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ABSTRACT
We define and characterize a sample of 1.3 million galaxies extracted from the first year of Dark
Energy Survey data, optimized to measure baryon acoustic oscillations (BAO) in the presence
of significant redshift uncertainties. The sample is dominated by luminous red galaxies located
at redshifts z� 0.6. We define the exact selection using colour and magnitude cuts that balance
the need of high number densities and small photometric redshift uncertainties, using the
corresponding forecasted BAO distance error as a figure-of-merit in the process. The typical
photo z uncertainty varies from 2.3 per cent to 3.6 per cent (in units of 1+z) from z = 0.6
to 1, with number densities from 200 to 130 galaxies per deg2 in tomographic bins of width
�z = 0.1. Next, we summarize the validation of the photometric redshift estimation. We
characterize and mitigate observational systematics including stellar contamination and show
that the clustering on large scales is robust in front of those contaminants. We show that the
clustering signal in the autocorrelations and cross-correlations is generally consistent with
theoretical models, which serve as an additional test of the redshift distributions.
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1 IN T RO D U C T I O N

The use of the imprint of baryon acoustic oscillations (BAO) in
the spatial distribution of galaxies as a standard ruler has become
one of the common methods in current observational cosmology
to understand the Universe. The physics that causes BAO is well
understood. Primordial perturbations generated acoustic waves in
the photon–baryon fluid until decoupling (z ∼ 1100). These sound
waves lead to the large oscillations observed in the power spectrum
of the cosmic microwave background (CMB) anisotropies, but they
are also visible in the clustering of matter, and therefore galaxies, as
a high-density region around the original source of the perturbation,
at a distance given by the sound horizon length at recombination.
This high-density region shows as a small excess in the number of
pairs of galaxies separated by ∼150 Mpc. Since the sound horizon
is very precisely measured in the CMB (Planck Collaboration XIII
2016), the BAO measurements can be used as a standard ruler.
This is therefore a geometrical probe of the expansion rate of the
Universe that maps the angular diameter distance and the Hubble
parameter as functions of the redshift. There have now been multiple
detections of the BAO in redshift surveys (Percival et al. 2001; Cole
et al. 2005; Eisenstein et al. 2005; Percival et al. 2010; Beutler
et al. 2011; Blake et al. 2011; Delubac et al. 2015; Ross et al. 2015;
Alam et al. 2017; Bautista et al. 2017; Ata et al. 2018), and it is
considered as one of the main cosmological probes for current and
planned cosmological projects.

A key feature of the BAO method is the fact that the sound
horizon length is large, and therefore very deep and wide galaxy
surveys are needed in order to reach precise measurements of the
BAO scale. But, at the same time, this large scale protects the BAO
feature from large corrections due to astrophysical and non-linear
effects of structure formation and therefore from systematic errors,
making BAO a solid probe of the expansion rate of the Universe.

The Dark Energy Survey (DES) is one of the most important of
the currently ongoing large galaxy surveys, and, as its name sug-
gests, it is specially designed to attack the problem of the physical
nature of the dark energy. It will do it using several independent and
complementary methods at the same time. One of them is the precise
study of the spatial distribution of galaxies, and in particular, the
BAO standard ruler. DES is a photometric survey, which means that
its precision in the measurement of redshifts is limited, preventing
the measurement of the Hubble parameter evolution. However, the
evolution of the angular distance with redshift is possible through
the measurement of angular correlation functions (Seo & Eisenstein
2003; Blake & Bridle 2005; Padmanabhan et al. 2005; Padmanab-
han et al. 2007; Crocce et al. 2011; Sánchez et al. 2011; Carnero
et al. 2012; Seo et al. 2012; de Simoni et al. 2013)

Although DES will only measure BAO in the angular distribution
of galaxies, a determination of the photometric redshift as precise
as possible brings several benefits. It allows a finer tomography in
the mapping of the BAO evolution with the redshift and makes the
analysis cleaner, reducing the correlations between redshift bins. A
sample of luminous red galaxies (LRGs) would fit these require-
ments (Padmanabhan et al. 2005, 2007). LRGs are luminous and
massive galaxies with a nearly uniform spectral energy distribution
but with a strong break at 4000 Å in the rest frame. These features
allow a clean selection and an accurate determination of the red-
shift for these type of galaxies, even in photometric surveys. This
selection has been done previously for imaging data at z � 0.6
(Padmanabhan et al. 2005). But the BAO scale has already been
measured with high precision in this redshift range (e.g. Alam et al.
2017 and references therein). In order to go to higher redshifts, the

selection criteria need to be redefined. The 4000 Å feature enters
the i band at z = 0.75, and the methods used in previous selections
are not valid anymore.

In this paper, we describe the selection of a sample of red galaxies
to measure BAO in DES, which includes, but is not limited to, LRGs.
The selection is defined by two conditions. On the one hand, keep
the determination of the photometric redshift as precise as possible.
On the other hand, keep the galaxy density high enough to have a
BAO measurement that is not limited by shot noise.

In order to guide our efforts to select an optimized sample for
measuring BAO distance scales, we rely on Fisher matrix forecasts.
Seo & Eisenstein (2007) provide a framework and simple formulae
to predict the precision that one can achieve with a given set of
galaxy data. Thus, we will test how Fisher matrix forecasts vary
given the variations obtained for the number density and estimated
redshift uncertainty given a set of colour-magnitude cuts.

This paper, detailing the BAO sample selection, is one of a series
describing the supporting work leading to the BAO measurement
using DES Y1 data presented in The DES Collaboration (2017; here-
after DES-BAO-MAIN). As part of such series, one paper presents
the mock galaxy catalogues, Avila et al. (2018; hereafter DES-
BAO-MOCKS). Gaztañaga et al. (in preparation) discuss in detail
the photo z validation, and we denote it DES-BAO-PHOTOZ. Chan
et al. (2018), from now on DES-BAO-θ -METHOD, introduce the
BAO extraction pipeline using a tomographic analysis of angular
correlation functions, while Camacho et al. (2018) present the study
of the angular power spectrum (hereafter DES-BAO-�-METHOD).
Lastly, Ross et al. (2017a), in what follows referred to as DES-BAO-
s⊥-METHOD, introduced a novel technique to infer BAO distances
using the 3D correlation function binned in projected separations.

This paper is organized as follows: In Section 2, a description of
the main features of the DES-Y1 catalogue is given; in Section 3,
we give a detailed description of the selection cuts that define the
data sample that has been used to measure the BAO scale in DES;
section 4 contains a description of the procedure that has been de-
veloped and applied in DES in order to ensure the quality of the
photometric redshift determination and to determine its relation
with the true redshift; Section 5 describes the masking scheme and
the treatment of the variable depth in the survey; Section 6 is a
description of the analysis and mitigation of observational system-
atic errors on the clustering measurement; and finally, Section 7
describes the measured two-point correlation and cross-correlation
functions and their evolution with redshift for the selected sample.
We finish with our conclusions in Section 8.

2 D ES Y 1 DATA

The BAO galaxy sample we will define in this work uses the first
year of data (Y1) from the DES. This photometric data set has been
produced using the Dark Energy Camera (DECam, Flaugher et al.
2015) observations, processed and calibrated by the DES Data Man-
agement system (DESDM; Sevilla et al. 2011; Mohr et al. 2012;
Morganson et al. 2018) and finally curated, optimized, and com-
plemented into the Gold catalog (hereafter denoted ‘Y1GOLD’),
as described in Drlica-Wagner et al. (2017). For each band, single
exposures are combined in coadds to achieve a higher depth. We
keep track of the complex geometry that the combinations of these
dithered exposures will create at each point in the sky in terms of
observing conditions and survey properties (SPs). Objects are de-
tected in chi-squared combinations of the r, i, and z coadds to create
the final coadd catalog (Szalay, Connolly & Szokoly 1999).
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Y1GOLD covers a total footprint of more than 1800 deg2; this
footprint is defined by a HEALPIX (Górski et al. 2005) map at res-
olution Nside = 4096 and includes only area with a minimum total
exposure time of at least 90 s in each of the griz bands, and a valid
calibration solution (see Drlica-Wagner et al. 2017 for details). This
footprint is divided into several disjoint sub-regions that encompass
the supernova survey areas, a region overlapping stripe 82 from the
SDSS footprint (S82; Annis et al. 2014) and a larger area overlap-
ping with the South Pole Telescope coverage (SPT; Carlstrom et al.
2011). Fig. 1 shows the angular distribution of galaxies, selected as
described in Section 3, that includes these two areas. A series of
veto masks, including masks for bright stars and the Large Magel-
lanic Cloud among others, reduce the area by ∼500 deg2, leaving
1336 deg2 suitable for LSS study. Other areas that are severely
affected by imaging artefacts or otherwise have a high density of
image artefacts are masked out as well. Section 5 provides a full
account of the final mask used in combination with the final BAO
sample. ‘Bad’ regions information is propagated to the ‘object’ level
using the flags badregion column in the catalogue. Finally,
individual objects that have been identified as being problematic
by the DESDM processing or by the vetting process carried out
by the scientists in the collaboration are flagged when configuring
the catalogue (this is done through the flags gold column). All
data we describe in this and in subsequent sections are drawn from
quantities and maps released as part of the DES Y1 Gold catalog
and are fully described in Drlica-Wagner et al. (2017).

The photometry used in this work comes mainly from two dif-
ferent sources:

(i) the SExtractor (Bertin & Arnouts 1996) AUTO magni-
tudes, which are derived from the best-matched elliptical aperture
according to the coadd object elongation and angle in the sky, mea-
sured using the coadded object flux;

(ii) Multi-Object Fitting (MOF) pipeline, which performs a
multi-epoch and multiband fit of the shape and per-band fluxes di-
rectly on the single epoch exposures for each of the coadd objects,
with additional neighbouring light subtraction. This is described in
more detail in Drlica-Wagner et al. (2017).

Using these photometric measurements, we will consider three
different photometric redshift catalogues. Two of them are built us-
ing Bayesian photometric redshift (BPZ; Benı́tez 2000), a Bayesian
template-fitting method, and another using a machine learning ap-
proach: the Directional neighbourhood Fitting (DNF) algorithm as
described in De Vicente, Sánchez & Sevilla-Noarbe (2016). They
are combined with the photometric quantities described above and
used as follows:

(i) BPZ run with AUTO magnitudes (hereafter zBPZ–AUTO) used
for making the selection of the overall sample.

(ii) BPZ run with MOF magnitudes (hereafter zBPZ–MOF) used for
redshift binning and transverse distance calculation, finally used as
secondary catalogue to show the robustness of the analysis.

(iii) DNF run with MOF magnitudes (hereafter zDNF–MOF) used
for redshift binning and transverse distance calculation, finally used
as our fiducial catalogue.

We should note that BPZ with AUTO magnitudes is part of the
DESDM data reduction pipeline and is available early on in the
catalogue making. This explains why we used that particular com-
bination for sample selection. We did not find, and do not expect,
the relative optimization of the sample selection and cuts to depend
much on the particular photo z catalogue (but the final absolute
error on BAO distance measurement does).

In Section 4, we summarize the validation performed to select and
characterize the true redshift distributions of the binned samples,
which is described in detail in DES-BAO-PHOTOZ.

Throughout our analysis, we assume the redshift estimate of each
galaxy to be the mean redshift of the redshift posterior for BPZ, or
the predicted value for the object in the fitted hyper-plane from the
DNF code (see De Vicente et al. 2016). Any potential biases from
these estimates are calibrated as described in Section 4.

3 SAMPLE SELECTI ON

In this section, we describe the steps towards the construction of a
red galaxy dominated sample, optimized for BAO measurements,
starting from the data set described in Section 2. The selection
is performed over the largest continuous regions of the survey at
this point, namely SPT and S82. Objects are selected so that we
avoid imaging artefacts and pernicious regions with foreground
objects using the cuts on flags badregion and flags gold
described therein. In the rest of this section, we go into finer details
on the flux, colour, and star-galaxy separation selection.

In Table 1, we summarize this sample selection, including refer-
ences to the sections where these cuts are explained.

3.1 Completeness and colour outliers cuts

The overall flux limit of the sample is set as

iauto < 22. (1)

Additionally, we remove the most luminous objects by making the
cut iauto > 17.5. The cut of equation (1) is chosen as a compromise
between survey area, given that we need to achieve a homogeneous
depth, and the number of galaxies in that area. For a given overall
flux limit of the galaxy sample (e.g. all galaxies with i ≤ 22), we
select the regions of the survey that are deeper than that limit (e.g.
i band 10σ limit depth >22) and mask everything brighter. In this
way, that sample selection should be complete over such footprint.
Clearly, for fainter selections more objects are incorporated into
the sample, but the area of the survey reaching that depth homoge-
neously is also smaller. Hence, there is a compromise between area
and number of objects. In Fig. 2, we show the normalized counts as
a function of the magnitude limit cut. For comparison, we include
the same quantity in science verification data, which is deeper than
Y1 but has much smaller area (see Crocce et al. 2016). We would
like to select a sample and footprint that are at once homogeneous
and with the highest possible number of galaxies. The curve shows
a plateau in the range 22 � iauto � 22.3, where the number counts is
maximized, with variations of about 5 per cent. But the figure does
not account for photo z performance, which degrades rapidly for
fainter objects (particularly at high redshift) and is of key relevance
for BAO measurements, as shown next in Section 3.4. Therefore,
we decided to stay at the bright end of this range (iauto = 22) as an
overall flux limit of the sample.

Colour outliers that are either unphysical or from special samples
(Solar system objects, high redshift quasars) are removed as well,
to avoid extraneous photo z populations in the sample (see Table 1).

3.2 Star–galaxy separation

Removing stars from the galaxy sample is an essential step to avoid
the dampening of the BAO signal-to-noise (Carnero et al. 2012)
or the introduction of spurious power on large scales (Ross et al.
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2810 M. Crocce et al.

Figure 1. Angular distribution and projected density of the DES-Y1 red galaxy sample described in this paper and subsequently used for BAO measurements.
The unmasked footprint comprises the two largest compact regions of the data set: one in the Southern hemisphere of 1203 deg2, overlapping SPT observations
(Carlstrom et al. 2011), and 115 deg2 near the celestial equator, overlapping with S82 (Annis et al. 2014). The sample consists of about 1.3 million galaxies
with photometric redshifts in the range [0.6−1.0] and constitutes the baseline for our DES-Y1 BAO analysis.

Table 1. Complete description of the selection performed to obtain a sample dominated by red galaxies with a good compromise of photo z accuracy and
number density, optimal for the BAO measurement presented in DES-BAO-MAIN. The redshifts of the resulting catalogue are then computed using different
codes (BPZ and DNF) as described in Section 2. Therefore, any subsequent photo z selection can be done either with zphoto from BPZ or DNF.

Keyword Cut Description

Gold Observations present in the Gold catalog Drlica-Wagner et al. (2017)
Quality flags badregion < 4; flags gold = 0 Section 5; Section 2
Footprint 1336 deg2 (1221 deg2 in SPT and 115 deg2 in S82) Fig. 1 Section 5
Colour Outliers −1 < gauto−rauto < 3 Section 3.1

−1 < rauto−iauto < 2.5 Section 3.1
−1 < iauto−zauto < 2 Section 3.1

[Optimized] Colour Selection (iauto−zauto) + 2.0(rauto−iauto) > 1.7 Section 3.4.1
[Optimized] Completeness Cut iauto < 22 Section 3.1
[Optimized] Flux Selection 17.5 < iauto < 19.0 + 3.0zBPZ–AUTO Section 3.4.2
Star–galaxy separation spread model i + (5/3) spreaderr model i >0.007 Section 3.2
Photo z range [0.6−1.0] Section 4

2011a). Stellar contamination affects the broad shape of the mea-
surement, and so we want to minimize it to be able to fit the BAO
template properly. However, it does not appreciably affect the loca-
tion of the BAO feature, so we do not need to push for 100 per cent
purity. Any residual contamination is then taken care of using the
weighting scheme detailed in Section 6.

In this work, we have used the default star–galaxy clas-
sification scheme described in detail in Sevilla-Noarbe et al.
(2018), see also Drlica-Wagner et al. (2017), which is based
on the i-band coadd magnitude spread model i and its associ-
ated error spreaderr model i, from SExtractor. This clas-
sifier was developed using as truth tables data from COSMOS
(Leauthaud et al. 2007), GOOD-S (Giavalisco et al. 2004), and
VVDS (Le Fèvre et al. 2005) overlapping Y1GOLD, and subse-
quently tested against CFHTLenS (Erben et al. 2013). The combi-
nation spread model i + (5.0/3.0)spreaderr model i > 0.005 is
suggested for high-confidence galaxies as a baseline for Y1GOLD.

A detailed follow-up analysis of star–galaxy separation is given
in Sevilla-Noarbe et al. (2018). Here instead, we decided to mod-
ify slightly this proposed cut in order to increase the purity of the
sample (from 95 per cent to 97–98 per cent), at the cost of losing
approximately 3 per cent of the objects, by making the following
selection:

spread model i + (5.0/3.0)spreaderr model i > 0.007.

In Fig. 3, we show the estimated star sample contamination
for different thresholds of this cut, using the relation between
galaxy density and a map of stellar density built from Y1GOLD
(a methodology that is described in detail in Section 6). The error
bars displayed are the fitting errors obtained for the intercept when
parametrizing the contamination level using a linear relationship
between the galaxy density as a function of stellar density. Note
that a threshold of 0.007 reduces the contamination level to less
than 5 per cent across the redshift range of interest. In Table 2, we
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D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/482/2/2807/5097898 by ETH
 Zurich user on 17 O

ctober 2023



Galaxy sample for DES-Y1 BAO measurements 2811

Figure 2. Measurement of the trade-off between area and number of objects
as a function of magnitude limit and sample flux limit in Y1GOLD and SV.
For a given iauto-band ‘threshold’ value, we select all regions that have a
deeper limiting magnitude that this value (10σ depth limit > ‘threshold’)
and count the galaxies brighter than the ‘threshold’ value over those regions.
These should be complete samples at each threshold value. Number counts
are shown normalized to their maximum in the figure.

Figure 3. Contamination of galaxy sample from stars as a function of red-
shift and star–galaxy separation threshold, as measured using galaxy density
versus stellar density plots (from a pure stellar sample). The MODEST clas-
sifier is defined in Drlica-Wagner et al. (2017) as the default star galaxy
classifier (based on spread model and wavg spread model). ‘BAO classi-
fier’ stands for a cut in spread model i + (5.0/3.0)spreaderr model i. A
threshold of 0.007 provides an important decrease of contamination with a
minor adjustment in the number of galaxies, which becomes significantly
more severe at higher thresholds for a very similar purity. The redshift
binning here uses zBPZ–AUTO.

Table 2. Characteristics of the DES-Y1 BAO sample, as a function of
redshift. Results are shown for a selection of the sample in bins according
to DNF photo z (zphoto) estimate in top of the table and BPZ in the bottom,
both with MOF photometry. Here, z̄ =< ztrue > is the mean true redshift,
σ 68 and W68 are the 68 per cent confidence widths of (zphoto−ztrue)/(1 +
ztrue) and ztrue, respectively, all estimated from COSMOS–DES validation
with SVC correction, as detailed in Section 4 and Fig. 7. fstar is the estimated
stellar contamination fraction, see Section 6.

DNF Ngal bias z̄ σ 68 W68 fstar

0.6−0.7 386 057 1.81 ± 0.05 0.652 0.023 0.047 0.004
0.7−0.8 353 789 1.77 ± 0.05 0.739 0.028 0.068 0.037
0.8−0.9 330 959 1.78 ± 0.05 0.844 0.029 0.060 0.012
0.9−1.0 229 395 2.05 ± 0.06 0.936 0.036 0.067 0.015

BPZ Ngal bias z̄ σ 68 W68 fstar

0.6−0.7 332 242 1.90 ± 0.05 0.656 0.027 0.049 0.018
0.7−0.8 429 366 1.79 ± 0.05 0.746 0.031 0.076 0.042
0.8−0.9 380 059 1.81 ± 0.06 0.866 0.034 0.060 0.015
0.9−1.0 180 560 2.05 ± 0.07 0.948 0.039 0.068 0.006

report a consistent or smaller level of stellar contamination, using
a similar estimation, in the catalogues with MOF photometry, both
for BPZ and DNF (see Section 6). In Fig. 4, we also include in the
middle figure the track from the stellar locus, which showcases the
reason why the first two redshift bins are more affected by stellar
contamination, as it crosses the elliptical templates at these red-
shifts. To further illustrate this, in Fig. 5 we show the distribution
of the mean photometric redshifts for stars (selected using the cri-
terion |wavg spread model i| < 0.002, a more accurate variant of
spread model i using single-epoch, suitable for moderate to bright
magnitude ranges) showcasing how they will contaminate prefer-
entially the second redshift bin, following the same trend as shown
in Table 2.

3.3 Selecting red luminous galaxies

The next step is to select from Y1GOLD a sample dominated by
LRGs as their typical photo z estimates are more accurate than for
the average galaxy population because of the 4000 Å Balmer break
in their spectra. This feature makes redshift determination easier
even with broad-band photometry (Padmanabhan et al. 2005). In
addition, we want our BAO sample to cover redshifts larger than
0.6 as there are already very precise BAO measurements for z < 0.6
(see e.g. Cuesta et al. 2016; Beutler et al. 2017; Ross et al. 2017b).

We have tested that, while a very stringent selection can be done
to yield minimal photo z errors, e.g. with the redMaGiC algorithm
(Rozo et al. 2016), it does not lead to optimal BAO constraints be-
cause the sample ends up being very sparse, with ∼200 000 galaxies
in Y1GOLD at z > 0.6 (Elvin-Poole et al. 2018). Instead, we will
follow an alternative path and apply a standard selection in colour–
colour space to isolate red galaxies at high redshift, balancing photo
z accuracy and number density with a BAO figure-of-merit in mind.

In Fig. 4, we show the evolution in redshift of the eight spectral
templates used in BPZ, which includes one typical red elliptical
galaxy, two spirals, and five blue irregulars/starbursts (colour coded)
based on Coleman, Wu & Weedman (1980) and Kinney et al. (1996).
We compute the expected observed DES broad-band magnitudes for
these templates as a function of redshift and show them in different
colour–colour combinations. The tracks are evolved from z = 0 to
z = 2.0 in steps of 0.1 (marked with dots). We will use them to define
cuts in colour–colour space intended to isolate the red templates.

In real data, galaxy colours have an uncertainty due to photo-
metric errors, which effectively thicken those tracks. In order to
provide an estimate for this, we computed the errors in the colours
for a sub-sample of Y1GOLD galaxies with 21 < iauto < 22 (the
typical range of magnitudes that we explore next to define the BAO
sample). For each galaxy, we estimate the colour error adding in
quadrature the corresponding magnitude errors.1 The average error
in each corresponding colour is shown with a cross at the bottom
right inset label of the three panels of Fig. 4. Their values are 0.128,
0.073, 0.067, and 0.076 for (g–r, r–i, i–z, and r–z), respectively.

In addition, a model of a red elliptical galaxy spectrum is shown
in Fig. 6, redshifted to z = 0.4, 0.8, 1.15, where the notable 4000
Å break crosses from g → r, r → i, and i → z. This suggests that
for z > 0.6 the strongest evolution in colour will be for i−z and
r−i, and hence we will focus in these colour combinations in what
follows (that moreover has the smallest error).

Note how the transition of the 4000 Å break from one band to
another abruptly bends the colour–colour tracks in Fig. 4. However,

1In turn computed as merr = −2.5(Fluxerr/Flux)/log (10).
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Figure 4. Evolution of BPZ templates in colour–colour space. Each dot corresponds to a different redshift in steps of 0.1, ranging from z = 0.0 to z = 2.0.
The shadowed region in the central panel is excluded from the sample. The black dots indicate the position of z = 0.6 (triangles), and z = 1.0 (squares) for the
two reddest templates. Also shown, for reference, is the stellar locus as a purple dashed line. The inset crosses indicate an estimate of the error in the colours,
arising from photometric errors, from a sub-sample of DES Y1 galaxies selected in the range 21 < iauto < 22 (see text for more details).

Figure 5. Photometric redshift distribution of stars selected morphologi-
cally and passing the same cuts described in Table 1. The redshift value
zphoto is the mean from the pdf of zBPZ–AUTO, which was used for the overall
sample selection in Section 3.

Figure 6. Elliptical model spectrum used in template-based fitting code
BPZ. Overplotted are the DES response filters g,r,i,z. The template has been
redshifted to z = 0.4, 0.8, 1.15, where the notable 4000 Å break crosses
from g → r, r → i, and i → z.

this applies mainly to elliptical templates, and recent star formation
will dampen this effect.

3.4 Optimization of the colour and magnitude cuts for BAO

Optimizing the actual sample selection for the measurement of BAO
in imaging data is considerably different than doing so for spectro-
scopic data. In the latter case, one basically needs to maximize the
area (or volume) provided that n̄P > 1 (where n̄ is the galaxy den-
sity and P the power spectrum). For imaging data, the photometric
redshift accuracy plays a vital role. Worse photo z error degrades
the signal as the galaxy radial separations are smeared out (this also
complicates the definition of survey volume). In turn, the best photo
z’s are typically obtained for very bright, and low-density samples.
Therefore, there is a non-trivial interplay to maximise BAO signal
to noise.

In DES-BAO-s⊥-METHOD, we discussed in detail how to fold
in the photo accuracy into an effective2. However, computing n̄eff

is cumbersome and as complicated as doing an actual BAO fore-
casting. Therefore, we decided to follow this latter path and rely on
the Fisher matrix forecast formalism described in Seo & Eisenstein
(2007). Provided with a concrete set of colour-magnitude cuts, we
measure in the data the number density and redshift uncertainty in
several tomographic bins within 0.6 ≤ photo z ≤ 1.0 and assume a
clustering amplitude. We then use the formulae from Seo & Eisen-
stein (2007) to predict the precision that one can achieve with that
set of galaxy data properties. We repeat this process for a different
set of cuts until an optimal BAO distance error is achieved.

Through this process we fix the clustering amplitude, assuming a
galaxy bias of b = 1.6 for all calculations. This is the bias found in
Crocce et al. (2016) for a flux-limited sample (i < 22.5) at redshifts
z ∼ 0.9, selected from DES science verification (SV) data. Since
that redshift and magnitude are compatible with what we expect
in this paper, we consider b = 1.6 a representative value. More
precise measurements are expected for more biased samples, but
the galaxy bias for any given sample is not known a priori and
the redshift uncertainty and number density are the more dominant
factors.

2Photometric redshift errors lead to n̄effP < 1 in all cases explored.
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Table 3. Sensitivity of the forecasted BAO distance error to variations
in density, photometric redshift errors, and survey area. Note that these
variations are considered individually, neglecting their correlations. Baseline
values are those corresponding to the optimal cuts discussed in Section 3.4.

Property variation Forecasted BAO distance error

10% worse photo-z 8% worse
20% worse photo-z 16 % worse
10% lower density 3% worse
20% lower density 6 % worse
10% smaller area 2.8% worse

For illustrative purposes, we show in Table 3 the variation in BAO
distance error achieved by changing the number density and photo
z accuracy away from those at the optimal cuts described next. We
also include the variation with survey area. As pointed before, BAO
distance errors are very sensitive to photo z accuracy.

3.4.1 Optimization of the colour cut

Thus, in order to maximize the signal to noise of the BAO forecasted
measurement, a colour cut is applied to the sample in the form

(iauto − zauto) + a1(rauto − iauto) > a2. (2)

The cut was chosen in this form following the discussion in
Section 3.3 (see Fig. 4), as it allows us to select more likely the
reddest galaxies that are the ones with lower uncertainties in their
photometric redshift determination and still present a high enough
number density.

Samples were produced across a grid of a1 and a2 values, calcu-
lating the number of galaxies Ngal and a mean width of the photo
z distribution σ z/(1 + z) for each sample, after splitting the galaxy
in tomographic bins. For BPZ, we estimated σ z averaging in each
tomographic bin the width of the individual redshift posterior dis-
tributions function (PDF) provided per galaxy.

The BAO forecast using the algorithm of Seo & Eisenstein (2007)
is then run for the Ngal and σ z/(1 + z) of each sample and final values
of a1 and a2 are selected to minimize the forecasted BAO uncer-
tainty, finding a balance between galaxy number density and redshift
uncertainty. In order to give a sense for the sensitivity of such pro-
cess, we note there is a slight degeneracy when increasing a1 and a2

simultaneously, resulting in similar forecasted BAO uncertainties.
However, deviations from this degeneracy direction lead to signif-
icant degradation in the forecasted error. For example, doubling
a1 leads to a degradation of the forecasted error by approximately
0.01 (from 5 per cent to 6 per cent roughly). The values used in this
analysis are a1 = 2.0 and a2 = 1.7. Fig. 4 shows the colour cut in
the central panel, where the shadowed region is excluded from the
sample.

3.4.2 Optimization of the magnitude cut

To further minimize the forecasted BAO uncertainty, an additional,
redshift-dependent magnitude cut is applied to the sample as a sec-
ond step. This applies a cut to iauto at low redshift that is stricter than
the global iauto < 22 cut (at lower redshift the sample is sufficiently
abundant that one can still select brighter galaxies, with better photo
z, and still be sample variance dominated). The cut is in the form

iauto < a3 + a4z. (3)

As with the colour cut in equation (2), this is designed to find a
sample that balances redshift uncertainty with number density, to
minimize the forecasted BAO error. The BAO forecast error was
minimized at the values a3 = 19 and a4 = 3, and this cut was
applied to the sample. We find that the forecasted error improves by
∼15 per cent when introducing the redshift-dependent flux limit as
opposed to a global iauto < 22 cut.

The final forecasted uncertainty on angular diameter distance
combining all the tomographic bins is ∼4.7 per cent. Note that the
discussion in this section only has as a goal the definition of the
sample. The real data analysis with the sample defined here, and the
final BAO error achieved, will of course depend on many other vari-
ables that were not considered up to this point. Such as the quality of
photometric redshift errors, analysis, and mitigation of systematics,
use of the full covariance and optimized BAO extraction methods.

None the less, we stress that the forecasted error obtained in this
section matches the one from the analysis of mock simulations,
see e.g. DES-BAO-θ -METHOD, and is in fact quite close to the
final BAO error obtained in DES-BAO-MAIN. In the following
sections, we discuss the various components that will enter the real
data analysis, starting with the validation of photometric redsfhit
errors and the estimate of redshift distributions.

4 PHOTO METRI C REDSHI FTS

The photometric redshifts used for redshift binning and transverse
distance computations in our fiducial analyses are derived using
the DNF algorithm (De Vicente et al. 2016), which is trained with
public spectroscopic samples as detailed in Hoyle et al. (2017).
For comparison, we also discuss next the BPZ (Benı́tez 2000) that
we find slightly less performant in terms of the error with respect
to ‘true’ redshift values (see next). In both cases, we use MOF
photometry that provides ∼10–20 per cent more accurate photo z

estimates with respect to the equivalent estimates using SExtractor
MAG AUTO quantities from coadd photometry. In this section, we
summarize the steps taken to arrive at these choices, based on a
validation against data over the COSMOS field.

We recall that throughout this work we use the individual ob-
ject’s mean photo z from BPZ (not to be confused with the mean
value z̄ =< z > of the sample) and the predicted value in the fitted
hyper-plane from the DNF code, as our point estimate for galaxy
redshifts. As for the estimates of the N(z) from the photo z codes, for
comparison with our fiducial choice based on the COSMOS narrow
band p(z), we will use the stacking of Monte Carlo realizations of
the posterior redshift distributions p(z) for the BPZ estimates, or
the stacking from the nearest neighbour redshifts from the training
sample, in the case of DNF (henceforth we’ll call these stack N(z)).
Fig. 7 shows the stack N(z) (yellow histograms) in all four redshift
bins for our fiducial DNF photo z analysis.

4.1 COSMOS validation

As detailed in DES-BAO-PHOTOZ, we check the performance of
each code using redshifts in the COSMOS field (which are not part
of the training set in the case of DNF), following the procedure out-
lined in Hoyle et al. (2017). These redshifts are either spectroscopic
or accurate (σ 68 < 0.01) 30-band photo z estimates from Laigle
et al. (2016). Both validation samples give consistent results in our
case because the samples under study are relatively bright.

The COSMOS field is not part of the DES survey. However, a
few select exposures were done by DECam that were processed
by DESDM using the main survey pipeline. We call this sample
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2814 M. Crocce et al.

Figure 7. Normalized redshift distributions for our different tomographic bins of DNF–MOF photo z. Stack N(z) is shown for the full DES-Y1 BAO sample
(yellow histograms). The black histogram (with Poisson error bars) shows the raw 30-band photo z from the COSMOS–DES validation sample. The magenta
lines show the same sample corrected by sample variance cancellation (SVC, see text), which is our fiducial estimate. The labels show the values of W68, σ 68,
and �z = < zstack > − < z > and in each case, see also Table 2.

DES–COSMOS. Because the COSMOS area is small (2 deg2) and
DECam COSMOS images were deeper and not taken as part of the
main DES-Y1 Survey, we need to first resample the DES–COSMOS
photometry to make it representative of the full DES Y1 samples
that we select in our BAO analysis. Hence, we add noise to the
fluxes in the DES–COSMOS catalog to match the noise properties
of the fluxes in the DES-Y1 BAO sample, this is what we refer to as
resampled photometry. Then for each galaxy in the DES-Y1 BAO
sample, we select the galaxy in DES–COSMOS whose resampled
flux returns a minimum χ2 when compared to the DES-Y1 BAO flux
(the χ2 combines all bands, g, r, i, and z). This is done for every
galaxy in the DES-Y1 BAO sample to make up the ‘COSMOS-
Validation’ catalog, which by construction has colours matching
those in the DES-Y1 BAO sample. The ‘true’ redshift is retrieved
from the spectroscopic/30-band photo z of this match.

We then run the DNF photo z code over the COSMOS-Validation
catalog to select four redshift bin samples in the same way as we
did for the full DES-Y1 BAO sample. We use the ‘true’ redshifts
from the COSMOS-validation catalogs to estimate the N(z) in each
redshift bin by normalizing the histogram of these true redshifts.

Results are shown as histograms in Fig. 7, which are compared
to the stack N(z) from the photo z code, for reference. The black
histograms show large fluctuations that are caused by real individual
large-scale structures in the COSMOS field. This can be seen by
visual inspection of the maps. This sampling variance comes from
the relatively small size of the COSMOS validation region. There
is also a shot noise component, indicated by the error bars over the
black dots, but it is smaller. In the next section, we briefly describe
the methodology to correct for this to be able to use this validation
sample effectively.

4.2 Sample variance correction

As detailed in DES-BAO-PHOTOZ, we apply a sample variance
correction (SVC) to the data and test this method with the Halo-
gen mocks described in DES-BAO-MOCKS. In what follows, we
provide a summary of such process and its main results.

We use the VIPERS catalog (Scodeggio et al. 2016), which spans
2 deg2 to i < 22.5, to estimate the sampling variance effects in the
above COSMOS validation. After correcting VIPERS for target,
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colour, and spectroscopic incompleteness we select galaxies in a
similar way as done in Section 3. We then use the VIPERS redshifts
to estimate the true N(z) distribution of the parent DES–COSMOS
sample (before we select in photometric redshifts). The ratio of the
N(z) in the DES–COSMOS sample to the one in VIPERS gives an
SVC that needs to be applied to the N(z) in each of the tomographic
bins.

Fig. 7 shows the SVC-corrected version of the raw COSMOS
catalog in magenta. As shown in this figure, the resulting distribu-
tion is much smoother than the original raw measurements (black
histograms). This by itself indicates that SVC is working well. Tests
in simulations show that this SVC method is unbiased and reduces
the errors in the mean and variance of the N(z) distribution by up
to a factor of 2. Similar results are found for different binnings in
redshift.

Notably, the distributions obtained from the stacked N(z) and the
ones from COSMOS SVC match well overall, although some dis-
crepancies can be seen, e.g. for the second and fourth bin. More
quantitative statements are provided next, but in DES-BAO-MAIN
(Table 5, entry denoted ‘w(θ ) z uncal’) we show these have no
impact in our cosmological results. The difference in angular diam-
eter distance measurements when using either of these two sets of
redshift distributions is less than ∼ ∼0.25σ .

4.3 Photo z validation results

In Table 2, we show the values of σ 68, which correspond to the
68 per cent interval of values in the distribution of (zphoto−ztrue)/(1
+ ztrue) around its median value, where zphoto is the photo z from
DNF (zmean above), and ztrue is the redshift from the COSMOS
validation sample corrected by SVC. We also show W68 and z̄ that
are the 68 per cent interval and mean redshift in the ztrue distribution
for each redshift bin. The corresponding values for the stack N(z)
and raw N(z) are also shown in the labels of Fig. 7. �z in the label
inset shows the difference �z = <zstack > − < z >, where <zstack

> is the mean stack redshifts for DES-Y1, shown in the top label.
We have performed an extensive comparison of the quantities

shown in Table 2 computed with different validations sets: DES–
COSMOS with and without SVC, using N(z) from DNF stacks,
using the COSMOS subsample with spectroscopic redshifts (as
opposed to that with 30-band photo z). We have also compared these
N(z) to the one predicted by subset galaxies that have spectra within
the BAO sample over full DES-Y1 footprint. Furthermore, we have
performed a validation using a larger spectroscopic sample in the
VIPERS/W4 field (∼4 deg2) that was observed in DESY1 and is
completely independent from the COSMOS validation.3 The results
from these different validation sets are that the means of the redshift
distributions 〈z〉 (w.r.t to the mean using the stack N(z)) are always
within 0.01 except for the second tomographic bin where differences
are <0.02 (see also labels of Fig. 7). The values of W68 are always
within 0.01 as well, for all bins. This means that the differences
in W68 are within 15 per cent–20 per cent (depending on redshift)
and 〈z〉 is within 1 per cent (2 per cent for the bin [0.7−0.8]). In
Section 4.3 of DES-BAO-θ -METHOD, we investigate the impact
in derived BAO angular diameter distances from systematic errors

3The completeness of the VIPERS sample depends on galaxy type and has
a colour pre-selection to exclude galaxies at z < 0.5. We have included all
the suggested incompleteness factors (Scodeggio et al. 2016), but none the
less have decided to use COSMOS–SVC as our fiducial validation set to
avoid potential residuals.

in the mean and variance of the underlying redshift distributions.
The most important quantity is the mean of dn/dz. The level of shifts
discussed above would induce about 0.8 per cent systematic error
in θBAO, while 20 per cent in the variance would have no impact.
These are small compared to the statistical errors, see DES-BAO-
MAIN. The validation errors and biases in 〈z〉, σ 68, and W68 were
also studied, and we anticipate that they are subdominant for the
BAO analysis, which instead is dominated by the limited size of the
DES Y1 footprint. These results will be presented more extensively
in DES-BAO-PHOTOZ.

We also include in that work a comparison with BPZ photo z (see
also Table 2) and results for different photo z with coadd photometry.
The values of W68 and σ 68 are always smaller (by 10-20 per cent) for
DNF with MOF photometry, which is therefore used as our fiducial
photo z sample.

We finish the section by stressing that the fiducial N(z) used in the
main BAO analysis are the ones from DES–COSMOS with SVC
(magenta lines in Fig. 7).

5 ANGULAR MASK

We build our mask as a combination of thresholds/constraints on
basic survey observation properties, conditions due to our particu-
lar sample selection, and restrictions to avoid potential clustering
systematics. In summary,

(i) We start by combining the Y1GOLD Footprint and Bad
regionsmask, both of which are described in Drlica-Wagner et al.
(2017). The Footprint mask imposes minimum total exposure
times, valid stellar locus regression4 calibration solutions, and basic
coverage fractions. The Bad Regions mask removes at different
levels various catalogue artefacts, regions around bright stars, and
large foreground objects. In particular, for the latter we remove
everything with flag bit > 2 in table 5 of Drlica-Wagner et al.
(2017), corresponding to regions around bright starts in the 2MASS
catalogue (Skrutskie et al. 2006).

(ii) We introduce coordinate cuts to select only the wide area parts
of the surveys, namely those overlapping SPT (roughly with 300
< RA(deg) < 99.6 and −40 < Dec.(deg) < −60) and S82 (with
317.5 < RA(deg) < 360 and −1.76 < Dec.(deg) < 1.79). This
removes small and disjoint regions that are part of the supernova
survey and two auxiliary fields used for photo z calibration and
star–galaxy separation tests (COSMOS and VVDS-14h), which do
not contribute to our clustering signal at BAO scales (they total
30 deg2).

(iii) Pixelized maps of the survey coverage fraction were created
at a HEALPIX resolution of Nside = 4096 (area = 0.73 arcmin2) by
calculating the fraction of high-resolution subpixels (Nside = 32768,
area = 0.01 arcmin2) that were contained within the original man-
gle mask (see Drlica-Wagner et al. 2017) for a description of the
latter). Since our colour selection requires observations in all four
griz bands, we use the coverage maps to enforce that all pixels con-
sidered, at resolution 4096, show at least 80 per cent coverage in
each band (this removes 70.7 deg2 with respect to the case where
no minimum coverage is required). Furthermore, we then use the
minimum coverage across all four bands to down-weight the given
pixel when generating random distributions, see Section 7.

4This is a complementary calibration technique used for the construction
of Y1GOLD using the distinct colour locus occupied by stars to perform
relative additional calibration between bands.
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(iv) In order to match the global magnitude cut of the sample
and ensure it is complete across our analysis footprint, we select
regions with 10σ limiting depth of iauto > 22, where the depths are
calculated according to the procedure presented in Drlica-Wagner
et al. (2017).

(v) Since we want to reliably impose the colour cut defined in
equation (2) and Table 2, we consider only areas with limiting depth
in the corresponding bands large enough to measure it. Given that we
are already imposing iauto depth greater than 22, the new condition
implies keeping only the regions with 10σ limiting magnitudes
(2 rauto − zauto) < 23.7, or equivalently those with zauto > 2 rauto −
23.7. This removes an additional 53.8 deg2.

(vi) As a result of our analysis of observational systematics in
Section 6, we identify that galaxy number density in regions of
high z-band seeing shows an anomalous behaviour. To isolate this
out, we remove areas with z-band seeing greater than 1 arcsec (this
amounts to 71 deg2, or 5 per cent of the footprint).

(vii) Lastly, we also remove a patch of 18 deg2 over which the
airmass computation was corrupted.

The resulting footprint occupies 1336 deg2 and is shown in Fig. 1.

6 MITIGATION O F O BSERVATIONA L
SYSTEMATIC EFFECTS

We have tested for observational systematics in a manner similar to
Elvin-Poole et al. (2018), which builds upon work in DES science
verification data (Crocce et al. 2016) and other surveys (e.g. Ross
et al. 2011a; Ho et al. 2012).

Generically, we test the dependence of the galaxy density against
SPs. We expect there to be no dependence if SPs do not introduce
density fluctuations in our sample beyond those already accounted
for by the masking process. We have used the same set of SP maps
as in Elvin-Poole et al. (2018), namely

(i) 10σ limiting depth in band,
(ii) full width half-maximum of point sources (‘seeing’),
(iii) total exposure time,
(iv) total sky brightness,
(v) atmospheric airmass,

all of them in each of the four bands griz, in addition to Galac-
tic extinction and stellar contamination (refer to Elvin-Poole et al.
2018) for a detailed explanation on how the stellar density map is
constructed from Y1GOLD data). We find that the relevant sys-
tematics are stellar density, PSF FWHM, and the image depth. We
outline the tests that reveal this and how we apply weights to counter
their effect in what follows.

We found the most important systematic effect, in terms of its
impact on the measured clustering, to be the stellar density. In the
top panel of Fig. 8, we find positive trends when comparing the
number density of our ‘galaxy’ sample as a function of the stellar
number density (nstar). Our interpretation is that there are stars in
our sample. Assuming these contaminating stars follow the same
spatial distribution as the stars we use to create our stellar density
map, this stellar contamination will produce a linear relationship
between the density of our galaxy sample and the stellar density. In
this scenario, the value of the best-fitting trend where the number
density of stars, nstar, is 0 is then the purity of the sample. We
find the results are indeed consistent with a linear relationship, as
illustrated in the top panel of Fig. 8. The stellar contamination, fstar,
that can be determined from these plots is listed in Table 2. The
stellar contamination varies significantly with redshift, as expected

Figure 8. The galaxy density versus potential systematic relationship used
to define weights that we apply to clustering measurements. Top panel: The
galaxy density versus stellar density in four photometric redshift bins. The
linear fits are used to determine the stellar contamination. The χ2 values for
the fits are 9.7, 10.0, 3.5, and 14.3 (8 degrees of freedom). Middle panel: The
galaxy density versus the mean i-band seeing for our full sample. The inverse
linear fit is used to define weights applied to clustering measurements. The
χ2 is 7.7 (8 degrees of freedom) and the coefficients are 0.788 and 0.0618.
Bottom panel: The galaxy density versus g-band depth in four photometric
redshift bins. The coefficients are interpolated as a function of redshift and
used to define weights to be used in the clustering measurements. The χ2

values for the fits, given 8 degrees of freedom, are 7.7, 8.9, 12.7, and 6.1.
The slopes are (−0.0256, 0.0320, 0.103, 0.0609).
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given the proximity of the stellar locus to the red sequence as a
function of redshift. Thus, we measure the stellar contamination in
�z = 0.05 bin widths and use a cubic spline interpolation in order
to obtain the stellar contamination at any given redshift. This allows
us to assign a weight to each galaxy given by

w(fstar(z)) = ((1 − fstar(z)) + nstarfstar(z)/〈nstar〉)−1 , (4)

where nstar is the stellar density that depends on angular location
and 〈nstar〉 is the mean stellar density over the DES-Y1 footprint.

Note that we repeat the fitting procedure for each photo z cata-
logue, hence redshift here means either zDNF–MOF or zBPZ–MOF. From
Fig. 8, it seems that the measurements are a bit noisy. However, this
procedure helps us resolve the peak in the stellar contamination of
5 per cent at ∼ 0.78. The uncertainty on each fit is ∼0.01, which is
consistent with the scatter we find in the values of fstar per bin. The
spline simply interpolates between the best-fitting values.

We also add weights based on fits against relationships with
the mean i-band PSF FWHM (seeing, which we denote as si) and
the g-band depth (dg). For the seeing, we do not find a strong
dependence on redshift and thus use the full sample to define the
seeing dependent weight

w(si) = (As + Bssi)
−1 , (5)

where As and Bs are simply the intercept and slope of the best-
fitting linear relationship, shown in the middle panel of Fig. 8. The
coefficients we use are Ai = 0.782 and Bi = 0.0625. For the g-band
depth, we fit linear relationships in redshift bins �z = 0.1 and again
use a cubic spline interpolation in order to obtain a weight at any
redshift:

w(dg, z) = (
C(z) + dg(1 − C(z))/〈dg〉

)−1
, (6)

where C(z) is the interpolated result for the value of the linear fit
where dg = 0. The relationships as a function of redshift and the
linear best-fitting models are shown in the bottom panel of Fig. 8.
The total systematic weight, wsys, is thus multiplication of the three
weights:

wsys = w(fstar(z))w(si)w(dg, z). (7)

The dependencies we find are purely empirical as we lack any
more fundamental understanding for how these correlations de-
velop. They must result from the complicated intersection of our
colour/magnitude selection and the photometric redshift algorithm,
that are not perfectly captured by our mask. Besides the relations
with different observing properties (airmass, seeing, dust, exposure
time) are also very correlated what makes physical interpretation
very complicated.

In the following section, we test the impact of these weights on
the measured clustering and determine their total potential impact.
In DES-BAO-MAIN, we show that the weights have minimal im-
pact on the BAO scale measurements and that our treatment is thus
sufficient for such measurements. Our treatment is not as compre-
hensive as Elvin-Poole et al. (2018), and thus further study might
be required when using the sample defined here for non-BAO ap-
plications.

7 TWO -POINT C LUSTERING

In this section, we describe the basic two-point clustering properties
of the samples previously defined. We concentrate on large scales
where the BAO signal resides, and the sample using zDNF–MOF pho-
tometric redshifts that is the default one used in DES-BAO-MAIN.

We compute the angular correlation function w(θ ) of the sam-
ple, split into four redshift bins, using the standard Landy–Szalay
estimator (Landy & Szalay 1993):

w(θ ) = DD(θ ) − 2DR(θ ) + RR(θ )

RR(θ )
, (8)

as implemented in the CUTE software5 (Alonso 2012), where
DD(θ ), DR(θ ), and RR(θ ) refer to normalized pair-counts of Data
(D) and Random (R) points, separated by an angular aperture θ .
Random points are uniformly distributed across the footprint de-
fined by our mask (albeit downsampled following the fractional
coverage of each pixel, described in Section 5), with an abundance
20 times larger than that of the data in each given bin. For the fits and
χ2 values quoted in this section, we always consider 16 angular bins
linearly spaced between θ = 0.45 deg and θ = 4.95 deg, matching
the scale cuts in the BAO analysis using w(θ ) of DES-BAO-MAIN.
We compute pair-counts in angular aperture bins of width 0.3 deg
in order to reduce the covariance between the measurements. The
covariance matrix is derived from 1800 Halogen mocks, described
in detail in DES-BAO-MOCKS.

The expected noise in the inverse covariance from the finite num-
ber of realizations (Hartlap, Simon & Schneider 2007) and the
translation of that into the variance of derived parameters (Dodel-
son & Schneider 2013) is negligible given the size of our data
vector (16 angular measurements per tomographic redshift bin) and
the number of model parameters (one bias per bin). For instance,
the increased error in derived best-fitting biases in any given bin
would be subper cent. The change in the full

√
χ2 is ∼3.7 per cent

(16 × 4 data points, see the discussion next). We therefore neglect
these corrections in this section.

Fig. 9 shows the impact of the systematic weights on the mea-
sured angular clustering in terms of the difference �w between
the pre-weighted correlation function w and the post-weighted one
wweighted, relative to the statistical error σw (i.e. neglecting all co-
variance). To compare this against the expected amplitude of the
BAO feature at this scales, we also display in the thick solid black
line the theoretical angular correlation function with and without
BAO, for the second tomographic bin for concreteness, relative to
the statistical errors. The corrections are all at the same level (or
smaller) than the expected BAO signal.

The weights have the largest impact in terms of clustering ampli-
tude for the redshift bin 0.7 < z < 0.8, which is the redshift range
with the largest stellar contamination (∼4 per cent, see Table 2), al-
though never exceeding one σw . For the remaining bins, the change
in the correlation functions are within 1/4 of σw. We can assess
quantitatively the total potential impact of the weights by calcu-
lating χ2

sys = �w(θ )tC−1�w(θ ); the square-root of this number is
an upper bound in the impact, in terms of number of σ ’s, that the
weights could have on the determination of any model parameter.

In the range 0.45 deg < θ < 4.95 deg, with 16 data points, we
find χ2

sys = 0.1, 1.35, 0.2, and 0.5, respectively, for each tomo-
graphic bin separately (showing that, for example, best-fitting bias
derived solely from the second tomographic bin can be shifted by
more than 1σ if weights are uncorrected for). More interestingly,
for the four bins combined and including the full covariance matrix,
we find χ2

sys = 1.35. This implies a maximum impact of 1.16σ in
a derived global parameter such as the angular diameter distance
measurement. This maximum threshold is well above the actual
impact of the weights in DA/rs found in DES-BAO-MAIN, which

5https://github.com/damonge/CUTE
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Figure 9. Top panel shows the impact of the systematic weights on each
redshift bin, shown by the differential angular correlations, with and without
weights applied, relative to the uncertainty. One can see that the weights
make the biggest difference for the 0.7 < z < 0.8 bin, which is the redshift
range with the greatest stellar contamination. The thick solid line displays
the BAO feature in similar units, (wBAO − wno BAO)/σw , for the second
tomographic bin as an example (different bins show similar BAO strength
but displaced slightly in the angular coordinate). The systematic weights
only modify the underlying smooth shape and do not have a sharp feature
at BAO scales. Bottom panel shows the ratio of correlations for each bin,
which provides additional information on the absolute size of the corrections
(in this case, we only plot up to scale with no zero crossings of w).

is 0.125σDA/rs (see table 5 in that reference). We consider this an
indication that the particular shape of the BAO feature is not easily
reproducible by contaminants, and is therefore largely insensitive to
such corrections, which is consistent with previous analyses (Ross
et al. 2017b).

Fig. 10 displays the autocorrelation function (including obser-
vational systematic weights) of four tomographic bins of width
�zphoto = 0.1 between 0.6 ≤ zphoto ≤ 1.0. Data at z > 0.8 appear to
show significant BAO features. Best-fitting biases, derived 1σ er-
rors and their corresponding χ2 values are reported as inset panels
and in Table 2. The model displayed assumes linear theory and the
MICE cosmology6 (Crocce et al. 2015; Fosalba et al. 2015), with
an extra damping of the BAO feature, see DES-BAO-θ -METHOD
for details. The χ2/dof are all of order ∼1 or better, showing that
these are indeed good fits given the covariance of the data. In Ta-
ble 2, we also report best-fitting bias values for a split of the sample

6We make this choice throughout the DES-Y1 BAO analysis because the
MICE N-Body simulation was used to calibrate the Halogen mock galaxy
catalogues. MICE cosmology assumes a flat concordance LCDM model
with �matter = 0.25, �baryon = 0.044, ns = 0.95, σ 8 = 0.8, and h = 0.7.

into four tomographic bins using the BPZMOF photo z, showing no
discrepancies.

As a further test of the clustering signal, as well as the tails of
the photo z distributions, we show in Fig. 11 the cross-correlation
between different bins. The overplotted models were derived using
the redshift distributions of the corresponding bins and assume a
bias equal to the geometric mean of the tomographic bins:

wij (θ ) = b2
ij

∫ ∫
dz dz̃ni(z)nj (z̃)D(z)D(z̃)ξ (rθ ), (9)

where r2
θ = r(z)2 + r(z̃)2 − 2r(z)r(z̃) cos θ and b2

ij = bibj . In equa-
tion (9), we denote ξ the spatial correlation function computed in
linear theory at z = 0. The error bar displayed and the reported χ2

values are obtained with a theoretical covariance matrix designed
to match the halogen mocks covariance of the autocorrelations (i.e.
matching the bias and shot noise and area of the mocks). Detailed
formulae and tests of this theory covariance are given in a com-
panion paper, DES-BAO-θ -METHOD (see also Crocce, Cabré &
Gaztañaga 2011; Ross et al. 2011b; Salazar-Albornoz et al. 2014).
However, when we test the χ2 values of the autocorrelations against
the best-fitting model7 using this theory covariance instead of the
one derived from the mocks we find considerably larger χ2 val-
ues: ri ≡ χ2

i,theory−cov/χ
2
i,mocks−cov = 1.46, 1.37, 1.37, 1.47 for auto-

correlations in bin i = 1 to 4, respectively. We propagate this uncer-
tainty to the cross-correlations by dividing χ2

ij ,theory−cov by
√

rirj .
Overall the cross-correlations show a good match to the model,

which is sensitive to the tails of the redshift distributions and the
geometric mean bias. The χ2/dof are ∼1. The non-adjacent bin
1 × 3 (where the expected clustering signal is negligible) shows an
excess correlation on very large scales. This most probably indicates
a residual systematic and not a problem of the photo z distributions.

The large χ2 values in some of the cross-correlations (bins 2 × 3
and 3 × 4) are driven by the non-diagonal structure of the covari-
ance matrix, rather than a mismatch between the best-fitting bias
of the cross-correlation bij compared to the geometrical mean of
the autocorrelation biases. For example, for 2 × 3 the best-fitting
bias from w2 × 3 is only 2 per cent larger than

√
b2b3 (and the corre-

sponding χ2 change subper cent). On the other hand, the χ2 of the
cross-correlation drops to 0.4 if we only consider a diagonal covari-
ance matrix. Similarly, χ2

3×4 drops to 1.28 from 2 using a diagonal
covariance matrix. Overall, we conclude there is a fairly good match
between the implications of the overlap of redshift distributions and
the cross-correlation clustering signal.

In Fig. 12, we show ξ (sperp) that is the 3D correlation function
binned only in projected physical separations. To compute this cor-
relation, we converted (photometric) redshift and angles to physical
distances assuming MICE cosmology. This yields a 3D map of the
galaxies in comoving coordinates. Random points are distributed
in this volume with the same angular distribution as the angular
mask defined in Section 5, and used for w(θ ), and drawing red-
shifts randomly from the galaxies themselves. Pair counts are then
computed and binned in projected separations. A full detail of such
procedure is given in DES-BAO-MAIN as well as in Ross et al.
(2017a). The modelling displayed in Fig. 12 projects the real space
3D correlation function into photometric space assuming Gaussian
photometric redshift errors per galaxy, provided in Table 2 as σ 68.

7The best-fitting bias and error from the theory covariance or the mocks one
are consistent with each other, however, the χ2 values are only so to about
40 per cent.
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Galaxy sample for DES-Y1 BAO measurements 2819

Figure 10. Angular correlation function in four redshift bins, for galaxies selected with zDNF–MOF. Symbols with error bars show the clustering of galaxy
sample corrected for the most relevant systematics. The dashed line displays a model using linear theory with an extra damping of the BAO feature due to
non-linearities and a linear bias fitted to the data (whose best-fitting value is reported in the inset labels). We consider 16 data points and one fitting parameter
in each case (dof = 15). Note that the points are very covariant, which might explain the visual mismatch in the first tomographic bin that none the less retains
a good χ2/dof.

Figure 11. Angular cross-correlation functions of the four tomographic bins in 0.6 < zphoto < 1.0, see Fig. 10, for galaxies selected according to zDNF–MOF.
The model prediction shown with the dashed lines assumes a bias equal to the geometric mean of the autocorrelation fits, i.e. bij = √

bibj , and is basically
proportional to the overlap of redshift distributions, which are shown in the bottom right-hand panel.
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Figure 12. 3D correlation function binned in projected pair separations.
We use projected separations because radial pairs are damped due to photo
z mixing. The dashed line is the best-fitting model assuming linear bias and
a smeared BAO feature, as discussed in detail in DES-BAO-MAIN.

It also assumes a linear bias between the galaxies and the matter
field.

The bias recovered from the 3D projected clustering at a mean
redshift of 0.8 is b = 1.83 ± 0.06, consistent with the one from
w(θ ) tomography. In addition, we stress that this clustering estimate
includes all cross-correlations of the data. The fact that it is matched
by the theory modelling, which in turn includes a characterization
of the redshift distributions per galaxy, represents also an additional
consistency check of reliability of the photometric redshifts.

8 C O N C L U S I O N S

This paper describes the selection of a sample of galaxies, optimized
for BAO distance measurements, from the first year of DES data.
By construction, this sample is dominated by red and luminous
galaxies with redshifts in the range 0.6 < z < 1.0. We have extended
the selection of red galaxies beyond that of previously published
imaging data used for similar goals in SDSS by Padmanabhan et al.
(2005) to cover the higher redshift and deeper data provided by
DES.

We compute the expected magnitudes of galaxy templates in the
four DES filters and identify the (i − z) and (z − i) colour space
to select red galaxies in the redshift range of interest. The actual
selection in colour and magnitude is defined using the BAO distance
measurement figure-of-merit as a guiding criteria. Remarkably, the
resulting forecast matches the results obtained in DES-BAO-MAIN
with the final analysis. The global flux limit of the sample is iauto

< 22, although we later introduce a sliding magnitude cut to limit
ourselves to brighter objects towards lower redshifts.

We consider three different photo z catalogues, with two differ-
ent photometric determinations. We showed that the typical photo z

uncertainty (in units of 1 + z) goes from 2.3 per cent to 3.6 per cent
from low to high redshift, for DNF redshifts using MOF photom-
etry, and slightly worse for BPZ with MOF photometry. Hence,
the former constitutes our primary catalogue in DES-BAO-MAIN,
while the latter is used for consistency. Redshift estimations based
on coadd photometry turned out to be worse than those derived
from MOF photometry by 10 per cent–20 per cent. Our final sam-

ple is made of 1.3 million red galaxies across 1336 deg2 of area,
largely contained in one compact region (SPT).

We study and mitigate, when needed, observational systematics
traced by various survey property maps. Of these, the most impactful
is the stellar contamination, which we find none the less bound
to < 4 per cent. Also i-band mean seeing and g-band depth are
relevant. We define weights to be applied to the galaxies when
computing pair counting to remove the relations between galaxy
number density and large-scale fluctuations in those SPs. We show
that none of these corrections have an impact on BAO measurements
mainly because they can eventually modify the broad shape of the
correlation functions but do not introduce a characteristic localized
scale as the BAO.

Lastly, we characterized the two-point clustering of the sample,
which is then used in DES-BAO-MAIN to derive distance con-
straints. We find the autocorrelations to be consistent with a bias
that evolves only slightly with redshift, from 1.8 to 2. The bias de-
rived from the tomographic analysis is consistent with the one fitted
to the whole sample range with the 3D projected distance analysis.
Furthermore, we investigate the cross-correlation between all the
tomographic bins finding clustering amplitudes matching expecta-
tions, although with poor χ2-values in some cases. Overall, this is
a further test of the assumed redshift distributions.

This paper serves the purpose of enabling for the first time BAO
distance measurements using photometric data to redshifts z ∼
1. These measurements achieve a precision comparable to those
considered state of the art using photometric redshift to this point
(Seo et al. 2012), as well as those from WiggleZ (Blake et al. 2011),
which are both limited to z ∼ 0.65. These BAO results are presented
in detail in DES-BAO-MAIN. While this paper was completed, the
third year of DES data was made available to the collaboration,
totalling three to four times the area presented here, and similar or
better depth. Hence, we look forward to that analysis, which should
already yield a very interesting counterpart to the high-precision
low-z BAO measurements already existing.
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d’Informació Cientı́fica (PIC), maintained through a collaboration
of the Institut de Fı́sica d’Altes Energies (IFAE) and the Centro
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of Edinburgh, the Eidgenössische Technische Hochschule (ETH)
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3Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
(CIEMAT), E-28040 Madrid, Spain
4Jodrell Bank Center for Astrophysics, School of Physics and Astronomy,
University of Manchester, Oxford Road, Manchester M13 9PL, UK
5Institute of Cosmology and Gravitation, University of Portsmouth,
Portsmouth PO1 3FX, UK
6Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid,
E-28049 Madrid, Spain
7School of Physics and Astronomy, Sun Yat-Sen University, Guangzhou
510275, China
8Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510,
USA
9Institut de Fı́sica d’Altes Energies (IFAE), The Barcelona Institute of Sci-
ence and Technology, Campus UAB, E-08193 Bellaterra (Barcelona) Spain
10Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093
Zurich, Switzerland
11Department of Physics and Astronomy, University College London, Gower
Street, London WC1E 6BT, UK
12Institute of Astronomy, University of Cambridge, Madingley Road, Cam-
bridge CB3 0HA, UK
13Kavli Institute for Cosmology, University of Cambridge, Madingley Road,
Cambridge CB3 0HA, UK
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Fı́sica Teórica, Universidade Estadual Paulista, 01140-070, São Paulo,
Brazil
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