mzuriCh ETH Library

HERO: an Open-Source Research
Platform for HW/SW Exploration
of Heterogeneous Manycore
Systems

Conference Paper

Author(s):
Kurth, Andreas (2); Capotondi, Alessandro; Vogel, Pirmin (2); Benini, Luca (2); Marongiu, Andrea

Publication date:
2018-11-04

Permanent link:
https://doi.org/10.3929/ethz-b-000314220

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1145/3295816.3295821

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-5613-9544
https://orcid.org/0000-0002-9657-736X
https://orcid.org/0000-0001-8068-3806
https://doi.org/10.3929/ethz-b-000314220
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1145/3295816.3295821
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

HERO: an Open-Source Research Platform for HW/SW
Exploration of Heterogeneous Manycore Systems

Andreas Kurth
IIS, ETH Ziirich
8092 Zurich, Switzerland
akurth@iis.ee.ethz.ch

Luca Benini
IIS, ETH Ziirich
8092 Zurich, Switzerland
benini@iis.ee.ethz.ch

ABSTRACT

Heterogeneous systems on chip (HeSoCs) co-integrate a high-per-
formance multicore host processor with programmable manycore
accelerators (PMCAs) to combine “standard platform” software
support (e.g. the Linux OS) with energy-efficient, domain-specific,
highly parallel processing capabilities.

In this work, we present HERO, a HeSoC platform that tackles
this challenge in a novel way. HERO’s host processor is an industry-
standard ARM Cortex-A multicore complex, while its PMCA is a
scalable, silicon-proven, open-source many-core processing engine,
based on the extensible, open RISC-V ISA.

We evaluate a prototype implementation of HERO, where the
PMCA implemented on an FPGA fabric is coupled with a hard ARM
Cortex-A host processor, and show that the run time overhead
compared to manually written PMCA code operating on private
physical memory is lower than 10 % for pivotal benchmarks and
operating conditions.

CCS CONCEPTS

« Computer systems organization — Parallel architectures;
Heterogeneous (hybrid) systems; System on a chip; - Hardware
— Simulation and emulation; Reconfigurable logic and FPGAs; «
Software and its engineering — Parallel programming lan-
guages.

KEYWORDS

Heterogeneous SoCs, Multi- and Many-core Architectures, Shared
Virtual Memory

ACM Reference Format:
Andreas Kurth, Alessandro Capotondi, Pirmin Vogel, Luca Benini, and An-
drea Marongiu. 2018. HERO: an Open-Source Research Platform for HW/SW

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ANDARE’18, November 4, 2018, Limassol, Cyprus

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6591-8/18/11...$15.00

https://doi.org/10.1145/3295816.3295821

Alessandro Capotondi
DEI, University of Bologna
40136 Bologna, Italy
alessandro.capotondi@unibo.it

Pirmin Vogel
IS, ETH Zirich
8092 Zurich, Switzerland
vogelpi@iis.ee.ethz.ch

Andrea Marongiu
DISI, University of Bologna
Bologna, Italy
a.marongiu@unibo.it

Exploration of Heterogeneous Manycore Systems. In 2nd Workshop on Au-
totuniNg and aDaptivity AppRoaches for Energy efficient HPC Systems (AN-
DARE’18), November 4, 2018, Limassol, Cyprus. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3295816.3295821

1 INTRODUCTION

The continous negotiation between power consumption, perfor-
mance, programmability, and portability drives all computing in-
dustry designs, in particular in the embedded systems domain.
Heterogeneous systems on chip (HeSoCs) are nowadays widely
adopted to address such challenges combining on the same de-
vice general-purpose computing with domain-specific, efficient
processing capabilities. HeSoCs typically co-integrate a host multi-
processor processor, optimized for average performance of general,
single-threaded and weakly multi-threaded workloads, with pro-
grammable manycore accelerators (PMCAs), each optimized for
domain-specific, highly parallel workload kernels.

The first-class integration of domain-specific architectures (DSAs)
is expected to enable scaling computing performance in face of the
energy wall [11, Ch. 7]. However, there are two predominant system-
level challenges that need to be solved to put this into practice. First,
the programmabilty: how to write software that is portable over dif-
ferent HeSoC designs and that can be optimized by the toolchain to
exploit the hardware architecture of a specific design? Second, the
computational synergy between PMCAs and host: how can proces-
sors with vastly different memory architectures—caches and virtual
memory in general-purpose processors contrast with physically-
addressed, software-managed scratchpad memories (SPMs) typical
for PMCAs—efficiently share data?

Knowing the custom instruction set architecture (ISA) of each
PMCA allows acceleration libraries and compilers to turn generic
code into very efficient machine instructions. However, the cost
of doing so is prohibitively high if each ISA is completely cus-
tom. The free and open RISC-V ISA [32] alleviates this problem
by specifying a minimal base instruction set, standard extensions
(e.g., floating-point, bit manipulations, and vector operations), and
plenty of opcode space reserved for domain-specific custom instruc-
tions. Promising RISC-V processor cores for different application
domains [10, 34] have already been developed. Thus, RISC-V is a
suitable candidate ISA for PMCAs in a HeSoC.

https://doi.org/10.1145/3295816.3295821
https://doi.org/10.1145/3295816.3295821

ANDARE’18, November 4, 2018, Limassol, Cyprus

As for the programming framework, OpenMP [6] has established
itself as the de-facto standard programming framework for homoge-
neous shared memory parallel programming. It is very effective at
expressing single program, multiple data (SPMD) loop-level paral-
lelism through compiler directives, but was originally not designed
for heterogeneous computing. Extensions to the OpenMP standard
were proposed by academia [8, 18] and by the industry [22]. The
synthesis of these works has been incarnated on last OpenMP spec-
ifications. Since version 4.0 OpenMP allows to offload work from
a host processor to a PMCA through the target directive [24],
which is already being used to program GPUs in high performance
computing [20]. This makes OpenMP a suitable candidate for a
unified programming interface of HeSoCs.

Efficient data sharing between host and PMCAs is crucial in
HeSoC. However, OpenMP just knows copy-based offloading, where
the host copies data from virtually-addressed, cached host mem-
ory to physically-addressed SPMs in a PMCA. This puts a daunt-
ing task on application developers: they need to deal with cache
flushes, virtual-to-physical address translation, and direct memory
access (DMA) transfers of properly-sized data tiles. Beyond vio-
lating programmability requirements, those operations are very
costly, make PMCAs completely dependent on the host, and often
kill performance [4]. In contrast, coherent shared virtual mem-
ory (SVM) enables to share data simply by passing a pointer from
the host to a PMCA. This works when PMCAs can access the shared
main memory coherently with the caches of the host (e.g., through
an Accelerator Coherency Port (ACP) [33]) and have a memory
management unit (MMU) to translate virtual addresses at run time.
MMUs that support the large number of paralle]l memory access
bursts common for high-performance PMCAs were long available
only at prohibitive hardware costs, but recently developed hybrid
MMUs [15, 31] have changed this.

In this paper, we present the hardware and software that form
HERO, the first RISC-V-based (to the best of our knowledge) open
and extensible HeSoC architecture that solves the described system-
level challenges. HERO’s hardware architecture (§ 2) combines an
ARM Cortex-A host processor with a cluster-based, silicon-proven,
open, and customizable RISC-V-based PMCA. HERO’s software
stack (§ 3) supports OpenMP 4.5-based kernel offloading combined
with SVM for transparent parallel programming and compiles a
single source code to different target ISAs. We evaluate a proto-
type implementation of HERO, where the PMCA is implemented
on FPGA fabric, and show that the run time overhead compared
to manually written PMCA code operating on private physical
memory is lower than 10 % for pivotal benchmarks and operating
conditions (§ 4).

2 HARDWARE ARCHITECTURE

HERO’s SoC architecture combines an ARM Cortex-A host proces-
sor with one or multiple domain-specific, RISC-V-based PMCAs.
Fig. 1 gives an overview of the components and their connections.
The host processor consists of ARM Cortex-A cores attached to a co-
herent interconnect. Each core includes private hardware-managed
caches and an MMU. The host shares main memory with the PM-
CAs through the system interconnect, which is coherent to the

A. Kurth et al.

HERO - Heterogeneous System on a Chip (HeSoC)

RISC-V-based Programmable
Many-Core Accelerator(s)

ARM Cortex-A Host Processor

ARM CPU ARM CPU | Cluster | -- | Cluster |
L1 Mem = L1 Mem

| Lis — | Lis -t
mvmu || Mmu L2 Mem -0
2§ 123 NI ‘

s L -~ L I

| Coherent Interconnect I Hybrid

o T MMU

| System Interconnect |

|
| Memory Controller |

|

Figure 1: HERO’s hardware architecture.

Shared L1 1$

caches of the host. Instead of caches, a PMCA employs software-
managed SPMs in its internal memory hierarchy, together with
DMA engines to move data. To access virtual memory, each PMCA
is attached to a hybrid MMU, which is managed by the PMCA.

As a concrete implementation of a RISC-V-based PMCA, we
use the latest version of the Parallel Ultra Low Power (PULP) plat-
form [29]. PULP has been employed in research and commercial
application specific integrated circuits (ASICs) designed for par-
allel ultra-low power processing. To overcome scalability limita-
tions, it uses a multi-cluster design [21] and relies on multi-banked,
software-managed SPMs and lightweight, multi-channel DMA en-
gines [28] instead of data caches. The 32b RISC-V processing ele-
ments (PEs) [10] within a cluster primarily operate on data present
in the shared L1 SPM to which they connect through a low-latency,
logarithmic interconnect [16]. The PEs use the cluster-internal
DMA engine to copy data between the local L1 SPM and remote
SPMs or shared main memory. Transactions to main memory pass
through the hybrid MMU [30], which performs virtual-to-physical
address translation based on the entries of an internal table, similar
to the MMUs of the host cores. This lightweight hardware block is
managed in software directly on the PMCA [15, 31]. The host and
the PMCA can thus efficiently share virtual address pointers. As
such, SVM substantially eases overall system programmability and
enables efficient sharing of linked data structures in the first place.

The PMCA is highly configurable. Besides the number of clus-
ters and the number of PEs and SPM banks per cluster, the 32b
RISC-V PEs themselves can be configured to trade off hardware re-
sources and computing performance. The single-precision floating-
point unit (FPU) can be private, moved to the auxiliary processing
unit (APU) to be shared among multiple PEs within a cluster, or
completely disabled. Similarly, the integer digital signal process-
ing (DSP) extension unit, the divider, and the multiplier can be
private or shared in the APU. Domain-specific instructions can be
added to the PEs and exposed as extensions to the basic RISC-V
ISA. If the target domain does not map well to the SPMD execution
model of the RISC-V PEs, PEs can be replaced or complemented by
domain-specific acceleration engines. Acceleration engines can be
implemented as custom hardware [5] or as reconfigurable circuit [7]
and, like PEs, are attached to the low-latency interconnect.

HERO: an Open-Source Research Platform for HW/SW Exploration

OpenMPv4 Heterogenous Application
Application OpenMP target
kernel

OpenMP RTE OpenMP RTE
User-Space PMCA plugin VMM lib

PMCA RTE lib

PMCA driver Low-Level RTE
Kernel-Space

Linux Kernel

Figure 2: HERO’s software stack.

3 SOFTWARE ARCHITECTURE

HERO includes a complete end-to-end software-stack enabling fast
and easy-to-use heterogeneous programming. Fig. 2 shows how the
different software layers and components of host and PMCA inter-
act. These components seamlessly integrate the PMCA into the host
system and allow for transparent accelerator programming using
the OpenMP programming interface and SVM hardware capabil-
ity. The application developer—writing a single application source
code—can simply offload computation to the PMCA by encapsu-
lating suitable application kernels in an OpenMP target region.
The actual offload from the host side is then taken care of by the
OpenMP runtime environment (RTE) and afterwards by the lower
levels of the software stack that is deployed to the PMCA.

3.1 Heterogeneous Cross Compilation

To allow the host OpenMP RTE to perform an offload to the PMCA,
the target code region must be outlined by the host compiler,
compiled by the PMCA-specific target compiler, linked against
PMCA-specific libraries, and embedded into the final host fat bi-
nary. HERO’s toolchain is based on the GNU GCC-7 compiler,
which already supports the outlining of OpenMP target regions
for HSA, Nvidia PXT, and Intel Xeon Phi devices. At the end of inter-
procedural analysis (IPA), the GCC intermediate representation (IR)
of all offloaded functions is streamed out into an link-time opti-
mizer (LTO) object. When the linker is executed, its LTO Wrapper
enables link-time recompilation if at least one object file contains
LTO sections. HERO’s GNU GCC extends the offloading capability
of the compiler to RISC-V based accelerators. To enable such new
devices, we extended the LTO Wrapper to execute a new mkoffload
for HERO that (i) invokes the specific ISA back-end for the PMCA
(in this case RISC-V), (ii) statically links the target-specific libraries
(including the OpenMP runtime library), (iii) fills the Offload Ta-
ble, which stores all target hooks for the outlined functions in the
host binary, and (iv) packs everything into an Offload Image that is
loaded to the PMCA at run time.

3.2 Heterogeneous OpenMP Runtime

The GNU OpenMP library, libgomp, supports plugins to bind target-
specific implementations of runtime functions to its generic ap-
plication programming interface (API). HERO’s customized GNU
GCC includes two libgomp plugins for the PMCA to implement

ANDARE’18, November 4, 2018, Limassol, Cyprus

two different offloading schemes: copy-based and zero-copy with
SVM. In copy-based offloads, all shared data is copied to a contigu-
ous, unpaged, uncached memory region and the PMCA is given
the physical address into that region. In SVM-based offloads, the
PMCA accesses host virtual addresses through the hybrid MMU
and instrumented load/store operations (§ 3.3).

The first time a target code region is going to be executed,
the host OpenMP runtime loads the dynamic shared object (DSO)
containing the binary of all offloaded functions together with the
accelerator-side OpenMP runtime onto the target PMCA. For ev-
ery target code region with copy-based offload semantics, the
host OpenMP runtime copies the shared data to contiguous mem-
ory, passes a physical address to the PMCA, and copies data back
after the PMCA has finished executing. For every target code re-
gion with SVM-based offload semantics, the host OpenMP runtime
simply passes virtual addresses to the shared data to the PMCA.
All these host-to-PMCA interactions go through the host runtime
library (§ 3.4).

3.3 Compiler Support for Hybrid-MMU-Based
SVM

With a hybrid MMU, loads and stores to SVM by PEs in the PMCA
can fail if the accessed virtual address misses in the translation
lookaside buffer (TLB). As this semantic deviates from standard
load and store, the compiler instruments [30] accesses to SVM
with an additional read of a register, through which a PE is in-
formed whether its last SVM access was successful. The compiler
transforms memory accesses inside a target code region based
on the data sharing context: During the OpenMP expansion pass,
the compiler annotates all shared variables as candidates for in-
strumentation. In a static single assignment (SSA) pass, it traverses
use-def chains to determine which uses of the annotated variables
need to be instrumented. Scalar variables can then directly be in-
strumented, while pointer variables require an additional escape
analysis to determine when and how a pointer dereference is prop-
agated to instrument accesses through the propagated value.

3.4 Host Runtime Library and Linux Driver

The host RTE library interfaces the host-side OpenMP runtime with
the Linux driver. In addition, it is used to reserve all virtual addresses
overlapping with the physical address map of the PMCA. This is
required as any access of the PMCA to a shared variable located
at such an address would not be routed to SVM but instead to its
internal SPMs or memory-mapped registers. The driver handles
low-level tasks such as interrupt handling, synchronization between
PMCA and host, host cache maintenance, operation of the system-
level DMA engine (e.g., to offload the PMCA binary), and initially
setting up the hybrid MMU to give the PMCA access to the page
table of the heterogeneous user-space application. The PMCA is
accessed by the RTE library as a memory-mapped device which
allows for low-latency host-to-PMCA communication.

3.5 PMCA Virtual Memory Management
(VMM) Library

Having access to the page table of the heterogeneous user-space
application, the PMCA can operate its virtual memory hardware

ANDARE’18, November 4, 2018, Limassol, Cyprus

autonomously. A VMM library [31] on the PMCA abstracts away
differences between host architectures and MMU configurations
and provides a uniform API to explicitly map pages and handle TLB
misses. When a core accesses virtual memory through the hybrid
MMU, the corresponding address translation may be missing in the
TLB. In this case, the core that caused the miss goes to sleep and the
miss is added to a queue in the L1 SPM. To handle a miss, the VMM
library dequeues it, translates its virtual address to a physical one
by walking the page table of the host user-space process, selects a
TLB entry to replace and configures it accordingly, and wakes up
the core that caused the miss. The VMM library is compatible with
any host architecture supported by the Linux kernel.

4 EVALUATION

We evaluated a prototype implementation of HERO (§ 4.1) with two
benchmarks (§ 4.2) to show that acceleration speed-ups in the range
of 5x to 10x are achievable with low programming overhead and
that the run-time overhead compared to manually written PMCA
code operating on physical memory is lower than 10 %.

4.1 Evaluation Platform

Our prototype implementation of HERO is based on the ZC706 im-
plementation of the Heterogeneous Research Platform (HERO) [14].
The Xilinx ZC706 board contains a Zynq-7045 SoC, which com-
bines an ARMv?7 dual-core A9 host CPU with a Kintex-7 FPGA on
a single chip. The two subsystems are connected through a set of
low-latency Advanced eXtensible Interface (AXI) interfaces and
share 1 GiB of DDR3 DRAM. Using the ACP, the PULP PMCA clus-
ter instantiated in the FPGA can access the shared main memory
coherently with the caches of the ARM host CPU. The two ARM
cores have separate L1 instruction and data caches with a size of
32KiB each, and they share 512 KiB of unified L2 instruction and
data cache. The 8 PEs within the PULP cluster share 8 KiB of multi-
banked L1 instruction cache and 256 KiB of multi-banked L1 SPM.
The ARM is clocked at 800 MHz, the PULP PMCA at 50 MHz. The
hybrid MMU features an L1 TLB with 32 entries and an L2 TLB
with 1024 entries, and user pages are mapped exclusively in the L2
TLB.

We use the HERO SDK v1.0.1 [26] and bigPULP v1.0.0 [25] for
the PMCA implementation. The host CPU runs Linux 4.9.0 with
swapping and LPAE disabled. The PMCA runs hero-v1.0.0 of the
PULP SDK. The entire compiler toolchain is based on GCC 7.1.1,
and benchmarks are compiled with -03.

4.2 Benchmark Results

We evaluated HERO with two benchmarks extracted from the
core of two application domains frequently demanding acceler-
ation: matrix-matrix multiplication for signal processing and the
Advanced Encryption Standard (AES) block cipher for cryptog-
raphy. Both benchmarks are written in a single source file, in
which we annotate the benchmark kernel with different OpenMP
directives to show the performance difference of each variant. We
measure the run time of each execution variant on the host using
clock_gettime (CLOCK_MONOTONIC_RAW). The measurements contain all parts
of an offload, including synchronization and transfer of data and
parameters between host and PMCA. Static data on host and PMCA

A. Kurth et al.

1.6
7%
1.4 A A
1.2
2%
22101
oL
S X
S 08 <
-8 Y
Q3 [(e}
27T 06
&8

I
IS
L

o
N

[

Host 2T PMCA 1T, PMCA 1T, PMCA 7T, PMCA 8T,
SVM, no DMA SVM, DMA SVM, DMA no SVM, DMA

o
S)

Figure 3: Performance of different MMM implementations
compared to the baseline on the dual-core ARM host CPU.

are initialized at the start of the benchmark application, before the
first measurement.

Matrix-Matrix Multiplication (MMM). In this benchmark, two
square matrices a and b are multiplied into square matrix c. Each
matrix has 128 by 128 32-bit elements and thus takes 64 KiB of
memory. The C code for the application kernel is
for (unsigned i = 0; i < 128; ++i) {

for (unsigned j = 0; j < 128; ++j) {

unsigned sum = 0;

for (unsigned k = 0; k < 128; ++k)
sum += ali*width+k] * b[k*width+j];

c[i*width+j] = sum;

3
}

Fig. 3 shows the performance of different implementations, rela-
tive to the baseline (leftmost, blue bar) in which the dual-core ARM
CPU runs the kernel code annotated with
#pragma omp parallel for \

firstprivate(a, b, c) collapse(2)
That is, the multiplication is parallelized over the rows of a. Offload-
ing the kernel to the PMCA is as simple as annotating the kernel
code with
#pragma omp target map(to: a, b) map(from: c)

The PMCA then directly accesses each word of any matrix through
pointers to shared virtual memory. However, as the PMCA does
not feature caches, performance drops drastically (second, red bar).
Since the PMCA is designed to operate on its local SPM, the first
optimization is to allocate buffers in SPM before the loop and to
insert DMA transfers into the loop. With this, the performance
improves to what a single PE can handle (third, orange bar). The
kernel is now compute-bound and can be parallelized with the
same annotation used to parallelize the ARM code. With this, 7 PEs
process the multiplication in parallel—when using SVM, one PE
is statically allocated to manage the hybrid MMU in the current
version of HERO—leading to a net performance improvement of
6.4x. Compared to a bare-metal, hand-tuned C implementation,
where 8 PEs operate on buffers in SPM, and DMA transfers run
between SPMs and physically-addressed shared memory (rightmost,
gray bar), the run-time overhead is just 7 %. Compared to the dual-
core ARM implementation, on the other hand, the speed-up is 47 %

HERO: an Open-Source Research Platform for HW/SW Exploration

o &
© o

5.9x

+90%

Speed-up relative
to dual-core host
o
o

o
S

||

PMCA 1T, PMCA 1T, PMCA 1T, PMCA 7T,
SVM, no DMA SVM, DMA SVM, DMA, VM, DMA, no SVM, DMA,
RISCY ISA Ext.RISCY ISA Ext.RISCY ISA Ext.

Host 2T

PMCA 8T,

Figure 4: Performance of different AES implementations
compared to the baseline on the dual-core ARM host CPU.

even though the PMCA on the FPGA runs at only 50 MHz. For a
production HeSoC ASIC, frequencies of 2 GHz and 800 MHz for
host and PMCA, respectively, would be more realistic. In that case,
this kernel would not saturate the memory bandwidth (even of the
Z-7045, which is around 300 MB/s), and offloading it to the PMCA
could bring a speed-up of ca. 9x.

AES Block Cipher (AES). We use a popular, small C implementa-
tion [13] of the AES block cipher to encrypt 1024 different cipher-
texts, each 128 byte long, with 128-bit keys in CBC mode. The C
code for the application kernel is
for (unsigned i = 0; i < 1024; ++i) {

AES_CBC_encrypt_buffer (ctx[i], buf[i], 128);

3

where ctx are AES contexts containing initialization vectors and
keys and buf are the buffers that contain the plaintext before en-
cryption and the ciphertext after encryption.

Fig. 4 shows the performance of different implementations, rela-
tive to the baseline (leftmost, blue bar) in which the dual-core ARM
CPU runs the kernel code annotated with

#pragma omp parallel for firstprivate(ctx, buf)

The second, dark red bar shows the offload to the PMCA with
#pragma omp target map(tofrom: ctx, buf)

The PMCA now operates on the shared main memory and the
caches of the host instead of its SPM. Thus, the next step is to
allocate buffers in SPM and control the DMA engine inside the loop
to transfer data while computations are running (third, orange bar).
As the AES block cipher performs mostly byte-wise operations that
map much worse to the basic RISC-V (RV32IM) ISA than to the more
complex ARMv7-A ISA, performance is still relatively low. Since the
full ISA of the PMCA is exposed, however, we can tune the code to
leverage the extensions it offers: The RI5CY PEs [10] in this PMCA
implement instructions that interpret the four bytes in a 32-bit word
as elements of a byte vector, instructions to pack and unpack bytes
from and into words, and instructions to shuffle and rotate bytes
within a word. Such operations are at the heart of a block cipher, and
using them massively improves performance (fourth, light green
bar). We finally use the aforementioned omp parallel for annotation to
parallelize encryption among 7 PEs, speeding up execution by 5.9x
(fifth, dark green bar). With the PMCA running at 50 MHz on the
FPGA, this is a modest 11 % faster than the dual-core ARM host.In a

ANDARE’18, November 4, 2018, Limassol, Cyprus

production HeSoC ASIC, with host and PMCA running at 2 GHz and
800 MHz, respectively, the application would not saturate memory
bandwidth and offloading it to the PMCA could bring a speed-up of
ca. 6.8x. Even more remarkably, the SVM-based offload is 90 % faster
than a bare-metal implementation where all 8 PEs compute and
DMA transfers run between SPM and physically-addressed shared
memory (rightmost, gray bar). The reason is that when SVM is not
used, the host must gather buffers from application virtual memory
into a dedicated, physically-addressed, uncached memory region
before the offload and scatter the buffers back after the offload, and
the host is very inefficient at doing this.

In summary, these results show (i) that HERO’s heterogeneous
software stack allows to effectively exploit both the standard ARM
ISA and a specialized RISC-V ISA, bringing the acceleration poten-
tial of parallel, domain-specific PMCAs to bear, and (ii) that HERO’s
hardware and software enable host and PMCA to efficiently share
data at a minimal programming effort and with a performance
impact that ranges from slightly negative to significantly positive
compared to copy-based memory sharing.

5 RELATED WORK

General-purpose computing acceleration through accelerator of-
floading started to gain more traction with the advent of pro-
grammable GPUs. Today, nearly all GPU models—ranging from
embedded, mid-end IP cores [1] up to high-end, data-center accel-
eration boards [23]—can serve as a target for offloading application
kernels from the host. However, implementing and optimizing a
heterogeneous application for GPU-based systems is not a trivial
task. Typically, the offloadable kernels must be implemented in
separate source files using lower-level programming languages
such as OpenCL or CUDA, and are compiled online before offload-
ing. This not only requires special compilers decoupled from the
host toolchain, but it also means more programming effort and
prevents fine-grained kernel offloading. These problems can be
somewhat alleviated by heterogeneous toolchains with open-source
OpenMP [9, 19] or OpenACC [27] GPU front ends. However, such
front ends can only generate intermediate code and still require to
invoke proprietary GPU compilers. The ISA of the accelerator is
closed and internal functions remain inaccessible for the developer.
There is, e.g., no DMA engine exposed to overlap computations
with data transfers. To achieve such behavior for hiding main mem-
ory latency, DMA transfers must either be explicitly emulated using
regular loads and stores [9], or the kernel must inherently offer
very high degrees of data-level parallelism. In addition, GPU drivers
and RTE libraries are completely closed for most devices [1, 23].
In contrast, the host side of HERO is partially and its PMCA is
completely open source starting from RTE libraries down to the ac-
tual hardware. This gives the developer the possibility to optimally
leverage the available hardware and exploit the full potential of the
PMCA platform with a fully-integrated toolchain.

Heterogeneous compilers have also been implemented by others,
both in research [2, 3, 17] and commercially [12]. [2] implemented
an OpenMP plugin for GCC 5 to offload to OpenRISC-based PM-
CAs. While the ISA in that work is also exposed to the toolchain,
OpenRISC was not designed with domain-specific extensions in
mind. In contrast, HERO’s software stack and toolchain are capable

ANDARE’18, November 4, 2018, Limassol, Cyprus

of fully leveraging custom extensions of the RISC-V ISA, as shown
by our experimental evaluation. Intel is offering OpenMP-based
programming of its Xeon Phi accelerators [12]. Although both the
Intel host CPU and the Xeon Phi accelerator implement the x86
ISA, they differ in (vendor-defined) extensions. While GCC can
be used to offload to Xeon Phi, the offloaded LTO itself must be
generated with the proprietary Intel C compiler to make use of all
vector extensions. Similar to GPUs, the accelerator ISA is thus not
directly accessible to developers, barring them from exploiting all
accelerator features in their libraries. In HERO, in contrast, RISC-V-
based PEs can be extended with domain-specific instructions fully
exposed to library developers through an end-to-end open software
stack.

6 CONCLUSION

We presented HERO, the first RISC-V-based HeSoC architecture
that enables efficient collaboration between host and PMCAs, both
at application design time and at run time. HERO combines an
industry-standard ARM Cortex-A multicore processor as host with
a silicon-proven, RISC-V-based many-core processing engine as
PMCA. Both ISAs are fully exposed to HERO’s heterogeneous
toolchain, allowing optimized compilation for both ISAs from a sin-
gle source code. Beyond heterogeneous compilation, HERO’s open
software and hardware stack supports shared virtual memory and
the toolchain implements OpenMP 4.5 for transparent accelerator
programming. We evaluated a prototype implementation of HERO
to show that both ISAs can be effectively exploited, bringing the
acceleration potential of parallel, domain-specific PMCAs to bear,
and that host and PMCA can efficiently share data at a minimal
programming effort.

REFERENCES

[1] ARM Ltd. 2017. ARM Mali GPU OpenCL.

[2] A. Capotondi and A. Marongiu. 2017. Enabling Zero-copy OpenMP Offloading

on the PULP Many-core Accelerator. In SCOPES ’17. ACM, New York, NY, USA,

68-71. https://doi.org/10.1145/3078659.3079071

A. Capotondi, A. Marongiu, and L. Benini. 2018. Runtime Support for Multiple

Offload-Based Programming Models on Clustered Manycore Accelerators. IEEE

Transactions on Emerging Topics in Computing 6, 3 (July 2018), 330-342. https:

//doi.org/10.1109/TETC.2016.2554318

Young-kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman,

and Peng Wei. 2016. A quantitative analysis on microarchitectures of modern

CPU-FPGA platforms. In DAC ’16. ACM, 109.

[5] F.Conti, P. D. Schiavone, and L. Benini. 2018. XNOR Neural Engine: a Hardware
Accelerator IP for 21.6 fJ/op Binary Neural Network Inference. IEEE TCADICS
(2018), 1-1. https://doi.org/10.1109/TCAD.2018.2857019

[6] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API
for shared-memory programming. IEE CSE 5, 1 (1998), 46-55.

[7] S.Das, K.]J. M. Martin, P. Coussy, and D. Rossi. 2018. A Heterogeneous Cluster

with Reconfigurable Accelerator for Energy Efficient Near-Sensor Data Analytics.

In ISCAS ’18.1-5. https://doi.org/10.1109/ISCAS.2018.8351749

Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jests Labarta, Luis Martinell,

Xavier Martorell, and Judit Planas. 2011. OmpSs: a proposal for programming

heterogeneous multi-core architectures. Parallel Processing Letters 21, 02 (2011),

173-193.

B. Forsberg, L. Benini, and A. Marongiu. 2018. HePREM: Enabling predictable

GPU execution on heterogeneous SoC. In DATE °18. 539-544. https://doi.org/10.

23919/DATE.2018.8342066

[10] M. Gautschi et al. 2017. Near-Threshold RISC-V Core With DSP Extensions

for Scalable IoT Endpoint Devices. IEEE TVLSI PP, 99 (2017), 1-14. https:
//doi.org/10.1109/TVLSIL.2017.2654506

[11] John L Hennessy and David A Patterson. 2018. Computer architecture: a quanti-

tative approach (6 ed.). Elsevier.

[12] Intel Corp. 2018.

ware to Intel Xeon Phi

(3

=

[4

=

>
&

[9

=

Migrating
Processor.

Offloading Soft-
white paper.

[13

[14

[15

=
&

(17

(18]

[19

[20]

[21]

™
0,

[30

[31

[32

[33

(34]

A. Kurth et al.

https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/migrating-offloading-software-paper.pdf.

kokke. 2018. tiny-AES-c: Small portable AES 128/192/256 in C.
GitHub repository. https://github.com/kokke/tiny- AES-c/tree/
f56dbc05ab0d795d74f43436aac9da56a7cc8ell

Andreas Kurth, Pirmin Vogel, Alessandro Capotondi, Andrea Marongiu, and
Luca Benini. 2017. HERO: Heterogeneous Embedded Research Platform for
Exploring RISC-V Manycore Accelerators on FPGA. CoRR abs/1712.06497 (2017).
arXiv:1712.06497 http://arxiv.org/abs/1712.06497

A. Kurth, P. Vogel, A. Marongiu, and L. Benini. 2018. Scalable and Efficient Virtual
Memory Sharing in Heterogeneous SoCs with TLB Prefetching and MMU-Aware
DMA Engine. In ICCD ’18. IEEE.

L Loi, A. Capotondi, D. Rossi, A. Marongiu, and L. Benini. 2018. The Quest for
Energy-Efficient I$ Design in Ultra-Low-Power Clustered Many-Cores. IEEE
TMSCS 4, 2 (Apr 2018), 99-112. https://doi.org/10.1109/TMSCS.2017.2769046
Andrea Marongiu, Alessandro Capotondi, and Luca Benini. 2016. Controlling
NUMA effects in embedded manycore applications with lightweight nested
parallelism support. Parallel Comput. 59 (2016), 24 — 42. https://doi.org/10.1016/
j.parco.2016.02.002 Theory and Practice of Irregular Applications.

A. Marongiu, A. Capotondi, G. Tagliavini, and L. Benini. 2015. Simplifying Many-
Core-Based Heterogeneous SoC Programming With Offload Directives. IEEE TII
11, 4 (Aug 2015), 957-967. https://doi.org/10.1109/TIL.2015.2449994

Matt Martineau, Simon McIntosh-Smith, Carlo Bertolli, Arpith C. Jacob, Samuel F.
Antao, Alexandre Eichenberger, Gheorghe-Teodor Bercea, Tong Chen, Tian Jin,
Kevin O’Brien, Georgios Rokos, Hyojin Sung, and Zehra Sura. 2016. Performance
Analysis and Optimization of Clang’s OpenMP 4.5 GPU Support. In PMBS ’16.
54-64. https://doi.org/10.1109/PMBS.2016.11

M. Martineau, S. McIntosh-Smith, and W. Gaudin. 2016. Evaluating OpenMP
4.0’s Effectiveness as a Heterogeneous Parallel Programming Model. In IPDPSW
’16. 338-347. https://doi.org/10.1109/IPDPSW.2016.70

D. Melpignano et al. 2012. Platform 2012, a Many-core Computing Accelerator
for Embedded SoCs: Performance Evaluation of Visual Analytics Applications.
In DAC °12. 1137-1142. https://doi.org/10.1145/2228360.2228568

Gaurav Mitra, Eric Stotzer, Ajay Jayaraj, and Alistair P Rendell. 2014. Implemen-
tation and optimization of the OpenMP accelerator model for the TI Keystone II
architecture. In International Workshop on OpenMP. Springer, 202-214.

NVIDIA Corp. 2017. NVIDIA Tesla V100 GPU Architecture. white paper.
OpenMP Architecture Review Board. 2013. OpenMP API v4.0.

PULP Platform. 2018. bigPULP: RISC-V manycore accelerator for HERO (v1.0.0).
GitHub repository. https://github.com/pulp-platform/bigpulp/tree/v1.0.0
PULP Platform. 2018. HERO SDK (v1.0.1). GitHub repository. https://github.
com/pulp-platform/hero-sdk/tree/v1.0.1

Ruyman Reyes, Ivan Lopez-Rodriguez, Juan J Fumero, and Francisco de Sande.
2012. accULL: an OpenACC implementation with CUDA and OpenCL support.
In ECPP ’12. Springer, 871-882.

D. Rossi, I. Loi, G. Haugou, and L. Benini. 2014. Ultra-low-latency Lightweight
DMA for Tightly Coupled Multi-core Clusters. In CF '14. ACM, New York, NY,
USA, Article 15, 10 pages. https://doi.org/10.1145/2597917.2597922

D. Rossi, A. Pullini, I Loi, M. Gautschi, F. K. GAijrkaynak, A. Teman, J. Constantin,
A. Burg, I. Miro-Panades, E. BeignAi, F. Clermidy, P. Flatresse, and L. Benini. 2017.
Energy-Efficient Near-Threshold Parallel Computing: The PULPv2 Cluster. IEEE
Micro 37, 5 (Sept 2017). https://doi.org/10.1109/MM.2017.3711645

P. Vogel et al. 2015. Lightweight Virtual Memory Support for Many-core Accel-
erators in Heterogeneous Embedded SoCs. In CODES ’15. 45-54.

P. Vogel et al. 2017. Efficient Virtual Memory Sharing via On-Accelerator Page
Table Walking in Heterogeneous Embedded SoCs. ACM TECS 16, 5s (2017),
154:1-154:19.

Andrew Waterman and Krste Asanovic. 2017. The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, v2.2.

Xilinx Inc. 2016. Zynq-7000 All Programmable SoC Overview. Product Specifica-
tion.

B. Zimmer et al. 2016. A RISC-V Vector Processor With Simultaneous-Switching
Switched-Capacitor DC-DC Converters in 28 nm FDSOI. IEEE jSSC 51, 4 (April
2016), 930-942. https://doi.org/10.1109/JSSC.2016.2519386

https://doi.org/10.1145/3078659.3079071
https://doi.org/10.1109/TETC.2016.2554318
https://doi.org/10.1109/TETC.2016.2554318
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/ISCAS.2018.8351749
https://doi.org/10.23919/DATE.2018.8342066
https://doi.org/10.23919/DATE.2018.8342066
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://github.com/kokke/tiny-AES-c/tree/f56dbc05ab0d795d74f43436aac9da56a7cc8e11
https://github.com/kokke/tiny-AES-c/tree/f56dbc05ab0d795d74f43436aac9da56a7cc8e11
http://arxiv.org/abs/1712.06497
http://arxiv.org/abs/1712.06497
https://doi.org/10.1109/TMSCS.2017.2769046
https://doi.org/10.1016/j.parco.2016.02.002
https://doi.org/10.1016/j.parco.2016.02.002
https://doi.org/10.1109/TII.2015.2449994
https://doi.org/10.1109/PMBS.2016.11
https://doi.org/10.1109/IPDPSW.2016.70
https://doi.org/10.1145/2228360.2228568
https://github.com/pulp-platform/bigpulp/tree/v1.0.0
https://github.com/pulp-platform/hero-sdk/tree/v1.0.1
https://github.com/pulp-platform/hero-sdk/tree/v1.0.1
https://doi.org/10.1145/2597917.2597922
https://doi.org/10.1109/MM.2017.3711645
https://doi.org/10.1109/JSSC.2016.2519386

