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Abstract

The evolution of HIV during acute infection is often considered a neutral process. Recent analysis of sequencing data from
this stage of infection, however, showed high levels of shared mutations between independent viral populations. This sug-
gests that selection might play a role in the early stages of HIV infection. We adapted an existing model for random evolu-
tion during acute HIV-infection to include selection. Simulations of this model were used to fit a global mutational fitness
effects distribution to previously published sequencing data of the env gene of individuals with acute HIV infection.
Measures of sharing between viral populations were used as summary statistics to compare the data to the simulations.
We confirm that evolution during acute infection is significantly different from neutral. The distribution of mutational
fitness effects is best fit by a distribution with a low, but significant fraction of beneficial mutations and a high fraction of
deleterious mutations. While most mutations are neutral or deleterious in this model, about 5% of mutations are beneficial.
These beneficial mutations will, on average, result in a small but significant increase in fitness. When assuming no epista-
sis, this indicates that, at the moment of transmission, HIV is near, but not on the fitness peak for early infection.
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1. Introduction

Evolution is driven by new mutations that cause a change in fitness
of the organism. If a new mutation increases the reproductional
success, or the fitness, then this mutation is likely to be selected for
and eventually fix in a population. However, most mutations are
not beneficial to the organism. Instead they are neutral—having no
effect on fitness, or deleterious, reducing the amount of offspring
compared with the ancestor. The effects a mutation can have on
fitness lie on a continuum from completely lethal to beneficial, in-
cluding viable but deleterious effects and neutral effects. The muta-
tional fitness effects distribution (MFED, reviewed by Eyre-Walker
and Keightley (2007)) captures how these effects are distributed for
a certain organism in a certain environment.

The MFED has been inferred for several viruses using site-
directed mutagenesis studies (Sanjuán 2010) and deep sequencing

of cultured virus (Acevedo, Brodsky, and Andino 2014). It has a
similar shape across different virus species, with a sizable fraction
of mutations (20%–40%) being lethal and the rest forming a single
peak at or close to zero. In some, but not all of these MFEDs, a
small fraction (<10%) of beneficial mutations is observed.
Knowing the MFED of an organism in a certain environment can
help us understand and predict the evolutionary dynamics of this
organism in this environment. But the concept of the MFED has
its limitations, in that it assumes global fitness effects of muta-
tions. Because fitness depends on the environment, and environ-
ments can change over time, the insights into the MFED from one
environment to another have to be transferred with caution.

Early HIV infection is characterized by a rapid expansion of
the virus population. Transmission is a bottleneck, as only one to
five viruses are responsible for the establishment of an infection
(Keele et al. 2008). After a few weeks, virus levels can reach up to
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106 virus particles per ml plasma (Fiebig et al. 2003). This expan-
sion is accompanied by rapid sequence diversification due to the
high mutation rate of HIV. This rate is estimated to be between
1.1�10–5 and 5.8�10–3 mutations per base per replication,
depending on the method and source material of the estimation
(Mansky and Temin 1995; Huang and Wooley 2005; Dapp,
Heineman, and Mansky 2013; Cuevas et al. 2015). The very high
mutation rate estimated by Cuevas et al. is likely due to the activ-
ity of APOBEC3G, a human protein that causes G-to-A hypermu-
tation in certain sequence motives. In most cases where APOBEC
proteins are active, they introduce many mutations in a single
sequence, often leading to the introduction of a stop-codon
which leads to non-viable virus. HIV is protected from APOBEC
hypermutation by its vif-protein, so that in some cases, APOBEC
only introduces a few mutations resulting in viable virus with
more G-to-A mutations in the specific APOBEC-sequence context
than expected. The exact activity of APOBEC-proteins depends
on their expression level in the infected cell (Huang and Wooley
2005), and the activity of the viral protein vif (Simon et al. 2005),
causing great variation in the probability of observing APOBEC-
mediated mutations across HIV-infected individuals.

During these early stages of infection, HIV evolution is often
considered a neutral process due to the rapid expansion of the virus
population and absence of immune response, which is the main
evolutionary pressure on HIV during infection. Keele et al. (2008)
and Lee et al. (2009) showed that sequence patterns in the env gene
of eighty-two individuals show typical signs of neutral evolution
during acute infection, such as a star-like phylogeny. While the mu-
tational patterns appear neutral on an individual level, signs of se-
lection become clear when looking at the viral populations in
several individuals at once. Wood et al. (2009) and Bertels, Metzner,
and Regoes (2018) studied the same dataset and found several con-
vergent mutations; mutations that appear in several viral popula-
tions independently. These mutations are likely positively selected,
indicating evolution during early HIV infection is not neutral.

By estimating the MFED for HIV during early infection, evolu-
tionary pressures during these early stages of infection can be bet-
ter understood. There have been several attempts at estimating
fitness effects of mutations for HIV, but they either only consider
the amino-acid level (Ferguson et al. 2013; Haddox, Dingens, and
Bloom 2016) or analyze a subset of mutations only, such as delete-
rious mutations (Zanini et al. 2017) or resistance mutations
(Martinez-Picado and Martı́nez 2008). Because the immune re-
sponse exerts temporally varying, potential strong selection pres-
sure on viral populations (Fernandez et al. 2005; Asquith et al.
2006; Mandl et al. 2007; Regoes et al. 2007; Regoes, Yates, and Antia
2007; Ganusov et al. 2011; Bar et al. 2012; Kessinger, Perelson, and
Neher 2013), it is important to focus on the very early phases of in-
fection before adaptive immune responses are mounted.

In this paper, we use these patterns of convergent evolution
found by Wood et al. (2009) and Bertels, Metzner, and Regoes
(2018) to estimate the a global MFED of HIV during early infection.
For this, we developed a simulation model of viral dynamics and
sequence evolution, which allows viral strains to differ in their fit-
ness. This simulation model was fitted to patterns of sharing in
env sequences collected by Keele et al. (2008) and Li et al. (2010).

2. Results
2.1 Simulation of the molecular evolution of HIV during
early infection

To investigate the impact of viral fitness differences on HIV
sequence evolution in infected individuals, we developed a sim-
ulation model of sequence evolution in early HIV infection.

The model is based on the Monte Carlo simulations of the
synchronous infection model for HIV sequence evolution
presented in Lee et al. (2009). In contrast to Lee et al., however,
we relax the assumption that mutations are neutral. Instead,
we assign a fitness advantage or disadvantage to each mutation
that occurs according to a mutational effects distribution.
We parameterized this distribution fairly flexibly, such that it
describes a fraction of beneficial, detrimental and completely le-
thal effects, and can also be collapsed, for appropriate parame-
ters, to a fully neutral model (as in Lee et al.).

A simulation starts with a randomly generated sequence
with a relative fitness of one. In every generation, all sequences
in the population generate Ns new offspring. Point mutations
can occur in these offspring sequences, which can alter the fit-
ness of the sequence. Ns is a random number drawn from a
Poisson distribution with mean R0 � f . In this formula, R0 denotes
the absolute fitness of the virus, which we set to 6 in accordance
with Lee et al. (2009), and f is the relative fitness compared with
the ancestor sequence.

Our goal with these simulations is to generate datasets of the
same structure as the dataset by Keele et al. and Li et al. by match-
ing the number of generations in our simulation to the time since
infection (TSI) of the infected individual in the empirical datasets.
All known estimates for the TSI, however, are based on a neutral
model of evolution, which can lead to a bias. To avoid this poten-
tial bias in the TSI, simulations were run for as long as necessary
to match the number of unique mutations in a sample of the
same size as available in the data set. The resulting sequence
sample (see Fig. 1) has similar mutational characteristics as the
sequence sample available for each subject, without requiring to
specify for how many generations the simulation should be run.

2.2 Estimating the shape of the mutational effects
distribution

In order to calculate fitness of a mutated sequence, every possi-
ble mutation is assigned a fitness effect according to the MFED.
Each of these effects is assumed to apply universally in all
hosts, there are no host-specific effects. Total fitness of a se-
quence is then the product of the fitness effects of all mutations
in the sequence.

The effects in the MFED range from zero to infinity, with a
fitness effect of one indicating a neutral mutation (see Fig. 2).
Deleterious mutations have a fitness effect smaller than one,
with an effect of zero indicating a lethal mutation. Sequences
carrying a lethal mutation differ from sequences carrying a
non-lethal deleterious mutation since they will never produce
any offspring, while sequences carrying mutations with a very
small, but not 0, fitness effect can still produce offspring, albeit
with a very low probability. A very beneficial mutation might
also compensate for such a deleterious mutation, while this is
impossible in the case of lethal mutations.

The fitness effects distribution will affect the number of
shared mutations across viral populations. While the probabil-
ity of a mutation occurring does not change, the probability of a
mutation being maintained in the population and later sampled
is affected by the fitness effect of the mutation. Once a benefi-
cial mutation occurs, the sequence carrying this mutation will
create more offspring than unmutated sequences, and will be
overrepresented in the viral population after a few generations.
This increases the chance of observing the mutation in two or
more samples.

Lethal or deleterious mutations will cause the sequence car-
rying the mutation to have fewer offspring and are therefore
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unlikely to be observed. Since these mutations are so unlikely to
be observed, the sites can be considered immutable, which
results in an effective shortening of the genome available for
mutation. This might indirectly increase the chance of sharing
mutations by increasing the chance that other, less detrimental,
mutations are observed.

We defined six different models for the mutational effects
distribution (see Fig. 2), as well as a neutral model where all fit-
ness effects are one.

The first two models describe simplified distributions with a
restricted effects range. The ‘beneficials only’ model consists

only of neutral and beneficial fitness effects, and is defined by a
fraction of beneficial mutational effects (fb), which are exponen-
tially distributed with mean k. The rest of the mutational effects
are neutral (fn ¼ 1� fb). The second model, ‘lethals only’, con-
sists of a fraction of lethal (fl, fitness effect of 0) and neutral
effects (fn ¼ 1� fl). The third model is a combination of these,
with a fraction of lethal mutations, a fraction of exponentially
distributed beneficial mutations and the rest of the mutations is
neutral. The last three models are more complex and try to cap-
ture a wider spectrum of conceivable fitness effects in order to
replicate the observed distributions in other organisms

Figure 1. Visualization of sequence samples using highlighter (hiv.lanl.gov) of the sequence sample from subject 1,018 (left) and the output of a simulation matching

this data (right). Both sequence samples consist of fifty-one sequences. In the empirical sample, there are fifty mutations, of which fourty-four occur only in a single

viral population. Twenty-four sequences are unmutated. In the simulated sample, there are fourty-nine mutations, of which fourty-four occur only in a single viral

population and twenty sequences are unmutated.

Figure 2. Overview of four of the six different models for the MFED. The beneficials only model has two free parameters (fb; k), the beneficials and lethals model has

three free parameters (fl; fb; k), the log-normal model has three free parameters (fl; l; r). The 5 spikes model has seven free parameters (fl; fd1; bd1; fd2; bd2; fb; bb).
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mentioned in the Section 1. The log-normal model consists of
log-normally distributed fitness effects, with parameters l and
r, in the entire range from zero to infinity, plus a certain
amount of fitness effects that are exactly 0, the fraction lethals
(fl). A variation of this model is the ‘log-normal truncated’
model, which is the same as the log-normal model, only there
are no beneficial mutations. Instead, all mutations that would
have been beneficial in the log-normal model are now neutral.
The last model, ‘5 spikes’, allows for exactly five different values
for the fitness effects. Fitness effects can be zero (lethal), one
(neutral), two values between 0 and 1 (bd1

and bd2
, deleterious)

or a value larger than 1 (bb, beneficial). The relative fraction of
mutations with each effect are represented as fl, fd1 ; fd2

, fn and fb.
This allows for an approximation of multi-modal models with-
out more complex model definitions. The neutral model, where
all mutations have a fitness effect of one is recovered by setting
all parameters to zero in any of the models.

We use approximate Bayesian computation using sequential
Monte Carlo (ABC-SMC) to do simultaneous model selection and
parameter estimation. The SMC procedure starts with a set of
parameters for all models, with equal amounts of parameter
sets for each model. For each parameter set, a simulation is per-
formed and those simulations whose distance to the data is be-
low a threshold are accepted. In each subsequent iteration, new
parameter sets are sampled from the set of accepted parame-
ters in the previous iterations and the threshold for acceptance
is lowered. This results in simultaneous parameter estimation
and model selection, since a good model will have more param-
eter sets accepted, where bad models will have fewer accepted
parameter sets. If no parameter sets are accepted for a certain
model, this model has ‘died out’ and is considered a very un-
likely model candidate.

This procedure requires summary statistics to calculate the
distance between simulations and the data. The summary sta-
tistics used here (see Section 4 for a full overview) are based on
measures of sharing, such as the distribution of the average
degree of sharing of the mutations in a viral population and
the number of populations the mutations appear in, and popu-
lation-specific statistics such as inter-sequence hamming dis-
tance and the number of unmutated sequences in the sample
were used.

2.3 The best estimate for the MFED

The model selection results in two equally likely models:
the ‘lethals and beneficials’ model and the log-normal model.
A summary of the parameter estimation and characteristics of
the MFED with best-fit parameters for these models can be
found in Table 1. Both models have a relative probability (‘sup-
port’) of approximately 0.4. The ‘beneficials only’ and ‘5 spikes’
model have a much lower support, both are <0.1. The neutral
model, ‘lethals only’ model and the truncated log-normal model
died out before the 4th iteration of the ABC-SMC.

For the top two models, enough simulations were accepted
to use for parameter estimation. All parameters form a single
peak (see Supplementary Fig. S3) in their posterior density dis-
tribution. Many parameters have a relatively large 95% highest
probability density (HPD) interval, although all parameters are
significantly different from the neutral value. The MFEDs
corresponding to the best-fit models are very similar. Both dis-
tributions have a mean fitness effect of approximately 0.8. The
log-normal model has slightly fewer beneficials (4.5% vs 5.2% in
the ‘lethals and beneficials’ model) that also have a slightly
lower effect. It is harder to compare the deleterious and lethal

mutations between the two models, since the ‘lethals and bene-
ficials’ model does not include deleterious mutations, while in
the log-normal model, 90% of mutations are deleterious, albeit
with a low effect. The deleterious loss (the product of the frac-
tion of deleterious/lethal mutations and their loss of fitness,
which equals 1 minus the fitness effect) is the easiest way to
compare them. Although the ‘lethals and beneficials’ model has
more lethal mutations, the large amount of deleterious muta-
tions leads to an overall higher deleterious loss in the log-
normal model.

The levels of sharing in these two fitted models compared
with the data are shown in Fig. 3. Two measures of sharing are
shown: the number of individuals each mutation appears in,
and the degree of sharing; the average number of individuals
the mutations in one individual are shared with. These are the
same measures that are used to calculate a subset of the
summary statistics that are needed in the ABC-SMC procedure
(see Section 4). The simulations from the best-fit models resem-
ble the data much better than the neutral simulations, although
the distributions are not perfectly recovered. Interestingly,
the log-normal model—which has more deleterious and less
beneficial effects produces more convergent evolution than the
‘lethals and beneficials’ model. In the former, the distributions
for both measures are shifted to the right compared with the
data, indicating higher amounts of sharing, while in the latter,
the distribution is slightly shifted to the left compared with the
data.

2.4 Fitness of shared mutations

Having an estimate of the MFED and being able to reproduce the
datasets with this MFED allows us to estimate the fitness effect
of the shared mutations. This can be achieved by finding the av-
erage fitness effect of a mutation in a certain frequency class
(see Fig. 4). For both models, mutations found in more than four
individuals have an MFED with a median higher than one, indi-
cating that this mutation is likely beneficial. The average effect
of these mutations differs between the models. If the MFED is
distributed according to the ‘lethals and beneficials’ model, the
fitness effect of a mutation occurring in fourteen individuals
has a fitness effect between 2 and 3 (indicating this mutation
will produce two to three times as many offspring per genera-
tion). The effect of such a mutation is much lower when the

Table 1. Fitted parameters with 95% HPD and moments of the MFED
for the top two models.

Lethals
and beneficials

Log-normal

Parameters fl¼ 0.182 (0.019; 0.552) fl¼ 0.045 (0.003; 0.422)
fb¼ 0.053 (0.008; 0.228) l¼ –0.248 (–0.284;–0.088)
b¼ 0.202 (0.051; 0.732) r¼0.149 (0.104; 0.288)

G!A¼ 10.451
(2.361; 69.169)

G!A¼ 10.621
(1.886; 74.797)

Support 0.439 0.409
Mean effect 0.828 0.753
Fraction beneficial 0.052 0.045
Beneficial effect 1.204 1.065
Beneficial gain 0.063 0.048
Fraction neutral 0.766 0
Fraction deleterious 0 0.909
Deleterious effect 0 0.776
Fraction lethal 0.182 0.046
Deleterious loss 0.182 0.250
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MFED is distributed according to the log-normal model: the
effects are then between 1.2 and 1.4.

2.5 Time since infection

The TSI of an individual is typically not exactly known, but can
be estimated. In the Keele and Li dataset, the TSI has been esti-
mated using both Fiebig stages (Fiebig et al. 2003) and the
Poisson estimate by Keele et al. (2008). Fiebig stages are based
on clinical data and have a large uncertainty. The Poisson esti-
mate is based on the distribution of inter-sequence hamming
distances and a neutral model of evolution.

The simulations presented here can also be used to directly
estimate the TSI, since the simulations run until the number of
unique mutations matches the data, rather than fixing the

number of generations a simulation should run for. In a neutral
model, this estimate should match the Poisson estimate of TSI
presented by Keele et al. (2008), where the distribution of inter-
sequence hamming distances is assumed to be Poisson-
distributed. Indeed, in neutral simulations (see Fig. 5), we see
that the Poisson estimate for the number of generations
matches the simulated number of generations. However, the
presence of fitness effects changes how fast mutations rise and
fix in a population, so that the Poisson estimate for TSI might be
biased. In general, the presence of beneficial mutations will
speed up the accumulation of mutations compared with neutral
evolution, causing the Poisson model to overestimate the TSI.
Deleterious mutations have the opposite effect and will lead to
an underestimation. How a combination of different fitness
effects will impact the Poisson estimate depends on the exact

Figure 3. Measures of sharing in the data compared with the mean of 100 simulations: the number of individuals each mutation appears in (top), and the degree of

sharing (the average number of individuals the mutations in one subject are shared with, bottom). Left: simulations where mutational effects are neutral; center: simu-

lations where mutational effects are distributed according to the log-normal model; right: simulations where mutations are distributed according to the ‘lethals and

beneficials’ model.

Figure 4. Violin plot representing the distribution of fitness effects per frequency class, derived from hundred simulations using best-fit parameters for both models.

The blue violin on the left represents the original MFED, the red lines indicate the median fitness effect in the respective frequency class.
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number of beneficial and deleterious mutations and is not
straightforward to predict. We estimated the TSI using the
Poisson method for 25 simulations using the best-fit parameters
of the ‘beneficials and lethals’ model and the log-normal model,
and compared these estimates with the number of generations
that were actually simulated (see Fig. 5). While the two models
for the MFED are very similar, the estimates for TSI are affected
in different ways. In the ‘beneficials and lethals’ model, the
Poisson estimate is a good estimate of the true TSI infection
happened recently, but an overestimation if infection occurred
more than approximately 10–15 generations (or 20–30 days) be-
fore sampling. In the log-normal model, the Poisson estimate is
consistently underestimating the real TSI by a factor 2. This is
likely due to the many deleterious mutations that take longer to
accumulate than neutral mutations.

2.6 The role of APOBEC

The mutagenic enzyme APOBEC left a detectable imprint in the
data by Keele et al. and Li et al. While APOBEC activity is typi-
cally lethal, in some cases its activity is reduced to sub-lethal
hypermutation. By studying the sequence context of G-to-A
mutations, mutations that were likely due to APOBEC activity
can be identified. Of all shared mutations in this dataset, we cal-
culated that 39% are likely APOBEC mediated, while they only
make up 12% of all occurring mutations. Nineteen percent of
individuals carry APOBEC-mediated mutations. In these
individuals, 45% of G-to-A mutations are APOBEC mediated.
The distribution of the degree of sharing per subject for the
APOBEC individuals is significantly higher from the individuals
without any APOBEC mutations (t-test, P-value 4.74� 10–4, see
Supplementary Fig. S1a). However, when correcting for how of-
ten G-to-A mutations appear in the dataset (see Supplementary
Fig. S1b), they are not more likely to be shared than other muta-
tions, indicating that the higher prevalence of G-to-A mutations
due to APOBEC is causing the higher level of sharing, and not
the targeting of highly specific motives by APOBEC.

We included the potentially increased mutation rate due
to APOBEC into our simulation model because it affects the
patterns of sharing. In particular, we assumed that in all indi-
viduals that carried APOBEC-mediated mutations the G-to-A
mutation rate was increased. We captured this effect in a pa-
rameter lGAAPOBEC

. This parameter quantifies the increase in the
mutation rate in individuals who harbour viruses that are only

partially able to counter APOBEC by their vif gene. This parame-
ter should not be confused with the hypermutation rate that
APOBEC induces in vif-deleted HIV strains in vitro (Kim et al.
2014). Since our parameter lGAAPOBEC

is different from the typical
measures of the effect of APOBEC, we cannot directly use esti-
mates from the literature. We therefore estimated the factor by
which the G-to-A mutation rate was increased due to non-
lethal APOBEC activity (lGAAPOBEC

=lGA) along with the MFED.
Initially, these estimates were all on the lower end of the

prior distribution, which ranged from 1 to 160, while the 95%
HPD of the parameter estimate across models ranged from 1 to
34. To make sure, the G-to-A mutation rate increase is signifi-
cantly different from one, we re-estimated the parameters of
the log-normal model with a logarithmic prior distribution for
lGAAPOBEC

=lGA from e�10 to e5. The estimates remained the same,
but the 95% HPD intervals no longer included one, indicating a
significant increase in the G-to-A mutation rate due to APOBEC.

3. Discussion

The combined datasets of Keele et al. (2008) and Li et al. (2010),
containing sequencing data of the env gene from over a hundred
individuals in early stages of HIV infection, provide many
insights into the dynamics of HIV evolution immediately after
infection.

Keele et al. (2008), Li et al. (2010) and Lee et al. (2009) found
that the pattern of viral diversification in each individual was
consistent with a neutral model of viral evolution (the ‘Poisson
model’), which they used to estimate the time of infection.
However, by considering mutations that are shared across indi-
viduals in these datasets, Wood et al. (2009) and Bertels,
Metzner, and Regoes (2018) concluded that evolution is not
neutral.

In this study, we went one step further than providing evi-
dence that viral evolution is not neutral: we aimed to quantify
the fitness effects associated with mutations. In particular,
we fitted a global MFED to the sequencing data from Keele et al.
(2008) and Li et al. (2010). This approach assumes that the
effects of mutations are identical in all individuals, independent
of time, environment or sequence context. Our model-fit
assigned a high probability to the ‘lethals and beneficials’ and
the log-normal model, a low probability to the ‘beneficials only’
and ‘5 spikes’ model, and an almost zero probability to the neu-
tral, ‘lethals only’ and the truncated log-normal model. Due to

Figure 5. Estimations of TSI for twenty-five simulations of sequence diversification using the best-fit parameters for each model (‘beneficials and lethals’, log-normal

and neutral). For each individual in a simulation, the Poisson estimate for TSI was calculated on the final sample, and compared with the true number of generation

the simulation ran for. The black line indicates the diagonal, where the real number of generations and the Poisson estimates are the same. The blue dots indicate the

mean number of generations for each individual, the light blue lines the minimal and maximal values across all simulations.
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its high flexibility, we expected the ‘5 spikes’ model to reach
higher model probabilities. The low performance is likely due to
the high dimensionality of this model (eight parameters vs one
to three parameters for the other models), which is inherently
punished by the ABC-SMC method (Toni et al. 2009). Although
we cannot distinguish between the top two models (‘lethals and
beneficials’ and log-normal), their shared characteristics allow
us to make several conclusions about the MFED.

Both models contain deleterious and beneficial mutations,
indicating that the patterns of sharing cannot only be due to the
presence of beneficial mutations. Additionally, the presence of
more beneficial mutations does not necessarily mean more
sharing, as becomes apparent by comparing the best fits of the
log-normal and ‘beneficials only’ models. In the log-normal
model, the high amount of deleterious mutations causes higher
levels of sharing than the ‘beneficials only’ model, even though
the log-normal model contains less beneficial mutations. The
presence of deleterious mutations reduces the number of bene-
ficial mutations needed to reach the same level of shared muta-
tions between individuals. Intuitively, this effect is due to an
effective shortening of the genome by lethal and deleterious
mutations, making sharing by chance more likely. This observa-
tion, together with the poor performance of models which do
not include deleterious mutations highlights the importance of
deleterious mutations when studying convergent evolution on
the sequence level.

Among the various types of MFEDs we fitted, the log-normal
distribution is closest to MFEDs of other viruses derived from
in vitro studies (Sanjuán, Moya, and Elena 2004; Carrasco, de la
Iglesia, and Elena 2007; Domingo-Calap, Cuevas, and Sanjuán
2009; Acevedo, Brodsky, and Andino 2014). According to these
studies, 20%–40% of mutations were lethal and 30%–50% delete-
rious. Beneficial mutations ranged from 0% to 4% of occurring
mutations, but small beneficial effects are difficult to detect in
competition assays (Eyre-Walker and Keightley 2007). By count-
ing the number of codons that are one mutation away from a
stop codon in the consensus env gene, we can calculate that 4%
of mutations will introduce a premature stop codon, which is
typically lethal. This sets a lower bound on the number of lethal
mutations, which is just met by the best fit of the log-normal
model, for which we found a fraction of lethal mutations of
4.5%. If this model is correct, all lethal mutations in the env gene
would be due to premature stop codons. It is also important to
note that the MFEDs of these other viruses (Sanjuán, Moya, and
Elena 2004; Carrasco, de la Iglesia, and Elena 2007; Domingo-
Calap, Cuevas, and Sanjuán 2009; Acevedo, Brodsky, and
Andino 2014) apply to the entire genome, including non-coding
regions. Our estimates of the MFED, in contrast, are based only
on the env gene, which is under stronger evolutionary pressure
than the rest of the genome (Zanini et al. 2015). We therefore
expect that the MFED of this gene contains greater deleterious
and beneficial effects than the MFED of the whole genome.

The patterns of mutations in individuals have been used to
estimate when they became infected by fitting a neutral model
of evolution (the ‘Poisson’ model). The existence of beneficial
and deleterious mutations that we infer, however, changes the
patterns of accumulation of mutations, and hence the estimate
of the time of infection. We find that the Poisson model esti-
mates are generally biased when fitness effects are ignored.
Interestingly, the direction of the bias depends on the type of
the true MFED. If the true MFED is the log-normal model, then
the Poisson model consistently underestimates the TSI by a
factor of 2. If the ‘beneficials and lethals’ model is correct, then
the TSI is overestimated, but only when the TSI is larger than

30 days. While the sequence data do not allow us to differenti-
ate between log-normal and ‘beneficials and lethals’ model, an
independent estimate for TSI could help to pin down the type of
the true MFED.

The presence of approximately 5% beneficial mutations indi-
cates that a founder virus has opportunities to increase its fit-
ness, and that the respective mutations have not yet fixed
globally. Such a situation can arise if there is a trade-off
between transmission and within-host replication, and the
transmitted founder virus strains will need to ‘re-adapt’ to the
within-host environment after transmission. It has been
hypothesized for a long time that HIV evolution within the host
is ‘short-sighted’ (Levin and Bull 1994; Lythgoe and Fraser 2012;
Alizon and Fraser 2013; Fraser et al. 2014; Lythgoe et al. 2017),
meaning that adaptation of the virus to the host does not neces-
sarily advance transmission, and might even reduce it. There is
empirical evidence that strains from early infection are favored
during transmission (Derdeyn et al. 2004; Herbeck et al. 2006).
Within-host adaptations that impair transmission include im-
mune escape and reversion, or increased replicative capacity in
the secondary lymphatic tissue that may trade-off with replica-
tion in anatomical sites important during transmission, such as
the lamina propria. There might also be a difference in the
fitness effects between chronic and acute infection, since
certain sequence motifs are associated with either early or
chronic infection (Gnanakaran et al. 2011). This is difficult to dif-
ferentiate from the differences between transmission and infec-
tion; however, as these observed differences might also
be caused by early infection still having the motifs of
transmission.

The exact sites under strong selection and the selection
pressures underlying the MFED cannot be pinpointed with our
method. Our inference is based on the fact that there is more
sharing of mutations between individuals than is expected by
chance. While shared mutations are likely to be more beneficial,
our method does not allow the separation of mutations that are
shared by chance from those that are shared because they are
beneficial. However, other approaches have been able to deter-
mine mutations that are likely to be under positive selection
(Wood et al. 2009; Bertels, Metzner, and Regoes 2018).

This study also highlights the importance of APOBEC-
mediated hypermutation in HIV evolution. The protein is part
of the hosts’ innate immune response against viruses that
mutagenizes single-stranded DNA (Goila-Gaur and Strebel
2008). Considering that, according to the MFEDs estimated here,
20%–95% of mutations will be deleterious or lethal, an increased
number of mutations will likely reduce fitness of the virus,
thereby limiting viral spread. However, there is also a small
chance of introducing beneficial mutations, which via selection
will rapidly fix in the population. Selection of APOBEC-mediated
mutations has been observed in HIV before (Wood et al. 2009;
Kim et al. 2014) and our study suggests the same. Virus samples
carrying APOBEC-mediated mutations show higher levels of
sharing than those without APOBEC signature. This higher level
of sharing could arise because APOBEC-mediated mutations
occur at a limited fixed set of sites, or because APOBEC increases
the mutation rate and thus speeds up evolution and fixation of
beneficial mutations. The collective evidence in our study sug-
gests that APOBEC increases sharing by increasing the mutation
rate (see Supplementary Fig. S1).

The concept of a global MFED has limitations. The first limi-
tation is that differences between hosts cannot be captured by a
global MFED. Genetic differences between hosts may lead to
only subtle deviations from the assumption of universal fitness
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effects, while strain-specific immune responses result in large
changes in fitness effects that are tied to a specific host at a spe-
cific time. In general, immune pressure, for example from cyto-
toxic T-lymphocytes (CTL) is considered the most important
source of selection in HIV infection. Therefore, we relied on data
sampled in early infection, when immune responses have not
yet been fully mounted and when the assumption of fitness
effects that apply in every environment and are constant is still
plausible. Although CTL escape can happen very early in HIV in-
fection, there is still a period of time where CTL escapes are
rarely observed. Goonetilleke et al. (2009), for example, moni-
tored three HIV positive individuals from the moment of diag-
nosis, in all cases in Fiebig stage II. No CTL escapes were found
at the moment of diagnosis, the first escapes arose within 10–
20 days after diagnosis. The majority of individuals in the data-
set, we used were also sampled in Fiebig stage II. This means
that the majority of the individuals used in this study were
sampled at a time early enough for immune escape to be un-
likely. Approximately 30 individuals were sampled at later
Fiebig stages, at which time immune escape is more common. It
is likely that some of the mutations in these individuals are se-
lected by an immune response. However, in order to have an
impact on our analysis, these mutations must contribute signif-
icantly to sharing. In order for an escape mutation to be shared,
it is not enough that the hosts share HLA alleles, but the virus
needs to pick up the exact same escape mutation. If we look at
the escape mutations identified by Wood et al. (2009) in the
Keele & Li dataset, the majority of escape mutations (a total of
twenty-three escape mutations were identified at six epitopes)
are present in only one or two individuals, with only a single es-
cape mutation present in more than two individuals. Reversion
of CTL escape variants in the previous host could also confound
our analysis. However, reversion is even less likely than escape
(Fryer et al. 2010), and Wood et al. only found two sites that
were identified as reversion mutations.

The concept of an MFED also fails to account for a potentially
changing fitness landscape due to changes in the anatomical
environment. In fact, HIV is not replicating in a constant envi-
ronment from the moment of infection. After transmission, HIV
migrates via different tissues before establishing a reservoir in
the secondary lymphoid organs (Haase 2005). Each tissue might
affect the fitness of the virus differently. Since our dataset con-
tains samples from one to several weeks after infection, and es-
tablishment of the reservoir typically happens after the first
week of infection (Haase 2005), the MFED we estimated might
represent an average of the MFED in the different tissues. Also,
frequency-dependent selection cannot be captured by an MFED.
In HIV infection, frequency-dependent selection is exerted by
strain-specific adaptive immune responses that target the most
common strains. This type of frequency-dependent selection
will be more prominent in later stages in infection when adap-
tive immune responses are fully mounted. However, we cannot
exclude that there are other, unknown, sources of frequency-
dependent selection present in early infection.

Additionally, our approach to estimate the MFED neglects
epistasis because we assume that the effects of mutations sim-
ply multiply. But again, we can mitigate the severity of this as-
sumption by using data from early infection, when the number
of mutations per sequence is expected to be low. Interactions
between mutations are therefore unlikely.

Despite all these caveats, the MFED is a useful concept worth
of study (Eyre-Walker and Keightley 2007; Sanjuán 2010).
Because the effect of a mutation is sensitive to the environ-
ment, compiling a comprehensive table of the fitness effects of

all mutations (a ‘fitness landscape’) in every relevant environ-
ment is out of reach for most systems. While the global MFED
does not pinpoint the exact locations of mutations with advan-
tageous or disadvantageous effects, it provides a way to average
over the variation in mutational effects and thus provides
insights into the adaptive potential of an organism. By estimat-
ing the MFED from clinical data, our study captures the adaptive
potential of HIV-1 relevant in its epidemiological setting.

4. Methods
4.1 Data and identification of shared mutations

For all of the individuals from Keele et al. (2008) and Li et al.
(2010), a sequence sample and a consensus sequence are avail-
able. Only the sequences from the individuals in which the in-
fection was the result of a single founder virus were used. These
were all aligned to a reference sequence HIV-1 NL-43
(Giallonardo et al. 2014). Mutations in two individuals are con-
sidered shared if they map to the same position in the reference
genome and have the same base in the consensus sequence
that changed into the same mutated base. Deletions and inser-
tions were not considered. An overview of all used individuals,
including GENBANK accession numbers can be found in
Supplementary Table S2.

Sequences from this dataset where mutations carrying an
APOBEC signature are removed using hypermut 2.0 (Rose and
Korber 2000) were acquired from Elena Giorgi. These are the
sequences also used in Wood et al. (2009). Any mutations that
do not occur in these sequences, but are present in the original
sequences, were identified by Hypermut 2.0 and are thus con-
sidered APOBEC-mediated mutations.

4.2 Simulations of sequence evolution

Simulations of sequence evolution were adapted from Lee et al.
(2009). The first step of the sequence evolution simulation is the
initialization, which consists of ancestor sequence generation
and the initialization of the fitness table. The sequence genera-
tion is the same as in Lee et al. and results in a random se-
quence, s, with the same length N and base distribution as the
env gene. For this sequence, a fitness table can then be created.
This is a table of size N by 4, where each entry is the fitness ef-
fect of each possible base at every position. The entries for the
ancestor sequence are set to 1, the rest is filled up with random
draws from the MFED.

During the simulation, each sequence in every generation
generates offspring according to Poisson ðR0 � f Þ, where f is the
total fitness of the sequence, as

f ¼
YN

i

F½s½i�; i�

where F is the fitness table, s is the sequence, and i is the posi-
tion of the sequence. F½s½i�; i� is the fitness value of the base at
position i in sequence s. This is the product of the entries in the
fitness table for all positions in the sequence. Every new off-
spring sequence acquires new mutations according to mutation
rate l and substitution matrix M.

In the simulations, new mutations are selected as follows.
First, the number of mutations that will happen on the se-
quence is decided by drawing from a Poisson distribution with
mean l. Then, a position is randomly chosen to mutate into an-
other random base. This mutation is then accepted or rejected
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based on the transition matrix M, making some mutations
more likely than others. New mutations are proposed until the
desired number of mutations have been accepted. The transi-
tion matrix we use was calculated by Lee et al. (2009) from a
maximum likelihood general time reversible (GTR) model of
substitutions that occur in the full length HIV-1 envelope gene.
However, we have found that using different definitions of the
mutation matrix does not affect the parameter estimates.
Optionally, the G-to-A mutation rate can be increased x-fold to
simulate APOBEC-mediated G-to-A hypermutation.

The population is capped to 10,000 sequences. Once the
number of sequences exceeds this cap, 10,000 sequences are
randomly sampled from the population and used as the next
generation. The population cap imposed here is in line with
some estimated of the effective population size of HIV (Kouyos,
Althaus, and Bonhoeffer 2006; Rouzine and Weinberger 2013).
To make sure our maximum number of sequences is sufficient,
we have tested a subset of the fits with a higher maximum
capacity of 105. Parameter estimates remained the same, indi-
cating that a maximum capacity of 104 is sufficient for this
application.

In order to recreate the dataset, a separate simulation is per-
formed for each individual with the same initial sequence and
fitness table. After each generation, a sample is taken from the
simulation with the same size as the number of sequences
available for the individual. The number of unique mutations in
this sample is then counted. If this matches the data, the simu-
lations are stopped and this sample is used for analysis. If this
number exceeds the number of mutations present in the data,
the previous sample is also compared and the sample with the
closest number of mutations is used.

The simulations of sequence evolution were implemented
in python. The code is available at https://gitlab.ethz.ch/bonse/
MFED/.

4.3 Approximate Bayesian computation using
sequential Monte Carlo

We defined several different models for the parametrization of
the MFED (see Section 2). The ABC-SMC framework (standing for
approximate Bayesian computation using sequential Markov
chains Toni et al. (2009)) was then used for simultaneous model
selection and parameter estimation of the MFED. For this, we
implemented an SMC procedure in python. The code is avail-
able at https://gitlab.ethz.ch/bonse/MFED/.

The fitting procedure starts with equal probabilities for all
models. Simulations are then performed for all models with
random parameters according to their prior distribution. The
priors were uniform distributions from 0 to 1 for all parameters
except k ð0; 2Þ in the exponential beneficials models, l ð�1; 1Þ in
the log-normal models and bb ð1; 2Þ in the 5 spikes model. In the
first iteration, a set of parameters (a ‘particle’) is sampled and a
simulation is run with these parameters. If the distance be-
tween the summary statistics of this simulation and the data is
smaller than �1, the particle is retained. Once 1,000 particles
have been accepted, a weight is assigned to all accepted par-
ticles (Toni et al. 2009).

In the next generations, a particle is sampled from the previ-
ous iteration using the assigned weights. The particles are then
perturbed according to Gaussian kernel and a simulation is run
with these parameters. Then, a set of summary statistics (see
later) is calculated. If the distance between these summary
statistics and the data is smaller than �i (with i the iteration),

the particle is retained and once 1,000 particles have been ac-
cepted, the weights are calculated.

We used tolerances ei ¼ ½2:2; 1:3; 0:8; 0:7; 0:6; 0:5; 0:4�, and a
Gaussian kernel with r equal to the average distance between
accepted particles in the model divided by 2. We used a normal-
ized Euclidean distance to calculate the distance between simu-
lations and the data, where the summary statistics are divided
by the corresponding summary statistics of the data, after
which the distance to a vector of ones is calculated.

The model probabilities are directly calculated from the set
of accepted parameters (the number of accepted particles for
model x/1,000). It is possible for a model to ‘die out’ during the
SMC if none of the particles for this model are accepted. This
indicates an exceedingly low model probability.

For the parameter estimation, we did a Gaussian kernel den-
sity estimation for the accepted parameters in the SMC in the
last iteration for each remaining model. From this, we deter-
mined the highest density point—which was used as the pa-
rameter estimate—and the 95% highest density intervals.

4.4 Summary statistics

In total, fourteen summary statistics were defined to calculate
the distance between simulations in data. The majority of them
are based on shared mutations, which are defined as a mutation
that occurs in the same position with the same from- and to-
base in two independent individuals.

Five of the summary statistics are based on the average de-
gree of sharing (sx) of the mutations in an individual x. This is
an individual-centered metric calculating the average number
of other the mutations in x appear in, and is defined as:

sx ¼
Pm

i¼0 cix

m

where m is the number of mutations in individual x and ci;x is
the number of individuals other than x that carry mutation i.

This number can be calculated for all ninety-eight individu-
als in the dataset. The resulting distribution is used to calculate
several summary statistics: the mean and the median of the
distribution, the difference between mean and median, the vari-
ance of the distribution and the area under the cumulative
curve of the sorted degrees of sharing per individual.

Where the degree of sharing characterizes sharing for each
individual, the occurrence of mutations is a similar measure,
this time calculated per mutation. It measures in how many
individuals each occurring mutation is present. These numbers
are then sorted and categorized. For the summary statistics, the
following five categories are used: the number of mutations
occurring only once (singletons), the amount occurring in
exactly two individuals, those occurring three to five times, five
to ten times and finally the number of mutations occurring in
more than ten individuals.

The remaining four summary statistics are individual based,
and three serve as a proxy to match the number of generations
to the data. They are calculated for each individual separately,
and averaged for the summary statistic. A first measure is the
fraction unmutated sequences, the percentage of sequences in
the sample that is identical to the founder. For the simulations
the founder is known, for the data the consensus sequence is
assumed to be the same as the founder sequence. The fraction
unmutated is then used to also calculate a selection index, the
percentage of sites in the sample that are mutated in at least
one sequence, divided by the percentage of mutated sequences
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in the sample (which is 1 – %unmutated). Lastly, the average
inter-sequence hamming distance is calculated per viral popu-
lation, which, according to Lee et al. (2009), is directly related to
the TSI in a neutral model.

In order to match the G-to-A mutation rate increase as well,
the fraction of G-to-A mutations in the sample was calculated
per individual. The mean of this distribution was then used as
the last summary statistic.

Supplementary data

Supplementary data are available at Virus Evolution online.
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