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Abstract

We consider bilateral non–cooperative bargaining on the division of a surplus.

Compared to the canonical bargaining game in the tradition of Rubinstein, we in-

troduce additional sources of friction into the bargaining process: Implementation

of an agreement and consumption of the surplus can only begin at discrete points

in time, such as the first day of a month, quarter, or year. Bargaining rounds are

of non–trivial length, so that counter–offers may be made without triggering costly

delay. Communication between players is noisy: When players make offers, they

are uncertain about the time it takes for the offer to arrive. We analyze delays and

payoffs in the unique stationary equilibrium of the game. Frictions tend to make the

bargaining process less efficient, but lead to a fairer surplus allocation. We establish

conditions under which the equilibrium outcome converges to that in a canonical

bargaining model as frictions become small.
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1 Introduction

Many situations in economics, management, and political science can be thought of as

surplus division problems: Two or more players own or are able to generate some surplus.

However, they can only consume it once they have reached an agreement on its division.

One classical economic example is related to labor disputes: When no labor agreement is

reached, workers may go on strike, or the firm may lock them out, so that no production

takes place. Workers’ potential productivity can be thought of as a surplus that is available

for consumption if and only if a firm and a union find agreement on its division.

Game theorists have often studied such surplus division problems using non–cooperative

bargaining games in the tradition of Rubinstein (1982). This approach considers the bar-

gaining process as a sequence of rounds. In each round, one particular player acts as the

proposer and offers some division of the surplus. This offer is then accepted or rejected by

the players. Acceptance of an offer ends the game. If an offer is rejected, the game moves

to the next round, and the surplus shrinks due to discounting. Throughout the paper, we

refer to this setup as the canonical bargaining model. One crucial feature of the canonical

bargaining model is that offers are made, accepted, and implemented “instantaneously.”

These three steps are condensed into a single point in time. Thus, the canonical bargaining

model assumes that it does not take the proposer any time to make and communicate an

offer, nor does the responder need time to evaluate and accept the offer. A player does

need time, however, in order to make a counter–offer. One concise way to put it is as

follows: The canonical bargaining model assumes that time elapses only between (rather

than within) rounds, and that any counter–offer ends the current round.

In the present paper, we take an alternative view. We propose a bilateral bargaining

model in which negotiations are subject to frictions that lead to some delay between the

points in time when an offer is made, accepted, and implemented. Moreover, each bargain-

ing round is of exogenously fixed non–trivial length, so that a counter–offer need not end

the current round.

More specifically, we make three main assumptions:

• Implementation of an agreement and consumption of the surplus can only begin at

some exogenously fixed discrete points in time, such as the beginning of each new

month, quarter, or year. Delay is only costly when one of these points in time goes

by without agreement.

• The time between two potential dates of implementation is what we consider a “bar-
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gaining round.” During any given bargaining round, one player has the right to make

an initial offer at a time of his choosing. The other player may get a chance to make

a counter–offer within the same bargaining round.

• When a player makes an offer (or a counter–offer), it is uncertain how long it will

take for the opponent to receive it. Bargaining rounds may fail not only if an offer is

rejected but also because communication is unsuccessful.

The first assumption drives a wedge between the time at which an offer is accepted

and the time at which it can be implemented. Players may find agreement quickly, but

have to wait for the next opportunity to implement it. The second assumption qualifies

the proposer’s privilege that is the driving force behind many results on the canonical

bargaining model. Those findings are driven by the idea that each bargaining round is

condensed into a single point in time. Under that modeling assumption, it is not meaningful

to have a proposer choose the timing of his offer, or to allow a responder to make a counter–

offer. In our setup, these considerations become important because each bargaining round is

of non–trivial length. One question that we will address is in what sense the findings of the

canonical bargaining model can be recovered in the limit as the length of each bargaining

round becomes small. The third assumption introduces noise into players’ communication,

thus creating some friction between the time when an offer is made, and the time when it

may be accepted.

In our bargaining model, a proposer faces the following trade–off: On the one hand, if

the proposer makes an offer too late, he takes the risk that this offer cannot be implemented

because the opponent does not receive it before the envisioned date of its implementation.

On the other hand, if the proposer makes an offer way ahead of the date of implementation,

the opponent may find it optimal to reject the offer and respond with a counter–offer.

One stylized example of such a bargaining process could be as follows: Suppose that

a company and a prospective employee bargain under the institutional or legal constraint

that working contracts can only start on the first day of a month. In order to make

the hiring decision effective on February 1st, an agreement must be reached in January.

Agreeing on January 20th rather than on January 10th has no immediate cost to either

party. However, the closer the parties get to January 31st, the more likely it becomes

that the negotiation fails due to delays in communication. If no agreement is reached by

January 31st, players can continue bargaining in February. However, an agreement reached

in February can only be implemented as of March 1st. This delay in implementation is

costly.
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Restrictions, conventions, or customs relative to the possible dates of implementation of

an agreement are common: For instance, in the job market for school teachers or university

lecturers, hires typically do not make sense unless they coincide with the start of a semester

or academic year. Non–academic jobs typically start with the beginning of a month.

Changes to the government’s system of taxes or subsidies come into effect with a new

fiscal year. More general legislative changes typically become effective with a new month,

quarter, or year.

Our main results can be summarized as follows: In the limit as frictions between offer,

acceptance, and implementation vanish, efficiency is maximized, and the ex ante expected

division of the surplus corresponds to that familiar from the canonical bargaining model.

If communication among players involves substantial friction, however, proposals remain

lopsided even if offers are arbitrarily frequent. However, the relative payoffs of players

need not depart from the canonical predictions. If potential dates of implementation are

sufficiently far apart, equilibrium outcomes tend to be more fair but less efficient.

The present paper is related to two main strands of the non–cooperative bargaining

literature. One strand looks at the canonical bargaining model with a variety of proposer

selection protocols, and examines how exactly the protocol determines the equilibrium

division of the surplus. This relationship between the distribution of proposal power and

the equilibrium allocation has been explored in great detail by Hart and MasColell (1996),

Laruelle and Valenciano (2008), Miyakawa (2008), Kultti and Vartiainen (2010), and Britz

et al. (2010), among others.

Some related papers have studied non–cooperative bargaining in the presence of a

deadline, and have suggested explanations for deadline effects, that is, agreements tend to

be reached close to the deadline after some period of delay, see for instance Fershtman and

Seidmann (1993) or Ponsati (1995). Ma and Manove (1993) consider a model in which two

players negotiate in the presence of a deadline and communication is noisy.

The remainder of this paper is organized as follows: The formal model description

is presented in Section 2. Then, Section 3 contains the analysis of SSPE of this model.

Section 4 is devoted to some comparative statics analyses. Section 5 investigates the

socially optimal length of bargaining rounds from an efficiency and fairness point of view.

Section 6 concludes.
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2 Bargaining game

Two players decide on the division of a surplus by non–cooperative bargaining. While

bargaining takes place in continuous time [0,∞), an agreement can only be implemented

at equidistant points in time T, 2T, 3T, . . . , where T > 0 is exogenously fixed. We refer

to the time interval [0, T ] as the first bargaining round, and more generally to the time

interval [(k − 1)T, kT ] as the kth bargaining round, for k = 1, 2, . . . .

Players have a common rate of time preference r > 0. When it is convenient, we will

work with the discount factor δ = e−rT instead. As a normalization, we assume that the

surplus is of size one. This implies that the discounted value of an agreement reached in

the first bargaining round is δ.1 More generally, the discounted value of an agreement in

bargaining round k is δk.

In each bargaining round, one player is the proposer and the other player is the respon-

der. Each bargaining round k proceeds as follows:

The proposer offers some split of the surplus, to become effective at time kT. He is free

to choose at what time during bargaining round k he makes this offer. More formally, the

proposer chooses a pair (θ, τ) ∈ [0, 1]×[0, T ], where θ indicates the amount of surplus which

the proposer offers to the responder, while (k − 1)T + τ is the time at which he makes

this offer. A noisy channel of communication is then used to transmit the offer to the

responder. More specifically, we model communication as a Poisson process with arrival

rate λ > 0. This implies that an offer made at time (k − 1)T + τ reaches the responder

before time kT with probability 1− e−λ(T−τ).
If the offer fails to arrive until time kT, then we say that bargaining round k fails, and

the game moves to round k + 1. Notice that this setup allows the proposer to effectively

pass the opportunity to propose: He can do so by delaying his offer until time kT. We will

see, however, that it is never optimal for the proposer to pass. If the responder receives

the proposer’s offer before time kT, the responder can either accept it or make a counter–

offer. If the proposer’s offer is accepted, the game ends and the proposer and responder

receive utilities δk(1− θ) and δk θ, respectively.2 Now suppose that the responder does not

1It might seem more intuitive to assume that the physical surplus is of size erT = 1/δ, so that its value

is one if an agreement is implemented at the earliest possible moment. Later in the paper, however, we

are going to vary T independently of r in a comparative statics analysis. Thus, we have to fix the size of

the physical surplus to one.
2Notice that, if an offer is accepted, the proposer receives the complement of what he offered to the

responder. This amounts to a tacit assumption that offers must be efficient. We could have allowed the

proposer to make an offer which leaves some surplus unallocated. In equilibrium, such an offer would not
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accept the offer but makes a counter–offer η ∈ [0, 1]. Again, an uncertain amount of time

elapses until the responder’s counter–offer reaches the proposer. As before, this delay in

communication is modeled by a Poisson process with arrival rate λ. 3 If the counter–offer

does not arrive until time kT, then round k ends in disagreement, and the game moves

to round k + 1. If the responder’s counter–offer does arrive before time kT, the proposer

chooses to accept or reject it. If he rejects it, then round k ends in disagreement, and

the game moves to round k + 1. If he accepts, then the game ends and the proposer and

responder receive payoffs δk η and δk(1 − η), respectively. Whenever an agreement is not

reached by time kT, we say that bargaining round k fails.

It remains to specify how the proposer in each round is chosen: Without loss of gen-

erality, we assume that Player 1 is the proposer in the first bargaining round. Moreover,

for any k ≥ 2, we assume that if Player i = 1, 2 is the proposer in bargaining round k − 1,

then Player i is also the proposer in bargaining round k with probability mi. With comple-

mentary probability 1 −mi, Player j 6= i is the proposer in round k. Hence, the proposer

selection follows a Markov chain with the transition matrix

M =

(
m1 1−m1

1−m2 m2

)
.

We assume that mi < 1 for each i = 1, 2, so that the Markov chain is irreducible. Its

stationary distribution µ = (µ1, µ2) is given by µM = µ, and can be written as

µi = (1−mj)/(2−mi −mj),

for each i = 1, 2 and j 6= i. One noteworthy special case is m1 = m2 = 0, which means that

the role of proposer alternates from one round to the next. This is the proposer selection

protocol in Rubinstein’s original paper.

A stationary strategy for Player i consists of the following elements:

• A pair (θi, τi) such that if Player i is the proposer in round k, he proposes θi at time

kT + τi.

be made, so our results would not change.
3We assume there that if the responder makes a counter–offer she does so immediately after receiving the

proposer’s offer. We could have assumed instead that the responder also has the possibility to wait before

making a counter–offer. This would not change the results, however: We will see that, in equilibrium, the

responder has no incentive to wait.
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• A map αi : [0, 1] × [0, T ] → {Accepts} ∪ [0, 1] such that in any round k in which

Player i is the responder, he accepts an offer θ which reaches him at time kT + t

if and only if αi(θ, t) = Accept, and otherwise, he makes the counter–offer given by

αi(θ, t).

• A map βi : [0, 1]×[0, T ]→ {Accept, Reject} such that in any round k in which Player

i is the proposer, he accepts a counter–offer η which reaches him at time kT + t if

and only if βi(η, t) = Accept, and otherwise, he rejects.

A stationary subgame–perfect equilibrium (SSPE) is a profile of stationary strategies

which is a subgame–perfect Nash equilibrium.

3 Analysis of stationary equilibrium

The purpose of this section is to derive expressions for the expected payoffs and expected

delay in an SSPE. The starting point for this analysis is the stationarity property of the

game just described: The subgame starting at time (k − 1)T for any k ≥ 2 is equivalent

to the entire game, up to the identity of the proposer. Thus, in any SSPE, there exists

a quadruple (x1, x2, y1, y2) such that if Player i = 1, 2 is the proposer in round k, then

the expected SSPE payoffs for Player i and Player j 6= i in the subgame starting at time

(k − 1)T are δkxi and δkyj, respectively.

In what follows, we will consider a bargaining round k in which Player i = 1, 2 is the

proposer and Player j 6= i is the responder. To this end, it is useful to define the following

auxiliary variables:

x̃i = mixi + (1−mi)yi,

ỹj = miyj + (1−mi)xj.

Player i continues to act as proposer in round k + 1 with probability mi. Hence, δx̃i and

δỹj are reservation payoffs for Players i and j, respectively.

Recall that the rejection of a counter–offer by the proposer implies that bargaining can

resume only in the next round. Hence, it is straightforward that in an SSPE, Player i

accepts Player j’s counter–offer ηj if and only if ηj ≥ δx̃i. Notice that this is independent

of the time at which Player i receives the counter–offer. Therefore, it would never be

optimal for Player j to wait before making a counter–offer. This justifies our simplifying

assumption that counter–offers are made without delay.
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Now we proceed by backward induction to a history where Player j decides whether to

accept Player i’s offer θi, or to make a counter–offer. Intuitively, the later Player j receives

an offer θi, the more risky it is for him to send a counter–offer. During each bargaining

round, the responder’s bargaining position gradually erodes overtime. As time approaches

kT, Player j becomes more willing to make concessions to Player i. We will show that, for

any given offer by Player i, there is some critical time from which onwards Player j accepts

the offer. The proposition below claims that this critical point in time is given by

t̂j(θi) =





max
{

0, T −
(
1
λ

)
ln
(

1−δx̃i−δỹj
1−δx̃i−θi

)}
if θi < 1− δx̃i,

0 if θi ≥ 1− δx̃i.

The formal proof of the proposition is relegated to Appendix A.

Proposition 1. Suppose that Player j receives Player i’s offer θi at time (k− 1)T + t. In

an SSPE, Player j accepts if and only if t ≥ t̂j(θi).

Observe that

lim
θi↑1−δx̃i

T −
(

1

λ

)
ln

(
1− δx̃i − δỹj
1− δx̃i − θi

)
= −∞.

Hence, there is ε > 0 sufficiently small so that Player j accepts proposal θi = 1 − δx̃i − ε
at any time during round k. As a result, the proposer can always obtain an expected

payoff strictly greater than his reservation level δx̃i. In particular, a proposer never finds

it optimal to “pass” his opportunity to make an offer by waiting until kT. This is formally

stated in the proposition below. The proof can be found in Appendix A.

Proposition 2. In an SSPE, Player i makes an offer θi such that θi < 1− δx̃i. Moreover,

he makes the offer strictly earlier than at time kT.

The next step is to show that it is optimal for Player i to make his offer exactly at

the critical point in time when Player j is ready to accept it. The intuition is as follows:

Player j is ready to accept a given offer from some critical point in time onwards. On

the one hand, if Player i makes the offer before Player j is ready to accept it, there is a

risk that the offer arrives so soon that Player j will prefer to make a counter–offer. On

the other hand, if Player i makes the offer when Player j is already willing to accept it,

then Player i could improve the probability of acceptance by making the same offer sightly

earlier. One implication of the next proposition is that, on the path of play of an SSPE,

no counter–offers will ever be made.
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Proposition 3. In an SSPE, Player i chooses the pair (θi, τi) in such a way that τi = t̂j(θi)

and θi = (1− e−λ(T−τi))(1− δx̃i) + e−λ(T−τi)δỹj.

The proof of Proposition 3 is relegated to Appendix A.

We have shown that no counter–offers are made on an equilibrium path of play. Hence,

the only way how bargaining round k can fail is if Player i’s offer does not arrive before

time kT. For any τi ∈ [0, T ], let us call πi(τi) = e−λ(T−τi) the failure probability of an offer

made at time kT + τi. Throughout the paper, we will omit the argument τi if no confusion

arises. One implication of Proposition 3 is that Player i’s optimal choice of a pair (θi, τi)

can be reduced to an optimal choice of the failure probability πi. In case of failure, Player

i expects to get δx̃i in the ensuing continuation game. If bargaining round k does not fail,

then Player i receives 1− θi > δx̃i, where θi is implicitly determined by the choice of πi in

the way specified by Proposition 3. Therefore, Player i’s expected payoff in round k equals

δkξi(πi), where ξi(πi) is given by

ξi(πi) = πiδx̃i + (1− πi)(1− (1− πi)(1− δx̃i)− πiδỹj).

After some simplification, we obtain

ξi(πi) = δx̃i + (1− δx̃i − δỹj)(πi − π2
i ). (1)

This expression for Player i’s expected payoff has a straightforward interpretation: The

first summand δx̃i is the (discounted) continuation payoff for Player i in the next bargaining

round. The expression 1− δx̃i − δỹj represents the share of the surplus which the players

forgo if the current round fails. Put another way, we can interpret it as the gain from

immediate agreement. This gain realizes with probability 1 − πi, and if it does, then our

analysis so far reveals that Player i gets a share πi of it. On the one hand, Player i can

trivially ensure that his offer fails with probability one by making it only at the deadline

kT. On the other hand, by making the offer immediately at time (k − 1)T , he can reduce

the failure probability in round k to e−λT . More formally, Player i’s optimization problem

can be written as

max
πi

ξi(πi) subject to πi ∈ [e−λT , 1]. (2)

Consider the derivative

∂ξi/∂πi = (1− δx̃i − δỹj)(1− 2πi).
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We observe that x̃i + ỹj ≤ 1 and so 1 − δx̃i − δỹj ≥ 1 − δ > 0. There are two cases to

distinguish: Suppose first that e−λT ≤ 1/2. In this case, the first–order condition

∂ξi/∂πi = 0

yields πi = 1/2. Now suppose that e−λT > 1/2. In that case, ∂ξi/∂πi < 0 for any πi ∈
[e−λT , 1], and hence Player i finds it optimal to choose πi = e−λT . We note that the exact

values of x̃i and ỹj, as well as the identities of Players i and j, do not affect the solution to

this optimization problem. Hence, we have the following proposition:

Proposition 4. In an SSPE, τ1 and τ2 are chosen such that π1 = π2 = max
{

1
2
, e−λT

}
.

It is noteworthy that this result is very general: It does not depend on the continuation

utilities that players expect from the next round. In particular, it is independent of players’

time preferences. This is somewhat surprising: One might expect that players are more

willing to risk bargaining failure, and hence a delay, when they are more patient. It turns

out that this is not true.

Moreover, if T is sufficiently large, the gain from immediate agreement is split fairly

between the two players. There is no proposer premium. This is a consequence of our

assumption that players can respond to offers by counter–offers without triggering a costly

delay. Nevertheless, the complete absence of a proposer premium is not trivial: When a

counter–offer is made, the potential date of implementation is closer, and thus the risk of

costly delay greater than when an initial offer is made. One may therefore have intuitively

expected that, even in our model, the bargaining position of the proposer is always stronger

than that of the responder.

Proposition 4 has a number of additional implications that will be important in the

remainder of this paper. One of them is the following corollary:

Corollary 1. The proposer’s equilibrium offer is given by

θi =





1
2

(1− δx̃i) + 1
2
δỹj if e−λT ≤ 1

2
,

(1− e−λT )(1− δx̃i) + e−λT δỹj if e−λT ≥ 1
2
.

(3)

Proposition 4 says that, in an SSPE, every bargaining round which is reached fails

with equal probability π = max
{

1
2
, e−λT

}
. This allows us to write the expected size of the

surplus at the time of an agreement, discounted back to the beginning of the game, as

δv(π) = δ(1− π)
∞∑

k=0

(δπ)k = δ

(
1− π
1− δπ

)
.
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Notice that the amount δv(π) is independent of the initial proposer’s identity. Therefore,

x1 + y2 = x2 + y1 = v(π). (4)

In what follows, we will refer to the quantity δv(π) as the expected value of agreement.

In a similar manner, we can also compute the expected time at which an agreement is

implemented as

ω(π, T ) = T (1− π) + 2Tπ(1− π) + 3Tπ2(1− π) + . . .

= T (1− π)
∑∞

k=0(k + 1)πk

= T/(1− π).

From now on, we will refer to this quantity as the expected implementation time.

In equilibrium, the failure probability π is chosen optimally, so that the expected value

of agreement and the expected waiting time can also be thought of as the following functions

of the model parameters r, λ, and T :

ω(λ, T ) =





2T if T ≥ ln(2)/λ,

T
1−e−λT if T ≤ ln(2)/λ.

v(r, λ, T ) =





1
2erT−1 if T ≥ ln(2)/λ,

eλT−1
e(λ+r)T−1 if T ≤ ln(2)λ.

We have now introduced all preliminaries that we need to characterize SSPE payoffs

and delay.

Our starting point was the existence of xi, yj such that if Player i is the proposer in

round k, the SSPE utilities in the subgame starting in that round are given by δkxi and

δkyj. By definition of ξi and by Proposition 4, it follows that

ξi

(
max

{
1

2
, e−λT

})
= xi.

We can now conclude that, for any given δ, SSPE utilities x1, x2, y1, and y2 and associated
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continuation utilities x̃1, x̃2, ỹ1, and ỹ2 solve the following system of equations:

x1 = δx̃1 + (1− δv)(π − π2), (5)

x2 = δx̃2 + (1− δv)(π − π2), (6)

y1 = v − x2, (7)

y2 = v − x1, (8)

x̃1 = m1x1 + (1−m1)y1, (9)

x̃2 = m2x2 + (1−m2)y2, (10)

ỹ1 = m2y1 + (1−m2)x1, (11)

ỹ2 = m1y2 + (1−m1)x2, (12)

where

v = (1− π)/(1− δπ).

Eqns. (5)–(12) are a system of eight linearly independent equations in eight unknowns:

A solution exists, and it is unique. For the remainder of our discussion, the solutions for

the variables x1 and y2 are particularly important.

We have assumed that Player 1 is the initial proposer, so the SSPE payoffs in the entire

game are δx1 and δy2, where the quantities x1 and y2 are given by

x1 =

(
1− π
1− δπ

)(
δ + (1− δ)π − δm1 + δπ(m1 −m2)

1− δ(m1 +m2 − 1)

)
, (13)

y2 =

(
1− π
1− δπ

)(
1− (1− δ)π − δm2 − δπ(m1 −m2)

1− δ(m1 +m2 − 1)

)
. (14)

In Appendix B, we provide Mathematica code that can be used to verify our computa-

tion of the solution to this system of equations.

Let the tuple

(x∗1, x
∗
2, y
∗
1, y
∗
2, x̃

∗
1, x̃
∗
2, ỹ
∗
1, ỹ
∗
2)

solve the system of Eqns. (5)–(12). Define a profile of stationary strategies

σ∗ = (θ∗1, θ
∗
2, τ
∗
1 , τ

∗
2 , α

∗
1, α

∗
2, β

∗
1 , β

∗
2)

as follows:

• For each i = 1, 2, let θ∗i = (1− π)(1− δx̃∗i ) + πδỹ∗j , where π = max{1
2
, e−λT}.

• For each i = 1, 2, let τ ∗i = t̂j(θ
∗
i ).

11



• For each j = 1, 2, let α∗j (θ, t) = Accept if and only if

θ ≥ (1− e−λ(T−t))(1− δx̃∗i ) + e−λ(T−t)δỹ∗j .

Otherwise, α∗j (θ, t) = δx̃∗i .

• Let β∗i (η, t) = Accept if and only if η ≥ δx̃∗i , and let β∗i (η, t) = Reject otherwise.

Theorem 1. The profile of stationary strategies σ∗ is the unique SSPE.

Proof. Uniqueness of SSPE follows from the fact that, in an SSPE, the utilities and

associated continuation utilities must satisfy Eqns. (5)–(12), and that system of equations

has a unique solution. In order to show that the strategy profile σ∗ is indeed an SSPE,

it is straightforward that the accept/reject behavior prescribed by α∗i and β∗i is optimal.

Moreover, the optimality of (θ∗i , τ
∗
i ) follows by applying the same logic as in the proof of

Proposition 3, and then observing that the solution to the optimization problem (2) is

unique. �

We refer to the ratio ρ1 = x1/y2 as Player 1’s relative payoff; it is given by

ρ1 =
δ + (1− δ)π − δm1 + δπ(m1 −m2)

1− (1− δ)π − δm2 − δπ(m1 −m2)
. (15)

In what follows, we explore how equilibrium variables depend on the underlying model

parameters. Some relevant observations can be made immediately from the above expres-

sions:

Consider the case where T > ln(2)/λ and therefore the equilibrium choice of the failure

probability is π = 1/2. In that case, we observe that

x1 = y2 =

(
1

2− δ

)( 1
2

+ δ
2
(m1 +m2 − 1)

1− δ(m1 +m2 − 1)

)
=

(
1

2− δ

)(
1

2

)
.

Thus, the relative payoff ρ1 equals one regardless of the value of the discount factor and

the transition probabilities: For any δ and any m1 and m2, Players 1 and 2 receive the

same expected SSPE payoff. In the canonical Rubinstein bargaining game, the discount

factor and transition probabilities are the crucial determinants of bargaining power. This

is not true in our setting when T ≥ ln(2)/λ: In that case, there is no advantage from being

the proposer and consequently, the equilibrium surplus allocation does not depend on the

proposer selection protocol. Along any equilibrium path, the proposer always offers the

fair split, and the responder accepts. However, there is some degree of inefficiency which

comes from the fact that each bargaining round which is reached on the equilibrium path

12



fails with probability 1/2. Unlike in the canonical bargaining model, the expected value of

agreement does not equal one but rather

δv = δ/(2− δ),

and so the expected payoff to each player is δ/(4− 2δ). This converges to 1/2 in the limit

as δ → 1. In our model, when the bargaining rounds are of sufficient length, an increase in

the discount factor boosts efficiency but does not change the surplus distribution. This is

exactly the reverse as in the canonical bargaining model, where an increase in the discount

factor makes the payoff distribution more fair, while the bargaining outcome is efficient

regardless of the discount factor.

Now suppose that bargaining rounds are sufficiently short so that e−λT = π > 1/2.

In that case, there is a proposer advantage like in the canonical bargaining model. The

proposer’s share does depend on the discount factor. Here, a “proposer advantage” means

that the proposer gets more than half of the gain from immediate agreement in each round.

In the canonical bargaining model, he gets the whole gain from immediate agreement in

each round. Like in the canonical bargaining model, relative payoffs depend on the proposer

protocol. In particular, we find

lim
δ→1

ρ1 =

(
1−m1(1− π)− πm2

1−m2(1− π)− πm1

)
=

(
1−m1 + π(m1 −m2)

1−m2 − π(m1 −m2)

)
.

The impact of proposal power on the equilibrium allocation is weaker than in the

canonical bargaining model. This is because the non–trivial length of bargaining rounds

gives the responder a chance to make a counter–offer. This attenuates the extent of the

proposer’s strategic advantage over the responder.

Example 1. Let us consider the numerical example with λ = 1 and T = 0.5. Since

T = 0.5 < ln(2) ≈ 0.69, we have that π = e−0.5 ≈ 0.607. Moreover, let us suppose that

m1 = 0.6 and m2 = 0.4. This implies that the probabilities in the stationary distribution of

the Markov chain are also µ1 = 0.6 and µ2 = 0.4. The limit of relative payoffs is

lim
δ→1

ρ1 =
0.4 + 0.2e−0.5

0.6− 0.2e−0.5
≈ 1.089.

In a canonical bargaining game in which proposer selection follows the same transition

dynamics, one would expect the limit of relative payoff of Player 1 to be µ1/µ2 = 0.6/0.4 =

1.5.
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4 The degree of noise

We are now going to examine how SSPE payoffs and delays change as we vary the arrival

rate λ. First suppose that λ is arbitrarily large. In that case, Proposition 4 tells us that

the proposer in bargaining round k waits almost until the deadline kT, thus ensuring that

the proposal fails to arrive before kT with probability one half. The expected time for

implementation of the agreement and the expected equilibrium payoffs remain constant

once λ has grown beyond the point where e−λT ≥ 1/2.

Proposition 5. For any given r and T, in the limit as λ is sufficiently large, every proposer

along an SSPE path of play offers the fair split, every bargaining round fails with probability

1/2, and expected implementation time is 2T.

As λ → ∞, the friction arising from noisy communication vanishes. This does not

make the bargaining process more efficient, however: The proposer adjusts the timing

of his offer in a way that holds the failure probability constant at one half. No matter

how close to instantaneous the communication between the players is, there remains a

substantial expected delay in equilibrium.

Now we turn to the case where λ is small. As a benchmark, let us briefly consider a

canonical bargaining model with two players and linear utilities in which proposer selection

follows a Markov chain.4 Let x̂i and ŷj be the SSPE utilities of a proposer and a responder

in any subgame of that canonical bargaining model. It is well–known that these utilities

are given by the solution to the following system of equations:

x̂i = 1− ŷj,
ŷj = δmiŷj + δ(1−mi)x̂j,

for i = 1, 2 and j 6= i. The former equation follows from the fact that an SSPE of the

canonical bargaining model is always efficient. In particular, agreement is reached immedi-

ately in every subgame. The latter equation captures the standard result that in an SSPE,

the responder is indifferent between acceptance and rejection of the proposal. Solving this

4The model and resutls briefly sketched here as a benchmark are a simple special case of Britz et al.

(2010): That paper studies a canonical bargaining model where proposer selection follows a Markov chain.

The model in that paper is much more general, however, in the sense that it allows for an arbitrary finite

number of players and a general convex set of feasible utilities.
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system yields

x̂i =
1− δmj

1− δ(mi +mj − 1)
,

ŷj =
δ − δmi

1− δ(mi +mj − 1)
,

for i = 1, 2 and j 6= i. The relative payoffs in an SSPE of the canonical bargaining model

are given by the ratio

ρ̂i =
1− δmj

δ − δmi

.

We will now use the canonical bargaining model as a benchmark to which we compare

the SSPE of our bargaining model in the limit as λ goes to zero while r and T remain fixed.

In that case, it is straightforward that the expected implementation time grows without

bound, and so the expected value of agreement converges to zero, indeed:

lim
λ→0

δ

(
1− e−λT
1− δe−λT

)
= 0.

When λ is small enough, Player i’s offer θi is approximately equal to Player j’s con-

tinuation utility δỹj. This continuation utility in turn is bounded above by the expected

value of agreement δv, which again is monotone decreasing in λ and converges to zero in

the limit as λ goes to zero. From inspection of Eqn. (15), we find the limit of relative

payoffs

lim
λ→0

ρ1 =
1− δm2

δ − δm1

,

and so we have the following proposition:

Proposition 6. For any δ, in the limit as λ→ 0, the expected value of agreement converges

to zero. Relative expected payoffs converge to the same limit as those in the canonical bar-

gaining model. Along an equilibrium path of play, however, proposers offer almost nothing

to responders.

Intuitively, if communication is very noisy, this weakens the responder’s bargaining

position: Once an offer has been received, making a counter–offer would likely lead to

a substantial and costly delay. Thus, a proposer only has to offer very little surplus

to a responder. In that sense, when communication is noisy enough, bargaining is in a

standoff: Each player finds it optimal to insist on almost the entire surplus. As a result,

an equilibrium path of play looks as follows: Players keep making very lopsided offers to
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each other. Each of these offers is unlikely to arrive in time, so that bargaining likely

keeps failing for many rounds until eventually some offer arrives in time to be accepted. A

player’s relative bargaining power depends on the probability with which one of his offers

is eventually successful. This probability corresponds to the share of time for which this

player expects to be the proposer in the long–run. This makes it intuitively clear why, with

small λ, relative payoffs are driven by the distribution of proposal power in the same way

as in the canonical bargaining model – even though the realized outcome is much more

lopsided, and absolute expected payoffs are small.

5 Optimal length of bargaining rounds

One key assumption of the present paper is that there are equidistant points in time

T, 2T, . . . at which an agreement can be implemented, and consumption of the surplus

can begin. Players make offers on how to split the surplus at the next available date.

One important question is how our equilibrium predictions vary with the choice of the

institutional parameter T. In particular, one might wonder which value of T is preferred

by Player 1 or Player 2, and which one is preferable from an efficiency or fairness point of

view. Observe that changing T has two effects: First, the length of the bargaining rounds

influences the failure probability. If rounds are short enough, the proposer cannot choose

his optimal failure probability of one half, but has to settle for a higher failure probability.

Shorter bargaining rounds are more likely to fail. Second, when bargaining rounds are

shorter, their failure becomes less costly: The next opportunity to implement agreement is

less far away. So far, we have done some comparative statics analysis on the parameters r

and λ, allowing us to vary the discount factor δ and the failure probability π independently

of each other. As we consider changes in T, however, we are simultaneously varying both

the discount factor δ = e−rT and the failure probability π = max{1
2
, e−λT}. Both of them

are non–decreasing in T. They both converge to one in the limit as T → 0.

5.1 The limit case

For the purpose of this section, let us consider the expected value of agreement and the

expected implementation time as a function of T, while keeping r and λ fixed, thus:

v(T ) =





eλT−1
e(λ+r)T−1 if T ≤ ln(2)/λ,

1
2erT−1 if T > ln(2)/λ.

16



ω(T ) =





(
eλT

eλT−1

)
T if T ≤ ln(2)/λ,

2T if T > ln(2)/λ.

Notice that both the expected value of agreement and the expected implementation time

are continuous functions of T. In particular, they are continuous at the point T = ln(2)/λ.

It is readily apparent from the above expressions that:

Proposition 7. The expected value of agreement in an SSPE is strictly monotonically

decreasing in the length of bargaining rounds.

The intuition is as follows: The bargaining process can be thought of as a sequence of

three consecutive stages: First, bargaining may be suspended for some time because the

proposer waits for the optimal moment to make an offer. Second, an offer has been made by

the proposer but not yet received by the responder. Third, an agreement has been reached

but the time for its implementation has not come yet. If bargaining rounds are sufficiently

short, a proposer never waits before making a counter–offer which eliminates the first stage.

Moreover, as bargaining rounds become shorter, an agreement is reached closer to the end

of a round, and hence closer to a possible date of implementation. Thus, the third stage

also vanishes. If T is small enough, a bargaining round tends to consist entirely of the

time that it takes for the offer to be communicated from the proposer to the responder.

Hence, it is clear that for small T, the expected implementation time must converge to the

expected arrival time of the underlying Poisson process. Indeed, by applying L’Hôpital’s

rule, we can easily verify that

lim
T→0

ω(T ) = lim
T→0

(
eλT

eλT − 1

)
T = 1/λ.

Since the expected value of agreement is monotone decreasing in T, it is bounded above

by its limit as T → 0. Again applying L’Hôpital’s rule, this limit can be computed as

lim
T→0

δv(T ) = lim
T→0

(
eλT − 1

e(λ+r)T − 1

)
=

λ

λ+ r
.

While delays within a round are costless if the length of the rounds is exogenously fixed,

they do become an important consideration once we study the optimal length of bargaining

rounds.
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Finally, we consider relative payoffs of the players in the limit as T → 0. From Eqn.

(15) we find that

lim
T→0

ρ1 = lim
T→0

(
e−rT + (1− e−rT )e−λT − e−rTm1 + e−(r+λ)T (m1 −m2)

1− (1− e−rT )e−λT − e−rTm2 − e−(r+λ)T (m1 −m2)

)

=
1−m2

1−m1

= µ1/µ2.

Now we have established the following theorem.

Theorem 2. In the limit as T → 0, the expected value of agreement in an SSPE converges

to λ/(λ + r), while the ratio of Player 1’s and Player 2’s SSPE utilities converges to

µ1/µ2. The SSPE proposal of Player i = 1, 2 converges to θi = µj
(

λ
λ+r

)
. The expected

implementation time in an SSPE converges to 1/λ.

The literature has established some findings on the SSPE of the canonical bargaining

model that hold for a wide class of proposer selection protocols: In particular, agreement

is reached immediately in every subgame, and in the limit as δ → 1, the SSPE proposals

of all players converge to a common limit.5

In our model, there is a strictly positive expected delay on the equilibrium path. Hence,

it is possible for the initial proposer’s advantage to vanish although the proposals them-

selves do not converge to the fair split. This gap between our findings and the canonical

bargaining model narrows if also the friction in communication is reduced, that is, if λ is

large.

Corollary 2. Suppose λ is sufficiently large. In the limit as T → 0, the expected value of

agreement in an SSPE is close to one, while the ratio of Player 1’s and Player 2’s SSPE

utilities is close to µ1/µ2. The SSPE proposal of Player i = 1, 2 to Player j 6= i is close to

µj. The expected implementation time is close to zero.

The corollary seems intuitive: As T becomes sufficiently small, and λ sufficiently large,

the frictions which distinguish our bargaining game from the canonical bargaining model

become negligible, and so our results collapse into the ones familiar from the canonical

bargaining model.

This intuition, however, only holds true when considering the double limit “limλ→∞ limT→0”

of equilibrium variables. By contrast, Proposition 5 has shown that the surplus is split

5Different versions of these results appear, among others, in Banks and Duggan (2000), Kultti and

Vartiainen (2010), Laruelle and Valenciano (2008), and Britz et al. (2010).
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fairly with an expected implementation time of 2T in the limit as λ→∞ for any given T.

Hence, at the double limit “limT→0 limλ→∞” equilibrium is nearly efficient but also perfectly

fair.

The interpretation is as follows: Consider the case where communication is noisy to

a substantial degree, while implementation of agreements is possible almost at any time.

Then, the equilibrium surplus allocation is determined by the distribution of proposal

power in the same way as in the canonical bargaining model. Contrary to that model,

however, there is a substantial expected delay of 1/λ on the equilibrium path of play, and

the equilibrium proposals of the two players do not converge to a common limit.

Now consider the case where agreements can only be implemented at few and distant

points in time, while noise in the communication is negligible. In that case, the surplus

is split fairly, regardless of the distribution of proposal power. The expected equilibrium

delay is 2T.

5.2 Players’ preferences over the length of bargaining rounds

The main trade–off can be summarized as follows: For T > ln(2)/λ, every proposer offers

the fair split, but the bargaining outcome is inefficient. A slight decrease in T improves

the payoffs of both players. From the point T = ln(2)/λ onwards, any further gain in

equilibrium efficiency will come at a cost in terms of fairness. Recall that for any T ≥
ln(2)/λ, the expected value of agreement is given by δ/(2− δ), or equivalently, by (2erT −
1)−1. At the point T = ln(2)/λ, the expected value of agreement is (2b − 1)−1, where we

denote b = 1 + r/λ. The quantity (2b − 1)−1 is the greatest expected value of agreement

that can be reconciled with a perfectly fair split.

In the limit as T → 0, the surplus is split according to the distribution of proposal

power. However, the surplus is maximized in the limit as T → 0, so fairness has a price in

terms of efficiency.

Suppose that the proposal power of Player 1 is greater than that of Player 2, that is,

µ1 > 1/2. As T decreases from ln(2)/λ towards zero, we should expect to see two effects:

First, the surplus increases. Second, its distribution tilts more and more in favor of Player

1. Both effects are good for Player 1, so that Player 1 prefers T to be as small as possible.

For Player 2, however, the two effects work in opposite directions: Decreasing T hurts

Player 2 because his share of the surplus becomes smaller, but on the other hand, Player

2 benefits because the surplus becomes bigger. Example 2 below illustrates these effects.
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Example 2. Suppose that r = λ = 1 so that e−rT = e−λT = e−T . Choosing T ∈ (0, ln(2)]

amounts to choosing some e−T ∈ [1
2
, 1). Whatever the proposer selection protocol may be,

the expected value of agreement is

e−Tv = e−T/(1 + e−T ).

For the sake of this example, let us assume that m1 = 0.7 and m2 = 0.3. By substitution

into Eqn. (13), we find that Player 1’s SSPE payoff is

e−Tx1 =

(
e−T

1 + e−T

)(
1.3e−T − 0.6e−2T

)
.

This payoff is monotone increasing on the entire interval e−T ∈ [1
2
, 1). Indeed, Player 1

becomes better off the smaller T is. In an analogous way, by substitution into Eqn. (14),

we find that Player 2’s SSPE payoff is

e−Ty2 =

(
e−T

1 + e−T

)(
1− 1.3e−T + 0.6e−2T

)
.

This payoff is not monotonic in e−T on the interval [1
2
, T ). it attains a local minimum at

e−T ≈ 0.944, where it evaluates to e−Ty2 ≈ 0.149. On the interval [1
2
, T ), the optimal choice

of e−T for Player 2 is e−T = 1/2, at which point Player 2’s payoff evaluates to e−Ty2 = 1/6.

The relation between the choice of T and the SSPE payoffs is more complex than the

two effects discussed in the context of Example 2, however. In addition, we also need to take

into account that the identity of the initial proposer has a non–monotonic effect on SSPE

payoffs. The reason is as follows: We have assumed that Player 1 is the initial proposer in

the first bargaining round. If e−T = 1/2, all proposals are fair, so the gain from immediate

agreement is split equally in each round. Hence, the identity of the initial proposer is

irrelevant for the SSPE payoffs. As e−T grows, however, there is a proposer advantage:

The proposer in each round receives more of the gain from immediate agreement than

the responder does. Due to time discounting, this effect has more bearing on the SSPE

payoffs in earlier rounds than in later ones. Thus, there is an advantage to being the

initial proposer. However, in the limit as e−T , discounting becomes negligible, and so the

premium for the initial proposer vanishes again. This is illustrated by Example 3 below.

Example 3. Assume that r = λ = 1 and, moreover, m1 = m2 = 0.9. Also in this

example, it is true that e−rT = e−λT = e−T , and that the expected value of agreement is

e−Tv = e−T/(1 + e−T ). By substitution into Eqns. (13) and (14), we find that Player 1’s

SSPE payoff is

e−Tx1 =

(
e−T

1 + e−T

)(
1.1e−T − e−2T

1− 0.8e−T

)
,
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and Player 2’s SSPE payoff is

e−Ty2 =

(
e−T

1 + e−T

)(
1− 1.9e−T + e−2T

1− 0.8e−T

)
.

Player 1’s SSPE payoff has a local maximum at e−T ≈ 0.873, where it evaluates to e−Tx1 ≈
0.306. Player 2’s SSPE payoff has a local minimum at e−T ≈ 0.766, where it evaluates to

e−Ty2 ≈ 0.147. Player 2 is best off in the limit as e−T → 1, where he receives a payoff of

1/4. At the point where e−T = 1/2, Player 2 would only receive 1/6.

In the canonical bargaining model, equilibrium offers become more fair when they can

be made more frequently. In our model, the opposite may be true for some range of T : The

distribution of proposal power has more and more bearing on the equilibrium allocation

as T ≤ ln(2)/λ becomes smaller.

In Example 3, the effect of the initial proposer’s identity on SSPE payoffs is quite

pronounced because the right to propose transitions from one player to the other only with

a low probability of 0.1. Differently put, the initial proposer is likely to remain in that role

for several rounds.

On the other extreme, it is also possible that the relation between T and the SSPE

payoffs is determined only by the fact that smaller T implies more efficiency because other

effects are quantitatively to weak to weigh in. This is illustrated by Example 4 below.

Example 4. Assume that r = λ = 1 and, moreover, m1 = m2 = 0. Also in this example,

it is true that e−rT = e−λT = e−T , and that the expected value of agreement is e−Tv =

e−T/(1 + e−T ). By substitution into Eqns. (13) and (14), we find that Player 1’s SSPE

payoff is

e−Tx1 =

(
e−T

1 + e−T

)(
2e−T − e−2T

1 + e−T

)
,

and Player 2’s SSPE payoff is

e−Ty2 =

(
e−T

1 + e−T

)(
1− e−T + e−2T

1 + e−T

)
.

On the interval e−T ∈ [1
2
, 1), SSPE payoffs of both players are monotone increasing. In

addition, Player 1’s SSPE payoff is concave in e−T on that interval, while Player 2’s SSPE

payoff is convex on that interval. Both players obtain 1/6 if e−T = 1/2, and both obtain

1/4 in the limit as e−T → 1.

The two previous examples have in common that the equilibrium split of the surplus is

fair both at T = ln(2)/λ and in the limit as T → 0. In those examples, it seems that there
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is no more trade–off between efficiency and fairness. So far, we have considered fairness

only with regard to the ex ante expected split of the surplus. As discussed before, when T

is small, SSPE proposals tend to be lopsided. So, the actual realized split of the surplus

for small T is not fair “ex post.” For instance, reconsider Example 4. In a round in which

Player 1 is the proposer, his offer to Player 2 converges to 1/4 in the limit as T goes to

zero. It can be checked that, when Player 2 is the proposer, he offers only 1/4 to Player 1.

So the ultimate agreement will always allocate one player three times as much surplus as

the other player.

5.3 Expected payoff to the final responder

In the previous subsection, we have considered which length of bargaining rounds is optimal

for either of the two players, for various configurations of model parameters. Now we turn

to the question how one might want to “design” an institutional environment in a way that

takes both efficiency and fairness considerations into account. One simple way of doing

this is to maximize the expected payoff to the final responder. This criterion is clearly

responsive to both efficiency and fairness. Moreover, it takes into account not only the

expected payoffs to the two players, but also the degree to which equilibrium proposals are

lopsided.

We have shown that, in the limit as T → 0, Player j is always offered µj
(

λ
λ+r

)
when

he is the responder. If T is small enough, the probability that the offer which is eventually

accepted is Player i’s offer converges to µi. By symmetry, this means that the expected

payoff to the final responder is 2µ1µ2

(
λ
λ+r

)
in the limit as T goes to zero. Since µ1+µ2 = 1,

we can also write it as 2(µ1 − µ2
1)
(

λ
λ+r

)
.

If T = ln(2)/λ, every proposer offers the fair split in an SSPE, and the expected value

of agreement is 1
2erT−1 = 1

2b−1 , where we recall that b = 1+r/λ. Hence, the expected payoff

to the final proposer is 1/2
2b−1 if T = ln(2)/λ.

We see that the expected payoff to the final proposer is greater at T = ln(2)/λ than it

is for sufficiently small T if and only if the following condition holds:

b

2b − 1
≥ 4(µ1 − µ2

1). (16)

The right–hand side equals one if µ1 = 1/2, and is strictly less than one for any other

µ1 ∈ (0, 1). The left–hand side is monotone decreasing on the relevant interval [1,∞), it

equals one if b = 1, and converges to zero in the limit as b goes to infinity.

If the proposal power of both players is equal, that is, µ1 = µ2 = 1/2, then the expected

payoff to the final responder is greater in the limit as T → 0 than it is if T = ln(2)/λ.
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Notice that this is true independently of the extent to which the equilibrium proposals are

lopsided.

By contrast, if players differ ever so slightly in their proposal power, one can find

parameter values r and λ so that the expected payoff of the final responder is greater at

T = ln(2)/λ than it is for sufficiently small T.

6 Conclusion

The canonical bargaining model condenses each round into a single point in time. Offers

are made, accepted, and implemented instantaneously. In the present paper, we have

challenged this assumption, and proposed a bilateral bargaining model including frictions

that the canonical approach abstracts away from. When bargaining rounds are of non–

trivial length, players may make counter–offers. When communication is noisy, bargaining

may fail not only due to disagreement, but also due to unsuccessful communication. When

agreements can only be implemented according to a rigid time schedule, players may want

to delay offers, and inefficiencies arise.

We have established conditions under which well–known results from the canonical

bargaining model can be recovered in the limit as communication becomes less noisy, and

the time schedule for implementing agreements becomes more flexible. This result can

be interpreted as providing the conditions under which the canonical bargaining model is

robust to the presence of frictions in each bargaining round.

One important question in bargaining theory is how conflict and delay can arise, while

the canonical bargaining model strongly predicts immediate agreement in all subgames.

One particularly simple explanation for conflict and delay could be noisy communication.

There are many different potential interpretations of what we capture by modeling noisy

communication: One very literal interpretation could be that players are uncertain about

the frequency with which their opponents read their e–mail. An alternative interpreta-

tion is that contracts are often very complex, and it takes an uncertain amount of time

to process, understand, and evaluate the exact terms of an offer. While our model gives

an explanation for equilibrium delay, its predictions about the surplus allocation are still

compatible with those of the canonical approach in the limit as the time schedule for

implementing agreements is flexible enough. We have demonstrated that very noisy com-

munication cannot only lead to prolonged conflict and delay in equilibrium, but also gives

players an incentive to adopt tougher bargaining positions, which leads to more lopsided

proposals and less predictable surplus allocations.
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Another possible interpretation of the results in this paper is that they provide a ra-

tionale for institutions that constrain the time at which agreements can be implemented:

When implementation of an agreement is subject to a rigid time schedule, this may make

bargaining less efficient but render the surplus allocation more fair. In that sense, a more

rigid bargaining institution may be useful to protect the weaker party in the negotiation

from exploitation.

24



Appendix A

Proof of Proposition 1.

Player i accepts a counter–offer if and only if it gives him at least δx̃i. If it is optimal for

Player j to make a counter–offer, then that counter–offer must be 1− δx̃i. It immediately follows

that Player j accepts an offer θi ≥ 1−δx̃i at any time. This explains why t̂j(θi) = 0 if θi ≥ 1−δx̃i.
From now on, we consider the case where θi < 1 − δx̃i. Suppose that Player j makes his best

counter–offer η = δx̃i at time (k − 1)T + t. Then, the probability that Player i receives the

counter–offer before time kT is given by 1 − e−λ(T−t). Hence, making the optimal counter–offer

at time (k − 1)T + t gives Player j an expected payoff of (1 − e−λ(T−t))(1 − δx̃i) + e−λ(T−t)δỹj .

By a standard argument, it is optimal for Player j to accept θi at time (k− 1)T + t if and only if

θi ≥ (1− e−λ(T−t))(1− δx̃i) + e−λ(T−t)δỹj .

Rearranging this inequality, we obtain

e−λ(T−t) ≥ 1− δx̃i − θi
1− δx̃i − δỹj

,

Solving for t yields

t ≥ T −
(

1

λ

)
ln

(
1− δx̃i − δỹj
1− δx̃i − θi

)
.

Since t is non–negative by definition, the desired expression for t̂j(θi) follows.

�

Proof of Proposition 2.

Take ε > 0 sufficiently small, and suppose that Player i makes the offer 1−δx̃i−ε immediately,

that is, at time (k − 1)T. In that case, his expected payoff is

(1− e−λT )(δx̃i + ε) + e−λT δx̃i

= δx̃i + (1− e−λT )ε > δx̃i.

Indeed, Player i can make an offer that leads to an expected payoff strictly greater than δx̃i.

Conversely, any choice of (θi, τi) which leads to an expected payoff of δx̃i or less cannot be

optimal. If Player i makes an offer θi such that θi ≥ 1 − δx̃i, then his payoff is at most δx̃i. If

Player i does not make an offer strictly earlier than time kT, an expected payoff of δx̃i results.

The proposition follows.

�

Proof of Proposition 3.

We show first that τi = t̂j(θi). Let us suppose by way of contradiction that Player i chooses a
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pair (θi, τi) such that τi > t̂j(θi). Then Player i’s offer θi is accepted by Player j if and only if it

arrives before time kT. Thus Player i’s expected payoff is

(1− e−λ(T−τi))(1− θi) + e−λ(T−τi)δx̃i = 1− θi − e−λ(T−τi)(1− θi − δx̃i).

Take ε > 0 sufficiently small, and consider a unilateral deviation under which Player i chooses

(θi, τi − ε) instead of (θi, τi). By the same token, Player i’s expected payoff is now

(1− e−λ(T−τi+ε))(1− θi) + e−λ(T−τi+ε)δx̃i = 1− θi − e−λ(T−τi+ε)(1− θi − δx̃i).

Due to Proposition 2, we have that 1− θi − δx̃i > 0, and so the deviation is profitable.

Now suppose that Player i chooses (θi, τi) such that τi < t̂j(θi). There are three cases to

distinguish: First, if the offer arrives between times τi and t̂j(θi), then Player j makes the counter–

offer η = δx̃i. Irrespective of whether or not this counter–offer arrives before time kT, the resulting

expected payoff for Player i is δx̃i. Second, if the offer arrives between times t̂j(θi) and kT, it is

accepted, and so Player i receives 1 − θi. Third, if the offer does not arrive until time kT, then

bargaining round k fails and so the expected payoff for Player i is δx̃i.

Thus Player i’s expected payoff can be written as

e−λ(t̂j(θ)−τi)(1− e−λ(T−t̂(θi)))(1− θi) + (1− (e−λ(t̂j(θi)−τi))(1− e−λ(T−t̂j(θi))))δx̃i.

It is easy to verify that Player i has a profitable unilateral deviation by making the same offer

θi at time t̂j(θi) rather than at time τi, given that 1 − θi > δx̃i. We can now conclude that an

optimal choice of (θi, τi) by the proposer must be such that τi = t̂j(θi), as desired.

Now we show that in an SSPE, Player i chooses (θi, τi) such that θi = (1 − e−λ(T−τi))(1 −
δx̃i) + e−λ(T−τi)δỹj . The argumemt is standard: Suppose first that θi > (1− e−λ(T−τi))(1− δx̃i) +

e−λ(T−τi)δỹj . Then Player i has a profitable deviation in proposing θi − ε instead of θi for some

ε > 0 sufficiently small. Now suppose that Player i offers some θi < (1 − e−λ(T−τi))(1 − δx̃i) +

e−λ(T−τi)δỹj . Then Player j makes a counter–offer in which case Player i only gets δx̃i. But, by

Proposition 2, we have that 1− θi > δx̃i.

�

Appendix B

In this Appendix, we provide the Mathematica code with which the solution to the system of

Eqns. (5)–(12) can be verified. This code defines a total of eleven equations. The first eight of

those correspond exactly to the aforementioned system of equations. The ninth equation in the

code corresponds to the expected value of agreement. The tenth and eleventh equations are used

to compute the equilibrium offers θ1 and θ2.
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variables = {x1, x2, y1, y2, tx1, tx2, ty1, ty2, V, T1, T2};

equations = x1 ⩵ d * tx1 + 1 - d * V p - p^2,

x2 ⩵ d * tx2 + 1 - d * V p - p^2,

y1 ⩵ V - x2,

y2 ⩵ V - x1,

tx1 ⩵ m1 * x1 + 1 - m1 y1,

tx2 ⩵ m2 * x2 + 1 - m2 y2,

ty1 ⩵ m2 * y1 + 1 - m2 x1,

ty2 ⩵ m1 * y2 + 1 - m1 x2,

V ⩵ 1 - p  1 - d * p,

T1 ⩵ 1 - p 1 - d * tx1 + p * d * ty2,

T2 ⩵ 1 - p 1 - d * tx2 + p * d * ty1;

eqsmatrixform =

normal

Normal[
Arrays der Koeffizienten

CoefficientArrays[equations, variables]];

M = eqsmatrixform[[2]];

v = -eqsmatrixform[[1]];

sol =

löse lineare Gleichung

LinearSolve[M, v];

gib aus

Print[
Matritzenform

MatrixForm[M], " ",
Matritzenform

MatrixForm[variables], " = ",
Matritzenform

MatrixForm[v]]

gib aus

Print[
Matritzenform

MatrixForm[variables], " = ",
Matritzenform

MatrixForm[
vereinfache

Simplify[sol]]]

1 0 0 0 -d 0 0 0 d p - p2 0 0

0 1 0 0 0 -d 0 0 d p - p2 0 0

0 1 1 0 0 0 0 0 -1 0 0
1 0 0 1 0 0 0 0 -1 0 0

-m1 0 -1 + m1 0 1 0 0 0 0 0 0
0 -m2 0 -1 + m2 0 1 0 0 0 0 0

-1 + m2 0 -m2 0 0 0 1 0 0 0 0
0 -1 + m1 0 -m1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 d (1 - p) 0 0 -d p 0 1 0
0 0 0 0 0 d (1 - p) -d p 0 0 0 1

x1
x2
y1
y2
tx1
tx2
ty1
ty2
V
T1
T2

=

p - p2

p - p2

0
0
0
0
0
0
1-p

1-d p

1 - p
1 - p

x1
x2
y1
y2
tx1
tx2
ty1
ty2
V
T1
T2

=

-
(-1+p) (d+d m1 (-1+p)+p-d (1+m2) p)

(-1+d (-1+m1+m2)) (-1+d p)

-
(-1+p) (d+d m2 (-1+p)+p-d (1+m1) p)

(-1+d (-1+m1+m2)) (-1+d p)

-
(-1+p) (1-p+d (m1 (-1+p)+p-m2 p))

(-1+d (-1+m1+m2)) (-1+d p)

(-1+p) (-1+p+d (m2+(-1+m1) p-m2 p))

(-1+d (-1+m1+m2)) (-1+d p)

(-1+p) (-1+m1+p-d p+(-2+d) m1 p+d m2 p)

(-1+d (-1+m1+m2)) (-1+d p)

(-1+p) (-1+m2+p-d p+d m1 p+(-2+d) m2 p)

(-1+d (-1+m1+m2)) (-1+d p)

-
(-1+p) (m2+d (-1+m1+m2) (-1+p)+p-2 m2 p)

(-1+d (-1+m1+m2)) (-1+d p)

-
(-1+p) (m1+d (-1+m1+m2) (-1+p)+p-2 m1 p)

(-1+d (-1+m1+m2)) (-1+d p)

-1+p

-1+d p

-
(-1+p) 1+d2 (-1+m1+m2) p+d (-m2+p-2 m1 p)

(-1+d (-1+m1+m2)) (-1+d p)

-
(-1+p) 1+d2 (-1+m1+m2) p+d (-m1+p-2 m2 p)

(-1+d (-1+m1+m2)) (-1+d p)
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