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ABSTRACT
Energy and power consumption are prominent issues in today’s
supercomputers and are foreseen as a limiting factor of future in-
stallations. In scientific computing, a significant amount of power is
spent in the communication and synchronization-related idle times
among distributed processes participating to the same application.
However, due to the time scale at which communication happens,
taking advantage of low-power states to reduce power in idle times
in the computing resources, may introduce significant overheads.

In this paper we present COUNTDOWN, a methodology and a
tool for identifying and automatically reducing the frequency of
the computing elements in order to save energy during commu-
nication and synchronization primitives. COUNTDOWN is able
to filter out phases which would detriment the time to solution
of the application transparently to the user, without touching the
application code nor requiring recompilation of the application.
We tested our methodology in a production Tier-0 system, a pro-
duction application - Quantum ESPRESSO (QE) - with production
datasets which can scale up to 3.5K cores. Experimental results
show that our methodology saves 22.36% of energy consumption
with a performance penalty of 2.88% in real production MPI-based
application.

KEYWORDS
HPC, MPI, profiling, power management, idleness, DVFS, DDCM,
C-states, P-states, T-states, hardware performance counters, timer,
energy saving, power saving

1 INTRODUCTION
While Moore’s law is approaching its end, Dennard’s scaling has
already run out of steam. This has caused a constant increase of
the power density required to operate each new processor gen-
eration at its maximum performance: causing de facto, the total
power consumption of each device to limit the practical achievable
performance. In addition of the detrimental effect of power density
on the final performance, total power consumption needs to be de-
livered and removed through cooling consuming additional power.
All these three issues impact the total costs of ownership (TCOs)
and operational costs, which limits the budget for the supercom-
puter capacity. As a matter of fact, thermal limit and power wall
are the key challenges to be faced if we wish to deliver the planned
performance growth in future.

Computing elements are built with low power design principles
and they allow to trade off performance vs. power consumption
by mean of Dynamic and Voltage Frequency Scaling (DVFS) (also
known as performance states or P-states [9]) and low power states
which switch off unused resources (C-states [9]). Operating systems
can change P-states and C-states at execution time adapting the
performance of the current workload to reduce the power consump-
tion. Transition time and execution time dependency can impact
the application execution time leading or not to an energy saving.

A typical HPC application is composed by several processes ex-
ecuted in a cluster of nodes which exchange messages through a
low-latency high-bandwidth network. These processes can access
the network sub-system through a software interface that abstract
the network level. The Message-Passing Interface (MPI) is a simple
but high-performance standard interface for communication that
allows these application processes to exchange explicit messages.
Usually in large application runs, the time spent by the application
in the MPI library is not negligible and impacts the power consump-
tion of the system. By default, MPI libraries use a busy-waiting
mechanism when MPI processes are waiting in a synchronization
primitive. However, running an application in a low power mode
during MPI primitives, may result in lower CPU power consump-
tion with limited impact on the execution time due the wait time
and IO/memory intensity of MPI primitives. MPI libraries imple-
ments idle-waiting mechanisms, but these are not used in practice
to avoid performance penalties caused by the low power states
transition time [8].

In this paper, we preset COUNTDOWN, a methodology and a
tool to leverage the communication slack to save energy in scientific
applications. It consists of a system runtime able to automatically
inspect at fine granularity MPI and application phases and to inject
power management policies opportunistically during MPI calls.

https://doi.org/10.1145/3295816.3295818
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The paper focuses on understanding the implications of fine-grain
power management in today’s supercomputing systems targeting
MPI library and providing a methodology for selecting at execution
time when to enter in a low-power state to limit the transition time
overheads. Indeed, COUNTDOWN is able to identify MPI calls with
energy-saving potential for which it is worth to enter in a low power
state, leaving fast MPI calls unmodified to prevent overheads in low-
power state transitions. COUNTDOWN works at execution time
without requiring any previous knowledge of the application, it is
completely plug-and-play ready, this means that it does not require
any modification of the source code and compilation toolchain.
COUNTDOWN can be dynamically injected in the application at
loading time, this means that it can intercept dynamic linking to
the MPI library by instrumenting all the application calls to MPI
functions before that the executionworkflow pass to theMPI library.
COUTDOWN supports C/C++ and Fortran HPC applications and
most of the open-source and commercial MPI libraries.

The paper is organized as follows. Section 2, presents the state-
of-the-art of power and energy management approaches for sci-
entific computing systems. Section 3 introduces the key concepts
on power-saving in MPI primitives of the application. Section 4
explains the components of our COUNTDOWN runtime. Section 5
reports experimental results in power saving of production runs of
applications in a tier0 supercomputer.

2 RELATEDWORK
In scientific computing, two main families of energy saving tech-
niques have emerged. The first is based on the assumption that a
performance penalty can be tolerated to reduce the overall energy
consumption [1, 5, 6, 10]. The second is based on the assumption
that it is possible to slow down the speed of a CPU only when
it does not execute critical tasks to save energy without penaliz-
ing the application performance [7, 12, 16]. Both approaches are
based on the concept of application slack/bottleneck (memory, IO,
and communication) that can be opportunistically used to reduce
performance and to save energy. However, there are drawbacks
which de facto limits their usage in production environment. The
first approach causes overheads in the application execution time
limiting the supercomputer throughput and capacity. The second
approach depends on the capability of predicting the critical tasks
in advance with severe performance loss in case of mispredictions.

Similar to COUNTDOWN, Lim et at. [13] adapt the core’s fre-
quency in "long"MPI phases. Instead, "short"MPI phases are grouped
in "long" phases using a horizon value. MPI phases repetitions are
identified using the program counter of the CPU while the P-state
is selected through a prediction model based on the last value pre-
diction on the number of micro-operations retired.

These works [7, 12–14] have in common the prediction of future
workload imbalances or the time duration of MPI phases obtained
by analyzing previous communication patterns. However, this ap-
proach can frequently lead to mispredictions in irregular appli-
cations [11] which cause performance penalties. COUNTDOWN
differs from the above approaches (and complements them) be-
cause it is purely reactive and does not rely on assumptions and
estimation of the future workload unbalance.

Eastep et al. propose GEOPM [4], an extensible and plug-in
based framework for power management in large parallel systems.
GEOPM is an open-source project and exposes a set of APIs that
programmers can insert into applications to combine power man-
agement strategies and HPC workload. A plugin of the framework
target power constraint systems aiming to speed up the critical
path migrating power to the CPU’s executing the critical path tasks.

In a similar manner, another plugin can selectively reduce the fre-
quency of the processors in specific regions of codes flagged by the
user by differentiating regions in CPU, memory, IO, or disk bound.
Today GEOPM is capable to identify MPI regions and to reduce
the frequency based on MPI primitive type. However, while this
solution is an interesting first step it cannot differentiate between
short and long MPI primitives and thus cannot control the overhead
caused by frequency change and runtime in short MPI primitives.
In this manuscript we present an approach which solve this issue
opening new opportunities for MPI-aware power reduction.

Marathe et at. [15] developed Libpowermon, a profiling frame-
work for HPC used to correlate application metrics with system
level metrics and thermal measurements. Differently from COUNT-
DOWN, Libpowermon implements only profiling capability with-
out implementing any power control policy.

Benini et al. [2] presented a survey on dynamic power manage-
ment policies and systems to minimize power consumption under
performance constraints. In particular, they show that timeout-
based shutdown policies are the most effective ones in mitigating
the overheads of power states transitions which detriment the sav-
ings achievable with low power states. In this paper we leverage this
property in the HPC power management context. Indeed previous
works showed that unbalance in MPI workload can be exploited by
power management solutions, however a overhead-free solution
which can take advantage of this slack is still missing.

3 BACKGROUND AND MOTIVATION
As previously highlighted today’s power management approaches
for HPC systems lack the support for taking advantages of the slack
induced by synchronization and communication primitives. Indeed,
as described in previous section, today’s CPUs have the capability
of changing the performance and power consumption trade off
dynamically by entering in idle (shutdown) and active (DVFS) low
power states, thus in practice there are no limitation for taking
advantage of them during MPI communication and synchroniza-
tion phases. In this section we give two practical examples on the
drawbacks and limitation of doing it. We can recognize two families
of approaches: (i) bringing the core in idle low power mode or (ii)
in an active low power mode each time the execution encounters
an MPI call.

3.1 Target Architecture and Benchmark
We focus our analysis on a compute node equipped with two Intel
Haswell E5-2630 v3 CPUs, with 8 cores at 2.4 GHz nominal clock
speed and 85W Thermal Design Power(TDP). We use the complete
software stack of Intel systems for real production environment. We
use IntelMPI Library 5.1 as the runtime for communication and Intel
ICC/IFORT 18.0 in our toolchain. We choose Intel software stack
because it is currently used in our target systems as well as well
supported in most of HPC machines based on Intel architectures.

QuantumESPRESSO is a suite of packages for performing Den-
sity Functional Theory based simulations at the nanoscale and
it is widely employed to estimate ground state and excited state
properties of materials ab initio. One of its mostly used codes is
PWscf (Plane-Wave Self-Consistent Field) used here to solve the self-
consistent Kohn and Sham (KS) equations and obtain the ground
state electronic density for a representative case study. The code
uses a pseudo-potential and plane-wave approach and implements
multiple hierarchical levels of parallelism implemented with a hy-
brid MPI+OpenMP approach. As of today, OpenMP is generally
used when MPI parallelism saturates and it can improve the scala-
bility in the highly parallel regime. Nonetheless in the following we
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Figure 1: Overhead, energy/power saving, average load and
frequency. Legend: C-state (CS) and P-state (PS) mode. Base-
line is busy-waiting mode (default mode) of MPI library.

will only refer to data obtained with pure MPI parallelism since this
is the main focus of this article and this choice does not significantly
impair the conclusions reported later.

The following experimental results are compared with the busy-
waiting mode (default mode) of MPI library, where processes con-
tinuously polling the CPU for the whole waiting time in MPI syn-
chronization points.

3.2 Wait-mode/C-state MPI library
MPI libraries use a polling mechanism in collective synchroniza-
tions to avoid entering in C-states which can induce performance
penalties. This is also the default behavior of Intel MPI library. This
library can also be configured to release the control to the idle task
of the operating system (OS) during waiting time to leverage on the
power states of the system. This allows cores to enter in sleep states
and being woken up by the MPI library when the message is ready
through an interrupt routine. In Intel MPI library, it is possible to
configure wait-mode mechanism through the environment variable
I_MPI_WAIT_MODE. This allows the library to leave the control to
the idle task, reducing the power consumption for the core waiting
in the MPI. Clearly, the transitions into and out of the sleep mode
induce overheads in the application execution time.

In figure 1 are reported the experimental results, the wait-mode
strategy is identify with CS. We can see the overhead induced by the
wait mode w.r.t. the polling strategy, which worsen by the 25.85%
the execution time. This is explained by the high number of MPI
calls in the QE application which leads to frequent sleep/wake-up
transitions and consequently huge overheads. From the same figure,
we can also see that the energy saving is negative, which is -12.72%.
This means that the power savings obtained in the MPI primitives
does not compensate the overhead induced by the sleep/wake-
up transitions. Indeed, the power reduction is 12.83%, which is
confirmed by the average load of the system, as effect of the entering
in C-states during wait periods inMPI primitives. While the average
frequency has not changed, and it correspond to 2.6GHz, which is
the turbo frequency of our target system.

As a conclusion of this first exploration, we confirm that is not
possible to leverage on the wait mode of the MPI library to save
power in HPC applications without increasing the execution time.
This is also the reason why MPI libraries by default work in busy-
waiting mode.

3.3 DVFS/P-state MPI library
To overcome the overheads of C-state transitions, we focus our
initial exploration on the DVFS states (P-state). Intel MPI library
does not implement such a feature, so we manually instrumented
all the MPI calls of the application with an epilogue and prologue

function to scale down and raise up the frequency when the execu-
tion enters and exits from an MPI call. To avoid interference with
the power governor of the operating system, we disabled it in our
compute node granting the complete control of the frequency scal-
ing. We use the MSR driver to change the current P-state writing
IA32_PERF_CTL register with the highest and lowest available P-
state of the CPU, which corresponds to turbo and 1.2GHz operating
points. In figure 1 we report the results of this exploration, where
the P-state case is labelled with PS.

In the overhead plot in figure 1, we can see that the overhead
is significantly reduced w.r.t C-state mode, reducing the 25.85%
overhead obtained previously to 5.96%. This means that the over-
head of scaling the frequency is less respect to the sleep/wake-up
transitions cost. However, the energy and power savings are almost
zero. This is due to the fact that the application on a single node has
a high number of MPI calls with very short duration. This is also
confirmed by the average frequency, which does not show signifi-
cant variations w.r.t. the baseline (busy waiting), with a measured
average frequency of 2.4GHz. The load bar reports 100% of activity,
which means that there is no idle time as expected.

In conclusion using DVFS for fine-grain power management
instead of the idle mode allows to better control the overhead,
however the overhead is still significant and in HPC domains per-
formance are the prime goal.

3.4 Overhead Considerations
As a matter of fact, we show that phase agnostic fine-grain power
management leads to significant application overheads, which may
nullify the overall saving. To explore if the overhead was caused by
the system call that interacts with the DVFS control knobs, we force
COUNTDOWN to write always the highest P-state in the DVFS
control registers. Thus, we avoid application slowdown caused by
frequency variation and we obtained only the overhead caused by
the system call on the register access. Our experimental results
report of 1.04% of overhead of the system call and for the profile
sampling, so we have rule out this possibility. Though, we think
that the overhead can be explained by the response time of HW
power controller in serving P-state transition of our Intel Haswell1
Authors in [8], show how works the Intel HW power controller
through a reverse engineering exploration. In Intel CPUs, the HW
power controller periodically reads the DVFS control register to
check if the O.S. has specified a new frequency level, this interval
has been reported to be 500us. This means that every new setting for
the core’s frequency faster than 500us could completely ignored or
applied, depending on when the register was sampled the previous
time. In our scenario, this means that it is not possible to have an
effective control on the frequency selection for MPI phases shorter
than 500us. For this reason, in the following Sections we present a
methodology and a tool based on a timeout strategy that takes in
account this technological wall to skip "short" MPI phases.

4 FRAMEWORK
COUNTDOWN is a simple run-time library for profiling and fine-
grain power management written in C language. COUNTDOWN is
based on a profiler and on an event module to inspect and react to
theMPI primitives. Every time an application calls anMPI primitive,
COUNTDOWN profiles the call and uses a timeout strategy [2] to
avoid changing the power state of the cores during extremely fast
application and MPI context switches, where doing so may result
only in an increment of the overhead without a significant energy
and power reduction. As we will see later in this Section, each time
1The same is true for Intel Broadwell’s HW power controller.
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Figure 2: Logical view of COUNTDOWN components.

the MPI library asks to enter in low power mode, COUNTDOWN
defers the decision for a defined amount of time. If the MPI phase
terminates within this amount of time COUNTDOWN does not
enter in the low power states, filtering out too short MPI phases to
save energy, but costly in terms of overheads.

In figure 2 the components of the COUNTDOWN are depicted.
COUNTDOWN exposes the same interface of a standard MPI li-
brary and it can intercept all MPI calls from the application. COUNT-
DOWN implements two wrappers to intercept MPI calls: i) the first
wrapper is used for C/C++ MPI libraries, ii) the second one is used
for FORTRAN MPI libraries. This is mandatory due C/C++ and
FORTRAN MPI libraries produce assembly symbols which are not
application binary (ABI) compatible. The FORTRAN wrapper im-
plements a marshalling and unmarshalling interface to bind MPI
FORTRAN handlers in compatible MPI C/C++ handlers. This al-
lows COUNTDOWN to interact with MPI libraries in FORTRAN
applications. When COUNTDOWN is injected in the application,
every MPI call is enclosed in a corresponding wrapper routine that
implements the same signature. In the wrapper routine is called
the equivalent PMPI call, but after a prologue routine and before an
epilogue routine. Both routines are used from the profile and from
event module to inject profiling capabilities and powermanagement
strategies in the application. COUNTDOWN interacts with the HW
power manager through a specific Events module of the library. The
Events module can also be triggered from system signals registered
as callbacks for timing purposes. COUNTDOWN configurations
can be done through environment variables, it is possible to change
the verbosity of logging and the type of HW performance counters
to monitor.

The library targets the instrumentation of applications through
dynamic linking without user intervention. When dynamic linking
is not possible COUNTDOWN has also a fallback, a static-linking
library, which can be used in the toolchain of the application to
inject COUNTDOWN at compilation time. The advantage of using
the dynamic linking is the possibility to instrument every MPI-
based application without any modifications of the source code
nor the toolchain. Linking COUNTDOWN to the application is
straightforward: it is enough to configure the environment variable
LD_PRELOAD with the path of COUNTDOWN library and start
the application as usual.

4.1 Profiler Module
COUNTDOWN uses three different profile logics targeting three
different monitoring granularities.

(i) The MPI profiler, is responsible to collect all information re-
garding the MPI activity. For each MPI process, it collects informa-
tion on MPI communicators, MPI groups and the coreId. In addition,
it profiles each MPI call by collecting information on the type of
the call, the enter and exit time and the data exchanged with the
others MPI processes. The MPI profiler is called in the prologue and
epilogue routines on the wrapper interface.

(ii) The fine-grain micro-architectural profiler, collects micro-
architectural information at every MPI call along with the MPI
profiler. This profiler uses the user-space RDPMC assembly instruc-
tion to access to the performance monitoring units (PMU) imple-
mented in Intel’s processors. It monitors the average frequency,
the time stamp counter (TSC) and the instruction retired for each
MPI application phase. Moreover, it is able to access to 8 config-
urable performance counters in the PMU that can be used to moni-
tor user-specific micro-architectural metrics. The fine-grain micro-
architectural profiler is called in the prologue and epilogue routines
on the wrapper interface.

(iii) The coarse-grain profiler, monitors a larger set of HW per-
formance counters available in the Intel architectures. In Intel ar-
chitectures to access on HW performance counters, is required a
privileged permission, which cannot be granted to the final users
in production machines. To overcome this limitation, we use the
MSR_SAFE [17] driver to access to the model-specific registers of
the system (MSR), which can be configured to grant the access
of standard users to a subset of privileged architecture registers
avoiding security issues. At the core level, COUNTDOWN moni-
tors TSC, instruction retired, average frequency, C-state residencies
and temperature. While at uncore level, it monitors CPU package
energy consumption, C-state residencies and temperature of the
packages. This profiler uses Intel Running Average Power Limit
(RAPL) to extract energy information to the CPU. The coarse-grain
profiler, due the high overhead needed by each single access to
the set of HW performance counters monitored, uses a time-base
sample rate. The data are collected at least Ts second delay from
the previous sample. The fine-grain micro-architectural profiler at
every MPI calls checks the time stamp of the previous sample of
coarse-grain profiler and, if it is above Ts seconds, triggers it to get
a new sample. Currently Ts is configured to 1s based on empirical
studies but it is possible to configure for fast or slow sampling.

COUNTDOWN also implement a logging module to store profile
information in a text file which can be written in a local or remote
storage.While the log file ofMPI profiler can growswith the number
of MPI primitives and can become significant in long computation,
the information is stored in binary files, but the logging component
also summarized this information in compact text file.

4.2 Event Module
COUNTDOWN interacts with the HW power controller of each core
to reduce the power consumption. It uses MSR_SAFE to write the ar-
chitectural register to change the current P-state independently per
core. When COUNTDOWN is enabled, the Events module decides
the performance at which to execute a given phase.

COUNTDOWN implements the timeout strategy through the
standard Linux timer APIs, which expose the system calls: setitimer()
and getitimer() to manipulate user’s space timers and register call-
back routines. This methodology is depicted in figure 3. When
COUNTDOWN encounters an MPI phase, in which opportunisti-
cally can save energy by entering in a low power state, COUNT-
DOWN registers a timer callback in the prologue routine (Event(start)),
after that the execution continues with the standard workflow of
the MPI phase. When the timer expires, a system signal is raised,
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Figure 3: Timer strategy implemented in COUNTDOWN.

the "normal" execution of the MPI code is interrupted, the signal
handler triggers the COUNTDOWN callback, and once the call-
back returns, execution of MPI code is resumed at the point it was
interrupted. If the "normal" execution returns to COUNTDOWN
(termination of the MPI phase) before the timer expiration, COUNT-
DOWN disables the timer in the epilogue routine and the execution
continues like nothing happened.

In next section we will explain why the timeout logic introduced
by COUNTDOWN is effective in making fine-grain power manage-
ment possible and convenient in MPI parallel application.

5 EXPERIMENTAL RESULTS
5.1 Framework Overheads
We evaluate the overhead of runningMPI applications instrumented
with the profiler module of COUNTDOWN without changing the
cores’ frequency on a single benchmark. In this evaluation, we
count more than 1.1 million of MPI primitives for each process:
our run-time library needs to profile in average an MPI call every
200us for each process. We measured the overhead comparing the
execution time with and without COUNTDOWN instrumentation.
We repeated the test five times and we report the median case. Our
results show that COUNTDOWN profiler introduces an overhead
in the execution time which is less than 1%. This result is also
supported by the overhead measurements of the prologue and the
epilogue routines that COUNTDOWN injects in the application for
each MPI call, which costs between 1us and 2us.

5.2 Single-node Evaluation
We repeat the experiments for the P-state of Section 3 using COUNT-
DOWN. We configure COUNTDOWN to scale down P-state after
500us in prologues of MPI primitives.

Figure 4 report the experimental results. We can see that the
overhead is greatly improved w.r.t. the baseline (default MPI library,
without COUNTDOWN).

Using COUNTDOWN, the overhead decreases from 5.96% to a
negligible overhead. Energy saving is of 1.27% and the power saving
is of 5.75%. Thanks to COUNTDOWN, we make the overhead of
fine-grain power management strategy negligible and we achieve

an energy and power saving. In this single node example, the sav-
ings are limited but this is due to the application composition for
which most of the MPI calls are very short and there is no profit
margin to reduce cores’ frequency. We will show that these savings
become prominent in the multi-node case which a more relevant
case in large scale HPC environments. These experimental results
prove that COUNTDOWN is able to skip short MPI calls to avoid
overheads even in application with a high density of short MPI
phases.

5.3 HPC Evaluation
After we have evaluated our methodology in a single compute node,
we extend our exploration in a real HPC system. We use a Tier-0
HPC system based on an IBM NeXtScale cluster which is currently
classified in the Top500 supercomputer list [3]. The compute nodes
of the HPC system, are equipped with 2 Intel Broadwell E5-2697
v4 CPUs, with 18 cores at 2.3 GHz nominal clock speed and 135W
TDP and interconnected with an Intel QDR (40Gb/s) Infiniband
high-performance network.

We run QE on 96 compute nodes, using 3456 cores and 12 TB of
DRAM. We use an input dataset capable to scale on such number
of cores and we configure QE using a set of parameters optimized
to avoid network bottlenecks, which would limit the scalability. We
run an instance of the application with and without COUNTDOWN
on the same nodes and we compared the results.

Figure 5 shows the total time spent in application and in MPI
phases which are shorter and longer than 500us. On the x-axis, the
figure reports the id of the MPI rank, while in the y-axis reports in
percentage of the total time the accumulated time spent in phases
longer and shorter than 500us. We can immediately see that in this
real and optimized run, the application spends a negligible time
in phases shorter than 500us. In addition, the time spent in the
MPI library and in the application is not homogeneous among the
MPI processes. This is an effect of the workload parameters chosen
to optimize the communications, which distribute the workload
in subsets of MPI processes to minimize broadcast and all-to-all
communications. Using this configuration, our experimental results
report 2.88% of overhead with an energy saving of 22.36% and a
power saving of 24.53% thanks to COUNTDOWN. Differently from
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Figure 4: Overhead, energy/power saving, average load and
frequency using COUNTDOWN with P-state (PS). Baseline
is busy-waiting mode (default mode) of MPI library.

the single node evaluation we have a not negligible overhead which
are not caused by short MPI phases. We suspect that some MPI
primitives suffer more than others from the frequency scaling. We
will analyze in dept this problem in our future works aiming to keep
the COUNTDOWN overhead negligible. We believe this condition
will make the adoption of COUNTDOWN wider.

The result achieved by COUNTDOWN in production scale ap-
plication are very promising and if it systematically adopted would
dramatically reduce the TCO of today supercomputers.

6 CONCLUSION
In this paper, we present COUNTDOWN a methodology and a tool
for profiling HPC scientific applications and injecting DVFS capa-
bilities into standard MPI libraries. COUNTDOWN implements a
timeout strategy to avoid costly performance overheads and lever-
aging on communication slacks to drastically reduce energy con-
sumption. Our work targets real HPC systems and workloads and
does not require any kind of modification to the source code nor to
the compilation toolchain of the application.

In the experimental section, we compared our system with state-
of-the-art power management for MPI libraries, which can dy-
namically control idle and DVFS levels for MPI-base application.
Our experimental results show that using timeout strategy to take
decisions on power control can drastically reduce overheads maxi-
mizing the energy efficient in small and large MPI communications.
Our run-time library avoids high overheads induced by short MPI
calls where the HW power manager is not fast enough to react to
fast low to high frequencies requests. Indeed, we show that thanks
to the proposed COUNTDOWN approach we can reduce the en-
ergy consumption of the 22.36% and the power consumption of
the 24.53% with only 2.88% of performance overhead in large-scale
HPC for production application run. In future works we will extend
the evaluation of COUNTDOWN with a wider set of applications
and working conditions.
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