
ETH Library

Energy Saving and Thermal
Management Opportunities in a
Workload-Aware MPI Runtime for
a Scientific HPC Computing Node

Book Chapter

Author(s):
Cesarini, Daniele; Bartolini, Andrea; Benini, Luca

Publication date:
2018

Permanent link:
https://doi.org/10.3929/ethz-b-000313829

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Advances in Parallel Computing 32, https://doi.org/10.3233/978-1-61499-843-3-277

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-8068-3806
https://doi.org/10.3929/ethz-b-000313829
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.3233/978-1-61499-843-3-277
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

This is the post peer-review accepted manuscript of:

Daniele Cesarini, Andrea Bartolini, and Luca Benini. "Energy Saving and Thermal Management
Opportunities in a Workload-Aware MPI Runtime for a Scientific HPC Computing Node." Parallel
Computing is Everywhere 32 (2018): 277.
doi: 10.3233/978-1-61499-843-3-277

The published version is available online at: http://ebooks.iospress.nl/volumearticle/48617

© 2018 Copyright held by the owner/author(s). Publication rights licensed to IOS Press.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

http://ebooks.iospress.nl/volumearticle/48617

September 2017

Energy Saving and Thermal Management
Opportunities in a Workload-Aware MPI
Runtime for a Scientific HPC Computing

Node

Daniele CESARINI a Andrea BARTOLINI a and Luca BENINI a,b

a DEI, University of Bologna, 40136 Bologna, Italy
b IIS, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

Abstract. With the advent of a new generation of supercomputers characterized
by tightly-coupled integration of a large-number of powerful processing cores in
the same die, energy and temperature walls are looming threats to the growth in
computational power.

Scientific computing is characterized by a single application running in parallel
on multiple nodes and cores until termination. The message-passing programming
model is a widely adopted paradigm for explicitly handling data-sharing between
processes of the same application. As an effect of the MPI communication patterns
among different processes, the application is characterized by phases which can be
exploited by OS power manager. In addition, the large number of cores integrated
in the same silicon die introduces large thermal capacitance as well as on-die ther-
mal heterogeneity. Jointly exploiting local workload unbalance and computational
node heterogeneity can open interesting opportunities for advanced thermal and
energy management. In this paper, we present an exploratory work to assess these
opportunities and their limiting factors. We analyze application workload and we
identify opportunities to reduce energy consumption and their impact on perfor-
mance. We test our methodology on a widely-used quantum-chemistry application
demonstrating potential benefits of combining the application flow with power and
thermal management strategies.

Keywords. HPC, thermal model, power model, energy, MPI, runtime, scientific
workload

1. Introduction

Nowadays, it is well established that the pace dictated by the Moore’s law on technolog-
ical scaling comes at the cost of increasing power consumption and leads to thermally-
bound computing systems. Supercomputers as well as data centers are on the cutting
edge of this crisis, because of aggressive performance, integration density and sustain-
able power budget [16,19].

The most powerful supercomputer in Top500 is Sunway TaihuLight which consumes
15.3 MW to deliver 93 PetaFLOPs. The second one, Tianhe-2 (ex 1st) consumes 17.8
MW for ”only” 33.2 PetaFLOPs. However, the power consumption increases to 24 MW
when considering also the cooling infrastructure [9]. Such an amount of cooling power
serves to prevent thermal issues. Increasing the inlet coolant temperature reduces the
cooling cost, but impacts thermal budget. Druzhinin et al. [17] reports a performance
drop of 10% caused by thermal throttling when raising inlet cooling water from 19oC up
to 65oC in a direct liquid cooling supercomputer.

September 2017

Beneventi et al. [4] show in an Intel-base computing node with 36 physical cores,
that the increased number of processors integrated on same die generates significant
thermal gradients and heterogeneity. On the same silicon die, they measure up to 24oC of
temperature difference between active cores and idle cores, and more than 7oC of thermal
heterogeneity under homogeneous workload.

In high performance computing nodes, the maximum safe temperature at which pro-
cessing elements can run depends on cooling technologies. Intel Xeon E5-26XX v3 HPC
class processors have different specifications on the maximum silicon temperature which
ranges from 69oC to 101oC according to the package thermal resistance (cost) and the
nominal thermal design power (TDP)1. Dynamic thermal management (DTM) has been
introduced to reduce the worst-case cooling effort by controlling and limiting, when nec-
essary, the heat generation. Operating systems use reactive controllers to maintain pro-
cessors under a critical temperature. Several state-of-the art approaches explore proactive
techniques to improve DTM performance [1,8].

CPU power is the largest contributor to power cost on modern servers (at idle state
contributes up to 40% of total power and 66% at peak power [2]). Today’s CPUs use
hardware mechanisms to adapt performance to workload to become more energy effi-
cient. Dynamic voltage and frequency scaling (DVFS) techniques can change clock rate
during application execution to reduce the overall energy consumption. However, in a su-
percomputing environment, user applications run in isolation on a portion of the machine
and are accounted based on execution time. The peculiar usage model of supercomput-
ing hardware and applications, which are not interactive, nor latency critical, but require
sustained peak performance, is not yet well understood in terms of unique opportunities
for domain specific power and thermal management.

This work focuses on the evaluation of potential benefit in combining state-of-the-
art energy-thermal management strategies with the MPI programming model which is
pervasive in real-life HPC applications. Our contributions are:

1. A formal model for the energy and thermal management problem in HPC com-
puting nodes. This includes reactive power management, to exploit computation
vs communication phases, and proactive thermal management, to take advantage
of: (i) heterogeneity in the core thermal dissipation, (ii) heterogeneity in applica-
tion threads composition and (iii) thermal capacitance.

2. We characterized the node of a supercomputing system today ranked 151 in the
TOP500 list [10] in terms of thermal heterogeneity and inertia (i.e. capacitance)
and impact of HW power management mechanisms.

3. We characterized a real scientific quantum-chemistry parallel application, mea-
suring the thread unbalance and communication-to-computation ratio.

4. We evaluated i) the potential impact of reactive power management strategies
which can lead up to 12.39% energy reduction in this context; ii) the potential of
proactive thermal management solutions which can lead up to 6% performance
improvements when running the system in a thermally constrained environment.

The paper is organized as follows. Section 2 presents related works, Section 3 char-
acterizes HW and SW characteristics of scientific computing relevant to power and ther-
mal management solutions. Section 4 defines properties of an optimal policy for this
context, while Section 5 quantifies achievable benefits and opportunities.

2. Related work

Our exploration work ranges from thermal and power modeling for HPC system to
energy-aware MPI runtimes and thermal-aware allocation schedulers. In this section, we
review the state-of-the-art in this field.

1Intel Xeon R©Processor E5 v3 Family Thermal Guide

September 2017

Several works have investigated thermal-aware workload allocation, making use of
mechanisms such DVFS to prevent the activation of more drastic cooling measures.
Those approaches include: (1) on-line optimization policies [6,7,14] based on predic-
tive models and taking advantage of run-time temperatures read from hardware sensors;
(2) off-line allocation and scheduling approaches [18], usually embedding a simplified
thermal model of the target platform [5,3].

There are even significant works on energy-aware MPI runtimes. Adagio [20] uses
DVFS mechanism to reduce CPU frequency during communication phases trying to pre-
dict the duration of each task adjusting the CPU frequency. A task is identified as a pe-
riod of computation between two MPI calls. Adagio correctly identifies tasks when there
are iterative computational phases interspersed with communication phases. However,
several HPC applications do not respect the same communication pattern, for instance
[15], this leads to a misprediction that causes performance penalty.

This work uses proactive techniques to reduce energy consumption in MPI phases.
Moreover, it does not consider thermal-bounded environments where computational
tasks must slow down to avoid overheating. Differently, our runtime adjusts the CPU fre-
quency when the execution flow calls MPI functions leaving performance decisions for
computational tasks to the thermal management scheduler which assures a safe-working
environment.

3. HPC Architecture and Workload Characterization

3.1. HW and SW for HPC Machine

HPC machines are clusters composed of tens to thousands of high-end nodes intercon-
nected with a low-latency, high-bandwidth network. Usually each node is composed of
multiple sockets, each socket hosts multiple cores that share a main memory and the
network subsystem. Nodes are accommodated in racks located in server rooms of a data
center. Server rooms require a cooling system to remove the heat produced by the racks.

HPC resources are requested from users through a batch queue system which par-
titions the HPC machine in sub-clusters for limited lifetime. HPC applications are quite
different from general server workload. At execution time, a single scientific comput-
ing application runs exclusively on the allocated sub-clusters. HPC software consists of
multiple instances of the same application that can run on different nodes. Ideally, appli-
cation instances are composed by computational intensive phases on independent data
segments alternated by synchronization points and communication phases. MPI APIs are
used to support explicit data communication between application instances.

3.2. Power and Thermal Management

The power management states of computing elements are divided in sub-groups. The P-
States include dynamic voltage and frequency (DVFS) operating points which target the
reduction of active power. C-States instead target idle power reduction strategies. Both
P-States and C-States are numbered from 0 to n. Higher number means higher power
saving. However, in case of C-State this means also longer transitions in and out of the
state itself. In recent Intel architectures [12] P-States can be selected independently for
each core. C-States are instead defined independently for cores and the ”uncore” region.

The P-States are handled by the Linux O.S. by means of SW frequency governors.
C-States are triggered from the firmware of the CPU but the OS can provide hints on
the appropriate C-State to the hardware through O.S. idle governors. Table 1 shows the
different architecture impacts and dependencies for the different cores and package C-
States.

September 2017

Table 1. C-States

Core C-States
C0 C1 C3 C6

Pa
ck

ag
e

C
-S

ta
te

s
C0 Active State
C1E Lower P-State
C2 Only L3 Snoop
C3 Flush L3 - Off
C6 Low Voltage

Active
State

Clock
Gated

Flush
L1,L2

Off

Power
Gated

Green cells represent a valid configuration for Core and Package C-States, red are
invalid ones.

Table 2. Thermal Model

AVG temperature - Idle cores 15.93oC
AVG temperature - Active cores 33.39oC
Gradient - Idle cores 4.47oC
Gradient - Active cores 4.79oC
Gradient - Active core vs idle cores 8.05oC
Time to reach steady state 120sec

Table 3. Quntum ESPRESSO - Energy

BW MPI IB MPI IB MPI - C1 lim
Exe Time 261.52sec 283.48sec 283.48sec
Avg Power 68.19W 62.91W 63.22W
Energy 17,901J 17,833J 18,048J
Idleness 0.00% 15.80% 15.80%
C1 0.00% 9.74% 15.80%
C3 0.00% 0.66% 0.00%
C6 0.00% 5.40% 0.00%

3.3. Thermal and Power Characterization of a Supercomputer Node

We took as target high performance computing infrastructure, which is a Tier-1 HPC
system based on an IBM NeXtScale cluster. Each node of the system is equipped with
2 Intel Haswell E5-2630 v3 CPUs, with 8 cores with 2.4 GHz nominal clock speed and
85W Thermal Design Power (TDP, [13]). Taking into account also miscellaneous com-
ponents, the overall system TDP is about 360 KW. As regards the software infrastructure,
SMP CentOS Linux distribution version 7.0 with kernel 3.10 runs on each node. This
Tier-1 supercomputer is currently classified in the Top500 supercomputer list [10].

3.3.1. Thermal Model

We start our work towards the exploitation of the thermal characteristics of the HPC
system. We focus our attention on a single node of the cluster.

To understand the thermal properties of a computational node we have executed
three main stress tests on which we have (i) kept the system in idle and measured the
power and each per-core temperature after ten minutes, (ii) we have executed a stress-
mark2 in sequence on each core of each socket in the node, leaving the remaining ones
idle. We maintained a costant workload for ten minutes and measured power consump-
tion and temperature. This test has been used to extract the maximum gradient between
cores. Finally, (iii) we have executed the stressmark for ten minutes in all the cores of
the node simultaneously and we measured the temperature and the power consumption.
In all the previous tests, temperature and power values were measured by periodically
accessing the machine specific registers, the Turbo mode was disabled. Results of our
analysis are reported on Table 2.

2cpuburn stressmark by Robert Redelmeier: it takes advantage of the superscalar architecture to maximize
the CPU power consumption

September 2017

Table 4. Power model - Active

C0 - Turbo C0 - Max Freq C0 - Min Freq
Puncore 17.13W 17.13W 12.76W
Pcore 6.38W 5.47W 3.16W

Table 5. Power model - Idle

C1 C3 C6
Puncore 12.76W 11.90W 11.84W
Pcore 1.32W 0.38W 0.00W

3.3.2. Power Model

In addition to the previous tests, we have re-executed the stressmark in different config-
urations (number of cores executing the stressmark, Turbo mode enabled/disabled, and
using different frequency levels) while limiting C-States3. We maintained each configu-
ration for ten minute and we measured the power consumed by each CPU.

Table 4 and 5 report the power split between core and uncore regions. Table 4 shows
them for different P-States (C0=active) (Turbo, Max, Min Frequency) while Table 5
shows them for different C-States. The power of the uncore in C0 - Turbo and C0 -
Max Freq is equal because uncore component is not affected by the Turbo frequencies.
Scaling down the frequency (Min freq) however reduces the uncore power. Core power
instead scales proportionally with the frequency. Idle power instead can be seen in Table
5 from which we can see that C1 further reduces the power of 58% w.r.t. C0 - Min Freq
and that C3 significantly cuts the idle power by the 71% for the core, but only marginally
for the uncore. C6 instead zeroes the core power but reduces the uncore power only by
1%. Clearly, these results show that to reduce energy, parallel programming runtime (i.e.
MPI) should prefer C1 and C3 states instead of P-States (DVFS) during idle intervals
(communication phases). We will use this thermal and power model characterization in
power management space exploration in Section 5.

3.4. Scientific Workload

3.4.1. Quantum ESPRESSO

In this work, we use Quantum ESPRESSO (QE) [11] as a real-life workload scientific ap-
plication to evaluate power and thermal management opportunities in a real HPC infras-
tructure. QE is a software suite for molecular dynamics. Its main computational kernels
include dense parallel linear algebra and 3D parallel fast Fourier transform, which are
both relevant for many HPC applications. In detail, we use a Car-Parrinello (CP) simula-
tion, which prepares an initial configuration of a thermally disordered crystal of chemical
elements by randomly displacing the atoms from their ideal crystalline positions. This
simulation consists of a number of computation kernels that have to be executed in the
correct order.

3.4.2. MPI Runtime and Workload Characterization

We use Intel MPI Library 5.1 as the runtime for communication and Intel ICC/IFORT
16.0 in our toolchain. We choose Intel software stack because it is currently used in our
target system and in most of HPC machines [10] based on Intel processors. This runtime
tries to achieve maximum performance by adopting to default a busy-waiting (BW MPI)
policy that forces CPU polling on a network fabric controller during communication
phases and synchronization points. Alternately programmers can specify an interrupt-
based (IB MPI) communication. With IB communication, HPC applications release the
processor during communication phases leaving the control to the O.S. which triggers
idle state (C-State). To isolate the impact of deep C-States from the different commu-
nication mechanisms, we also run the interrupt-base communication while limiting the
deepest C-State to C1 (IB MPI - C1 limited).

Table 3 shows the results of QE using different configurations of MPI runtime. For
all the benchmarks we compare: execution time, average power and total energy for both

3C-States in Intel architectures can be limited through dedicated machine specific registers

September 2017

sockets, we use idleness which represents the percentage of idle time w.r.t. total time
and as well as the C1, C2, C3 percentage that is measured through HW counters. BW
MPI benchmark, we can see as the effect of the busy-waiting communication has 0% of
idleness and C1,2,3 states. Differently IB MPI shows a significant percentage of idleness
which is exploited by entering in deep C-States. Due to the HW policy, which triggers
transition to C-States using time-outs, the specific communication phase can finish before
the deepest C-State is reached (C6). Thanks to IB MPI configuration, the application
consumes 8% less power than BW MPI. This however does not cause an energy reduction
due to an increase in execution time when IB MPI is used. This could be caused by
recovering from deep C-States. In IB MPI - C1 limited only C1 states are used, which
are characterized by a negligible transition time. When comparing its execution time
with the one of IB MPI, we notice that there is no variation. This demonstrates that the
slowdown in IB MPI w.r.t. BW MPI is not related by recovering from deep C-State but
to the overhead of interrupt handler.

4. Energy Thermal Management Policies

As we have seen in the previous section, HPC workload contains communication-
induced idle times, which are opportunities to reduce energy consumption. However due
to the IB MPI, this does not turn in a significant energy reduction due to increased ex-
ecution time related to the specific MPI communication implementation and due to the
HW C-State promoting policy. In the assumption that these implementation issues can
be solved, we are still missing an evaluation of the potential energy-saving achievable by
exploiting these communication slacks.

In addition, we also see that supercomputer workload faces significant unbalance
between tasks of the same application (i), but these processes cannot be migrated among
cores, as they have to run with the same binding till the end of the application (ii). More-
over, computing nodes show a significant thermal heterogeneity (iii) and long thermal
transients (iv). By combining these characteristics with state of the art thermal and power
management solution we can envision that a thermal and energy management strategy
should include:

i) Reactive Policy: Minimizes the overall energy by reacting to application phases. It
triggers the transition to a lower power state (P- or C-State) during communication slack.

ii) Proactive policy: It minimizes energy by maximizing the performance when the
computing resources are pushed against their thermal limit. It selects at the application
start time the MPI process to core binding to guarantee that computational demanding
processes run at the maximum performance. At execution time, it acts to the core fre-
quency to ensure that each core operates in a safe temperature range.

In the next section, we will quantify the achievable savings for reactive and proactive
power and thermal management policies.

5. Assessing Energy Saving Opportunities

Real workload traces have been recorded from runs of QE (BW) on computational nodes
using Intel MPI tracing tools. These traces contain all MPI activities (MPI call, data
transfer, source/destination IDs) with a time stamp. The traces are provided as inputs to
our policy energy estimation script. The reactive policy consists of selecting a given idle
state C[1:6] or DVFS state (Px Min Freq) for each MPI communication phase and C0
state when active. This emulated an ideal reactive policy with zero transition overhead
useful to quantify the best-case saving. Results are reported in Section 5.1. Proactive pol-
icy consists of a thermal-aware task mapping and control problem. We implement and
extension of the ILP formulation proposed in [21] to assign at each process a priority

September 2017

core
0

core
1

core
2

core
3

core
4

core
5

core
6

core
7

core
8

core
9

core
10

core
11

core
12

core
13

core
14

core
15

0

2

4

6

8

10

12

14

16

En
er

gy
 g

ai
n

[%
]

Low Freq C1 C3 C6

Figure 1. Energy saving of MPI with reactive policy w.r.t. the MPI BW

weight and account for it in the cost function which now is max∑(Priorc, i ∗ f reqc, i)
where c is the core and i is the time interval. The ILP problem uses constraints to se-
lect a per-core frequency that forces future core temperatures to be below a critical tem-
perature. Future temperature is predicted through a thermal model. As task migration
has very significant performance penalty in MPI workloads, we split the problem in two
parts: (P1) intial MPI process to core mapping and (P2) on-line frequency selection. We
evaluate the effect of the prediction horizon on both P1 and P2. Indeed, long horizon
in P1 means better accounting in the MPI process allocation of the steady-state ther-
mal heterogeneity. Instead for P2, long horizon means worse exploitation of the ther-
mal capacitance but lower overheads. The optimization problems are solved using IBM
Ilog CPLEX 12.6.1 running on the same machine, therefore the time overheads can be
comparable with application time. Finally, our evaluation framework is composed by a
power and thermal model. We used a time constant discrete state-space model matched
with the computational node as described in table 2. The model has a sample time of
10ms, and as state variables has the temperature of each core of the node. Core power
is computed with the power model described in Table 4 and 5 extended with additional
P-States. Workload traces that have higher temporal accuracy than the 10ms, have been
averaged among this period to produce the percentage of time in which each task was in
the MPI runtime for each 10ms interval.

5.1. Reactive

In this section, we quantify the maximum achievable energy saving for a reactive policy
under ideal conditions: no interrupt, library and transitions overheads. We use the sim-
ulator and the MPI traces as explained above. We compare the results with the baseline
policy of Intel MPI BW considering the reactive policy to select Low Freq, C1, C3 or C6
during communication slack.

Figure 1 shows with different bars the low-power state used by the reactive policy
during communication phases. In y-axis is reported the achievable energy-saving w.r.t.
to baseline busy waiting for each core (x-axis). From the plot we can first recognize
that different cores have different communication-to-computation ratio, which leads to a
significant workload unbalance in QE. This is reflected by a different achievable saving
for each core. When comparing the achievable energy-reduction, Figure 1 shows that C-
States are more effective in saving energy during communication phases. Indeed, while
reducing the frequency to Low Freq saves in average 7%, using C1 reduces the energy

September 2017

1 sec
1 sec

10 sec
10 sec

100 sec
100 sec

SS
1 sec

SS
10 sec

SS
100 sec

SS
SS

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Fr
eq

ue
nc

y
[G

Hz
]

Highest Priority Core Global Average

Figure 2. Frequency of the highest priority core and global average using different configurations

consumption by 10%. Using C3 and C6 leads to an additional saving reaching 11.7%
and 12.4% respectively. Considering the different latencies intrinsic to these low-power
states, from our analysis we suggest that MPI runtime should maximize the usage of C1
during communication slack with an energy saving opportunity of 10% for QE4.

5.2. Proactive

In this section, we evaluate the opportunities for proactive thermal management. The
test is conducted by assigning the highest priority to the MPI process with rank 0 which
is the most critical. We assume the reactive policy to work by select Low Freq during
communication phases.

Figure 2 depicts on the y-axis the average frequency of the cores that host highest
priority tasks and the average frequency for all the remaining cores. On the x-axis we
report the different predictive horizon. This is composed by two numbers: in the top we
report the P1 horizon at the bottom the P2 horizon. SS means the prediction at the steady
state. The error bars show the variance for each configuration among different executions
of the same QE problem while moving the highest priority job5 from different cores.
High bars mean high performance because the scheduler can set an higher frequency
respecting thermal constraints. From the figure, we can notice that 1s-1s and 10s-10s
induces performance penalties on the high priority task, while they lead to an increase
of performance of the 5% and 6% respectively in average in all remaining cores. For
the remaining configurations, we measure no penalty for high priority tasks and a gain
of the 8%, 7% and 4% respectively for the configuration SS-1s, SS-10s and SS-100s.
These results shows that short horizon predictive models pay off in P2 as it allows to take
advantage of the thermal capacitance.

Figure 3 shows the associated overhead for the scheduler. Low bars mean low over-
head quantified in percentage which represent the a sum of seconds for all iterations
during application execution. We take as a baseline SS-SS configuration, which model
state-of-the-art solutions based on static allocation of jobs and frequencies.

From Figure 3 we can see that for the 1s-1s and 10s-10s configuration the P1 solve
time is negligible. This is because these horizons are not enough to predict the thermal ef-

4In this exploration we consider only Core C-States because Package C-States are always close to 0% of
utilization due the continuous presence in C0/C1 state on at least one core

5In our benchmark the highest priority job is the root MPI process identified with job ID 0

September 2017

1 sec
1 sec

10 sec
10 sec

100 sec
100 sec

SS
1 sec

SS
10 sec

SS
100 sec

SS
SS

0

2

4

6

8

10

12

Ov
er

he
ad

 T
im

e
[%

]

P1 P2

Figure 3. Cumulative overheads of the proactive scheduler for both P1 and P2 problem

fects when transients are expired. For this reason, the solution is trivial and consequently
the optimization algorithm immediately converge. Instead, all other configurations cause
an average overhead time of 0.59% of total execution time.

When looking at P1, short horizon will lead to more calls to the solver and thus a
large overhead is expected. The results respect these trends, in particular for 1 seconds of
prediction interval it leads to an average penalty of 10% of total execution time, which
makes this configuration worse than the static allocation (SS-SS) 8% of performance
gain with 10% of overhead. Interesting the 10 seconds case (SS-10s) reduces the total
penalty below 1% which, in conjunction to 7% of performance gain, leads to an overall
performance gain of 6%. At 100 seconds the total overhead penalties decrease to 0.1%.
However, for this case the performance gain is only of 4% leading to a worse perfor-
mance than the SS-10s case. As a matter of fact, proactive thermal management solutions
can take advantage of the thermal capacitance and heterogeneity in compute nodes by
smart static core mapping (P1) and dynamic frequency selections. We evaluated that long
horizons are required by static process-to-core mapping and medium predictive horizons
are the best for dynamic thermal adaptation as they can exploit the thermal capacitance
as well as producing reduced overhead. When these optimal configurations are chosen,
up to 6% of performance gain can be obtained w.r.t. static thermal optimization.

6. Conclusion

In this paper, we presented a novel exploration of energy and thermal management poli-
cies. Differently from state-of-the-art solutions, we focused our analysis on a real super-
computing system from which we modeled the real thermal and power characteristics
as well as we extracted real scientific workload traces. We developed an energy-aware
MPI wrapper to explore the maximum energy that could be saved during communica-
tion phases. We implemented thermal-aware allocation schedulers, which are induced
by MPI that guarantees a safe working temperature while it maximizes performance on
critical task. For thermal-aware allocation schedulers we explore different configurations
to find-out the best performance point in thermally-bounded systems.

Our results show that energy-aware MPI wrapper can save up to 12% of energy
during communication phases. For the online DVFS selection our implementation can
lead up to 6% performance gain including overheads while ensuring that high priority
task run always at the maximum frequency.

September 2017

Acknowledgments

Work supported by the EU FETHPC project ANTAREX (g.a. 671623), EU project
ExaNoDe (g.a. 671578), and EU ERC Project MULTITHERMAN (g.a. 291125).

References

[1] R. Ayoub, S. Sharifi, and T. S. Rosing. Gentlecool: Cooling aware proactive workload scheduling in
multi-machine systems. In Proceedings of the Conference on Design, Automation and Test in Europe,
pages 295–298. European Design and Automation Association, 2010.

[2] L. A. Barroso, J. Clidaras, and U. Hölzle. The datacenter as a computer: An introduction to the design
of warehouse-scale machines. Synthesis lectures on computer architecture, 8(3):1–154, 2013.

[3] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini. A distributed and self-calibrating model-predictive
controller for energy and thermal management of high-performance multicores. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2011, pages 1–6, March 2011.

[4] F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini. Cooling-aware node-level task allocation for
next-generation green hpc systems. management, 1:6, 2016.

[5] F. Beneventi, A. Bartolini, A. Tilli, and L. Benini. An effective gray-box identification procedure for
multicore thermal modeling. IEEE Transactions on Computers, 63(5):1097–1110, May 2014.

[6] A. K. Coskun, T. S. Rosing, and K. C. Gross. Utilizing predictors for efficient thermal management in
multiprocessor socs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
28(10):1503–1516, 2009.

[7] A. K. Coskun, T. S. Rosing, and K. Whisnant. Temperature aware task scheduling in mpsocs. In Pro-
ceedings of the conference on Design, automation and test in Europe, pages 1659–1664. EDA Consor-
tium, 2007.

[8] A. K. Coşkun, K. Whisnant, K. C. Gross, et al. Static and dynamic temperature-aware scheduling for
multiprocessor SoCs. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 16(9):1127–
1140, 2008.

[9] J. Dongarra. Visit to the national university for defense technology changsha. China, University of
Tennessee, 199, 2013.

[10] J. J. Dongarra, H. W. Meuer, E. Strohmaier, et al. Top500 supercomputer sites. Supercomputer, 11:133–
133, 1995.

[11] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti,
M. Cococcioni, I. Dabo, et al. Quantum espresso: a modular and open-source software project for
quantum simulations of materials. Journal of physics: Condensed matter, 21(39):395502, 2009.

[12] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer. An energy efficiency feature
survey of the intel haswell processor. In Parallel and Distributed Processing Symposium Workshop
(IPDPSW), 2015 IEEE International, pages 896–904. IEEE, 2015.

[13] P. Hammarlund, R. Kumar, R. B. Osborne, R. Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik,
S. Chennupaty, S. Jourdan, et al. Haswell: The fourth-generation intel core processor. IEEE Micro,
34(2):6–20, 2014.

[14] V. Hanumaiah, S. Vrudhula, and K. S. Chatha. Performance optimal online dvfs and task migration
techniques for thermally constrained multi-core processors. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 30(11):1677–1690, 2011.

[15] D. J. Kerbyson, A. Vishnu, and K. J. Barker. Energy templates: Exploiting application information to
save energy. In 2011 IEEE International Conference on Cluster Computing, pages 225–233. IEEE,
2011.

[16] L. B. Kish. End of moore’s law: thermal (noise) death of integration in micro and nano electronics.
Physics Letters A, 305(3):144–149, 2002.

[17] A. Moskovsky, E. Druzhinin, A. Gromov, A. Shmelev, V. Mironov, and A. Semin. Server level liq-
uid cooling: Do higher system temperatures improve energy efficiency? Supercomputing frontiers and
innovations, 3(1):67–74, 2016.

[18] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini, and G. De Micheli. Temperature con-
trol of high-performance multi-core platforms using convex optimization. In 2008 Design, Automation
and Test in Europe, pages 110–115. IEEE, 2008.

[19] M. K. Patterson. The effect of data center temperature on energy efficiency. In Thermal and Thermo-
mechanical Phenomena in Electronic Systems, 2008. ITHERM 2008. 11th Intersociety Conference on,
pages 1167–1174. IEEE, 2008.

[20] B. Rountree, D. K. Lownenthal, B. R. De Supinski, M. Schulz, V. W. Freeh, and T. Bletsch. Adagio:
making dvs practical for complex hpc applications. In Proceedings of the 23rd international conference
on Supercomputing, pages 460–469. ACM, 2009.

[21] A. Rudi, A. Bartolini, A. Lodi, and L. Benini. Optimum: Thermal-aware task allocation for hetero-
geneous many-core devices. In High Performance Computing Simulation (HPCS), 2014 International
Conference on, pages 82–87, July 2014.

