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Abstract

In the last decade, the use of mobile devices such as smartphones and tablets has
increased dramatically. Portable devices are now capable of achieving a multitude of
tasks and, therefore, have become an important tool in our everyday life. Moreover,
users often own more than one device and, for this reason, cross-device applications have
raised interest among researchers and companies. In this multi-device era, improving
the overall user experience on mobile devices in single and cross-device scenarios is
particularly critical. Despite this need, the form of interaction currently used on these
devices relies mainly on touch. While touch gestures offer an intuitive way of interacting
with smartphones and tablets, they can fail in certain situations. For instance, touch
often requires the user to change their holding position to reach some locations on the
screen. Moreover, to perform touch gestures users need to look at the screen and they
are often required to held the device with both hands.

To overcome these issues, researchers have proposed alternative forms of interactions
such as tilting and mid-air gestures. Tilting interactions are movements of the device
in some direction and, given their nature, they are one-hand and eyes-free interactions.
Alternatively, researchers have also exploited the use of the phones’ cameras to perform
mid-air poses to trigger actions on the device and, therefore, enlarge the interaction
zone of the phone or tablet. However, this research has been applied mainly to native
applications rather than on mobile web browsers.

On the web, the primary focus has been on the adaptation of content to the screen
real estate of the clients rather than its modes of interactions. While responsive design
solved some of the issues concerning the usability of web applications on mobile devices,
it does not tackle any alternative forms of gestures.

In this thesis, we bridge this gap via a series of contributions aimed at improving
the mobile user experience by enriching the set of possible interactions available on
single and cross-device web applications. We start with an in-depth analysis of the
literature on tilting gestures and, based on these, derived a set of API as Tilt-and-
Tap (TAT), a JavaScript framework for the rapid development of motion gestures on
the web. TAT offers a catalogue of previously proposed tilting interactions and allows
developers to customise gestures with a number of different parameters. TAT has
the goal of encouraging developers to use tilting interactions in their web applications
by hiding implementation details and supporting coherent interactions across different
platforms and browsers.

While TAT targeted developers, we also wanted to allow end-users with little or no
experience in web technologies to experiment with motion gestures. To reach this goal,
we used the drag and drop UI paradigm to add gestures to a web application. To test
our approach, we developed WP-TAT, a WordPress extension that allows users to map
tilting gestures to global actions via drag and drop interactions. Global actions are
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functions which affect the entire website. For instance, a rapid movement of the device
to the left or to the right could redirect the user to the previous or next posts. Users
can define these mappings by using drag and drop interactions on our visual interface
and, therefore, they are not required to write any code.

Concerning cross-device scenarios, a preliminary user study output a series of re-
quirements to improve the user experience, as well as the development process, of
cross-device applications that exploit tilting interactions. Inferred by these require-
ments we developed Cross-Tilt-and-Tap (CTAT), a set of high-level APIs for the rapid
prototyping of motion interactions in cross-device environments. After the developer
has attached to the desired gesture (i.e. tilt right), the sender of the message and its
receivers, the framework will be responsible for recognising the devices involved in the
communication, detect the motion interaction and sending the messages.

Finally, we continued our work on cross-device applications by employing the use of
mid-air gestures to share data across devices. Via an elicitation study, we asked users
to suggest a series of gestures to target co-located and remote devices. The proposed
gestures, as well as the feedback received from participants, informed the design of
MyoShare, a system that allows users to copy web data from and to their desktop
computers and mobile devices.

To evaluate our frameworks and tools, we have carried out a number of user and
developer studies as well as proposing various example applications.



Abstract

Nell’ultimo decennio, l’utilizzo di dispositivi mobili come smartphone e tablet è aumentato
drasticamente. I dispositivi portatili sono ora in grado di raggiungere una moltitudine
di compiti e, pertanto, sono diventati uno strumento importante nella nostra vita quo-
tidiana. Inoltre, gli utenti spesso possiedono più di un dispositivo e, per questo motivo,
le applicazioni cross-device hanno suscitato gran interesse tra ricercatori e aziende. In
questa multi-device era, il miglioramento dell’esperienza utente su dispositivi mobili
in scenari single e cross-device è particolarmente critica. Nonostante questa necessitá,
la principale forma di interazione attualmente utilizzata è il touch. Mentre le gesture
touch offrono un modo intuitivo di interagire con smartphone e tablet, possono fallire
in determinate situazioni. Ad esempio, il touch spesso richiede all’utente di modificare
la posizione della loro mano per raggiungere alcune zone sullo schermo. Inoltre, per
eseguire touch gesture, gli utenti devono guardare lo schermo e spesso sono tenuti a
tenere il dispositivo con entrambe le mani.

Per superare questi problemi, i ricercatori hanno proposto forme alternative di in-
terazione come tilting e mid-air gesture. Le interazioni di tilting sono movimenti del
dispositivo in qualche direzione e, data la loro natura, possono essere eseguite con una
sola mano e senza necessariamente guardare il dispositivo. In alternativa, i ricercatori
hanno anche sfruttato l’uso delle fotocamere dei telefoni per mid-air gesture per eseg-
uire azioni sul dispositivo e, quindi, ingrandire la zona di interazione del telefono o del
tablet. Tuttavia, questa ricerca è stata applicata principalmente alle applicazioni native
piuttosto che ai browser web.

In questa tesi, colmiamo questa lacuna proponendo una serie di contributi scien-
tifici volti ad ampliare l’insieme delle possibili interazioni su applicazioni web. Dopo
un’analisi approfondita della letteratura riguardo le interazioni di tilting, abbiamo svi-
luppato Tilt-and-Tap (TAT), un framework JavaScript per lo sviluppo rapido di motion
gestures sul web. TAT offre un catalogo di interazioni di tilting proposte in letteratura e
consente agli sviluppatori di personalizzare le gesture modificando una serie numerosa
di parametri customizzabili. TAT ha l’obiettivo di incoraggiare gli sviluppatori ad
utilizzare le interazioni di tilting nelle loro applicazioni web, nascondendo i dettagli
implementativi delle gesture supportate e mantenendone la coerenza tra piattaforme,
nonostante le lore differenze.

Mentre TAT mira ad aiutare gli sviluppatori, con WP-TAT, coinvolgiamo anche gli
utenti finali con poca o nessuna esperienza in tecnologie web ad sperimentare con le
motion gestures. WP-TAT è un’estensione di WordPress che consente agli utenti di
abbinare le interazioni di tilting a delle azioni globali. Le azioni globali sono funzioni
che, quando eseguite, hanno effetto sull’intero sito web. Ad esempio, un rapido mo-
vimento del dispositivo verso sinistra o verso destra potrebbe reindirizzare l’utente al
post precedente o successivo. Gli utenti possono definire questi abbinamenti tra azioni
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e gesture, attraverso delle semplici operazioni di drag e drop dalla nostra interfaccia
grafica e, di conseguenza, senza la necessitá di inserire nessuna riga di codice.

Per quanto riguarda gli scenari cross-device, uno studio utente preliminare ha pro-
dotto una serie di requisiti per migliorare l’user experience e il processo di sviluppo di
applicazioni cross-device che sfruttano le interazioni di tilting. In base a questi requisiti,
abbiamo sviluppato Cross-Tilt-and-Tap (CTAT), un set di API per la prototipazione
rapida di interazioni di tilting in scenari cross-device. Con CTAT, lo sviluppatore deve
solo definire la gesture desiderata, il mittente e il destinatario dellinterazione, a questo
punto, il framework sarà responsabile del riconoscimento dei dispositivi coinvolti nella
comunicazione, rilevare la gesture e inviare i messaggi ai giusti destinatari.

Infine, abbiamo continuato la nostra ricerca utilizzando mid-air gesture per la condi-
visione di dati tra dispositivi. Tramite un elicitation study, abbiamo chiesto agli utenti
di suggerire una serie di gesture per identificare dispositivi co-localizzati e remoti. Le
gesture proposte, ed i feedback ricevuti dai partecipanti, hanno influenzato il design
di MyoShare, un sistema che consente agli utenti di copiare dati web da e verso i loro
computer desktop e dispositivi mobili.

Per studiare e valutare i nostri tool e framework, abbiamo condotto una serie di
studi utente, inoltre, abbiamo implementato varie applicazioni desempio implementate
utilizzando le API e i sistemi proposti in questa tesi.



To Nonno Bruno, Nonno Giulio and Paolo.

“It is possible to commit no mistakes and still lose.
That is not weakness, that is life.”

Jean-Luc Picard
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1
Introduction

More than ten years have passed since the advent of the first iPhone. On January 9th
2007 at the MacWorld keynote1, Steve Jobs presented a device that would drastically
change the mobile phone world and, as a consequence, our everyday lives. Back then,
Blackberries and other similar devices already offered some of the key features present
in the first iPhone. For example, they were capable of sending and receiving emails, and
could play music, manage calendars and connect to Bluetooth devices such as wireless
headphones. Most of these devices offered a physical QWERTY keyboard to allow a
typing technique similar to the one people were accustomed to on desktop and laptop
machines.

This generation zero of smartphones were often used for work-related tasks, but they
were big and cumbersome to use and carry. In this setting, the multi touch capabilities
of the iPhone, its innovative design, its futuristic user interfaces and the newly proposed
gesture set felt like a fresh new start.

Given the enormous success of the iPhone, the technology around these devices
evolved rapidly. In a single decade, our smartphones became smarter, faster and thin-
ner. As a consequence, a large proportion of the world’s population now use and
perceive mobile phones in a completely different way to the early years of the 21st cen-
tury. Nowadays, phones are multi-functional devices that serve a multitude of tasks,
with calling and messaging people only two of the many functions that they offer.

One key factor that makes these devices smart relies on their sensing capabilit-
ies. Touch-enabled displays allow intuitive gestures to be used to interact with the
device. Ambient light sensors are capable of detecting the current amount of light
so the brightness of the screen can be adjusted accordingly. Near-field communication
(NFC) sensors allow two physically close electronic devices to initiate a communication,
and accelerometers and gyroscopes can detect the speed and orientation of the device.

Given the number of sensing techniques available, relying only on touch to interact

1Introduction of the first iPhone - Presentation by Steve Jobs (2007): ht-
tps://youtu.be/9hUIxyE2Ns8. Accessed on November 2017.
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2 Chapter 1. Introduction

with the smartphone seems limiting. Moreover, in the last years, the size of smartphones
has increased causing users to often change their holding position to reach some loca-
tions on the screen and hold the device with both hands. For these reason, researchers
have exploited the use of the camera, motion and other sensors to propose alternative
means of interaction with the final goal of improving the overall user experience and
fix some of the issues of touch interactions.

For example, tilting gestures have been proposed as a possible alternative to touch
interactions [179, 15, 92, 108]. These motion gestures allow the user to interact with the
device by simply moving it in some direction in a fast or continuous manner. Through
tilting interactions, users can perform gestures without touching the screen, and there-
fore, without changing their holding position. Moreover, via tilting interactions, users
can perform gestures without looking at the screen and interact with the device also
when wearing gloves or have dirty fingers while cooking or eating.

Alternatively, mid-air gestures have also been used as another possible form of in-
teraction [149, 9]. By mimicking some gestures or posing hands or fingers in a specific
way, users can pause videos or go to the next song without the need of carrying an
additional remote in their hands. The interaction is usually recognised by a camera or
by wearable devices worn by the user.

While many researchers have experimented with these alternative modes of interac-
tion in native applications, the primary focus on the web has remained on the organ-
isation of content rather than modes of interactions [152].

In the early days of the first iPhones and Android devices, accessing web content
on a mobile phone required the users to zoom in and out repeatedly. The fat finger
problem caused users to inadvertently tap incorrect links or buttons in a web page
because of the small size of the touch areas [44]. For these reasons, reading an article
or merely browsing a list of products was perceived as painful tasks. Only later, did the
concept of responsive web design became prominent in web development. A responsive
website is capable of adapting to the screen where it is rendered according the type and
dimension of the device itself. This was possible with the introduction of CSS media
queries in 2009 which allow developers to define rules that will be applied only if certain
conditions are satisfied. For example, developers can write rules that will be rendered
only if the width of the device viewport is smaller or larger than a threshold. These
breakpoints allow better coordination of the elements in the page when dealing with
different screen real estates making it easier for developers to build their responsive
website.

Thanks to media queries and, overall, to responsive design, web applications gradu-
ally became easier to browse on mobile devices. However, many years had to pass until
most websites would be smoothly accessible in a wide variety of display sizes.

In June 2014, the number of internet accesses from mobile devices surpassed desktop
computers2 with an estimated 60% of the time users spent on their daily digital media
consumption made from a mobile device. However, in 2015, eight years after Steve
Jobs presented the first iPhone, as reported by the The Economist, 40% of the leading
websites were not yet mobile friendly3.

2The U.S. mobile app Report (2014): https://goo.gl/qse47h. Accessed on November 2017.
3Google Mobilegeddon. The world’s biggest search engine shakes up its algorithms (2015):

goo.gl/19nM63. Accessed on November 2017.
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The Google algorithm update of April 21st 2015, known as the Mobilegeddon, had
the goal of reducing this number by de-ranking pages that failed to pass a mobile-
responsiveness test4. As a result, many were forced to implement a mobile strategy for
their website to not be affected by the de-ranking5.

However, although more and more websites are now easily accessed from mobile
devices, users still prefer to access digital media from native apps rather than from web
browsers. As reported by ComScore6, out of the total time users spend on smartphones
on a daily basis, on average 80% of this time is consumed on apps. One of the reasons
could be how users still perceive the web. Overall, apps could seem more finger friendly
and reactive than mobile web pages. For this reason, while responsive design was an
essential first step to a more adaptive web, it still does not solve all of the issues. A
responsive website re-arranges and changes the dimensions of elements to cater for a
specific screen real estate but it does not address different interaction techniques that
could potentially improve its usability.

This lack of attention towards alternative modes of touch interaction on the web
could be due to the poor support available for developers, especially given the com-
patibility problems among browsers. While most browsers offer APIs to access raw
data of almost all sensors available on smartphones, their implementations often do
not follow the W3C7 standards, resulting in significant differences among devices and
browsers. Also, for this reason, there is a lack of high-level APIs that support developers
in experimenting with alternative forms of interaction in their web applications.

With jQMultiTouch, Nebeling and Norrie [151] propose a framework for the rapid
development of multi touch gestures in web applications. jQMultiTouch was one of the
first works that went beyond the classic set of touch interactions while fixing cross-
browser compatibility problems. The framework had the overall goal of supporting
investigations into new forms of interaction on the web and therefore, to easily allow
further research in the area. Despite these first steps, there is still remains a lot of work
to be done on investigating how to enlarge the set of possible interactions used in web
applications, including tilting and mid-air gestures.

1.1 Motivation

The primary goal of this thesis is to improve the user experience of mobile web browsing
by enriching the set of possible interactions available. To reach this goal, we investigate
how to best support developers in expanding the set of possible interactions used in
web applications.

Since the first generation of smartphones, developers were capable of accessing raw
data from various sensors in their native apps and had more power in manipulating
and using this information compared to mobile browsers. This might be one of the
reasons why alternative gestures have not yet been adequately studied in the context
of web applications. However, nowadays, browsers incorporate plenty of new features,
and they propose a valid alternative to more native solutions.

4Google Mobile-friendly test: https://goo.gl/wm49AR. Accessed on November 2017.
5Google’s Mobilegeddon aftermath (2016): https://goo.gl/lzZqGd. Accessed on November 2017.
6The Mobile Report (2017): https://goo.gl/EbJ5xD. Accessed on January 2018.
7W3C website: https://www.w3.org/. Accessed on January 2018.
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Currently, many APIs are available to offer a broader set of functionalities. Web
applications can now push notifications to the clients, can be launched in full screen,
and can also access raw data of the various sensors installed on the mobile device. For
example, web developers can make use of the camera of the phone; can locate the user
via the GPS and can also get information about the current orientation of the phone
via motion sensors, such as accelerometers and gyroscopes.

Thanks to this set of hardware and software capabilities, the web can move forward
and support richer applications as well as allowing alternative interaction techniques
that go beyond touch gestures. However, supporting tilting or mid-air gestures can be
challenging. Given the lack of support, developers are often forced to work directly
with the raw data given by the sensors. This requires particular knowledge of how,
for example, the accelerometer and gyroscope work, what data they return and their
limitations and boundaries. This knowledge is usually hard to obtain and, often, it
requires various trial and error experiments. Acquiring these skills requires time and
resources that are not always available when developing applications. Especially on the
web, these problems can be particularly challenging to manage for two main reasons:
the weak compatibility across browsers and the often limited technical background of
web developers.

Despite the improvements made over the years, compatibility across browsers re-
mains one of the main issues that web developers have to face. When a new standard
is introduced, it is not clear if all browsers will support it eventually and, even if they
do differences are often found in the implementations. On this matter, websites such as
caniuse.com8 allow developers to check if a specific API is supported by browsers and
at which level. Given this information, developers are then forced to create alternative
implementations to cater for a specific set of browsers. Researchers have also proposed
specific IDEs to alleviate this problem [144].

Access to data sensors, such as accelerometers and gyroscopes, is particularly af-
fected by cross-browser compatibility problems. Every device is equipped with different
sensors that can be more or less accurate and, therefore, return data with different gran-
ularities. On top of the hardware differences, iOS and Android devices tend to deal
with sensors in contrasting ways despite standard specifications.

Another critical factor that slows down experimentation with alternative forms of
interaction regards the technical skills of developers that work with web technologies.
Often web developers have little or no formal education in computer science. Many are
self-taught and rely on tools or online platforms to create their website [160]. In such
environments, Content Management Systems (CMS) have become increasingly popular
over the years. For example, 60 million websites are supported by WordPress9, which
is currently the most famous and widely used CMS10.

Thanks to CMSs, users can create their websites in a few clicks. They can pick
and customise themes that will define the look and feel of their web application and
add features via plugins without requiring any particular coding skills. However, most
of these systems mainly focus on the customisation of the layout of a website and
rarely support any additional interaction technique. Moreover, CMS mainly focus on

8caniuse website: https://caniuse.com/. Accessed on November 2017.
9WordPress website: https://it.wordpress.com/. Accessed on November 2017.

10CMS Usage Statistics (2017): https://goo.gl/wuuvav. Accessed on November 2017.
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single device scenarios while there is an increasing interest in cross-device applications
[13, 52, 80].

Cross-device applications have the goal of benefiting from the differences among
devices when used in conjuction [188]. For example, the input capabilities of a mobile
phone could allow users to quickly search and select the next video to watch, while
a larger display, such as a TV, can show the desired media. In this scenario, the
smartphone provides a comfortable alternative to typing, while a bigger screen allows
a more enjoyable experience for watching a movie.

In cross-device environments, tilting interactions have also been experimented with
for pairing and sharing data among devices [220] and also to remotely control public
screens [23, 45]. A fast tilt of a smartphone to the right or the left could allow users
to browse a gallery of media shown on a bigger display, or send content towards other
devices that share the same connection. Similarly, mid-air gestures can be used to
control other devices as well as share data among them [200, 37].

This means that the challenges of detecting alternative interaction techniques be-
comes spread across multiple devices. Each client has to manage the recognition of the
gesture, and once the user performs the interaction, the client has to send the message
to the desired set of connected devices.

Given this environment, the lack of applications that exploit alternative gestures
does not come as a surprise. Despite the current software and hardware opportunities,
touch remains the primary form of interaction in single and cross-device web applica-
tions.

We hope that, when supported with the right tools and applications, both developers
and end-users can go beyond the classic set of gestures on mobile web browsing and
experiment with alternative forms of interaction. We also hope that with our support,
the overall interest in motion and mid-air gestures on the web might inspire further
research in the area.

The main research questions of this thesis can be summarised as follows:

• RQ 1: How can we support both developers and end-users in building single and
cross-device web applications that use tilting interactions?

• RQ 2: Which single and cross-device applications can benefit from tilting or mid-
air gestures?

1.2 Challenges

In summary, we can identify two main challenges that arise when supporting and experi-
menting with alternative interaction techniques in single and cross-device web browsing.
First, while many responsive web design frameworks and general guidelines are currently
available online, their focus is mainly on how to best adapt UI elements to different
screen real estates rather than on different interaction techniques. For this reason,
end-users can usually rely on a more finger-friendly mobile experience. However, touch
has remained their primary mode of interaction although alternative gestures, such as
tilting and mid-air gestures, could bring improvements of the overall user experience
[92, 23]. The lack of support available is a challenge that developers have to face when
experimenting with alternative gestures.
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Building applications that propose new forms of interaction requires additional skills
and resources. Working with sensor data, managing the right thresholds to detect ges-
tures as well as dealing with software and hardware compatibility problems can be
challenging. A multitude of parameters could also influence each gesture. For example,
researchers have proposed tilting gestures in several variants [205, 23, 162], also in com-
bination with touch gestures [92] as well as tactile or visual feedback [162]. Moreover, in
cross-device scenarios, gestures have first to be detected by each device involved in the
communication, and then messages need to be exchanged in real time. In such envir-
onments, devices of various sizes, different platforms and browsers should communicate
smoothly and in an unobtrusive way. Interactions should give the impression that there
are no hardware or software boundaries among the different clients involved. Achieving
these goals requires particular attention to designing and implementing gestures that
are consistent among devices, despite their differences.

These issues become particularly problematic when practitioners with little or no
coding skills want to experiment with alternative means of interaction. While CMSs
allow end-users to create their websites without requiring any particular technical back-
ground, they focus on the look & feel of the final product and offer no support for novel
modes of interactions.

Finally, a second challenge is the question of where and how to apply new gesture
sets. As a consequence of the lack of support for non-standard interactions, there is a
lack of applications that exploit alternative gestures for mobile web browsing. Therefore,
there is still a need for investigation to understand in which scenarios new gestures are
best suited and if they could improve the overall user experience when compared to
traditional interactions.

1.3 Contribution

This thesis makes seven contributions to the overall goal of enlarging the set of possible
interactions used for mobile web browsing and supporting rapid experimentation with
new gesture sets.

Our first contribution relies on a detailed analysis of motion gestures, their im-
plementation and possible variants as suggested by previous research in the field. These
interactions were then included in Tilt-and-Tap (TAT), a JavaScript framework that
supports the development of two main forms of motion interactions, namely jerk and
continuous tilting gestures (see Figure 1.1).

We identified jerk tilting interactions as rapid movements of the device in ten dif-
ferent directions (up, down, left, right, south-east, south-west, north-east, north-west,
clock and counterclockwise). In contrast, continuous tilting gestures are slow move-
ments of the device to, for example, scroll a series of pictures in a gallery. Both jerk
and continuous interactions can be combined with touch gestures. For example, users
can tap or hold tap on a specific element in the page while performing the tilting inter-
action. Moreover, visual and audio feedback can be triggered once the motion gesture
has been recognised. Developers can simply specify these parameters, as well as the
callback functions to be called once the gestures have been recognised, in the form of
strings to the TAT instance, thereby avoiding the implementation details of the suppor-
ted interactions. Behind the scenes, the framework also deals with differences among
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Taphold & Tilt upTaphold & Tilt down

var t = new tiltandtap({
tiltDown: {callback: openMenu,
element: “red_div”,
touch: “hold”}, 

tiltUp: {callback : closeMenu,
element : “red_div”,
touch: “hold””}
});

index.js

Web Page

var c = new tiltandtap({
continuostilting: {
target_elem: “pics”,
onelementselected : emphasize(e)
}});

Continuous Tilting

index.js

<div>
<img class=“pics” src=“….”>…
</div>
<div id=“balldivg”>
</div>

home.htmlcontinuous tilting

jerk tilting

Figure 1.1: Jerk and continuous tilting examples and their corresponding implementa-
tion. In the first example, users can open and close a menu by holding the red box on
the bottom right side of the page and tilting the device up and down. In the second
example, users can browse a list of pictures by slowly moving the device to the right
and the left.

browsers and hardware sensors allowing the developers to freely experiment with the
gestures without having to deal with compatibility issues. In a second stage, we exten-
ded Tilt-and-Tap to support more variants of continuous tilting gestures and developed
TAT 2.0.

With TAT and TAT 2.0, we encourage developers to experiment with motion in-
teractions in their web applications, however both frameworks target users with some
technical background in web technologies. With our second contribution, we also
involve end-users by exploiting the drag and drop UI paradigm to add tilting gestures to
web applications. To test our proposed approach, we developed WP-TAT, a WordPress
extension for the rapid prototyping of tilting gestures. Via drag and drop interactions,
users can associate jerk tilting gestures with a number of actions, such as go to next
post or page, search the current selected text on Google or Google maps, click buttons
and so on. Users are not required to write any code and can extend web applications
with alternative forms of interaction through a simple to use GUI.

With these first two contributions, we tackled RQ1 and studied how to best support
developers and end-users in building single device web applications that exploit tilting
gestures. With our third contribution, we address RQ2 by listing a series of design
guidelines on how to best apply motion gestures in web applications and in which
scenarios these interactions can be beneficial on the web. These design observations



8 Chapter 1. Introduction

Tilt-Right

Tilt-Left

var stiltleft= {
sender: “smartphone”,
receiver: “laptops”,
tilting: “tiltleft”,
callback: changecolorgreen
}

var stiltright = {
sender: “smartphone”,
receiver: “tablet”,
tilting: “tiltright”,
callback: changecolorred
}

var settings = new Array();
settings[0] = stiltleft;
settings[1] = stilrright;
var ctatj = new 
ctatj(settings);

index.js

Figure 1.2: Examples of cross-device jerk tilting interactions and their implementation
with CTAT. Once the user performs a tilt left with a smartphone, the background
colour of laptops involved in the communication will change to green. Instead, if the
system recognises a tilt right, the background colour of the tablet will change to red.

have been inferred by the experience we gathered during development of TAT, TAT 2.0,
WP-TAT and the feedback received from participants of our developer and user studies
on the above mentioned tools and frameworks.

As a fourth contribution, we exploited TAT in cross-device scenarios and carried
out a preliminary user study. The goals of the study were to first show the advantages
of motion gestures in cross-device environments, and second, list a series of require-
ments to improve the development process of cross-device applications that use tilting
interactions. Informed by these requirements, we extended TAT to also work across dif-
ferent devices via Cross-device Tilt-and-Tap (CTAT), a JavaScript framework for the
rapid development of motion gestures across multiple devices. CTAT allows developers
to simply define for each tilting interaction its desired sender(s) and the receiver(s), as
well as the actions to execute once the gesture has been performed (see Figure 1.2).
CTAT deals with the exchange of messages between clients, and it is capable of identi-
fying the right subsets of devices that are involved in the interaction. Without CTAT,
developers who would like to use motion gestures in their cross-device applications,
would have to manage the recognition of tilting interactions on each client, recognise
the right receivers of the trigger and send messages back and forth to achieve the de-
sired result. Although technologies such as Node.js11 and Socket.IO12 help developers
to create cross-device applications they often require a ping-pong exchange of messages
between clients and the server for each request. CTAT reduces this effort while sup-

11Node.js website: https://nodejs.org. Accessed on December 2017.
12Socket.IO website: https://socket.io/. Accessed on December 2017.
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My Holidays!!!

Select

Wave-out

Wave-in

Finger
Spread

Send

Figure 1.3: An example scenario of MyoShare. Users select from their mobile device or
desktop computer, an image that they would like to share. Once the selection is made,
users can perform different gestures to target specific sets of devices.

porting all the main features offered by its single device version. Moreover, to further
improve the usability of the framework, a tool has been developed to automatically
generate the code for the desired cross-devices tilting interactions. Thanks to this GUI,
developers can add devices such as laptops, tablets, mobile phones and smartwatches
and create tilting links among them. These links define the motion gestures between
sets of clients involved in the communication. As shown in Figure 1.2, tilting links can
be created by simply using JavaScript objects and defining the desired source of the
gesture (in figure a smartphone) and possible targets (laptops and tablets).

In our fifth contribution, we combine the cross-device features offered by CTAT
and the new extended version of TAT 2.0, to study usability performance of different
variants of continuous tilting interactions to remotely control a cursor on a public
screen. Via a user study, we evaluated different motion gestures previously proposed by
researchers but never compared in cross-device environments [205, 23, 162]. Moreover,
as similarly done for single device scenarios, based on the results of the study, we infer
possible use cases of how best to apply tilting gestures in cross-device applications. The
fourth and fifth contributions of this thesis tackle RQ1 and RQ2 when tilting gestures
are used in cross-device environments.

To bring our research forward, with our sixth contribution, we explored the use of
mid-air gestures to extend the set of possible interactions available on the web. While
mid-air gestures provide an intuitive way of interacting across different devices, they
have mainly been exploited when all the clients are co-located and easily accessible
[69, 12, 37]. However, users do not always carry all their devices with them [52]. For
this reason, we were interested in exploring how best to apply such gestures in remote
cases. We conducted an elicitation study that defined a set of gestures that could work
when devices are not physically near to the user. The study gave us the chance to
understand how users mentally associate mid-air gestures to devices that are not co-
located. Moreover, the study results and the user feedback on our scenario, informed
the implementation of the proposed gestures of MyoShare, a system that allows users
to share data across devices via mid-air gestures. With our system, users can select an
element they would like to share from their mobile device or desktop computer and then
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send it by performing a mid-air gesture. Gestures are detected via the Myo armband13

As can be seen in Figure 1.3, the interaction performed will infer the right receiver
of the message. In this case a wave-in interaction will send the data to the smartphone
of the user, while a wave-out to their secondary sets of devices such as a laptop and a
tablet. Meanwhile, a finger spread will broadcast the data selected to all the registered
devices.

Via its Chrome extension, MyoShare is also capable of understanding the nature of
the selected web content. If the user selects a phone number and then shares it, it can be
accessed and manipulated on the target device via an Android application. By clicking
on the item, the system will automatically copy the number in the phone dialogue of
the device. Similarly, if users share plain text, it can be copied to the clipboard, while
if images or videos are sent, they can be saved in the gallery.

With MyoShare, we were also able to compare different interaction techniques for
the scenario we envisioned via a user study that represents the seventh and last
contribution of this thesis. As result, we found that mid-air gestures are as fast as
other more common interaction techniques (shortcuts and UI menus) and users enjoyed
experimenting with these gestures to send data across devices. The elicitation and user
study gave us the chance to address RQ2 when mid-air gestures are used in cross-device
scenarios.

Thanks to these works, we were able to experiment with a number of single and
cross-device web applications that could benefit from alternative interactions such as
tilting or mid-air gestures. In this thesis, we will present applications for each of the
proposed contributions. We will also report on a variety of users and developer studies
that have been carried out to evaluate the power of the proposed approaches also when
compared to more classic interactions.

The research methodology of this thesis follows the DSRM process model studied
by Peffers et al. [170]. After defining the problems, motivations and goals for each
contribution proposed, we design and developed artefacts to demonstrate and evaluate
our suggested approaches.

1.4 Thesis Overview

The thesis is organised as follows: Chapter 2 discusses related work, as well as current
applications that exploit the use of tilting and mid-air gestures. We analyse gaps found
in the literature as well as gathering knowledge from previous research on the use of
alternative forms of interaction to list possible requirements for our frameworks, tools
and applications.

In Chapter 3, we discuss our proposed solutions for single device scenarios. Tilt-
and-Tap, its extended version TAT 2.0 and WP-TAT are presented. The architecture
and implementation details of the proposed approaches will be discussed together with
a number of applications built using these frameworks and tools. Developer and user
studies are also presented along with related discussions including possible future im-
provements. We also discuss compatibilities and performance issues related to tilting
interactions on web applications. Moreover, inferred by user feedback as well as our

13Myo website: https://www.myo.com. Accessed on December 2017.
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experience in the topic, a list of guidelines on how and where to apply tilting gestures
is presented at the end of the chapter.

Chapter 4 moves beyond single device scenarios where CTAT is presented along with
details of its architecture and implementation as well as its supported APIs. Showcase
applications built with CTAT as well as two user studies are reported: one with the
aim of gathering general feedback on the approach when multiple users perform tilting
interactions in cross-device applications, and another to compare different motion ges-
tures for interacting with a public screen. Moreover, we will discuss the visual tool to
generate CTAT instances.

MyoShare is presented in Chapter 5. We report on our envisioned scenario on sharing
data via mid-air gestures as well as discussing our proposed solution. We present the
elicitation study conducted to explore possible mid-air gestures to share data across co-
located and remote devices. Together with the general architecture and implementation
of MyoShare, we also report on the user studies conducted to evaluate mid-air gestures
in our cross-device scenario.

Finally, in Chapter 6, we conclude the thesis with a discussion on the contributions
that outlines limitations of our approaches as well as possible future work.





2
Background

The research community has explored intensely the use of alternative interaction tech-
niques on mobile devices. However, despite the current possibilities available on mobile
web browsers, these alternative gestures have yet to be deeply exploited on the web in
both single and cross-device scenarios. In Section 2.1, we first analyse the state of the
art of single and cross device web applications, their evolution over the past decade as
well as discussing the challenges that arise when adding new forms of interaction. It is
important to note that, in this thesis, we focus on mobile web applications rather than
web applications in general. In contrast, in Section 2.2, we present gestures suggested
by researchers that go beyond the classic set of touch gestures in mobile applications.
Following that, we discuss cross device applications in more detail in Section 2.3 by
describing their potential in everyday scenarios. In this part, we focus on related work
that studies interactions in applications that run across multiple devices. Finally, we
outline gaps found in the works presented and discuss conclusions in Section 2.4.

2.1 Mobile Web Applications

In recent years, many developers have opted to build mobile web applications for their
IT solution. However, the primary form of interaction available on mobile browsers relies
only on touch gestures. One of the reasons could be related to the difficulty of extending
the set of possible interactions on the web for both single and cross-device scenarios.
We decided to investigate how both developers and end-users could be encouraged to
experiment with alternative interaction modalities. With the support of visual tools
and frameworks, we help users in exploring a broader set of forms of interaction on their
websites. Given the increasing popularity of cross-device applications [13, 52, 80], we
also explored alternative interactions when more heterogeneous devices are involved in
the communication. We start by discussing why building mobile web apps as opposed
to native applications can be beneficial in Section 2.1.1. Then in Section 2.1.2, we
study how developers and end-users can currently build their web applications and

13
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what challenges they have to face when adding new interaction techniques on the web.
In this thesis we use the terms website and web application (also called web apps)

as synonymous to refer to IT solutions can be accessed from browsers. While no formal
definition differentiates the two terms clearly, most IT professionals see a difference
between websites and web apps. Overall, websites can be seen as more informational-
based web pages while web applications as more complex IT solutions that usually
involve more interactions from the users. A typical example is a portfolio website of a
freelancer in contrast to an e-commerce application such as Amazon1. The first website
is mainly used to gather information, in contrast, the second allows the users to do
more complex operations and actively participate in the interaction. On the other
hand, this definition is limited and can fail to differentiate more borderline cases such
as news websites, where the interaction from there is not much interaction from the
user however, the architecture behind the scene might be complex. While we recognise
the difference between websites and web apps, as mentioned above, we use both terms
as synonymous.

2.1.1 Native versus Web Apps

Currently, there are 2.8 and 2.2 million apps on the Android and iOS stores respect-
ively2. On a monthly basis, more than 60 thousand apps are added to the Google App
Store alone3. Given these numbers, it is clear that there is an app for almost everything:
from entertainment and e-commerce applications to social media and beer simulators4.

Currently, mobile native applications are winning against web solutions. The
majority of digital media access is performed on apps rather than browsers. On the
other hand, users do not like to download new apps, and if they do, they tend to use
only a small subset of the ones available on their device5. On average, users install from
60 to 90 apps on their smartphones but use only nine on a daily basis. Moreover, among
these nine applications around five are usually already pre-installed on the device. Users
feel overwhelmed by apps and the term App Fatigue became popular in the IT sector.
If users do not quickly see value in an app, they will easily forget about it. In such
an environment, developing a native app for an IT solution is not always the best
alternative.

Browsers, such as Safari or Chrome, are one of the five applications already used
on a daily basis. They are pre-installed on mobile devices, and therefore, they can
be easily accessed. From the perspective of developers, building web applications is
particularly beneficial since developers are not required to rebuild their IT solution for
each platform. A web application has the potential to work on different combinations
of devices and operating systems. For all these reasons, implementing a web solution
as opposed to a native app is becoming increasingly popular among developers.

Initially, hybrid mobile apps were proposed as a good compromise between the
cross-platform compatibility features of web applications and the visibility offered by
app stores. These applications are usually built using web technologies, such as HTML,

1Amazon website: https://www.amazon.com. Accessed on April 2018.
2Number of apps available (2017): https://goo.gl/tCnPXW. Accessed on March 2018.
3App Stores Start to Mature (2016): https://goo.gl/UCBBkv. Accessed on March 2018.
4iBeer: https://goo.gl/1LTIlz. Accessed on March 2018.
5Countries Leading in App Usage (2017): https://goo.gl/6GntlC. Accessed on March 2018.
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CSS and JavaScript, but they are later incorporated in Web Views: browsers wrapped in
native apps. Similarly, tools such as Apache Cordova6 and PhoneGap7 allow developers
to build native apps using only web technologies. In this way, developers do not need
to implement their solution for all platforms, but they can build their application only
once thereby reducing costs and time. While this solution offered several advantages,
performance issues, as well as a number of other drawbacks, required a new set of
smarter applications, namely Progressive Web Apps (PWA)8. PWAs offer the same
features of common apps but they can be browsed as websites and do not need to be
downloaded from the store.

Frances Berriman and Alex Russel proposed this new set of applications as a possible
alternative to hybrid solutions. PWAs are not available through app stores, but once
visited from the browser, they can be added to the home screen app or app launcher.
Thanks to features newly added to most common browsers, Progressive Web Apps can
support app-like functionality while preserving the advantages that the web offers. In
fact, web applications can now push notifications, run in full-screen mode as well as be
added to the home screen of the device (see Figure 2.1).

Berriman and Russel also defined a set of attributes of this new class of web applic-
ations. Among those, we have responsiveness, connectivity independent and linkable.
Progressive Web Apps should adapt to the screen real estate of the client. Thanks to
caching, they should be accessible if offline and finally, they should be easily shared via
URLs while avoiding the additional overhead of being installed from stores.

Overall, Progressive Web Apps are faster and lighter than native apps; always up
to date, they can work offline and on different platforms and finally, they are easy
to be accessed and distributed. These features could drastically increase the overall
engagement of users on a website. For instance, Twitter Lite is a successful example of
a Progressive Web App. In their PWA solution, Twitter found a 75% increase of tweets
sent by users, while requiring less than 3% of storage space than its native solution9.
Similarly, the global media company Forbes10 was able to double the time that users
spend on average on their website thanks to a Progressive Web App11. Also eCommerce
websites, such as AliExpress12 and 5miles13 are experiencing improvements with PWA
solutions.

In cross-device scenarios when different and heterogeneous devices are used sim-
ultaneously, the multi-platform capability of web applications plays a key role [97]. A
native solution requires the developer to first build an app for each possible platform
and then, secondly, allow the communication among them. Since these platforms can
differ significantly, building a native solution for cross-device scenarios can be particu-
larly challenging. A web application can overcome these issues. As a consequence, PWA
solutions and web applications in general, represent a good alternative to native apps
from both user and developer perspectives for single as well as cross-device scenarios.

6Cordova website: https://cordova.apache.org. Accessed on March 2018.
7PhoneGap website: https://phonegap.com. Accessed on March 2018.
8Progressive Web Apps (2015): https://goo.gl/KIZydg. Accessed on March 2018.
9Twitter Lite PWA improvements: https://goo.gl/iRWyWu. Accessed on March 2018.

10Forbes website: https://www.forbes.com. Accessed on March 2018.
11Forbes PWA solution improvements: https://goo.gl/BcOjPg. Accessed on March 2018.
12AliExpress website: https://www.aliexpress.com. Accessed on March 2018.
135miles website: https://www.5miles.com. Accessed on March 2018
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Buy milk!

todo todo

todo

Buy milk!

Figure 2.1: Example of a Progressive Web App for a to-do list scenario. Although the
application is developed with web technologies, once added on the home screen the user
can browse the app among all open applications and it will be displayed in a full-screen
mode.

2.1.2 Development Tools

To better support developers and end-users, both researchers, and IT companies, have
proposed a number of systems to facilitate the creation of web applications. IDEs and
frameworks can improve the productivity of developers while allowing high-level APIs
to experiment with new technologies. On the other hand, end-user development tools
(EUD) can allow users to create their website without requiring any particular technical
skill [128]. With the increased popularity of cross-device applications, researchers have
also proposed frameworks and EUD systems to speed up the development process and
make ubiquitous scenarios more prominent. Despite this growth of tools, the develop-
ment of web applications still raises many challenges, especially when experimenting
with alternative forms of interaction. In this section, we discuss these challenges while
presenting systems that support the development of single and cross-device web ap-
plications. We start our discussion by first analysing frameworks and tools that target
developers; before giving an outline of GUI and EUD systems for end-users.

Tools for Developers

From the developer perspective, most common browsers such as Chrome, Firefox and
Safari have been extended with developer tools to inspect the DOM, run code in the
console and simulate the responsiveness of a website (see Figure 2.2).

Media queries help developers to build responsive web applications. They allow
the definition of styles depending on a boolean condition. Often, media queries are
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Figure 2.2: Screenshot of the Google Chrome development tools.

used to define breakpoints on the width of the client and therefore, arrange the layout
of the web page depending on the size of the device displaying the content. Recently,
responsiveness was made even easier with the advent of Flexbox14, the new layout mode
available with CSS3. The overall goal of Flexbox is to improve the alignment of items on
the page, their order and directions depending on the dimension of the viewport of the
client. At the same time, developers now have also access to a multitude of frameworks
to build their mobile-friendly web solutions. A typical example is Bootstrap15, a front-
end library built in CSS and JavaScript that can provide a good starting point for
developers building a responsive web application.

Furthermore, editors have also been extended to improve productivity. IDEs such
as Brackets16, allow developers to push changes on the browser without refreshing the
corresponding page; they also incorporate version control systems such as GitHub17.
In literature, researchers have improved IDEs to open documentation pages, or code
examples found online [190, 141, 126]. The goal of these projects is to avoid the back-
and-forth between browsers and editors that usually developers do when building ap-
plications.

Despite the number of tools and frameworks available, building a web application is
not free from issues. A significant issue concerns cross-browser incompatibilities.
While many features have been added natively on most browsers, they are not all
implemented in the same way by different platforms, or are only partially supported

14CSS Flexbox: https://goo.gl/VyX92u. Accessed on March 2018.
15Bootstrap website:https://getbootstrap.com. Accessed on March 2018.
16Brackets website:http://brackets.io. Accessed on March 2018.
17GitHub website:https://github.com. Accessed on March 2018.
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[144]. As an example, Flexbox itself is not yet fully available for Internet Explorer18.
Similarly, many media query conditions are not yet allowed by all browsers. The query
@media (pointer: type ) used to specify the presence and accuracy of the pointer
of the device, it is not yet supported by Internet Explorer, Firefox and Opera19. Many
other features are partially developed or in conflict with other implementations.

Concerning interaction techniques, cross browsers compatibility problems are
even more drastic. Although touch is the primary form of interaction on mobile devices,
browsers have different implementations of its event listener functions. For example,
Internet Explorer employs Pointer Events instead of touch events and Edge requires
developers to enable touch events by using a specific flag20. Moreover, some browsers
are now improving performance over touch scroll events with passive event listeners.
However, these changes were not made backwards compatible, causing problems with
old websites21.

Furthermore, motion events also suffer from browser compatibility problems. In
detail, DeviceOrientationChange and DeviceMotionChange both return, the three
absolute orientation angles (alpha, beta and gamma), and the acceleration of the device.
With these raw data values, developers can experiment with motion interactions and
allow users to perform gestures by simply moving their device. However, the only
browser that fully supports them is Edge22. In the other browsers, the two events
give different outputs. For example, the range of the orientation angles are treated
differently on iOS and Android platforms. In browsers that run on iOS devices, the
beta angle ranges from -180 to 180 degrees, while on Android it ranges from -90 to 90.
In contrast, the alpha angle ranges from -180 to 180 on Android and -90 to 90 on iOS.
Many other differences can be found among browsers and platforms. While developer
tools to test and debug responsiveness are generally available on most browsers such
as Chrome and Safari, they do not offer tools to check orientation events. In contrast,
this feature is available for the development of native apps such as in Android Studio
(see Figure 2.3).

To help developers deal with compatibility issues, researchers have proposed IDE
extensions that check if the code will work among browsers and to which extent [144].
jQuery or JavaScript frameworks such as jQMultiTouch [151], Hammer.js23 and jQuery-
Mobile24, also help the developer to use touch and multi-touch interactions without
having to deal with implementation differences among browsers. Other plugins, such
as Gyro.js25, also support developers in dealing with browsers differences for motion
events. However, while Hammer.js and jQueryMobile support high-level APIs for touch
gestures, frameworks for motion events do not offer gestures but rather return raw data
more consistently. Developers therefore are responsible for using the events fired by the
sensors to implement motion interactions by themselves.

We also note that researchers have proposed systems for detecting compatibility is-

18Can I Use Flexbox: https://caniuse.com/#feat=flexbox. Accessed on March 2018.
19Can I Use @media pointer: https://caniuse.com/#search=pointer. Accessed on March 2018.
20Can I Use touch events: https://caniuse.com/#search=touch. Accessed on March 2018.
21Forum discussions on passive scroll events: https://goo.gl/kts9yT. Accessed on March 2018.
22Can I Use orientation: https://caniuse.com/#search=orientation. Accessed on March 2018.
23Hammer.js website: https://hammerjs.github.io. Accessed on March 2018.
24jQuery mobile website: https://jquerymobile.com. Accessed on March 2018.
25Gyro.js website: https://goo.gl/GW6ncB. Accessed on March 2018.
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Figure 2.3: Screenshot of the orientation tools in Android Studio.

sues by comparing either the DOM of the page or how they visually appear on different
browsers [184, 41, 42]. Similarly, BrowserStack26 and Browsera27 are commercial ser-
vices that run the web applications on different combinations of browsers, devices and
platforms to see if there are any differences in the appearance of the page. However, it is
clear that these tools cannot easily check differences in the interaction techniques sup-
ported by the device. Instead, systems such as Selenium28 allow the record and replay
of mouse, keyboard and touch events for testing purposes. Hesenius et al. [89] go a step
further and allow the automation of events on mobile devices for complex high-level
touch gestures for native apps. For motion interactions, Hartmann et al. [84] propose a
system that enables the authoring of motion gestures by demonstration. With Exem-
plar, developers can demonstrate the gesture by first performing it and then editing the
resulting raw data from the sensor via a visual tool. Finally, the user can repeat the

26BrowserStack website: https://www.browserstack.com. Accessed on March 2018.
27Browsera website:http://www.browsera.com. Accessed on March 2018.
28Selenium website: https://www.seleniumhq.org. Accessed on March 2018.
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action to test the gesture performed. While Exemplar could help developers in building
tilting interactions, they are still required to work in a low-level fashion by studying
raw data fired by the sensor.

On the web, researchers have also promoted model-driven approachesfor sup-
porting the development of web applications [65, 1, 32]. With model-driven techniques,
developers define the model underneath the application and, from this model, the sys-
tems will automatically generate the websites. For instance, with WebRatio29, users can
define data using the entity-relationship model and define the functional requirements
of their web application with WebML [32], a specific graphical language, is used to
define the functional requirements of their web application. Model-driven approaches
have also been extended to work on smaller devices and support responsive web design
[33]. Although the research community has spent a lot of effort in developing and
studying model-driven approaches, they did not become widely used among developers.
Moreover, this technique also fails in addressing alternative forms of interactions on the
web.

For cross-device web applications, technologies such as Socket.IO30 allow de-
velopers to create real-time bi-directional communications among clients and a server
using JavaScript. In contrast, technologies such as Peer.js31 allow peer-to-peer con-
nections among clients without the need of a central server with the goal of reducing
latency. While building cross-device applications on the web can solve interoperability
problems and easily allow developers to experiment on a large combination of platforms
and devices, cross-device applications present additional challenges that are not present
in single device web solutions [61]. For these reasons, researchers have proposed APIs
and tools to improve all phases of the development process [100, 193, 13].

For instance, XD-MVC offers a set of APIs for easily sharing messages among cli-
ents easily [100]. XD-MVC includes a Node.js32 server and uses Socket.IO to allow
a client-server architecture and Peer.js to support, peer-to-peer communications when
available. Without the guidance of XD-MVC, developers would be required to manage
synchronisation, device pairing and device identification issues manually. In XD-MVC
the state is kept in sync by updating the view of each client only when the model is
changed. Devices can start communication with other clients by different supported
pairing techniques, such as typing URLs or using QR codes. Moreover, developers can
easily identify clients by an ID generated at the moment of the first connection.

Another critical aspect in cross-device applications is the adaptation of UI ele-
ments to clients. Researchers have studied different mechanism for deciding how to
organise the UI in cross-device applications and therefore help developers in making
these decisions. Some approaches require the assignment of roles to each device and
arrange elements depending on this factor [70, 100, 97]. For instance, if a client was
defined as the controller of the communication it will have additional UI elements to,
for example, play the next video, or show the next picture, as well as add new devices
to the communication. Alternatively, Part et al. [167] solve the assignment of elements
to devices as an optimisation problem. Their system takes into consideration roles,
user preferences and device characteristics (e.g. an element that requires text input

29WebRatio website: https://www.webratio.com/. Accessed on March 2018.
30Socket.IO website: https://socket.io. Accessed on March 2018.
31Peer.js website: http://peerjs.com. Accessed on March 2018.
32Node.js website: https://nodejs.org. Accessed on March 2018.
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will be likely assigned to a device with a physical or software keyboard) to dynamically
adapt content on different devices. Developers can change parameters of each element
by using an IDE extension called AdaM.

Similarly to responsive design, these approaches support developers in how to best
organise visual elements on different devices. However, they do not consider user inter-
actions. Building gestures for single device web applications can be challenging, and, in
cross-device scenarios, these issues became particularly problematic since interactions
have to be managed, sent and received on a multitude of heterogeneous devices. To
avoid these problems, researchers have built frameworks and visual tools to support
the rapid development of cross-device interaction techniques [39, 16, 131, 196].
Chi et al. proposed Weave [39], a set of high-level web APIs to support touch and
rotation events across devices. Via an authoring environment, developers can also eas-
ily edit, test and debug interactions and their outcomes on smartphones, tablets or
smartwatches. Similarly, ATREUS offers APIs for touch and rotation events fired by
handheld devices [16]. With ATREUS and Weave, developers do not need to manage
the interactions on each device and then send data to the desired targets. The frame-
works will be responsible for the recognition of the gestures as well as identifying the
sender and receivers of the interactions. Although these works were of great inspiration,
they do not offer a wide variety of tilting gestures or other forms of interaction.

Tools for End-users

In 2006, Lieberman et al. [128] stated that over the years, the goal of interaction systems
would move from making systems easy to use to making systems easy to develop by
end-users. To tackle this topic, authors suggested a new multidisciplinary paradigm
called end-user development (EUD) and defined it as follows:

“EUD can be defined as a set of methods, techniques, and tools that al-
low users of software systems, who are acting as non-professional software
developers, at some point to create, modify, or extend a software artifact”.

On the web, researchers have promoted mashups as a possible way of developing
web applications without coding [224, 20, 2]. A web mashup is a web application
generated by mixing and mashing UI elements, layouts, content or functionality of
different web sources. A famous example of a mashup tool was Yahoo Pipes, a system
that allowed end-users to aggregate and filter web feeds (pipes) and web pages via a
user interface. For instance, users could create feeds on a specific argument such as
tech news, sports or photography from a number of different websites that would act
as the input of the aggregated web application. Yahoo Pipes was powerful and could
be used for different purposes; however it still required some technical knowledge from
the users. For this reasons, researchers have also experimented with more direct ways
of manipulating and generating websites [74, 85]. Ghiani et al. [74] allow users to mix
mashup components from arbitrary websites by direct GUI manipulations. Similarly,
Hartmann et al. [85] proposed d.mix to support users to design by examples. The tool
allows users to browse websites and select elements to sample that can later be edited
and mixed with components gathered from other web applications.

Despite the fact that these methods can potentially allow a larger number of non-
technical users to create their web applications, mashups had limited success over the
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Figure 2.4: Screenshots of the WordPress Dashboard. On the left its main page where
users can access posts, pages, plugins and also pick the desired themes. By clicking
on the customise option in the appearance section, the page on the left will be shown.
From here, users can change styling as the colour and picture of the background as well
as modifying menus.

years. Nowadays, the vast majority of practitioners, as well as professionals, prefer to
use content management system (CMS) platforms such as WordPress33 to develop
their websites. Currently, 30.2% of the top 10 million websites are developed using
WordPress34. Overall, the latest version of WordPress was downloaded over 57 million
times from wordpress.org35 and many important companies, such as The New Yorker36,
Sony37 and TechCrunch38 have decided to build their websites on top of the CMS.

With WordPress, users can download and dynamically customise crowdsourced
themes to meet their needs. A theme defines the look and feel of the web application,
and it also allows users to customise its features via the dashboard, an administration
visual interface available for any WordPress web application (see Figure 2.4). By de-
fault, most themes are responsive and adapt to the screen real estate of clients. Via
plugins, users can further extend their web applications by adding functionality that
is not already built into the theme. Users can currently download more than 54 thou-
sands plugins available from the WordPress official page39. As found by a survey on
web development practices that we carried out in our group [160], many developers
that work with CMSs have little or no formal computer science education and are self-

33WordPress website: https://wordpress.org. Accessed on March 2018.
34W3C Technology survey: https://w3techs.com. Accessed on March 2018.
35WordPress Counter: https://wordpress.org/download/counter. Accessed on March 2018.
36The New Yorker website: https://www.newyorker.com. Accessed on March 2018.
37Sony music website: https://www.sonymusic.com. Accessed on March 2018.
38TechCrunch website: https://techcrunch.com. Accessed on March 2018.
39WordPress plugins repository: https://wordpress.org/plugins. Accessed on March 2018.
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employed or work in small organisations. For these reasons, the flexibility and usability
of systems like WordPress meet users needs. Given the popularity of WordPress, we
developed a tool for the rapid development of web applications on top of the CMS
platform [161, 51]. More in detail, the tool allows users to mix and match layout and
functionality components of WordPress themes.

Recently, systems like Wix40, Weebly41 and Squarespace42 have appeared and are
now heavily advertised online. These tools allow users to create and customise their
websites by editing or moving visual elements via drag and drop interactions.

Despite the fact that systems such as WordPress and Wix allow non-expert users
to easily develop websites, they mainly focus on the layout and styling of web pages.
The adaptation of web applications on phones or tablets strictly relies on the visual
adaptation of content rather than its modes of interaction. Moreover, building a web
application via tools such as WordPress and Wix can still be challenging for end-users.
There is a trade-off between the amount of customisation possible on a theme and the
complexity of applying them. While setting up a generic website is usually straight-
forward, personalizing content and adding additional features often requires the user
to perform more complex and repetotove operations. For example, websites such as
ThemeForest43, allow users to buy and download thousands of highly customisable
WordPress themes. Although these are advertised as easy to use, these themes have
steep learning curve and they hard to personalise by users that have little or no tech-
nical knowledge of web development. Paradoxically, themes from ThemeForest can be
more useful for developers to quickly build web applications for external clients rather
than used by clients themselves.

On cross-device web applications, researchers have presented tools to support
end-users in distributing user interfaces among different devices [46, 118, 154]. With
XD-Studio, Nebeling et al. [154] present a GUI builder to support the development of
cross-device web applications. Users can assign UI elements of an existing website to
different profiles by drag and drop operations. Profiles can be defined depending on the
device types and user roles. For example, in a meeting room scenario, users can split
the user interfaces to give different information and controls to devices present in the
room. A big screen will project the current slides, the audience can ask questions from
their mobile device, and the presenters can control the slides and see questions from
their phones.

Researchers have also applied mashup concept for the rapid design and develop-
ment of cross-device applications [118, 101]. With MultiMasher, Husmann et al. [101]
present a visual tool that allows the reuse of existing web applications and direct GUI
manipulation to create a final mashup of web solution that runs and can be controlled
across multiple devices. We also note, that the pipeline concepts has also been used for
the rapid design of cross-device interactions [117]. Squidy offers a visual tool for
the rapid design of interactions from heterogeneous devices such as touch, multi-touch,
pens and laser point inputs. Also in this context, the tools available are usually limited
and do not offer a broader set of motion interactions.

40Wix website: http://www.wix.com. Accessed on March 2018.
41Weebly website:http://www.weebly.com. Accessed on March 2018.
42Squarespace website: https://www.squarespace.com. Accessed on March 2018.
43ThemeForest website: https://themeforest.net. Accessed on April 2018.
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2.2 Beyond Mobile Touch Interactions

Many researchers have studied ways of exploiting the hardware sensors integrated in
mobile devices to go beyond simple touch-based interaction and enlarge the set of
possible gestures on phones and tablets. With the same goals, researchers have also
explored the use of wearable devices, such as wristwatches or armbands to interact with
a smartphone. In this section, we give an overview of alternative means of interaction
while comparing them to touch gestures. Given their advantages, we focus on two main
forms of gestures: motion and mid-air interactions. We categorise motion gestures as
interactions detected by the movement of devices such as phones or tablets and usually
recognised by accelerometers and gyroscope sensors.

It is important to note that we use the terms motion and tilting gestures as syn-
onymous to refer to interactions characterised by the orientation and speed of a device.
Similarly, to avoid repetitions, the terms interaction and gesture are often used as
interchangeable terms.

In Section 2.2.1, we present such interactions by discussing the most relevant works
studied in research. We define mid-air interactions as gestures performed with the user’s
fingers, hands or arm in front of a camera or detected by a wearable device worn by
the user. We discuss these gestures in Section 2.2.2.

2.2.1 Motion Gestures

Motion sensors on mobile devices have commonly been used to recognise if the device
was in landscape or portrait mode to adapt the content displayed on the screen accord-
ingly [93]. While it is easier to interact with a smartphone in portrait mode, holding the
devices in landscape offers a better user experience when viewing movies or pictures.
Although these adaptations might be one of the many reasons why the first iPhone
became so popular, the potential of these sensors goes beyond the recognition of these
two states.

Motion sensors, such as accelerometers and gyroscopes, measure the acceleration
and rotational forces along the three-dimensional axes. When integrated into a mobile
device, such as smartphones or tablets, they allow the recognition of the current ori-
entation of the device as well as its applied acceleration (see Figure 2.5). Given these
features, researchers and, more generally, developers have used motion sensors for a
wide variety of scenarios on mobile devices.

For instance, we can find applications of this technology in many fields such as
activity recognition systems, digital forensic investigations and interaction techniques.
By studying the output of these sensors, we can infer the context of a device. Also
in combination with GPS data, researchers have been to detect the current mode of
transportation of users e.g., cars, buses or trains [88], if they are writing on a keyboard
near to the device [134] or if they are running or walking [17, 25, 125]. Fit applications,
such as FitBit44 or Runnastic45, exploit these sensors to better guide the users when
doing physical activities. In a digital investigation, these contexts can be used to show
evidence of a crime [145].

44FitBit website: https://www.fitbit.com. Accessed on February 2018.
45Runnastic website: https://www.runtastic.com. Accessed on February 2018.
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Y - roll

Z - yaw

X - pitch

Figure 2.5: A mobile device in correspondence to the three-dimensional axis.

Accelerometer and gyroscope sensors have also been studied as an alternative way of
interacting with mobile devices. Thanks to motion gestures, users can perform actions
on a phone by simply moving it in some direction. In the last two decades, tilting
interactions found popularity in the research community for the number of advantages
they can offer. Given their nature, they are eyes-free one-hand gestures [15, 163, 156].
Moreover, users can easily move their device without changing the position of the hand
holding the phone. These interactions can also provide an intuitive alternative when
touch is not feasible due to gloves or dirty fingers [15, 18]. Furthermore, in contrast with
touch, users can interact with the phone by means of tilting gesture without occluding
the screen [221, 96].

In 1996, eleven years before the advent of the first iPhone, Rekimoto [179] was
one of the first to suggest the use of motion gestures to improve the usability of PDA46

(Personal Digital Assistant) phones, the ancestor of the mobile devices we use every day.
In his prototype, he attached position and orientation sensors and two physical buttons
to a small LCD screen to simulate a handheld device. He applied tilting interactions to
navigate cylindrical or pie menus, a map and a 3D object. In the menu applications,
users could start selecting items by first pressing the button on the top of the screen
and then moving the device on the horizontal axis. When the desired item was in the
centre of the screen, users could depress the button to select it. Similarly, by moving
the device vertically or horizontally, users could browse a map or a 3D object.

Rekimoto also stated that several alternative designs could be proposed for each of
the scenarios that he presented. With alternative implementations of tilting interac-
tions in the same scenario offering different user experiences. Inspired by these first
experiments with tilting gestures, and its many research possibilities, researchers have
further explored the use of motion gestures on mobile devices.

By studying related works, we found that the most popular types of motion gestures
are jerk and continuous interactions (see Figure 2.6). Jerk tilting gestures are fast
movements of the device in some direction [15, 217, 186]. Continuous interactions, as
studied by Rekimoto [179], allow users to, for example, scroll a list of items by slowly
moving their phone [179, 40, 212].

46The history of Personal Digital Assistants: https://goo.gl/Le3dWJ. Accessed on February 2018.
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Figure 2.6: Abstract representation of jerk and continuous tilting gestures. By means
of jerk interactions, users quickly tilt the device in some direction (to the left in figure)
to perform the gesture. Instead, with continuous tilting interactions, the position of a
pointer on the device (a blue circle in figure) can be controlled by continuously moving
the device.

With JerkTilts, Baglioni et al. [15] propose new motion gestures that allow the user
to interact with the device by quickly moving it back and forth on the pitch and roll
axes. For example, the user can raise the volume of the device by tilting it up and then
down, or stop playing the current song by performing a tilt to the left and then to the
right. As stated by the authors, a positive characteristic of these gestures is the fact
that they rely on the natural elasticity of the wrist. When the user tilts the device in
some direction, a “recoil” factor will make the user perform a motion interaction in the
opposite direction [79]. After a number of lab experiments, Baglioni et al. [15] concluded
that their implementation of jerk tilting interactions was hard to produce inadvertently
and they were as accurate as swipe gestures [15]. While jerk tilting interactions were
slightly slower than touch, the authors discuss that motion gestures will not replace
touch interactions entirely but rather enlarge the set of input capabilities of a mobile
device.

Ruiz et al. [186] also came up with a similar conclusion: motion gestures can be
used as an additional and alternative way to simplify some interactions, especially when
touch is not feasible. They made this conclusion after discussing with participants of
their elicitation study where the majority of users stated that they would like to use
motion gestures in the future at least occasionally. In their experiment, participants
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came up with a set of tilting gestures to perform a series of everyday tasks they usually
do on mobile phones. Among the gestures suggested by users, we can find many tilting
interactions similar to jerk gestures. For example, users suggested to quickly move the
phone to the right and to the left to go back to the home screen because, as stated by
one of the participants, shaking the device feels like starting over.

Despite the amount of kinetic impulse necessary to perform the gesture varying
among different works, similar implementations of jerk tilting interactions have been
used for different applications. For example, researchers used jerk tilting interactions
as an alternative way for inputing text [217].

In the TiltText project, Wigdor and Balakrishnan [217] built a low-cost tilt sensor on
the back of a Nokia 5510 to improve the overall user experience when writing messages.
As typical for mobile phones during that period, the device presented a T9 QWERTY
physical keyboard that required the user to click several times on the same key to select
a symbol. To improve the interaction, authors used the sensor built on the phone to
allow users to browse among characters by clicking on the desired key and then tilting
the device in four different directions (left, forward, right and back). A user study
conducted by authors proved that even though TiltText was more prone to errors, it
was substantially faster than tapping multiple times on the same key.

Despite the advent of more sophisticated mobile devices that are capable of detecting
touch, inserting text on phones still poses many challenges. On small phones, it is easy
to tap the wrong key or tap multiple keys at the same time, while on bigger mobile
devices or tablets, it is hard to reach symbols with one hand [221]. For these reasons,
researchers have suggested motion sensors as a good alternative. Many exploit the
use of continuous tilting gestures in combination with jerk motions, to browse and
select characters to input text [221, 212].

For example, with Rotex [212], users can rotate the device in one dimension (roll
axis) to select letters and perform various jerk gestures to insert special characters such
as a space or new line. Instead, Yeo et al. [221], extend the shaping writing technique
with tilt interactions by proposing SWiM (Shape Writing in Motion). With SWiM,
users first tap on a specific portion of the screen to active tilting gestures, then by
moving the device they draw the shape with a cursor to select characters on the soft
keyboard.

In both cases, there is a direct mapping between the orientation of the phone and
an item. In Rotex, every rotation angle of the phone corresponds to a specific letter,
while in SWiM, the angle will infer the position of the cursor on the keyboard.

In the literature, this type of continuous interaction is often referred to as position-
based solutions (see Figure 2.7). This type of gesture is not the only alternative to of
continuous tilting. Researchers have also proposed velocity-based variants [40, 205,
67]. In this case, instead of mapping a specific orientation to an item or a position of a
cursor on the screen, the velocity and angle of the device are used like a pedal of a car.
In velocity-based solutions, the more the device is tilted, the faster the system will, for
example, scroll through a list of items.

Researchers have applied both alternatives to many different applications such as
browsing a map [209, 210], selecting items in one or two-dimensional menus [205, 177,
162, 163] or moving 3 or 2D objects in games [36, 159, 75]. Position-based solutions
were overall better perceived by participants when selecting items in a menu [162, 205].
As also found by Ruiz et al. [186], a velocity-based solution could give less control and
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Figure 2.7: Abstract representation of position based continuous tilting interactions to
select an element in a menu. Every element is mapped to a specific range of orientation
angles of the device. In this case, the angle on the yaw axis will infer the item.

therefore, frustrate the user. However, given the nature of position based implement-
ations, there is a limit on the number of items that we can associate with orientation
angles.

Rahman et al. [177] found that a user can easily control a maximum of 12 levels of
pronation/supination (wrist movements on the roll axis) and 8 levels on the flexion/ex-
tension (wrist movements on the pitch axis). For these reasons, to browse a broader
set of items, position-based implementations could not be sufficient. To overcome this
problem, Cho et al. [40], proposed a more sophisticated solution for browsing a gal-
lery of pictures by means of continuous tilting interactions. In their approach, they
extended velocity-based implementations with the concept of attractors placed in the
centre of every image in the gallery. When the cursor guided by the rate of tilt of the
device reaches the centre of a picture, its velocity decreases to lower the chances of
overshooting. In fact, their approach performed better regarding the number of errors
when compared to more classical implementations of continuous tilting interactions.
However, the attractor solution was not as efficient as button interactions, where users
could browse the gallery by pressing buttons on the phone.

Despite the effort of developers, tilting interactions could still suffer from overshoot-
ing problems or from false positives. Users could involuntarily trigger gestures while
moving the device when talking or on cars or public transportation. To overcome this
problem, researchers have combined tilting interactions to touch gestures. For
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example, Hinckley and Song [92] suggest that users could zoom in and out by per-
forming a hold tap on the element and then tilting the device forward or backwards.
Similarly, users can delete pictures by a hold tap on the image and then shaking the
phone.

The combination of touch and tilting interactions affects some of the advantages
of motion gestures; users are required to interact with the touch screen directly and
therefore, occlude parts of the screen real estate. However, the gestures can still be
performed in an eyes-free manner since the touch interaction could happen everywhere
on the screen. Alternatively, input delimiter can be used to distinguish motion gestures
from random movements of the device. For example, Ruiz and Li [185] suggested a
double flip gesture (rotation of the phone on its back and then up again) to better
recognize the motion interactions that the user will then perform.

Another important role in motion interactions also relies on informing the user that
the gesture has been performed. Visual, audio and vibration feedback, or combinations
of those, can be used to confirm that the system successfully recognised the gesture.
As found by researchers [142, 93, 64], these clues are a relevant factor and can improve
the overall user experience of tilting interactions.

We also note that researchers have studied tilting gestures to better allow visually
impaired users to interact with mobile devices [58, 59, 183]. Given the eyes-free nature
of motion interactions, tilting gestures can be highly suited for disabled users when per-
forming everyday actions on phones. In a study conducted by Dim and Ren [58], blind
and blind-folded users were more efficient in making phone calls or browsing the list of
contacts with motion gestures than with traditional (physical) button interactions.

2.2.2 Mid-air Gestures

As stated by Caramiaux et al. [30], gestures are a complex notion used across different
fields. In psychology, Efron studies how speech-accompanying body movements are
influenced by the background of the user [62]. For example, in the Italian culture,
gestures are an essential extension of the language where hundreds of symbolic gestures
are commonly used during conversations [112, 173]. In HCI, Kurtenback and Hulteen
defined mid-air gesture as “a movement of the body that contains information” [123].
In this context, mid-air gestures are deliberate body interactions that can be performed
independently from speech. The overall goal of these gestures is to execute commands
on a system in a natural and unobtrusive way.

Also influenced by the studies conducted by Efron and other similar works [63, 68],
McNeil [138] proposes four categories to describe different forms of mid-air gestures for
HCI purposes: beat, deictic, iconic and metaphoric (see Figure 2.8).

Beat interactions are usually composite gestures (at least two fast repetitive move-
ments). For example as we can see from Figure 2.8, a tap of the finger up and down on
a desk is a typical beat gesture. Deictic, or pointing interactions, are gestures used to
refer to an entity such as an object the user refers to to while talking. Their meaning
can vary depending on the value of the pointed region. Iconic interactions have a close
relationship with what the user is currently saying verbally. As examined by McNeil,
the utterance “he tries going up inside the pipe [...]” can be accompanied by an iconic
gesture of the hand rising upward. Similarly as we can see from Figure 2.8, users can
express rough measurements of objects using their hand. Finally, metaphoric classes
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Figure 2.8: Examples of mid-air gestures that follow the taxonomy defined by McNeil
[138].

comprehend all those gestures that users perform when describing an abstract concept.
This category is similar to iconic interactions; however, they do not represent some-
thing concrete such as an event or an object. As represented in Figure 2.8, the V sign
of the index and middle finger can communicate the “Victory” message.

Over the years, researchers have extended or renamed McNeil classes to categorise
mid-air interactions. For example, in the literature we can find the term pantomimic
to discuss a similar form of metaphoric gesture [175, 78]. In this class, users mimic
with their body an action to perform a task such as answering a call by moving an
imaginary phone near to the ear. Furthermore, authors have often used the term
symbolic to refer to gestures that represent a symbol such as drawing a question mark
in the air [3, 213, 8]. Moreover, gestures can also be static or dynamic [110]. A static
gesture is a fixed configuration of the users’ hands, fingers or arms. For instance, poses
are a classic example of static mid-air interactions [200, 104, 201]. On the other hand,
dynamic gestures are continuous movements and they are characterised by three phases:
prestrike, stroke and poststroke [140]. Movements of the users’ hands along the vertical
or horizontal axis or drawing circles in the air, are two types of gestures that fall in this
category [147, 116, 35].



2.2. Beyond Mobile Touch Interactions 31

Social acceptability is an important point to take into consideration when using
and studying mid-air gestures. Performing new and, sometimes, extravagant gestures
in public could make the user feel uncomfortable. As found by Rico and Brewster [182],
users felt that private settings were better for performing a set of mid-air gestures pro-
posed by the authors. However, they discuss that this awkwardness could improve over
time. Some participants stated that after multiple trials, they felt more comfortable
doing the gestures because they know what to expect. Authors also found that more
subtle interactions that look or feel similar to everyday actions are more comfortable to
perform. Small movements could also avoid the problem of user fatigue [90]. Excess-
ive movements of the hands or arms could make the user easily tired and, therefore,
influence the overall experience of systems that exploit mid-air gestures.

Besides the form of the gestures, there are other dimensions with which we can
classify these interactions. Karam and Schraefel defined three other factors to categorise
mid-air as well as other HCI gestures [110]. First, how the system acts once it recognises
the interaction. Authors found that the most popular outputs in literature were audio,
visual and CPU commands. Second, the technologies that allow the detection of the
gesture. The technology can be non-perceptual or perceptual. With non-perceptual
technologies, the user needs to physically interact or wear devices or objects to input
the gesture. In the case of mid-air gestures examples of non-perceptual technologies are
wearable devices. On the other hand, perceptual technologies do not require the user
to interact with physical objects, but they can freely perform the interaction via, for
example, remote sensing or visual detection techniques. Finally, the third dimension
relies on the application domain within which users can exploit gestures. Examples are
desktop applications, mobile and pervasive approaches, games etc.

Given the focus of this section, and this thesis in general, we will mainly discuss
related works that study mid-air gestures in mobile application domains while proposing
different outputs and detection sensing techniques.

The overall goal of using mid-air gestures on mobile applications is to enlarge the
set of possible interactions of phones while avoiding occlusions caused by the fingers
touching the screen [104, 120, 149]. In the next two sections, we discuss works that
exploit perceptual and non-perceptual technologies for mobile interaction purposes.

Perceptual Technologies

Many researchers have used image recognition systems to detect movements of a users’
hands or fingers. Some have used external cameras to detect mid-air gestures. In
these works, users do not directly interact with additional hardware such as pens or
wearables, but the recognition is performed thanks to special cameras able to detect the
users’ gestures [10, 200, 87]. With AirPanes, Hasan et al. [87], allow users to perform
two-handed interactions to browse a large data set of information. For example, users
can select items displayed on the phone by moving and pointing their fingers in a 3D
area near to the device. To better detect the interaction performed, authors exploit
the use of eight tracking cameras built in the room and markers on the phone and the
users’ fingers.

To achieve a more compact solution, researchers have built additional cameras dir-
ectly on the handheld device [158, 120] and some suggested the use of the Leap Motion
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Figure 2.9: Pohl and Rohs envisioned mobile device [174]. The smartphone is equipped
with infrared cameras on its later sides to allow around device interactions. In the
example, users can play the Arcanoid game with their hand.

controller47 to detect mid-air gestures and, therefore, allow the user to interact with a
mobile device [10, 174, 115]. The Leap Motion is a small rectangular device capable
of detecting a users’ hands and fingers in an area of 80cm. Two cameras and three
infrared LEDs make the recognition possible. To achieve a more compact solution,
researchers have built additional cameras directly on the handheld device [158, 120]
and some suggested the use of the Leap Motion controller48 to detect mid-air gestures
and, therefore, allow the user to interact with a mobile device [10, 174, 115]. The Leap
Motion is a small rectangular device capable of detecting users’ hands and fingers in an
area of 80cm. Two cameras and three infrared LEDs make the recognition possible.

In 2014, Pohl and Rohs [174] envisioned a future mobile device that will include
depth cameras, such as the Leap Motion, on both sides of the device. This futuristic
device will allow the recognition of objects or a users’ hands around the phone enabling
alternative interactions. For example, they suggested games as a possible application
where users can control characters by moving their hands near the device. In Figure 2.9,
we can see the user controlling the rectangular figure of Arcanoid49 to shoot bricks.
While mobile devices do not yet support these additional sensors, researchers have
used the Leap motion for other mobile scenarios such as augmented reality [115] and
supporting interactions in cars [10].

Researchers have also exploited the camera already built in the phone to capture in-
air gestures [223, 200]. For example, Song et al. [200] proposed a novel machine learning

47Leap motion website: https://www.leapmotion.com. Accessed on February 2018.
48Leap motion website: https://www.leapmotion.com. Accessed on February 2018.
49Web solution for the Arcanoid game: https://goo.gl/X94cqJ. Accessed on April 2018.
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algorithm to detect around-device interactions. With their approach, users can perform
static pose gestures in sight of the frontal camera of the phone to browse and zoom
a document, browse a map or play games. Similarly, Yousefi et al. [223], detect hand
gestures via the camera of the phone to interact with 3D objects for augmented reality
purposes.

Alternatively to systems that use image recognition, researchers have proposed the
use of additional sensors [119] or sonars [149] to detect mid-air interactions. Kratz
and Rohs [119] extended a mobile device with six distance sensors to recognise a set of
gestures. For example, users can sweep their palms or hand-edge to the right or to the
left to browse and select colours in the palette. With FingerIO, Nandakumar et al. [149],
used inaudible sound signals played by the mobile device to track the movement of the
users’ finger. Among all the applications possible with the system, FingerIO allows
users to write text on any surface or interact with the phone even when in a pocket.

Non-perceptual Technologies

Jones et al. [107] found that enlarging the mobile-interaction area can be particularly
useful for performing tasks. However, using perceptual technologies to achieve this
goal can be challenging. This approach requires the user to know the zone where the
gesture has to be performed and force the interaction in a specific area that is not clearly
delimited by any visual cue. On the other hand, by using external physical devices we
can diminish this problem.

Researchers have proposed a number of non-perceptual technologies that allow the
users to perform mid-air gestures. For mobile interactions, much attention has been paid
to wearable devices such as rings [113, 222, 34] and arm or wristbands [169, 114, 86, 181].
Despite the fact that most of these works do not require the user to physically touch
the wearable device, they have to be worn and, therefore, can be categorised as non-
perceptual technologies.

In such contexts, an important factor is the wearability of these smart devices,
meaning how users find them in terms of socially acceptability and whether they would
wear them in their everyday life [27]. A wearable device has to be fashionable to be
accepted and worn by users. For example, as discussed by Martin [135], smartwatch
wearability can be determined not only by its size and weight but also by its form factor.
Overall, a nice ring or a trendy smartwatch will be accepted more easily by people.

On this matter, Chan et al. [34] propose CyclopsRing, a device worn on the finger of
the user to recognize hand gestures. The gestures are then used to interact with other
devices such as mobile phones. Similarly Kienzle and Hinckley [113] propose LightRing,
a smart finger-worn device that detects the 2D position of the fingertip of the user on
any surface. Although the authors do not directly mention smartphone applications,
this approach would also be feasible to, for example, terminate a phone call or raise the
volume of the audio by performing gestures with the finger on a table.

As these works demonstrate, nowadays, powerful technologies can fit into incredibly
small devices. However, there is still a compromise between the number of features
available on the wearable and its size and, therefore, its acceptance. A small smartwatch
that resembles a normal watch could look better and more fashionable than a bigger
one, however, it will not include GPS or other more sophisticated sensing techniques.
For example, Kim et al. [114] developed Digits, a wrist-worn wearable device capable of
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detecting 3D hand gestures. With Digits, users can answer calls by mimicking a phone
with their hand, or more generally, performing 3D input interactions on a mobile device
by moving their fingers. Digits is equipped with a camera facing the palm of the user,
motion sensors and LEDs. The sensing capabilities of Digits exceed the ones of more
common fit trackers or smartwatches however, its size is far less comfortable.

Figure 2.10: The Myo armband.

Alternatively to wristbands, researchers have also studied the use of armbands to
perform mid-air interactions [30, 11, 225]. The Myo50 is an example of such wearable
device (see Figure 2.10). It is equipped with accelerometer, gyroscope and eight Elec-
tromyography (EMG) sensors that are capable of recognising movements of the muscles.
With the Myo, users can interact with other devices, such as computers or smartphones,
by performing mid-air gestures of the hand wearing the armband. By default, the APIs
are capable of detecting five dynamic gestures: wave-in, wave-out, finger-spread, fist
and double tap of the thumb and any other finger (see Figure 2.11). Researchers have
exploited the armband to support deaf people in communicating. Paudyal et al. [169]
developed Sceptre where the users’ signs detected by the Myo will be translated into
messages on the mobile device. Other applications of the armband can be found online
on the market website of the Myo51. Common examples are the possibility to control
YouTube, Spotify or Google Earth applications by means of mid-air interactions.

While most of the solutions presented could still be perceived as too invasive or
cumbersome, we note that researchers are developing very thin sensors that one day
could improve the overall acceptance of wearable devices [215, 28].

Figure 2.11: The five gestures recognised by the armband: wave-in, wave-out, finger-
spread, fist and double tap.

50Myo website: https://www.myo.com. Accessed on March 2018.
51Myo market website: https://market.myo.com. Accessed on March 2018.
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2.3 Cross-device Systems

Nowadays, people not only use a single smart handheld device, but often own and
share multiple types of devices, such as tablets, smartwatches and smart TVs. At the
same time, public and semi-public screens can now be found in many locations such
as streets, airports, offices and train stations. For these reasons, it is clear that we are
surrounded by smart devices that can be used for a myriad of different applications and
purposes. In these contexts, many researchers have proposed the use of combinations of
devices to control screens or share data among other devices by proposing cross-device
applications. In Section 2.3.1, we first analyse how many devices people own and how
they use them in their everyday life. In Section 2.3.2, we then present common cross-
device scenarios and how users can interact with multiple devices by discussing what
researchers have proposed in the literature.

2.3.1 Living in a Multi-device Era

As confirmed by a survey conducted by GlobalWebIndex52, the average digital consumer
now owns more than three connected devices53, and this number is expected to grow in
the next decade54. While smartphones, tablets and laptops are all capable of performing
similar tasks, people tend to switch among them depending on their current activity
and physical location. As a Facebook and GfK55 study on 2000 participants showed,
no one device fits all roles56. Smartphones are usually preferred for communication
purposes, and they are the most commonly used device when people are on the move,
such as commuting to and from work. Tablets are often shared with family members and
friends, and they are mostly used for entertainment tasks, such as watching YouTube57

videos or movies. Instead, laptop and desktop machines are preferred for productivity
tasks such as managing finances or work. In the same study, they also noticed that
users tend to start activities on one device and then move to another device, and they
found a correlation between the number of devices owned and this pattern. The more
devices people own, the more likely they are to switch among them to complete a task.

Despite this growth of digital devices, people do not always carry their smartphones,
tablets or laptops on any occasion [52, 165]. As found by a survey we conducted [52],
one out of three participants of a total of 293 participants, did not carry any device
when visiting colleagues in nearby offices at work. This number goes up to one out
of every two users when we only consider women. This difference might be caused by
the lack of pockets of woman cloths. In contrast, as similarly found in the Facebook
study, people often carry more than one device when on public transportations, and the
majority of people always carry their phones when meeting with friends [52]. During
holidays, 89% of our participants stated that they carry their mobile device and a big
part of our population also carry their laptop or tablet (47% and 40% respectively).

In addition to mobile devices that people own or share, public and semi-public

52GlobalWebIndex website: http://blog.globalwebindex.net. Accessed on March 2018.
53Report on the number of devices owned (2016): goo.gl/NyJmLB. Accessed on March 2018.
5433 billion internet devices by 2020 (2014): https://goo.gl/Vi7RzL. Accessed on March 2018.
55Growth from Knowledge (GfK) website: http://www.gfk.com. Accessed on March 2018.
56Finding simplicity in a multi-device world (2014): https://goo.gl/JQpLvk. March 2018.
57YouTube website: https://www.youtube.com/. Accessed on March 2018.
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(a) Semi-public screens at ETH (b) Public screen at the Zürich train station

Figure 2.12: Example uses of public or semi-public screens inside buildings (a) and at
a train station (b).

screens can now be found in a myriad of different locations. In streets, airports, bus or
train stations they often advertise products or services, while within organisations, they
are used to raise community awareness as well as providing news or events information
[105, 197, 202].

For example, we show the screen in our department in Figure 2.12 (a). These are
used to show information about upcoming talks as well as news information. Fig-
ure 2.12 (b) shows the main station screen where commercials are displayed next to the
list of departures. In our survey [52], we also asked participants how many additional
screens were visible from their work desk. 38% of our users stated that they view more
than one additional screen from their desk. While it is not clear if these screens were
public screens or screens of other colleagues, researchers have suggested the use of these
displays to be cyber-foraged [43, 139], meaning that users can temporarily take control
of the screen to show some content avoiding examining it on a small device. In an office
scenario, when a co-worker is absent, users could use their screen to show pictures or
documents from their phone.

2.3.2 Interaction Techniques

As discussed in the previous section and as envisioned by Mark Weiser twenty years ago
[216], users can now have access to a multitude of heterogeneous devices. Each type of
device is used for different tasks, and they can be found in the home, workplace or in
on-the-move environments. It is also clear that users often use multiple devices at a time
[52, 188, 48, 106, 189, 203, 45]. For example, watching a TV show while reading related
Tweets or checking social media on a smartphone are everyday activities performed in
parallel. In our survey [52], we proposed possible cross-device applications and asked
participants if they would see themselves using them in the future. The scenarios
proposed varied from trip planning to video applications. The feedback was positive
overall and the majority of our users seemed to like the idea of combining their devices
to perform tasks.

An important factor in such scenario is how users can interact with multiple devices.
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Designing cross-device interaction paradigms raises interesting research challenges. For
this reason, many researchers have proposed different ways of improving the user ex-
perience when interacting in cross-device scenarios.

For instance, researchers have proposed the use of personal mobile phones to interact
with big screens such as public and semi-public displays [82, 16, 172, 124, 19].
The use of smartphones can potentially mitigate the absence of interactivity of these
screens. In fact, the majority of public or semi-public displays do not allow any of
form of interaction. They usually offer some form of presentation rather than allowing
interactive applications. In some cases, big displays are capable of detecting touch;
however, hygiene issues can be particularly problematic in public places such as airports,
train or bus stations [47, 187, 73]. Moreover, to allow touch interactions, the screen
needs to be located in a place easily reachable by the user raising security issues since a
screen could be the victim of vandalism. Touch is not a feasible interaction when screens
are distant, meaning that they are not placed within reach of the user. Furthermore,
by using touch interactions on a display, users will occlude the screen to other users
standing behind [47, 6].

Alternatively, cameras, such as the Kinect, can be installed near the screen to sup-
port mid-air gestures as a form of interaction with the display [155, 143, 213, 206, 214,
130, 153]. Given its novelty, this approach could attract more people to come near
to the screen [143]; moreover, it solves the hygiene issues raised by direct touch ges-
tures. However, recognising mid-air gestures via image processing algorithms requires
the setup of additional hardware such as the camera as well as a computer connected
to the screen capable of detecting these interactions.

For these reasons, the use of personal mobile phones to interact with bigger screens
can be a good alternative. By using a smartphone, the users do not need to touch on a
potentially dirty screen and no additional hardware alongside the display is required.

Some researchers have exploited the use of mobile phone to tap on a bigger monitor
[26, 82, 83, 5]. For example, Hardy and Rukzio [82] propose Touch and Interact, an
interaction technique in which the user can select elements on a screen by bumping
their phone on any position of the bigger display (see Figure 2.13).

This technique was later used for tourist applications, where users could interact
with a projected map with their phone to query and browse point of interests [83]. Using
this approach, the use of smartphones to directly touch a screen allows the system to
identify users and the screen of the handheld device can be used to show additional and
more private information [192, 5].

Alternatively, researchers have exploited the use of the touchscreen or physical but-
tons of handheld devices to interact with a bigger display [180, 136, 23, 148]. For
instance, Rekimoto [180] proposes the use of mobile devices capable of detecting touch
as a tool palette to write or draw on a whiteboard. Similarly, Matulic et al. [136] exploit
smartphones to easily change the thickness and colour of pen strokes on a iteractive
whiteboard. Alternatively, Boring et al. [23] allow users to remotely control a pointer
displayed on the screen by using buttons on the handheld device.

Touch interactions have also been combined with image recognition algorithms to
support mid-air gestures [16, 194, 166]. For instance, Bragdon et al. [16] allow users
to point with their phones toward the screen and manipulate its elements by touching on
the handheld device. Some researchers have also exploited the use of gaze recognition
algorithms where users first look at a portion of the bigger screen and then touch on the
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Figure 2.13: Hardy and Rukzio [82] solution for selecting elements on big screens via
mobile phones. To perform the interaction, users need to tap the display with their
phone on the desired area.

mobile phone to manipulate and select elements [203, 204]. Although these techniques
allow users to interact with a bigger display intuitively, they require the use of multiple
cameras to recognise pointing or gaze gestures. For this reason, Boring et al. [24]
have proposed a system capable of capturing elements displayed on a screen by using
the camera of the phone and therefore, without the need of additional hardware (see
Figure 2.14).

Another option is to use tilting interactions on mobile phones to interact with
public and semi-public displays [23, 16, 45, 208, 60]. Motion gestures can be particularly
advantageous when interacting with a public screen. In contrast to many touch-based
interfaces, tilting interactions do not require the user to look at the small screen, so
they can focus their attention on the bigger display without continuously shifting their
gaze from the handheld device to the screen.

Boring et al. [23] compare three main forms of interaction to control a cursor re-
motely on a distant screen: scroll, tilt and move. As mentioned before, the scroll tech-
nique allows users to use physical buttons available on the handheld device to move
the cursor with a constant speed. With tilt interactions, users move their phone via
velocity-based tilting interactions: the more the device is tilted, the faster the cursor
will move. In contrast, with the move technique, the phone’s movements are linearly
mapped to the pointer’s position similar to a mouse. The move interaction is imple-
mented by using the phone’s camera. In a user study, they found that both move and
tilt gestures were faster but more prone to errors than scroll.

Researchers have also exploited the use of motion gestures in games [60, 16, 208].
For example, users can control cars or other characters displayed on the bigger display
by simply moving their phone. Other applications of tilting interactions to control
public screens are the browsing of media galleries or maps. For instance, Dachselt and
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Figure 2.14: Boring et al. [24] solution for manipulating elements displayed on public
displays using point and touch interactions on mobile devices.

Buchholz [45] studied the use of jerk tilting gestures to browse a large music collection
and more continuous interaction to operate Google Earth58 remotely on a bigger and
distant display.

Tilting gestures have also been used in combination with pointing interactions. With
PointerPhone [194], users can manipulate elements displayed on a screen by first point-
ing at them with their phone and then rotate or move the handheld device. We also
note that tilting gestures have been used to navigate in a 3D space displayed on a bigger
monitor [124].

Researchers have exploited the use of wearable devices such as smartwatches,
gloves and armbands to directly interact with distant displays [81, 111, 171, 198, 211].
For instance, Haque et al. [81] used the Myo armband to remotely control a cursor
on a large monitor by proposing MyoPoint. With MyoPoint, the movements of the
users’ arm are mapped to the cursor and gestures, such as fist and finger spread, used
to select elements or activate and deactivate the interaction. Taking this work as a
source of inspiration, Katsuragawa et al. [111] proposed a variant of MyoPoint, called
Watchpoint, that enables users to interact with public screens via a smartwatch. While
these works require the user to carry an additional device, in contrast with image pro-
cessing approaches, they allow the recognition of mid-air gestures without the necessity
of additional cameras or other hardware connected to the screen.

In order to interact with a public screen via a mobile phone, devices need first to be
paired to initiate the connection. The research community has largely studied pairing
mechanisms that can be employed not only on public screen - smartphone scenarios but
in a multitude of other configurations [94, 95, 164, 178, 91]. For instance, in a meeting,
multiple heterogeneous devices, such as laptops, big screens and projectors, tablets and
phones can be simultaneously used to interact with each other [199, 195, 98]. Using QR

58Google Earth website: https://earth.google.com/web. Accessed on April 2018.
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codes to share URLs is the most common and easiest way to create a connection among
devices [72, 99, 4]. QR codes can be employed in almost all configurations of devices:
the QR code can be shown on one of the available screens, such as a public display,
and then one or multiple mobile devices can initiate the connection by scanning it. To
scan a QR code, users are required to have the right app on their mobile device and
then position the device in the correct way to scan it. For these reasons, this method
requires many steps and can feel cumbersome to the user.

For this reason, the research community has proposed more intuitive methods. For
instance, users can connect two devices by using a stylus or draw a stroke from one
device to the other [94]. Alternatively, users can simultaneously shake [95, 137, 31]
or bump devices [178, 91] as well as performing a pinch gesture or joint interactions
[164, 38].

Proximity-based approaches have also been proposed as a possible way to natur-
ally establish communication between devices [191, 132, 191]. Marquardt et al. [132]
defined different zones of engagement to show information on a screen depending on
how close the devices are from each other. In this context, the position of users can
also be exploited to understand groups of people holding a device and therefore, create
connections among them [133]. We also note that researchers have combined physical
and social proximity to pair phones or tablets [102].

Researchers have also exploited the use of the Doppler effect to initiate connections
between devices [12, 76, 37]. With DopLink [12], users can pair devices by pointing their
mobile phone, or tablet, towards the desired target. DopLink is capable of establishing
the connection by playing an inaudible sound from the source device and studying its
Doppler effect. With the same technique, SurfaceLink [76] allows users to pair two
devices, which are flat on the same surface, by swiping their finger on the table from
one to the other. Similarly, with AirLink [37] users can initiate communication between
devices by performing in-air swiping gestures from one device to the other.

DopLink, SurfaceLink and AirLink not only allow users to pair devices but also
to share data among them. In this context, we can categorise two primary forms of
interaction: spatially-aware and spatially-agnostic. In spatially-aware techniques,
the physical position of devices influences the interaction users will perform. Mid-
air gestures, as proposed by the above mentioned projects, are particularly suited in
this scenario. Swiping gestures from one device to another are intuitive interactions
techniques to share data among devices. Alternatively, users can share an element from
one device to another by dragging the object toward the edge that is the closest to the
desired target [176, 80]. Researchers have also proposed the use of tilting gestures to
share data among co-located devices [220, 45, 129, 122]. For example, in the system
proposed by Dachselt and Buchholz [45], users can share the currently selected picture
from their phone to another screen by performing a tilt gesture in the direction of
the target device (see Figure 2.15). Toss-it [220] exploits this form of interaction by
allowing users to send data from PDA to another PDA or printer via pointing and
motion gestures. Toss-it requires the user to first point with their handheld device
to the desired target and then tilt their phone. The location of the source device is
recognised by the use of LEDs built on the PDA and a stereo camera installed in the
room. Different blinking patterns of the LEDs allow the system to identify each device.

In contrast with spatially-aware techniques, spatial agnostic interactions can be
performed independently from the position of the source and target devices [176, 80].
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Figure 2.15: Dachselt and Buchholz [45] solution to share a picture from a smartphone
to other devices via tilting gestures.

Often, these techniques extend user interfaces to add cross-device features. For example,
Hamilton and Widgor [80] proposed Conductor, a system that allows users to select
Cues, a particular type of data, and send it to other devices. Once a Cue is selected
via a hold tap gesture, a pop-up menu will appear allowing users to send the data to
the desired target or set of targets.

Chat systems and cloud services such as iCloud59, Google Drive60 or Dropbox61

also allow users to share data among their devices. However, these systems require the
user first to copy the desired content and then open a new window or applications to
paste the selected data. This technique requires the user to stop their current task and
switch their attention to share a picture or a link. Moreover, by using chat or cloud
systems, the data shared is sent to all devices rather than just the desired subset. While
broadcasting data can simplify the interaction process, it will cause the chat or cloud
system to push annoying notifications on all devices.

Researchers have carried out several studies to understand better what category
of interactions, spatially-agnostic or spatially-aware, is preferred by users. Since user-
defined gestures have been shown to be more memorable and usually preferred by users
when compared to interactions defined by experts [157, 146], researchers have asked
users to suggest possible cross-device interaction techniques via elicitation studies
[176, 121, 150, 195].

59iCloud website: https://www.icloud.com/. Accessed on April 2018.
60Google Drive website: https://www.google.com/drive/. Accessed on April 2018.
61Dropbox website: https://www.dropbox.com/. Accessed on April 2018.
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Rädle et al. [176] found that users preferred spatially-aware gestures. Similarly,
Kray et al. [121] found that the location of the target device influenced the majority of
the suggested gestures proposed by users. However, spatially-aware gestures can raise
conflicts when the target device is physically close to other devices. As found by a study
conducted by Nebeling et al. [150], users tend to prefer spatially agnostic interactions
if devices are close together.

Overall, spatially-aware gestures can be natural and intuitive solutions, however,
they are often harder to develop than spatially agnostic techniques. Moreover, while
agnostic solutions can also work when devices are not co-located, spatially-aware inter-
actions, by definition, are dependent on the physical proximity of the source and target
devices. In this context, researchers assume that devices are co-located as well as turned
on in order to start a communication. However, as we found in our survey [52], users
do not always have all their devices within sight, or even within reach. While mid-air
gestures or tilting interactions have mostly been used when devices are co-located, they
could also be exploited for target devices that are not physically close. For example, a
jerk tilting gesture or a wave interaction could allow the user to share an article they
are reading in the office to their desktop PC at home for future reading.

2.4 Conclusion

As discussed in this Chapter, building web applications as opposed to native solutions
offer many advantages for both developers and end-users. Over the years, browsers
have been extended to support many features that make them as powerful as native
apps. Nowadays, websites adapt to the screen real estate of the client, are fast and can
also work offline. In cross-device scenarios, web technologies play a crucial role since
they can run over different configurations of devices and platforms [97]. While cross
browser compatibility problems can be a big challenge to overcome, frameworks can
help developers to build single and cross-device applications that run on heterogeneous
devices. From the user perspective, accessing a web application does not require the
user to download a special purpose app, that could potentially be used only rarely and
easily forgotten.

However, despite the power of current IT web solutions, the primary form of inter-
action used in mobile web applications has mainly relied on touch gestures. Currently,
there is not much support for experimentation with alternative forms of interaction
on the web, for both developers and end-users. While a large number of front-end
frameworks are now available online, their focus is not on different forms of interaction
but instead on the organisation of content [152]. Similarly, EUD systems and CMSs
platforms mainly focus on the look and feel of the final website rather than allowing
alternative interaction techniques.

Although mobile browsers are now capable of detecting the orientation and accel-
eration of devices, motion gestures have mainly been exploited on native solutions. As
discussed in the literature [15, 96], tilting interactions offer a number of advantages,
for example, they are eyes-free gestures and, in contrast to touch gestures, can be per-
formed without occluding the screen. Researchers have studied this form of interactions
intensely and proposed many variants which can be potentially influenced by a number
of parameters, making the implementation of these gestures even more challenging.
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For these reasons, we decided to investigate what forms of frameworks and visual
tools could be developed to support both developers and end-users in their experiment-
ation with new forms of interaction such as tilting and mid-air gestures. Further, we
wanted to bring the knowledge acquired in single device scenarios to cross-device applic-
ations and developed frameworks and tools to exploit alternative forms of interactions
when more devices are involved in the communication.





3
Tilt-and-Tap

In this Chapter1, we present our research addressing how to enlarge the set of possible
interactions in single device web applications. We started our investigations by first
supporting developers with a set of high-level JavaScript APIs via Tilt-and-Tap (TAT),
a framework for the rapid development of tilting interactions in web applications. In
Section 3.1, we present the framework, and its implementation details as well as example
applications developed with the proposed APIs. Moreover, in Section 3.2, we discuss
TAT 2.0, which is an extension of the first framework that supports a broader number
of features and offers a larger set of tilting interaction.

Furthermore, we continued our research by targeting end-users with the development
of WP-TAT, a WordPress extension that allows non-technical users to experiment with
tilting interactions on their website. As the name suggests, WP-TAT is based on Tilt-
and-Tap and offers its main features via a visual interface. We discuss WP-TAT in
Section 3.3. A number of user and developer studies have been carried out for each of
the developed tools, and they are presented in the corresponding sections.

The experience gathered during the implementation of TAT, TAT 2.0 and WP-TAT,
as well as the feedback received from users during studies, gave us the chance to draw
a series of design observations on when and how to apply tilting interactions in web
applications. We discuss these guidelines in Section 3.4.

3.1 The Framework

Tilt-and-Tap (TAT) is a JavaScript framework, designed to encourage developers to
build web applications that exploit tilting interactions. TAT has the goal of allowing
developers to experiment with these alternative forms of interaction by offering a high-
level set of APIs. Developers are not required to directly manage the raw data returned
by sensors or deal with implementation differences between browsers.

1Earlier versions of parts of this Chapter were originally published as Di Geronimo et al. [50, 49,
56, 57]
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var t = new 
tiltandtap({
tiltDown: {
callback: openPh,
element: “body”,
touch: “hold”
}, 

tiltUp: {
callback : closePh,
element : “body”,
touch: “hold”
}});

index.js

Figure 3.1: Jerk tilting example and its correspondent code using TAT.

Taking previous works on motion gestures [15, 179, 92] as a source of inspiration,
TAT offers two main forms of interaction: jerk and continuous tilting gestures. Jerk
interactions allow users to perform actions by quickly moving their device in some
direction. In contrast, Continuous motion gestures are sustained tilts of the device
in a direction to perform actions such as scrolling through a list of items.

As suggested by Ken Hinckely and Hyunyoung [92], TAT also offers combinations
of touch interactions with tilting gestures. Single tap, multiple taps and hold tap
interactions can be combined with motion gestures. Moreover, visual, vibrotactile and
audio feedback are also available through the plugin, and they can be triggered when
a tilt interaction has been performed.

To give a general overview of the framework, in Figures 3.1 and 3.2, we show an
example of how of Tilt-and-Tap can be used. In the jerk tilting example, users can
see additional information (photographer name in the example) of a picture by hold
tapping anywhere in the page and then tilting the device down. A tilt up will hide

var t = new 
tiltandtapc({
target_elem: 
“pictures”,
onelementselected : 
border,
});

index.js

Figure 3.2: Continuous tilting example and its correspondend code using TAT.
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the box with the information. To reproduce this behaviour, developers have to create
a tiltantap instance and define callback functions and other options for tildDown

and tiltUp gestures. For tiltDown, the function openPh will show the name of the
topographer. In contrast, for tiltUp, the closePh function will hide this information.
These two functions are created by the developers and they can be placed in the scope
of the Tilt-and-Tap instance. For both gestures, the user has to hold tap on the screen
while tilting the device up or down, to allow this behaviour developers have to specify
that the touch gesture required is a hold tap and the interaction can be performed
inside the body element.

In contrast, the continuous motion example in Figure 3.2 allows users to scroll
forward and backward through a list of pictures by slowly tilting the device to the left
and right respectively. A ball serves as feedback to the user to understand the direction
of the interaction. When the ball is below a picture, a border will be added to the
image. To reproduce this behaviour only a few lines of code are required. Once the
framework is included in the HTML file, the developer has simply to define the desired
type of gesture and which callback function has to be called once the green ball is above
an element. In Figure 3.2, Tilt-and-Tap is able to recognise the pictures involved in the
interaction by their class name pictures that is passed to the target elem parameter
of the framework. Once the indicator is under a picture, Tilt-and-Tap executes the
border function associated to the onelementselected parameter.

The framework sets an element as selected if the ball is above it. By default, the
ball has to be 100% inside an element to execute the onelementselected callback
function. If desired, developers can change this percentage. Moreover, developers
can also customise the look and feel of the ball or to completely hide it from the
page. In this case, even if not visible, the ball continues to be present in the page
and scrolls the elements indicated in the target elem parameter. Given the nature of
this element, we often refer to the ball as an indicator or cursor. However, in contrast
with a mouse cursor, the selection process does not necessarily require the user to
perform an additional interaction once the indicator is over an element. With a mouse,
users first move the cursor over an element and then right click on it to select. With
continuous motion gestures, the selection behaviour is decided by the developer via the
onelementselected function.

To improve readability, we often refer to Tilt-and-Tap as one single framework,
however, for performance reasons, we offer one framework for each form of interactions:
jerk and continuous. As we can see from Figure 3.2, the instance of Tilt-and-Tap for
jerk tilting is named tiltandtap, while the instance for the continuous example is
named tiltandtapc.

In Section 3.1.1, we start presenting Tilt-and-Tap by first explaining how it is im-
plemented. A number of applications developed with the framework are then discussed
in Section 3.1.2. To better understand the power of the proposed approach, we car-
ried out two studies, a developer and a competition study and these are presented in
Section 3.1.3 and Section 3.1.4 respectively.

Please note that Tilt-and-Tap was initially presented as a jQuery2-like framework [50]
however, in this thesis we will discuss a different version of TAT that does not require
jQuery. While some operations were made easier in the development process by using

2jQuery website: https://jquery.com. Accessed on April 2018.
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Figure 3.3: The ten supported directions of TAT.

jQuery, the plugin is particularly heavy to download if not already cached (circa 200mb)
and adds an additional point of failure if some of its features are changed or compat-
ible with the browser. Moreover, the recognition of jerk tilting gestures was altered to
improve its accuracy. We discuss more details about these modifications in the corres-
ponding section. However, the two versions share the same features and similar APIs
therefore, they are not different in terms of motivations and goals.

3.1.1 Supporting Tilting Interactions

In this section, we present implementation details of Tilt-and-Tap discussing how jerk
and continuous gestures were developed and how we solved incompatibilities issues
among browsers.

Jerk Tilting

Tilt-and-Tap offers jerk tilting interactions in ten possible directions: up, down, left,
right, south-east, south-west, north-east, north-west, clockwise and counterclockwise
(see Figure 3.3). In contrast to the solution proposed by Baglioni et al. [15], we of-
fer clockwise and counterclockwise as additional directions. We speculate that these
two interactions were not studied initially by Baglioni et al. because they might be
cumbersome to perform with smartphones. However, moving a tablet clockwise or
counterclockwise is more natural and we were considering more general forms of mobile
devices. Working with web technologies allowed us to quickly experiment these interac-
tions on a broader set of devices also supporting developers to adapt gestures according
to the device used.
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With JavaScript, developers can access the raw data fired by motion sensors via two
events: DeviceOrientationChange and DeviceMotionChange. The first event returns
the orientation angles of the device via three integer values: alpha, beta and gamma.
The angles represent the difference between the current position of the device and its
rest “state” (flat on a table). DeviceMotionChange provides information about the
acceleration of the device expressed in Carteesian coordinates and relative to the Earth
frame. The event also returns the rotationRate object that defines the rate at which
the device is rotating around each axes in degrees per second. Tilt-and-Tap uses the
data returned by the rotationRate function to recognise jerk tilting gestures. Both
events are called at regular intervals; however, this interval may change depending on
the browsers used. For this example, we will assume that this interval is 50ms.

To detect jerk motion gestures, we implemented an extended version of the solution
proposed by Baglioni et al. [15]. As the authors recognised in their work, every time the
user performs a rapid movement of the device in some direction, the natural elasticity of
the wrist will automatically move the device near to its rest position. In the Boring et
al. [15] implementation, a single jerk tilting interaction is composed of two movements:
the first in the desired direction of the rapid motion gestures, the second, to the rest
position of the device. This implementation assumes that users are in a position that
easily allows them to hold the device in its rest position. However, if, for example, the
user is lying on a sofa, this assumption may not be true. Holding the device parallel
to the ground may be hard when the user is not standing. For this reason, we propose
an alternative solution that takes advantage of the recoil factor. When users perform a
tilt gesture in some direction, a rapid and involuntarily movement of the device in the
opposite direction is also performed. This is implemented as follows:

1. When the framework is initialised, it has an empty buffer of size three.

2. Every 50ms, we store the three values (alpha, beta, gamma) returned by rotation-

Rate in the first free position in the buffer.

3. When the buffer is full, we check the last object stored:

(a) If any of the sensor values in the object are bigger than a threshold, we save
this information and go to step four.

(b) If none of the values is larger than the threshold, we clear the buffer and
start again from step one.

4. We call the function defined by the developer for the tilting gesture recognised.

5. We clear the buffer and discard the next three sensor readings to cater for recoil.

In Figure 3.4, we show an example execution of our implementation when the user
performs a tilt down gesture assuming that the interaction has to be performed in
150ms. When the device is moved down, the beta angle returned by rotationRate

is influenced. If the absolute value of this angle is larger than the threshold (3 in the
example) after 150ms, the framework recognises the jerk interaction and executes the
corresponding callback function defined by the developer. In this case, the background
colour of the web page is changed to blue. Since a recoil factor could potentially trigger
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Figure 3.4: Visual representation of TAT recognition algorithm.

a tilt gesture in the opposite direction, we skip the next data fired by the sensor. In
a later version of the framework, we improved the recognition of gestures by using a
sliding window technique with overlap to avoid missing a jerk interaction due to the
fixed size of the buffer. Moreover, we detect a gesture if the standard deviation of the
entire buffer is bigger than a threshold. Overall, the general approach of the algorithm
is similar; the recoil is still implemented and essential for the detection of a tilting
interaction.

Continuous Tilting

In contrast to jerk gestures, Tilt-and-Tap also offers slower movements to perform con-
tinuous interactions. Taking previous works in the area [179, 40, 212] as a source of
inspiration, we implemented continuous tilting gestures to allow developers to experi-
ment with alternative forms of interaction. Our solution involves the use of an indicator
that acts as a cursor and will infer the position of the viewport with respect to the ori-
entation of the device. The position of the indicator is used to scroll the viewport, and
it helps the user to understand the direction and the speed of the vertical or horizontal
scrolling. Continuous tilting gestures can be performed to scroll elements in one or two
dimensions. In one dimension, motion gestures act as traditional scroll bars to browse
elements in a vertical or horizontal list. In two dimensional cases, the ball is free to
move in both directions. In this section, we use a one-dimensional example to discuss
how Tilt-and-Tap works, however, the two implementation use similar concepts and
only differ slightly.

In Figure 3.5, we can see a visual representation of our implementation of continuous
tilting interactions. Users can horizontally scroll through the gallery of pictures by
moving their device to the left and the right. When the ball is under a picture, the
image is selected (bold green border).

Continuous tilting gestures are implemented via the the accelerationIncluding-

Gravity object returned by the DeviceMotionChange event. This object is represented
as a vector (x,y,z) and describes the acceleration including gravity of the device which is
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Figure 3.5: Visual representation of continuous tilting gestures. The list of pictures is
stored in a doubly linked list. For every movement of the device, we keep track of the
elements that are not visible in the viewport (triangles).

returned in meters per second squared (m/s2). As the name suggests, the value returned
by the accelerationIncludingGravity function is the sum of the acceleration caused
by the user and by the gravity.

In Figure 3.6, we can see the pseudocode of our solution which involves five steps:

1. listElementToSelect When the document is completely loaded, we create a
doubly linked list of all the elements with the class name defined by the developer.
Depending on their position, we order the elements in the list. We also remember
the first and last element visible in the viewport via pointers.

2. moveViewPort In this step, we move the viewport every 50ms depending on the
orientation of the device.

3. updateList At this stage, we check which elements are in the viewport and update
the list and pointers accordingly.

4. moveBall Depending on the speed and orientation of the device we update the
ball position. We filter minor movements with thresholds. Initially, the ball is
located in the centre of its container (div ball). We assume that the ball moves
relative to the position of the device when the page is loaded for the first time,
thereby accommodating a broad set of initial positions of the user (lying on a
sofa, sitting on a chair, standing etc.). This solution contrasts with other works
that assume that the rest position is represented by the device flat on a surface.
The direction of the ball is decided by a sign variable that is set at the beginning
of the computation since it depends on the current browser used.
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listElementToSelect()
{
//foreach element in the page with class 
//class_elem (specified by the developer) 
foreach (element has class class_elem)

{
//element contains the ID of the element
//its dimensions and coordinates

list_elem [i]= element;
//double linked list implementation

list_elem [i] ->next =null;
list_elem [i] ->prev =list_elem[i-1]
list_elem[i-1] ->next =list_elm[i]

//if element is the first one or the last    
//one visible in viewport maintain a   
//pointer to that element

if(element first in viewport)
{first_v = element;}
if(element last in viewport)
{last_v =element;}

} 
//order elements in the doubly linked list 
//according on their position in the page  
orderList(list_elem);

} 

onDocumentReady() {
listElementToSelect();
onmotionchange (Acceleration 

data)
{   updateList (data);

moveViewport (data);
moveBall (data);
elemSelected ();

}
}

moveBall (Acceleration data)
{//if the acceleration is bigger than a threshold
if(∆ acc > th) {

if (first call)
{//set the ball in the centre of the div_ball

setZeroPositionBall()
} 

new_ball_position.top = ball.top + 
((sign)∙data.x∙speed);
new_ball_position.left = ball.left + 

((sign)∙data.y∙speed);
//if the new position will put the ball outside the 
//displayed  
//page it does not move the ball 
if ( checkBallPosition (new_ball_position) ) {

ball.top = new_ball_position.top;
ball.left = new_ball_position.left;

}
}

elemSelected()
{

pointer = first_v;
while (pointer != last_v; )

{  //check if the ball is inside an element 
//(for a percentage defined by the developer) 
//using its  
// dimension and coordinates
if(isInside( ball.position, element, percentage))
{
cur = element;
if( elemselected != cur)
{ elemselected = cur;
//call the function defined by the user
//when a new element is selected

onElementSelected(elemselected);
}

return;
}

}   
}

Figure 3.6: Pseudocode of continuous tilting gestures. The block of code highlighted in
blue represents the first function called.

5. elemSelected If the ball is above an element, we trigger the onElementSelected
function that the developer defined. Developers can also define how much the
ball has to be inside an element for it to be selected. By default, the percentage
is 100% meaning that the entire ball has to fall inside an element to trigger the
defined callback function.

Our doubly-linked list allows our solution to have an O(s) complexity execution
every 50ms where s is the number of elements inside the viewport. A possible im-
provement could involve the use of a heap map with the position of elements as keys.
However, since the number of elements in the viewport is small, we decided that the
doubly linked list was a good solution for our problem.

Continuous tilting gestures have more options than jerk interactions, however, most
of the customisable parameters are optional. While more skilled users can have more
control over the framework, less experienced developers can still easily use our frame-
work. Among the various parameters, developers can specify if any touch gestures are



3.1. The Framework 53

necessary to activate the gesture and define the speed as well as the look and feel of the
ball. For instance, while the ball is essential for our solution, it can be hidden in the
page. In this situation, the ball will still infer the scrolling behaviour of the viewport,
but it will not be visible in the page.

Fix Cross-browsers Incompatibilities

While building a web framework allowed us to experiment with a large number of device
sizes and platforms, working with web technologies is not free from issues. The main
challenge of building Tilt-and-Tap was to develop the framework with two work-in-
progress APIs. The deviceMotionChange and deviceOrientationChange events are
not fully implemented by all browsers which currently offer different and, often conflict-
ing, implementations. For instance, the range of angles returned by DeviceOrientation-

Change and therefore, by the RotationRate APIs differs depending on the browser used.
To fix these issues, we employ different thresholds for each browser. The thresholds
were empirically set and studied to allow similar gestures across different browsers and
platforms. However, developers are free to customise them to their needs.

Moreover, the sign that indicates the direction of the movement of the device (left,
right, up or down) differs between Android and iOS platforms. After detecting the
type of platform of the device, a switch case condition allows the detection of the right
direction and offers consistent interaction in both landscape and portrait states.

An additional major difference among devices relies on the granularity of data re-
ceived from sensors. Via the interval value returned by the DeviceMotionChange

event, we can detect how often the browser will fire motion data. This value differs
depending on the browser but, more importantly, it does not truly represent the fre-
quency at which we receive data from sensors. While the parameter could indicate that
data are sent every 100ms, in reality, this data can be sent more frequently.

In a previous version, to fix this inconsistency, we just employed a buffer and forced
all browsers to collect at least T values (three by default) to detect the gesture. In
the updated version of TAT, we add more consistency among devices by forcing the
collection of raw data every X -ms. After an empirical test of combinations of most
updated browsers and platforms, we found no situations in which motion events are
fired slower than 50ms. For this reason, by default, X is set at 50ms. We prevent
faster browsers firing more events with JavaScript timeouts. Developers can adjust
these parameters to satisfy their needs. However, via a console warning, we advise that
the interval should be set between 50 to 100ms to have a more accurate recognition of
gestures. Moreover, we also advise that the dimension of the buffer should be adapted
according to the newly inserted interval. To give more freedom to the developer, we
decided not to automatically adapt the dimension of the buffer to the interval.

Since browsers are frequently updated, it is not known if the events will be modified
in the future. A more complex architecture could have been implemented to provide a
central database that stores thresholds for each case. The database could be updated
by the crowd to cover all combinations of browsers, devices and platforms. Although
this solution could fix some of the issues mentioned above, it does not solve significant
incompatibilities problems such as the deprecation of the APIs or more complex changes
in the events.
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Figure 3.7: Screenshots of the three pages (home, video selected, search page) of
YouTap.

3.1.2 Example Applications

To better understand the power and limitations of our framework, we developed three
media-rich web applications that exploit tilting interactions. YouTap, TiltZoo and
3DTiltGallery offered us the chance to experiment with possible adaptations of motion
gestures on the web.

As can be seen in Figure 3.7, YouTap is an extended version of the famous YouTube3

website. The first page of YouTap offers an overview of videos classified by different
categories such as music, sport, news etc. Once the user selects one of the videos via tap
gestures, the selected media is shown in the middle of the page while related videos are
displayed on top. At this point, if no video is played, the user can browse among related
media using continuous tilting interactions. A ball shows users the current position in
the list. In Figure 3.7, the green ball is below the first item in the gallery of videos. The
ball allows the user scroll through the various thumbnails, however, to select a video,
users have to tap on the desired item. Alternatively, users can also go to the next or
previous videos by holding tap on the red zone and tilting the device rapidly to the
right or to the left. All these controls are hidden if the user is watching a video.

While watching, users can perform various gestures to interact with the video dir-
ectly. For instance, a tilt down or up gesture will turn the volume up or down. Tilt left
or right interactions will skip to the next or previous ten seconds of the video. Finally,
if the user searches for a video using the search box, YouTap will show the list of results
which, this time, can be browsed via two-dimensional continuous tilting gestures. A
red ball allows users to hover on the thumbnails and a jerk tilting interaction to the
right will cause the video to be played.

We believe that tilting gestures can rich the interactivity of web applications. For
this reason, we developed TiltZoo showing that employing motion gestures offered by
Tilt-and-Tap can transform a simple gallery website into a creative space (see Fig-
ure 3.8). TiltZoo is a one-page web application that can be browsed in two modalities.
Users can change modality by moving their device in landscape or portrait mode.

3YouTube website: https://www.youtube.com. Accessed on April 2018.
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Figure 3.8: Visual representation of the interaction flow of TiltZoo.

In TiltZoo, when the device is held in portrait mode, we offer a standard browsing
experience that displays pictures and content through scrolling and tapping interactions
(step one and two in Figure 3.8). If the device is in landscape mode, another modality
is triggered: a different UI is shown, and additional gestures are available. In this mode,
users can double tap anywhere in the page to enable tilting interactions.

At this point, pictures are shown in full screen and can be browsed through jerk
tilting gestures. 3D animations between gestures give the impression that pictures are
displayed on a cube. Additional information for each image is available, and they can
be triggered by a hold tap gesture on the desired picture and a tilting down interaction.
A hold tap and tilt up gesture will return the user to the gallery of pictures. By rotating
the device in portrait mode, the system will change modality and allow users to browse
the website normally.

Finally, to exploit tilting interactions with 3D objects, we developed 3DTiltGallery,
a web application that shows pictures on a sphere. As can be seen in Figure 3.9 (a),
images are displayed on the 3D object that can be moved by means of continuous
motion gestures. As similarly proposed with YouTap, the ball displayed at the bottom
of the page will serve as feedback and make the sphere rotate to the right and the left.
When the ball is in the centre of the viewport, the object will not rotate. By tapping
on one of the pictures displayed on the sphere, the system will display the 3D model
of the selected image in another page. At this point, users can browse the model. We
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(a) Home page (b) Model page

Figure 3.9: Screnshots of the 3DTiltGallery.

developed three possible ways of performing rotations and zooming interactions:

1. Horizontal and vertical rotations of the model can be triggered by a combination
of hold tap gestures (performed anywhere in the page) and continuous tilting
interactions to the right and the left, or up and down. In contrast, to zoom in
and out users can hold tap anywhere in the page with two fingers and move the
device up and down.

2. Rotate and zoom buttons are displayed in the page (see Figure 3.9 (b)). To
perform the desired action, users need to hold tap on the corresponding button
and continuously tilt the device in the desired direction.

3. Horizontal and vertical rotations are performed by hold tap gestures and con-
tinuous tilting interactions. To change mode and zoom in and out, users need to
perform a jerk tilting gesture.

Overall, these applications gave us the chance to exploit tilting gestures on different
categories of websites. While TiltZoo and 3DTiltGallery had the goal of making the
web a more creative and interactive place, YouTap was developed to extend a famous
website with motion gestures. Given the flexibility of TAT, different approaches and
combination of interactions could be studied for each of the proposed applications. We
believe that Tilt-and-Tap can encourage researchers and, more in general, developers
in expanding the set of possible interaction on the web.

3.1.3 Developer Study

We conducted a developer study to evaluate the usability of Tilt-and-Tap and receive
feedback on the framework. It is important to note that the study was conducted using
the original version of TAT and, therefore, it involved the use of jQuery.
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Figure 3.10: Screenshot of the skeleton gallery website.

The study was carried out in 2015 during the Web Engineering class at ETH Zurich.
During the course, bachelor and master students learn different web technologies via
lectures and group exercises. Students coming from various departments and different
levels of education can follow the class. For the exercises, students are awarded a number
of points that count toward 25% of the final grade. To evaluate TAT, we asked students
to add tilting interactions to a website. The exercise was awarded three points (out of
26 total points given for all exercises) if developed correctly. This exercise was carried
out towards the end of the semester when students had already gathered experience
with web technologies such as HTML, CSS, JavaScript and jQuery.

Web Engineering students represented the right set of participants for our study.
Overall, students have enough knowledge of web technologies to successfully use our
framework but, at the same time, they are not professional web developers with years of
experience. Good results on the usability of the framework would mean that Tilt-and-
Tap should be easy to use for developers that with basic knowledge of web technologies
but are not experts.

The TAT exercise involved two major parts. In the first part, students were asked
to use the framework to build a predefined website, while the second part, required
them to define new gestures using the interactions already proposed by Tilt-and-Tap.
As usual for Web Engineering exercises, students had one week to develop their solution
before presenting it to the teaching assistants. For this reason, students were free to
learn the framework and develop the exercise at their own pace. While this scenario
is more realistic than a lab study, we could not observe how students worked on the
exercise and which problems they experienced. However, during the presentation of
solutions, students filled in a questionnaire.

Study Design and Tasks

We now give details on how the study was carried out. At the end of a lecture, one
assistant of Web Engineering instructed the students on the exercise and explained the
main concepts of Tilt-and-Tap. After the introduction, the students had one week to
develop the exercise in groups. As commonly done for all Web Engineering exercises,
students were also allowed to split the work among group members as desired.

Students were provided with a minified version of the framework (the TAT JavaS-
cript file without unnecessary characters), a wiki on the API and several demo examples.
On the group website, participants could also download a detailed description of the ex-
ercise, all the necessary material and a skeleton of the gallery website (see Figure 3.10)
from which they could implement the three required tasks:

• Task A: In this task, students were required to add jerk tilting interactions to
browse through the gallery. A tilt gesture to the right or the left will select the
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next or previous picture in the gallery (starting from the first one on the left) An
image is selected when a red border is displayed on the picture.

• Task B: At this point, students also had to employ combinations of touch and
motion interactions. By hold tapping on an area of the page and tilting the device
up, the current selected picture should be displayed in the middle of the page in
a higher resolution. In this state, if the device is tilted to the right or the left
and no touch interactions are performed in the page, the previous or next picture
will be selected, and the image in the page will change accordingly. By tilting the
device down and performing a hold tap interaction on the page, this view will be
closed (see Figure 3.11 (a)).

• Task C: While in the first two tasks students had to use the framework directly,
in task C participants were required to implement an additional gesture not ori-
ginally by Tilt-and-Tap. The gesture was called onTiltUpDown and, as its name
suggests, it requires the user to tilt the device up and down rapidly. Once this
gesture is triggered, additional information on the current selected picture should
be shown in the page (see Figure 3.11 (b)). To later hide this information, the
gesture needs to be performed again. Similar to Task B, if the user changes the
currently selected picture with jerk tilting interaction, the displayed information
should adapt accordingly.

If teams were able to implement all tasks of the exercise successfully, the assistants
would award them three points. If some parts of the solution were incomplete or wrong,
points were deducted in accordance with the gravity of the mistake. Moreover, during
the assessment, students were required to describe how they solved the exercise and
discuss the challenges they faced during the development.

Results

In 2015, 93 students were registered to the exercises of Web Engineering. With a total
of 32 groups: 30 groups had three members, one group had two members and one
student worked alone for personal reasons.

During the day of the assessment, all 32 groups had at least one member to present
the proposed solution. On the day of the assessment 77 students were present and
discussed their solutions with one of the three assistants. Their solution were tested on
the students’ phones or tablets which allowed us to test the framework on a broad set
of browser and platform combinations. Overall, all but one team received full points
for the exercise. The exception was a group of students who failed to complete task
C and said this was due to the insufficient time. While the exercises were evaluated
per group, questionnaires were answered by individual students. In total, 48 students
filled in the final survey. For anonymity reasons, we did not associate the answers of
the questionnaire with the solutions of the participants. 42 of those who answered the
questionnaires were male and 6 female. Their ages ranged between 22 and 31 years
(avg. 24.93 std. 2.04). In Figure 3.12, we show how students evaluated their knowledge
of web technologies (HTML, CSS, JavaScript and jQuery) on a scale from 1 (novice) to
7 (expert). On average, students estimated that they had intermediary knowledge of
all the proposed languages. Since most of the students learned these technologies only
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(a) Task a (b) Task b

Figure 3.11: Screnshots of the TAT exercise.

during the Web Engineering class, we expected and aimed for such results. 32 out of 48
participants were computer science students while the remaning 14 participants came
from other departments including electrical engineering and management students.

30 participants stated that they worked on all three tasks, nine worked on a single
task and the remaining nine students developed some combination of two tasks. On
average, all participants needed four hours to develop their parts of the exercise (std.
2.3 hours). Students that worked only on one task needed 3 hours. These results are
based on student estimations expressed in the final survey and involve the time they
needed to understand the exercise and the plugin as well as the actual development of
the task and debug phase.

In the final questionnaire, we asked students which combination of device, platform
and browser they used to develop the exercise. We note that participants used more than
one device and browser to debug their solution. 38 out of 48 students used Android
devices such as Samsung phones (s3, s4 and s5) or Nexus devices (Nexus 7 and 5).
iOS was the second most common platform with 9 students working on iPhones or
iPads. Only one student used a Windows Phone. Moreover, one participant exploited a
convertible laptop to test and develop his application with one device. Chrome was the
most popular browser with 38 students using it during the development of the tasks. 9
students used Safari and 2 Firefox.

To better understand what challenges participants had to face, we asked where they
spent most of their effort. 24 students (50%) stated that most of their effort was spent
in the actual development of the exercise. In contrast, 18 participants (38%) said that
learning how to use the plugin was the most time consuming task to perform. Only six
students (12%) felt that adjusting thresholds took most of their time.
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Figure 3.12: Students’ estimated knowledge of web technologies. Median values. Error
bars represent standard error.

Finally, in Figure 3.13, we can see how participants evaluated the framework in
terms of easiness to use and to learn in a scale from one (hard) to seven (easy). On
average, students agreed that the framework was usable and they did not have any
significant challenges in learning it.

Discussion

The developer study gave us the chance to gather feedback on the framework and test
our solution on a broader set of combination of devices and browsers. Moreover, some
of the feedback received during the study was used to infer further improvements of
Tilt-and-Tap and its wiki.

Although most students had only intermediate knowledge of jQuery, the majority
of our participants successfully completed the exercise and were able to discuss their
solution with the assistants. However, students also reported some issues they experi-
enced during the development of the tasks. The main concern that students expressed
in the questionnaire and during the assessment were related to thresholds. While they
believe that the framework was well structured and easy to use, in some cases, it was
necessary to adjust parameters to better detect gestures. Although TAT was developed
to cater for a broad spectrum of devices and platforms, some combinations were not yet
thoroughly tested before the developer study. Moreover, in 2015, some devices did not
support motion events on any browsers (e.g. Windows Phones and Nexus 7 tablets). In
a later version of the framework, we decided to improve the recognition of jerk tilting
interactions and offer a more consistent implementation among browsers and platforms
(see Section 3.1.1).

Regarding the design of the study, we believe that a group exercise without the
presence of an external observer is a good setup to test a framework. This type of
study gave us the chance to have more participants than a lab study while simulating
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Figure 3.13: Participants ratings of Tilt-and-Tap. Median values. Error bars represent
standard error.

a real case scenario. Web developers often work in small teams and use wikis and
examples to learn a new technology [160]. However, we could not study the learning
curve of the framework, and it was not possible to see how much a single member of
a group contributed to the exercise. On the other hand, in a lab study, the length
and complexity of tasks must be limited for time reasons. Moreover, less experienced
developers could feel intimidated by the researcher while programming.

3.1.4 Competition Study

After participants presented the exercise discussed in Section 3.1.3, Web Engineering
students had the opportunity to participate in a competition study. Students were
required to design and develop an application using our framework. The author of the
best solution was awarded with an iPad. The goal of the study was to evaluate the
power of Tilt-and-Tap in improving creativity in web development.

After the assessment of the TAT exercise, one assistant described the goal of the
competition to Web Engineering students and published the rules and a description
of the competition online. Students had one month to submit their solution to the
assistant. After the deadline, participants were required to show their web application
and justify design choices to a jury composed by assistant and professors. Later, the
participants presented their solutions to the students of the course. Participation in
the competition was not mandatory, and it did not count toward the final grade of
the class. Similarly to the developer study, Web Engineering students were the perfect
candidates for the study since they were already acquainted with the framework and
with web technologies.

We received a total of three submissions that we named as follows: Tilt5, TiltEarth
and MenuTilt. Tilt5 and TiltEarth applied continuous and jerk motion gestures to
games and simulation web applications. With Tilt5 users, could control a character
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Figure 3.14: Screnshots of TiltEarth.

in a racing game by moving their device continuously to the left and the right. Users
could jump using a rapid movement of the device upwards.

In TiltEarth, users could simulate an earthquake by shaking their device (see Fig-
ure 3.14). Continuous tilting gestures would infer the power and movement of the seism
and cause a flood of the lake displayed in the page. In TiltEarth and Tilt5, all motion
interactions were implemented via TAT while the logic of the application was developed
on the client via HTML, CSS and JavaScript languages.

Finally, MenuTilt represents a menu of a restaurant that can be browsed via tilting
interactions (see Figure 3.15). The goal of MenuTilt was to offer an experience similar
to a real physical menu while also presenting some innovative interactions to make the
experience more memorable. Jerk motion gestures and appropriate visual animations
simulate the browsing experience of a physical book. Dishes can be ordered by perform-
ing a hold tap gesture on the corresponding item and tilting the device up and down.
When the user performs a counterclockwise jerk interaction, pictures of the dishes will
be displayed. These images can be browsed via continuous tilting gestures. MenuTilt
employed Tilt-and-Tap for the recognition of motion interactions, and AngularJS4 for
front-end development.

The jury, unanimously, awarded MenuTilt as the winner since not only was the
most complex application, but it was also created around motion gestures to create an
interactive and memorable experience.

3.2 Tilt-and-Tap 2.0

With TAT we were able to initiate our research in enlarging the set of possible inter-
actions on the web by supporting tilting gestures. Although TAT offered the two most
common motion interactions (jerk and continuous), other variants of tilting gestures
were not taken into consideration. For instance, TAT does not differentiate between
position and velocity-based implementations. With velocity-based continuous interac-

4AngularJS website: https://angularjs.org. Accessed on April 2018.



3.2. Tilt-and-Tap 2.0 63

Figure 3.15: Screnshots of MenuTilt.

tions, the more the device is tilted, the faster the system will scroll a list of elements. In
contrast, in position-based solutions there is a direct mapping between the orientation
of the device and the position of a cursor on the screen. As stated by Teather and
MacKenzie [205], both approaches take into consideration the orientation of the device
but yield two different user experiences. Moreover, both techniques can be influenced
by a number of parameters such as the speed of the movement and possible triggers
to activate the gesture. For these reasons, we extended TAT to support a broader
set of possible continuous motion gestures to understand which tilting interaction is
most suited to the web and in which context. This second version of our framework
is called Tilt-and-Tap 2.0. In Section 3.2.1, we start by discussing the main concepts
behind TAT 2.0 and present implementation details of each variant we proposed. In
Section 3.2.2 we present the architecture of TAT 2.0 Finally, in Section 3.2.3 we conclude
with some final remarks.

3.2.1 Concepts and Example Usage

Similar to TAT, the extended version supports one-dimensional and two-dimension- al
continuous motion gestures. In one-dimensional cases, users move the device vertically
or horizontally and scroll the viewport only in the corresponding axes. In contrast, in
two-dimensional cases, an indicator will move in the entire viewport allowing the user
to browse the web page on the vertical and horizontal axis. In Figure 3.16, we can see
an example use of TAT 2.0 for 1D and 2D cases. In both examples, continuous tilting
gestures are used to browse and select pictures. In the one-dimensional case, pictures
are displayed in a horizontal one-dimensional list. Instead, in the two-dimensional case,
images are in a grid across the entire web page. In both scenarios, when the cursor is
inside an element, a blue border will be displayed.
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Two-dimensionalOne-dimensional

<script>
var framework = new TiltAndTap(); 
\\ twoD for 2D cases
framework.oneD( 
styleball, 
container,  
moveType, 
onEnter, 
onExit, 
touch);
</script>

<script src="tiltandtap20.js"><script>
<div id=“container">
<div id="gallery">

<img src="image1">
...
<img src="image_z">

</div>
</div>

HTML

JavaScript
var moveType = {
name : name, //Name of movement.
//Only 1D
imageSelector : “viewportMap”,
//Only 1D
direction: “horizontal”
settings : {

moveData: {
//parameters here depend on movement},

zone: {
//Vertical movement threshold
vertical: [-10,10], 
//Horizontal movement threshold
horizontal: [-15,15],}}

};

Figure 3.16: Example use of TAT 2.0 for one dimensional and two dimensional scenarios.
Developers can specify the desired case by using the right keyword (oneD or twoD).
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Movement Type Dimension
Constant Move 1 and 2D
Static Acceleration 1 and 2D
Dynamic Acceleration 1 and 2D
Mapped Container 1 and 2D
Balance Board 1 and 2D
Two Zones 1D
Map Slider 1D

Table 3.1: List of Movement Types and their supported dimensional cases.

To reproduce this behaviour, TAT 2.0 has to be included in the web application,
and developers need to create an instance of the framework in a JS script as shown in
Figure 3.16. At this point, a number of parameters have to be passed to the TAT 2.0
instance such as the callback function to be called once the ball selects an de-select
an element (onenter and onexit variables), the style of the indicator (styleball),
eventual combination of touch interactions (passed as Strings via the touch parameter)
and the moveType variable. The moveType variable represents the type of movement
developers want for their applications. TAT 2.0 supports a number of different variants
of continuous tilting gestures for both one-dimensional and two-dimensional cases. We
call these solutions movement types which differ in terms of offered user experience. In
Table 3.1, we list the supported movement types. Some movements are shared between
1D and 2D scenarios while others are available only for one-dimensional cases. We
discuss in detail each of these movements and the corresponding moveType parameter
of TAT 2.0 in the following sections.

Independent of the type of movement and by whether 1D or 2D, the moveType

variable requires the specification of the following parameters: the name of the movement
type in a String format and the specification of the dead zone. We define the dead
zone, as the orientation of the device in which no movements will be triggered. In
the example of Figure 3.16, movements of the device that happen between -10 and 10
degrees on the vertical axis will not be recognised as a movement by the framework in
which case the indicator will remain in its position.

TAT 2.0 allows developers to decide which element the indicator will select depend-
ing on its position. Figure 3.17 shows an abstract representation of the three approaches
supported by the framework. In 1D cases, developers can decide to place the indicator
at the centre of the device and always select the image in the middle of the viewport
(see Figure 3.17 (a)). This can be defined by setting the parameter imageSelector to
centerSelector. By default, this parameter is set to viewportMap. In this condition,
the ball is free to move and its position infers the which element is selected among only
the ones currently visible in the viewport (see Figure 3.17 (b)). We also support the
imageMap solution where we partition the slider where the ball into pieces. Each of
these pieces corresponds to every element in the gallery. Depending on which partition
the ball is in we determine the selected image (see Figure 3.17 (c)). It is important to
note, that if developers want to use the imageMap solution, only a subset of movements
are available for this option. We discuss details about this context in the following
sections. The axis of the movement can be chosen by the direction parameter. This
variable can be set to horizontal or vertical depending on developers needs.
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Figure 3.17: Abstract representation of the three selection solutions supported by
TAT 2.0.
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var moveType = {
name : ConstantMove, 
settings : {

moveData: {
speed: 5

},
zone: {…}

};

Constant Move
var moveType = {
name : StaticAcceleration, 
settings : {

moveData: {
speed: 5, 
factor: 0.5

},
zone: {…}

};

Static Acceleration

var moveType = {
name : DynAcceleration, 
settings : {

moveData: {
type:“acceleration“

},
zone: {…}

};

Dynamic Acceleration

Figure 3.18: Code snippet of the moveType variable.

Constant Move, Static Acceleration and Dynamic Acceleration

The Constant Move, Static Acceleration and Dynamic Acceleration movement types
can be used in 1 and 2D cases. In Figure 3.18, we can see how developers can use these
three solutions. As the name suggests, in Constant Move we use a constant speed when
outside a dead zone. In this solution, the orientation of the device only infers where
the movement of the viewport and the ball (if any indicators are involved) will go and
not their speed which is fixed and predefined by the developers. The speed can be set
via its corresponding parameter speed. This variable must be an integer number from
1 to 100. The bigger the speed parameter is, the faster the movement will be.

Conceptually, we applied this type of motion gestures to the action of pressing
physical arrow-keys on a keyboard. Tilting the device to the right corresponds to
pressing the right key down instead, moving the device in its initial space inside the
dead zone, corresponds to a key up event. For this reason, in 2D dimensional scenarios,
these three movements will move the ball only in eight directions: up, down, right, left,
north-east and west, south-east and west.

With the Static Acceleration movement type, when outside the dead zone, we apply
an acceleration factor to the speed defined by the developer (see Figure 3.18). Also in
this case, the orientation of the device only decides the direction of the movement and
not its speed. In contrast with Constant Move, with the Static Acceleration movement
type, over time, we speed up the movement of the ball by a factor defined by the
developer. Also in this case, the ball can only move in above mentioned eight directions.

Finally, with the Dynamic Acceleration movement type, we directly map the data
received from the sensors to the movement of the viewport and the ball. In this case,
developers can decide to use the acceleration data or the accelerationIncluding-
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var moveType = {
name : BalanceBoard, 
settings : {
zone: {…}
}

};

Balance Board
var moveType = {
name : MappedContainer, 
settings : {
zone: {…}
}

};

Mapped Container

Figure 3.19: Code snippet of the moveType variable.

Gravity returned by the DeviceMotionChange event. In contrast with Static Accelera-
tion, the Dynamic Acceleration speeds the ball depending on how fast the user tilts the
device. Also with this movement type, the ball is free to move only in eight directions.

Balance Board and Mapped Container

The Balance Board movement is inspired by the Marble Maze game5. In this game, a
marble is positioned in a box with holes and obstacles. Users can move the ball in the
box by tilting the container with a knob. The goal of the game is to move the ball in
the box to reach an end point. In our context, the device is the box that the user can
tilt by moving it in the desired direction. As in the Marble game, the ball will move
faster if the device is tilted in a rapid manner. Balance Board allows the indicator to
move in any direction depending on the orientation of the device. Our Balance Board
solution was inspired by the velocity-based tilting interaction proposed by Teather and
MacKenzie [205]. In contrast to their solution, we do not require the user to hold the
device parallel to the ground. In our approach, the user is free to interact with the
device in any holding position they desire.

We support position-based solutions for continuous tilting interactions with the
Mapped Container. Where the orientation of the device to a specific position of the
indicator in the box. Also with the Mapped Container movement type, the ball is
free to move in any direction similar to Balance Board. However, the two movements
offer different user experiences. While with the Balance Board movement the ball
continuously moves from one position to another, with the Mapped Container the ball
jumps from one position to another depending on the orientation of the device. In
1D scenarios, developers can use the Mapped Cointainer movement only if they set
the parameter imageSelector to imageMap. In Figure 3.19 we can see the code that
developers needs to specify to use the two movements.

Two Zones and Map Slider

The Two Types movement type allows developers to combine two different movements.
The viewport and the ball (if present) will move using the first type of movement defined
by the variable, until passing a threshold (see Figure 3.20). At this point, the movement
behaviour will change following the second desired movement type. In one-dimensional

5Marble Maze game video: https://goo.gl/UDM8Tb. Accessed on May 2018.
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cases, if the developer has set the parameter imageSelector to imageMap, the Mapped
Slider movement becomes available and can be employed as shown in Figure 3.20. Every
position of the ball is mapped to a specific element in the list and the movement of
the ball is defined by the movement type passed in the moveName parameter. In the
example shown in Figure 3.20, the desired solution is Constant Move.

var moveType = {
name : TwoTypes, 
settings : {
moveData { 

speed: 5,
factor: 0.5,
first : ConstantMove,
second: DynAcceleration

}
zone: {
vertical  : [-10,10] [-50,50],
horizontal: [-10,10] [-50,50]}
}

};

Two Types
var moveType = {
name : MapSlider,
imageSelector: imageMap
settings : {
moveData { 

speed: 5,
move: ConstantMove

}
zone: {…}

};

Map Slider

Figure 3.20: Code snippet of the moveType variable.

3.2.2 Architecture

One goal of TAT 2.0 was to support a broad set of interactions and allow developers
to further extend these continuous motion gestures in the future. For these reasons,
the framework was developed to have high maintainability by employing a strategy
design pattern. We identified five different modules with different responsibilities (see
Figure 3.21).

The Controller module performs preprocessing tasks such as filtering data from
the sensors, creating the necessary data structure to allow the interactions and keeping
track of elements influenced by orientation events. Moreover, the Controller checks if
an indicator is used, checks if it moves within its boundaries and executes the onEnter

and onExit functions when an element is selected.
The MotionEvents component manages the motion and touch event listeners and

handles the calibration by setting as the initial state of the device its first orientation.
MotionEvents also handles the initialization of the various movements by using the
function setMoveType which processes the moveType data defined by the developer.
The class MoveType is extended by the two modules Movements1D and Movements2D

that defines the behaviour of the various movement for 1 and 2D scenarios.
This architecture gave us the chance to add new movement types to the framework

easily. In this solution, movement types are decoupled by other responsibilities and
independent from the application from the application in use.

Also Tilt-and-Tap 2.0 does not need jQuery or any other plugins and it is imple-
mented by using only plain JavaScript.
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Figure 3.21: Architecture of TAT 2.0.

3.2.3 Discussion

In contrast to TAT, Tilt-and-Tap 2.0 offers a broader set of continuous tilting gestures.
While we did not carry out an evaluation study in single device scenarios, in Section 4.3
we present a user study where we evaluated the gestures supported by TAT 2.0 in cross-
device environments. This in contrast with previous works that mainly studied these
interactions only to control a single smartphone.

We recognise that TAT 2.0 is more complex to use than its predecessor. However,
the extended framework offers a higher number of interactions that can be influenced
by a multitude of parameters. Although the number of combinations can feel over-
whelming, the majority of the available options can be omitted. If developers are keen
to experiment with alternatives they are free to adjust the parameters as desired, how-
ever, these options are not mandatory. The framework supports default behaviours for
each movement type in both dimensional cases. For this reason, we believe that TAT
offers a good trade-off between the number of available features and its usability.

As discussed in this section, movement types were inspired by previous works in the
field of continuous tilting gestures [205, 23, 179]. These solutions were empirically tested
on the web and then adapted to improve their user experience. Moreover, initially,
the framework supported a larger number of interactions that, after empirical tests,
were later discarded. For instance, the Two Zones movement type was also applied
in two-dimensional cases. We discarded this approach since we found it particularly
cumbersome to perform in 2D scenarios and, therefore, it was not included in the final
set of available interactions.
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3.3 WP-TAT

TAT and TAT 2.0 represented the first steps in enlarging the set of possible motion-
based interactions on the web. The main goal of these projects was to encourage
developers to add tilting interactions on their web applications by offering a high-level
set of easy to use APIs that manage sensor data and deal with browser incompatibility
issues. As a next step, we also wanted to support end-users by providing a visual
tool for the rapid customisation of motion interactions on their web applications. To
reach this goal, we developed WP-TAT, a WordPress extension that enables users with
no programming skills to integrate combinations of touch and tilting gestures in their
WordPress website.

In Section 3.3.1, we start by discussing the main concepts of WP-TAT. Details about
the architecture and implementation of the WordPress extension will be presented in
Section 3.3.2. In Section 3.3.3, we discuss a number of example applications developed
using WP-TAT. To better understand the usability and power of the tool, we conducted
a preliminary user study that we present in Section 3.3.4. Finally, we provide some
concluding remarks in Section 3.3.5.

3.3.1 The Tool

Although WordPress offers users the opportunity to set up a simple website quickly,
the CMS does not offer the opportunity to add any alternative forms of interaction. To
bridge this gap, we developed WP-TAT, a WordPress extension that allows end-users to
experiment with tilting gestures in their website. With WP-TAT, users can associate
global actions to motion gestures via a visual interface. We define global actions as
actions that globally affect the entire website. For example, a tilt of the device to the
right or to the left can redirect the user to the next or previous post of the website.
Currently, WP-TAT supports the following global actions:

1. Run custom JavaScript

2. Press a button

3. Redirect to URL

4. Go to next or previous page or post

5. Press the browser back button

6. Search Google for user-selected text

7. Search Google Maps for the user-selected text

Users can associate each global action to one or more jerk motion gestures. WP-
TAT supports all ten jerk tilting interactions available in TAT and all their customizable
options such as combinations of touch gestures, threshold levels, visual, vibration and
sound feedback. Once installed, WP-TAT can accessed via the WordPress dashboard.
In the main page of WP-TAT, a summary of the features offered by the tool is shown
to the user. Moreover, a video presenting jerk tilting gestures is also available in this
page (see Figure 3.22).
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Figure 3.22: Partial screenshots of the WP-TAT tool.
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Figure 3.23: Screnshots of the drag and drop interaction.

At this point, users can start adding tilting gestures by accessing the Block UI
from the main page. The Block UI allows users to associate global actions with tilting
gestures by drag and drop interactions. To evaluate the tool, we also developed a
different visual interface. We named this alternative UI, Classic. The Block and
Classic visual interfaces offer the same features, however, while the Block interface is
more visual, the Classic approach offers a more traditional solution.

As we can notice from Figure 3.22, in the Classic UI approach, gestures and actions
are represented in a textual format and can be customised by clicking on the edit links.
In contrast, in the Block UI solution, global actions are represented as rectangles that
can be dragged and dropped into the desired jerk tilting gesture. For instance, the user
can redirect the website to another URL when the device is tilted down, by dragging
the Redirect to URL global action to the tilt down box. In Figure 3.23, we can see a
visual representation of this example. Once the user drops the global action into the
gesture, a pop-up window will show up asking the user to type the desired URL. At this
point, the rectangle near to the jerk interaction will show the dropped global action,
in this case, the Redirect to URL option with the URL inserted by the owner of the
website. Users can change the URL by clicking on the pen icon on the action box.
Similarly, users can customise the gesture by clicking on the icon in the interaction box
(see Figure 3.24 (a)).

Users can combine tilting interactions with touch gestures via the main page of
WP-TAT. From this page, users can also activate or de-activate an info box. The info
box is a DIV shown in the bottom of the page that displays a summary of the available
interactions (see Figure 3.24 (b)). The owner of the website can define the description
of the gesture by editing the Description for visitors option in the setting of the gesture.
If the user leaves this variable empty, the description of the gesture will be set as the
name of the global action associated to the gesture. The box will be visible once the
user taps on a button on the bottom corner of the webpage. The user can also customise
the colour of the button or its entire CSS class via the global settings of WP-TAT.
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Figure 3.24: Screenshots of the customisable options and info box.

3.3.2 Architecture and Implementation

In Figure 3.25, we show the architecture of our tool. The main script (tat.php) connects
WP-TAT to the hook system offered by WordPress. tat.php uses some helper scripts
that offer functionalities that are shared between the Block and Classic UI. The two
approaches are implemented in the administrative interfaces set of scripts. The
client allows tilting interactions via JavaScript using generated instances of TAT. The
association of gestures and global actions are stored in the gesture custom post type6.
In WordPress, content is generally stored in posts which can be customised via custom
post types. While posts have a specific set of fields (title and content) with custom post
types developers can add more attributes. In WP-TAT, the gesture custom post type
contains the direction of the gesture (i.e. up, down, left, right, south-east and west,
north-east and west, clockwise and counterclockwise), the name of the associated global
action as well as all the properties of the gestures such as thresholds and feedback.

WP Hooks

util.php

Gesture
Custom post type

admin.php
(main page)

Client
gesture_edit.php

gesture_list.phpgesture_blocks.php

tat.php

class 
gesture 

class 
action

Figure 3.25: Graphical representation of the architecture of WP-TAT.

6Custom post type: https://codex.wordpress.org/Post Types. Accessed on May 2018.
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WP-TAT implements a publish-subscribe pattern to associate tilting interactions
with global actions (see Figure 3.26). Once the web page is loaded, we first check if the
client is a touch-enabled device and if it supports the DeviceMotionChange event. If the
device passes this first step, we are then free to extend the set of possible interactions on
the application by adding an instance of Tilt-and-Tap in the header and then attaching
to the body of the page. The proprieties of the instance are overridden by the attributes
defined by the users that are stored in the gesture custom post type. In the header,
we then subscribe to the global actions. Global actions are developed as JavaScript
snippets and added to the desired gestures. At this point, global actions are given as
anonymous callback functions to the publisher-subscriber object.

When the device triggers one of the gestures, TAT will execute the corresponding
callback function. At this step, the callback function will publish an event with the
name of the corresponding jerk interactions (i.e. tilt down). The functions of all global
actions that subscribed to that event will be triggered and executed.

TAT

Publisher
-

Subscriber

Global 
Actions

onTiltDown

Publish Clock Event

Clock Event
Received

Redirect to http:...

Figure 3.26: Visual representation of the event chain for a tilt down gesture.

3.3.3 Example Applications

To evaluate the flexibility of WP-TAT, we developed three diverse web applications that
emulate common types of websites that can be found online. The first application is
AmaTilt, an e-commerce website that reproduces the features of Amazon while offering
motion gestures to browse articles. With AmaTilt, users can search for additional
reviews of the product they are visiting by selecting its name, hold tap on the blue
button in the bottom of the page and then tilting the device to the right (see Figure
3.27). By performing this interaction, users will be redirected to the Google results of
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AmaTilt

Hold tap + tilt right

This website use cookies. Click ok to 
accept

Hold tap + 
tilt down close cookie 

label

Figure 3.27: Screenshots of AmaTilt and its interaction flow to search selected text on
Google.

the selected text. Without tilting gestures, this operation would require the user to
select the text and search for the “web search” action in the pop-up menu. We discuss
on the advantages of using tilting interactions in this and similar contexts in more detail
in Section 3.4.

In AmaTilt, tilting gestures are also used to close and, therefore accept, the privacy
cookies information. Users can perform this action with a hold tap gesture performed
on the blue button and then a tilt down interaction. To apply this behaviour, the owner
of the website should be aware of the ID of the close button of the DIV containing the
privacy alert and then associate this global action to the tilt down gesture. We support
users in this operation by linking a small tutorial on how to get the ID of an element
once they select the Press a button global action.

As a second web application, we developed Tiltify, a website that emulates Spotify7

the popular music gallery application. With Tiltify, users can browse through songs
by tilting the device to the right or to the left. A tilt down gesture will open the
Spotify page or the official website of the current artist. As similarly discussed for
AmaTilt, tilting gestures could improve the user experience when touch gestures would
involve tedious copy-paste interactions. Moreover, tilting gestures could make a music
application more fun to use and to explore.

As a third and last application, we developed ResTilt, a typical restaurant website.
In ResTilt, users can access the reviews of the restaurant in Trip Advisor8 by a hold
tap gesture on the button and then a tilt down jerk tilting interaction. This action

7Spotify website: https://www.spotify.com. Accessed on May 2018.
8Trip Advisor website: https://www.tripadvisor.com. Accessed on May 2018.
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will redirect the user to the Trip Advisor page of the restaurant without requiring any
additional steps. Similarly, users can easily access the Google Maps location of the
restaurant by selecting the address displayed in the contact section of the website and
then tilting the device to the right.

3.3.4 Preliminary User Study

A preliminary qualitative user study was conducted to gather general feedback from
users. We recruited four WordPress users, two males and two females (avg. age 28,
std. 15.5) to perform a series of tasks with the Block and Classic visual interfaces of
WP-TAT. After the completion of the study, we asked participants to answers some
questions in the form of semi-structured oral interviews. All participants of the study
had some knowledge on how to use WordPress. However, none of our users had ever
developed a plugin for the CMS. Among all participants, only one user had background
skills in computer science.

Study Design and Tasks

Participants completed the tasks using a laptop which had already installed WP-TAT.
Users were sited near a desk with the laptop, a mouse and a camera that recorded the
study (all participants agreed to be recorded). In Figure 3.28, we can see the setup of
the evaluation. At the beginning of the study, the researcher briefly explained the tool,
its goals and concepts. However, the participants were not instructed on the interfaces
provided by WP-TAT. As mentioned in the previous section, after users completed the
tasks, a semi-structured oral interview was performed. In this phase, the participant
was asked to discuss the tool in terms of its ease of use and learn, and their overall
opinion of the goals and features of WP-TAT.

Figure 3.28: Set-up of the study.

We designed two sets of tasks: A and B. Both tasks were composed of a series
of sub-tasks that were printed on paper and given to participants at the beginning
of each series. All sub-tasks were designed to allow users to experiment with all the
main features supported by the tool. For this reason, tasks required participants to
associate jerk gestures to global actions, customise parameters of the interaction (i.e.
thresholds, visual or vibration feedback, description etc.) and check the final website.
The interactions were added to a test website that contained mocked data. The order
of the tasks and the interface used (Block or Classic) was shuffled among participants.
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Results

All users were able to complete the tasks with both interfaces and learned how to
use the tool within minutes. During the semi-structured oral interview, the researcher
asked participants which interface they preferred. Three users stated that Block was
their favourite UI. These users found this approach more intuitive and fun to use than
the Classic approach. They also stated that the drag and drop interaction seemed
the appropriate interaction to associate gestures and actions. In this context, one
participant also said that the visual representation of gestures and global actions made
it easier to have a quick overview of the association between the two.

In contrast with these opinions, one participant argued that the “Block UI felt
too much as gamification [...]” and he preferred the soberness of the Classic visual
interface. Overall, all participants appreciated that in the Classic approach all options
were displayed in the same page while, in the Block UI, they had to click on the “edit”
button to see all the parameters of each gesture.

We asked participants to give some general comments on WP-TAT, and therefore,
gathered some feedback on our implemented interfaces. Overall, users suggested only
some minor improvements to our UI such as the necessity of a colour picker to modify
the colour of the visual feedback or the possibility to drag a global action from one
gesture to another.

3.3.5 Discussion

With WP-TAT, we allow end-users to extend their web application with tilting inter-
actions. To use WP-TAT, users are not required to have any particular programming
skills and gestures can be applied by simply using a visual interface. We designed a
number of possible global actions and created three different web applications to show
the potential benefits of motion gestures as well as to demonstrate the flexibility of our
tool. A preliminary user study was carried out to gather qualitative feedback on the
tool and the two proposed interfaces, Block and Classic UI. All participants were able
to learn the tool within minutes, and three out of four users preferred the intuitiveness
of drag and drop interactions to associate gestures and global actions.

One issue of WP-TAT relies on the possible inconstency of tilting interactions among
different websites. In our approach, every user can decide which motion gesture is best
suited to their use cases. This freedom could potentially cause different web applications
to use the same gesture for two different purposes. For instance, some users could decide
that a tilt down interaction is a good way to close and accept the information cookie
label displayed in their website. In contrast, another user could believe that a tilt up
is a better suited gesture for the same action. Such lack of consistency can confuse
users browsing various websites. Although we recognise this issue, we believe that by
providing the user with tools to easily enlarge the set of possible interactions on the
web, the interest in motion gestures might spread and lead browsers to support these
interactions more consistently in the future.

Finally, the experiences gathered with TAT, TAT 2.0 and WP-TAT gave us the
chance to better understand the potential of motion gestures. We discuss our findings
in Section 3.4.
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3.4 Design Observations

Thanks to our tools and frameworks, we were able to quickly experiment with the
use of tilting interactions on many diverse web applications. This knowledge, together
with the feedback received from participants during developer and user studies, gave us
the chance to better understand where tilting gestures could improve the overall web
browsing experience. We empirically drew a series of design observations that could help
future developers and researchers when exploiting motion gestures on mobile devices.

We believe that tilting interactions could make web interactions more rich. However,
they should not replace touch gestures entirely. Motion interactions can be a good
addition to the traditional set of gestures particularly when solo-touch interactions
could potentially fail. For example, nowadays web applications are required to inform
users that cookies are used by the website9. Commonly, this information is shown
in the form of an alert box on the top or bottom of the web page (see Figure 3.29).
At this point, users can hide this information box by clicking on an “ok” or “close”
button. This information box needs to be visible, however, it should not hide too much
content.Buttons could be hard to reach and tap if too small and placed too high (or
too low) in a page. These issues can be particularly problematic when using big phones
or tablets. In this contexts, users cannot always reach all sections of a page with the
hand holding the device. In such cases, tilting interactions could be a valid alternative
to touch gestures. A rapid tilt of the device in some direction could offer a better user
experience than trying to reach and tap a small button. Further, motion gestures have
the advantage that they do not require the user to change their hand position when
holding the device. Overall, tilting interactions can be suited when, for specific design
choices, UI elements are too small or placed in positions that are hard to reach with
the thumb.

Moreover, motion gestures could be exploited to perform actions that would require
several steps with touch interactions. As developed in AmaTilt, Tiltify and ResTilt (see
Section 3.3.3), tilting gestures can be used as short-cuts to perform more operations at
once. For instance, motion interactions can be used to search the currently selected text
on Google, or find a physical location on Maps. Nowadays, browsers show a pop-up
menu when selecting text. Users can browse through this menu to copy, share or do
a Google search of the currently selected text (see Figure 3.30). However, the number
of available options is limited since the menu should not hide the rest of the content
displayed on the page. Adding new options could overcrowd the page with too many
entries and negatively influence the user experience. In contrast, tilting interactions
could offer more options without the need to represent them visually in the page.

Although tilting gestures can offer many advantages in this and other contexts, they
are not free from issues. Motion interactions could be triggered involuntarily by the
user and, for this reason, they should not be employed for sensitive operations. Deleting
emails or buying products online are not good scenarios for these type of gestures. On
the other hand, closing the cookie info box alert or browsing a gallery of pictures could
be more suitable use cases. Moreover, in the Google search and Google maps scenarios,
the number of false positives could be reduced since motion gestures would be triggered
only if text is selected first.

9Protection of personal data: https://goo.gl/r8XJ9C. Accessed on May 2018.
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(a) Label at the bottom with “Ok” button (b) Label at the top with “X” button

Figure 3.29: Two examples of cookie informative labels (highlighted in orange).

Combining tilting gestures with touch interactions could be used to improve the
accuracy of motion interactions [92]. To provide such combinations, a portion of the
screen needs to be dedicated to detect tap and hold tap gestures. While this could hide
some of the content in the website, we can diminish this factor by making the DIV
almost transparent when not touched. On the other hand, this button could capture
the attention of the user, and it could provide an effective way of instructing visitors
on tilting interactions. In fact, another challenge of motion gestures is the necessity
of informing the user that these gestures are available. Since motion interactions are
not yet widespread in browsers, users would not be aware of this possibility. The
button could attract users to interact with it and, once clicked, an informative label can
summarise the available gestures and inform the user about the interactions. However,
we believe that if browsers support motion gestures in the future, the intuitiveness of
these interactions could allow users to learn them easily.
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Figure 3.30: Screenshots of the pop-up menu when text is selected in Chrome.

We continue this discussion on how to best apply tilting gestures on the web in
Section 4, where we also present design observations obtained when exploiting motion
interactions in cross-device applications.

3.5 Discussion

In this chapter, we presented tools to encourage end-users and developers to enlarge the
set of possible motion-based gestures in web applications by exploiting tilting gestures.
Although motion interactions have a number of potential benefits [15, 163, 156], they
have rarely been applied in web applications.

Overall, tilting gestures can be particularly challenging to implement. Given their
nature, motion interactions rely on sensor data that can differ between devices, they
can be developed in many alternatives, and various parameters can influence the final
user experience of the interaction. Moreover, different browsers deal with sensor data
in different ways causing incompatibilities issues between platforms and devices.

With our tools, we wanted to improve the development process of these gestures
and, therefore, allow developers and end-users to experiment with these interactions
on the web. After an analysis of related work on tilting gestures, we categorised these
interactions into two major classes: jerk and continuous motion gestures and developed
Tilt-and-Tap. Each class of interaction can be combined with touch gestures and cus-
tomised by a number of parameters. These set of interactions was later extended with
Tilt-and-Tap 2.0 that offers all main variants of continuous tilting gestures discussed
in literature [205, 23, 179]. Furthermore, we used TAT to encourage end-users in ex-
ploiting tilting interactions in their web application by offering WP-TAT, an easy to
use visual interface built on WordPress.

To show the capabilities of our frameworks and tools, we developed a number of
diverse real-case applications and carried out developers and user studies. Furthermore,
we draw a series of design observations on how to use motion gestures on the web.
Finally, the Tilt-and-Tap project gave us the chance to easily experiment with tilting
interactions also in cross-device scenarios and evaluate different motion gestures when
more than one device is involved in the communication. We discuss these findings in
the next chapter.





4
Cross-Tilt-and-Tap

In this Chapter1, we move our research forward and explore the use of tilting interac-
tions in cross-device web applications. Motion gestures could offer a good alternative
to touch interactions when more than one device is involved. For example, waving a
smartphone or a tablet in the direction of another device to share data could provide
an intuitive form of interaction between heterogeneous devices [23]. However, build-
ing such applications raises many challenges. A preliminary user study was carried
out to understand which issues developers have to face when developing cross-device
applications that use tilting gestures. The experience gathered during the study, and
the feedback received from the users gave us the chance to list a series of requirements
to improve the development process of such applications as well as propose a better
user experience. Informed by these findings, we built Cross-Tilt-and-Tap (CTAT)2, a
framework for the rapid development of cross-device applications that exploit motion
gestures.

In this Chapter, we start by presenting the requirement analysis phase and its results
in Section 4.1. In Section 4.2, we present the final framework in terms of its concepts
and example of its use. With CTAT we were also able to evaluate continuous tilting
gestures developed with TAT 2.0 in cross-device scenarios. We report the design and
the findings of the user study in Section 4.3. Finally, we give concluding remarks in
Section 4.4.

4.1 Requirements Analysis

As previously studied in research [23, 16, 45], the use of tilting interactions in cross-
device applications can offer many advantages especially when a mobile device is used
to control a public or semi-public screen. Using motion gestures does not require the
user to touch a potentially dirty display and they offer an intuitive way of remotely

1Earlier versions of parts of this Chapter were originally published as Di Geronimo et al. [56, 53]
2Video showing CTAT main features: https://goo.gl/RRmNPv. Accessed on May 2018.
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Eiffel Tower, Paris, 
France
7 February 2014

Continuously move the device to browse

Tap anywhere to select

Figure 4.1: Screenshots of Tilt-Gallery and its interactions flow.

moving a cursor on a big monitor [23]. However, tilting interactions can be particularly
challenging to implement in cross-device scenarios since gestures have to be recognised,
sent and received on devices of different sizes and platforms.

To better analyse these issues, we developed Tilt-Gallery, a cross-device web ap-
plication that allows users to browse pictures on a public screen by performing motion
gestures on their a mobile device.

Figure 4.1 provides an overview of Tilt-Gallery. In the example, an iPad is used to
remotely control a cursor displayed on a large display. The cursor is moved according
to the orientation and speed of the device. Images are displayed in a grid and, every
time the ball is over one of the pictures, a red border will be displayed on the small
device while the image is slightly enlarged on the large screen. To select a picture that
is currently below the cursor, users can tap anywhere in the page on the mobile device.
Once selected, the photo will be shown in full size on the large screen while additional
information about the image will be displayed on the mobile device. In the example
shown in Figure 4.1, an image of the Eiffel Tower is selected, therefore, the date and
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title of the picture are shown on the tablet, while on the large monitor it is displayed
in full size.

Mobile devices can be paired to the large screen by typing the URL of Tilt-Gallery
in a browser. If a mobile device and a screen are already connected to the application,
any other device that connects will not be able to control the large display. On these
clients, we show a mirrored image of what is visible on the large display. However, if
the first mobile device disconnects by closing the application, future connections from
other clients will be allowed.

Tilt-Gallery was developed using the first version of TAT (see Section 3.1) for the
recognition of continuous motion interactions. Node.js and Socket.IO allow the commu-
nication between devices. We developed Tilt-Gallery with three goals in mind. First,
we wanted to study what challenges arise when building applications that run across
devices and use tilting interactions. Second, via a preliminary user study, we wanted
to gather feedback from the user on the scenario envisioned. Finally, the experience
gathered during the development of Tilt-Gallery and the results obtained from the
study would allow us to list a series of requirements for a framework with the goal of
improving the user experience and the development process of such applications. In the
next sections, we present the study conducted on the application, and report on the
requirements drawn.

4.1.1 Study Design and Tasks

To gather feedback from users and evaluate the advantages of using tilting interactions
in cross-device web applications, we carried out a preliminary user study with 12 users
(9 males and 3 females).

During the evaluation, we asked participants to use a mobile device to select pictures
on a larger screen using the Tilt-Gallery application. In the study, users were required
to find and select a series of pictures in the gallery. The task had to be performed in four
different setups: smartphone tilt, smartphone touch, tablet tilt and tablet touch. In the
tilt cases, users could browse the gallery only via continuous motion gestures, while in
the touch version, tilting interactions were disabled and users could only select images
via touch gestures. The size of the images and indicator were scaled accordingly to the
dimension of the mobile device. In the study, we used an iPhone 6 in the smartphone
cases and an iPad Air for the tablet cases. At the end of the four tasks, participants
were asked to rate their experience using the application by filling in a questionnaire.

The structure of the study was organised as follows:

1. The researcher introduced the participant to the study and explain how the ap-
plication works.

2. The participant is required to try the application on a test page using tilt and
touch interactions on the iPhone.

3. The researcher explained the tasks.

4. The participant performs the tasks with smartphone touch.

5. The participant performs the tasks with smartphone tilt.



86 Chapter 4. Cross-Tilt-and-Tap

A A
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Figure 4.2: Classification of areas for the phone and tablet.

6. The participant is required to try the application on a test page using tilt and
touch interactions on the iPad.

7. The participant performs the tasks with tablet touch.

8. The participant performs the tasks with tablet tilt.

9. The participant fills in the questionnaire.

We shuffled the order of tilt and touch tasks, as well as the smartphone and tablet
cases for each participant. The pictures that participants had to select were classified
into two categories, depending on where they were located in the page and, therefore,
on how hard are they are to tap assuming that the device is held in portrait mode. As
shown in Figure 4.2, we defined areas that are hard as class A, in contrast, the areas
labelled with the B class are more comfortable to reach [219]. For the mobile tilt and
touch, users were required to search and select nine pictures (three for each zone). In
the case of the tablet, participants had to select eight images (two for each zone). The
set of pictures were different for each task.

Figure 4.3 shows the setup of the study. A 24 inch TV was placed on a desk, and was
used as the larger display of the evaluation. Near to the screen, a laptop was placed to

Figure 4.3: Set-up of the study.
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show the picture users had to search for and select in the gallery. Every time the correct
image was selected, the researcher show the next picture to be found on the laptop.
Users were seated circa 1.50 meter away from the screen during the study. In a real
case scenario, users would most probably be standing since semi and public-displays
are usually hung on a wall. However, since participants had to use the application for
an extended period, we decided to let them be seated during the evaluation to lower
possible discomfort. Participants were recorded during the study and times were logged.

4.1.2 Results and Discussion

At the end of the study, we asked participants to rate their experience of using tilting
interactions on tablets and phones. Figure 4.4, shows the users’ feedback on five different
factors: enjoyability, easiness to use and learn, efficiency and, finally, on how demanding
motion interactions were when compared to solo-touch gestures.

Overall, participants found tilting interactions enjoyable to use. However, we note a
difference between tablet and smartphone tilt tasks. 80% of our users agreed or strongly
agreed that tilting interactions were enjoyable to use on the smartphones, instead, on
tablets, 70% of our participants were of the same opinion. We can find this difference
also in the easiness to use rating. 70% of our users found tilting interactions easy or
very easy to use on phones, in contrast, only 50% of them found them easy to use on
tablets. This trend is also found on the efficiency of the gesture. 40% did not find
tilting gestures efficient on tablets, while on smartphones, only 20% of our participants
had the same opinion. Similarly, 50% of users felt that tilting gestures were less or as
demanding as touch when using the iPhone, while in tablet tasks, 59% felt the same.

We speculate that the differences between tablet and smartphone ratings were in-
fluenced by the velocity of the cursor selecting pictures. In both tasks, the speed of the
ball was kept the same. The indicator moved only according to the orientation, and
the rotation speed of the device and no additional acceleration were applied. For this
reason, to move the ball to the desired location, users had to tilt the device more in tab-
let tasks than in smartphone tasks. We asked participants to comment on this factor,
and some users felt that the ball was slower during the tablet tasks than in smartphone
tasks. However, other participants discussed that they preferred using motion gestures
on tablets since its form factor gave them more control over the indicator.

In terms of timing, participants needed around 7 seconds to find and select one image
(59.45 avg. total time per task). This time was similar and not statistically different
among all four version. Moreover, we did not find any time differences between selecting
pictures located in different areas. Concerning error rates, in mobile tap tasks, a total
of three errors were performed by two participants due to selecting the wrong image.
In mobile tilt, we counted six errors from four users. In all these cases, participants
correctly located the picture but selected the wrong one due to overshoots. Similarly,
in tablet tilt, four different participants overshot the target a total of five times, while
in tablet touch, no errors were performed.

It is important to note that the main goal of this study was to gather feedback on
our approach and not to compare tilting interactions with touch gestures. As discussed
in Section 3.4, we believe that motion interactions should not entirely replace touch
gestures but instead be used in combination to make web applications more intuitive
and fun to use. Moreover, in cross-device scenarios, such as the one studied in this
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Figure 4.4: Participants ratings of tilting interactions on smartphone and tablet tasks.
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evaluation where a mobile device is used to control a bigger screen, motion gestures
could offer features that are not achievable with solo-touch interactions. For instance,
with tilting gestures, users do not need to focus on their mobile device to interact
with the bigger display. As found in our study, the attention of the user was almost
exclusively on the large screen and not on the iPad or iPhone during tilt tasks. In
contrast, by using touch gestures to select pictures, participants needed to look at the
mobile device more often. One participant stated “ [...] during the tapping I could not
use the TV at all since I would have to search for the image twice.”.

Only one user of our study started by looking at the bigger display in the tablet
touch case, however, after few seconds, he realised that it was not a comfortable way to
select pictures and said “Why look at the TV, I need to select it from the iPad anyways.”

These results motivated us to continue our work on the use of tilting interactions in
cross-device scenarios. The experience we gathered during the creation of Tilt-Gallery
together with the feedback we received from users, gave us the chance to understand
what could improve the development process of cross-device applications. We discuss
these possible improvements in the next section.

4.1.3 From TAT to CTAT

The experience gathered during the development of Tilt-Gallery as well as the feedback
received from the participants of our user studies, gave us the opportunity to draw a
list of requirements of a framework with the goal of improving the development process
and the user experience of such applications.

In terms of development, building applications like Tilt-Gallery requires many steps
as well as the necessity to write repetitive code that could easily lead to errors. To
better understand this issue, we give an overview of how Tilt-Gallery was developed.

As discussed in Section 4.1.1, in our application, we recognise movement of the
device by using our TAT framework and then send messages to the screen via Socket.IO.
Figure 4.5 shows an example instance of Tilt-Gallery when a mobile device (M1) and
a large screen (S1) are connected to the Tilt-Gallery URL. SE represents the Node.js
server that allows the communication between devices, while M2 is a second mobile
device that connects to the URL only after M1. In this case, the application works as
follows:

1. S1 and M1 connect to the Tilt-Gallery URL. We identify which connected client is
a mobile device and which is a screen by looking at which device supports motion
gestures via TAT.

2. At this point, every time M1 returns a movement change, we send the new position
of the cursor to SE, which receives the data and sends it back to M1.

3. When an element is hovered by the cursor from S1, we send a message to SE that
dispatches it to M1 and executes the callback function.

4. When an element is selected from S1, we send another message to SE that dis-
patches it to M1 and executes the callback function.

5. M2 connects. Tilt-Gallery recognise M2 as a mobile device, however, since M1 is
still connected to the application, M2 cannot control the cursor of Tilt-Gallery.
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Figure 4.5: Example execution scenario of Tilt-Gallery.

M2 is presented with a mirrored image of what is displayed on S1. If M1 dis-
connects, Tilt-Gallery checks if there are other mobile devices connected, find M2
and gives it the control of the ball.

On the client, there is no way to easily distinguish the sender and the receiver. The
developer is responsible for recognising the devices and executing the right functions
depending on their roles. More issues arise if other features are added to the application.
For instance, developers might want to show the indicator only on the receiver and not
on the sender. Moreover, they might want to send the movements of the ball only to
one specific receiver and not to all devices that are connected to the same URL. In
these cases, sending messages back and forth from the client to the server and back can
easily confuse the developer. Any additional feature makes the communication more
prone to errors and challenging to develop.

Below, we list four main of features that a framework should offer to improve the
development process of such applications:

1. Automatic recognition of senders and receivers among the connected devices.

2. Automatic execution of callback functions on clients once events are triggered
(e.g. image selected).

3. Hide implementation details on new connections and disconnections of clients.

4. Hide implementation details on the recognition of tilting gestures.

In terms of user experience, during the preliminary study, many participants felt
that tilting interactions were more efficient on phones rather than on tablets and some
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stated that the indicator was too slow on the larger mobile device. TAT was built with
the goal of supporting interactions that would be consistent among different devices
form factors, however, this feature might not be beneficial for tablets in cross-device
scenarios. In this context, since users are focusing on a large screen while moving the
device they could easily feel that the indicator is moving too slowly despite the fact
that they are rotating the tablet quickly.

Taking these points into consideration, we developed CTAT, a framework that auto-
matically recognises the correct senders and receivers of the messages, manages motion
events fired by mobile devices, and avoid the ping-pong exchange of messages between
the client and server. Moreover, as inferred by users’ feedback, CTAT adapts the speed
of the ball accordingly to the size of the screen of the mobile device. In the next sections,
we discuss all the features offered by CTAT and its implementation and architecture
details.

4.2 The Framework

Taking into consideration the requirements listed after the development and study of
Tilt-Gallery challenges, we developed CTAT, a framework for the rapid development of
tilting interactions in cross-device scenarios. In the next sections, We give an overview of
the framework, its architecture and implementation details and present a demonstrator
application to show its capabilities.

4.2.1 Concepts and Example Usage

As supported by TAT, in CTAT, jerk and continuous tilting gestures can be customised
as desired and used in combination with touch interactions. For performance reasons,
we decided to split CTAT into two variants CTATJ (CTAT-Jerk) and CTATC (CTAT-
Continuous). Diminishing the size and the complexity of the framework improves the
performance of the system. However, if developers desire to use both motion gestures,
they are free to use CTATJ and CTATC together.

To give a general overview of CTATJ and CTATC, we present three examples us-
age of the frameworks to show its features. In Figure 4.6, jerk tilting gestures are
used to interact with other devices. In the example, a tilt of the smartphone to the
right will modify the background colour of the laptops, while a tilt to the left will
change the background colour of the tablets. To reproduced this behaviour, after in-
cluding the framework in their application, developers are required to indicate some
parameters for each tilting interaction. In our case, two variables are required, one
for tilt left (stiltleft) and one for tilt right (stiltright). In the example. these
two variables indicate: the sender of the interaction (‘‘smartphone’’), the receiv-
ers (‘‘laptops’’ and ‘‘tablets’’); the desired tilting gesture (‘‘tiltleft’’ and
‘‘tiltright’’) and, finally, the callback function to be called once the interaction has
been performed (‘‘changecolorgreen’’ and ‘‘changecolorred’’). Once these two
variables are defined, they can be passed to the CTATJ instance.

As seen in this example, to target only one device, developers can use the singular
form of a specific category of device (e.g. smartphone), while to target more devices
of the same type they can use the plural form (e.g. laptops, tablets, etc.). CTATJ
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Tilt-Right

Tilt-Left

var stiltleft= {
sender: “smartphone”,
receiver: “laptops”,
tilting: “tiltleft”,
callback: changecolorgreen
}

var stiltright = {
sender: “smartphone”,
receiver: “tablets”,
tilting: “tiltright”,
callback: changecolorred
}

var settings = new Array();
settings[0] = stiltleft;
settings[1] = stilrright;
var ctatj = new 
ctatj(settings);

index.js

Figure 4.6: Example usage of CTATJ.

supports many-to-many interactions, meaning, that more devices can trigger jerk tilting
gestures to one or more receivers. When developers indicate the singular form of a
category, CTAT will target the first device of that category that connected to the URL.
If one device involved in the communication disconnects, the next appropriate client
will be assigned to the interaction. The system detects the category of each client,
and determines the corresponding behaviour. In CTATJ and CTATC, we support
four different types of devices: laptops (and big screens), tablets, smartphones and
smartwatches. We distinguish and categorise clients into these categories based on
their screen resolution. We give more details on how this is detected in Section 4.2.3.

With CTATJ, developers can also exploit cooperative gestures. A cooperative ges-
ture is an interaction performed by more than one device at the same time. In Fig-
ure 4.7, we can see an example of such gesture where the background colour of laptops
and tablets is changed to blue when two smartphones are tilted down at the same
time. As similarly done for the previous example, to reproduce this behaviour, de-
velopers have to define specific settings for each tilting interaction. In our case, only
one variable (‘‘cooptd’’) is necessary. This variable indicates that the senders of
the interaction are ‘‘smartphones’’, the receiver ‘‘tablets’’ and ‘‘laptops’’, the
gesture to be performed is a ‘‘tiltdown’’ interaction and ‘‘changecolorblue’’ is
the callback function. We can distinguish cooperative interaction to not-cooperative by
the ‘‘cooperative’’ setting that, in our case, is set to true.

As seen in this example, developers can target more than one type of device by using
their labels (in singular or plural form) separated by a comma. If developers want to
target all devices as senders or receiver, they can specify the keyword ‘‘all’’ in the
sender and\or receiver setting.
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Cooperative Tilt Down

var cooptd= {
sender: “smartphones”,
receiver: “tablets, laptops”,
tilting: “tiltdown”,
cooperative: “true”,
callback: changecolorblue
}

var ctatj = 
new ctatj(cooptd);

index.js

Figure 4.7: Example usage of CTATJ for cooperative gestures.

Finally, in Figure 4.8, we show an example use of CTATC with or without the use
of TAT 2.0 (index.js and index.js* accordingly). As similarly implemented for Tilt-
Gallery, users can browse a gallery of pictures shown on the bigger display by moving
their mobile phones. The indicator is shown in the form of a ball, and it is displayed
on both devices (laptop and smartphone). Once the indicator is inside an element, the
picture is enlarged on the bigger screen. To reproduce this behaviour without the use
of TAT 2.0, developers are required first to include CTATC in their application and
then define the setting variable to pass to an instance of the framework. As similarly
implemented for CTATJ, the setting variable (settings) must indicate the sender of
the interaction (‘‘smartphone’’), the receiver (‘‘laptop’’) and the elements that
will be selected (‘‘elem’’). If not specified otherwise, the ball will be displayed on
both screens. Alternatively, if developers want to show the ball on only one of the
devices involved in the connection, they can set the variable ball to ‘‘smartphone’’

or ‘‘laptop’’. In contrast with CTATJ, CTATC offers one-to-many interactions,
meaning, that only one device can trigger continuous motion gestures while one or
many can be the receivers of the messages.

With these settings, the ball will move using the balance board behaviour discussed
in Section 3.2. To exploit other forms of continuous interactions, developers can simply
use TAT 2.0 before the creation of the CTATC instance (see Figure 4.8 index.js*). In
this case, the callback functions and the element variable can be directly indicated by
using TAT 2.0.

Overall, CTATJ and CTATC are able to automatically detect and execute callback
functions on the correct senders and receivers indicated by developers. The framework
hides implementation details of motion gestures and automatically manages connec-
tions and disconnections of clients. Moreover, CTATC adapts the speed of the cursor
depending on the size of the devices to improve the user experience. For these reasons,
we fulfil the requirements inferred by the preliminary user study discussed in Section 4.1.



94 Chapter 4. Cross-Tilt-and-Tap

var settings = {
sender: “smartphone”,
receiver: “laptop”,
ball: “laptop”,
elements: “elem”
callback: enlarge
}

var ctatc = 
new ctatc(settings);

index.js

Continuous Tilting

var tat20 = new TiltAndTap();

…
tat20.twoD (styleball, 
styleball,
container,
moveType,
onEnter,
onExit,
touch); 

var settings = {
sender: “smartphone”,
receiver: “laptop”,
}

var ctatc = 
new ctatc(settings);

index.js* (with TAT 2.0)

Figure 4.8: Example usage of CTATC with and without TAT 2.0.
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Figure 4.9: Screenshot of VCTAT.

4.2.2 The VCTAT Tool

With CTAJ and CTATC, developers can easily specify tilting behaviour for their cross-
device applications. As discussed in the previous section, developers are only required
to indicate senders and receivers of a specific motion gesture to extend the interactions
available in their applications. Although this approach allows developers to easily
manage interactions, the number of variables increases with the number of desired
gestures. Since for each interaction, the developer is required to define a variable with
four or more parameters, the code can be repetitive and this could lead to possible
errors. For these reasons, we decided to help developers even further by proposing
VCTAT, a visual tool that automatically generates CTAT objects (see Figure 4.9).

With VCTAT, developers can create CTAT instances by using a user interface.
Devices and connections can be added by using the UI elements on top of the page
(step 1). Four types of clients can be added: big screens (Desktop - Laptop - TV),
tablets, smartphones and smartwatches. Every time a new device is added, it will
be show in the center of the tool and it can be dragged and dropped anywhere in
the page. The device is labelled with the name of its category and a number. This
number is a counter that is increased every time another device of the same category
is added. By clicking on the “Add Connection” button (step 2), developers can specify
all the necessary parameters for the desired connection (sender, receiver, cooperative
flag, tilting interaction, touch gesture and callback function). Once the connection is
saved (step 3), an icon will be displayed to all the devices that are involved in that
connection. If a device is the sender, an up-arrow symbol will be associated to that
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device. In contrast, if a device is the receiver, a down-arrow will be displayed. By
clicking on the icon (step 4), the connection can be modified and saved. This operation
will update all icons. If developers are satisfied with the connections created, they
can click on the Generate Code button (step 5). At this point, the system will show
the CTAT object created. The object can be copied in the clipboard and used in the
application. VCTAT is a client-side application, it does not need external servers and
it is implemented by using JavaScript and HTML.

4.2.3 Architecture and Implementation

As discussed in Section 4.1.3, after the development of Tilt-Gallery and a preliminary
user study, we recognised a series of requirements to improve the development of such
applications. Informed by these requirements we developed CTAT, a framework for the
rapid development of tilting interactions for cross-device applications.

To manage connections among clients and servers, CTAT uses XD-MVC [100], a
cross-device framework developed in our group to manage the exchange of messages
between clients. XD-MVC requires a Node.js server, and it exploits Socket.IO and
Peer.js to create a connection among different devices. When the browsers support
peer-to-peer communication, XD-MVC uses this type of connection to reduce latency.
This factor is particularly crucial for CTAT since a slow response of the clients to tilting
gestures can easily decrease the user experience of these interactions. If peer-to-peer
communications are not supported, XD-MVC will automatically recognise that and
establish client-server communication. While there exist many frameworks similar to
XD-MVC, we picked this technology for its ability to adapt type of communication
(peer to peer or client-server) depending on the platform of the devices.

To use CTAT developers simply need to include it in their dependencies. Other than
this installation, and the use of a Node.js server, no additional frameworks need to be
added on the server or on the client. XD-MVC is directly included in the dependencies
of CTAT and, therefore, the developers can be unaware of its presence.

As mentioned in Section 4.2.1, we distinguish devices into four categories: laptops
(and big screens), tablets, smartphones and smartwatches. We categorise clients by
using thresholds on their screen width and by looking at the browser used. For instance,
all devices with a large screen width and a desktop browser will be categorised in the
laptop class.

To describe the architecture of CTAT and discuss its implementation details we now
present the execution flow of the framework when continuous tilting gestures, performed
on a smartphone, are used to control an indicator on a large display (see Figure 4.10).
In this example, we assume that the large screen is already connected to our application,
while the smartphone is currently connecting to the URL.

When a new client is connected, CTAT recognises its type. If the device is the
sender or the receiver of any tilting interactions, we keep this information and save
the resolution of the client in an object that is stored on the server. This object is
shared and synchronised with all clients involved in the communication. This factor is
particularly important when a device disconnects since CTAT is then responsible for
finding a possible new sender or receiver for the communication. In our example, if
the mobile device disconnects from the application, CTAT finds, among the connected
devices, another smartphone and gives it control of the cursors.
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Figure 4.10: Example of CTATC execution flow with a smartphone as sender and a
laptop as receiver.
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By default, the speed of the cursor is increased according to the dimensions of the
sender. The developer can change this factor via a specific parameter (ball factor).
This behaviour fixes the user experience issue we experienced during the preliminary
user study. It is important to note that with the mapped container movement type, this
factor is not taken into consideration since the ball does not move from one position
to another but it jumps depending on the angle of the device (more detail on this
movement type were discussed in Section 3.2.1). At this point, CTAT manages the
motion events fired from the sender and sends the data to the receiver. For performance
reasons, we send only movements that are bigger than a threshold. Small movements
are filtered to avoid the congestion of the connection. If movements are detected, the
new coordinates of the ball are sent to the receiver. On the laptop, the position of the
ball is calculated by multiplying the ball position received from the sender with the
quotient of the width of the laptop and smartphone. Although senders and receivers
can offer different resolutions, this proportion allows a good match between the two
devices.

When the indicator selects one of the elements, it triggers the associated callback
function. We wrap this event to send a message to the receiver to notify it of the specific
element selected.

4.2.4 Demonstrator Application

As shown in our preliminary user study (see Section 4.1), participants found tilting
gestures fun to use. We believe that this factor can potentially improve user cooperation
when interacting with public and semi-public screens. Motion gestures could mitigate
the problem of poor user engagement of pervasive displays while allowing users to focus
on the bigger screen rather than their phones. Furthermore, tilting interactions do not
require the user to physically touch the display, allowing the screens to be placed almost
everywhere in a room. For these reasons, we decided to exploit the advantages of motion
gestures as well as show the capabilities of our framework by developing aCrossETH,
an advanced cross-device gallery application.

The main goal of applications such as aCrossETH would be to engage users to
interact with semi-public screens that might be available in offices or universities, as
well as promote social interactions among colleagues and friends. The application allows
users to upload, like, dislike and add to favourites pictures on large displays by using
their mobile phones or tablets.

In aCrossETH, different devices have different roles and they show different content
to the user. Figure 4.11 shows the categories of large screens and roles considered by
our application. The sideshow display shows the six most popular pictures. The images
are shown in full size one after the other with a fade animation. The popularity of an
image uploaded by users is calculated by taking into account its freshness, number of
likes and favourites. As shown in Figure 4.11, the slideshow role is taken by a projector
display in social area. Voting screens are smaller displays that shows the most recent
uploaded images in a grid layout. A QR code is shown on both types of large screens
and they can be scanned via mobile phones to allow interactions.

The first mobile device that connects to the aCrossETH application will be assigned
the role of the controller. All the other devices will be assigned the role of viewers.
Figure 4.12 shows the interface users will see on controller and viewer devices. The
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Slideshow-Screen

Mobile-Controller Mobile-Viewer

Voting-Screen

Swipe - Move to 
Select Picture

hold tap + 
tilt down
to vote

Figure 4.11: Different screens and roles of aCrossETH.

controller can browse images that are shown on the voting-screen via continuous tilting
gestures. The selected image will be enlarged on the voting-screen and a blue border will
be displayed on the controller. Both the viewer and the controller will show additional
information (description of the picture, the name of the photographer, and the number
of likes) of the currently selected image. On the viewer, only the currently selected
picture will be displayed. In contrast, the controller has an overview of all images
displayed on the voting-screen.

To like the selected picture, users can hold tap on a specific area of the screen and
tilt the device down. To allow cooperation between viewers and, therefore, to improve
user engagement, if more than one viewer likes the same picture at the same time, the
number of likes is doubled. The more users cooperate, the higher are the chances that
the image will be displayed on the slideshow-screen.

To upload a picture, users can tap on the upload button displayed on the mobile
device. Users can select pictures they have in the gallery of their tablet or phone. Once
the image is selected, aCrossETH will show a preview of the image. At this point, users
can decide to share the picture with other viewers by performing a tilt left gesture (see
Figure 4.13). This interaction will send the image to all devices that are now able to
like or dislike the picture. This information is sent back to the owner of the picture
that is now free to consider these likes and decide to upload the image or not. A tilt
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Description: D-INFK
PH: Amanda Caracas
Votes: 4

Description: D-INFK
PH: Amanda Caracas
Votes: 4

Mobile-Controller Mobile-Viewer

Figure 4.12: Screenshots of aCrossETH when viewed by a mobile-viewer and by a
mobile-controller.

down gesture will send the picture to the voting-screen.
aCrossETH gave us the chance to test the features offered by CTAT. In contrast

with our first attempt made in Tilt-Gallery, experimenting with different interactions
was made easier thanks to the capabilities of our framework.

Upload

tilt left to share
tilt down to upload

Figure 4.13: Upload interaction flow of aCrossETH.

4.3 Cross-device Continuous Movements Evaluation

By using the cross-device features offered by CTAT and the different continuous tilting
interactions variants supported by TAT 2.0, we were able to further evaluate motion in-
teractions. While the gestures supported by TAT 2.0 were inspired by previous research,
these interactions were mainly studied in single devices cases. For instance, researchers



4.3. Cross-device Continuous Movements Evaluation 101

have compared velocity and position-based continuous tilting gestures to browse a 1D
menu [162], or to select elements on a mobile devices [205], however, these interactions
have not yet being evaluated in cross-device scenarios. While position-based solutions
have been proved as better variants of continuous tilting gestures, we wanted to test if
these findings coincide also in cross-device applications.

To reach this goal, we decided to compare three variants of continuous tilting ges-
tures to control an indicator on a large screen remotely. We evaluated constant move,
balance board and mapped container movements type. The study was performed by
14 participants, five males and nine females (average age: 30.2, std.: 8.8).

4.3.1 Study Design and Tasks

As similarly studied by Boring et al. [23], in our study participants were required to
select several elements shown on a large screen by moving a mobile device. During
the study, the display was placed on a desk and the participant was seated two metres
from the screen. As similarly discussed for the preliminary user study of CTAT (see
Section 4.1), we recognise that in a real-case scenario, users would be standing near to
a semi-public or public screen. However, the length of the study could strain the user
and, therefore, influence negatively the result of the study.

The mobile device used by participants was a Huawei smartphone (model: GRA-
L09), and a 30” HP LCD screen (model: LP3065) with a density of 3.96 pixels per
millimetre. We decided to evaluate the three movement types with the device held in
portrait mode. While it would have been interesting to compare the movements in
different states (portrait and landscape), this would have lengthed the duration of the
study considerably. Since users usually held smartphones in portrait mode, we decided
to use this state to study the movements. For this reason, the area where the ball can
be moved is a portrait box with a width of 1100px and a height of 870px. The box and
the ball are displayed on both screens (the mobile phone and the display).

Before the participants started the study, they were explained the goal of the evalu-
ation and described the application users were going to use. After a period of training
on the application and interaction techniques, participants could start with the study
and perform the various tasks.

At the beginning of each task, the ball was located at the centre of the box inside
an orange rectangle. The ball started moving only when users performed a hold tap
gesture on the mobile device. Once the ball moved, a blue rectangle would appear, and
participants were required to select it by moving the device. If the indicator touched
the target element, the colour of the element would change. After the selection was
performed, users had to move the ball back to the orange rectangle to start a new trial.
It is important to note that we did not consider the time to return to the orange box
in the total time to complete the trial.

Participants had to select seven different targets ten times each. As we can notice
from Figure 4.14, we used different target dimensions (50, 75 and 100 pixels) and
distances from the centre. Moreover, we also studied two selection delay variants:
zero (0-s) and one second (1-s). In 0-s tasks, elements were selected as soon as the
ball collided with the target. In this case, the colour of the element will change from
blue (not selected) to green (selected) directly. In contrast, in 1-s tasks, users had
to maintain the position of the ball for one second to select the target. In this case,
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Figure 4.14: Target elements and their distances to the centre of the page. Large: A,
B, E. Medium: C, D, F. Small: G.

when the ball collided with the element, the colour of the target changed from blue to
orange (selecting), and if this state was maintained for one second, the colour would
then change from orange to green (selected). In 0-s tasks, elements were selected as
soon as the ball collided with the target. For this reason, users were not required to
correct overshoot errors. In contrast, in 1-s tasks, if the user selected the right element
but were not able to select it in time, we asked them to correct this error and go back
to the element again until it was correctly selected.

Users could stop the ball from moving in two ways: by falling into a dead zone or
by a touch-up event. As discussed in Section 3.2.1, a dead zone is a threshold under
which the ball will not move. Furthermore, we decided to use hold touch gestures with
continuous tilting interactions to give more control to the user.

Overall, the study considered the following independent variables: 3 Interaction
techniques (constant move, balance board an mapped container), 2 selection delays
(zero and one second), 7 different targets, selected 10 times each. For a total of 420
trials for every participant.

For each user, we shuffled the order of the interaction techniques, the selection
delays and the order of the targets. We logged the trace of the indicator as well as the
timestamp for every main event. Moreover, we recorded the study with a video camera.
After each interaction technique tasks, we asked participants to rate the movement type.
Finally, at the end of the study participants filled in a questionnaire asking personal
background information.
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Figure 4.15: Performance results in terms of: a) Average time to select one element; b)
Average throughput; c) Average path length in pixel/second; d) Average overshoots.
Error bars represent standard errors. The * indicates a statistical significance among
pairs (p<0.05)

4.3.2 Results and Discussion

We compared constant move, balance board and mapped container movement types
under four different measures: the average time to select elements, the throughput, the
number of pixels visited by the ball (path length) and the number of errors performed
by the user (overshoots). In Figure 4.15, we summaries the results we obtained for each
of the four measurements. Figure 4.15 also shows the repeated ANOVA test results
that we executed for each series of tasks.

We calculate the throughput using the following Fitts’ law formula adaptation pro-
posed by Teather and MacKenzie [205].

TP =
ID

MT

ID = log2

( A

W
+ 1

)
(4.1)

We divided the index of difficulty (ID) with the average time of each movement type
(MT). The index of difficulty uses the distance to the target (A) and its width (W).
Since elements A, B, C and D are placed in the corner of the page (see Figure 4.14)
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we defined their width to be infinite and therefore, their ID to be 0. For all the other
elements, we considered their width as the diagonal distance between the centre of the
container and the target.

In 0-s tasks, the mapped container movement type performed better in terms of
time, throughput and path length. The second best continuous tilting variant was
balance board, followed by constant move. Given the nature of 0-s tasks, overshoots
were not possible since an element was considered selected as soon as the ball collided
with the target.

While we see a clear statistical difference between movement types in 0-s tasks, this
factor is less prominent in 1-s cases. Overall, participants were required to be more
precise and, therefore, slower when targets had to be selected for a larger amount of
time. On average, users were 45% faster in 0-s tasks, they visited more pixels in the
page and had higher throughput. Constant move was the interaction technique that
suffered the least in delay tasks. In contrast, the mapped container and the balance
board movement types were considerably worse when users had to select targets for one
second.

Concerning overshoots, we kept track of the number of times users had to re-select
the target element and then divided this number by the total task time for all users.
As we can be seen in Figure 4.15, mapped container was more prone to errors than
balance board and constant speed. No statistical difference was found between balance
board and constant speed. For all four measurements, we did not find any statistical
differences between different element sizes and distances from the centre.

At the end of each task, we asked participants to rate on a scale from one (completely
disagree) to five (completely agree) how efficient, easy to use, easy to learn and enjoyable
the three movement types were. We then ran a Friedman test and, if possible, Wilcoxon
tests on the results obtained from the questionnaire. We summarise these findings in
Figure 4.16.

Mapped container and balance board were perceived as better interaction techniques
than the constant move movement type. Although in terms of performance the three
movements were similar in 1-s tasks, users preferred mapped container and balance
board also when targets had to be selected for one second. However, we noticed some
differences between user ratings in 0-s and 1-s delay questionnaires. In terms of enjoy-
ability, we could find a distinction between the three movements in 0-s tasks: mapped
container was the most preferred movement type, balance board the second and, finally,
constant move was rated as the least preferred interaction. In contrast, in 1-s tasks, we
did not find any statistical differences between balance board and mapped container.
Similarly, mapped container was rated as more efficient than balance board in 0-s tasks;
however, we did not find this distinction when the targets had to be selected for one
second.

At the end of the study, we asked participants to give their opinion on the study and
suggest possible applications where they would like to use continuous tilting interac-
tions. Overall, users stated that the study, and the gestures proposed, were interesting.
Among the proposed applications, participants expressed their interests in using motion
gestures in web browsing or scrolling tasks on their TV. Moreover, users liked the use of
tilting gestures in combination with tap hold interactions, stating that this gave them
more control over the movement. Furthermore, we asked participants to give general
feedback about each movement type. While commenting on the mapped container con-



4.3. Cross-device Continuous Movements Evaluation 105

No stat. dif.

M>B (Z=-3.225,p<0.005)
M>C (Z=-3.225,p<0.005)
B>C (Z=-2.810,p<0.005)

M>B (Z=-2.197,p<0.05)
M>C (Z=-2.276,p<0.05)

M>C (Z=-2.625,p<0.05)
B>C (Z=-2.321,p<0.05)

0 1 2 3 4 5

Enjoyability

Easy to use

Easy to learn

Efficency

User Evaluation for No Selection Delay

Constant Move Balance Board Mapped Container

No stat. dif.

M>B (Z=-2.121,p<0.05)
M>C (Z=-2.156,p<0.05)

M>C (Z=-3.037,p<0.005)
B>C (Z=-2.300,p<0.05)

M>C (Z=-2.419,p<0.05)

0 1 2 3 4 5

Enjoyability

Easy to use

Easy to learn

Efficency

User Evaluation for 1 Sec. Selection Delay

Constant Move Balance Board Mapped Container
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tinuous tilting interaction, users stated: “Fun, makes [me] want to master it [...]”; “[...]
my favourite option because of its efficiency and predictability”. Although mapped con-
tainer did not perform better than balance board in 1-s condition, participants rated
this movement as more enjoyable, efficient and easy to use than the other interaction
techniques.

Similar implementations of our mapped container movement types have already been
shown to be efficient in single device scenario [205]. Our study confirms these findings
also in cross-device environments. However, the performance of mapped container and
balance board dropped drastically when users had to select elements in 1-s tasks. These
results differ with the findings discussed by Teather and MacKenzie [205]. In their study,
mapped container performed better despite a longer delay in selection time.

Given these results, we believe that continuous tilting interactions in cross-device
applications could be better suited to simulate hovering and scrolling actions. Selecting
elements for a prolonged period of time can require too much precision from the user.
Moreover, a small network delay can easily cause overshoots and therefore, negatively
influence the overall user experience.

4.4 Discussion

In this chapter, we presented CTAT, a framework for the rapid development of tilting
interactions in cross-device web applications. CTAT aims at encouraging developers in
using alternative forms of interactions when more and diverse devices are involved in a
communication.

A preliminary user study informed the design of the framework. The feedback
received from participants, as well as experience gathered during the development of
Tilt-Gallery, raised some challenges that we wanted to fix with CTAT. One of the
primary goals of our framework was to allow easy experimentations of tilting gestures
in cross-device scenarios. CTAT drastically diminishes the lines of codes required to
develop tilting gestures, and it automatically adapts the interactions on the size of the
mobile device involved. Furthermore, a visual tool allows users to generate tilt links
among devices, without the need to write any lines of code.

For these reasons, we believe that CTAT could further push researchers in studying
these alternative forms of interactions in cross-device applications.

With CTAT, we were also able to evaluate different variants of continuous tilting
gestures in scenarios not yet studied. As similarly found by researchers [205, 162], our
study shows that mapped container movements perform better than other continuous
interactions. However, in contrast with Teather and MacKenzie results [205], in our
cross-device scenario, we found no statistical differences among movements when targets
had to be selected for a prolonged period of time.
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The number of smart devices that people own is increasing dramatically. As a result,
users often would like to copy data among their smartphones, tablets and laptops. For
instance, users might be browsing the web on their smartphone on a train and would like
to copy a link to their laptop at home in order to continue reading a news article later.
While systems such as iCloud, Dropbox, Google Drive and messaging apps allow users
to share data across their devices, they require the user to copy the desired content,
switch the application window or directory, and then finally paste the data. Overall,
these approaches do not offer a seamless sharing process.

The use of alternative approaches for information sharing tasks has been studied
widely in research. In this context, tilting and mid-air gestures have been proposed
as intuitive ways of interacting in cross-device scenarios [176, 220, 129]. Pointing or
performing a wave gesture toward the desired device, are intuitive interactions for shar-
ing data. An analysis of the research literature, revealed that mid-air gestures are
mainly exploited when devices are physically close to each other. However, as shown
by a survey conducted in our group [52], users do not always carry all their devices
with them. In this scenario, the form of a mid-air gestures cannot be inferred by the
physical proximity of the target device.

For these reasons, we decided to investigate on the use of gestures, typically applied
in physically-aware scenarios, to target remote as well as co-located devices1. We started
our investigation by exploring the use of mid-air gestures to share data across co-located
and not co-located devices. Key questions that we wanted to address were first, how
users would associate mid-air interactions with devices that are remote or co-located
and what mental association users would make in mapping gestures to devices in this
scenario. Second, we were interested in how mid-air gestures would perform when
evaluated against more common interactions such as menu selections, tap or keyboard
shortcuts and speech.

To answer the first question, we carried out an elicitation study with 16 participants

1Earlier versions of parts of this Chapter were originally published as Di Geronimo et al. [54, 55]
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that discussed and suggested a set of mid-air gestures for copyng data among different
devices. The study gave us the chance to understand the associations that users made
to map interactions to co-located and remote devices. Furthermore, we developed Myo-
Share, a tool that allows users to share data among devices via mid-air gestures. As the
name suggests, MyoShare uses the Myo armband to detect mid-air gestures. MyoShare
also offers other forms of interaction techniques (menu selection, tap shortcuts, key-
board shortcuts and speech) that gave us the opportunity to compare mid-air gestures
against them.

In Section 5.1, we start by discussing the design, the tasks and the results obtained
by our elicitation study. We present the main concepts, architecture and implementa-
tion details of MyoShare in Section 5.2. Furthermore, we carried out two user studies
to evaluate mid-air gestures when targeting and sharing data across devices, and we
present the design and the results of these studies in Section 5.3. Finally, we conclude
this chapter with final remarks in Section 5.4.

5.1 Elicitation Study

Via an elicitation study, we wanted to experiment the use of mid-air gestures when
devices are not physically close to one another. Moreover, the results of the study and
the feedback received from users, would inform the design of MyoShare. The elicitation
study addressed the following research questions:

• (RQ1) How do users usually share content (images, links, text) among their
devices?

• (RQ2) What functionality would users like to have in this scenario?

• (RQ3) Which mid-air gestures would users produce to share data across devices
when they are remote or co-located?

• (RQ4) How do users associate the proposed gestures and the devices?

• (RQ5) Does the physical location of the device influence the proposed gestures?

In Section 5.1.1 we discuss the design and tasks of the elicitation study. We present
the gesture set defined by users in Section 5.1.2, where we also report on the reasons
users gave for their suggestions. Finally, in Section 5.1.3, we discuss the results obtained
and report how the elicitation study informed the design of MyoShare.

5.1.1 Study Design and Tasks

The scenario we envisaged for the study was the following: the user is working on
their desktop computer and would like to copy content to their mobile devices. To
simulate this scenario, we asked participants to sit near a desk on which there was
a keyboard with a trackpad; however, no monitors or computers were present (see
Figure 5.1 (a)). We placed one or more mobile devices on the desk depending on the
task to be performed (see Figure 5.1 (b)). We also asked users to wear the Myo armband
on their non-dominant hand to inform participants about the boundaries of the gestures
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(a) Setup for task 1, 2, 3 and 4 (b) Setup for task 6

Figure 5.1: Setup of the elicitation study.

and how the wearable device is able to detect mid-air gestures. However, the wearable
device was turned off. Moreover, to avoid possible biases, we did not present the five
predefined gestures of the Myo armband. A camera placed in front of the desk recorded
the gestures that users proposed and their comments.

As similarly done in other elicitation studies reported in the literature [176, 121, 218],
participants were not required to use any systems and the gestures they performed
during the study did not trigger any actions. Users were encouraged to suggest their own
desired gestures without considering the technical feasibility of the proposed interaction.

At the beginning of the study, the researcher explained the goal of the evaluation
and asked users to fill in a questionnaire about their background and their current
habits when copying data among their personal devices. After participants performed
the six tasks of the study, they filled in a post-task questionnaire with their opinions
about our scenario and on the use of mid-air gestures to target and send data to devices.

To answer the research questions defined above, we considered six tasks. In the
first four tasks, we asked participants to propose gestures to copy an image from their
desktop computer to: smartphone A (task 1); a second smartphone, smartphone B
(task 2); a tablet C (task 3), and to all (broadcast, task 4). In each of these tasks,
we assumed that the devices were not co-located and users did not know their exact
physical location.

For task 5, we placed smartphone A on the desk and asked users to re-define, if
desired, the gesture to copy the image from the desktop computer to the smartphone
on the table. Similarly, in task 6, we placed smartphone B near to smartphone A
(see Figure 5.1 (b)) and asked users to target smartphone B to copy the picture. It
is important to note that we did not shuffle the order of the tasks among participants
intentionally. After the first four tasks, participants had already associated devices to
gestures and, to answer RQ5, we wanted to see if these associations would change if
the devices were then co-located with the user. The scenario of the study and the
description of tasks were printed and given to every participant.

Our study had 16 participants, 3 females and 13 males with an average age of
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Figure 5.2: Tools that participants use to copy content among their devices.

26.8 (std. 4.4). In the background questionnaire, all participants stated that they use
laptops and mobile devices several times per day. However, none of our participants
owned a smartwatch or an armband, and only one user owned a fitness bracelet. While
smartwatches and similar wearable devices are still not highly popular, it is important
to note that the study was conducted in 2016, therefore, this data could be influenced
by the period in which the study was carried out.

5.1.2 Results

In this section, we present the results of our study by first presenting users’ habits when
sharing data across their devices and then discussing the proposed gesture sets and the
reasoning behind the suggested interactions.

User Habits

To tackle research questions RQ1 and RQ2, we asked participants how they currently
copy content from their desktop or laptop computers to their mobile devices. In Fig-
ure 5.2, we can see all the tools users exploit to perform such tasks. Cloud services
such as Dropbox, Google Drive and iCloud are the systems used most to copy data
among devices. Some participants, also use chat or email systems to send data. For
instance, users message themselves or close friends on Messenger2 and WhatsApp3 to
access content on other devices.

We asked users if they feel that being able to target a specific device is an important
feature when performing tasks to share information among their devices. 11 out of 16
participants felt that it is very or fairly important. Despite this need, however, as
we can notice from Figure 5.2, most of the currently used tools only allow broadcast

2Facebook Messenger website: https://www.messenger.com. Accessed on May 2018.
3WhatsApp website: https://www.whatsapp.com. Accessed on May 2018.
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solutions. Copying an image in a cloud directory, or sending the picture on a messaging
system will copy data to all devices.

For these reasons, it is clear that there is a gap between users preferences and
the currently available tools. Although copying resources between devices is a task
performed mainly on a weekly or monthly basis (7 out of 16 participants copy data
weekly, 6 less than on a weekly basis), we believe that these tasks might be performed
less frequently than desired. By using cloud or chat systems, users need to stop their
current workflow, switch app and copy-paste the desired content. The current tools
available require too many steps for a simple copy operation and could discourage users
from sharing content.

Mid-air Gesture Set

A total of 96 gestures (6 tasks for each of the 16 participants) were collected and
classified into different macro-categories. We identified disjointed classes of gestures
for the first three tasks (copy data to remote devices, smartphone A, B and tablet C),
for the fourth task (broadcast data to all devices) and for tasks 5 and 6 (copy data to
co-located devices, smartphone A and B). We manually classified gestures into different
macro-categories by watching the recorded videos taken during the study.

As we can notice from Figure 5.3, for task [1, 2, and 3], we identified four different
classes of gestures: poses, circular, directional and sequential. A pose gesture, is a
static configuration of the hand (see Figure 5.4 (a)). Among all participants, only
one user exploited the use of poses to target devices. Moreover, poses were the only
static gestures proposed [110], all other gestures proposed required some movement of
the hand, arm or fingers. Circular, directional and sequential gestures are all dynamic
interactions [110]. The user who proposed poses for coping data to a target device stated
that the fixed configuration of his hand and fingers simulated keyboard shortcuts that
he uses on a daily basis.

Two participants proposed circular gestures to target and copy data to remote
devices. We defined a circular gesture as an interaction that users perform by drawing an
entire or partial imaginary circle in the air with their arm, hand or fingers (see Figure 5.4
(b)). Participants draw circles in clockwise or counterclowise direction, parallel or
perpendicular to the table to distinguish between the three devices (smartphone A,
smartphone B and tablet C). All participants started by proposing clockwise direction
of the circles to target the first smartphone. Moreover, all participants performed
circular gesture using their arm.

Eight out of 16 users of our study, suggested directional gestures as mid-air interac-
tions for the first three tasks. We defined directional gestures as horizontal or vertical
shifts of the users’ hand or arm. Users exploited different direction of the interaction to
distinguish between the devices. All participants that suggested directional gestures,
mapped smartphone A with an out interaction or perpendicular motion of the hand
towards the shoulder.

For instance, a wave gesture of the user hand will usually start from the left to the
right, if right-handed, and from right to left if left-handed. Users commented that the
importance of the device could influence the direction of the gesture. Mid-air interac-
tions near to the participant dominant hand could indicate the most important device
such as a personal smartphone (see Figure 5.5 task 1). In contrast, gestures towards
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(a) Pose (b) Circular

Figure 5.4: Two examples of suggested gestures.

the non-dominant hand could indicate the least important devices (see Figure 5.5 task
2 and 3).

Five out of 16 participants, proposed sequential interactions for the first three tasks.
We defined a mid-air gesture as a sequential interaction if it was part of a sequence.
For instance, users have a ranking of the devices in their mind and associate numbers
or letters to each target by counting it with their fingers or drawing a number or letter
in the air. As similarly found for directional gestures, users associated smaller numbers
(or letters, e.g. A, B) to more important devices while devices with a lower ranking
were associated with larger numbers.

The majority of our participants (nine out of 16), suggested a finger spread gesture
to send the image to all devices (see Figure 5.3 task 4). Circular gestures, such as
drawing a spiral or complete circle in the air, were proposed by four of our users (see
Figure 5.4 (b) ). The remaining three participants suggested a wave gesture of the hand
in some direction to broadcast the picture. We classified these gestures in the “other”
category. With the first three tasks, we wanted to tackle research questions RQ3 and
RQ4 and, therefore, understand user preferences in mapping mid-air gestures to remote

1 2 3
Figure 5.5: Example of directional gesture for task 1, 2 and 3.
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devices. We considered co-located cases, and tackled RQ5, in the last two tasks. In
task 5 (see Figure 5.3), seven participants decided not to change the gesture proposed
for task 1 (copy image to smartphone A) although, this time, the device was placed on
the desk and therefore, reachable by the user. These participants commented that they
were not keen to learn new gestures for the tasks since their previously proposed mid-air
interactions could work in both co-located and remote scenarios. On the other hand,
the majority of our users proposed new gestures for this task. These new interactions
are similar to the spatially-aware gestures suggested by Rädle et al. [176]. For instance,
users grabbed the device, pointed with their finger towards it or waved their hand in the
direction of the phone. However, when another device was placed close to smartphone
A in task 6, some users changed their mind and reused the gesture proposed for task
2 (see Figure 5.3). Since devices could no longer be distinguishe with the new gestures
defined, three users found the remote interactions more appropriate for completing the
task. The majority of our participants (nine out of 16), suggested a finger spread
gesture to send the image to all devices (see Figure 5.3 task 4). Circular gestures, such
as drawing a spiral or complete circle in the air, were proposed by four of our users (see
Figure 5.4 (b) ). The remaining three participants suggested a wave gesture of the hand
in some direction to broadcast the picture. We classified these gestures in the “other”
category. With the first three tasks, we wanted to tackle research questions RQ3 and
RQ4 and, therefore, understand user preferences in mapping mid-air gestures to remote
devices. We considered co-located cases, and tackled RQ5, in the last two tasks. In
task 5 (see Figure 5.3), seven participants decided not to change the gesture proposed
for task 1 (copy image to smartphone A) although, this time, the device was placed on
the desk and therefore, reachable by the user. These participants commented that they
were not keen to learn new gestures for the tasks since their previously proposed mid-air
interactions could work in both co-located and remote scenarios. On the other hand,
the majority of our users proposed new gestures for this task. These new interactions
are similar to the spatially-aware gestures suggested by Rädle et al. [176]. For instance,
users grabbed the device, pointed with their finger towards it or waved their hand in the
direction of the phone. However, when another device was added near to smartphone A
in task 6, some users changed their mind and reused the gesture proposed for task 2 (see
Figure 5.3). Since devices could not be distinguished any more with the new gestures
defined, three users found the remote interactions more appropriate to complete the
task.

5.1.3 Discussion and Input for MyoShare

All participants were enthusiastic about our envisioned scenario, and all stated that
they would like to use mid-air gestures to share content in the future. Overall, all users
were able to complete the tasks and did not find any particular problems during the
study. These results informed the design of MyoShare.

Among all the mid-air gestures proposed, we picked the most popular interactions
to target and copy data to devices. Since the majority of our participants suggested
gestures in the directional category, we decided to pick these types of interactions to
copy data to a specific device. For broadcast tasks, as suggested by users, we decided
to allow the use of the finger spread gesture.

At the end of the study, we asked participants to propose possible features that
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MyoShare could have. Some users expressed the need to group devices into categories.
For example, users could label one or more smartphones or tablets as work or personal
devices. For this reason, MyoShare allows the registration of devices into groups and
users are then free to map groups to a specific gesture. We also asked participants if
the type of data sent (text, image, video or link) could influence the gesture. Since the
majority of our users did not find this feature relevant, MyoShare does not differentiate
between types of data and the gestures are only influenced by the target device. In the
next sections, we will discuss more details of the features offered by MyoShare and how
directional mid-air gestures performed against more common interaction techniques
such as menu selections, tap or keyboard shortcuts and speech.

5.2 The System

MyoShare is a system that allows users to select content on web applications and per-
form mid-air gestures to send data to co-located or remote devices. MyoShare also
offers other interaction techniques (menu selection, speech, shortcuts, Leap gestures
and tilting interactions) to target and copy content among devices. With MyoShare,
users are free to map their desired interaction to a single device or a group of devices.
After selecting images, text, videos, links or phone numbers, users can copy the data to
devices by performing the associated gesture to them. MyoShare is able to distinguish
different types of content and allow special actions for each category. For instance, if a
phone number was selected and sent to a smartphone, once the user accesses this data
on the target device by simply clicking on the item, MyoShare will redirect the user to
the phone dialogue with the number already copied and ready to be used.

Our system is composed of four main components: an Android application that
allows users to send data (via a web view) and to browse content received by other
devices; a Chrome extension to send data from desktop computers, a web application,
and a central server.

In Section 5.2.1, we present our cross-scenario in detail and discuss the advantages
of MyoShare. In Section 5.2.2, we describe our approach by showing the mobile and
desktop applications from the user perspective. Finally, in Section 5.2.3, we present the
architecture and implementation details of our system.

5.2.1 Scenario

The scenario that we envisaged when studying the use of mid-air gestures in cross-device
web applications can be summarised as follows:

Maria is a web designer, and she is using her desktop computer at work
when she finds the website of an artist that she likes. The website contains
some pictures of some of the artists’ latest works, text describing the bio-
graphy of the author and contact information. Maria would like to read
the biography later at home and, therefore, selects the link of the web page
and performs a wave-out gesture to target her personal desktop computer at
home. Maria also found the artists’ latest works inspiring, and she thinks
that this might give her some ideas for her next project. For this reason,
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Maddalena Cilione,fb
Phone Number:

+3984851822
Email: cilione@gmail.com

Select Send

Figure 5.6: Visual representation of the MyoShare system when an image is selected on
a laptop and sent to all devices via a finger-spread interaction.

Maria selects the pictures she wants to access later, and performs a finger-
spread gesture to broadcast the image to all her devices. Finally, Maria
wants to contact the artist to ask further information on their work. Maria
selects the phone number in the page and performs a wave-in gesture to send
this content to her smartphone. At this point, a notification will appear on
the mobile phone. Maria clicks on the notification and sees the number
shared. By clicking on the number, the system redirects Maria to the phone
dialogue of the mobile device.

In Figure 5.6, we visually represent some parts of the scenario discussed above. As
discussed in Section 5.1.2, currently users often send emails to themselves or send mes-
sages to some of their friends on Messager or WhatsApp to copy content. Alternatively,
cloud applications are also used to perform such tasks. Although all these methods allow
users to access data across different devices, they were not made with these scenarios
in mind. For this reason, they require the user to stop their current workflow, copy the
desired data, open the messaging app or cloud directory and, finally, paste the content.
In contrast with these solutions, MyoShare allows users to send data without the ne-
cessity to open other windows or folders. It, therefore, offers an unobtrusive and fast
way to share data while minimising possible loss of concentration.

5.2.2 Approach

As introduced at the beginning of this chapter, MyoShare involves the use of a Chrome
extension, and an Android and a web application. In this section, we will introduce
each of these components from the user perspective, following the interaction flow of the
scenario discussed above: users select data from the source device, perform the desired
interaction and then access the copied content on the target device. Some of the features
offered by MyoShare were informed by the feedback we received from participants of
the elicitation study (see Section 5.1.3). We discuss and motivate these functionalities
in the next sections.
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(a) Login (b) Groups

Figure 5.7: Login phase and group creations on the MyoShare Android application.

Setup and Content Selection

Via a login phase, MyoShare is capable of storing user preferences on the mapping
between devices and interactions, as well as all the devices owned and registered by
users. When the MyoShare Android app is launched for the first time on a user’s phone
or tablet, it asks the users to login or to create a new account (see Figure 5.7 (a)).
Additionally, the system asks the user to name the current device. For instance, in
Figure 5.7 (b), the user names the device “Smartphone” and associates it with the
“Personal” category via the setting page of the App. The Android application acts as a
regular browser that is extended with additional features of MyoShare. Users can enter
URLs or keywords for Google search using the blue address bar on top of the page,
while the settings of MyoShare can be accessed by tapping on the menu on the top left
of the page (black circle in Figure 5.8). On desktop computers, users need to first add
the MyoShare extension and then enter their username and password. Moreover, users
have to set ON in the extension (see Figure 5.9).

At this point, users are free to select and send content. MyoShare allows users to

Figure 5.8: Screenshot of the Android application while browsing a web page.
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Figure 5.9: Partial screenshot of the MyoShare Chrome extension.

select plain text, links, pictures, videos and the URL of the currently visited web page.
On desktop computers, users can select plain text using click and drag interactions.
Once some text is selected, this will be highlighted in blue, and a “plain text” label
will appear near to the content (see Figure 5.10). If the selected text contains a phone
number, the label will inform the user that the selected text is a phone number. No
additional confirmations from the user are needed. A long left click can also select phone
numbers. Users can deselect the content by using the ESC key of their keyboard, or by
clicking on the “X” button in the label. Similarly, on mobile devices, users can select
plain text via tap and drag interactions. Via hold tap gestures, users can select images,
videos and links. In contrast with the desktop solution, on the mobile device, no labels
are shown to avoid cluttering the screen. A double tap anywhere on the display will
deselect any content.

On desktop computers, to select links, images and videos, users are required to
perform a long left click on the desired content. While a simple right click could have
been a nice alternative for this type of interaction, unfortunately, it is not possible to
extend the default behaviour of the browser when the user right clicks in the web page.

As we can see from Figure 5.10, a blue icon in the bottom right of the website is
shown to the user. This icon is also available in the Android app, and it is displayed
near to the address bar (orange circle in Figure 5.8). This icon allows users to select
the current URL of the page. By clicking on the icon, the system will copy the URL in
the clipboard.
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Plain Text

Link

Image

Image

Figure 5.10: Content selection on a desktop computer. Text is zoomed for readability
purposes.

Interaction Techniques

Once the desired content is selected, users are free to perform the interaction and copy
the data to a device or group of devices. Once the desired content is selected, users
are free to perform the interaction and copy the data to a device or group of devices.
To map interactions and devices, users can open the Chrome extension on desktop
computers by clicking on the Myo icon close to the address bar. MyoShare will show a
list of available interaction technique and their mapping to the registered devices of the
user (see Figure 5.9). Similarly, in the Android application, these settings are available
by going to the settings page. The mapping between gestures and interactions is saved
globally, meaning that the association will be used for every registered phone, desktop
or tablet. We will now present each available technique. It is important to note that
while we have compared mid-air gestures only to a subset of the following interactions,
we will present all the studied techniques.

• Myo Gestures

As the name suggests, Myo gestures are mid-air interactions made available via
the Myo armband. To use these gestures, users are required to wear the armband
and perform the sync gesture of the Myo. The sync gesture is a long wave-out of
the user’s arm. An icon in the Chrome extension will indicate the state of the Myo
(“Off”, “Sync”, “On”). Similarly, on the Android application, a green (on), red
(synching) or grey (off) icon will indicate the state of the armband. As we can see
from Figure 5.9, users can associate devices or group of devices to the gestures.
Once the gesture is performed, MyoShare will show a label informing the user
that the data has been sent and to which device. These labels will be shown for
all the interaction techniques. By default, we associate the first registered device
or group of devices to the wave-out gesture. This design choice was influenced by
the findings of our elicitation study where people preferred directional gestures
to target remote devices, and started suggesting out gestures to identify most
relevant phones (see Section 5.1.3). For the same reason, we associate the finger-
spread interaction to the broadcast action. The other available gestures are wave-
in, fist and double tap. All associations of gestures and devices can be changed
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Figure 5.11: Screenshot of MyoShare Android application when tap shortcuts are used
as the interaction technique.

via the settings page on the Android application and the Chrome extension on
desktop computers.

• Shortcuts

On desktop computers, users can associate devices or group of devices with key-
board shortcuts. For instance, a SHIFT+1 combination of keys could send the
selected data to the smartphone of the user and a SHIFT+A (A for all) could
share the content to all the registered devices. On the Android applications, we
emulate keyboard shortcuts with tap shortcuts. When the user selects this type
of interaction technique, a blue rectangle square appears on the bottom right of
the page (see Figure 5.11). The number of taps performed will infer the desired
target device. For example, one tap could be mapped to the smartphone of the
user, two taps to a tablet, and three taps could broadcast the data to all.

By default, we associate the lower rankings (SHIFT+1, and one tap) to the first
registered device. Higher numbers of taps or number on the keyboard are associ-
ated with the least important devices. This design choice was also made by taking
into considerations user feedback in the elicitation study. By default, we associate
the lower rankings (SHIFT+1, and one tap) to the first registered device. Higher
numbers of taps or number on the keyboard are associated to least important
devices. This design choice was also made by taking into considerations users’
feedback in the elicitation study.
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(a) Chrome Extension (b) Android App

Figure 5.12: Menu selection for MyoShare Chrome extention and Android app.

• Speech

With the speech interaction technique, we allow users to say a keyword that is
mapped to a device or group of devices. For instance, by saying “smartphone”
after some content has been selected, MyoShare will send the data to the corres-
ponding device. On desktop computers, when some text is selected, a label on the
top right of the page will appear informing the user that the system is “listening”.
Similarly, on the Android application, a informative label on the bottom of the
page will notify the user that MyoShare is waiting for the right word.

• Menu Selection

Users are also free to send data by browsing and selecting devices in a dropdown
menu. On desktop machines, the menu is available by opening the Chrome ex-
tension on the top right of the page (see Figure 5.12 (a)). On mobile, users can
send data to a specific target device by clicking on the menu icon on the top right
of the app (see Figure 5.12 (b))

• Tilting Interactions

On the Android applications, users can also send selected text via tilting inter-
actions. MyoShare allows users to associate a device or group of devices to jerk
motion gestures as offered by Tilt-and-Tap. For instance, a tilt left gesture could
send data to the users’ smartphone, and a tilt up could broadcast the selected
content to all registered devices. Moreover, tilting gestures can also be combined
with touch interactions. In this case, a button will appear at the bottom of the
page. Users can perform motion gestures while tapping on this UI element.
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Figure 5.13: Leap toggle and devices mappings on the Android app setting page.

• Leap Gestures

In addition to Myo Gestures, MyoShare also supports mid-air interactions via the
Leap motion. Since it is not currently possible to easily connect a mobile phone to
this sensor, these interaction techniques were only made available to users in front
of a computer with the Leap motion connected to a desktop or laptop machine. In
the Chrome extension, users can start using these techniques by simply selecting
this interaction type in the pop-up window. On mobile devices, users have first to
toggle the “Connect to Leap Server” button in the settings page of the Android
device (see Figure 5.13). When the connection has been established, a toast
will appear informing the user that they are now free to perform gestures on
the Leap motion. The available interactions are wave-in, wave-out, wave-up and
wave-down.

Accessing Content on Target Device

Once the data has been selected and sent, users can access it on the target device
via the Android app or the web application. On mobile devices, MyoShare pushes
notifications as soon as it receives content. By clicking on the notification, the app will
open showing the shared data. The different type of data (plain text, video, picture,
link, phone number) will be associated with a different icon (see Figure 5.14 (a)). By
default, data are ordered depending on when they were shared. Most recent content
will be displayed at the top. Each item can be deleted or shared (see Figure 5.14 (a)).
As mentioned in Section 5.2.1, if users tap on a phone number, the system will copy
it on the phone dialogue directly. Links and plain text can be saved in the clipboard.
The web application offers the same features as the Android app (see Figure 5.14 (b)).
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043 317 9474

https://upload.wikimedia....

ikipedia.org/common

https://upload.wikimedia.org...

“An import…

“delight your viewers rath…

(a) Android app (b) Web app

Figure 5.14: Screenshots of the Android and web app when accessing received content.

5.2.3 Architecture and Implementation

The main goal of MyoShare was to allow users to share data across devices via a number
of different interactions as well as comparing these techniques among each other. How-
ever, to reach these goals, MyoShare needed to be composed by a number of different
components: an Android application, a web application, a Chrome extension and a re-
mote Node.js server that also exploits a Firebase Cloud Server4 (see Figure 5.15). While
the users is only required to download the Android application and\or the Chrome ex-
tension, MyoShare needs two additional servers to detect gestures and keep track of the
users preferences and shared data.

More in detail, the cloud server has the responsibility to manage user authentications
and to store the data the user has shared. The Chrome extension, the mobile and web
application communicate with the Firebase server for authenticating users.

The remote server has three primary roles: it hosts the web application shown in
Figure 5.14 (b), it allows the Leap motion to connect to mobile devices via Socket.IO
and, finally, it serves push notifications when data are sent to devices.

While the Myo gestures were implemented via the APIs offered by the Myo5, the
Leap motion interactions were developed using thresholds on the position of the users
hands on the sensor. Speech detections were made possible via Google APIs6. Menu
selection and shortcuts were implemented via JavaScript on the Chrome extension and
Java on the Android app.

Concerning content detection, to understand the type of data selected we employed
a pre-processing algorithm when the page is loaded. In this step, we scan the page to
search for phone numbers and remember their location in the DOM. For performance
reasons, we keep this data in memory. Every time the user performs a long left click, or
hold tap gesture on a mobile device, we run a detection algorithm. This algorithm goes

4Firebase website: https://firebase.google.com. Accessed on May 2018.
5Myo SDK: https://goo.gl/LyJZQE. Accessed on May 2018.
6Google Speech API: https://cloud.google.com/speech-to-text. Accessed on May 2018.
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Figure 5.15: Architecture of MyoShare.
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(a) First user study (b) Second user study

Figure 5.16: Setup of the two evaluations: when data is sent from a desktop computer
(first study) and when data is sent from mobile phones (second study).

through the DOM nodes under the coordinates of the event starting from the element
on the top. For every level, we check if the node is a A, IMG, or VIDEO type and if the
element contains a previously detected phone number. This check stops as soon as it
finds a link, image, video or a phone number. In this way, even if the user selected an
element that is nested into other nodes, we are capable of detecting the desired data.
Currently, MyoShare is not capable of detecting pictures that are specified in the CSS
of the page. For instance, if a DIV element has the background-image CSS rule defined
in the style of the website, MyoShare will not be able to detect that data. To add this
feature, MyoShare should be extended to also scan the CSS files of the web page.

Our content detection solution can be considered an approach of DOM parsing.
MyoShare is capable of detecting content without the need of special HTML formats or
users input, however, more advanced techniques on Semantic Web could be considered
in the future to enlarge the set of content type supported [71, 66].

5.3 Evaluation

To evaluate mid-air gestures in our scenario, we conducted two user studies that com-
pared Myo gestures against shortcuts, menu selection and speech. In the first study,
participants were required to copy content from a desktop computer, while in the second
evaluation, users shared data from a mobile device. We decided to conduct two separate
studies to contain the length of the evaluation and to avoid possible biases. The design
and structure of the two evaluations were the same, and we present it in Section 5.3.1.
We then report on the findings obtained from the two studies in Section 5.3.2 and
discuss the results in Section 5.3.2.



126 Chapter 5. MyoShare

5.3.1 Study Design and Tasks

During the first study, participants were seated close to a desk which was equipped with
a computer, a 24” monitor, a keyboard, a mouse and a microphone (see Figure 5.16 (a)).
In the second study, users were seated and were asked to use a Nexus 5X smartphone
to select data from the MyoShare Android app (see Figure 5.16 (b)). In both studies,
a camera placed on the desk recorded the users using our system.

In both studies, users were required to perform a series of tasks using Myo gestures,
shortcuts, menu selection and speech. For each technique, we repeated the following
structure:

• Communication phase: the researcher explained the goal of the next tasks
to be performed as well as informing the user about the mapping between the
interactions and target devices.

• Practice phase: users were required to get accustomed to the interactions by
performing a series of tasks on a test web page.

• Task phase: We asked participants to perform 12 subtasks. For each subtask,
users were required to copy a specific item (current URL, link, image, plain text),
in a web page we provided, and perform the interaction to send the data to a target
device. A printed sheet informed the user about the item and target to select (see
Figure 5.17). Sheets were presented one after the other for each subtask. Users
could move to the next subtask only if they had successfully sent the right data
to the correct device or set of devices. When errors were performed, participants
were required to repeat the subtask.

• Post-task questionnaire: users were asked to complete a questionnaire about
their rating of the interaction used.

All subtasks were performed on Wikipedia7 pages for both studies. We picked this
website for two main reasons: first, Wikipedia offers the type of media we wanted to
tackle (links, images, plain text); second, participants are already accustomed to the
web application, and therefore, we could minimise possible biases given by the website
in use. To avoid possible learning biases, we shuffled the order of interaction techniques
and the order of the devices targeted (smartphone, tablet, broadcast). Moreover, we
also changed the Wikipedia web pages for each mode of interaction.

In both evaluations at the end of the study, additional questions were asked to
participants in the form of a post-study questionnaire. In the questionnaire, participants
were asked to give general comments on our system.

The mapping between interactions and target devices was kept fixed for all parti-
cipants and all techniques. For Myo gestures, users could target the smartphone via a
wave-out interaction, the tablet via a wave-in gesture, and a finger-spread interaction
would broadcast the data to both devices. Participants wore the Myo on their non-
dominant arm, while their dominant hand was used to select content via a mouse (first
study) or the mobile phone (second study). Keyboard shortcuts for the first study were
the following: SHIFT+1 to target the smartphone, SHIFT+2 to target the tablet and

7Wikipedia website: https://www.wikipedia.org. Accessed on May 2018.
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SHIFT+A to send the data to both devices. On the smartphone, one tap on the blue
rectangle at the bottom of the page would copy the selected item to the smartphone,
two taps to the tablet and three taps to all devices. For the speech mode of interaction,
the keywords “smartphone”, “tablet” and “all”, sent the data to the corresponding
devices in both studies. In the first study, we always left the pop-up menu open for the
menu selection technique (see Figure 5.12 (a)) to allow a faster selection of the desired
target.

We recruited 16 participants for the first study, 3 females and 13 males with an
average age of 25.3 (std.: 2.8). For the second study, 13 users participated in the
evaluation, 4 females and 9 males, with an average age of 30.9 (std.: 10.8). Since we
made use of speech recognition algorithms for one of the modes of interaction studied,
we asked users their fluency in the English language. In the first study, two of our
participants were native English speakers, while the remaining 14 users stated that they
were fluent English speakers. Similarly, in the second study, two of our participants
were native English speakers, and the remaining were fluent.

5.3.2 Results and Discussion

We collected data for 12 subtasks for 4 different modes of interactions. This gave us
a total of 48 trials per participant. Participants performed at least 758 commands, in
the first study, and 624 in the second. We present the results obtained by the two users
studies in terms of time and error performances and in terms of qualitative results found
from the qualitative survey filled out by participants. We will summarise the results of
the two studies together.

Time and Errors

To calculate the performance in terms of timing for each mode of interaction, we studied
the performance of the interactions in terms of timing without considering the selection
process. For this reason, we kept track of the time interval between the selection of
data and when the feedback was shown. In Figure 5.18, we can see the average time in
seconds to perform a command for each interaction technique for the first and second
study with errors included.

When the source device was a desktop computer, users were faster when using key-
board shortcuts and Myo gestures (ANOVA tests with Greenhouse-Geisser corrections,
F(1.077,16.153) = 17.565, p<0.01). These two interactions were statistically similar in
terms of time, and both performed better than speech and menu selection. Selecting
the right item in the menu, or saying the keyword for speech recognition, was three
times slower than using Myo gestures or keyboard shortcuts.

As found for the first study, directional mid-air gestures and tap shortcuts in the
second mobile study were the fastest modes of interactions (F(1.112,13.340) = 17.565,
p<0.01). In both studies, speech was particularly slow. This interaction requires the
user to first think the right keyword to pronounce, then pronounce it and wait for the
system to detect the keyword and finally inform the user what it understood. This
overhead has influenced the performance in terms of timing. While the menu selection
technique was slower than the Myo and shortcut interactions in both studies, it did
perform better in the second study than the first. This difference can be explained by
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the position of the dropdown menu in the page. On the smartphone, the menu is easier
to reach than its counterpart on desktop machines (see Figure 5.12 (a) and Figure 5.12
(b)).

In terms of errors, we kept track of the number of times users had to repeat a
command due to either the user performing an incorrect interaction or the system
misclassifying the gesture performed or the word pronounced by the user. In Figure 5.18,
we can see the average number of errors for the first and second study. Speech and Myo
gestures were the interaction techniques with the higher error rates in the first study,
while, Myo gestures were more prone to mistakes in the second study. Despite these
differences, we did not find any statistically significant differences among interaction
techniques for both evaluations with and without including outliers. In the second
evaluation, two users performed 800% and 300% more errors than the average users
when using Myo gestures. Although the gesture recognition algorithm can be improved
by a calibration phase, overall, Myo gestures are not as free from errors as keyboard
shortcuts. This factor can be particularly problematic for users with big or small arms.
On the other hand, despite errors, Myo gestures were fast interactions, suggesting that
users were able to easily overcome errors and repeat the command when the gesture
was misclassified by the system.

As shown in Figure 5.18, participants had some issues with the speech mode of
interaction in the first study. More in detail, two users had to repeat the same keywords
several times until the system finally recognised the word pronounced. While with Myo
gestures errors did not influence the time to complete the command in the second study,
mistakes had a larger impact for speech in the first study (from 3.3 second without
errrors to 5.83 seconds on average with errors)

Qualitative Survey

At the end of the study, for both evaluations, we asked users to rate each interaction
techniques in terms of enjoyability, intuitiveness, efficiency, easiness to use and to learn
on a scale from one (low rate) to five (high rate). In Figure 5.19, we can see the average
responses of participants for each of the four modes of interaction in both studies.
The figure also shows the results obtained from Wilcoxon test results. Wilcoxon was
executed only if the Friedman tests provided any differences among the interactions for
each aspect.

Myo gestures were perceived as enjoyable, efficient and easy to use as keyboard
shortcuts when users had to send data from desktop computers. Mid-air interactions
were rated as more enjoyable and efficient than speech and menu selection. Moreover,
speech was rated as less easy to use than Myo gestures and keyboard shortcuts. This
result could have been influenced by the high number of errors performed by participants
when using this mode of interaction in the first study.

While we could see more differences among techniques in desktop tasks, this factor
is less prominent in the second evaluation. All four interactions performed similarly in
terms of enjoyability and easiness to use. Although Myo gestures were rated as less
efficient than tap shortcuts, mid-air interactions were perceived as easier to learn than
remembering the right amount of taps to target a specific device or group of devices.
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Figure 5.19: Average users’ ratings for each interaction technique for the first and
second study. The figure also summarise Wilcoxon pairwise results between techniques
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Discussion

In both studies, Myo gestures were as fast as keyboard and tap shortcuts and faster
than speech and menu selection. Although we found that Myo interactions can be prone
to misclassification, users recovered more easily from errors using mid-air gestures than
speech. Moreover, users rated Myo interactions enjoyable and easy to use in both
scenarios.

At the end of the study, we asked participants to give their opinions on the wearable
device. One participant stated that he would see himself using Myo gestures in any
situation if there was no need of additional hardware. Similarly, many other participants
discussed the inconvenience of wearing the Myo. While the smart armband gave us the
chance to easily experiment our scenario, in the future, alternative and more comfortable
devices could improve the user experience. We discuss more on the limitation of the
Myo armband and possible future improvements in Section 6.

Since MyoShare allows users to switch between interactions whenever they desire,
we asked participants to discuss where, and in which situation, they see themselves
using each mode of interaction. Shortcuts and menu selection techniques were rated as
the most comfortable interaction technique to perform in public or private places.

Myo gestures and speech were considered more suited to private scenarios, at home
or in the office. Participants were concerned about the possibility of performing gestures
unfamiliar to other people. However, they also commented that if the mode of interac-
tion became popular, the awkwardness would diminish and, therefore, they would not
have any issues in performing mid-air gestures in public places. On the other hand,
other users expressed their enthusiasm for using the gestures by saying that they felt
futuristic, innovative and cool in doing “Minority report-style” gestures to send data
across their devices. These results are in line with the discussion made by Rico and
Brewster [182]. Although our implementation of speech recognition could be improved
by using other more precise APIs, many participants did not like these type of inter-
action and commented that they do not enjoy using this technique independently by
their physical location.

With menu selection, speech and keyboard shortcuts, users could potentially add
and associate a large number of devices. On the other hand, tap shortcuts and Myo
gestures can support only a limited number of possible devices. While grouping devices
into categories can minimise this scalability problem, users of our elicitation study
explicitly stated that they like to target specific devices when sending data. However, as
found by Hamilton and Wigdor [80], it is hard for users to keep track of more than seven
devices at a time. For this reason, users could map interactions to more relevant and
used devices, such as a personal phone, or a laptop at home, while other less frequently
used devices could receive data only when a broadcast command is executed.

Concerning the content selection on desktop computers, we asked participants of
the first study what they thought about the long left click interaction to select links,
videos and pictures. Some users reported incoherency between this technique and the
single click to select the current URL of the web page (see the blue icon in the bottom
right in Figure 5.10). One user suggested supporting both interactions, a single and
long left click to select the URL. Lastly, we asked participants what they thought about
the organisation of received data on the receiving devices. All users agreed that this
was the right technique to access the content sent by other devices.
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5.4 Discussion

In this chapter, we presented our work on the use of mid-air interactions to share
data across co-located and remote devices. An elicitation study gave us the chance to
analyse user needs when passing data across their phones or tablets. Participants also
commented and suggested a set of possible gestures that could be used to target devices.
Overall, the majority of our users proposed interactions that followed a personal ranking
of the devices and directional gestures were the most popular interactions proposed in
scenarios with remote devices.

Although the physical position of the target influenced users when we added two
devices near to each other, the majority of our participants preferred to use spatially-
agnostic techniques to target devices. These users commented that their proposed
gesture for remote tasks could also work for co-located scenarios without the need to
learn a new additional mid-air interaction. At the end of the elicitation study, all
participants commented that they would like to exploit these type of gestures in the
scenario envisioned. Moreover, the feedback received from the study informed the design
of the MyoShare system.

MyoShare allows users to select and send web content from any page on mobile
devices or desktop computers to other devices via mid-air interactions and other tech-
niques, such as menu selections, shortcuts, tilting gestures and speech. Devices can be
organised in groups and users are free to customise the mappings between single or sets
of devices as well as the interaction techniques.

To evaluate mid-air gestures against other modes of interaction, we carried out
two users studies. The first study considered the use of MyoShare from a desktop
computer, while in the second study, users shared data from a smartphone. Overall,
participants of both studies liked the system and commented positively on the scenarios
proposed. Furthermore, Myo gestures performed well concerning timing and qualitative
performance. Mid-air interactions were as fast as keyboard shortcuts, and although they
were more prone to errors, users easily corrected their mistakes using these gestures.





6
Conclusion

The main goal of this thesis was to improve the mobile web user experience by enriching
the number of possible interactions available. While on mobile applications, researchers
have already proposed the use of tilting and mid-air gestures as a possible alternatives
to touch, on the web, little research has been done on alternative modes of interactions.

In this thesis, we reached the overall goal of enriching the set of possible interactions
on the web, via a number of contributions. Moreover, to test and evaluate our approach,
we developed frameworks and visual tools that are summarised in Figure 6.1

To better discuss our approach and contributions, let us revisit the research questions
from Chapter 1.

• RQ 1: How can we support developers and end-users in building single and cross-
device web applications that use tilting interactions?

• RQ 2: Which single and cross-device applications can benefit from tilting or mid-
air gestures?

To start our research in the area, we decided to tackle the use of tilting interaction
on the web. We focused on this type of interaction for their potential advantages in
mobile contexts such as their one-hand and eye-free features [15, 217, 205, 67, 221]. For
our first contribution, we first performed an in-depth analysis of related works in the
field, and found a large number of different types of tilting interactions. To address RQ1
for single device cases, we developed Tilt-and-Tap (TAT), a JavaScript framework that
offers a set of APIs to implement tilting interactions on the web. TAT was then later
extended to TAT 2.0, a framework that supports a more significant number of features.
Since the interactions supported by TAT and TAT 2.0 were inspired by related research,
the frameworks also offer a catalogue of previously proposed gestures by applying them
on the web.

To evaluate TAT, we carried out a developer and a competition study. The developer
study had the goal of assessing the usability of the framework and receiving feedback
from developers. The competition study aimed at evaluating if the framework could
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improve the creativity of developers. The results of the first study showed that the
framework was easy to use and to learn for developers with an average knowledge of CSS,
HTML and JS languages. Moreover, all participants were capable of completing the
tasks in the allowed time. In the competition study, we received three web applications
that, together with TiltZoo and YouTap (see Section 3.1.2), demonstrate the flexibility
of the framework.

Although TAT pushes the boundaries of possible interactions on the web, our work
is not free from limitations that could be tackled in future research. While TAT and
TAT 2.0 are able to minimise the differences among different platforms and devices,
browsers continuously evolving and could potentially change their implementation of
the motion events in the future. For instance, Chrome has recently decided to modify
the DeviceOrientationChange and DeviceMotionChange events1, making them in-
compatible with other browsers. While this cannot be fixed easily until all major
browsers follow the standard, a central framework, such as TAT, leave the developers
free from the responsibility of checking these inconsistencies. The API will be updated
by its authors, and developers simply need to install the new version. However, test the
framework(s) on different platforms and different devices over time can be a challenging
task. For this reason, TAT and its extension are open source and they are available on
GitHub2 allowing the community to report and eventually fix issues that may arise in
the future.

We note that differences among browsers are also given by the lack of applications
that use motion gestures. We believe that browsers will more strictly follow standards
if more applications would exploit tilting interactions in the future.

With TAT and TAT 2.0 we wanted to target web developers and encourage them
to experiment with alternative interaction techniques in their web applications while
categorising and supporting a broad set of tilting interactions proposed by previous
research. In contrast, with our second contribution, we tackle RQ1 for end-user
cases. We reached this goal by applying the use of the drag and drop paradigm to add
motion interactions to web applications. To test our approach, we developed WP-TAT,
a WordPress extension for the rapid prototyping of tilting gestures on the web. While
WordPress enables users to easily pick a theme of their choice and add content, the
CMS does not support any customisation of the interaction techniques used by the web
application. WP-TAT bridges this gap and offers users the possibility to extend the set
of interactions in their web application via a visual interface.

With WP-TAT, users can add global actions to tilting gestures via a visual interface.
We defined a global action as an action that affects the entire website. For instance,
users visiting the website could go to the next or previous posts by tilting the device
to the right or to the left, respectively. Similarly, users could search on Google for
some text displayed on the website by selecting it and tilting the device up. We again
developed a number of web applications to show use cases for WP-TAT. A preliminary
user study was conducted to compare two variants of our WordPress extension, a classic
visual interface where buttons and pop-up menus allow users to associate global actions
to tilting gestures, and a block UI, where users can drag and drop actions into motion
gestures. Overall, participants preferred the drag and drop approach, however, one user

1Motion events changes for Chrome: https://goo.gl/8g2cNU. Accessed on June 2018.
2TAT GitHub page: https://github.com/lindig11/tiltandtap. Accessed on September 2018.
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also enjoyed using the classic UI.

While the set of proposed global actions demonstrated various use cases of tilting
gestures on the web, currently, WP-TAT only exploits jerk tilting interactions. In the
future, continuous tilting gestures could also be integrated in the tool. In this scenario,
alternative actions should be applied to such interactions. For instance, continuous
tilting gestures could be suited for scrolling tasks on gallery of images and text.

With our third contribution we answer RQ2, by listing a series of design guidelines
on the use of motion interactions on the web. Among all the design observations dis-
cussed in this thesis, we report that tilting gestures can make websites more interactive
and fun to use.

We found that tilting interactions can be used in scenarios where solo-touch gestures
may fail (e.g. small buttons). However, if not informed, users might be unaware of the
presence of motion gestures. Similarly, on many mobile devices, such as iPhones and
iPads, a number of multi-touch gestures are available; however, users are often not aware
of these possibilities. Although some of these interactions might be extremely useful,
they are often referred as hidden or secret gestures3. In our work, we propose the use
of buttons and labels displayed on web pages as possible cues to inform the user of the
presence of tilting interactions. Although these methods might gather the attention of
the user, we did not study how efficient these techniques are. In the future, a user study
could evaluate how fast users are in detecting tilting gestures on web applications and
which method is best. Moreover, consistency among different web applications could
improve the memorability of the gestures. In our example applications, we mapped
tilting interactions to different actions arising consistency issues. For instance, a tilt
down closed the cookie information label on one website, while the same interaction
was used to search for text on Google in another web application. Possible future work
could involve an analysis of the mapping between specific motion gestures and actions.
Furthermore, if tilting interactions become in common use, browsers might support
them natively giving a consistent user experience among different websites.

We continued our research on the use of alternative gestures on the web, by study-
ing tilting interactions in cross-device scenarios. For our fourth contribution, we
designed a series of requirements to improve the development process as well as the
user experience on the use of motion gestures in cross-device applications. With this
contribution, we tackle RQ1 for cross-device scenarios. To reach this goal, we employed
the use of TAT with Socket.IO to implement a simple application to remotely control a
cursor on a big screen via means of motion gestures on a mobile device. We then used
this application to compare motion gestures to touch interactions via a preliminary user
study. While we did not notice significant differences among touch and tilting gestures
in terms of timing, we found that motion interactions allowed users to focus on the big
screen while controlling the indicator on the phone or the tablet.

Inferred by the results of the study, as well as the experience gathered during the
development of the application, we designed and implemented CTAT, a cross-device
framework for the rapid development of tilting gestures on cross-device applications.
With CTAT, developers can define a sender of the interaction, the receiver and the
type of desired gesture via JavaScript, without the need to manage the detection of the
interaction, recognising the right devices involved in the communication and deal with

3Example article on secret gestures: https://goo.gl/tPWBJw. Accessed on June 2018.
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the server. Moreover, a visual interface, VCTAT, allows developers to create tilt links
among devices without the necessity to write any code.

With the combination of CTAT and TAT 2.0, we reach our fifth contribution by
comparing different variants of continuous tilting interactions (slow movements of the
device in some direction) in cross-device scenarios. While previous research has already
studied these gestures in single device use cases [162, 205], via a detailed user study, we
evaluated the performance of these interactions when they are used to control a cursor
on a larger display. This contribution tackled RQ2 for cross-devices use cases.

Concerning CTAT, we allow developers to associate to each tilting gesture a sender
and a receiver; however, the framework is not aware of the physical position of the
devices. Intuitively, a tilt left interaction could trigger actions only on the targets that
are located on the left. While this spatial awareness feature might be particularly inter-
esting for tilting gestures, being aware of the position of the devices requires additional
hardware, such as Kinect cameras, and a more challenging architecture [176] since the
Doppler effect, or similar approaches may be insufficient when devices can be located
anywhere in a room. CTAT aimed at helping developers to easily exploit motion in-
teractions on cross-device applications without the need of a complex setup. For this
reason, we did not consider the physical location of the devices when users perform
gestures. However, researchers are now refining systems that are able to detect the
position of devices when indoors without the need of additional hardware installed in
the room [127]. In the future, when the position of devices can be detected reliably, the
concepts of CTAT could be extended to also involve this new data.

Moreover, while TAT 2.0 supports a number of alternative continuous interaction
techniques, we only compared a subset of these variants in our cross-device user study.
For time constraints, we could not evaluate all the supported implementations, and
we picked the continuous interactions that were previously studied in single device
scenarios. In the future, a user study could compare a more broad set of continuous
motion gestures also in 1D scenarios. Furthermore, an in-the-wild study on aCrossETH
could give interesting insights on how tilting interactions could improve user engagement
with public screens.

We continued our research in cross-device interactions by exploring the use of mid-
air gestures. In an elicitation study, we wanted to understand what sets of gestures
users would naturally produce to send data across devices if the targets were remote
or co-located. We found that users have a ranking of their own devices and associate
gestures to the targets depending on their importance. Moreover, when more devices
are near to each other, users preferred to use spatially-agnostic gestures despite their
vicinity to the target. Overall, the set of gestures suggested by users, as well as the
reasoning behind these interactions, represent the sixth contribution of this thesis.

The elicitation study informed the design of MyoShare, a system that allows users to
select web data from any sites and perform mid-air interactions to copy content to other
devices. For our seventh and last contribution, mid-air gestures were later compared
to more common interaction techniques via two user studies. In the first evaluation, we
studied mid-air gestures when data were sent from desktop computers and compared
them to keyboard shortcuts, speech and menu selection interaction techniques. In
contrast, in the second study, we evaluated the use of mid-air gestures to copy data from
a mobile device and, similarly to the first study, we compared them to tap shortcuts,
speech and menu selection. Overall, mid-air gestures were as fast as keyboard shortcuts,
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and participants enjoyed using this technique and felt that they would like to use
MyoShare in the future. Although mid-air gestures were more prone to errors, we
found that users easily recover from their mistakes. With these last two contributions,
we tackled RQ2 and used mid-air gestures to enlarge the set of possible interactions on
the web.

With MyoShare we question the importance of the devices’ physical location when
sharing data via mid-air interactions. While our elicitation study proved that spatially-
aware gestures were not always preferred by our participants, we did not implement all
possible interactions suggested by users but focused only on the most popular ones. In
remote scenarios, directional gestures were the favourite type of gestures; however, par-
ticipants proposed different variants of these mid-air interactions. MyoShare does not
support all these alternatives and only allows waving gestures. In the future, circular,
pose, sequential, as well as tilting gestures and all variants of directional interactions,
could be compared to further study how they also perform in terms of memorability.

Concerning the use of the Myo armband, we recognise that the wearable device
might be cumbersome to use. Some participants of our user studies felt that the Myo
was uncomfortable to wear because it felt too tight. In contrast with smartwatches,
the Myo is placed in an unfamiliar position of the users’ arm, its form factor is not
fashionable, and it does not allow users to wear shirts with long sleeves since the device
has to be in direct contact with their skin. Moreover, the recognition of the gesture
may be faulty for users with small or big arms. However, the Myo allowed us to easily
experiment with gestures that cannot be currently detected with smartwatches. In
the future, alternative wearable devices as well as more advanced technologies [77] for
detecting mid-air gestures could be explored in the future to improve the overall user
satisfaction.

Overall, while our approaches push the boundaries of the interactions available on
single and cross-device web applications, we believe that future research in the field
could tackle the limitations discussed in this section as well as expand the findings of
this thesis.
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