HF-Net and NV+SIFT on RobotCar dusk. We show inlier matches of HF-Net (left) and NV+SIFT
(right) on two queries (top and bottom) for which the pose estimated by HF-Net is less accurate than the one returned by NV+SIFT. In
both cases, the global retrieval of HF-Net is less accurate than that of NV and local features and consequently the local matching is less
robust to the extensive radial blur. This translates in matches with 3D points that are further away from the camera. The estimated pose is
thus less constrained and less accurate than when estimated by NV+SIFT. This partially explains the poor performance of HF-Net in the
fine-precision regime.


