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Abstract

The speed of computers has been steadily increasing over the past
decades due to hardware and software progresses. This has enabled
the use of numerical simulations to support experiments by either pro-
viding additional insight or guidance through predictions. Through
the increasing computer power, ever larger and more accurate simula-
tions have been made possible. Still, the increase in model complexity
and structure size does not only demand better computers, but also
more efficient algorithms. In one of the most successful quantum me-
chanical theories, which is density functional theory (DFT), a lot of
progress has been made in the last two decades to simulate large sys-
tems more rapidly. However, most of the progress has been concerned
with ground-state applications, where the electronic dynamics are not
explicitly simulated. The goal of this work is to build upon the success
in ground-state calculations and generalise the existing approaches to
include the electron dynamics.

For large systems, the computational performance can be en-
hanced by exploiting the near-sightedness of electronic matter, which
captures the intuitive fact that local properties should only depend
on the local environment. The electron dynamics are then included
through a method called Ehrenfest molecular dynamics (EMD), which
was implemented in the DFT software package CP2K. Furthermore,
another approach that is commonly used to speed up ground-state cal-
culations, namely subsystem DFT, was implemented more efficiently
in CP2K and combined with EMD. Simulations were carried out to
both validate the method and its implementation as well as to gain
insight into the behaviour of nanoscale components.
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Zusammenfassung

Aufgrund von technologischen Durchbrüchen sowohl auf Seiten der
Hardware wie auch der Software, hat die Rechnerleistung von Com-
putern hat über die Jahrzehnte stetig zugenommen. Diese Entwick-
lung erlaubt die Verwendung numerischer Simulationen zur Unter-
stützung von Experimenten, entweder indem sie ein tieferes Verständ-
niss der experimentellen Daten ermöglichen oder als Richtschnur für
die Planung von Experimenten verwendet werden. Durch die gestie-
gene Rechnerleistung werden immer grössere und genauere Simulatio-
nen möglich. Durch diese Entwicklung werden aber neben besseren
Computern aber auch bessere Algorithmen benötigt. In den letzten
beiden Jahrzehnten wurde dabei in einer der bedeutendsten Quan-
tenmechanischer Theorien, genannt Dichtefunktionaltheorie (DFT),
viel Fortschritt erzielt. Das meiste dieses Fortschritts beschränkt
sich aber auf Grundzustandssimulationen, in denen die Elektronen-
dynamik nicht explizit simuliert wird. Das Ziel dieses Werks ist es
auf den Erfolgen für Grundzustandssimulationen aufzubauen und die
bestehenden Ansätze zu verallgemeinern um die Dynamik der Elek-
tronen mit einzubeziehen.

Dies kann durch die Ausnützung eines Effekts, der die Nahsichtig-
keit elektronischer Masse genannt wird, erreicht werden. Dieser Ef-
fekt beschreibt die intuitive Vorstellung, dass lokale Eigenschaften
durch die lokale Umgebung bestimmt werden. Die Elektronendy-
namik wird dann mittels einer Methode namens Ehrenfest Molekular-
dynamik (EMD) simuliert, welche in dem Softwarepaket CP2K im-
plementiert wurde. Ausserdem wird ein weiterer Ansatz der ebenfalls
verwendet wurde um Grundzustandssimulationen zu beschleunigen,
genannt Subsystem DFT, effizienter in CP2K implementiert und kom-
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biniert mit EMD. Simulationen wurden durchgeführt um sowohl die
Korrektheit der Methode wie auch der Implementierung zu demon-
strieren. Des weiteren wurden auch Simulationen durchgeführt zur
Untersuchung des Verhaltens von Komponenten im Nanometerbere-
ich.

8



Contents

1 Introduction 11

2 Theory 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Density Functional Theory . . . . . . . . . . . . . . . 18

2.2.1 Quantum Mechanical Background . . . . . . . 18
2.2.2 Single Particle Wave-Functions . . . . . . . . . 20
2.2.3 Linear Combination of Atomic Orbitals . . . . 21
2.2.4 Hohenberg-Kohn Theorem . . . . . . . . . . . . 23
2.2.5 Kohn-Sham . . . . . . . . . . . . . . . . . . . . 23
2.2.6 Self-Consistent Field Procedure . . . . . . . . . 24
2.2.7 DFT Summary . . . . . . . . . . . . . . . . . . 26

2.3 Linear Scaling DFT . . . . . . . . . . . . . . . . . . . 26
2.3.1 Density Matrix Purification . . . . . . . . . . . 27

2.4 Subsystem DFT . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Combining Subsystem DFT with

Linear Scaling DFT . . . . . . . . . . . . . . . 31
2.5 Molecular Dynamics . . . . . . . . . . . . . . . . . . . 32

2.5.1 Velocity-Verlet Integration . . . . . . . . . . . . 33
2.6 Real-Time Propagation . . . . . . . . . . . . . . . . . 34
2.7 Ehrenfest Molecular Dynamics . . . . . . . . . . . . . 37

2.7.1 Density Matrix Based Ehrenfest Molecular Dy-
namics . . . . . . . . . . . . . . . . . . . . . . . 39

3 Implementation 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Subsystem Graph Colouring . . . . . . . . . . . . . . . 49

3.2.1 Pair Switching Algorithm . . . . . . . . . . . . 52
3.3 Complex Matrix Multiplication . . . . . . . . . . . . . 53
3.4 Optimal Time Step . . . . . . . . . . . . . . . . . . . . 54
3.5 Can Ehrenfest Molecular Dynamics be O(N) ? . . . . 56

9



3.5.1 ’Linear-Scaling’ Implementation . . . . . . . . 56
3.5.2 EMD Density Matrix Filling . . . . . . . . . . 57
3.5.3 Hückel Theory . . . . . . . . . . . . . . . . . . 59

4 Applications 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Electron Injection into a Boron-Nitride Nanotube . . . 71
4.3 Simulation of Current through a Metallic Nanotube . 73

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . 73
4.3.2 Computational Setup . . . . . . . . . . . . . . 74
4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . 74
4.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . 76

4.4 Simulation of Current through
a Semiconducting Nanotube . . . . . . . . . . . . . . . 79
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . 79
4.4.2 Computational Setup . . . . . . . . . . . . . . 79
4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Current-Voltage Characteristics of Germanium Se-
lenide Selectors . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Plasmonic Effects in Conductive Bridging Random Ac-
cess Memories . . . . . . . . . . . . . . . . . . . . . . . 88
4.6.1 Introduction . . . . . . . . . . . . . . . . . . . 88
4.6.2 Electrostatic Forces . . . . . . . . . . . . . . . 91
4.6.3 Plasmonic Forces . . . . . . . . . . . . . . . . . 94
4.6.4 Current Simulations . . . . . . . . . . . . . . . 97
4.6.5 Optical Rectification . . . . . . . . . . . . . . . 99
4.6.6 Conclusions . . . . . . . . . . . . . . . . . . . . 101

4.7 The Band Gap of TiO2 Nanoparticles in Acetonitrile
Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.8 Satellite Tobacco Mosaic Virus . . . . . . . . . . . . . 105
4.9 N3 Dye: Electronic Dynamics in the Linear Response

Regime . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Conclusions and Outlook 121

10



Chapter 1

Introduction

In 1941 Konrad Zuse developed the first universal computer. [1] Since
then the speed of computers has grown tremendously. For decades,
the computer development has followed Moore’s scaling law, which
predicts that the number of transistors per area exponentially in-
creases, [2] which has subsequently led to an exponential increase in
the performance of computers. Driven by their always improving ca-
pabilities, computers have transformed the society on every level. In
science, they have enabled a new tool for scientific research, namely
numerical simulations. As more powerful computers have been made
available, such simulations have become faster, more accurate, and
cheaper. However, to optimally exploit these hardware improvements,
it is necessary to develop new algorithms that can take advantage of
them. The methods which were used for the simulations of small sys-
tems in the past are usually inadequate for present-day simulations.

In the field of quantum chemistry, a theory has proven to be very
powerful for the numerical simulation of atomic systems and the ex-
traction of their material properties, namely the density functional
theory (DFT). [3, 4] DFT is considered to have a good ratio between
the computer time needed to perform a simulation and the accuracy
it provides. One important measure to characterise the performance
of a method is the so-called computational complexity. It describes
the relation between the required computer power for a given simu-
lation and the size of the considered system. Traditionally, DFT has
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cubic complexity, meaning that doubling the size of a simulated sys-
tem induces an eight-fold increase in required computational power.
The complexity of DFT is better than many other quantum chem-
istry theories such as the Hartree–Fock [5] or the coupled-cluster [6, 7]

method. Nonetheless, for large systems the computational costs be-
come prohibitive so that better algorithms are needed.

In 1996 Walter Kohn, one of the original inventors of DFT who was
later awarded the Nobel Prize in Chemistry for his work, introduced a
principle, which he called the nearsightedness of electronic matter. [8]

This principle dictates that the behaviour of electrons is determined
by their local environment. For large systems, the cost of doubling the
system size should therefore be dominated by the cost of two separate
systems with little overhead. Only few of the electrons can “see”
beyond the boundary of the two systems, resulting in a small cost to
simulate the interaction between them. In other words, this principle
paved the way for the development of linear scaling DFT simulations,
where the required computational effort is proportional to the size
of the simulated system. Since Kohn introduced the nearsightedness
principle, linear scaling DFT has been implemented in a number of
quantum chemistry codes, [9–14] among them CP2K, [15, 16] the code
used for the majority of this work. This breakthrough has enabled the
simulation of millions of atoms, [9, 10] instead of hundreds or thousands
as previously possible.

However, all this progress has been focused on ground-state calcu-
lations, which assume that electrons are always in the configuration
with the lowest possible energy. There are many processes, in which
this approximation is violated, for example electron transfer processes
or photo absorption. In these cases, the electron movement has to be
simulated explicitly. This can be done through real-time propaga-
tion (RTP) or Ehrenfest molecular dynamics (EMD). Both types of
method allow the use of DFT without making the assumption of an
electronic ground-state. Like traditional DFT, RTP and EMD have
so far exhibited a cubic scaling of their computation time with respect
to the system size and have thus been restricted to the systems of at
most a few hundred atoms. The goal of this work was therefore to
enable linear scaling for these methods as well by employing the same
general approaches that were applied to ground-state simulations in
the past.
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Figure 1.1: Recent advancements allow simulations at the DFT level
of accuracy with linear time complexity. However, while it is possible
to use DFT to explicitly simulate the electron dynamics, the linear
scaling simulations are so far limited to the electronic ground-state.
The goal of this thesis is to remove this shortcoming and thus enabling
large scale simulation of the electronic processes.

13



The thesis is organised as follows: Chapter 2 will provide the the-
oretical background to understand DFT, RTP, EMD, and the algo-
rithms used to make these simulations faster. Chapter 3 will then give
information about the issues encountered during the implementation
inside CP2K. In Chapter 4 the simulations that were performed using
this code will be presented. Conclusions will be drawn in Chapter 5.
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Chapter 2

Theory

2.1 Introduction

This chapter gives an overview of the necessary theoretical background
to understand the work presented in this thesis. We shall start with
an introduction about density functional theory (DFT), [1, 2] the un-
derlying theory behind all simulations in this work. DFT is in prin-
ciple an exact theory. It has been widely and successfully applied
in chemistry, materials science, and condensed matter physics, be-
cause it offers a high accuracy compared to the required computer
time. Another advantage comes from the ease of its application to
new structures without the need for prior empirical investigations.

After the basics of DFT are introduced, two sections will describe
possible methods to increase the efficiency of DFT calculations. The
first is linear scaling DFT, a way to make the computational costs
of DFT calculations scale linearly with respect to the system size,
thus enabling the treatment of large systems. The second method is
subsystem DFT, where the computational performance is enhanced
through a division of the system into a set of smaller subsystems.
The benefit of the latter approach is twofold: First, the prior knowl-
edge about the molecular structure of the system can be included.
Secondly, the accuracy can be tailored for specific regions of the sys-
tem, concentrating most of the computer time to critical areas, while
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treating the rest at a small fraction of the usual costs.
Finally, an overview of the different ways to move from the static

picture to dynamic simulations will be presented. A range of methods
exist to simulate the system dynamically (Fig. 2.1), they differ from
each other by the particles that are dynamically simulated.

The algorithms presented here have been implemented in the DFT
software package CP2K. [3, 4] Since all simulations were performed for
systems containing an even number of electrons, spin-polarisation ef-
fects will not be considered in this work, although DFT can naturally
include them. To simplify the equations, all formulas given in this
thesis will be expressed in atomic units.

2.2 Density Functional Theory

2.2.1 Quantum Mechanical Background

Schrödinger Equation

On a fundamental level, atomistic systems are described by the Schrö-
dinger equation. There are two formulations, the more general time-
dependent form: [5, 6]

i
∂

∂t
ψ = Ĥψ, (2.1)

and the simpler time-independent form, which applies to stationary
states, where the density of electrons does not change over time:

Ĥψ = Eψ. (2.2)

Here, Ĥ is the Hamiltonian operator that describes the time evolution
and the total energy of the system, E, denotes the energies associated
with the eigenfunctions of the Hamiltonian, and ψ the many-particle
wave-function. These quantities are related to the probability distri-
bution of the electronic and atomic positions in the system.

Analytically, the Schrödinger equation can only be solved for the
smallest systems, such as a single hydrogen atom. The difficulty lies in
the high dimensionality of ψ, which is a (3Nel + 3Ncores) dimensional
object. In effect it describes the density of every electron and atomic
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sumed to be in the electronic ground-state of lowest possible energy
(Energy, MD), or explicitly moved over time (RTP, EMD).
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core at every point in space. For practical calculations, a range of
approximations have to be used to make the Eq. (2.1) or (2.2) solvable,
which will be covered from here on.

Born-Oppenheimer Approximation

The first approximation is the separation of the electronic and the
nuclear part of the wave-function. The validity of this separation is
justified based on the large difference between the mass of the atomic
cores and of the electrons. [7] The nuclear part of the wave-function
can be further simplified by treating the cores as classical particles,
thus moving from a probability distribution to a list of coordinates.

Practically, the nucleus and the inner electrons are often grouped
together as a single object. The interactions with the rest of the sys-
tem are then simulated with so called pseudo-potentials. The reason-
ing is that most of the chemistry is only related to the outer valence
electrons and the inner electrons remain closely bound to the nucleus.

After these simplifications, a 3Nel dimensional problem is ob-
tained, which represents a significant improvement, but still in-
tractable for most calculations.

2.2.2 Single Particle Wave-Functions

The next step consists in approximating the many-particle wave-func-
tion through one-electron functions. Ideally, we would like to repre-
sent ψ as a simple product of independent one-electron wave-functions.
However, such a representation violates the antisymmetry property of
the electronic wave-function, [8, 9] which is related to the Pauli exclu-
sion principle. [10] The antisymmetry principle states that the sign of
ψ changes when two electrons are exchanged:

ψ(x1, ..., xi, ..., xj , ..., xn) = −ψ(x1, ..., xj , ..., xi, ..., xn). (2.3)

Instead of a product, the wave-function can be approximated as the
sum of product given by a determinant. [11] Such an approach intrin-
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sically includes the antisymmetry requirement:

ψ(x1, ..., xn) ≈ 1√
N !

det

∣∣∣∣∣∣∣
ψ1(x1) · · · ψn(x1)

...
. . .

...
ψn(x1) · · · ψn(xn)

∣∣∣∣∣∣∣ . (2.4)

This representation is called the Slater-determinant. With the de-
terminant representation it also becomes obvious that no two one-
electron orbitals can be identical, as the determinant of a matrix with
two identical columns is zero. The one-electron wave-functions will
be referred to as molecular orbitals in the remaining of this thesis.

2.2.3 Linear Combination of Atomic Orbitals

An analytical calculation of the molecular orbitals, as introduced
above, is typically not feasible. Therefore, we use a linear combi-
nation of atomic orbitals (LCAO), [12] which represents the molecular
orbitals through a finite set of atom-centred basis functions:

ψj(r, t) =
∑
α

vjαφα(r −RAα), (2.5)

with ψj being the orbital of electron j, φα an atomic basis functions
centred around atom Aα, and vjα a numerical expansion coefficient.
Similarly, the one-electron wave-functions could also be represented by
atom-independent basis functions, such as plane-waves or wavelets. [13]

Plane-waves have the advantage that the accuracy of the basis set
can be systematically enhanced by increasing the energy limit up to
which basis functions are generated. However, atom centred basis
functions typically require a smaller number of elements to achieve a
good representation of the molecular orbitals, which has performance
benefits. The CP2K software generally uses an atom-centred basis set,
but performs part of the calculations in an auxiliary plane-wave basis,
which is called the Gaussian and plane waves (GPW) method. [3]

Ideally, atomic basis functions would have an exponential depen-
dence on the distance from their centres, such functions are named
Slater-type orbitals. [14] However, in practice, it is computationally
favourable to use Gaussian type orbitals (GTO), because the over-
lap of Gaussian functions can be analytically calculated. Exponential
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functions can be approximated as a linear combination of multiple
Gaussians, which form a contracted Gaussian basis function: [15]

φα(r) =
∑
k

Nkck(x− xAα)l(y − yAα)m(z − zAα)ne−αk(r−RAα )2

,

(2.6)

where Nk is a normalisation constant and ck the contraction coeffi-
cients. Contracted GTOs differ from each other by the number of
primitive Gaussian basis functions, contraction coefficients and expo-
nents. The parameters are typically optimised with regards to specific
pseudo-potentials to provide accurate results. [16]

Transformation to an Orthonormal Basis

For reasons that will be explained later, molecular orbitals should
be orthonormal. However, this orthonormality is not reflected in the
vectors v in Eq. 2.5, as the underlying basis functions φ are a non-
orthonormal basis themselves. In many situations, it is therefore con-
venient to transform the basis into an orthonormal basis:

〈ψi|ψj〉 = 〈φT vi|φT vj〉 = (vi)TSvj

= (S
1
2 vi)T (S

1
2 vj) = (viortho)

T vjortho = δij , (2.7)

The notation above uses the bra-ket notation, [17, 18] which denotes an
inner product, defined as:

〈a|b〉 =

∫
a(x)∗b(x)dx. (2.8)

The matrix S is a symmetric matrix, which is referred to as the overlap
matrix (Sαβ = 〈φα|φβ〉). When the basis is changed for molecular
orbitals, the matrix representation of the Hamiltonian H has to be
modified accordingly.

E = vTHv = vTorthoHorthovortho

= (S
1
2 v)THorthoS

1
2 v = vTS

1
2HorthoS

1
2 v (2.9)

⇒ Hortho = S−
1
2HS−

1
2 .
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The new basis functions are no longer local in space. However, in
many situations, it is more suitable to perform intermediate steps of
a calculation in the orthonormal basis before transforming the results
into the non-orthonormal basis to calculate the real-space density.

2.2.4 Hohenberg-Kohn Theorem

In their seminal paper from 1964, [19] Hohenberg and Kohn proved
that all properties of a system in the electronic ground-state can be
obtained from the electronic density alone. This finding massively
simplifies calculations as the electronic density is only a 3 dimensional
object. The total energy of the system is then given by: [2, 19]

E =

∫
v(r)ρ(r)dr +

∫ ∫
ρ(r)ρ(r′)

|r − r′|
drdr′ +G[ρ], (2.10)

where

ρ(r) = Nel

∫
|ψ(r, r2, ..., rn)|2dr2...drn (2.11)

is the electron density at position r, v(r) is an external potential, and
G[ρ] is a universal functional of the density. The remaining prob-
lem is that G[ρ] is unknown. There exists a flavour of DFT, orbital-
free DFT, where G[ρ] is approximated with empirical functions. [20]

This approach typically requires little computational effort, but suf-
fers from poor accuracy.

2.2.5 Kohn-Sham

In 1965, Kohn and Sham [2] went one step further and calculated the
kinetic energy from the Slater-determinant representation of the wave-
function:

Ekin = −
1

2
〈ψ|∇2 |ψ〉

≈ −
1

2N !
〈det

∣∣∣∣∣∣∣
ψ1(x1) · · · ψn(x1)

...
. . .

...
ψn(x1) · · · ψn(xn)

∣∣∣∣∣∣∣|∇2 |det

∣∣∣∣∣∣∣
ψ1(x1) · · · ψn(x1)

...
. . .

...
ψn(x1) · · · ψn(xn)

∣∣∣∣∣∣∣〉 ,
(2.12)
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which according to the Slater-Condon rules [11, 21] takes the following
simple form for orthonormal orbitals:

Ekin ≈ −
1

2

N∑
i=1

〈ψi| ∇2 |ψi〉 . (2.13)

The functional G[n] introduced by Hohenberg-Kohn, was then sepa-
rated into a component representing the kinetic energy, Ekin[ψ], and
another one labelled, EXC , including the remaining contributions to
the energy, namely the exchange and the correlation energies: [2]

G[ρ, ψ] = Ekin[ψ] + EXC [ρ], (2.14)

The exchange energy is connected to the fact that the electronic
density does not have the antisymmetry property of the Slater-
determinant and must therefore be corrected. On the other hand,
the correlation energy accounts for the correlation between the elec-
trons. This term was neglected when the electrons were consid-
ered non-interacting. For sufficiently slowly varying densities, the
local density approximation [2] (LDA) can be employed, to derive
an expression for EXC [ρ] from

∫
ρ(r)εXC(ρ(r))dr. The more accu-

rate generalised gradient-approximation (GGA) does not only de-
pend on the electronics density, but also on its gradient (EXC [ρ] =∫
ρ(r)εXC(ρ(r), ~∇ρ(r))dr). While the exact form of EXC [ρ] is not

known, a vast range of exchange correlation functionals [22–27] have
been developed as approximations. Calculations employing the Kohn-
Sham matrix representation of the Hamiltonian HKS are in general
more accurate than orbital free DFT, this justifying the higher com-
putational cost.

2.2.6 Self-Consistent Field Procedure

To find the ground-state density of a system, it is necessary to per-
form an self-consistent field (SCF) iteration procedure. The electronic
density defines HKS . The ground-state density itself is given by the
N eigenvectors of lowest energy of HKS . The electronic density and
HKS are considered consistent, when HKS defines the same ground-
state density as it was itself constructed from. The SCF procedure is
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an iterative process in which such a density is established. The most
primitive approach is to calculate the HKS and density in turn from
each other. However, such a procedure is not guaranteed to converge
and most likely does not. Therefore, typically more sophisticated
methods are employed.

One approach to increase the stability is to employ a mixing pro-
cedure. The simplest mixing approach is to combine the density of
two successive iterations with a constant mixing ratio m:

ρi = mρ(HKS,i) + (1−m)ρ(HKS,i−1), (2.15)

where ρ(HKS,i) is the density given by the eigenstates of the Kohn-
Sham matrix in the ith iteration step. To enhance the speed of conver-
gence, the more elaborate Direct Inversion of the Iterative Subspace
(DIIS) method [28] is commonly employed, where the density is a mix
of all previous iterations:

ρi+1 =

i∑
k=1

mkρk,

i∑
k=1

mi = 1 (2.16)

and the mixing coefficients mt are calculated based on the measured
error of previous iterations.

While a mixing procedure does increase the stability, the conver-
gence is still not guaranteed. An alternative approach to obtain the
ground-state is to calculate the derivative of the energy with respect
to the coefficients c of the molecular orbitals. The issue is that tra-
ditional minimisation techniques such as conjugate-gradient (CG) or
Broyden-Fletcher-Goldfarb-Shanno (BFGS) [29–33] method, do not in-
trinsically respect the orthonormality of the molecular orbitals. This
issue can be circumvented by the orbital transformation (OT) [34, 35]

method. In the OT method the problem is reformulated as finding a
rotation matrix which rotates the initial guess into the ground-state
density, thus intrinsically enforcing orthonormality. The advantage of
this approach is twofold. First, it reduces the dimensionality and sec-
ond, it transforms the constrained optimisation into an unconstrained
optimisation. This allows the minimisation with a method like CG
which is guaranteed to converge, although potentially faster but less
stable approaches such as BFGS remain a possibility. Furthermore,
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even the before-mentioned mixing approach DIIS can be used in this
constrained subspace, benefiting from the lack of the need to diago-
nalise HKS(t), to obtain ρ(t), as ρ(t) be directly calculated from the
rotation of the initial guess.

2.2.7 DFT Summary

DFT is in principle an exact theory that makes no approximations
beyond the Born-Oppenheimer separation of the electronic and nu-
clear wave-functions. In practice, only EXC [ρ] must be approximated,
whereas the kinetic energy is calculated from the Slater-determinant
construction of the wave-function. Nonetheless, DFT is considered an
ab-initio theory, which means that it comes from first-principles, or
fundamental physical laws. This differentiates it from empirical and
semi-empirical methods, which require a range of parameters as in-
put, before they can be applied to a system. Such parameters have to
be obtained either from more sophisticated ab-initio computational
methods or from experimental observations. The only approxima-
tions used in DFT are typically rather transferable. DFT therefore
has the advantage over many other approaches that it can be readily
employed for new structures without a prior investigation of them.
Furthermore, it is more computationally affordable than more rigor-
ous ab-initio methods, e.g. Hartree-Fock, [36] Coupled Cluster, [37, 38]

Configuration interaction [11, 39] and Quantum Monte Carlo. [40, 41]

2.3 Linear Scaling DFT

Traditionally, the cost to perform a DFT calculation scales with the
third power of the number of atoms.

T = cN3
atoms, (2.17)

with T being the required computer time, c a constant prefactor that
depends on the implementation and Natoms the number of atoms in
the system. An algorithm of such computational cost is said to have
a computational complexity of O(N3). With this complexity the cost
to investigate larger systems quickly escalates with the system size. It
is therefore of interest to investigate algorithms which have a better,
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preferably linear O(N), computational complexity. For small sys-
tems such algorithms might be slower due to their prefactor but for
a sufficiently large system they will always outperform the O(N3)
algorithms.

DFT algorithms that aim for O(N) complexity typically try to
exploit the so called nearsightedness of electronic matter. [42, 43] It is
a principle that without long range interactions, the local properties
can be described by the local neighbourhood. For this reason, the cost
to calculate each individual atom should not depend on the system
size and be proportional to the number of atoms (O(N)). Tradi-
tional DFT does not exploit nearsightedness. Instead the eigenstates
of the Hamiltonian are calculated, which are typically spread across
the whole system. The computational cost is therefore proportional
to the number of eigenstates, times the number of eigenstates with
which the orthogonality has to be enforced, times the cost of orthog-
onalisation. All three factors scale individually with the system size,
which is why the total complexity is O(N3). [44] However, the ex-
plicit calculation of these eigenstates is not necessary, as the system
is completely described by the electronic density [19] or equivalently,
within the independent electron approximation, the one particle den-
sity matrix P. The elements of the density matrix are known to decay
exponentially with the distance for insulators [44] and metals at fi-
nite temperatures. [45] A range of algorithms exist to calculate the
electronic density with O(N) complexity. An overview can be found
in Ref. [44]. The following section shows how linear scaling DFT has
been implemented in CP2K [46] and is based on a previously published
text in Ref. [47].

2.3.1 Density Matrix Purification

Linear scaling DFT, as implemented in CP2K, [46] is based on density
matrix purification. This method uses the fact that in the ground-
state the density matrix:

P =

Nel∑
i=1

|ψi〉 〈ψi| , (2.18)
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can be written as a function of the Kohn-Sham matrix

P =
1

2
(I − sign(S−1H − µI))S−1, (2.19)

where H is the Kohn-Sham matrix, S is the overlap matrix and µ
is the chemical potential. This formulation means that the density
matrix is given by all eigenvectors of H, which have an eigenvalue
lower than the chemical potential. The chemical potential has to be
chosen such that the total number of eigenvalues below the chemical
potential is equal to the number of electrons.

The sign function sign(A) = A(A2)−
1
2 can be computed iteratively

through matrix multiplications alone

Xn+1 =
1

2
Xn(3I −X2

n). (2.20)

This formulation allows the exploitation of the previously mentioned
exponential decay of P for insulators in the ground state. [44] If small
elements are thus truncated to zero (filtered), P is a sparse matrix for
large systems. The same holds for the S and H matrices. If all multi-
plications are implemented using sparse matrix-matrix multiplication,
for example using the DBCSR library, [48] the computation of the den-
sity matrix, starting from the H and S matrix can be performed in
O(N) cost. However, the sparsity of the matrices is not constant dur-
ing the multiplication, i.e. if two sparse matrices are multiplied, the
sparsity pattern of the result contains more entries. To retain spar-
sity, small elements, below the filtering threshold, are filtered away
from the resulting matrix. Nevertheless, the density matrix is usu-
ally significantly less sparse than the Kohn-Sham or overlap matrices.
This filling-in of the sparsity pattern contributes to the prefactor of
the O(N) algorithm.

We note that the sign matrix based formulation given above is
intuitive and useful, but various other linear-scaling techniques are
available in CP2K, including the TRS4 method [49] and curvy-steps
optimisation. [50] These methods are advantageous for example when
the chemical potential is not known, or the self-consistent electronic
structure converges slowly.
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2.4 Subsystem DFT

There is another approach to achieve linear scaling DFT, or at least
significantly speed up DFT, which is called subsystem DFT. It is based
on the exploitation of chemical structure that is often present inside
the atomic systems. In many cases a system can be further subdivided
into molecules. Atoms inside the same molecule have a much stronger
interaction with their neighbouring atoms of the same molecule, which
are called chemical bonds, than with atoms of other molecules. This
allows for a divide and conquer approach, where the computational
effort scales linearly with the number of molecules and it furthermore
allows for a focus of the computational effort into the regions of main
interest, by only applying this scheme in low-interest regions and using
standard DFT where more accuracy is required. The following section
introduces subsystem DFT and has been previously published in the
same paper as the section before. [47]

As described above, in the Subsystem (SS) DFT method, [1, 51, 52]

the system is subdivided into (weakly) interacting subsystems, for
example molecules. The energy of the full system is obtained from
the Hohenberg-Kohn (HK) energy functional [19] for the full system,
but corrected by the difference between the Kohn-Sham [2] (KS) and
HK energy functionals for each of the subsystems:

ESSDFT =EHK [ρ] +
∑
i

EKS [ρi[{ψj}i]]− EHK [ρi]

=Es[ρ] +
∑
i

(Ts[{ψj}i]− Es[ρi])+

Eext [ρ] + ECoul [ρ] + Exc [ρ], (2.21)

where we have used the definitions of the HK energy functional:

EHK [ρ] = Es[ρ] + Eext [ρ] + ECoul [ρ] + Exc [ρ],

and KS energy functional:

EKS [ρ[{ψj}]] = Ts[{ψj}] + Eext [ρ] + ECoul [ρ] + Exc [ρ].

The index i iterates over all subsystems, while the index j iterates for
each subsystem over the electrons of that subsystem. Eext, ECoul and
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Exc stand for the external, Coulomb and exchange and correlation
energy, respectively. Ts is the KS kinetic energy, which is computed
from the single-particle orbitals, while Es is the HK kinetic energy,
which is computed from the electron density. The total density is
the sum of the subsystem densities (ρ =

∑
i ρi), and the subsystem

density itself is obtained from the set of molecular orbitals {ψj} of
each of the subsystems as

ρ[{ψj}] =
∑
j

||ψj ||2. (2.22)

Note that these molecular orbitals are enforced to be orthogonal only
within the set belonging to a single subsystem. In our implementa-
tion, these molecular orbitals are expanded in the basis functions of
corresponding subsystems only. The lack of orthogonality of the wave
functions between subsystems is taken into account by the HK kinetic
energy functional. However, since the exact form of this functional is
unknown, and must be approximated, the interaction between sub-
systems is usually described somewhat less accurately in SS than in
KS DFT. As in the earlier CP2K implementation [53] this functional
is minimised fully self-consistently with respect to the expansion co-
efficients of the molecular orbitals, which implies that ionic forces are
obtained straightforwardly.

In this SS DFT approach, the Kohn-Sham matrix, the density ma-
trix and the overlap matrix of the full system have a clear structure,
as they can be made block-diagonal, where each block corresponds
to the sub-matrix of a single subsystem. This structure can be ex-
ploited to perform the calculations more efficiently. Traditionally, the
equations are solved by diagonalising each sub-block, and parallelis-
ing the calculation over each of these blocks. While this procedure
works well for small systems or homogeneous liquids, it has limita-
tions as soon as the subsystems are very different in size. Indeed, if
very large and small subsystems are present at the same time, load
balancing the calculation can become problematic, and sometimes cal-
culations would not fit on a single processor further complicating the
implementation. Finally, as the very large fragments increase in size,
diagonalisation based techniques are not suitable anymore. We there-
fore prefer to work with the matrix of the full system, and instead
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solve the equations with the same techniques as employed in linear-
scaling calculations, i.e. with method that directly benefit from the
sparsity of the matrices describing the system. In the following, we
show that the SS DFT implementation can be combined very easily
with linear-scaling DFT, addressing the above mentioned problems,
and ultimately allowing for the efficient simulation of very large sys-
tems in an environment of molecules.

2.4.1 Combining Subsystem DFT with
Linear Scaling DFT

Figure 2.2: An illustration of the sparsity pattern of the density matrix
of a 1D system, which includes several small molecules and one large
subsystem. Linear-scaling DFT and the SS method complement each
other to achieve optimal performance.

Within the SS DFT method, using linear-scaling algorithms based
on multiplication, P automatically has the same block diagonal struc-
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ture of S and H. This is a result of the fact that a multiplication of
block diagonal matrices with matching block sizes results again in a
block diagonal matrix of equal pattern. Fill-in is thus not present,
and the method has a small prefactor. In principle, no changes are
needed to the linear-scaling code to be effective in solving the SS DFT
equations. We note that subsystems of suitable integer charge are au-
tomatically obtained, as a single chemical potential is employed across
the system. Furthermore, the combination of the SS DFT with linear-
scaling DFT allows for speedups at all length scales as illustrated with
the sparsity pattern of P in Figure 2.2. Small subsystems, such as sol-
vent molecules, benefit from the SS DFT scheme, and result in small
diagonal blocks. Large subsystems benefit from the exponential decay
of P since their blocks are large enough to become sparse and enter the
linear-scaling regime. The method is furthermore naturally parallel
and GPU accelerated, since the underlying sparse matrix multiplica-
tion library is. [48, 54] As an added benefit of this approach, the charge
of the individual subsystems is not fixed, but naturally adjusts, in in-
teger steps, to the global chemical potential of system, which is, for
example, advantageous if ions are present in solution.

For the same reasons, why it can be combined with linear scaling
DFT it can also out of the box be combined with density matrix based
EMD or RTP, which will be introduced further down.

2.5 Molecular Dynamics
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Molecular dynamics describes the movement of atoms over time. As
established before, the cores are treated as classical particles. There-
fore, their movement is described by Newtonian mechanics and the
forces on the cores can simply be obtained from the derivative of the
potential energy towards the positions of the atoms:

MAR̈A = − ∂U

∂RA
− 〈ψ| ∂Hel

∂RA
|ψ〉+ FPulay, (2.23)

where 〈ψ|Hel |ψ〉 contains the electron dependent contributions to the
total energy ,U the remaining electron independent terms and FPulay
the Pulay forces, [55] which originate from the position dependence
of the basis set. MA and RA are the mass and position of atom A,
respectively.

2.5.1 Velocity-Verlet Integration

The simplest way to calculate R(t + ∆t) and Ṙ(t + ∆t) would be to
deduce them directly from the position, velocity, and force at time t,
though straightforward Taylor expansion:

R(t+ ∆t) = R(t) + ∆tṘ(t) +
∆t2

2
R̈(t), (2.24)

Ṙ(t+ ∆t) = Ṙ(t) + ∆tR̈(t). (2.25)

However, such a propagation scheme would not be stable and the
energy would not be conserved over time. The reason for this dis-
crepancy is that the result of Eq. 2.24 and 2.25 is not time-reversible.
When we invert the sign of the time and attempt to move back in
time, we find:

Rbw((t+ ∆t)−∆t) =R(t+ ∆t)−∆tṘ(t+ ∆t) +
∆t2

2
R̈(t+ ∆t)

=R(t) + ∆tṘ(t) +
∆t2

2
R̈(t)−

∆t(Ṙ(t) + ∆tR̈(t)) +
∆t2

2
R̈(t+ ∆t)

=R(t) +
∆t2

2
(R̈(t+ ∆t)− R̈(t)) 6= R(t) (2.26)
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In Eq. (2.26) Rbw refers to the backward computed original posi-
tion, which is not equal to R(t). For this reason, a number of time-
reversible integration schemes have been developed. The approach
implemented in CP2K and used for this thesis is the velocity-Verlet
algorithm: [56, 57]

R(t+ ∆t) = R(t) + ∆tṘ(t) +
∆t2

2
R̈(t), (2.27)

Ṙ(t+ ∆t) = Ṙ(t) +
∆t

2
(R̈(t) + R̈(t+ ∆t)). (2.28)

2.6 Real-Time Propagation
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Real-time Propagation (RTP), also referred to as RT-TDDFT if the
Hamiltonian is modelled through DFT, describes the evolution of the
electronic wave-function over time. Contrary to ground-state calcu-
lations where ψ is given by the eigenstates of the Hamiltonian, H
changes as a function of the time. As a consequence ψ(t) becomes a
function of the initial wave-function ψ(0) and all states of the Hamil-
tonian between the time 0 and t. The propagation of ψ(t) in RTP is
based on the time-dependant Schrödinger equation: [5, 6]

i
∂

∂t
ψ = Ĥψ. (2.29)
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In the LCAO approximation, the derivative of the molecular orbital
coefficients takes the following form: [58]

i
∂

∂t
vortho = Horthovortho

iS
1
2
∂

∂t
v = S−

1
2Hv (2.30)

v̇ = −iS−1Hv,

where H is the Kohn-Sham matrix if DFT is employed. It can also be
calculated based on different theories such as Hartree-Fock [36, 59, 60] or
the tight-binding (TB) [61, 62] method. For a time-independent Hamil-
tonian the wave-function can be directly propagated by analytically
solving Eq. (2.30):

v(t+ ∆t) = e−i∆tS
−1Hv(t). (2.31)

However, the exact propagation of the coefficients over time requires
the solution of a time-ordered exponential: [63]

v(t+ ∆t) = Û(t, t+ ∆t)v(t) = T exp−i
∫ t+∆t
t

S−1H(τ)dτv(t). (2.32)

While the direct calculation of the time-ordered exponential is not
feasible, it can be approximated by a range of propagators that de-
pend on both H(t) and H(t+ ∆t). These propagators should be time
reversible: [63] U(t, t+ ∆t) = U−1(t+ ∆t, t). Examples for such prop-
agators are listed below. [63]

-Crank-Nicholson (CN):

ÛCN (t+ ∆t, t) =
1− i

2∆tĤ(t+ ∆t
2 )

1 + i
2∆tĤ(t+ ∆t

2 )
; (2.33)

-Exponential midpoint (EM) rule:

ÛEM (t, t+ ∆t) = e−i∆t
1
2S

−1Ĥ(t+ ∆t
2 ); (2.34)

-Enforces time-reversal symmetry (ETRS):

ÛETRS(t, t+ ∆t) = e−i
∆t
2 S

−1H(t+∆t)e−i
∆t
2 S

−1H(t); (2.35)
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-forth order Magnus expansion (M(4)):

ÛM(4)(t, t+ ∆t) =− i∆t
2

(Ĥ(t1) + Ĥ(t2))−
√

3∆t2

12
[Ĥ(t1), Ĥ(t2)],

(2.36)

where t1,2 = t+ (
1

2
∓
√

3

6
)∆t

The Hamiltonians between t and t + ∆t are obtained through linear
interpolation

Ĥ(t+ x∆t) = (1− x)Ĥ(t) + xĤ(t+ ∆t). (2.37)

All the propagators above maintain the orthonormality of the molec-

ular orbitals (vi
T

ortho(t + ∆t)vjortho(t + ∆t) = δij). This happens be-
cause they are matrix exponentials of skew-Hermitian matrices, which
means matrices with an antisymmetric real and a symmetric imagi-
nary part. Such matrix exponentials are so called unitary matrices.
All their eigenvalues have a norm equal to 1, which corresponds to a
rotation.

The aforementioned propagators use Hamiltonian after the time
step H(t + ∆t), which is initially unknown. It has to be calculated
from v(t + ∆t). A self-consistent iteration is therefore necessary. [63]

Before the propagation, v(t+ ∆t) and H(t+ ∆t) have to be obtained
through a self-consistent iteration scheme: [63]

(1) Guess an initial H(t+ ∆t) for example through the always stable
predictor-corrector (ASPC) [64] scheme.
(2) Propagate v(t) to obtain v(t+ ∆t).
(3) Calculate H(t+ ∆t) from v(t+ ∆t).
(4) repeat the steps 2 and 3 until self-consistency is reached.
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2.7 Ehrenfest Molecular Dynamics
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Ehrenfest molecular dynamics (EMD) combines the movement of the
atomic cores from ground-state (gs) MD with the propagation of the
wave-function from RTP. The terms describing the movements of elec-
trons and cores are largely the same. However, when atom-centred
basis sets are used, some additional terms have to be considered as
the basis functions are implicitly time-dependant:

φ(R(t), x) 6= φ(R(t+ ∆t), x). (2.38)

The dependence of the basis set on the moving atomic cores means
that, the total derivative with respect to time has to be used: [58]

d

dt
=

∂

∂t
+

N∑
A=1

ṘA
∂

∂RA
(2.39)

instead of the partial one previously introduced in Eq. (2.30). When
we insert Eq. (2.39) into the time-dependant Schrödinger equation
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we find:

d

dt
(φ(R(t), x)T v(t)) = −iĤ(φ(R(t), x)T v(t)),

d

dt
(φ(R(t), t)T )v(t) + φ(R(t), t)T

∂

∂t
v(t) = −iĤ(φ(R(t), x)T v(t)),

φ(R(t), t)
d

dt
(φ(R(t), t)T )v(t) + φ(R(t), t)φ(R(t), t)T

∂

∂t
v(t)

= −iφ(R(t), t)Ĥ(φ(R(t), x)T v(t)),

Bv(t) + S
∂

∂t
v(t) = −iHv(t),

v̇(t) = −S−1(iH +B)v(t),
(2.40)

with B = 〈φ| ddtφ〉. Similarly, an additional term must be introduced

for the atomic forces: [58]

MAR̈A = −∂U(R, t)

∂RA
+

Ne∑
j=1

vj∗(DA − ∂H

∂RA
)vj , (2.41)

with D containing all the terms coming from the time dependence of
the basis set: [58]

DA
αβ =

∑
γδ

(BA+
αγ S

−1
γδ Hδβ +HαγS

−1
γδ B

A+
δβ )+

i
(
CA+
αβ − C

A
αβ +

∑
γδ

(B+
αγS

−1
γδ B

A
δβ +BA+

αγ S
−1
γδ Bδβ)

)
, (2.42)
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with

Bαβ =

〈
φα

∣∣∣∣ ddtφβ
〉
,

B+
αβ = B∗βα =

〈
d

dt
φα

∣∣∣∣φβ〉 ,
d

dt
=

∂

∂t
+

Ni∑
A=1

ṘA
∂

∂RA
,

BAαβ =

〈
φα

∣∣∣∣ ∂

∂RA
φβ

〉
,

BA+
αβ = BA∗βα =

〈
∂

∂RA
φα

∣∣∣∣φβ〉 ,
CAαβ =

〈
d

dt
φα

∣∣∣∣ ∂

∂RA
φβ

〉
,

CA+
αβ = CA∗βα =

〈
∂

∂RA
φα

∣∣∣∣ ddtφβ
〉
.

2.7.1 Density Matrix Based Ehrenfest Molecular
Dynamics

The following section has been previously published in Ref. [47]. The
propagation of the wave function can be reformulated as a propagation
of the density matrix P:

P (t+ ∆t) =ψ(t+ ∆t)ψ(t+ ∆t)∗

=U(t, t+ ∆t)P (t)U(t, t+ ∆t)∗, (2.43)

with U(t, t + ∆t) = e
−∆t

2 (X(t)+X(t+∆t)) for EM and U(t, t + ∆t) =

e
−∆t

2 X(t+∆t)e
−∆t

2 X(t) for ETRS. This formulation offers the prospect
to achieve linear scaling in cases where P is sparse. The sparsity
could occur either through the nearsightedness of electrons, [42] or is
implicitly enforced by the use of the Subsystem DFT method. Note
that in the Subsystem DFT approach, electrons are not transferred
between subsystems during the propagation.
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The straightforward way to propagate P is to calculate the ma-
trix exponential explicitly, for example through a Taylor series expan-
sion. [65] However P (t + ∆t) can be calculated more efficiently. The
multiplication of a Hermitian matrix with a matrix exponential, eM ,
from one side and the complex conjugate of the same exponential on
the other side can be written as a series similar to a Baker-Campbell-
Hausdorff (BCH) expansion (Proof in Appendix):

P (t+ ∆t) = eMP (t)(eM )∗ =

∞∑
n=0

Zn, (2.44)

Z0 = P (t), Zn>0 =
1

n
(MZn−1 + (MZn−1)∗). (2.45)

This sum converges much faster than the explicit calculation of the
matrix exponential, requiring only 5-10 terms depending on the accu-
racy needed. Indeed, if H(t) and P (t) commute, the series terminates
immediately independently of the value of ∆t, while for small pertur-
bations away from the ground state, only the small non-commuting
part remains. The increased sparsity of these higher order terms fur-
thermore reduces their cost with the sparse matrix multiplication em-
ployed.
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[36] Vladimir Fock. Näherungsmethode zur Lösung des Quanten-
mechanischen Mehrkörperproblems. Z. Phys. A–Hadron Nucl.,
61(1):126–148, 1930.

[37] Fritz Coester and Hermann Kümmel. Short-range correlations in
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[64] Jǐŕı Kolafa. Time-reversible always stable predictor–corrector
method for molecular dynamics of polarizable molecules. J. Com-
put. Chem., 25(3):335–342, 2004.

[65] Conn O’Rourke and David R. Bowler. Linear scaling density ma-
trix real time TDDFT: Propagator unitarity and matrix trunca-
tion. J. Chem. Phys., 143(10):–, 2015.

47





Chapter 3

Implementation

3.1 Introduction

This chapter covers topics related to the implementation of
RTP/EMD and subsystem (SS) DFT in CP2K. [1, 2]

In the first section a scheme is developed to improve the perfor-
mance of SS DFT. The next three sections deal with RTP/EMD.
Firstly, we will cover the implementation of complex matrix multi-
plications for EMD. We will then demonstrate that our implemen-
tation remains stable with longer time steps than typically feasible
for such simulations. Finally, the feasibility of linear scaling (O(N))
RTP/EMD will be discussed. The first and the last two sections
are based on a previous publication. [3] All simulations mentioned
in this chapter are performed with a plane-wave (PW) cutoff of 300
Rydberg or higher, the PBE exchange-correlation functional, [4] GTH
pseudopotentials [5] and a DZVP-MOLOPT-GTH/DZVP-MOLOPT-
SR-GTH [6] basis set.

3.2 Subsystem Graph Colouring

The implementation of SS DFT in CP2K is unique in its interpreta-
tion of the system division as a graph colouring problem. The basics of
the graph colouring approach were developed and implemented prior
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to the start of this project. However, the performance of the colouring
procedure was improved by two orders of magnitude and the final re-
sult enhanced through the addition of a pair-switching algorithm. The
following section will introduce the reasoning for the graph colouring
interpretation and cover some details of the implementation.

The calculation of the energy in SS DFT, according to Eq. (2.21),
requires the calculation of the HK energy of all individual subsystems.
Each subsystem can be computed fully independently, and the calcu-
lation could be parallelised over the various subsystems. However, this
can be challenging if large subsystems are present. Furthermore, in
CP2K and various other codes that employ regular grids for the elec-
tron density, the computation of small subsystems is relatively ineffi-
cient, as a sufficiently large auxiliary simulation cells, centred around
each subsystem, are needed. This implies an overhead to deal with es-
sentially empty space and complicates the implementation, which was
one reason why the older CP2K implementation [7] was replaced by a
new scheme. In this equivalent alternative, the sum of the HK energies
is computed considering subsets of subsystems that have nonoverlap-
ping densities. The HK energy of such a subset equals the sum of
the HK energies of each of the subsystems in the subset. To compute
this energy, this subset of nonoverlapping subsystems is placed in the
simulation cell that equals the original simulation cell, and the HK
energy of the subset is computed. This calculation is repeated for all
subsets, each being essentially a relatively sparse system. By pack-
ing the subsystems as efficiently as possible in subsets, the amount of
empty space is minimised, and the number of iterations over subsets
is reduced, speeding up the calculation. As an additional advantage,
only few code changes relative to a standard DFT code are needed to
perform such a computation; it just implies a standard calculation for
each subset of particles. Furthermore, in this approach, large subsys-
tems are not problematic, as the standard parallelism can efficiently
be employed.

The computational effort to compute the HK energy is propor-
tional to the number of subsets needed. Finding these subsets is a
problem that can be formulated as a graph colouring problem. Graph
colouring is a standard problem in computer science. To obtain the
graph, each subsystem is considered a node (vertex) in a graph. Two
nodes are connected by an edge of the graph if the corresponding
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subsystems overlap. This information can be obtained from the over-
lap matrix of the full system. An allowed partitioning of the graph
in subsets is obtained colouring the graph in such a way that two
connected nodes have different colours. After colouring, each colour
represents a different subset, and all nodes of the same colour belong
to the same subset. The colouring of a graph is not unique. The
optimal solution with the fewest possible colours is computationally
intractable to find, but two established heuristic algorithms to solve
the colouring problem were tested. A third algorithm improves on the
obtained solutions.

The first algorithm to colour a graph is the greedy algorithm.
In the greedy algorithm, all nodes are coloured in an order that is
independent of the topology of the graph, for example using the node’s
index. Each node is assigned the colour with the lowest index that
is not yet present in a neighbouring node. The second algorithm is
DSATUR. [8] In DSATUR, two criteria are used to decide which node
of the graph is coloured next. The first criterion is the degree of
saturation. The degree of saturation is the number of unique colours
present in the neighbourhood of the node. The algorithm is to choose
the node with the highest degree of saturation and give it the lowest
colour not yet present in the neighbourhood. In case of multiple nodes
with the same degree of saturation, the second criterion takes the node
which has the most neighbours.

After an initial solution is obtained, the number of colours is fur-
ther reduced by switching neighbouring pairs and decreasing their
colours where applicable. The pair-switching algorithm can be found
in the next subsection. The colouring was tested on an STMV virus in
water. [9, 10] The system contains around one million atoms. Most of
the subsystems are water molecules, but there are also proteins that
are much larger. The greedy algorithm results in 36 colours and the
DSATUR algorithm in 28 colours. The pair-switching algorithm re-
duces the number of colours to 30 and 26, respectively. The colouring
of the graph is fast and does not significantly contribute to the total
execution time.
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3.2.1 Pair Switching Algorithm

for iter = 1 to max iter do
for depth = 1 to max depth do

for i = 1 to num nodes do
if node(i)%colour index >
max colour index− depth then

lowest colour=node(i)%colour index+1
found=false
for each node(i)%neighbor do

if switchable(node(i),neighbor then
switch colours(node(i),neighbor)
x=lowest possible colour index(neighbor)
if x < lowest colour then

found=true
lowest colour=x
best partner=neighbor

end
switch colours(node(i),neighbor)

end

end
if found then

switch colours(node(i),best partner)
x=lowest possible colour index(best partner)
neighbor%colour index=x

end

end

end

end

end
Algorithm 1: The pair switching algorithm to decrease the num-
ber of colours in the graph.

A pair switching algorithm was used to improve the coloured
graph. The goal is to further reduce the number of colours. The algo-
rithm investigates the nodes with high colour indices in the coloured
graph and searches the neighbourhood for nodes with which an ex-
change of colour does not violate the colouring of the graph. All
through switching reachable neighbour position are then investigated
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for viable reductions in colour index in the switched state. At the end,
the colour is switched with the position offering the lowest possible
colour index. The algorithm is illustrated in Alg. 1.

The algorithm could be extended further by checking after each
successful switch if the nodes neighbouring the switched nodes can be
reduced in colour. In case of successful reductions, the neighbours of
the neighbours would then need to be checked. However, we did not
see this extension to significantly improve the results.

3.3 Complex Matrix Multiplication

EMD requires complex linear algebra for the propagation of the den-
sity matrix according to Eqs. (2.44) and (2.45). The straightforward
approach is to describe a complex matrix as a sum of two real valued
matrices. A matrix multiplication between two complex matrices thus
becomes:

D = (A+ iB)(C + iD) = AC + i(BC +AD)−BD, (3.1)

requiring four real matrix multiplications.

There is an alternative approach which exploits the fact that com-
plex matrix multiplications can be defined through only three real ma-
trix multiplications and that matrix additions are significantly cheaper
than multiplications:

D = (A+ iB)(C + iD) = AC −BD + i((A+B)(C +D)−AC −BD).
(3.2)

In this approach, only the computation of AC, BD and (A+B)(C+D)
are required. Therefore, only three quarters of the computational time
are needed as compared to the straightforward implementation.

Another alternative would be to either directly use complex ma-
trices, or to store complex numbers as two real numbers on a matrix
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element level:

C(i, j) =
∑
k

A(i, k)B(k, j)

=
∑
k

Re[A(i, k)]Re[B(k, j)] + iRe[A(i, k)]Im[B(k, j)] (3.3)

+ iIm[A(i, k)]Re[B(k, j)]− Im[A(i, k)]Im[B(k, j)].

CP2K uses blocked sparse matrices, where each element itself is a
small matrix. While this approach requires the same amount of oper-
ations as the straightforward method, it is twice as efficient in terms
of memory bandwidth. This is due to the fact that complex blocks are
only twice the size of real blocks, but four times more operations must
be executed per loaded block than in the straightforward case. In situ-
ations where the speed of the multiplication is limited by the memory
bandwidth, this approach could theoretically be faster than the three-
multiplications scheme from above. Not that, for applications which
are computation limited, the proposed approach is equivalent to the
straightforward one in terms of performance. It is thus outperformed
by the three-multiplication approach.

In the DBCSR library that CP2K uses for matrix multiplications,
calculations are typically limited by the memory bandwidth, except
for large basis sets. Hence, it could be computationally favourable to
use the complex matrix approach. However, complex multiplications
are currently not supported by the DBCSR library so that the three-
multiplication approach was implemented as part of this work.

3.4 Optimal Time Step

For the computational cost of an EMD simulation the time step is of
crucial importance. Results by O’Rourke and Bowler suggests a time
step of 0.06 a.u (1.44 as) for real-time propagation (benzene system)
as obtained by the exponential midpoint propagator, only applied self-
consistently in the initial 100 steps. [11] For subsystem DFT Krishtal
et al. suggested a time step 2 as. [12] The present approach should
be stable at longer time steps thanks to the reduction of numerical
noise described in detail below and the use of an implicit propagation
scheme.
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Figure 3.1: An evaluation of the time step dependence of the accuracy
and performance of an EMD simulation. The investigated system
was a quasi-1D system of 1h ice (2304 atoms). On the left side the
time evolution of the energy, charge, idempotency and computational
cost are displayed. The execution time refers to the cumulative time
consumed over all steps. On the right side the cross-section of the
graph at the left side, taken at 960 as, is displayed. The results on the
left hand side have been coloured according to the time step: (red) 2
as, (green) 4 as, (blue) 8 as, (violet) 16 as, (turquoise) 32 as, (grey)
64 as.

The stability with respect to the time step has been investigated
using a simple condensed phase system with a large band gap that was
created replicating in one dimension a cubic simulation cell of ice 1h
containing 288 atoms. This quasi-1D system will be used for several
tests. For the current testing, a 10−7 filtering threshold is employed.
As shown in Figure 3.1, charge, energy and the idempotency of P are
retained up to large time steps. However, at a time step of 64 as
a constant drift (∼4 micro-Hartree/fs/atom) in the energy appears.
This drift limits the long-term stability of the simulation. With a
small time step, energy conservation is excellent, which suggests that
also ionic forces are implemented correctly. We have observed that
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for large time steps, as well as very small time steps with aggressive
filtering, the numerical noise leads to an increase of the occupation of
the density matrix during propagation.

Naively, the computational effort is directly proportional to the
number of time steps needed to reach a given total simulation time.
In practice, the computational effort per step becomes larger with
longer time steps. The increase is caused by a slower convergence
of the matrix exponential (eq. 2.45) and the higher number of it-
erations needed to reach self-consistency in the implicit propagation
algorithm. For the investigated system this becomes evident as the
total execution time remaining roughly constant for time steps of 16
as and more. Given the observed accuracy and efficiency, we thus
recommend a time step of approximately 16 as for this and similar
systems, which is roughly one order of magnitude larger than the
value employed in Ref. [11]

3.5 Can Ehrenfest Molecular Dynamics
be O(N) ?

3.5.1 ’Linear-Scaling’ Implementation

To study the scalability of the density matrix based EMD code, sys-
tems with increasing size have been simulated. This study is based
on replicating in one dimension a cubic simulation cell of ice 1h con-
taining 288 atoms up to required size. The one-dimensional nature
of the test system facilitates reaching the linear scaling regime. Note
that this test does not employ SS DFT, for which the enforced matrix
structure would trivially lead to linear scaling, but treats the system
as a whole. The wave function and nuclei were propagated for a short
time, starting from a ground-state wave function. As shown in Figure
3.2, the computational cost increases linearly with system size. This is
consistent with the results reported for RTP in Ref. [11], and supports
the correctness of the implementation.

However, the full picture is more complicated, and as described in
detail in the following section, at longer timescales the computational
cost of EMD gradually increases.

56



Figure 3.2: Shown are the timings for an EMD simulation of a large-
gap quasi-1D system. The red data points represent the average time
per time step during the first five EMD steps. The dashed line is a
linear fit. The calculations were performed on 25 nodes on the former
Cray XC30 (Piz Daint) computer at CSCS.

3.5.2 EMD Density Matrix Filling

In CP2K the density matrix is not filtered based on an a priori fixed
sparsity pattern, for example as determined from a spatial cutoff [11]

or from the fixed sparsity pattern of the overlap matrix. Instead, the
elements are simply filtered based on their magnitude, as computed
during the matrix multiplications. The advantage of this scheme is
that the accuracy is determined by one parameter, the filtering thresh-
old, independently of the chemistry of the system. Arbitrary accuracy
can be obtained reducing the filtering threshold. However, as a result
of this filtering method, the occupation of P depends on the decay of
the physical density matrix, and also on the quality of the numerical
scheme. To achieve linear scaling, the occupation of P needs to stay
significantly below 1.

To investigate the evolution of the density matrix sparsity during
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EMD, a simple test system has been prepared and let to evolve close to
the ground state using EMD started from the electronic ground state,
but with finite ionic temperature. The test system is a quasi-1D sys-
tem, with a large band gap, namely the ice 1h system described above,
replicated in one direction to contain approximately 2000 atoms. As
such, the ionic evolution is very similar to that of a ground-state Born-
Oppenheimer (gs-BO) MD. Within gs-BO MD, the density matrix is
sparse at all times.

As shown in Figure 3.3, a straightforward implementation of den-
sity matrix based EMD, which directly implements the formulae given
with filtering sparse matrix multiplication, results in a density matrix
that quickly fills up over the course of a simulation. This leads to a
significant slowdown of the calculation, ultimately scaling O(N3) with
system size. A closer investigation shows that the filled-in elements
are typically small and close to the filtering threshold. Even though
the energy and total number of electrons remain largely constant, the
idempotency of the density matrix is not well conserved.

We considered two possible explanations for P becoming non-
sparse. The first is a building up of numerical noise. Numerical
noise introduced by the filtering process has more severe effects in
EMD than it has in gs-BO MD. In gs-BO MD the recalculation of P
from H, which has a fixed sparsity pattern, resets the noise at each
time step, while in EMD all noise in P adds up over the course of a
simulation. A second possible explanation is that P could be intrinsi-
cally nonsparse, i.e. would become non-sparse also if computed with
essentially infinite precision. EMD simulates nonadiabatic dynamics,
and the proofs for the exponential decay of P however were given for
the ground state at zero temperature for insulators and finite tem-
perature for metals. [13] To control the numerical noise caused by the
filtering of P two techniques were combined. The first is the restora-
tion of the idempotency of P. This can be achieved through McWeeny
purification: [14]

P = 3P 2 − 2P 3. (3.4)

An idempotent P , such as the true density matrix, remains invari-
ant, while a noisy P moves back in the direction of idempotency.
In our experience, one or two purification steps after each implicit
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propagation are sufficient to maintain good idempotency. McWeeny
purification has therefore little impact on the short term performance,
but improves the long-term stability. The second technique is to use
two different filtering thresholds during the simulation. Steps in the
simulation that are critical for numerical errors are performed with
a tighter filtering threshold. Once the simulation leaves the critical
region the matrices are filtered at the normal filtering threshold. The
critical operations are the McWeeny purification and the application of
the propagator to P. In our calculations, reducing the filtering thresh-
old by two orders of magnitude for these steps yielded stable results at
low computational cost. The reduction of the numerical noise through
these control mechanisms is displayed in Figure 3.3, showing that this
significantly outperforms the straightforward implementation.

As illustrated in Figure 3.4 for 2000 time steps (8000 as), the
combination of both techniques allows for an effective control of the
numerical noise. For the large band gap system employed, P remains
sparse (0.2 occupation) at a filtering threshold of 10−5. However,
this does not hold at arbitrary precision. Using a tighter threshold
(10−7), a dense matrix is obtained after 6000 as. As illustrated in
Figure 3.5 for the simulation of a boron-nitride nanotube (a smaller
gap system), this threshold depends on the system studied. Even at
a filtering threshold of 10−5 the density matrix becomes essentially
dense after 1000 as. Furthermore, the unfiltered EMD simulation in
figure 3.5 shows that the filtered simulations slightly underestimate
the true occupation of the density matrix, thus demonstrating that
the fill-in is not a result of the inaccuracy introduced through the
filtering process. The loss of the sparsity can thus be reproduced with
nonfiltered EMD or MO based EMD, and suggests that this is indeed
the intrinsic behaviour for a system described by EMD.

3.5.3 Hückel Theory

Finding an apparently intrinsic density matrix filling in EMD, the
results are compared to a simple model, a Hückel chain. [15] The
Hückel chain can be solved free of numerical uncertainty in a few lines
of MATLAB code, and thus complements the numerical experiments
performed using the more complicated implementation of DFT based
EMD in CP2K. It is based on a time-independent, non-self-consistent
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Hamiltonian and has no moving ions. The Hamiltonian is a symmetric
tridiagonal matrix. The off-diagonal elements are alternating between
1 and c, where c is a parameter that can be tuned to have a small (c=1)
or a large (c=0) gap at half filling. The diagonal was chosen to be zero.
The Hamiltonian does not depend on time. The initial density matrix
is chosen to be the ground state for a given value of the parameter
c in the Hamiltonian. The band gap is then slightly decreased by
decreasing the value of c. At this point, P no longer corresponds to
the ground state of the Hamiltonian and can be propagated over time.
For small changes, this mimics the behaviour of a system where ions
move and electrons follow adiabatically.

At t = 0, P shows the well-known exponential decay. However,
during the course of the EMD simulation the exponential decay of P
is preserved only at short distance, and for large values of the matrix
elements. At longer distances the decay, if any, becomes less than
exponential. The results are illustrated in Figure 3.6. This decay is
consistent with our previous observations that P only remained sparse
at large filtering thresholds. The short-ranged exponential decay is
enough to achieve sparsity for large filtering thresholds.

To conclude, non-exponential decaying density matrices were
found in both the realistic simulations and in a simple Hückel chain
model. This establishes the non-exponential decay of P within EMD,
and makes linear-scaling EMD hard to reach at arbitrary accuracy.
We emphasise again that this problem does not occur in the frame-
work of the SS method, where the block diagonal structure of the
Hamiltonian gives an upper limit for the occupation of P. It remains
an open question how in general nearsightedness can be exploited
within a non-Born-Oppenheimer linear-scaling setup. The observa-
tion made here for linear scaling EMD is likely related to a known
short-coming of EMD, namely the electronic overcoherence, and we
speculate that approaches developed in that context [16–18] might pro-
vide a viable approach to obtain a truly linear-scaling non-adiabatic
MD.
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Figure 3.3: Shown are results for an EMD simulation of a large-gap
quasi-1D system. The reported quantities are the occupation of P,
the total energy drift, the drift in the number of electrons and the
Frobenius norm of the deviation of P from idempotency. The aspect
ratio of the system is 8:1 and contains the system contains 2304 atoms.
The time step is 4 as, the filtering threshold is 10-5. The advanced
implementation with McWeeny purification and a two level filtering
threshold (green, dotted) shows distinctly better properties than the
straightforward implementation (red, solid).
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Figure 3.4: A comparison of noise-filtered EMD at different filtering
thresholds. The system and the measured quantities are the same as
in Figure 3.3 and the time step is 4 as. (red, solid) 10-5 filter threshold.
(green, long dash) 10-6 filter threshold. (blue, short dash) 10-7 filter
threshold
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Figure 3.5: As in Figure 3.4 noise-filtered EMD is compared at dif-
ferent filtering thresholds. This system is a boron-nitride nanotube.
The nanotube is about 10 nm long, hydrogen terminated and contains
2880 atoms. (red, solid) 10-5 filter threshold. (green, dotted) 10-7 fil-
ter threshold, (black, solid) The fraction of elements of size 10-5 or
higher in an unfiltered EMD simulation, (black, dashed) The fraction
of elements of size 10-7 or higher in an unfiltered EMD simulation.
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Figure 3.6: The panels on the top show a logarithmic representation
of the absolute values of the elements of the density matrix. P(t=0)
is shown on the left and P(t=500) at the right. The bottom panels
show the absolute values of the elements along a single row of the
density matrix at the same times. The system is a cyclic Hückel chain
of length 500. The initial density matrix is obtained for c = 0.5, while
c was shifted by 0.001 to propagate away from the ground state.
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Chapter 4

Applications

4.1 Introduction

This chapter deals with numerical simulations conducted to validate
the implemented methods, to demonstrate applications of RTP/EMD,
as well as to support the design of experimental devices. An overview
of the chapter can be found in Table 4.1.

All simulations proposed in this chapter have been carried out
with the DFT software package CP2K. [1, 2] Unless specified oth-
erwise, DZVP-MOLOPT-GTH or DZVP-MOLOPT-SR-GTH con-
tracted Gaussian basis sets [3] have been used, together with an aux-
iliary plane-wave basis with a cut-off of 300 Rydberg or higher. For
the exchange-correlation energy a Perdew-Burke-Ernzerhof (PBE) [4]

functional has been employed, with the adiabatic local density ap-
proximation (ALDA). To treat the interactions of the atomic cores
Goedecker-Teter-Hutter [5] pseudopotentials were employed. For all
simulations the electrons were propagated using the enforced time-
reversible symmetry (ETRS) propagator. [6] Parts of this chapter
are taken from previous publications, [7–9] because the material origi-
nates from different publications, RTP and RT-TDDFT are used in-
terchangeably.
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System Process RTP EMD
LS-gs
DFT

SS
DFT

boron-nitride
nanotube

electron
injection X × × ×

metallic CNT
between

palladium slabs

electron
transport

X × × ×
semiconducting
CNT between

palladium slabs
(CNTFET)

electron
transport

X × × ×
germanium

selenide
between

TiN contacts
(Selector)

electron
transport

X × × ×

copper filament
in SiO2 matrix

connecting
copper slabs
(CBRAM)

plasmonics
+ electron
transport

X X × ×

TiO2

nanoparticles
in acetonirile

solution
(DSSC component)

bandgap
determination

× × X X

satellite tobacco
mosaic virus

in water

force
relaxation

× × X X
N3 dye

in acetonirile
solution

(DSSC component)

photo-
absorption

× X X X

Table 4.1: Overview of the simulated structures, together with the
therein investigated processes and the methods used for that purpose.
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4.2 Electron Injection into a Boron-
Nitride Nanotube

Figure 4.1: Visualising the injection of an excess electron into a boron-
nitride nanotube. From top left to bottom right: 25 as, 500 as, 2500 as
and 7500 as. Without the injected electron the boron-nitride nanotube
is a closed-shell molecule. Therefore, the electronic density of the spin
difference is displayed to track the injected electron.

The developments in this work have been triggered by our interest
in electron dynamics beyond the linear response. This includes the
simulation of electron transfer across interfaces as e.g. in dye sen-
sitised solar cells (DSSCs), [10–16] in the presence of time-dependent
external fields as found in various spectroscopies. [17–19]

To test electron dynamics beyond the linear response, the dynam-
ics of an electron on a boron-nitride (BN) nanotube was investigated
using density matrix based EMD. The initial configuration was a lo-
calised electron in the centre of the tube. The nanotube, generated
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Figure 4.2: Quantifying the spreading of the excess electron over a
boron-nitride (BN) nanotube. The spreading is calculated as the
width of the tube segment that contains 95 percent of the total spin
density with the remaining spin density split evenly between the two
sides.

with TubeGen, an online tool for the creation of nanotube geome-
tries, [20] has chirality (13,0) and is hydrogen terminated. The nan-
otube is 10 nm long and contains 1440 atoms. This nanotube is an
insulator and therefore the density matrix is sparse at the ground
state. As discussed previously, the occupation of the density matrix
quickly reaches 1 during propagation so that the density matrix based
EMD code operates in the cubic regime. A visual representation of the
spreading of the excess electron is given in Figure 4.1. We note that
these simulations are performed with GGA functionals, which suffer
from self-interaction error. Whereas simulations with hybrid function-
als are possible in this context, the computational cost is significantly
higher. A more quantitative illustration of the spreading of the elec-
tron can be found in Figure 4.2. The electron was injected quickly
into the nanotube and then spread over the whole nanotube. The
front of the spreading moved at approximately 7 × 105 m/s. To our
knowledge the saturation velocity in boron nitride nanotubes is not
known. However, the saturation velocity in semiconducting carbon
nanotubes was predicted through semi-classical models to be around

72



Figure 4.3: Atomistic simulation setup for the calculation of the cur-
rent through a metallic (6,6) carbon nanotube. The planes on the side
of the system are constraints for the Poisson equation solver, where
the potential is fixed. The palladium contacts serve as reservoirs from
which electrons are taken away from/added to the system, during the
simulation. The length of the nanotube is approximately 2.5 nm and
the width of the contacts about 1.3 nm each. The structure is com-
posed of a total of 1008 atoms, which corresponds to a Hamiltonian
and overlap matrix of size 22320×22320.

3− 5× 105 m/s [21, 22] and determined from experimental data to be
2 × 105 m/s, [23] which is close to the velocity which we observed.
In this system, the electron dynamics is very fast, and completed on
a timescale of about 10 fs, which is readily accessible. One EMD
step (5 as) takes 120 seconds on 144 computational nodes on the
Piz Daint supercomputer (CPU: Xeon E5-2670, GPU: NVIDIA Tesla
K20x, available configuration till the end of 2016).

4.3 Simulation of Current through a
Metallic Nanotube

4.3.1 Introduction

Two different ab-initio approaches to simulate electronic transport
through nanostructures have been compared for a carbon nanotube
(CNT). The first one is real-time time-dependant density functional
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theory (RT-TDDFT), the second one the Non-Equilibrium Greens
Function (NEGF) formalism. Both methods are applied here to the
computation of the channel resistance of a CNT placed between two
Pd electrodes. The device structure seen in Fig. 4.3. In the RT-
TDDFT case, microcanonical/closed boundary conditions are used.
The voltage is applied through two planes of fixed electrostatic po-
tential, [24] one on each side of the system. It has been shown that
such closed boundary conditions can correctly produce a temporary
steady-state. [25, 26]

4.3.2 Computational Setup

The NEGF calculations have been performed at the DFT level via the
coupling of CP2K and the quantum transport code OMEN [27–29] and
the Pd slabs had to be extended to introduce open-boundary condi-
tions. The time step for the RT-TDDFT simulation was limited to
five attoseconds and, while the filtering threshold for the Hamiltonian,
the overlap, and the density matrices was 10−12.

4.3.3 Results

At the beginning of the RT-TDDFT simulation the ground-state den-
sity is calculated and used as starting point for the electronic wave-
function. During the evolution of the system, following the applica-
tion of a bias of 0.25 V, three stages are observed (Figs 4.4 and 4.5).
Initially, the field is constant across the system, which causes a uni-
directional current across both the contacts and the tube. After ap-
proximately 100 attoseconds, the field in the metallic contacts van-
ishes as a result of the contact polarisation. At this point, the current
inside the contacts is rather chaotic, but it is uniformly distributed
in the nanotube, as the electric field. The current leads to an accu-
mulation of charges at the boundaries of the device. These charges
start to shield the applied voltage and therefore the field across the
tube slowly decreases, followed by the current intensity. In the final
stage, the system reaches an equilibrium. The accumulated charges
completely hide the potential difference and no effective current or
field remains inside the CNT.
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Figure 4.4: Visualisation of the current density through the CNT
structure, taken at 25, 500, and 5000 (top to down) attoseconds sim-
ulation time. The colour indicates the direction of the local current,
blue for right to left propagation, red for left to right.
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Figure 4.5: Evolution of the electrostatic potential (dashed blue lines)
and electronic density (solid green line) over time. Initial state (t=0)
(top-left). Changes in electrostatic potential and electronic density
between the initial state and the one after 25 (top-right), 500 (bottom-
left), and 5000 (bottom-right) attoseconds.
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The resistivity of the nanotube can be extracted from the change
in charges on the contacts as a function of time. We used two meth-
ods (Fig. 4.6) to calculate the resistivity and derived a value of 10.1
and 11.4 kΩ, respectively, which is close to the resistance of 12.9 kΩ,
obtained from quantum transport simulations. The first method fo-
cuses on the initial phase of the simulation, while the second extracts
the resistance from the total simulation, through an equivalent circuit
model. The remarkable agreement between both extraction methods
is interesting, since the simulation is longer than the time it takes for
backscattering to occur inside the contacts. The dependence of the
resistivity on the voltage has been carefully analysed by performing
simulations at different applied voltages and the system was found to
be ohmic, as expected from a metallic nanotube. For the NEGF sim-
ulations the contacts must be expanded with more layers of palladium
atoms to allow for the introduction of open boundary conditions. The
initial wave-function is obtained from a CP2K energy minimisation.
The transmission probability through the CNT structure is then cal-
culated semi-self-consistently at zero bias (low-field approximation)
and 300 Kelvin in the post-SCF phase. The obtained NEGF resis-
tance is equal to 11.1 kΩ, a result very close to the one derived from
RT-TDDFT, thus confirming the validity of the latter approach for
transport calculations.

Furthermore, the impact of several defect types (e.g. hydro-
gen atoms at the metal/CNT interface or Stone-Wales defects [30])
(Fig. 4.7), in the nanotube and the contact regions, was studied. None
of the considered configurations was found to significantly alter the
resistance.

4.3.4 Conclusion

We have determined the electric resistance of a carbon nanotube con-
necting two metallic contacts using two different approaches, RT-
TDDFT and NEGF. The calculated electric resistances are in good
agreement. This supports the usage of RT-TDDFT/EMD as an effi-
cient alternative to NEGF for the simulation of electronic processes
from first-principles, RT-TDDFT also has the advantage that it can
be applied to non-steady-state cases, such as transient regimes. In
the following section, larger and semiconducting instead of metallic
systems will be investigated.
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C CR

V

Figure 4.6: Extraction methods for the device resistance based on
the electric charge that moves from one metal contact to the other
as a function of time. (solid black line) First method: The resistance
is calculated from a linear fit of the charge transfer at t=0 (dash-
dotted red). Second method: The resistance is estimated from a cir-
cuit model, as illustrated in the inset (dashed blue line). The circuit is
composed of two capacitors that account for the coupling between the
planes with a fixed potential and the Pd contacts and of a resistor that
corresponds to the nanotube channel. The analytical solution of the
circuit is an exponential function of the form n(t) = CV

2 (1−exp− 2t
RC ).

77



Figure 4.7: Nanotube structure with various defects introduced. The
resistances have been calculated with the first method from Fig. 4.6
(time step: 1 as, potential: 1 V). (top) Hydrogen atoms added at the
Pd/nanotube interface. (middle, bottom) Stone-Wales defects inside
the nanotube in two different orientations.
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4.4 Simulation of Current through
a Semiconducting Nanotube

4.4.1 Introduction

As a more realistic setup compared to the previous section we now
calculate the electron transport through a semiconducting CNT that
has larger dimensions as in Section (4.3). The approach used here
treats the boundaries as finite capacitors, as in the previous section.

It is known to produce an accurate quasi steady-state
[26]

. We further-
more improve the stability of this method by inserting a dielectric
medium inside the capacitor. This technique enables us to simulate
systems one order of magnitude larger than previously possible, as RT-
TDDFT transport simulations have been so far limited to at most 200

atoms
[26, 31–40]

.

4.4.2 Computational Setup

The dielectric constant between the constraints and the contacts is de-
fined using a spatially, density-dependant function, [24] which confines
the dielectric medium to the regions of vanishing electronic density.
In the RT-TDDFT simulations the density matrix is filtered with a
threshold of 10−9 and the time step is set to 10 attoseconds. The
NEGF calculations are performed with the same DFT parameters
as the RT-TDDFT simulations, which removes the need for the ex-
pensive inclusion of Hartree-Fock exchange required to obtain results
comparable to experimental data. The contact unit cells interact with
up to two or three next nearest-neighbour unit cells.

4.4.3 Results

The current through a carbon nanotube field-effect transistor (CNT-
FET) with a floating gate, as in Fig. 4.8, has been calculated. Such
logic switches are serious candidates to replace silicon FinFETS at
the end of Moore’s scaling law. A microprocessor based on CNTFETs
has already been demonstrated. [41] The semiconducting nanotube is
generated using the TubeGen [20] online tool and the contacts have
been prepared with the help of the ASE [42] engine. The length of
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Figure 4.8: Semiconducting CNT connecting two palladium contacts.
A voltage is applied through constraints in the Poisson solver, as de-
scribed in the previous section. The dielectric constant between con-
straints and the contacts is set to εr = 20 to allow for a large charge
transfer over the course of the simulation. The dielectric constant
of the remaining empty space is set to 80 (CP2K’s default value).
This rather unphysical choice does not change the conclusions of the
paper, since the resulting electrostatic potential is used in NEGF as
well. The distance of 4.5 Angstrom between the constraints and the
contacts ensures the absence of electron density overlap between them.
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the nanotube is chosen such as to approximately match experimental
CNTFETs. [43] The geometry of the combined system is relaxed with
respect to both the atomic positions and the system dimensions in or-
der to establish a stress-free contact region between the CNT and the
Pd slabs. As basis functions, DZVP is employed with 25 contracted
Gaussians per Pd atom and 13 per carbon one, which results in a
Kohn-Sham matrix of 47952 × 47952 elements for RT-TDDFT and
92952× 92952 elements for the NEGF system with extended slabs.

The simulation is initiated from the unbiased ground-state elec-
tronic density. From there a bias of 2 V is applied to generate an
electric current. In the early stage, the current is irregular due to
polarisation effects and initial reflections, but after about 10 fs, a
pseudo-steady state establishes. It can be observed in Fig. 4.9. The
resistance in this state is calculated from the current, given by the
electron drift, and the effective potential drop across the CNT, as re-
ported in Fig. 4.10. This potential difference diminishes over time
as electrons accumulate at the far end of the contacts and shield the
applied bias, a phenomenon that can be seen in Fig. 4.11. Differ-
ent approaches were tried to interpret the current as a single number
from the time-dependant density (see in appendix). The most reliable
one consists in calculating the current based on the charge difference
between the contacts as given by their Mulliken charges Q:

I(t) =
∂

∂t
(
Qleft −Qright

2
). (4.1)

The numerical derivative is calculated through an interpolation in an
interval of ± 2.5 fs around each time step. The width of this interval
serves here as a smoothing parameter.

The resistance is then compared to NEGF calculations, which has
been shown to agree well with RT-TDDFT [38, 39] for small systems.
A self-consistent NEGF calculation for a system of this size is not yet
feasible. The potential of the steady-state has therefore to be approx-
imated. In the central region it is extracted from the RT-TDDFT
simulation at different time steps. The contacts are then extended to
introduce open boundary conditions. To extract the electrostatic po-
tential from RT-TDDFT at time t, the difference between its value at
time t and t0 is calculated. The result is finally added to the ground-
state potential in the central region of the extended system to perform
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5 fs

10 fs

20 fs

Figure 4.9: Overview of the RT-TDDFT current density at different
time steps. The current from right to left is coloured in blue and the
current in the opposite direction in red. The currents at t = 5, 10,
and 20 fs are represented, from top to bottom.

the NEGF calculation:

VNEGF = VGS + VTDDFT (t)− VTDDFT (t0). (4.2)

The potentials in the extended slabs are shifted to be continuous with
the central region.

One of the input parameters of NEGF calculations is the tem-
perature of the system, as the occupation of states in the contacts
is modelled by a Fermi-Dirac distribution in the Landauer-Büttiker
formalism: [44]

I(Vb) =
2e

~

∫ ∞
−∞

1

2π
T (E, V )wFD(E, T )dE,

wFD(E, T ) = fLFD(E, T )− fRFD(E, T ),

(4.3)

where fFD(E, T ) is the Fermi-Dirac distribution function at the en-
ergy E and temperature T , the factor 2 accounts for the spin degen-
eracy and T (E, V ) refers to the transmission function at energy E.
In RT-TDDFT simulations the initial electronic density is computed
at zero Kelvin to obtain an idempotent density matrix. While this

82



 0.5

 1

 1.5

 0  10  20  30  40

 0.5

 1

 1.5

 2

 2.5

 3

V
ol

ta
ge

 [V
]

charge [a.u.]

time [fs]

Potential Difference

 0.5

 1

 1.5

 2

 2.5

 3
Electron Drift 

Figure 4.10: Voltage difference between the left and the right contact.
With voltages measured as planar averages through the middle layers
of the respective slabs (dashed line); total charge moved from one side
to the other as determined from the Mulliken charges in the contacts
(solid line).
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line) in the CNT system after 10 fs as compared to the initial state.
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suggests the use of a zero Kelvin temperature in NEGF as well, it is
found that such a choice does not accurately represent the situation
after the application of a bias to the RT-TDDFT simulation. In this
case, the eigenstates of the density matrix and the Kohn-Sham matrix
are no longer identical.

To determine a suitable temperature for the NEGF calculation the
density-of-states (DOS) at time t is interpreted as the eigenvalues of
the time-dependent Kohn-Sham matrix H(t). The occupation at each
energy level can then be determined by projecting the eigenstates of
the density matrix P (t) onto the eigenstates of H(t). This has been
done here after 20 fs of simulation time, with an atomic resolution. By
calculating the DOS in the metallic contacts, as shown in Fig. 4.12,
a similar window-function as in the Landauer-Büttiker formalism can
be established:

wRT−TDDFT (E) = fLRT−TDDFT (E)− fRRT−TDDFT (E), (4.4)

where f
L/R
RT−TDDFT (E) is the relative occupation of the DOS inside

the left and right contact respectively. The function computed in this
way is not fully equivalent to wFD(E, T ), but it can be used to fit the
temperature of the NEGF scheme. It turns out that the RT-TDDTFT
window function wRT−TDDFT (E) can be matched remarkably well
by wFD(E, T ) at T = 300 K, which is then chosen for the NEGF
calculations, see Fig. 4.13. It should be noted that the equivalence
to room temperature is a pure coincidence and is not enforced by the
simulation setup. Using this temperature, the electrostatic potential
is extracted every 10 fs of the RT-TDDFT run and is then transferred
to the NEGF solver in order to compute the stationary current of
the system. A resistance is finally extracted from the current and
compared to the RT-TDDFT results in Fig. 4.14. The potential drop
at each selected time step is also calculated and used to convert the
time to a voltage. A fairly good agreement between the NEGF and
RT-TDDFT methods is found and highlighted in Fig. 4.14.
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CNT channel
Left contact Right contact
a)

b) c)

Figure 4.12: a) Atomic structure in which the DOS is calculated after
20 fs of RT-TDDFT simulation. Extractions in the left contact, CNT
channel and right contact are performed. b) Total DOS in each region
(solid lines) as well as energy resolved density of the occupied states,
as obtained by projecting the density matrix onto the eigenstates of
the Kohn-Sham matrix (dashed lines). c) Fraction of the occupied
states at any given energy for the three different parts of the system
(left and right contact, CNT channel).
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Figure 4.13: Transmission function as obtained from NEGF (black,
solid) and difference in the occupation of states between the two con-
tacts w(E), as given by the RT-TDDFT simulation (blue, solid) and
by the Fermi-distribution at 300 K at t = 20fs (red, dashed).
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Figure 4.14: Resistance of the CNT FET in Fig. 4.8 as calculated
from both RT-TDDFT (solid line) and NEGF (dots). The potential
of the central region in the NEGF calculations is taken from the RT-
TDDFT simulation at the time indicated by the bottom x-axis. The
corresponding voltage difference between the left and right contact is
given in the top x-axis.
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4.5 Current-Voltage Characteristics of
Germanium Selenide Selectors

As another illustration of the RT-TDDFT method, we have simulated
a GeSe selector composed of a Ge0.5Se0.5 slab surrounded by two TiN
electrodes as in Fig. 4.15. Such structures may find applications
in crossbar arrays, where they could minimise between-line read and
write interferences. [45]

The amorphous model of Ge0.5Se0.5 has been generated with
CP2K. We have combined GTH pseudo-potentials with a localised
single-zeta valence (SZV) basis sets in a melt-and-quench algorithm:
The initially randomly decorated atomic GeSe configuration is melted
at 1200 K for 6 ps, then quenched at 800 K for 12 ps, and finally at
400 K during 6 ps with a larger basis set (DZVP). The final structure
is relaxed.

The considered voltage is too high to employ a low-field approxi-
mation, where the transmission function in Eq. (4.3) is assumed to be
bias independent. Consequently, the reference NEGF calculations are
performed after imposing a non-self-consistent linear potential drop
between the metallic contacts. The non-equilibrium Hamiltonian is
generated by solving the Poisson equation under a bias potential that
is forced to be flat in the contact regions and to behave linearly in the
GeSe channel. Such a condition on the potential is justified by the
very low charge density in the Ge0.5Se0.5 central region. The potential
of the left TiN contact is set to 0, while it is equal to -qV in the right
contact region. Moreover, homogeneous Neumann boundary condi-
tions are applied in the transport direction, z, and periodic boundary
conditions along the x and y directions. Once the Hamiltonian is cre-
ated, it is passed, together with the overlap matrix, to OMEN that
evaluates the transmission through the device. The operation is re-
peated at different voltages.

The RT-TDDFT simulations are started at different initial biases
and evolve over time till the applied potential is completely screened
by the electric field coming from the displaced charges. A good agree-
ment with NEGF is found in both cases, as reported in Fig. 4.16.
Furthermore, it should be emphasised that RT-TDDFT produces a
similar I-V curve, regardless of the initial bias. This indicates that
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6 nm amorphous GeSe

8 Å (ε = 40) 8 Å (ε = 40)xy
z

Figure 4.15: Amorphous Ge0.5Se0.5 slab between two TiN contacts.
The calculation is performed with a DZVP basis with 13 basis func-
tions for the N, Ge, and Se atoms and 26 for the Ti one. The system
is 1.3× 1.3× 7.6 nm3 large and contains 744 atoms.

the current is determined by the bias alone, not by the previous state
of the system.

4.6 Plasmonic Effects in Conductive
Bridging Random Access Memories

4.6.1 Introduction

As part of this thesis conductive bridging random access memory
(CBRAM) cells, [46] a promising technology [47] for non-volatile mem-
ory and neuromorphic computing, have been investigated. The oper-
ation principle of CBRAM is illustrated in Fig. 4.17. The motivation
for this study originates from the experimental observation that plas-
mons can be used to switch CBRAM cells. [48, 49] To gain insight into
the atomistic processes occuring during the switching process, the
electrostatic forces through the applied field as well as the plasmonic
forces caused by the so-called “Optical Tweezer” [50] effect have been
computed. The goal was to understand if the switching is a direct
result of the tweezer force, or a result of the thermal heating related
to the absorption of the plasmon. Furthermore, RTP simulations were
conducted to investigate optical rectifications, an effect where an os-
cillating optical field induces a constant electric field and therefore
an unidirectional force acting on atoms. As the systems were already
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Figure 4.16: Current vs. voltage characteristics of the Ge0.5Se0.5 se-
lector in Fig. 4.15 as obtained from two different runs of RT-TDDFT
simulations that are started at different initial biases (lines) and from
NEGF (dots). The first femtosecond is cut to avoid polarisation ef-
fects. The current is extracted with the same method as in the CNT-
FET with interpolation in a ± 2 femtoseconds interval.
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Figure 4.17: Operation principle of a CBRAM cell. (A) The gap
between a copper and a platinum electrode is filled with amorphous
SiO2. The resistance between the electrodes is therefore intrinsically
high. (B) A voltage is applied so that atoms start to diffuse from the
active copper electrode towards the inert platinum electrode, where
they accumulate. (C) When enough copper atoms have moved to-
wards the platinum electrode, a conductive filament is formed between
both electrodes. The resistance drops as a result. Even after turning
out the applied voltage, the filament remains stable and the resistance
low. A CBRAM cell is therefore typically non-volatile. (D) To dis-
solve the filament and switch it back to its high resistance state, a
reverse bias must be applied.
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created, we decided to use them to further validate the transport sim-
ulations based on RT-TDDFT introduced in the previous sections,
and compare it to the “current vs. voltage” characteristics obtained
from NEGF.

4.6.2 Electrostatic Forces

The electrostatic forces are the main driving force for the formation
of metallic filaments between two electrodes in a CBRAM cell. One
of the electrodes must be inert, e.g. Pt, the other active, e.g. Cu.
The forces can be evaluated through EMD simulations by perform-
ing two calculations: One with an applied electric field and another
that serves as a reference and that can either be an EMD run at zero
bias or a ground-state simulation of each of the atomic configurations
in the original EMD trajectory. The electrostatic component of the
atomic forces can then be extracted from the force difference between
the main EMD and the reference simulation. For the latter, we opted
for an unbiased EMD calculation and furthermore used an RTP sim-
ulation to obtain the electric field.

Setup

The growth of the nanofilament was not simulated in this work. We
directly started from a crystalline Cu filament in an amorphous SiO2

matrix surrounded by two Cu plates for simplicity, as in Fig. 4.18.
The stresses in the simulated structure were relaxed through a ground-
state DFT geometry optimisation. The simulated structure contains
3031 atoms. The copper atoms of the filament and metallic contact
are modelled with a DZVP basis with 25 basis functions per atom and
the surrounding amorphous SiO2 matrix with a 3SP [51] basis with 12
basis functions per atom. This results in a density matrix of size
55690×55690. The cutoff of the auxiliary PW basis was chosen to
be 500 Rydberg and the time step of the simulation 10 attoseconds.
The electrostatic forces were extracted after approximately one fem-
tosecond simulation time. Due to the relatively short duration of the
simulation, a dielectric constant of 5 was sufficient to represent the
vacuum between the contacts and the constraints in the potential.

91



5 Å (ε = 5) 5 Å (ε = 5)

Figure 4.18: Model system of the considered CBRAM cell. A crys-
talline copper filament is placed in an amorphous SiO2 matrix. It
extends from one copper electrode to another. The left copper elec-
trode corresponds to the inactive platinum electrode from Fig 4.17
and the right to the active electrode. In black are the planes of con-
straint electrostatic potential, which are used to apply the bias. Since
the filament growth process is not explicitly simulated, the normally
inert electrode can be replaced by a Cu one with very little influence
on the results.
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Figure 4.19: Electric field and potential under an applied bias in the
CBRAM cell from Fig. (4.18), as obtained from an RTP simula-
tion. (Left) Electric field in a slice taken in the middle of the system.
(Right) One-dimensional profile of the electrostatic potential. For
the profile, the electrostatic potential is averaged in the two dimen-
sions, corresponding to the dimensions perpendicular to the current
direction. As a result, the potential appears to drop off after 2 nm,
although the filament extends until 3 nm. This drop only represents
potential drop in the surrounding SiO2 matrix, not the filament itself.

Results

As shown by the RTP simulation in Fig. 4.19, the electric field, as
expected, is limited to the SiO2 matrix and reaches its strongest value
in the small gap situated between the filament tip and the contact.
The effective potential drop across the gap is approximately 0.3 V and
therefore slightly lower than the potential difference of 0.5 V between
the constraints.

From Fig. 4.20, we can see that only the atoms at the tip of the
filament experience significant electrostatic forces. This is the result
of the field being the strongest at the tip, and a consequence of the
positive charge of the surface copper atoms. It has to be mentioned
that the direction of the DC field corresponds to the process of the
dissolution of the filament. Hence, the atoms at the tip are pulled
away from the filament with a force of approximately 100 pN.
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Figure 4.20: (Left) Electrostatic forces acting on a crystalline copper
filament under a DC bias of approximately 0.3 V. The arrows indicate
the direction and magnitude of the force. (Right) Hirshfeld charges
of the copper atoms.

4.6.3 Plasmonic Forces

The optical tweezer effect describes how a polarisable particle is at-
tracted towards the maximal intensity of an optical field. This attrac-
tion is caused by the momentum change of photons during refraction,
as illustrated in Fig. 4.21. The equation for the force caused by the
field gradient on a particle in a dielectric medium is given by Ref.: [52]

Fgrad = 4πn2
2ε0a

3(
m2 − 1

m2 + 2
)
1

2
∇E2(r, t), (4.5)

where n2 is the dielectric constant of the surrounding medium, m = n1

n2

the relative dielectric constant of the particle, a the particle radius,
and ∇E the gradient of the electric field. For single atoms, however,
it is not immediately obvious how the dielectric constant should be
chosen. Therefore, we decided to directly simulate the plasmon as a
non-propagating AC field and calculate the resulting forces instead if
applying Eq. (4.5). This has been done by following the same proce-
dure as in the previous section, i.e. by performing two simulations and
extracting the forces between them. As some of the filament atoms
have a positive charge, they oscillate in the field. The force is thus
averaged over the period of a single plasmon oscillation, here 2.5 fs,
corresponding to a frequency of 400 THz and a wavelength of approx-
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Figure 4.21: ”Optical Tweezer” effect: (a) A photon hits the particle
and is refracted. The momentum is conserved through a force on the
particle, opposite to the momentum change of the photon. (b) If the
intensity of light on both sides of the particle are different a net Force
in the direction of the higher intensity is the result.

imately 750 nm, cancelling out the effect of the constant charge and
isolating the tweezer force.

System

The plasmonic force was calculated in a system with a silver filament
connecting silver contacts, as in, as in Fig. 4.22. As in the calculation
of the electrostatic forces, the PW cutoff was set to 500 Rydberg
and a DZVP basis with 25 basis functions per atom was used for the
silver atoms, while a 3SP [51] basis with 12 basis functions per atom
described the amorphous SiO2 matrix, resulting in a total matrix size
of 21840×21840. The simulation was run for 7.5 femtoseconds with a
timestep of 10 attoseconds. The plasmon was simulated as a one volt
AC field with a frequency of 400 THz applied through constraints in
the Poisson solver. [24]

Results

The Ag atoms in the filament were found to exhibit forces of up to 20
pN after 5 femtoseconds and up to 15 pN after 7.5 femtoseconds, as
reported in Fig. 4.23. However, the direction of the forces does not
seem to reach an equilibrium over the time of the simulation. Also,
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5 Å (ε = 5) 5 Å (ε = 5)

Figure 4.22: Ag filament connecting two Ag slabs. The constraints
on the side are used to apply a 1 V AC field with a frequency of 400
THz, corresponding to a wavelength of approximately 750 nm.

Figure 4.23: (Left) Plasmonic forces extracted after 5 fs or 2 cycles.
(Right) Plasmonic forces extracted after 7.5 fs or 3 cycles. The arrows
indicate the force strength and direction.
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no clear force direction can be identified. Longer simulations are not
possible, since molecular dynamics trajectories from identical initial
configurations, such as the EMD simulation including the plasmon
and the reference simulation, are known to diverge exponentially over
time. [53] The difference in the atomic configurations between the two
simulations causes an additional force difference between them, which
over time dominates the plasmonic component of the forces.

4.6.4 Current Simulations

Introduction

As another validation of electron transport simulations with RT-
TDDFT, besides the semiconducting CNT tube and the GeSe selector,
the current flowing through a CBRAM cell was also simulated. The
idea is to compare the IV curve obtained from an RTP simulation
with that created through NEGF. In the NEGF simulations, the low-
field approximation is employed, which means that at all bias points,
the transmission is calculated from the unbiased Kohn-Sham matrix.

Simulation Domain

The selected device structure is made similar to an experimental
CBRAM cell [54] and consists of an amorphous SiO2 layer surrounded
by two Cu electrodes and a metallic filament in between, as depicted
in Fig. 4.24. The amorphous silicon oxide is obtained using a melt
and quench approach as described in Ref. [55]. Subsequently, cop-
per contacts are attached and the filament inserted by converting all
atoms within a cone to copper. The resulting structure is geometry
optimised and annealed for more than two picoseconds using ground-
state DFT molecular dynamics. For this system an SZV basis set with
9 basis functions per atom is employed for the copper atoms during
the NEGF and RT-TDDFT simulation and a DZVP basis with 25
basis functions during the annealing procedure in the systems cre-
ation. For the amorphous SiO2 matrix a 3SP [51] basis set with 12
basis functions per atom is used. It was verified with NEGF that the
SZV+3SP combination gives essentially the same result as DZVP, but
at much lower computational cost, which allows for the simulation of
more realistic structures.
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Figure 4.24: CBRAM cell with a copper filament extending from one
copper electrode to the other. The filament is surrounded by an
amorphous silicon oxide matrix. The device cross section measures
2.06× 2.24 nm2, the total length is set to 4.56 nm for a total of 1569
atoms.
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Results

RT-TDDFT is compared to NEGF calculations without direct input
from the RT-TDDFT simulations. Instead, the resistance is computed
within the low-field approximation, applying the Landauer-Büttiker
formalism directly to the unbiased transmission function, i.e. using
the same transmission functions at all biases. It has to be mentioned
that the Fermi-level of the microcanonical and of the open-boundary
structures cannot be accurately aligned.

After the creation of the initial CBRAM structure a ground-state
molecular dynamic simulation is performed at 800 K. The resistance
is calculated with both NEGF and RT-TDDFT at four different time
steps that correspond to atomic relocations and therefore different
filament configurations. Results are given in Fig. 4.25.

The MD runs induce a resistance change by one order of mag-
nitude. This is not a true ON-OFF switching process, which would
require a longer simulation time and a change in the conductivity by
several orders of magnitude. In the low resistance regime, a good
agreement between RT-TDDFT and NEGF is found. For the high
resistance regime, the use of RT-TDDFT is not straightforward, since
the total current is very low, thus leading to a higher susceptibility to
noise. Nonetheless, the behaviours qualitatively agree.

4.6.5 Optical Rectification

As a further investigation, an effect from non-linear optics called opti-
cal rectification [56] was examined. In optical rectification, an AC field
is partially transformed into a DC field, when applied to an asym-
metric system. In the present case this phenomenon could appear
when the plasmon interacts with the copper filament. We were es-
pecially interested in the impact of the filaments conductivity on the
rectification.

The system was set up equivalently to the previous section, but
instead of a DC field, an AC field with one volt magnitude and 197
THz frequency was applied. We simulated configurations taken from
the same MD trajectory mentioned previously and investigated the
configurations after 435 fs for the non-conducting case and after 1605
fs for the conducting system.
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Figure 4.25: Evolution of the electric resistance of the copper filament
system in Fig. 4.24 during a molecular dynamics simulation. The
frames are taken after 0 fs (a), 657 fs (b), 1456 fs (c), and 1605 fs
(d). The resistance calculated by NEGF (black, dashed) and RT-
TDDFT (red, solid) are reported. The first 2 fs of the simulation are
omitted to eliminate initial polarisation effects. For the calculation
of the current, the width of the interval for the interpolation for the
numerical derivative of the charge is 1 fs wide.
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To extract the DC component of the field, the electrostatic po-
tential along the filament was averaged over the time period of the
plasmon oscillation, thus eliminating the AC component.

Results

As seen in Figure 4.26, a rectification effect can be observed in the
conducting filament, where a 30 mV strong DC bias is found between
the two contacts, which is close to experimental results for similar
systems. [57] The associated field appears to be uniform across the
filament. In the nonconducting filament, the potential is lowered in
the centre of the filament, but the voltage difference between the slabs
is negligible.

4.6.6 Conclusions

To establish the main contribution to the plasmonic switching of
CBRAM devices, the strength of the ”Optical Tweezer” effect was
investigated. The atomic forces were then compared to electrostatic
forces originating from the DC bias. The electrostatic forces were
found to be at least an order of magnitude stronger and thus the
tweezer effect is unlikely the cause of the plasmonic switching. This
supports an alternative explanation of the switching, which is based
on the heating of the filament as a result of the absorption of the
plasmon. [54] Furthermore the presence of an optical rectification ef-
fect was demonstrated, the implications of this effect remain to be
investigated in future research.

4.7 The Band Gap of TiO2 Nanoparticles
in Acetonitrile Solution

The electronic structure of TiO2 anatase nanoparticles in an ace-
tonitrile solvent was investigated, as a test of the ground-state Born
Oppenheimer (gs-BO) subsystem (SS) DFT implementation. Such
particles are central for dye-sensitised solar cells (DSSCs) by serv-
ing as the conduction path for the photo-excited electrons from dye
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Figure 4.26: (top) Change in potential due to optical rectification
in a conducting (green) and insulating (red) copper CBRAM after 9
femtoseconds of simulation time. The potential is averaged over the
plasmon frequency. (bottom) Investigated filament structure.
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Figure 4.27: Comparison of the pair correlation functions g(r) ob-
tained for liquid acetonitrile with SS DFT (solid line) and KS DFT
(dashed line). black: N-H, red: nitrile C-C, green: methyl C-N.

molecules. [58] To validate the performance of the SS DFT implemen-
tation, several tests were performed.

First, the structure of the neat liquid has been computed using MD
based simulations (10-15ps in length) based on both KS DFT and SS
DFT. Pair correlation functions for a cubic unit cell (edge 15.74Å)
containing 45 molecules are shown in Figure 4.27. Overall, the struc-
ture of the liquid is well described by the SS DFT approach. All peaks
are well reproduced and are similar in height. The SS DFT approach
leads to a small (0.1-0.2Å) inwards shift of the peaks, suggesting that
some more repulsion would be required in the PBE+LLP functional.
On the basis of these data, we consider the SS DFT approach suitable
to describe liquid acetonitrile.

The next test was a comparison of the density of states (DOS) of a
2nm-TiO2 anatase nanoparticle, calculated using SS DFT to the DOS
of a full KS DFT calculation (Figure 4.28). The DOS is well repro-
duced for the occupied states and for the unoccupied states close to
the band gap. Therefore, both, the full KS and SS DFT will produce
the same band gap. Although the discrepancy in DOS for higher un-
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Figure 4.28: The DOS of a 2 nm TiO2 nanoparticle in explicit ace-
tonitrile solvent. The red dashed line represents the DOS as obtained
without partitioning the system, while the blue solid line is the DOS
for the SS+LS approach.

occupied states is non-negligible, the similarity of DOS in the region of
interest, the band gap region, supports the reliability of this method.

The speedup provided by the SS DFT implementation has been
investigated. Despite the relatively small size of the nanoparticles,
the number of atoms in the systems is in the order of few thousands
due to the solvent. Therefore, the systems greatly benefited from
the combination of SS DFT with the linear-scaling framework. The
nanoparticles are large enough to be in the linear-scaling regime and
SS DFT reduces the cost of the simulation of the acetonitrile solvent.
For a small particle (210 atoms particle, 4500 atoms solvent) SS DFT
provided a speedup by about a factor of 5.4 and for a larger particle
(1233 atoms particle, 3480 atoms solvent) a speedup of 4.4.

Lastly, the band gap was also investigated as a function of the par-
ticle size for particles with sizes between 2 and 6 nm (Figure 4.29). At
this scale, experimental studies [59–63] have reported that the band gap
strongly depends on the size of particles due to the quantum confine-
ment effect which states that the band gap increases with decreasing
particle size. However, in our simulations the band gap was found to
decrease with decreasing particle size. The decrease in the band gap
for small particles could originate from their larger surface to volume
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Figure 4.29: The band gap of TiO2 nanoparticles as a function of
the particle size. (red) Solvated particles in acetonitrile. DFT+U
(U=6.5eV). The band gap was averaged over an MD simulation.
(blue) Particles in vacuum, DFT+U (U=6.5eV), (green) Particles in
vacuum, no DFT+U used. Insert shows the solvated system with 1233
atoms in the nanoparticle.

ratio. This surface to volume ratio increases the contribution of the
electronic states of the under-coordinated surface atoms, which leads
to a smaller band gap. This mechanism has also been suggested based
on experiments. [64, 65]

4.8 Satellite Tobacco Mosaic Virus

For the final demonstration of the ground-state combination of the
subsystem (SS) and linear scaling (LS) approaches, we compute the
electronic structure of the satellite tobacco mosaic virus in solution.
This virus was the first entire life form simulated at the atomic level
by Freddoline et al in Ref. [67] using empirical force fields. Here, we
perform the first ever first principles simulation of such a system. This
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Figure 4.30: Visualisation of the electrostatic properties of the vi-
ral capsid as computed with DFT. The solvent (blue sticks), protein
and RNA (ribbons) are shown in part, while the surface, which cor-
responds to the viral capsid, is coloured according to the computed
charges of its constituent atoms. The system contains somewhat more
than one million atoms. Visualised using VMD. [66]

calculation takes all important interactions (bonding, repulsion, elec-
trostatics and polarisation, van der Waals, etc.) into account based
on the electronic structure only. Clearly, our simulations cannot asses
the dynamics of the virion at relevant timescales (ns to ms). For these
timescales, empirical force fields, running on specialised hardware are
more appropriate for the task. [68] With this calculation we illustrate
that relaxing such structures and computing their electronic densi-
ties is possible and learn how to deal with practical aspects of such
calculations. This could be useful to analyse X-ray structure in more
detail, [69] which is commonly still based on databases of precomputed
densities, [70] even though a subsystem based approach has been ap-
plied to proteins already. [71] Furthermore, the computed densities
provides a route to obtain electrostatic properties of, and possibly in-
teractions between, large protein assemblies, or the RNA and protein
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capsid. [72]

The starting point for our calculations is the fully solvated STMV
structure that is provided as a benchmark for the NAMD program,
and available online. [73] Each of the 60 proteins ( 2200 atoms) and
the RNA fragment ( 30300 atoms) are considered a molecule in the
SS scheme. The latter is highly charged (949 e-, corresponding to
the number of nucleotides), which is correctly captured in the SS+LS
calculation. The system is neutralised by magnesium and chloride
ions, solvated in water. Somewhat more than 50 geometry relaxation
steps have been performed to relax the structure. This relaxation
is intended to reduce the gradients and total energy, but ideally the
system would be equilibrated at a finite temperature, which is still
out of reach. The resulting electronic structure has been analysed
in terms of the Mulliken charges, as shown in Figure 4.30. During
optimisation, total energy is lowered by approx. 2000 Hartree, only 2
mHt/atom, and supports the quality of the initial structure. The root
mean square gradient is reduced by roughly one order of magnitude
to 7 × 10−4 a.u. . However, the relaxation of the structure is rather
challenging in this context. Large gradients are present in the struc-
ture, and a trust radius approach, limiting the atomic displacements
to 0.05Å turned out to be essential to obtain a stable optimisation in
combination with a standard LBFGS [74, 75] optimiser. Without trust
radius, large local distortions that result from attempted optimisation
steps, would lead to an instable SCF procedure. Linear scaling pre-
conditioning of the geometry optimisation problem might be a com-
plementary approach to further improve the geometry optimisation
algorithm, but is not yet available in CP2K. An interesting quantity
of the system is the HOMO-LUMO gap. This gap increases from
0.7eV in the original structure to 1.2eV after relaxation. Even though
GGA DFT underestimates band gaps, [76, 77] a finite gap is thus ob-
tained for this large structure. This is important as it shows that
a properly solvated protein/DNA structure can indeed be described
with GGA DFT, even in the presence of various charged residues and
nucleotides. Computing the corresponding orbitals is not yet possible,
and we therefore do not know if the two orbitals that contribute to
this small HOMO-LUMO gap are spatially close, or rather far apart,
but this seems an interesting question for future research. Indeed,
fluctuations in these large, disordered, systems should modulate the
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electrostatic potential in such a way that the orbital energies can be
locally pushed up or down significantly, so that the energies of HOMO
orbitals of molecular fragments in one region come closer to the en-
ergies of LUMO orbitals of molecular fragments in faraway regions.
In extreme cases where these levels would cross, Born-Oppenheimer
simulations would become problematic. Finally, we believe that the
STMV structure is an excellent benchmark system for linear scaling
electronic structure calculations. We have established that it is at
the same time challenging, but also feasible to deal with this system.
It complements the usual benchmarks in that it is fully disordered,
three dimensional, and chemically sufficiently rich. The computation
of the HOMO-LUMO gap of the original structure, and the relaxation
of that structure seem two reasonable targets of different complexity
for such a benchmark.

With the SS + LS approach, the computational cost of this cal-
culation is manageable on today’s supercomputing resources. Using
2450 compute nodes (each 8 cores, no GPU employed) of a Cray XC30
system at CSCS, one geometry optimisation step requires roughly 1h,
while the memory peaks at 13GB per node. The speedup over a
purely LS approach is significant, as measured for the first SCF step.
SS+LS required 233s on 2450 nodes, while LS required 1385s on 4626
nodes, an 11-fold speedup. Memory usage per node is more similar,
as both KS+LS and LS only required 9GB per node for the first SCF
step, despite the fact that the occupation of the matrices (8.4M ×
8.4M in size) is 0.019% in the SS+LS and 0.267% in the LS case. The
similarity might be due to the fact that the implementation of the SS
approach stores several density grids, which are large (2304 × 2304
× 2304 points). The usage of GPUs (one NVIDIA K20X with 6GB
memory, per node) results in a 30% speedup in the SS+LS case, which
mostly results from the accelerated sparse matrix matrix multiplica-
tions, as performed by the GPU accelerated version of the DBCSR
library. [78] A GPU accelerated run was not possible for the LS only
approach, as insufficient GPU memory was available. Interestingly,
in the SS+LS approach, the computer time is approximately evenly
divided between the linear algebra implied by the LS approach, and
the evaluation of the SS embedding terms for the Hamiltonian. The
latter is dominated by the needed Fast Fourier Transforms (FFT) to
compute the exchange and correlation functionals.
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4.9 N3 Dye: Electronic Dynamics in the
Linear Response Regime

As a test of the density matrix based EMD and EMD + SS methods,
electron dynamics in the linear response regime is performed. The
spectrum is then compared to linear response TDDFT (LR-TDDFT),
which is an alternative perturbative approach to calculate the absorp-
tion spectrum.

Figure 4.31: The pseudo absorption spectra of an N3 dye in ace-
tonitrile solution (box of 2x2x2 nm3 with 407 atoms). The spectra
were obtained from a 250 fs trajectory, with a time step of 5 as. For
the Carbon, Hydrogen, Sulphur, and Oxygen in the dye, TZV2P-
MOLOPT-GTH basis sets [3] were used. The spectra were smoothed
using the LOESS [79, 80] method, with a span of 1.1 eV. (red, solid)
Molecular orbital based EMD, (blue, dash-dot) Density Matrix based
EMD, (green, dots) SS-DFT-method with EMD, (black, solid) the
TDDFT spectrum of N3 dye in implicit ethanol, calculated by Fan-
tacci et al. [81] The spectrum of the molecular orbital based EMD is
exactly on top of a density matrix based EMD simulation.

Using as a test system the N3 dye molecule in acetonitrile, which
is a typical sensitiser and solvent in dye sensitiser solar cells (DSSCs),
EMD dynamics starting from a ground-state electronic configuration,
but at finite ionic temperature, is performed. From this dynamics a
pseudo UV-VIS spectrum can be obtained through a Fourier transfor-
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mation of the time-dependent electronic and nuclear dipole moment.
This spectrum is employed to compare wave function and density ma-
trix EMD, and to study the influence of subsystem DFT model. Fur-
thermore, this spectrum can be compared to a traditional LR-TDDFT
calculation, as the peak positions (at fixed nuclei) coincide with that
of LR-TDDFT. A correct reproduction of the intensities would require
an initial electronic excitation, i.e. as obtained by applying a delta
pulse. [82] The performed GGA simulations are expected to underes-
timate the excitation energies as compared to experiment, which is
due to the fact that GGA functionals systematically underestimate
the band gap. [76, 77]

The results of these simulations are shown in Figure 4.31. As ex-
pected, the density matrix based implementation of EMD was found
to produce indistinguishable results from the traditional wave func-
tion based EMD implementation in CP2K. Comparing EMD+SS and
EMD simulations, fair agreement is found, with peak positions at
similar locations, and with similar intensities. Clearly, as the ionic
dynamics between the two models differs, some differences are to be
expected. We note that the sampling of ionic configurations during
the EMD or EMD+SS runs is a useful aspect that is not present in
typical, static, RTP or LR-TDDFT calculations, and that this will
naturally broaden the peaks in the spectrum. However, the dynamics
is roughly 250fs (up to 1ps with SS DFT), so that only the fastest
vibrations are averaged over. The fact that simulations of up to 1ps
can be performed demonstrates the long-term stability of the method.
Finally, the results compare favourably with LR-TDDFT calculations
by Fantacci et al. [81] These calculations employ an implicit ethanol
solvent model, and employ a different xc functional (BPW91). De-
spite these differences in computational setup, a similar spectrum is
obtained.
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density functional theory in real time for calculating electronic
transport. Phys. Rev. B, 93(3):035115, 2016.

[41] Max M. Shulaker, Gage Hills, Nishant Patil, Hai Wei, Hong-Yu
Chen, H-S Philip Wong, and Subhasish Mitra. Carbon nanotube
computer. Nature, 501(7468):526–530, 2013.

[42] Sune R. Bahn and Karsten W. Jacobsen. An object-oriented
scripting interface to a legacy electronic structure code. Comput.
Sci. Eng., 4(3):56–66, 2002.

[43] Aaron D. Franklin, Mathieu Luisier, Shu-Jen Han, George
Tulevski, Chris M. Breslin, Lynne Gignac, Mark S. Lundstrom,
and Wilfried Haensch. Sub-10 nm carbon nanotube transistor.
Nano lett., 12(2):758–762, 2012.
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Chapter 5

Conclusions and
Outlook

To enable large scale atomistic simulations beyond the ground-state
approximation, an efficient density matrix based version of real-time
propagation (RTP) and Ehrenfest molecular dynamics (EMD) was
implemented. [1] Sparse linear algebra was employed as it offers the
prospect to achieve linear scaling computational cost. The numerical
stability and the accuracy of the calculations were further enhanced
by removing numerical noise via a two level filtering procedure and a
McWeeny purification scheme of the density matrix.

Linear scaling was only partially achieved. Kohn’s near-
sightedness principle was only proven to hold for the electronic
ground-state. It is not generally valid for non-ground-state electronic
configurations where a low-magnitude, long-ranged tail of the den-
sity matrix was occasionally found. As a result, the density matrix
becomes non-sparse at low filtering thresholds, which prevents lin-
ear scaling in high accuracy simulations. This limitation is physical
in nature and not related to the algorithms or the implementation.
Nonetheless, even for a non-sparse density matrix, sparsity occurs
during the calculation of higher order terms in the propagation, which
can be exploited for performance. Furthermore, RTP and EMD were
also combined with subsystem DFT which intrinsically enforces the
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near-sightedness of the electrons and therefore circumvents the afore-
mentioned issue.

The stability, performance, and correctness of the implementa-
tion were demonstrated on a number of test systems. [1] Additionally,
RTP and EMD simulations were used to support experimentalists
in the investigation of conductive bridging random access memories
(CBRAM). [2, 3] Lastly, RTP simulations where used to demonstrate
the feasibility of large scale transport simulations of nanoelectronic
devices. [4]

With RTP becoming more popular in the field of transport simula-
tions, it would be a natural extension of this work to implement open
boundary conditions (OBCs) as an alternative to the microcanonical
boundary conditions employed herein. Open boundary conditions can
be implemented through complex absorbing potentials (CAPs) [5] at
the system boundaries that mimic the interaction with infinite elec-
tron reservoirs from which electrons can either enter or leave. By
adding OBCs, it would become possible to simulate non-zero currents
in the long time limit and to obtain a true steady-state, which would,
however, come at a significant increase in computational cost.

This increase could be counteracted by further improving the per-
formance of the current implementation of RTP and EMD. One pos-
sibility to accomplish this goal would be to implement the leap-frog
propagation algorithm as an alternative to the exponential-midpoint
(EM) and enforced time-reversal symmetry (ETRS) algorithms. The
leap-frog algorithm is a time-reversible explicit propagation scheme
that avoids the inner loop of the implicit schemes currently used. An-
other approach to enhance the computational performance would be
the implementation of explicit complex linear algebra routines in the
DBCSR library used to handle the matrix multiplications. This would
lead to a reduction of the required bandwidth at the cost of more float-
ing point operations (FLOPs), see section 3.3. As our applications are
typically limited by the bandwidth, this could enable a non-negligible
speed up.

To summarise, the benefits of this work are threefold. First, the
open source nature of the CP2K code and its availability to all of
the scientific community make the methods implemented in this work
applicable, for instance, to photo absorption or electron transport
calculations in atomic scale systems. Second, the insights gained in
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this thesis on the limit of achieving a linear scaling regime within
RTP/EMD schemes together with the improvements of their stability
and performance will serve as a reference for future implementations of
such ab-initio techniques. Lastly, as demonstrated with several practi-
cal examples, the simulations conducted using the methods developed
in this work can accompany experimental efforts on novel nano-device
technologies and pave the way for better efficient component genera-
tions.
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Appendix

Proof of the Series Expansion of Density
Matrix based EMD

In the following Appendix, we will show how the propagation of the
density matrix can be expanded into a series. It has been previously
published in Ref. [Andermatt et al., J. Chem. Theory Comput.,
12:3214–3227, 2016].

eXP (eX)∗ = (
∑
i

1

i!
Xi)P (

∑
i

1

i!
Xi)∗ =

∑
n

Zn (5.1)

Where Zn are the contribution of all terms depending on the nth order
of the exponential of X:

Zn =

n∑
i=0

1

(n− i)!i!
Xn−iP (Xi)∗. (5.2)

We will prove the following solution, in which each term Zn can be
calculated using a single matrix multiplication:

Zn =
1

n
(XZn−1 + (XZn−1)∗), Z0 = P (5.3)

For Hermitian Zn this equation is equivalent to:

Zn =
1

n
(XZn−1 + (XZ∗n−1)∗), Z0 = P (5.4)
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Inserting Zn−1 into the formula yields.

Zn =
1

n

(
X

n−1∑
i=0

1

(n− i− 1)!i!
Xn−i−1P (Xi)∗

+

(
X

(n−1∑
i=0

1

(n− i− 1)!i!
Xn−i−1P (Xi)∗

)∗)∗)

=
1

n

(n−1∑
i=0

n− i
(n− i)!i!

Xn−iP (Xi)∗

+

n−1∑
i=0

1

(n− i− 1)!i!
Xn−1−iP (Xi+1)∗

)
. (5.5)

Shifting the indices of the second term:

Zn =
1

n

n−1∑
i=0

n− i
(n− i)!i!

Xn−iP (Xi)∗ +
1

n

n∑
i=1

i

(n− i)!i!
Xn−iP (Xi)∗).

(5.6)

The common terms of both series can be added

Zn =
1

n!
XnP +

1

n!
P (Xn)∗ +

1

n

n−1∑
i=1

n− i+ i

(n− i)!i!
Xn−iP (Xi)∗

=

n∑
i=0

1

(n− i)!i!
Xn−iP (Xi)∗ (5.7)

Which is equal to Eq. (5.2) and therefore proves Eq. (5.4). To
prove the equality of the Eqs. (5.3) and (5.4), all Zn need to be
Hermitian, which can be proven by induction. The first term Z0 = P
is Hermitian. Inserting Z0 into Eq. (5.4) we obtain:

Z1 =
1

n
(XP + (XP ∗)∗) =

1

n
(XP + (XP )∗) (5.8)

As the sum of a matrix and its adjoint is always Hermitian, Z1 is
Hermitian. It follows by induction that all Zn are Hermitian.
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Figure 5.1: Extraction of the voltage. The change in potential as
compared to the initial state is calculated in central planes in the con-
tacts. The voltage is then defined as the average potential difference
between the two planes

Extracting the Current from RT-TDDFT
Simulations

The following section is based on a previous publication [Andermatt
et al., J. Chem. Phys, 149(12):124701, 2018] and describes how we
obtained the current from an RT-TDDFT simulation at the example
of the semiconducting CNT.

To calculate the resistance of a device, the voltage and the current
need to be calculated. Neither of them is trivially defined in an RT-
TDDFT simulation. The electrostatic potential and the electronic
density are three dimensional objects and need to be broken down
to single numbers. To calculate the voltage we chose to average the
potential in a plane through the centre of each contact (see Fig. 5.1).

For the extraction of the current, four different definitions were
investigated. First, the current was interpreted as the time derivative
of the sum of the Mulliken charges of the contacts. Second, the contact
charges are calculated through an integration of the electronic real-
space density over the region of the contacts and the beginning/end
of the nanotube and the current is interpreted as the time-derivative
of it. Third, the centre of mass of all electrons was calculated and the
current interpreted as its movement. Lastly, the current density was
directly calculated from the imaginary part of the density matrix. The
current was then obtained by integrating the current density through
a plane in the middle of the CNT. For the semiconducting nanotube
the results of all four approaches are illustrated in figure 5.2.

129



-10

 0

 10

 20

 30

 0  10  20  30  40

C
u
rr

e
n
t 
[µ

A
]

Mulliken Charges

-10

 0

 10

 20

 30

 0  10  20  30  40

Real-Space Density

-10

 0

 10

 20

 30

 0  10  20  30  40

Average Electron Movement

-10

 0

 10

 20

 30

 0  10  20  30  40

time [fs]

Imaginary Part of P

(a) (b)

(c) (d)

Figure 5.2: Current through the semiconducting nanotube as ex-
tracted from four different methods. (a) Change in Mulliken charges
from the slab atoms. (b) Calculated from the change in the total
real-space electronic density of the slabs and the beginning/end of
the nanotube. (c) Calculated based on the movement of the centre of
mass of all electrons. (d) Current obtained by calculating the current
density from the imaginary part of the density matrix P and subse-
quent integration of the current density in a plane in the centre of the
CNT.
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Figure 5.3: As in Fig. 5.2, but taking the derivative of the charge
over a 5 fs wide window for (a),(b) and (c) and for taking a moving
average with a width of 5 fs for (d).

For all approaches the current exhibits oscillations over time. To
smooth these oscillations, the current can be extracted through a lin-
ear interpolation of the transmitted charge over time, around each
point in time. By widening the range of interpolation a more stable
results is obtained (see Fig 5.3).

After the comparison of all four approaches we decided to use the
Mulliken charges of the slabs to calculate the current and consequently
the resistance.
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