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Abstract

In many areas of science and industry, the volume of data that is collected
and stored has increased significantly over the past years (Marx, 2013).
Statistical and machine learning approaches start to get adopted more
widely and data-driven decision making is gaining traction both in industry
as well as the public sector (Dieterich et al., 2016). With this widening
impact, the need for methods that have certain robustness properties, are
computationally efficient and can handle privacy and fairness requirements
(Barocas and Selbst, 2016) is growing. Similarly, discovering cause-effect
relationships between variables is an important goal in many applications,
leading to a rising demand for causal inference.

The starting point of a statistical analysis (which can be part of a wider
scientific study) is a training dataset that was previously collected. Of-
ten one assumes that the observations are independently and identically
distributed (i.i.d.). Furthermore, future data—for which the results of the
analysis should be valid—is assumed to follow the same distribution as
the training data. However, in modern real-world applications of statistics
and machine learning these assumptions may not always hold. In many
cases the collected data is partitioned in some form. Broadly speaking, it
may have been recorded in different “circumstances” or “environments”,
giving rise to heterogeneities in the training distribution. For instance,
the data may have been gathered at various geographical locations or may
result from different experiments. Another case of partitioned data can
arise when data has been collected by distinct parties such as different
institutions.

These heterogeneities in the training data lead to an array of challenges as
many classical statistical methods may not be directly applicable. They
might be too computationally demanding for the potentially large amounts
of data collected by different parties. Another difficulty could arise due to
privacy concerns that prevent sharing data between different data owners.
Finally, future data may follow yet a slightly different distribution than
the ones encountered in the different partitions of the training data. This
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may lead to poor generalization performance if the analysis relies on a
statistical estimator without robustness properties addressing these distri-
bution shifts. On the other hand, partitioned data can also constitute an
opportunity for statistical inference. In this thesis, we study the following
challenges and opportunities related to partitioned data.

– How can data collected in different environments be used for causal
inference? (Chapters 3 and 4)

– How can a grouping structure in the data be leveraged to attain
distributional robust estimators? (Chapter 5)

– How can a joint model be estimated when the data is held by dif-
ferent parties and is too large to be stored on a single computer?
(Chapter 6) How can this be achieved under privacy constraints?
(Chapter 7)



Zusammenfassung

In vielen Bereichen der Wissenschaft und der Industrie ist das gesammel-
te und gespeicherte Datenvolumen in den letzten Jahren stark gestiegen
(Marx, 2013). Statistische Ansätze und solche des maschinellen Lernens
werden zunehmend verwendet und Methoden zur datengetrieben Entschei-
dungsfindung erhalten Einzug sowohl in der Industrie als auch im öffentli-
chen Sektor (Dieterich u. a., 2016). Mit diesem wachsenden Einfluss steigt
der Bedarf für Methoden, die bestimmte Robustheitseigenschaften haben,
die rechnerisch effizient sind und welche Datenschutz- und Gerechtigkeits-
anforderungen (Barocas und Selbst, 2016) erfüllen. Des Weiteren ist bei
vielen Anwendungen die Entdeckung von Ursache-Wirkung-Beziehungen
zwischen Variablen ein wichtiges Ziel. Dies führt zu einem vermehrten Be-
darf für kausale Inferenz.

Der Ausgangspunkt einer statistischen Analyse (welche Teil einer umfang-
reicheren wissenschaftlichen Studie sein kann) ist ein Trainingsdatensatz,
der zuvor gesammelt wurde. Oft nimmt man an, dass die Beobachtungen
die gleiche Verteilung haben und unabhängig voneinander sind. Zudem
wird angenommen, dass künftige Daten—für welche die Analyse gültig
sein sollte—der gleichen Verteilung wie die Trainingsdaten folgen. In mo-
dernen praktischen Anwendungen der Statistik und des maschinellen Ler-
nens sind diese Annahmen jedoch nicht immer erfüllt. In vielen Fällen sind
die gesammelten Daten auf eine Weise partitioniert. Allgemein formuliert
können die Daten unter verschiedenen “Umständen” oder in unterschied-
lichen “Umgebungen” erhoben worden sein, die zu Heterogenitäten in den
Trainingsdaten führen. Beispielsweise können die Daten an diversen geo-
grafischen Orten aufgezeichnet worden sein oder das Resultat mehrerer
Experimente sein. Ein weiterer Fall von partitionierten Daten kann dar-
aus resultieren, dass verschiedene Parteien die Daten erhoben haben, z.B.
unterschiedliche Institutionen.

Diese Heterogenitäten in den Trainingsdaten stellen eine Reihe von Her-
ausforderungen dar, weil viele klassische statistische Methoden möglicher-
weise nicht direkt anwendbar sind. Diese mögen rechnerisch zu ineffizi-
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ent für die potentiell grossen Datenmengen sein, die von verschiedenen
Parteien gesammelt wurden. Eine weitere Schwierigkeit kann durch Da-
tenschutzanforderungen entstehen, die den Austausch von Daten zwischen
verschiedenen Dateneigentümern verhindern. Zudem können weitere Kom-
plikationen daraus resultieren, dass die Verteilung von zukünftigen Daten
unter Umständen wieder etwas unterschiedlich von den Verteilungen ist,
die in den verschiedenen Partitionen der Trainingsdaten vorgefunden wur-
den. Dies führt in der Regel zu einer schlechten Generalisierung, wenn die
Analyse auf einem statistischen Schätzer beruht, welcher keine Robust-
heitseigenschaften in Bezug auf solche Verteilungsverschiebungen aufweist.
Auf der anderen Seite können partitionierte Daten auch eine Chance für
statistische Inferenz darstellen. In dieser Dissertation betrachten wir die
folgenden Herausforderungen und Chancen für statistische Inferenz, wenn
partitionierte Daten vorliegen.

– Wie können Daten, die in unterschiedlichen Umgebungen gesammelt
wurden, für kausale Inferenz genutzt werden? (Kapitel 3 und 4)

– Wie kann eine Gruppenstruktur in den Daten ausgenutzt werden um
verteilungsrobuste Schätzer zu erhalten? (Kapitel 5)

– Wie kann ein gemeinsames Modell aus Daten geschätzt werden, wenn
die Daten von verschiedenen Parteien erhoben wurden und die Da-
tenmenge zu gross ist um die Daten am selben Ort zu speichern?
(Kapitel 6) Wie kann dies auch unter Datenschutzanforderungen er-
reicht werden? (Kapitel 7)



Part I.

Introduction and
Background





Chapter 1.

Introduction

In recent years, we have witnessed a number of success stories in artificial
intelligence, machine learning and statistics. Notably, deep neural net-
works (DNNs) have achieved outstanding performance on prediction tasks
like visual object recognition (He et al., 2015; Krizhevsky et al., 2012;
Szegedy et al., 2015) and machine translation has improved considerably
when adopting neural network based systems (Wu et al., 2016). Famously,
DeepMind’s Alpha Go (Silver et al., 2016) beat the world champion Lee
Sedol at the ancient Asian board game Go. At that time, this accom-
plishment was believed not to be attainable until a decade later (Knight,
2016). Also in our daily lives, statistical methods and machine learning
models increase in impact as they gain traction in areas such as medicine.
For instance, models based on convolutional neural networks (CNNs) have
been reported to outperform the accuracy of dermatologists when classi-
fying images of skin lesions as being benign or malignant (Esteva et al.,
2017). While these are important advances, there are significant caveats
and challenges that remain to be addressed. Important statistical, compu-
tational and social questions related to stability and robustness as well as
privacy and fairness arise. In part II of this thesis, we propose a number of
methods using causal modeling to address the challenges of stability and
robustness. In part III, we focus on computational questions arising when
a model needs to be estimated from data held by different parties and we
also consider a setting where privacy considerations restrict the sharing of
the data in its original form. In the following, we give a brief introduction
to the topics and challenges addressed in this thesis.
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Figure 1.1.: Three different causal graphical models can give rise to the same
observational joint distribution of X and Y .

1.1. Causal models

In this work, we propose a number of methods that aim to infer causal
relations from observational data. Therefore, we briefly introduce some
properties of causal models here. A more formal introduction to causal
structure learning—the problem of trying to infer the underlying causal
graph from observational data—and related concepts is presented in Chap-
ter 2.
It is well-known that correlation does not imply causation. This point
is illustrated in Figure 1.1 where we consider the simple case of having
observed data from two random variables X and Y . The three different
causal graphical models shown in panels (a)–(c) can give rise to the same
observational joint distribution of X and Y . In this distribution X and Y
are strongly correlated but only in panel (c), X has a direct causal effect
on Y as illustrated by the arrow in the corresponding graph. X is then
also called a “(causal) parent” of Y . When Y causes X, as in panel (b),
X is a “(causal) child” of Y . The third possibility giving rise to the strong
dependence between X and Y we consider here is shown in panel (a) where
X and Y have a common cause Z. Z is called a confounder. When only
observing the data shown in the scatter plots in Figure 1.1, we cannot
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Figure 1.2.: When intervening on the predictor X, the conditional distribution
of Y |X = x changes in panels (a) and (b), compared to the observational case
shown in Figure 1.1. The differences can be best seen when comparing the fitted
regression lines. In panel (c), the conditional distribution of Y |X = x remains
invariant.

infer the underlying causal graph without making further assumptions.
One possibility to identify the data generating structure arises when we
have observed the system in different conditions or “environments”. This
is illustrated in Figure 1.2. When the distribution of X is manipulated ex-
ternally in the three considered models, we observe different effects in the
joint and conditional distributions. In this example, the external manip-
ulation consists of adding i.i.d. noise to X. In case of panels (a) and (b)
the conditional distribution of Y |X = x changes; in case of panel (c) it
stays invariant (the differences can be best seen when comparing the fitted
regression lines). In other words, only the causal model, i.e. the model in
which the target variable Y is predicted using its causal parent(s), contin-
ues to give valid predictions when we manipulate the distribution of the
predictor X externally.

In causal inference, these external manipulations are called “interventions”.
Mathematically, they can be formulated in different ways as discussed in
§2.2.1. Conceptually, interventions can be used to model different kinds of
changes in the joint distribution of the variables of interest. The property
that the causal model remains valid under interventions sets causal graph-



6 Chapter 1: Introduction

ical models apart from standard probabilistic graphical models. Causal
graphical models do not only describe an observational multivariate distri-
bution; they also describe the distributions induced by arbitrary and un-
seen interventions on variables in the graph. Consequently, causal graphi-
cal models allow us to reason about questions like what changes if a vari-
able is set to a particular value or what happens if the noise distribution
changes in a particular way. As such, causal graphical models constitute a
richer model class than purely probabilistic graphical models. Unsurpris-
ingly, learning causal models from data is a challenging task and always
relies on some underlying assumptions. We return to this point in more
detail in Chapter 2.

1.1.1. Robustness and interpretability

In the following, we outline a few challenges related to stability, robust-
ness and interpretability which can potentially be addressed using causal
models and reasoning.

Statistical learning and distributional robustness As learning causal
models from data is difficult, most current machine learning methods rely
on exploiting statistical associations only. While those models do not make
causal claims, their desiderata include properties like stability under in-
terventions or “domain changes” in the input data distribution, and often
their predictions need to be suitable for decision making. The latter pre-
supposes that the model allows to predict what happens under changes
or interventions in the system—something only a causal model can do.
Learning purely based on statistical associations can lead to an array of
problems and failures as the following example demonstrates. We use the
API offered by Clarifai (https://www.clarifai.com/) to classify the two
images of cows, shown in Figure 1.3(a) and Figure 1.3(d), respectively.
The first image shows a cow on green pasture, an environment we would
consider being its natural habitat. The second image shows a cow on a
beach—where they are typically not observed. Nonetheless, in both images
the cows are in the foreground of the respective image and clearly recogniz-
able as such. Yet, in the second case the image classification system fails
to output the label “cow” in the top 20 predictions. Furthermore, it does
not output related labels such as “mammal”, “cattle” or “animal”. This
example demonstrates that a powerful visual object recognition system is
not robust to a perturbation or domain change which here consists of a

https://www.clarifai.com/
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(a) (b) (c)

(d) (e) (f)

Figure 1.3.: Panels (b) and (c) show the classifications along with their esti-
mated probabilities, when presenting the image shown in panel (a). The label
“cow” is correctly returned as the most likely one. Panels (e) and (f) show the
classifications along with their estimated probabilities, when presenting the im-
age shown in panel (d)—a cow outside of its usual habitat. Neither the label
“cow” nor labels denoting related concepts appear among the top 20 predic-
tions. Retrieved on May 1st, 2018 using https://www.clarifai.com/demo. The
example is attributed to Pietro Perona.

https://www.clarifai.com/demo
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background not observed (or rarely observed) during training. In other
words, the image showing the cow on the beach comes from a distribu-
tion which differs from the training distribution and the system does not
perform well on such examples. However, generally speaking, we would
also like to achieve good performance on test distributions that differ—up
to a reasonable degree—from the training distribution. Informally, this is
the aim of distributional robustness. Next, we briefly discuss the relation
between distributional robustness and causal models.

Causal models, predictive accuracy and distributional robustness The
example shown in Figures 1.1 and 1.2 illustrates one of the defining ad-
vantages of a causal model. It is robust to interventions in the system: we
can intervene on all predictors except for the target itself and the causal
model remains valid. This is a strong guarantee but may come at the
price of predictive accuracy. In many cases, it is advantageous for predic-
tive performance to use other variables as predictors, too. For instance,
often the mutual information between a causal child of the target and the
target itself is large which can be exploited for prediction. At the same
time, the set of possible perturbations and changes in the system of in-
terest might not be arbitrary and exploiting knowledge of what sort of
changes are possible might yield an interesting trade-off between the two
regimes of (a) only using the causal parents as predictors and (b) allowing
for an arbitrary set of input variables. One approach to address the brit-
tleness of statistical models to domain changes is to use distributionally
robust inference in favor of ordinary empirical risk minimization. More
formally, let Y ∈ Y be a target of interest. Typically Y = R for regres-
sion or Y = {1, . . . ,K} in classification with K classes. Let X ∈ X with
X = Rp be a predictor. The prediction ŷ for y, given X = x, is of the form
fθ(x) for a suitable function fθ with parameters θ ∈ Rd. For regression,
fθ(x) ∈ R, whereas for classification fθ(x) corresponds to the conditional
probability distribution of Y |X = x for Y ∈ {1, . . . ,K}. Let ` be a suit-
able loss that maps y and ŷ = fθ(x) to R+. Let (xi, yi) for i = 1, . . . , n be
the sample from an unknown training distribution over X ×Y with density
P (X,Y ). ŷi = fθ(xi) denotes the prediction for yi. In standard empirical
risk minimization, the goal is to minimize the expected loss or risk

argminθ EP (X,Y )

[
`(Y, fθ(X))

]
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which is approximated by the empirical loss as

θ̂ = argminθ
1
n

n∑
i=1

[
`
(
yi, fθ(xi)

)]
+ γ · pen(θ).

The term pen(θ) is a complexity penalty to prevent overfitting, for ex-
ample a ridge term ‖θ‖22 on the parameters of the model. In empirical
risk minimization, the implicit assumption is that the test data follows the
same distribution as the training data. Distributionally robust inference,
in contrast, allows for a distribution shift between training and test data.
Specifically, in distributionally robust inference the aim is to learn

argminθ sup
F∈F

EF (`(Y, fθ(X)))

for a given set F of distributions. The set F is the set of distributions on
which one would like the estimator to achieve a guaranteed performance
bound. Using a causal framework, we can define the set F of distribu-
tions as being induced by interventions on variables in the causal model
(Heinze-Deml and Meinshausen, 2017b; Rothenhäusler et al., 2018a). For
instance, one may try to achieve robustness against a set of distributions
that are generated by certain kinds of interventions on a specific subset
of variables in the causal generative model. This may allow to obtain the
trade-off between the two regimes mentioned above as we can model the
set of interventions that can be realistically expected to occur while ex-
cluding implausible ones. This approach may improve predictive accuracy
in contrast to allowing for arbitrary changes in the system.

To reiterate, in distributional robustness we are interested in achieving
good performance for a set of distributions F . In broad terms, this dif-
fers from “classical” robust statistics as follows. In robust statistics, the
training data is assumed to consist of observations coming from two dif-
ferent distributions, P and Q, where (1 − ε)n observations come from P ,
εn observations are generated by Q and ε is assumed to be small. The
distribution of interest is P , in the sense that we want to minimize the
expected loss

argminθ EP (X,Y )

[
`(Y, fθ(X))

]
where the expectation is with respect to P only, even though some training
observations come from Q (Hampel et al., 2005).
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Z

X Y

(a)

Department

Gender Admission decision

(b)

Figure 1.4.: Panel (a): X and Y are both caused by the unobserved variable
Z. The common cause Z is called a confounder. Panel (b): Gender influences
the department choice and potentially the admission decision. To detect the
existence of a gender bias, the direct effect of gender on the admission decision
needs to be assessed. If we fail to condition on department choice in the analysis,
the total effect of gender on admission is estimated.

Causality and observational data bias Robustness properties constitute
just one attractive property of causal methods and we now turn to fur-
ther important advantages of causal models compared to purely statistical
approaches which relate to analyzing and understanding biases in obser-
vational data.

Traditionally, in statistics the methods for establishing causal relations
rely on carefully designed randomized studies. However, in many real-life
applications we do not have sufficient control over the system to perform
such experiments. Problems like the following can only be solved meaning-
fully by causal inference: What would need to be changed in a developing
country to have the fertility rate drop to Western levels? What is the phe-
notypical change if some genes in a cell are knocked-out? Yet, genes cannot
be randomly assigned to different groups of people and factors like ‘infant
mortality rate’ are highly complex and cannot be manipulated in isolation.
In other cases, the required experiments would be unethical, e.g. if they
expose an experimental group to dangers. This gives rise to the need for
causal inference from observational data. As many of today’s training data
sets were not collected through carefully designed experiments but do in
fact consist of observational data, they are subject to a number of biases
and heterogeneities that do not fit into the classical statistical framework
of having i.i.d. data from a carefully designed randomized control trial.

To illustrate one common problem of this kind, we now look at confounding
in more detail. Confounding occurs when two variables of interest X and
Y are both caused by a third variable Z (cf. Figure 1.4(a)). The common
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Figure 1.5.: Panel (a) shows the linear regression line when not accounting for
the hidden common cause Z: X and Y are positively correlated. In panel (b)
we see that the slope of the linear regression fit is reversed when accounting for
the hidden common cause Z.

cause Z is called a confounder. When the causal graph has this structure,
it is important to condition on Z when assessing the influence of X on Y .
Figure 1.5 shows a toy dataset generated from a graph where X and Y are
both caused by Z and X causes Y . In Figure 1.5(a), Z is not accounted
for in the regression of Y on X, indicating a positive causal effect of X on
Y (presupposing that X is a parent of Y ). When conditioning on Z, we
observe a sign flip. Now, the causal effect of X on Y seems to be negative.

In practice, the literature on adjustment (e.g. Pearl (2009)) treats what
covariates need to be conditioned on to estimate causal effects accurately.
For this, it is crucial to know the true underlying causal graph structure.
One famous real-world example for this are the 1973 UC Berkeley grad-
uate admissions. When not accounting for the department an applicant
applied for, the data suggests the existence of a bias against female ap-
plicants. When conditioning on the former, however, it becomes apparent
that female applicants tend to apply to more competitive departments.
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This explains the bias suggested when looking at the aggregated data and
overall there is even small bias in favor of women (Bickel et al., 1975).
Figure 1.4(b) shows one plausible causal graph for this setting. As the
graph structure shows, this is not an example of confounding. For the
total causal effect no adjusting is necessary. However, to detect the exis-
tence of a gender bias, the direct effect of gender on the admission decision
needs to be assessed, i.e. the part of the total effect that is not mediated
via other variables. Cases where conditioning as opposed to not condition-
ing on other variables lead to sign flips of the estimated causal effects are
instances of Simpson’s paradox (Simpson, 1951). For another example, see
for instance Peters et al. (2017, Example 6.16). Phenomena like Simpson’s
paradox or confounding are even more challenging when the causal graph
structure is unknown, common causes are unobserved or, as we discuss
next, when the input variables lack interpretability, e.g. if they consist of
measurements such as pixel intensities.

Interpretability In a classical statistical setting, the starting point is often
a dataset which consists of a number of input variables having a semantic
meaning. The analyst can then reason about the underlying causal graph
or estimate it from the data under suitable assumptions. When working
with data such as images, text or speech, the individual input variables
consist of “raw perceptual data”. Higher-level concepts are now latent
variables to be inferred by the statistical method. While this challenge is
not unique to deep learning, the paradigm of learning models “end-to-end”
from raw data, using as little imposed structure as possible, has become
very popular in machine learning with the surge of deep learning (Bottou,
2018). CNNs perform so-called “automatic feature extraction”, meaning
that their input is raw data—e.g. raw pixel values—from which the model
extracts features in the various layers of the neural network. As neural
networks excel at prediction tasks, one is easily drawn to believe that the
representations learnt by the various network layers capture the relevant
features to which we can attribute a semantic meaning. However, since
the model is learnt end-to-end, it is intransparent what latent features are
extracted and they cannot be accessed in isolation. While there is a grow-
ing literature on attempting to explain the meaning of features extracted
by neural networks (e.g. Olah et al. (2017) and references therein), inter-
pretability remains a challenging problem. In particular, the problem of
confounding discussed above may exacerbate in case of automatic feature
extraction from raw data. Even if all latent variables manifest themselves
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in the input data (e.g. images), it is unclear how they are used by the
model and therefore, there is no possibility to adjust for the correct set of
variables.

1.2. Computation

In addition to the areas outlined above, parts of this thesis study the
following computational questions.

Data efficiency We start with the observation that visual object recog-
nition is based on “training on more images than a human can see”, ma-
chine translation relies on “training on more text than a human can read”
and playing Atari games requires “playing more games than any teenager
can endure” (Bottou, 2018). In other words, the state-of-the-art machine
learning systems referenced above require very large amounts of training
data. Humans, on the other hand, are able to learn invariances from a
few instances of the same object only. This observation gives rise to two
questions: How can we make methods more efficient in terms of the re-
quired samples? And how can we design algorithms that scale with large
datasets?

Large-scale data While many modern machine learning methods require
large amounts of training data, larger and larger amounts of data are in fact
collected across industry and scientific disciplines. Iterative and stochastic
machine learning methods allow to handle cases where the input data does
not fit into memory of one machine. However, in some applications the
input data is even too large to fit into the storage of one machine. This
necessitates the development of distributed machine learning methods.

Privacy Last but not least, as more data is collected and stored across
industries and institutions, important questions of privacy arise. For in-
stance in medical applications, highly personal data is collected which can
be invaluable for scientific discovery. At the same time, from a privacy
standpoint it may be unacceptable to share this data in undisguised form.
The statistical challenge is to develop methods that guard an individual’s
privacy while sacrificing as little useful information contained in the data
as possible.
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Figure 1.6.: Multiple environments: The environment is discrete and not ran-
dom.

1.3. Learning from partitioned data

In statistics and machine learning, one often presupposes the existence of
a sample of training observations which are independently and identically
distributed. Furthermore, it is often assumed that the test data will again
follow the same distribution. As we have already noted above, this classical
setting of working with i.i.d. datasets does not apply in many real-world
applications. Heterogeneities in the data can arise in a multitude of differ-
ent ways and often the available data is partitioned in some form, yielding
a joint dataset whose observations may not be independently and iden-
tically distributed. While this seems cumbersome at first, heterogeneous
data can also represent an opportunity for inference as the differences be-
tween the partitions or groups can be informative. Below we outline the
settings considered throughout this thesis.

Multiple environments When data has been recorded in different do-
mains or “environments”, it is typically “horizontally-partitioned”. This
means that we observe the same set of variables or the same data type,
say images, in different conditions. For instance in biology, these can arise
through explicit experimentation. In other settings, external changes in
the system may take place, lying outside of the control of the analyst. Of
course, a combination of both experimental and observational data is also
possible. Furthermore, there can be time shifts in the distribution or the
distribution of unobserved confounders changes between different settings
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XE = Continent

Education

GDP

Y = Total fertility rate

Infant mortality rate

Figure 1.7.: Multiple environments: The environment arises through a node in
the causal graph. The true causal graph is unknown; here we show one potential
causal graph for the considered problem setting.

or environments. In many cases, the heterogeneities in the different data
partitions can be modeled as interventions in the causal graph describing
the system under study. For instance, as illustrated in Figure 1.6, the
different environments can be discrete. In each environment, a different
set of interventions occurred in the causal graph, giving rise to different
distributions of the observed variables. Figure 1.7 is taken from the anal-
ysis of a real-world example studied in Chapter 4. It shows one potential
causal graph for the considered problem setting and illustrates a different
way to conceptualize how data from multiple environments arises. Here,
we consider the problem of total fertility rate modeling where data from
different countries is available. The continent the country is located on
can be chosen to encode the environment (while other choices may also be
suitable). We model this by treating the environment as a variable XE

that belongs to the (unknown) causal graph to be inferred. In general, this
formulation allows for discrete as well as continuous environments.

Data grouped by identity Another type of partitioning consists of group-
ing observations by the identity of the underlying object or person. For
instance, when considering images of individuals, we can group those im-
ages together that show the same person. We can then exploit information
how observations within a group differ compared to observations from dif-
ferent groups. In other words, we can split the total variance in the data
into within-group and between-group components. In some settings, it
may be plausible that directions associated with a large within-group or
between-group variance might be subject to distributional changes in the
future. We can then penalize the estimation procedure to achieve robust-
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Figure 1.8.: Data grouped by identity: The data show grouped observations in
two red boxes. These observations show the same person.

ness with respect to such perturbations.

Vertically-partitioned data At the beginning of §1.1.1 we noticed that
complex machine learning methods require large amounts of training data.
While such datasets are available to some institutions and companies to-
day, this availability cannot be presupposed in all domains. Oftentimes
data is collected by different parties and therefore partitioned in various
ways. It may then be “horizontally-partitioned” or it can be “vertically-
partitioned”. The latter implies that different data owners hold different
sets of features but have information about the same set of observations
or individuals. This is illustrated in Figure 1.9. Learning a joint model is
often desirable as this allows to adjust for variables held by different par-
ties, potentially accounting for confounders. However, privacy concerns
may restrict the sharing of the data in undisguised form.

1.4. Outline and contributions

Chapter 2 introduces causal concepts such as interventions and counterfac-
tuals, and reviews recently proposed causal structure learning algorithms.
We compare their underlying assumptions and perform a simulation study
for an empirical evaluation.

Chapter 3 proposes backShift, a method that learns linear causal cyclic
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Figure 1.9.: Vertically partitioned data: Each party holds a subset of the total
number of features, containing the data from the same set of individuals. Some
or all parties have access to Y .

models from data collected in multiple environments, arising through shift
interventions. backShift exploits invariances in second moments and
allows for the presence of latent confounders.

Chapter 4 extends Invariant Causal Prediction (ICP), proposed in Peters
et al. (2016), to nonlinear models. Again, we rely on data collected in
different environments. We exploit invariant conditional distributions to
estimate the causal parents of a target variable of interest. (Nonlinear) ICP
has the guarantee of controlling the type-I-error rate α, i.e. the probability
of wrongly declaring a set of variables to have a direct effect on the target
is bounded by α.

Chapter 5 proposes conditional variance regularization (CoRe) to achieve
distributional robustness with respect to domain shifts arising through
interventions on latent “style” features. Here, we exploit observations that
are grouped by the identity of the underlying object or person. CoRe
penalizes directions in the feature space where the within-group variance
is non-zero as the distribution of these, conditional on the target of interest,
is believed to change in the future.

Chapters 6 and 7 address estimation in a distributed computation setting.
Specifically, the data is vertically partitioned and the proposed methods—
Dual-Loco and PriDE—make use of random projections to allow for
a one-shot communication scheme between the different machines or par-
ties. PriDE extends Dual-Loco by additionally considering privacy con-
straints. In this context, the notion of (ε, δ)-distributed differential privacy
is introduced.
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1.4.1. Publications

This thesis is cumulative and contains the manuscripts listed in Table 1.1.
We indicate the associated chapters of this dissertation and also whether
the manuscript has been published.

1Christina Heinze-Deml and Dominik Rothenhäusler are joint first authors of Rothen-
häusler et al. (2015) and contributed equally. Christina Heinze-Deml wrote the imple-
mentation of the algorithm, along with the R package backShift, and conducted all
experiments. Together with Jonas Peters and Nicolai Meinshausen, Christina Heinze-
Deml wrote the main text. Dominik Rothenhäusler’s main contributions were the
theoretical result regarding identifiability, the methodological result that the cycle-
product assumption guarantees uniqueness of the estimator, and the algorithmic result
that the cycle-product restriction can be cast as a linear program.
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Chapter 2.

Causal structure learning

Graphical models can represent a multivariate distribution in a convenient
and accessible form as a graph. Causal models can be viewed as a spe-
cial class of graphical models that not only represent the distribution of
the observed system but also the distributions under external interven-
tions. They hence enable predictions under hypothetical interventions,
which is important for decision making. The challenging task of learning
causal models from data always relies on some underlying assumptions.
We discuss several recently proposed structure learning algorithms and
their assumptions, and compare their empirical performance under vari-
ous scenarios.

2.1. Introduction

A graphical model is a family of multivariate distributions associated with
a graph, where the nodes in the graph represent random variables and
the edges encode allowed conditional dependence relationships between
the corresponding random variables (Lauritzen, 1996). A causal graphical
model is a special type of graphical model, where edges are interpreted
as direct causal effects. This interpretation facilitates predictions under
arbitrary (unseen) interventions, and hence the estimation of causal effects
e.g. Pearl (2009), Spirtes et al. (2000), and Wright (1934). This ability to
make predictions under arbitrary interventions sets causal models apart
from standard models. We refer to Didelez (2017) for an introductory
overview of causal concepts and graphical models.1

1Causal inference is also possible without graphs, using for example the Neyman-
Rubin potential outcome model (e.g., Rubin, 2005). Single world intervention graphs
(SWIGs) (Richardson and Robins, 2013) provide a unified framework for potential
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Structure learning is a model selection problem in which one estimates or
learns a graph that best describes the dependence structure in a given data
set (Drton and Maathuis, 2017). Causal structure learning is the special
case where one tries to learn the causal graph or certain aspects of it, and
this is what we focus on in this paper. We describe various algorithms
that have been developed for this purpose under different assumptions.
We then compare the algorithms in a simulation study to investigate their
performances in settings where the assumptions of a particular method are
met, but also in settings where they are violated.
The outline of the paper is as follows. §2.2 discusses the basic causal
model and its various assumptions. §2.3 describes different target graphical
objects, such as directed acyclic graphs or equivalence classes thereof, and
describes algorithms that can learn them under certain assumptions. §2.4
describes the simulation set-up, the evaluation scheme, and the results.
We close with a brief discussion in §2.5.

2.2. The model

We formulate the model as a structural causal model (Pearl, 2009). In
particular, we consider a linear structural equation model (e.g., Wright,
1921) for a p-dimensional random variable X = (X1, . . . , Xp)t under noise
contributions ε = (ε1, . . . , εp)t:

Xj ←
p∑
k=1

βj,kXk + εj for j = 1, . . . , p, (2.1)

or in vector notation,

X ← BX + ε, (2.2)

where B is a p× p matrix with entries Bj,k = βj,k. Thus, the distribution
of X is determined by the choice of B and the distribution of ε.
This model is called structural since it is interpreted as the generating
mechanism of X (emphasized by the assignment operator ←), where each
structural equation is assumed to be invariant to possible changes in the
other structural equations. This is also referred to as autonomy (Frisch,
1938; Haavelmo, 1944). This assumption is key for causality, since it

outcome and graphical approaches to causality.
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allows the derivation of the distribution of X under external interventions.
For example, a gene knockout experiment can be modeled by replacing the
structural equation of the relevant gene, while keeping the other structural
equations unchanged. If the gene knockout experiment has significant off-
target effects (e.g., Cho et al., 2014), then this approach is problematic
with respect to the autonomy assumption. A possible remedy consists of
modeling the experiment as a simultaneous intervention on all genes that
are directly affected by the experiment.

2.2.1. Interventions

In this paper, we consider the following two types of interventions:

(a) A do-intervention (also called “surgical" intervention): This inter-
vention is modeled by replacing the structural equation

Xj ←
p∑
k=1

βj,kXk + εj by Xj ← Zj ,

where Zj is the (either deterministic or random) value that variable
Xj is forced to take in this intervention.

(b) An additive intervention (also called “shift” intervention): This in-
tervention consists of adding additional noise, modeled by replacing
the structural equation

Xj ←
p∑
k=1

βj,kXk + εj by Xj ←
p∑
k=1

βj,kXk + εj + Zj ,

where Zj is the additional noise (again either deterministic or ran-
dom) that is added to variable Xj . Shift interventions are stan-
dard in the econometric literature on instrumental variables with
binary treatments where the additive shift of an exogenous instru-
ment changes the probability of a binary treatment variable (Angrist
et al., 1996). Shift interventions are also natural in biological settings
where an inhibitor or enhancer can amplify or decrease the presence
of, for example, mRNA in a cell. If the concentrations are amplified
by a fixed factor, then this corresponds to an additive shift in the
log-concentrations.
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2.2.2. Graphical representation

We can represent the model defined in (2.1) as a directed graph G, where
each variable Xk is represented by a node k, k = 1, . . . , p, and there is an
edge from node k to node j (k 6= j) if and only if βj,k 6= 0. Thus, the
parents pa(j,G) of node j in G correspond to the random variables that
appear on the right hand side of the jth structural equation. In other
words, Xpa(j,G) := {Xi : i ∈ pa(j,G)} are the variables that are involved
in the generating mechanism of Xj and are also called the direct causes of
Xj (with respect to X1, . . . , Xp). In this sense, edges in G represent direct
causal effects and G is also called a causal graph. The nonzero βj,k’s can be
depicted as edge weights of G, yielding a weighted graph. This weighted
graph and the distribution of ε fully determine the distribution of X.

The graph G is called acyclic if it does not contain a cycle2. A directed
acyclic graph is also called a DAG. A directed graph is acyclic if and only
if there is an ordering of the variables, called a causal order, such that the
matrix B in Eq. (2.2) is triangular. In terms of the causal mechanism,
acyclicity means that there are no feedback loops. We refer to §2.2.5 for
more details on cycles.

2.2.3. Factorization and truncated factorization

If ε1, . . . , εp are jointly independent and G is a DAG, then the probability
density function f(·) of X factorizes according to G:

f(x) = f(x1, . . . , xp) =
p∏
i=1

f(xi|xpa(i,G)). (2.3)

Moreover, f is then called Markov with respect to G. This means that for
pairwise disjoint subsets A, B and S of V (S = ∅ is allowed) the following
holds: if A and B are separated by S in G according to a graphical crite-
rion called d-separation (Pearl, 2009), then XA and XB are conditionally
independent given XS in f .

One can model an intervention on Xj by replacing the conditional density
f(xj |xpa(j)) by its conditional density under the intervention, keeping the
other terms unchanged. For example, a do-intervention on Xj yields the
2A cycle (sometimes also called directed cycle) is formed by a directed path from i to
j together with the edge j → i.
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following factorization:

f(x|do(xj)) = g(xj)
p∏

i=1,i6=j
f(xi|xpa(i)),

where g(·) is the density of Zj (allowed to be a point mass). When in-
tervening on several variables simultaneously, one simply conducts such
replacements for all intervention variables. The resulting factorization is
known as the g-formula (Robins, 1986), the manipulated density (Spirtes
et al., 2000), or the truncated factorization formula (Pearl, 2009).

2.2.4. Counterfactuals

We note that the structural causal model is often discussed in the context
of counterfactual outcomes. In particular, if one assumes that ε is identical
under different interventions, the model defines a joint distribution on all
possible counterfactual outcomes. The problematic aspect is clearly that
the realizations of the noise under different interventions can never be
observed simultaneously and any statement about the joint distribution of
the noise under different interventions is thus in principle unfalsifiable and
untestable (Dawid, 2000). Without assuming anything on the joint noise
distributions under different interventions, a causal model can equivalently
be formulated via structural equations, a graphical model, or potential
outcomes (Imbens, 2014; Richardson and Robins, 2013). For the causal
structure learning methods discussed in this paper, no assumption on the
joint noise distribution is necessary and we chose to use the structural
equation framework for ease of exposition.

2.2.5. Assumptions

We will consider various assumptions for the model defined by Eq. (2.2):

Causal sufficiency. Causal sufficiency refers to the absence of hidden
(or latent) variables (Spirtes et al., 2000). There are two common options
for the modeling of hidden variables3: They can be modeled explicitly as
3In this manuscript we look at the behavior of various methods under the presence and
absence of latent confounding. Throughout, we do not allow hidden selection variables,
that is, unmeasured variables that determine if a unit is included in the data sample.
More details on selection variables can be found in, e.g., Spirtes et al. (1999).
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nodes in the the structural equations, or they can manifest themselves as
a dependence between the noise terms (ε1, . . . , εp), where the noise terms
are assumed to be independent in the absence of latent confounding.

Causal faithfulness. We saw in §2.2.3 that the distribution of X gener-
ated from Eq. (2.2) is Markov with respect to the causal DAG, meaning
that if A and B are d-separated by S in the causal DAG, then XA and
XB are conditionally independent given XS . The reverse implication is
called causal faithfulness. Together, the causal Markov and causal faith-
fulness assumptions imply that d-separation relationships in the causal
DAG have a one-to-one correspondence with conditional independencies
in the distribution.

Acyclicity. Cycles can be used to model instantaneous feedback mecha-
nisms. In the presence of cycles, the structural equations (2.1) are typically
interpreted (implicitly) as a dynamical system. There are various assump-
tions that can be made about the strength of cycles in the graph4:

(i) Existence of a unique equilibrium solution of Eq. (2.2). Is there a
unique solution X for each realization ε such that X = BX + ε or,
equivalently, (I − B)X = ε, where I is the p-dimensional identity
matrix. Existence of a unique equilibrium requires that I − B is
invertible. In this case the equilibrium is

X = (I −B)−1ε.

(ii) Convergence to a stable equilibrium. Iterating Eq. (2.2) from any
starting value X(0) for X (and for a fixed and constant realization
of the noise ε), we can form an iteration X(k) = BX(k−1) + ε for
k ∈ N. The question is then whether the iterations converge to
the equilibrium, that is, whether limk→∞X(k) = (I − B)−1ε. This
convergence requires that the spectral radius of B is smaller than 1.

(iii) Existence of a stable equilibrium under do-interventions. This re-
quires in addition that the cycle product (the maximal product of
the coefficients along all loops in the graph) is smaller than 1, see for
example Rothenhäusler et al. (2015).

DAGs fulfill all three assumptions (i)-(iii) above trivially as their spectral
radius and cycle product both vanish identically.
4We exclude self-loops (an edge from a node to itself), as models would be unidentifiable
if self-loops were allowed (see, e.g., Rothenhäusler et al., 2015).
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Gaussianity of the noise distribution. We consider both Gaussian
distributions and t-distributions with various degrees of freedom.

One or several experimental settings. We consider both homoge-
neous data, where all observations are from the same experimental set-
ting, and heterogeneous data, where the observations come from different
experimental settings. In particular, we consider settings with unknown
shift-interventions and known do-interventions.

Linearity. While the assumptions and the models have been discussed
in the context of linear models, the ideas can be extended to nonlinear
models and to discrete random variables to various degrees.

2.3. Methods

Since different structure learning methods output different types of graph-
ical objects, we first discuss the various target graphical objects in §2.3.1.
To conduct a comparison based on such different graphical targets, we fo-
cus on certain ancestral relationships that can be read off from all objects
(see §2.3.2). The different algorithms and their assumptions are discussed
in §2.3.3, and their assumptions are summarized in Table 2.1.

2.3.1. Target graphical objects

The structure learning methods that we will compare use different types
of data, from purely observational data to data with clearly labelled inter-
ventions, from not allowing hidden variables and cycles to allowing both
of these. As a result, the different methods learn the underlying causal
graph at different levels of granularity. At the finest level of granularity,
a method learns the underlying directed graph (DG) from Eq. (2.1). If
the method assumes acyclicity (no feedback), then the target object is a
directed acyclic graph (DAG).

Under the model of Eq. (2.2) with acyclicity, independent and multivari-
ate Gaussian errors and i.i.d. observational data, the underlying causal
DAG is generally not identifiable. Instead, one can identify the Markov
equivalence class of DAGs, that is, the set of DAGs that encode the same
set of d-separation relationships (Pearl, 2009). A Markov equivalence can
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be conveniently summarized by another graphical object, called a com-
pleted partially directed acyclic graph (CPDAG) (Andersson et al., 1997;
Chickering, 2002a). A CPDAG can be interpreted as follows: i → j is in
the CPDAG if i → j in every DAG in the Markov equivalence class, and
i b bj in the CPDAG if there is a DAG with i→ j and a DAG with i← j
in the Markov equivalence class. Thus, edges of the type b b represent
uncertainty in the edge orientation.
DAGs are not closed under marginalization. In the presence of latent vari-
ables, some algorithms therefore aim to learn a different object, called a
maximal ancestral graph (MAG) (Richardson and Spirtes, 2002). In gen-
eral, MAGs contain three types of edges: i j, i→ j and i↔ j, but in our
settings without selection variables (see footnote 3), i j does not occur.
A MAG encodes conditional independencies via m-separation (Richard-
son and Spirtes, 2002). Every DAG with latent variables can be uniquely
mapped to a MAG that encodes the same conditional independencies and
the same ancestral relationships among the observed variables. Ancestral
relationships can be read off from the edge marks of the edges: a tail mark
i * j means that i is an ancestor of j in the underlying DAG, and an
arrowhead i←*j means that i is not an ancestor of j in the underlying
DAG, where ∗ represents any of the possible edge marks (again assuming
no selection variables).
Several MAGs can encode the same set of conditional independence re-
lationships. Such MAGs form a Markov equivalence class, which can be
represented by a partial ancestral graph (PAG) (Ali et al., 2009; Richard-
son and Spirtes, 2002). A PAG can contain the following edges: i → j,
i j, i bj, i ↔ j, i b→j, and i b bj, but the edges i j and i bj do
not occur in our setting without selection variables. The interpretation
of the edge marks is as follows. A tail mark means that this tail mark is
present in all MAGs in the Markov equivalence class, and an arrowhead
means that this arrowhead is present in all MAGs in the Markov equiv-
alence class. A circle mark represents uncertainty about the edge mark,
in the sense that there is a MAG in the Markov equivalence class where
this edge mark is a tail, as well as a MAG where this edge mark is an
arrowhead.

2.3.2. Ancestral and parental relationships

To compare methods that output the different graphical objects discussed
above, we focus on the following two basic questions for any variable Xj ,
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j ∈ {1, . . . , p}, and the underlying causal DAG G:
(a) What are the direct causes of Xj , or equivalently, what is paG(j)?

The parents are important, since they completely determine the dis-
tribution ofXj . Hence, the conditional distributionXj |Xpa(j) is con-
stant, even under arbitrary interventions on subsets of X{1,...,p}\{j}.
The set of parents is unique in this respect and allows to make ac-
curate predictions about Xj even under arbitrary interventions on
all other variables. Moreover, the (possible) parents of Xj can be
used to estimate (bounds on) the total causal effect of Xj on any of
the other variables (Maathuis et al., 2009, 2010; Nandy et al., 2017a;
Stekhoven et al., 2012).

(b) What are the causes of Xj , or equivalently, what is the set of an-
cestors anG(j) (the set of nodes from which there is a directed path
to j in G)? The ancestors are important, since any intervention on
ancestors of Xj has an effect on the distribution of Xj , as long as no
other do-type interventions happen along the path. Thus, if we want
to manipulate the distribution of Xj , we can consider interventions
on subsets of XanG(j).

2.3.3. Considered methods

We include at least one algorithm from each of the following five main
classes of causal structure learning algorithms: constraint-based methods,
score-based methods, hybrid methods, methods based on structural equa-
tion models with additional restrictions, and methods exploiting invariance
properties. Limiting ourselves to algorithms with an implementation in R
(R Core Team, 2017), we obtain the following selection of methods, with
assumptions summarized in Table 2.1:

– Constraint-based methods: PC (Spirtes et al., 2000), rankPC (Harris
and Drton, 2013), FCI (Spirtes et al., 2000), and rankFCI5

– Score-based methods: GES (Chickering, 2002b), rankGES (Nandy
et al., 2017b), GIES (Hauser and Bühlmann, 2012), and rankGIES6

– Hybrid methods: MMHC (Tsamardinos et al., 2006)
– Structural equation models with additional restrictions: LiNGAM
(Shimizu et al., 2006)

5rankFCI is obtained by using rank correlations in FCI, analogously to rankPC.
6rankGIES is obtained by using rank correlations in GIES, analogously to rankGES.
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Table 2.1.: The assumptions (see §2.2.5) and output format for the different
methods. (For example, PC requires acyclicity, causal faithfulness and causal
sufficiency, and LiNGAM requires non-Gaussian errors.) Please note that lin-
earity is not explicitly listed, but all versions of the algorithms based on rank-
correlations allow certain types of nonlinearities. The different output formats
are: DG (directed graph), DAG (directed acyclic graph), PDAG (partially di-
rected acyclic graph), CPDAG (completed partially directed graph) and PAG
(partial ancestral graph).
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– Exploiting invariance properties: backShift (Rothenhäusler et al.,
2015)

We have not included methods for time series data, mixed data, or Bayesian
methods. Other excluded methods that make use of interventional data
include Cooper and Yoo (1999) and Tian and Pearl (2001) and Eaton and
Murphy (2007), where the latter does not require knowledge of the precise
location of interventions in a similar spirit to Rothenhäusler et al. (2015).
Hyttinen et al. (2012) also makes use of intervention data to learn feed-
back models, assuming do-interventions, while Peters et al. (2016) permits
to build a graph nodewise by estimating the parental set of each node
separately.



2.3 Methods 31

2.3.3.1. (rank)PC and (rank)FCI

The PC algorithm (Spirtes et al., 2000) is named after its inventors Pe-
ter Spirtes and Clark Glymour. It is a constraint-based algorithm that
assumes acyclicity, causal faithfulness and causal sufficiency. It conducts
numerous conditional independence tests to learn about the structure of
the underlying DAG. In particular, it learns the CPDAG of the underly-
ing DAG in three steps: (i) determining the skeleton, (ii) determining the
v-structures, and (iii) determining further edge orientations. The skeleton
of the CPDAG is the undirected graph obtained by replacing all directed
edges by undirected edges. The PC algorithm learns the skeleton by start-
ing with a complete undirected graph. For k = 0, 1, 2, . . . and adjacent
nodes i and j in the current skeleton, it then tests conditional indepen-
dence of Xi and Xj given XS for all S ⊆ adj(i) \ {j} with |S| = k, and
for all S ⊆ adj(j) \ {i} with |S| = k. The algorithm removes an edge if
a conditional independence is found (that is, the null hypothesis of inde-
pendence was not rejected at some level α), and stores the corresponding
separating set S. Step (i) stops if the size of the conditioning set k equals
the degree of the graph.

In step (ii), all edges are replaced by b b, and the algorithm considers all
unshielded triples, that is, all triples i b bj b bk where i and k are not
adjacent. Based on the separating set that led to the removal of i k, the
algorithm determines whether the triple should be oriented as a v-structure
i→ j ← k or not. Finally, in step (iii) some additional orientation rules are
applied to orient as many of the remaining undirected edges as possible.

The PC algorithm was shown to be consistent in certain sparse high-
dimensional settings (Kalisch and Bühlmann, 2007). There are various
modifications of the algorithm. We use the order-independent version of
Colombo and Maathuis (2014). The PC algorithm does not impose any
distributional assumptions, but conditional independence tests are easiest
in the binary and multivariate Gaussian settings. Harris and Drton (2013)
proposed a version of the PC algorithm for certain Gaussian copula dis-
tributions. We include this algorithm in our comparison and denote it by
rankPC. There is also a version of the PC algorithm that allows cycles
(Richardson and Spirtes, 1999), but we did not find an R implementation
of it.

The Fast Causal Inference (FCI) algorithm Spirtes et al. (2000, 1999) is
a modification of the PC algorithm that drops the assumption of causal
sufficiency by allowing arbitrarily many hidden variables. The output of
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the FCI algorithm can be interpreted as a PAG (Zhang, 2008a). The first
step of the FCI algorithm is the same as step (i) of the PC algorithm, but
the FCI algorithm needs to conduct additional tests to learn the correct
skeleton. There are also additional orientation rules, which were shown to
be complete in Zhang (2008b). Since the additional tests can slow down
the algorithm considerably, faster adaptations have been developed, such
as RFCI (Colombo et al., 2012) and FCI+ (Claassen et al., 2013). Colombo
et al. (2012) proved high-dimensional consistency of FCI and RFCI. The
idea of Harris and Drton (2013) can also be applied to FCI, leading to
rankFCI.

2.3.3.2. (rank)GES and (rank)GIES

Greedy equivalence search (GES) (Chickering, 2002b) is a score-based al-
gorithm that assumes acyclicity, causal faithfulness and causal sufficiency.
Score-based algorithms use the fact that each DAG can be scored in re-
lation to the data, typically using a penalized likelihood score. The algo-
rithms then search for the DAG or CPDAG that yields the optimal score.
Since the space of possible graphs is typically too large, greedy approaches
are used. In particular, GES learns the CPDAG of the underlying causal
DAG by conducting a greedy search on the space of possible CPDAGs.
Its greedy search consists of a forward phase, where it conducts single
edge additions that yield the maximum improvement in score, and then
a backward phase, where it conducts single edge deletions. Despite the
greedy search, Chickering (2002b) showed that the algorithm is consis-
tent under some assumptions (for fixed p). Nandy et al. (2017b) showed
high-dimensional consistency of GES.

Greedy interventional equivalence search (GIES) (Hauser and Bühlmann,
2012) is an adaptation of GES to settings with data from different known
do-interventions. Due to the additional information from the interventions,
its target graphical object is a so-called interventional Markov equivalence
class, which is a sub-class of the Markov equivalence class of the underlying
DAG and can be seen as a partially directed acyclic graph (PDAG).

Nandy et al. (2017b) showed a close connection between score-based and
constraint-based methods for multivariate Gaussian data. As a result, the
copula methods that can be used for the PC and FCI algorithms, can be
transferred to the GES and GIES algorithms. We include these algorithms
in our comparison, and refer to them as rankGES and rankGIES.
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2.3.3.3. MMHC

Max-Min Hill Climbing (MMHC) (Tsamardinos et al., 2006) is a hybrid al-
gorithm that assumes acyclicity, causal faithfulness, and causal sufficiency.
Hybrid algorithms combine ideas from both constraint-based and score-
based approaches. In particular, MMHC first learns the CPDAG skeleton
using the constraint-based Max-Min Parents and Children (MMPC) algo-
rithm and then performs a score-based hill-climbing DAG search to de-
termine the edge orientations. Its output is a DAG. Nandy et al. (2017b)
showed that the algorithm is not consistent for fixed p, due to the restricted
score-based phase.

2.3.3.4. LINGAM

LiNGAM (Shimizu et al., 2006) is an acronym derived from “linear non-
gaussian acyclic models” and has been designed for model (2.2) with non-
Gaussian noise. It assumes acyclicity and causal sufficiency. It is based on
the fact that X = Aε with A = (I−B)−1. This can be viewed as a source
separation problem, where identification of the matrix B is equivalent to
identification of the mixture matrix A. It was shown in Comon (1994)
that whenever at most one of the components of ε is Gaussian, the mix-
ing matrix is identifiable up to scaling and permutation of columns, via
independent component analysis (ICA). This observation lies at the basis
of the LiNGAM method. There are various modifications of LiNGAM
, for example to allow for hidden variables (Hoyer et al., 2008) or cycles
(Lacerda et al., 2008). There is also a different implementation called Di-
rectLiNGAM (Shimizu et al., 2011) that uses a pairwise causality measure
instead of ICA. Since only ICA-based LiNGAM assuming acyclicity and
causal sufficiency is available in R, we include this version in our compar-
ison.

2.3.3.5. BACKSHIFT

backShift (Rothenhäusler et al., 2015) makes use of non-i.i.d. structure
in the data and unknown shift interventions on variables. Assume that the
data are divided into distinct blocks E . Let Γe ∈ Rp×p be the empirical
Gram matrix of the p variables in block e ∈ E of the data. In the absence
of shift-interventions the expected values of Γe would be identical for all
e ∈ E . Under unknown-shift interventions the Gram matrices can change
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from block to block. However, for the true matrix B of causal coefficients
from Eq. (2.2), it can be shown that the expected value of

(I −B)(Γe − Γe′)(I −B)t

is a diagonal matrix for all e, e′ ∈ E , even in the presence of latent con-
founding. backShift estimates I − B (and hence B) by a joint diag-
onalization of all Gram differences Γe − Γe′ for all pairs e, e′ ∈ E . A
necessary and sufficient condition for identifiability of the causal matrix B
is as follows. Let ηe,k be the variance of the noise interventions at variable
k ∈ {1, . . . , p} in setting e ∈ E . Full identifiability requires that we can
find for each pair of variables (k, l) two settings e, e′ ∈ E such that the
product ηe,kηe′,l is not equal to the product ηe,l, ηe′,k. A consequence of
this necessary and sufficient condition for identifiability is |E| ≥ 3, that is,
we need to observe at least three different blocks of data for identifiability.

2.4. Empirical evaluation

We conducted an extensive simulation study to evaluate and compare the
methods, paying particular attention to sensitivity of the methods to model
violations. We are also interested in realistic boundaries (in terms of the
number of variables, the sample size, and other simulation parameters) be-
yond which we cannot expect a reasonable reconstruction of the underlying
graph.

In §2.4.1, we describe the data generating mechanism used in the simula-
tion study. §2.4.2 discusses the framework for comparison of the considered
methods, and §2.4.3 contains the results.

The code is available in the R package CompareCausalNetworks (Heinze-
Deml and Meinshausen, 2017a) along with further documentation. All
methods are called through the interface offered by the CompareCausal
Networks package which depends on the packages backShift (Heinze-
Deml, 2017), bnlearn (Scutari, 2010) and pcalg (Kalisch et al., 2012)
for the code of the considered methods. In particular, backShift is in
backShift, MMHC is in bnlearn, and all other considered methods are
in pcalg.
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2.4.1. Data generation

We generate data sets that differ with respect to the following charac-
teristics: the number of observations n, the number of variables p, the
expected number of edges in B, the noise distribution, the correlation
of the noise terms, the type, strength and number of interventions, the
signal-to-noise ratio, the presence and strength of a cycle in the graph, and
possible model misspecifications in terms of nonlinearities. The function
simulateInterventions() from the package CompareCausalNetworks im-
plements the simulation scheme that we describe in more detail below.

We first generate the adjacency matrix B. Assume the variables with
indices {1, . . . , p} are causally ordered. For each pair of nodes i and j,
where i precedes j in the causal ordering, we draw a sample from Bern(ps)
to determine the presence of an edge from i to j. After having sampled
the non-zero entries of B in this fashion, we sample their corresponding
coefficients from Unif(−1, 1). As described below, the edge weights are
later rescaled to achieve a specified signal-to-noise ratio. We exclude the
possibility of B = 0, that is, we resample until B contains at least one
non-zero entry.

Second, we simulate the interventions. We let nI denote the total number
of (interventional and observational) settings that are generated. Let I ∈
{0, 1}nI×p be an indicator matrix, where an entry Ie,k = 1 indicates that
variable k is intervened on in setting e and a zero entry indicates that
no intervention takes place. For each variable k, we first set the k-th
column I·k ≡ 0 and then sample one setting e′ uniformly at random and
set Ie′k = 1. In other words, each variable is intervened on in exactly
one setting. It is possible that there are settings where no interventions
take place, corresponding to zero rows of the matrix I, representing the
observational setting. Similarly, there may be settings where interventions
are performed on multiple variables at once. After defining the settings,
we sample (uniformly at random with replacement) what setting each data
point belongs to. So for each setting we generate approximately the same
number of samples. In any generated data set, the interventions are all
of the same type, that is, they are either all shift or all do-interventions
(with equal probability). In both cases, an intervention on a variable Xj

is modeled by sampling Zj from a t-distribution as Zj ∼ σZ · t(dfε) (cf.
§2.2.1). If σZ = 0 is sampled, it is taken to encode that no interventions
should be performed. In that case, all interventional settings correspond
to purely observational data.
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Third, the noise terms ε are generated by first sampling from a p-dimensional
zero-mean Gaussian distribution with covariance matrix Σ, where Σi,i = 1
and Σi,j = ρε. The magnitude of ρε models the presence and the strength
of hidden variables (cf. §2.2.5). For a positive value of ρ the correla-
tion structure corresponds to the presence of a hidden variable that af-
fects each observed variable. To steer the signal-to-noise ratio, we set
the variance of the noise terms of all nodes except for the source nodes
to ω, where 0 < ω ≤ 1. Stepping through the variables in causal or-
der, for each variable Xj that has parents, we uniformly rescale the edge
weights βj,k in the jth structural equation such that the variance of the
sum

∑p
k=1 βj,kXk + εj is approximately equal to one in the observational

setting. In other words, the parameter ω steers what proportion of the
variance stems from the noise εj . The signal-to-noise ratio can then be
computed as SNR = (1− ω)/ω (in the absence of hidden variables).
Fourth, if the causal graph shall contain a cycle, we sample two nodes i
and j such that adding an edge between them creates a cycle in the causal
graph. We then compute the coefficient for this edge such that the cycle
product is 1. Subsequently, we sample the sign of the coefficient with equal
probability and set the magnitude by scaling the coefficient by wc, where
0 < wc < 1.
Fifth, we transform the noise variables to obtain a t-distribution with
dfε degrees of freedom. X is then generated as X = (I − B)−1ε in the
observational case; under a shift interventions X can be generated as X =
(I − B)−1(ε + Z) where the coordinates of Z are only non-zero for the
variables that are intervened on. Under a do-intervention on Xj , βj,k for
k = 1, . . . , p are set to 0 to yield B′ and εj is set to Zj to yield ε′j . We
then obtain X as X = (I −B′)−1ε′.
Sixth, if nonlinearity is to be introduced, we marginally transform all vari-
ables as Xj ← tanh(Xj).
Lastly, we randomly permute the order of the variables inX before running
the algorithms. Methods that are order-dependent can therefore not ex-
ploit any potential advantage stemming from a data matrix with columns
ordered according to the causal ordering or a similar one.

2.4.1.1. Considered settings

We sample the simulation parameters uniformly at random from the fol-
lowing sets.
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– Sample size n ∈ {500, 2000, 5000, 10000}

– Number of variables p ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 50, 100}

– Edge density parameter ps ∈ {0.1, 0.2, 0.3, 0.4}

– Number of interventions nI ∈ {3, 4, 5}

– Strength of the interventions σZ ∈ {0, 0.1, 0.5, 1, 2, 3, 5, 10}

– Degrees of freedom of the noise distribution dfε ∈ {2, 3, 5, 10, 20, 100}

– Strength of hidden variables ρε ∈ {0, 0.1, 0.2, 0.5, 0.8}

– Proportion of variance from noise ω ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9}

– Strength of cycle wc ∈ {0.1, 0.25, 0.5, 0.75, 0.9}

In total, we consider 842 different configurations. For each sampled con-
figuration, we generate 20 different causal graphs with one data set per
graph. Appendix 2.B summarizes the number of simulation settings for
different values of the simulation parameters.

2.4.2. Evaluation methodology

As the targets of inference differ between the considered methods, we eval-
uate a method’s accuracy for recovering (a) parental and (b) ancestral
relations (see also §2.3.2). For each of these, we look at a method’s per-
formance for predicting (i) the existence of a relation, (ii) the absence of
a relation and (iii) the potential existence of a relation. We formulate
these different categories as so-called queries which are further described
in §2.4.2.1.

An additional challenge in comparing a diverse set of methods involves
choosing the options and the proper amount of regularization that deter-
mines the sparsity of the estimated structure. We address this challenge
in two ways. First, we run different configurations of each method’s tun-
ing parameters and options as detailed in the Appendix in §2.A. In the
evaluation of the methods for a certain metric, we choose the method’s
configuration that yielded the best results under the considered metric in
each simulation setting (averaged over the twenty data sets for each set-
ting). This means that the results are optimistically biased, but we found
that the ranking was largely insensitive to the tuning parameter choices.
Secondly, we use a subsampling scheme (stability ranking) so that each
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method outputs a ranking of pairs of nodes for a given query. For in-
stance, the first entry in this ranking for the existence of parental relations
is the edge most likely to be present in the underlying DAG. Further details
are given in §2.4.2.2 and §2.4.2.3.

2.4.2.1. Considered queries

For both the parental and the ancestral relations, we consider three queries.
The existence of a relation is assessed by the queries isParent and
isAncestor; the absence of a relation is assessed by the queries isNoParent
and isNoAncestor; the potential existence of a relation is assessed by the
queries isPossibleParent and isPossibleAncestor.
All queries return a connectivity matrix which we denote by A. The in-
terpretation of the entries of A differ according to the considered query:

Parental relations
1. isParent This query cannot be easily answered by methods that

return a PAG. For the other graphical objects, Ai,j = 1 if i → j in
the estimated graph, and Ai,j = 0 otherwise.

2. isPossibleParent Entry Ai,j = 1 if there is an edge of type i * j or
i b *j in the estimated graph. Concretely, for methods estimating
DGs or DAGs Ai,j = 1 if i → j in the estimated graph, for PDAGs
and CPDAGs Ai,j = 1 if i→ j or i b bj in the estimated graph, and
for PAGs Ai,j = 1 if i→ j, i bj, i j, i b→j, i b bj or ib j in the
estimated graph. Otherwise, Ai,j = 0.

3. isNoParent The complement of the query isPossibleParent: If
the latter returns the connectivity matrix A′, then entry Ai,j = 1 if
A′i,j = 0 and Ai,j = 0 if A′i,j = 1.

Ancestral relations
1. isAncestor Entry Ai,j = 1 if there is a path from i to j with edges

of type * . For example, for DGs, DAGs and CPDAGs this reduces
to a directed path. Otherwise, Ai,j = 0.

2. isPossibleAncestor Entry Ai,j = 1 if there is a path from i to j
such that no edge on the path points towards i (possibly directed
path), and Ai,j = 0 otherwise. In general, such a path can contain
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edges of the type i * j and i b *j. For DAGs and DGs this again
reduces to a directed path, and for CPDAGs it is path with edgesb b and →.

3. isNoAncestor The complement of the query isPossibleAncestor:
If the latter returns the connectivity matrix A′, then entry Ai,j = 1
if A′i,j = 0 and Ai,j = 0 if A′i,j = 1.

2.4.2.2. Stability ranking

To obtain a ranking of pairs of nodes for a given query, we run the method
under consideration on nsim = 100 random subsamples of the data, where
each subsample contains approximately n/2 data points. More specifically,
we use the following stratified sampling scheme: In each round, we draw
samples from 1/

√
2 · nI settings, where nI denotes the total number of

(interventional and observational) settings. In each chosen setting s, we
sample 1/

√
2 · ns observations uniformly at random without replacement,

where ns denotes the number of observations in setting s. After a random
permutation of the order of the variables, we run the method on each
subsample and evaluate the method’s output with respect to the considered
query.

For each subsample k and a particular query q, we obtain the corresponding
connectivity matrix A. We can then rank all pairs of nodes i, j according to
the frequency πi,j ∈ [0, 1] of the occurrence of Ai,j = 1 across subsamples.
Ties between pairs of variables can be broken with the results of the other
queries—for instance, if the query is isParent, ties are broken with counts
for isPossibleParent. This stability ranking scheme is implemented in
the function getRanking() in the package CompareCausalNetworks. Fur-
ther details about the tie breaking scheme are given in the package docu-
mentation.

2.4.2.3. Metrics

For a chosen query and cut-off value of t ∈ (0, 1), we select all pairs (i, j) for
which πi,j ≥ t. This leads to a true positive rate TPRt = |{(i, j) : πi,j ≥
t} ∩ S|/|S|, where S := {(i, j) : Ai,j = 1} is the set of correct answers (for
example the set of true direct causal effects for the query isParent). The
corresponding false positive rate is FPRt = |{(i, j) : πi,j ≥ t} ∩ Sc|/|Sc|,
with Sc := {(i, j) : Ai,j = 0}. The four metrics we consider are as follows.
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(i) AOC. The standard area-under-curve (AUC) measures the area be-
low the graph (FPRt,TPRt) ∈ [0, 1]2 as t is varied between 0 and
1. Under random guessing, the area is 0.5 in expectation and the
optimal values is 1. Here, to make rates comparable, we look at the
area-above-curve defined as AOC = 1−AUC, such that low values
are preferable.

(ii) Equal-error-rate (E-ER). The equal-error-rate measures the false-
negative rate FNRt = 1 − TPRt at the cutoff t where it equals the
false-positive-rate FPRt, that is, for the value t ∈ (0, 1) for which
1−TPRt = FPRt. The advantage over AOC is that it is a real error
rate and is also identical whether we look at the missing edges or at
the true edges. For random guessing, the expected value is 0.5 and
does not depend on the sparsity of the graph.

(iii) No-false-positives-error-rate (NFP-ER). The no-false-positives-
error-rate measures the false negative rate FNRt = 1−TPRt for the
minimal cutoff t at which FPRt = 0, that is, for the largest num-
ber of selections under the constraint that not a single false positive
occurs. The expected value under random guessing depends on the
sparsity of the graph.

(iv) No-false-negatives-error-rate (NFN-ER). The no-false-negatives-
detection-rate measures the false-positive rate FPRt = 1−TNRt for
the maximally large cutoff t at which FNRt = 0, that is, for the
smallest number of selections possible that not a single false nega-
tive occurs. The expected value under random guessing depends on
the sparsity of the graph.

All four metrics are designed so that lower values are better.

2.4.3. Results

Below, we mostly present results for the isAncestor query and the metric
E-ER. Results for other queries and metrics are similar in nature.

2.4.3.1. Multi-dimensional scaling

For each simulation setting and each method, we compute the equal-error-
rate for the isAncestor query. This yields a (no. of simulation settings)
× (no. of methods) matrix with E-ER values. The Euclidean distance
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Figure 2.1.: A multi-dimensional scaling visualization of the methods consid-
ered. The distance between two methods is taken to be the Euclidean dis-
tance between the equal-error-rate of both methods across all settings for the
isAncestor query. The MDS plot uses least-squares scaling.

between two columns in this matrix is a distance between methods. Simi-
larly, the Euclidean distance between two rows in the matrix is a distance
between simulation settings.

Figure 2.1 shows an MDS plot based on distances between the methods,
using least-squares scaling. We see that the rank-based methods rankFCI,
rankPC, rankGES and rankGIES are close to their counterparts FCI, PC,
GES and GIES. It is somewhat unexpected that MMHC is closer to GIES
and rankGIES than to PC and GES. The two methods that have the largest
average distance to the other methods are LiNGAM and backShift .
This is perhaps expected as these methods are of a very different nature
than the other methods.

Figure 2.2 shows an MDS plot based on distances between the simula-
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Figure 2.2.: A multi-dimensional scaling visualization of the simulation settings.
The distance between two simulation settings is taken to be the correlation dis-
tance between the equal-error-rate of both simulation settings across all methods
for the isAncestor query. Each setting is shown as a sample point with color
coding for the best performing method. A filled symbol indicates that the per-
formance metric was smaller than 0.3 and an un-filled symbol that it was above.
MDS uses least-squares scaling.

tion settings, again using least-squares scaling. Thus, each point in the
plot now corresponds to a simulation setting. The points are colored ac-
cording to the best performing method. We see that the regions where
either LiNGAM or backShift are optimal are relatively well separated,
while the regions where GIES, MMHC, PC, GES, FCI or their rank-based
versions are optimal, do not show a clear separation, as perhaps already
expected from the previous result in Figure 2.1.

2.4.3.2. Pairwise comparisons

Next, we investigate whether there are methods that dominate the others.
We compare the equal-error-rate across all different settings in Table 2.2.
It is apparent that no such dominance is visible among different pairs of
methods. A block-structure is visible, however, with similar groups as in
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Table 2.2.: A pairwise comparison. Each column shows the percentage of set-
tings where methods were better by a margin of at least 0.1 in the equal-error-rate
compared to method in the given column. For example, LiNGAM beats PC in
14% of the settings, while PC beats LiNGAM by the given marge in 29% of the
settings. There is no globally dominant algorithm and a block-structure among
related algorithms is visible.
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PC 0 6 10 16 1 1 1 0 0 14 20
rankPC 0 0 9 10 1 2 0 0 0 11 17
FCI 1 9 0 5 1 1 1 0 0 11 17

rankFCI 0 1 0 0 1 1 0 0 0 10 16
GES 5 15 16 23 0 0 1 0 0 16 26

rankGES 6 15 16 24 0 0 1 0 1 16 25
GIES 18 29 26 35 10 11 0 0 2 25 35

rankGIES 26 36 34 44 17 17 4 0 1 27 38
MMHC 21 33 30 40 16 17 5 0 0 23 36

LiNGAM 29 34 34 38 27 27 19 14 14 0 31
backShift 18 23 24 29 16 16 9 5 7 13 0
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Figure 2.1. One block is formed by the constraint-based methods {PC,
rankPC, FCI, rankFCI}: the equal-error-rate of constraint-based meth-
ods is hardly ever substantially different. The second block is formed by
the score-based approaches {GES, rankGIES} and the third given by the
extensions and hybrid methods {GIES, rankGIES, MMHC}. This latter
block is of interest as MMHC makes fewer assumptions about the available
data and does not need to know where interventions occurred. LiNGAM
and backShift , on the other hand, do not fit nicely into any block in
the empirical comparison and are more orthogonal to the other algorithms
in that they perform substantially better and substantially worse in many
settings, if compared to the other approaches.

Table 2.3.:Marginal rank correlations between equal-error-rate performance (for
the isAncestor query) on the one hand and parameters settings on the other
hand (shown only if absolute value exceeds 0.1, multiplied by 100 and rounded
to the nearest multiple of 5). A positive value for p indicates, for example, that
the method becomes less successful with increasing p.
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n 15 10 -15
p 45 45 25 25 40 35 35 40 45 40 75

dfε 15
ρε 50 60 55 60 55 55 65 50 50 35
ω 10 10 10 10 15 10 20 15 10 20
ps 20 15 20 15 25 25 25 30 30 15 25

do-interv -10 -10
nI
σZ -35 -25 -35 -30 -35 -35 -25 -35 -30 -30

cyclic -15 -15 35
wc -15 -15 35

nonlinear 20
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Figure 2.3.: The average equal-error-rate for the isAncestor query, for each
method as a function for the four most important parameters (besides the num-
ber of variables p). The left column shows results for small graphs (p ≤ 5), the
middle column intermediate graphs (5 < p ≤ 10), and the right column for large
graphs (p > 10). The color coding is identical to previous plots.

2.4.3.3. Which causal graphs can be estimated well?

Which graphs can be estimated by some or all methods? To start an-
swering the question, we show in Table 2.3 the rank correlation between
the equal-error-rate for the isAncestor query and parameter settings for
all methods. We see that the number of variables p and the strength of
the hidden variables ρε show the highest correlations. In both cases the
correlation is positive, indicating that increased p or ρε leads to higher
equal-error-rates. Other parameters that show substantial correlations are
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Figure 2.4.: The average runtime in seconds of each method on a logarithmic
scale as a function of the number of variables p on a logarithmic scale. A minute
and one hour is shown as horizontal bars. The time includes the stability ranking.
A single run is faster by a factor of 100 for all methods. (A single run of
backShift already includes ten subsamples.)

ω, ps and σZ . For ω and ps we again see positive correlations, indicating
that large noise contributions and denser graphs are associated with higher
equal-error-rates. The correlation with σZ is negative for all methods ex-
cept for LiNGAM . While it is expected that backShift benefits from
strong interventions, the benefit for for example PC and FCI is unexpected.

We note that the strong effect of ρε can be explained by the fact that we
created a correlation ρε between all pairs of noise variables. It is not sur-
prising that this has a larger impact than adding for example a single cycle
to the graph (which only seems to substantially affect the performance of
LiNGAM ).

Figure 2.3 shows the average equal-error-rate for the isAncestor query
for each method as a function of the simulation parameters ρε, ω, ps and
σZ as identified from Table 2.3, split according to the number of variables
p in the graph (small, medium-sized and large graphs). Again, we see that
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the size of the graph p and the strength of the hidden variables ρε have
the strongest effect on performance, with the exception that backShift
is not much affected by ρε (but which is also perhaps less competitive in
the absence of latent confounding). The strength of the interventions, the
sparsity of the graph and the signal-to-noise ratio also affect the average
performance but perhaps to a lesser extent.
Some other observations:
(a) The most surprising outcome is perhaps that the number of samples

n has only a very weak influence on the success despite it being varied
between a few hundred and twenty thousand.

(b) Sparser graphs with fewer edges are consistently easier to estimate
with all methods than dense graphs.

(c) Less heavy tails in the error distribution have an adverse effect on the
performance of LiNGAM only, as it makes use of higher moments.
LiNGAM is also most affected when each variable undergoes a non-
linear transformation.

(d) A cycle in the graph again has a detrimental effect on LiNGAM
(which is likely different in the version of LiNGAM that allows for
cycles (Lacerda et al., 2008)).

2.4.3.4. Bounds on performance

The outcome of the simulations show a large degree of variation. To further
investigate the role of the number of variables p, we show in Figure 2.5 the
bounds of the performance as a function of p for the isAncestor query.
Specifically, for each value of p, we consider the range of the four considered
metrics when varying all other parameters for each method and show the
lower and upper bounds in the figure.
The upper bounds show the worst performance across all parameters while
holding p constant. It can be compared to the expected value under ran-
dom guessing which is 0.5 for the E-ER and AOC metrics and 1 for NFP-
ER and NFN-ER.
The lower bound reveals in contrast the error rates in the best setting for
a given p. The metric NFP-ER seems more difficult to keep at reasonable
levels than NFN-ER, with the exception of LiNGAM which has very small
values of NFP-ER in some settings up to p ≈ 20. The NFN-ER rate is
typically lower than NFP-ER as there are typically more non-ancestral
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pairs in the graphs (due to not connected components for example) as
ancestral pairs. This is confirmed by the third row of panels in Figure 2.5
which shows the error rates for the isNoAncestor query. Here the roles
of NFN-ER and NFP-ER are reversed due to the relative abundance of
non-ancestral pairs.

2.5. Discussion

We have tried to give a contemporaneous overview of structure learning for
causal models that are available in R and conducted an extensive empirical
comparison. It is noteworthy that we found a clustering of methods into
constraint-based, score-based, and other approaches that do not fall neatly
into these categories. Methods from the same class behave empirically very
similar. We also tried to quantify to what extent methods are negatively
or positively affected by various parameters such as the size of the graph
to learn, sparsity and strength of hidden variables. The most important
parameters in our set-up are the size of the graph p and the strength of
the hidden variables ρε. An easily accessible interface to all methods is
contributed as R package CompareCausalNetworks.
The results suggest that more efficient algorithms would be desirable, both
from a computational and from a statistical point-of-view. As it stands, the
success of the algorithms depends on both the assumptions made about the
data generating process (and how accurate these assumptions are) and the
specific implementation details of each algorithm. It would be worthwhile
if the relative importance of these two factors could be separated better
by more modular estimation methods and perhaps more work on worst-
case bounds. These latter bounds would allow to quantify to what extent
the empirically poor statistical scalability is inherent to the problem or a
consequence of choices made in the considered algorithms.
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Figure 2.5.: The range of equal-error rate (E-ER) for all methods as a function
of the number of variables p for the isAncestor query (top left). Top right
shows the same for the area-above-curve (AOC), while second row shows the
no-false-positives-error-rate (NFP-ER) and no-false-negatives-error-rate (NFN-
ER). The last row contains the corresponding plots to the second row but for
the isNoAncestor query.



50 Chapter 2: Causal structure learning

Appendix 2.A Considered tuning parameter
configurations

All methods were run through the interface offered by the CompareCausal
Networks package (Heinze-Deml and Meinshausen, 2017a). Below we also
indicate the R packages from which the CompareCausalNetworks package
calls the respective methods.

backShift Code available from the R package backShift (Heinze-Deml,
2017).

– covariance ∈ {TRUE, FALSE}

– ev ∈ {0.1, 0.25, 0.5} · p
– threshold = 0.75
– nsim = 10
– sampleSettings = 1/sqrt(2)
– sampleObservations = 1/sqrt(2)
– nodewise = TRUE

– tolerance = 10−4

GES and rankGES Code available from the R packages pcalg (Kalisch
et al., 2012) (GES) and CompareCausalNetworks (rankGES).

– phase = ’turning’

– score = GaussL0penObsScore

– λ ∈ {0.05 logn, 0.5 logn, 5 logn}
– adaptive = "none"

– maxDegree = integer(0)

GIES and rankGIES Code available from the R packages pcalg (Kalisch
et al., 2012) (GIES) and CompareCausalNetworks (rankGIES).

– phase = ’turning’

– score = GaussL0penObsScore
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– λ ∈ {0.05 logn, 0.5 logn, 5 logn}
– adaptive = "none"

– maxDegree = integer(0)

FCI and rankFCI Code available from the R packages pcalg (Kalisch
et al., 2012) (FCI) and CompareCausalNetworks (rankFCI).

– conservative = FALSE and maj.rule = FALSE

– conservative = TRUE and maj.rule = FALSE

– conservative = FALSE and maj.rule = TRUE

– alpha ∈ {0.001, 0.01, 0.1}
– indepTest = gaussCItest

– skel.method = "stable"

– m.max = Inf

– pdsep.max = Inf

– rules = rep(TRUE,10)

– NAdelete = TRUE

– doPdsep = TRUE

– biCC = FALSE

MMHC Code available from the R package bnlearn (Scutari, 2010).

– λ ∈ {0.05 logn, 0.5 logn, 5 logn}
– alpha ∈ {0.001, 0.01, 0.1}
– whitelist = NULL

– blacklist = NULL

– test = NULL – corresponds to correlation
– score = NULL – corresponds to BIC
– B = NULL

– restart = 0

– perturb = 1
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– max.iter = Inf

– optimized = TRUE

– strict = FALSE

PC and Rank PC Code available from the R packages pcalg (Kalisch
et al., 2012) (PC) and CompareCausalNetworks (rankPC).

– conservative = FALSE and maj.rule = FALSE

– conservative = TRUE and maj.rule = FALSE

– conservative = FALSE and maj.rule = TRUE

– alpha ∈ {0.001, 0.01, 0.1}

– indepTest = gaussCItest

– NAdelete = TRUE

– m.max = Inf

– u2pd = "relaxed"

– skel.method = "stable"

– solve.confl = FALSE

Appendix 2.B Simulation settings

The results in this work are based on 842 unique simulation settings. The
tables below show for each parameter in the data generation scheme how
many settings were generated for each considered value for the given pa-
rameter.

Sample size

n 500 2000 5000 10000
# of settings 231 200 217 194

Number of variables
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p 2 3 4 5 6 7 8 9 10 12 15 20 50 100
# of settings 71 89 84 77 62 60 74 68 62 76 60 43 8 8

Edge density parameter

ps 0.1 0.2 0.3 0.4
# of settings 202 226 200 214

Number of settings

nI 3 4 5
# of settings 271 275 296

Intervention type

shift intervention do-intervention
# of settings 417 425

Strength of the interventions

σZ 0 0.1 0.5 1 2 3 5 10
# of settings 111 105 102 105 106 98 116 99

Degrees of freedom of the noise distribution

dfε 2 3 5 10 20 100
# of settings 140 136 147 140 144 135

Strength of hidden variables

ρε 0 0.1 0.2 0.5 0.8
# of settings 161 164 166 179 172
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Proportion of variance from noise

ω 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
# of settings 116 85 88 110 85 91 82 91 94

Settings with cycles
no cycles cycles

# of settings 576 266

Strength of cycle

wc 0 0.1 0.25 0.5 0.75 0.9
# of settings 576 56 51 50 55 54

Settings with model misspecification

no model misspecification model misspecification
# of settings 715 127
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Invariance-based Causal
Learning





Chapter 3.

backShift: Learning causal cyclic
graphs from unknown shift
interventions

We propose a simple method to learn linear causal cyclic models in the
presence of latent variables. The method relies on equilibrium data of
the model recorded under a specific kind of interventions (“shift interven-
tions”). The location and strength of these interventions do not have to
be known and can be estimated from the data. Our method, called back-
Shift, only uses second moments of the data and performs simple joint
matrix diagonalization, applied to differences between covariance matrices.
We give a sufficient and necessary condition for identifiability of the sys-
tem, which is fulfilled almost surely under some quite general assumptions
if and only if there are at least three distinct experimental settings, one of
which can be pure observational data. We demonstrate the performance
on some simulated data and applications in flow cytometry and financial
time series.

3.1. Introduction

Discovering causal effects is a fundamentally important yet very challeng-
ing task in various disciplines, from public health research and sociological
studies, economics to many applications in the life sciences. There has
been much progress on learning acyclic graphs in the context of structural
equation models (Bollen, 1989), including methods that learn from obser-
vational data alone under a faithfulness assumption (Chickering, 2002b;
Hauser and Bühlmann, 2012; Maathuis et al., 2009; Spirtes et al., 2000),
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exploiting non-Gaussianity of the data (Hoyer et al., 2008; Shimizu et al.,
2011) or non-linearities (Mooij et al., 2011). Feedbacks are prevalent in
most applications, and we are interested in the setting of Hyttinen et al.
(2012), where we observe the equilibrium data of a model that is charac-
terized by a set of linear relations

x = Bx + e, (3.1)

where x ∈ Rp is a random vector and B ∈ Rp×p is the connectivity matrix
with zeros on the diagonal (no self-loops). Allowing for self-loops would
lead to an identifiability problem, independent of the method. See §3.B in
the Appendix for more details on this setting. The graph corresponding to
B has p nodes and an edge from node j to node i if and only if Bi,j 6= 0.
The error terms e are p-dimensional random variables with mean 0 and
positive semi-definite covariance matrix Σe = E(eeT ). We do not assume
that Σe is a diagonal matrix which allows the existence of latent variables.
The solutions to (3.1) can be thought of as the deterministic equilibrium
solutions (conditional on the noise term) of a dynamic model governed by
first-order difference equations with matrix B in the sense of Lauritzen
and Richardson (2002). For well-defined equilibrium solutions of (3.1), we
need that I − B is invertible. Usually we also want (3.1) to converge to
an equilibrium when iterating as x(new) ← Bx(old) + e or in other words
limm→∞Bm ≡ 0. This condition is equivalent to the spectral radius of B
being strictly smaller than one (Lacerda et al., 2008). We will make an
assumption on cyclic graphs that restricts the strength of the feedback.
Specifically, let a cycle of length η be given by (m1, . . . ,mη+1 = m1) ∈
{1, . . . , p}1+η and mk 6= m` for 1 ≤ k < ` ≤ η. We define the cycle-
product CP(B) of a matrix B to be the maximum over cycles of all lengths
1 < η ≤ p of the path-products

CP(B) := max
(m1,...,mη,mη+1) cycle

1<η≤p

∏
1≤k≤η

∣∣Bmk+1,mk

∣∣ . (3.2)

The cycle-product CP(B) is clearly zero for acyclic graphs. We will assume
the cycle-product to be strictly smaller than one for identifiability results,
see Assumption (A) below. The most interesting graphs are those for which
CP(B) < 1 and for which the spectral radius of B is strictly smaller than
one. Note that these two conditions are identical as long as the cycles
in the graph do not intersect, i.e., there is no node that is part of two
cycles (for example if there is at most one cycle in the graph). If cycles
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do intersect, we can have models for which either (i) CP(B) < 1 but the
spectral radius is larger than one or (ii) CP(B) > 1 but the spectral radius
is strictly smaller than one. Models in situation (ii) are not stable in the
sense that the iterations will not converge under interventions. We can
for example block all but one cycle. If this one single unblocked cycle has
a cycle-product larger than 1 (and there is such a cycle in the graph if
CP(B) > 1), then the solutions of the iteration are not stable1. Models in
situation (i) are not stable either, even in the absence of interventions. We
can still in theory obtain the now instable equilibrium solutions to (3.1)
as (I −B)−1e and the theory below applies to these instable equilibrium
solutions. However, such instable equilibrium solutions are arguably of
little practical interest. In summary: all interesting feedback models that
are stable under interventions satisfy both CP(B) < 1 and have a spectral
radius strictly smaller than one. We will just assume CP(B) < 1 for the
following results.

It is impossible to learn the structure B of this model from observational
data alone without making further assumptions. The LiNGAM approach
has been extended in Lacerda et al. (2008) to cyclic models, exploiting a
possible non-Gaussianity of the data. Using both experimental and inter-
ventional data, Scheines et al. (2010) and Hyttinen et al. (2012) could show
identifiability of the connectivity matrix B under a learning mechanism
that relies on data under so-called “surgical” or “perfect” interventions.
In their framework, a variable becomes independent of all its parents if it
is being intervened on and all incoming contributions are thus effectively
removed under the intervention (also called do-interventions in the classi-
cal sense of Pearl (2009)). The learning mechanism makes then use of the
knowledge where these “surgical” interventions occurred. Eberhardt et al.
(2010) also allow for “changing” the incoming arrows for variables that are
intervened on; but again, Eberhardt et al. (2010) requires the location of
the interventions while we do not assume such knowledge. Peters et al.
(2016) consider a target variable and allow for arbitrary interventions on
all other nodes. They neither permit hidden variables nor cycles.

Here, we are interested in a setting where we have either no or just very
limited knowledge about the exact location and strength of the interven-
tions, as is often the case for data observed under different environments

1The blocking of all but one cycle can be achieved by do-interventions on appropriate
variables under the following condition: for every pair of cycles in the graph, the
variables in one cycle cannot be a subset of the variables in the other cycle. Otherwise
the blocking could be achieved by deletion of appropriate edges.
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(see the example on financial time series further below) or for biological
data (Jackson et al., 2003; Kulkarni et al., 2006). These interventions
have been called “fat-hand” or “uncertain” interventions (Eaton and Mur-
phy, 2007). While Eaton and Murphy (2007) assume acyclicity and model
the structure explicitly in a Bayesian setting, we assume that the data in
environment j are equilibrium observations of the model

xj = Bxj + cj + ej , (3.3)

where the random intervention shift cj has a mean and covariance Σc,j .
The location of these interventions (or simply the intervened variables)
are those components of cj that are not zero with probability one. Given
these locations, the interventions simply shift the variables by a value de-
termined by cj ; they are therefore not “surgical” but can be seen as a
special case of what is called an “imperfect”, “parametric” (Eberhardt
and Scheines, 2007) or “dependent” intervention (Korb et al., 2004) or
“mechanism change” (Tian and Pearl, 2001). The matrix B and the error
distribution of ej are assumed to be identical in all environments. In con-
trast to the covariance matrix for the noise term ej , we do assume that
Σc,j is a diagonal matrix, which is equivalent to demanding that inter-
ventions at different variables are uncorrelated. This is a key assumption
necessary to identify the model using experimental data. Furthermore, we
will discuss in §3.4.2 how a violation of the model assumption (3.3) can be
detected and used to estimate the location of the interventions.

In §3.2 we show how to leverage observations under different environ-
ments with different interventional distributions to learn the structure of
the connectivity matrix B in model (3.3). The method rests on a simple
joint matrix diagonalization. We will prove necessary and sufficient condi-
tions for identifiability in §3.3. Numerical results for simulated data and
applications in flow cytometry and financial data are shown in §3.4.

3.2. Method

3.2.1. Grouping of data

Let J be the set of experimental conditions under which we observe equi-
librium data from model (3.3). These different experimental conditions
can arise in two ways: (a) a controlled experiment was conducted where
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the external input or the external imperfect interventions have been delib-
erately changed from one member of J to the next. An example are the
flow cytometry data (Sachs et al., 2005) discussed in §3.4.2. (b) The data
are recorded over time. It is assumed that the external input is changing
over time but not in an explicitly controlled way. The data are grouped
into consecutive blocks j ∈ J of observations, see §3.4.3 for an example.

3.2.2. Notation

Assume we have nj observations in each setting j ∈ J . Let Xj be the
(nj × p)-matrix of observations from model (3.3). For general random
variables aj ∈ Rp , the population covariance matrix in setting j ∈ J is
called Σa,j = Cov(aj), where the covariance is under the setting j ∈ J .
Furthermore, the covariance on all settings except setting j ∈ J is defined
as an average over all environments except for the j-th environment, (|J |−
1)Σc,−j :=

∑
j′∈J\{j}Σc,j′ . The population Gram matrix is defined as

Ga,j = E(ajajT ). Let the (p × p)-dimensional Σ̂a,j be the empirical
covariance matrix of the observations Aj ∈ Rnj×p of variable aj in setting
j ∈ J . More precisely, let Ãj be the column-wise mean-centered version
of Aj . Then Σ̂a,j := (nj − 1)−1ÃT

j Ãj . The empirical Gram matrix is
denoted by Ĝa,j := n−1

j AT
j Aj .

3.2.3. Assumptions

The main assumptions have been stated already but we give a summary
below.

(A) The data are observations of the equilibrium observations of model (3.3).
The matrix I−B is invertible and the solutions to (3.3) are thus well
defined. The cycle-product (3.2) CP(B) is strictly smaller than one.
The diagonal entries of B are zero.

(B) The distribution of the noise ej (which includes the influence of la-
tent variables) and the connectivity matrix B are identical across all
settings j ∈ J . In each setting j ∈ J , the intervention shift cj and
the noise ej are uncorrelated.

(C) Interventions at different variables in the same setting are uncorre-
lated, that is Σc,j is an (unknown) diagonal matrix for all j ∈ J .
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We will discuss a stricter version of (C) in §3.D in the Appendix that allows
the use of Gram matrices instead of covariance matrices. The conditions
above imply that the environments are characterized by different interven-
tions strength, as measured by the variance of the shift c in each setting.
We aim to reconstruct both the connectivity matrix B from observations
in different environments and also aim to reconstruct the a-priori unknown
intervention strength and location in each environment. Additionally, we
will show examples where we can detect violations of the model assump-
tions and use these to reconstruct the location of interventions.

3.2.4. Population method

The main idea is very simple. Looking at the model (3.3), we can rewrite

(I−B)xj = cj + ej . (3.4)

The population covariance of the transformed observations are then for all
settings j ∈ J given by

(I−B)Σx,j(I−B)T = Σc,j + Σe. (3.5)

The last term Σe is constant across all settings j ∈ J (but not necessarily
diagonal as we allow hidden variables). Any change of the matrix on the
left-hand side thus stems from a shift in the covariance matrix Σc,j of the
interventions. Let us define the difference between the covariance of c and
x in setting j as

∆Σc,j := Σc,j −Σc,−j , and ∆Σx,j := Σx,j −Σx,−j . (3.6)

Assumption (B) together with (3.5) implies that

(I−B)∆Σx,j(I−B)T = ∆Σc,j ∀j ∈ J . (3.7)

Using assumption (C), the random intervention shifts at different variables
are uncorrelated and the right-hand side in (3.7) is thus a diagonal matrix
for all j ∈ J . Let D ⊂ Rp×p be the set of all invertible matrices. We also
define a more restricted space Dcp which only includes those members of D
that have entries all equal to one on the diagonal and have a cycle-product
less than one,

D :=
{

D ∈ Rp×p : D invertible
}

(3.8)

Dcp :=
{

D ∈ Rp×p : D ∈ D and diag(D) ≡ 1 and CP(I−D) < 1
}
.

(3.9)
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Algorithm 1 backShift
Input: Xj ∀j ∈ J
1: Compute ∆̂Σx,j ∀j ∈ J
2: D̃ = FFDiag(∆̂Σx,j)
3: D̂ = PermuteAndScale(D̃)
4: B̂ = I− D̂
Output: B̂

Under Assumption (A), I−B ∈ Dcp. Motivated by (3.7), we now consider
the minimizer

D = argminD′∈Dcp

∑
j∈J

L(D′∆Σx,jD′T ), where L(A) :=
∑
k 6=l

A2
k,l

(3.10)
is the loss L for any matrix A and defined as the sum of the squared
off-diagonal elements. In §3.3, we present necessary and sufficient condi-
tions on the interventions under which D = I − B is the unique mini-
mizer of (3.10). In this case, exact joint diagonalization is possible so that
L(D∆Σx,jDT ) = 0 for all environments j ∈ J . We discuss an alternative
that replaces covariance with Gram matrices throughout in §3.D in the
Appendix. We now give a finite-sample version.

3.2.5. Finite-sample estimate of the connectivity matrix

In practice, we estimate B by minimizing the empirical counterpart of (3.10)
in two steps. First, the solution of the optimization is only constrained to
matrices in D. Subsequently, we enforce the constraint on the solution to
be a member of Dcp. The backShift algorithm is presented in Algorithm
1 and we describe the important steps in more detail below.

Steps 1 & 2. First, we minimize the following empirical, less constrained
variant of (3.10)

D̃ := argminD′∈D
∑
j∈J

L(D′(∆̂Σx,j)D′T ), (3.11)
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where the population differences between covariance matrices are replaced
with their empirical counterparts and the only constraint on the solution
is that it is invertible, i.e. D̃ ∈ D. For the optimization we use the
joint approximate matrix diagonalization algorithm FFDiag (Ziehe et al.,
2004).

Step 3. The constraint on the cycle product and the diagonal elements
of D is enforced by (a) permuting and (b) scaling the rows of D̃. Part (b)
simply scales the rows so that the diagonal elements of the resulting matrix
D̂ are all equal to one. The more challenging first step (a) consists of
finding a permutation such that under this permutation the scaled matrix
from part (b) will have a cycle product as small as possible (as follows from
Theorem 3.3, at most one permutation can lead to a cycle product less than
one). This optimization problem seems computationally challenging at
first, but we show that it can be solved by a variant of the linear assignment
problem (LAP) (see e.g. Burkard (2013)), as proven in Theorem 3.3 in the
Appendix. As a last step, we check whether the cycle product of D̂ is less
than one, in which case we have found the solution. Otherwise, no solution
satisfying the model assumptions exists and we return a warning that the
model assumptions are not met. See Appendix 3.B for more details.

Computational cost. The computational complexity of backShift is
O(|J | · n · p2) as computing the covariance matrices costs O(|J | · n · p2),
FFDiag has a computational cost of O(|J | · p2) and both the linear as-
signment problem and computing the cycle product can be solved in O(p3)
time. For instance, this complexity is achieved when using the Hungarian
algorithm for the linear assignment problem (see e.g. Burkard (2013)) and
the cycle product can be computed with a simple dynamic programming
approach.

3.2.6. Estimating the intervention variances

One additional benefit of backShift is that the location and strength of
the interventions can be estimated from the data. The empirical, plug-in
version of Eq. (3.7) is given by

(I− B̂)∆̂Σx,j(I− B̂)T = ∆̂Σc,j = Σ̂c,j − Σ̂c,−j ∀j ∈ J . (3.12)
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So the element (∆̂Σc,j)kk is an estimate for the difference between the vari-
ance of the intervention at variable k in environment j, namely (Σc,j)kk,
and the average in all other environments, (Σc,−j)kk. From these differ-
ences we can compute the intervention variance for all environments up to
an offset. By convention, we set the minimal intervention variance across
all environments equal to zero. Alternatively, one can let observational
data, if available, serve as a baseline against which the intervention vari-
ances are measured.

3.3. Identifiability

Let for simplicity of notation,

ηj,k := (∆Σc,j)kk

be the variance of the random intervention shifts cj at node k in environ-
ment j ∈ J as per the definition of ∆Σc,j in (3.6). We then have the
following identifiability result (the proof is provided in Appendix 3.A).

Theorem 3.1 Under assumptions (A), (B) and (C), the solution to
(3.10) is unique if and only if for all k, l ∈ {1, . . . , p} there exist j, j′ ∈ J
such that

ηj,kηj′,l 6= ηj,lηj′,k . (3.13)

If none of the intervention variances ηj,k vanishes, the uniqueness condi-
tion is equivalent to demanding that the ratio between the intervention
variances for two variables k, l must not stay identical across all environ-
ments, that is there exist j, j′ ∈ J such that

ηj,k
ηj,l

6=
ηj′,k
ηj′,l

, (3.14)

which requires that the ratio of the variance of the intervention shifts at
two nodes k, l is not identical across all settings. This leads to the following
corollary.

Corollary 3.2 (i) The identifiability condition (3.13) cannot be satis-
fied if |J | = 2 since then ηj,k = −ηj′,k for all k and j 6= j′. We need
at least three different environments for identifiability.
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(ii) The identifiability condition (3.13) is satisfied for all |J | ≥ 3 almost
surely if the variances of the intervention cj are chosen independently
(over all variables and environments j ∈ J ) from a distribution that
is absolutely continuous with respect to Lebesgue measure.

Condition (ii) can be relaxed but shows that we can already achieve full
identifiability with a very generic setting for three (or more) different en-
vironments.

3.4. Numerical results

In this section, we present empirical results for both synthetic and real
data sets. In addition to estimating the connectivity matrix B, we demon-
strate various ways to estimate properties of the interventions. Besides
computing the point estimate for backShift, we use stability selection
(Meinshausen and Bühlmann, 2010) to assess the stability of retrieved
edges. We attach R code with which all simulations and analyses can be
reproduced2.

3.4.1. Synthetic data

We compare the point estimate of backShift against Ling (Lacerda et
al., 2008), a generalization of LiNGAM to the cyclic case for purely ob-
servational data. We consider the cyclic graph shown in Figure 3.1(a)
and generate data under different scenarios. The data generating mech-
anism is sketched in Figure 3.1(b). Specifically, we generate ten distinct
environments with non-Gaussian noise. In each environment, the random
intervention variable is generated as (cj)k = βjkI

j
k, where β

j
1, . . . , β

j
p are

drawn i.i.d. from Exp(mI) and Ij1 , . . . , I
j
p are independent standard nor-

mal random variables. The intervention shift thus acts on all observed
random variables. The parameter mI regulates the strength of the inter-
vention. If hidden variables exist, the noise term (ej)k of variable k in
environment j is equal to γkW

j , where the weights γ1, . . . , γp are sam-
pled once from a N (0, 1)-distribution and the random variable W j has a
Laplace(0, 1) distribution. If no hidden variables are present, then (ej)k,
k = 1, . . . , p is sampled i.i.d. Laplace(0, 1). In this set of experiments, we
2An R package called “backShift” is available from CRAN.
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Figure 3.1.: Simulated data. (a) True network. (b) Scheme for data generation.
(c) Performance metrics for the settings considered in §3.4.1. For backShift,
precision and recall values for Settings 1 and 2 coincide.

consider five different settings (described below) in which the sample size
n, the intervention strength mI as well as the existence of hidden variables
varies.

We allow for hidden variables in only one out of five settings as Ling
assumes causal sufficiency and can thus in theory not cope with hidden
variables. If no hidden variables are present, the pooled data can be in-
terpreted as coming from a model whose error variables follow a mixture
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Figure 3.2.: Point estimates of backShift and Ling for synthetic data. We
threshold the point estimate of backShift at t = ±0.25 to exclude those entries
which are close to zero. We then threshold the estimate of Ling so that the
two estimates have the same number of edges. In Setting 4, we threshold Ling
at t = ±0.25 as backShift returns the empty graph. In Setting 3, it is not
possible to achieve the same number of edges as all remaining coefficients in the
point estimate of Ling are equal to one in absolute value. The transparency
of the edges illustrates the relative magnitude of the estimated coefficients. We
report the structural Hamming distance (SHD) for each graph. Precision and
recall values are shown in Figure 3.1(c).
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distribution. But if one of the error variables comes from the second mix-
ture component, for example, the other error variables come from the
second mixture component, too. In this sense, the data points are not
independent anymore. This poses a challenge for Ling which assumes an
i.i.d. sample. We also cover a case (for mI = 0) in which all assumptions
of Ling are satisfied (Scenario 4).
Figure 3.2 shows the estimated connectivity matrices for five different set-
tings and Figure 3.1(c) shows the obtained precision and recall values. In
Setting 1, n = 1000, mI = 1 and there are no hidden variables. In Set-
ting 2, n is increased to 10000 while the other parameters do not change.
We observe that backShift retrieves the correct adjacency matrix in both
cases while Ling’s estimate is not very accurate. It improves slightly when
increasing the sample size. In Setting 3, we do include hidden variables
which violates the causal sufficiency assumption required for Ling. In-
deed, the estimate is worse than in Setting 2 but somewhat better than in
Setting 1. backShift retrieves two false positives in this case. Setting 4 is
not feasible for backShift as the distribution of the variables is identical
in all environments (since mI = 0). In Step 2 of the algorithm, FFDiag
does not converge and therefore the empty graph is returned. So the re-
call value is zero while precision is not defined. For Ling all assumptions
are satisfied and the estimate is more accurate than in the Settings 1–
3. Lastly, Setting 5 shows that when increasing the intervention strength
to 0.5, backShift returns a few false positives. Its performance is then
similar to Ling which returns its most accurate estimate in this scenario.
The stability selection results for backShift are provided in Figure 3.5
in Appendix 3.E.
In short, these results suggest that the backShift point estimates are
close to the true graph if the interventions are sufficiently strong. Hidden
variables make the estimation problem more difficult but the true graph is
recovered if the strength of the intervention is increased (when increasing
mI to 1.5 in Setting 3, backShift obtains a SHD of zero). In contrast,
Ling is unable to cope with hidden variables but also has worse accuracy
in the absence of hidden variables under these shift interventions.

3.4.2. Flow cytometry data

The data published in Sachs et al. (2005) is an instance of a data set
where the external interventions differ between the environments in J
and might act on several compounds simultaneously (Eaton and Murphy,
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Figure 3.3.: Flow cytometry data. (a) Union of the consensus network (accord-
ing to Sachs et al. (2005)), the reconstruction by Sachs et al. (2005) and the best
acyclic reconstruction by Mooij and Heskes (2013). The edge thickness and in-
tensity reflect in how many of these three sources that particular edge is present.
(b) One of the cyclic reconstructions by Mooij and Heskes (2013). The edge
thickness and intensity reflect the probability of selecting that particular edge in
the stability selection procedure. For more details see Mooij and Heskes (2013).
(c) backShift point estimate, thresholded at ±0.35. The edge intensity reflects
the relative magnitude of the coefficients and the coloring is a comparison to the
union of the graphs shown in panels (a) and (b). Blue edges were also found in
Mooij and Heskes (2013) and Sachs et al. (2005), purple edges are reversed and
green edges were not previously found in (a) or (b). (d) backShift stability
selection result with parameters E(V ) = 2 and πthr = 0.75. The edge thickness
illustrates how often an edge was selected in the stability selection procedure.
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2007). There are nine different experimental conditions with each con-
taining roughly 800 observations which correspond to measurements of
the concentration of biochemical agents in single cells. The first setting
corresponds to purely observational data.
In addition to the original work by Sachs et al. (2005), the data set has
been described and analyzed in Eaton and Murphy (2007) and Mooij and
Heskes (2013). We compare against the results of Mooij and Heskes (2013),
Sachs et al. (2005) and the “well-established consensus”, according to Sachs
et al. (2005), shown in Figures 3.3(a) and 3.3(b). Figure 3.3(c) shows the
(thresholded) backShift point estimate. Most of the retrieved edges
were also found in at least one of the previous studies. Five edges are
reversed in our estimate and three edges were not discovered previously.
Figure 3.3(d) shows the corresponding stability selection result with the
expected number of falsely selected variables E(V ) = 2. This estimate is
sparser in comparison to the other ones as it bounds the number of false
discoveries. Notably, the feedback loops between PIP2 ↔ PLCg and PKC
↔ JNK were also found in Mooij and Heskes (2013).
It is also noteworthy that we can check the model assumptions of shift
interventions, which is important for these data as they can be thought
of as changing the mechanism or activity of a biochemical agent rather
than regulate the biomarker directly (Mooij and Heskes, 2013). If the shift
interventions are not appropriate, we are in general not able to diagonalize
the differences in the covariance matrices. Large off-diagonal elements in
the estimate of the r.h.s in (3.7) indicate a mechanism change that is not
just explained by a shift intervention as in (3.1). In four of the seven
interventions environments with known intervention targets the largest
mechanism violation happens directly at the presumed intervention target,
see Appendix 3.C for details. It is worth noting again that the presumed
intervention target had not been used in reconstructing the network and
mechanism violations.

3.4.3. Financial time series

Finally, we present an application in financial time series where the envi-
ronment is clearly changing over time. We consider daily data from three
stock indices NASDAQ, S&P 500 and DAX for a period between 2000-2012
and group the data into 74 overlapping blocks of 61 consecutive days each.
We take log-returns, as shown in panel (b) of Figure 3.4 and estimate the
connectivity matrix, which is fully connected in this case and perhaps of
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Figure 3.4.: Financial time series with three stock indices: NASDAQ (blue;
technology index), S&P 500 (green; American equities) and DAX (red; German
equities). (a) Prices of the three indices between May 2000 and end of 2011 on
a logarithmic scale. (b) The scaled log-returns (daily change in log-price) of the
three instruments are shown. Three periods of increased volatility are visible
starting with the dot-com bust on the left to the financial crisis in 2008 and
the August 2011 downturn. (c) The scaled estimated intervention variance with
the estimated backShift network. The three down-turns are clearly separated
as originating in technology, American and European equities. (d) In contrast,
the analogous Ling estimated intervention variances have a peak in American
equities intervention variance during the European debt crisis in 2011.
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not so much interest in itself. It allows us, however, to estimate the inter-
vention strength at each of the indices according to (3.12), shown in panel
(c). The intervention variances separate very well the origins of the three
major down-turns of the markets on the period. Technology is correctly
estimated by backShift to be at the epicenter of the dot-com crash in
2001 (NASDAQ as proxy), American equities during the financial crisis in
2008 (proxy is S&P 500) and European instruments (DAX as best proxy)
during the August 2011 downturn.

3.5. Conclusion

We have shown that cyclic causal networks can be estimated if we obtain
covariance matrices of the variables under unknown shift interventions
in different environments. backShift leverages solutions to the linear
assignment problem and joint matrix diagonalization and the part of the
computational cost that depends on the number of variables is at worst
cubic. We have shown sufficient and necessary conditions under which
the network is fully identifiable, which require observations from at least
three different environments. The strength and location of interventions
can also be reconstructed.
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Appendix 3.A Identifiability – Proof of
Theorem 3.1

Proof. “if”: Let D′ be a solution of (3.10). Let us write D′m• for the m-th
row of D′ and Dm• for them-th row of D,m = 1, . . . , p. Furthermore let us
define gm := D−TD′m•, m = 1, . . . , p. We will show that at most one entry
of this vector is nonzero. Note that by equation (3.7) we have ∆Σx,j =
D−1∆Σc,jD−T for all j ∈ J . By equation (3.7), L(D∆Σx,jDT ) = 0. As
D′ solves equation (3.10), this implies L(D′∆Σx,jD′T ) = 0 for all j ∈ J .
Hence the offdiagonal elements of D′∆Σx,jD′T are zero, which implies

gm′ ⊥∆Σc,jgm for all m′ 6= m and for all j ∈ J .

As the gm′ are linearly independent, this implies that for all pairs j, j′ ∈ J ,
∆Σc,jgm and ∆Σc,j′gm are collinear i.e. for all (j, j′) there exists a λj,j′ ∈
R such that ∆Σc,jgm = λj,j′∆Σc,j′gm or λj,j′∆Σc,jgm = ∆Σc,j′gm
Take arbitrary k, l ∈ {1, . . . , p} and choose j, j′ ∈ J such that (3.13) is
satisfied. By the argumentation above, there exists a λj,j′ ∈ R such that
∆Σc,jgm = λj,j′∆Σc,j′gm or λj,j′∆Σc,jgm = ∆Σc,j′gm. Without loss
of generality let us assume the latter. Recall that both ∆Σc,j and ∆Σc,j′

are diagonal matrices. Now condition (3.13) implies that the k-th or the
l-th entry on the diagonal of λj,j′ ∆Σc,j −∆Σc,j′ is nonzero (or both).
Hence, the k-th or the l-th entry of gm s zero (or both). By repeating this
argumentation for all k and l, at most one entry of gm is nonzero. Thus,
D′m• = DTgm = (gTmD)T is a multiple of one of the rows of D.

By applying this argumentation for all m = 1, . . . , p, each row of D′ is
a multiple of one of the rows of D. As both D and D′ are invertible,
there exists a bijection between the rows of D′ and D such that the cor-
responding rows are collinear. Furthermore, the diagonal of D′ and D is
(1, . . . , 1). Hence let us consider a bijection σ : {1, . . . , p} 7→ {1, . . . , p}
such that the σ(m)-th row of D′ is a multiple of the m-th row of D, i.e.

1
D′
σ(m),m

D′σ(m)• = Dm• for all m = 1, . . . , p. We want to show that this
bijection is the identity. First observe that, as the diagonal of D′ and D
is (1, . . . , 1), 1

D′
σ(m),m

= Dm,σ(m) for all m = 1, . . . , p. Now let us consider
a cycle in this permutation , i.e. m1, . . . ,mη+1 = m1, η > 1, mι 6= mκ

for 1 ≤ ι < κ ≤ η and with σ(mι) = mι+1 for 1 ≤ ι ≤ η. If this leads
to a contradiction, we can conclude that σ is the identity. As Dm,m = 1,
D′σ(m),m 6= 0, i.e. D′mι+1,mι 6= 0 for 1 ≤ ι ≤ η. This corresponds to a cycle
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in with product ∏
ι=1,...,η

D′mι+1,mι =
∏

ι=1,...,η

1
Dmι,mι+1

. (3.15)

As D′ is a solution of (3.10), CP(I −D′) < 1, hence the product on the
left hand side of equation (3.15) is in absolute value strictly smaller than
1, see (3.2). Analogously, as Dmι,mι+1 6= 0 for ι = 1, . . . , η, the sequence
mη+1,mη, . . . ,m1 corresponds to a cycle with product∏

ι=1,...,η
Dmι,mι+1 .

Using the same argumentation as for D′, this product is in absolute value
strictly smaller than 1, which contradicts (3.15). Hence such cycles of
length ≥ 2 do not exist and σ is the identity. Hence, D′ = D.
“only if”: As above define Dm• as the m-th row of D and let us write
um ∈ Rp for the m-th unit vector for m = 1, . . . , p. Assume that (3.13) is
not true, i.e. there exist k, l ∈ {1, . . . , p} such that for all j, j′ ∈ J ,

(∆Σc,j)kk(∆Σc,j′)ll = (∆Σc,j)ll(∆Σc,j′)kk. (3.16)

Without loss of generality let us fix a j′ ∈ J with (∆Σc,j′)kk 6= 0 , and
define λ := (∆Σc,j′)ll/(∆Σc,j′)kk. If such a j′ does not exist, we can
apply the same argumentation as below but with the k and l interchanged
and λ := 0.
Note that the definition of λ does not depend on j and that by equa-
tion (3.7) we have ∆Σx,j = D−1∆Σc,jD−T . Then, for δ ∈ R we can
define D′k• := Dk• + δDl• and D′l• := Dl• − δλDk• and we obtain for all
j ∈ J

D′Tl•∆Σx,jD′k• = (ul − δλuk)T∆Σc,j(uk + δul)
= δ(∆Σc,j)ll − δλ(∆Σc,j)kk
= 0.

In the second equation we used (3.16). Furthermore, for small δ let us
scale D′k• such that the k-th component of the vector is 1. Analogously,
let us scale D′l• such that the l-th component of the vector is 1. Then we
can define the matrix D′ as the rows of D except for row k and l which
are replaced by D′k• and D′l•. By above reasoning, this matrix satisfies

D′∆Σx,jD′
T ∈ Diag(p)
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for all j ∈ J and D′ is invertible. Furthermore, the diagonal elements of
D′ are 1. Recall that the path-products of I−D over cycles are in absolute
value smaller than 1, see (3.2). For small δ, I−D′ is close to I−D (in an
arbitrary matrix norm) and hence the path products of I−D′ over cycles
are in absolute value smaller than 1 as well. As D is invertible, D′ 6= D.
Hence the solution to (3.10) is not unique. This concludes the proof.

Appendix 3.B Polynomial-time algorithm

Here, we provide the necessary theoretical result to show that backShift
has a computational cost of O(|J |·n·p2). Specifically, we show that Step 3
in Algorithm 1 can be cast in terms of the classical linear sum assignment
problem, having a computational complexity of O(p3).

Theorem 3.3 Let D ∈ Rp×p be a matrix with CP(D) < 1, diag(D) ≡ 1
and Dk,l 6= 0 for k, l ∈ {1, . . . , p}. For D′ ∈ Rp×p define

P (D′) :=
∏
k,l

|D′k,l|.

Furthermore define

Dp := {D′ : There exists a permutation σ of {1, . . . , p} such that the
σ(m)-th row of D is collinear to the m-th row of D′

and diag(D′) ≡ 1 }.

Then,
D = arg min

D′∈Dp
P (D′) = arg min

D′∈Dp
logP (D′).

Proof. Let D′ ∈ Dp with D′ 6= D. Let us write Dm• for the m-th row of
D and analogously D′m• for the m-th row of D′, m = 1, . . . , p. Now let σ
be a permutation such that the σ(m)-th row of D is collinear to the m-th
row of D′. As D′ 6= D, we have that σ 6= Id. As diag(D′) ≡ 1,

1
Dσ(m),m

Dσ(m)• = D′m•.
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It immediately follows that( ∏
m=1,...,p

1
|Dσ(m),m|

)p
P (D) = P (D′).

As CP(D) < 1 and σ is not the identity,
∏
m=1,...,p |Dσ(m),m| < 1. As

all elements of D and D′ are nonzero, P (D) > 0 and P (D′) > 0. Hence,
P (D′) > P (D). This concludes the proof.

Remark: We can define the relative loss function of moving row k to row
l as

`(k, l) = − log(|D′k,l|).

Then the linear assignment problem that minimizes this problem also
yields the correct permutation for Step 3 in Algorithm 1 if it exists, i.e.
the permutation σ on {1, . . . , p} that minimizes

p∑
k=1

`(k, σ(k))

satisfies that D′m• is collinear to Dσ(m)•.

Remark: Allowing for self-loops would lead to an identifiability problem,
independent of the method. For every model with self-loops and CP < 1
there is a model without self-loops and CP ≤ 1 yielding the same observa-
tional distribution in equilibrium. The connectivity matrix without self-
loops can thus be seen as a representative of a whole class of connectivity
matrices that allow self-loops. Specifically, if the connectivity matrix with
self-loops is B∗, define matrix T by PermuteAndScale(I−B∗) = T(I−B∗),
where PermuteAndScale() is the operation defined in Step 3 of the back-
Shift algorithm. Technically, PermuteAndScale() is only defined for ma-
trices that are nonzero outside of the diagonal. Using similar arguments
as in Theorem 3.3, PermuteAndScale() can be extended to arbitrary ma-
trices with nonzero diagonal elements. To be more precise, there exists
a matrix T such that CP(T(I − B∗)) ≤ 1, diag(T(I − B∗)) ≡ 1 and
such that T is the product of a diagonal scaling matrix with a permu-
tation matrix. Then define Bnew := I − T(I − B∗), ej,new = Tej and
cj,new = Tcj for all j ∈ J . As T is the product of a diagonal scaling ma-
trix with a permutation matrix, assumptions (B) and (C) are still fulfilled
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and xj,new = (I−Bnew)−1(ej,new +cj,new) = (I−B∗)−1(ej +cj) = xj for
all j ∈ J . This implies that the two matrices B∗ with self-loops and Bnew

without self-loops (since it has zeroes on the diagonal by construction)
have both CP ≤ 1 and yield the same distribution.

Appendix 3.C Intervention variances and
model misspecification

The method allows to validate and check the assumptions to some extent.
This is especially important in the data of Sachs et al. (2005) as pointed
out in Mooij and Heskes (2013). The interventions can mostly be thought
of as not changing the concentration of a biochemical agent but rather
changing the activity of the agent, for example by inhibiting the reactions
in which the agent is involved (Mooij and Heskes, 2013). Under such a
mechanism change, it is doubtful whether the interventions are well ap-
proximated by our model (3.3) with independent shift-interventions. We
can check the assumptions by the success of the joint diagonalization pro-
cedure. Specifically, we get an empirical version of (3.7) when plugging
in the estimators and can check whether all off-diagonal elements on the
right hand side of (3.7) are small or vanishing. We list below results for the
seven experimental intervention conditions whose target is well described
in Mooij and Heskes (2013). The element on the right-hand side of (3.7)
with the largest absolute value is selected. We use now the Gram instead
of the covariance matrix to be also sensitive to model-violations of the ad-
ditional assumption (C’), see §3.D, though the results are almost identical
whether using the Gram or covariance matrix. These large off-diagonal
elements indicate a violated mechanism in the sense that the model (3.3)
does not fit very well, because either the interventions have not been of the
assumed shift-type or the causal mechanism in which the agent is involved
has changed under the intervention.
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Exp. Reagent Intervention largest mech. violation
3 Akt-Inhibitor inhibits AKT activity PLCg ↔ PKA
4 G0076 inhibits PKC activity PKC ↔ PIP2
5 Psitectorigenin inhibits PIP2 abundance PIP2 ↔ PKA
6 U0126 inhibits MEK activity MEK ↔ PKA
7 LY294002 changes PIP2/PIP3 mech. PKA ↔ JNK
8 PMA activates PKC activity MEK ↔ PKA
9 β2CAMP activates PKA activity PKA ↔ PKC

The table above lists the results for the seven experimental conditions
where we know the intervention mechanism, at least approximately. The
results are interesting in that the most violated mechanism (the largest
entry in the off-diagonal matrix on the right-hand side of the empirical
version of (3.7)) occurs in 4 of the 7 experimental conditions directly at
the intervention target. In 3 of these 4 cases, the violated mechanism
concerns a relation that has a large entry in the estimated connectivity
matrix. This corresponds well with the model of activity interventions
in Mooij and Heskes (2013). Note that we have not made use of the
intervention targets in the estimation procedure. The interesting point is
that we can use the model violations to estimate with some success where
the interventions occurred.

Appendix 3.D Beyond covariances

For the method above, we exploit differences in the covariance of obser-
vations across different environments. We can also exploit a shift in the
mean of the intervention strength c (and consequently in the observations
x) when strengthening the condition (C) to (C’). Specifically, we require
for (C’) that in each environment j ∈ J the shift in the mean E(cj) equals
zero for all variables except at most one variable. The variable with a non-
zero shift in the mean can change from one environment to another. Note
that the counterpart of (3.5) when using the Gram matrix instead of the
covariance matrix reads

(I−B)Gx,j(I−B)T = Gc,j + Ge. (3.17)

Under the stronger version (C’), the difference across environments of the
right-hand side in (3.17) is again a diagonal matrix and we can proceed
just as above, by replacing the covariance matrices with Gram matrices
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throughout. If the assumption (C’) is satisfied, this allows identifiability
of the graph in a wider range of settings (Theorem 3.1 can be adapted
in a straightforward manner by again replacing covariances with Gram
matrices) but requires the stricter condition (C’). Since in practice it is
often unclear whether the stricter condition is approximately true, we work
mainly with the weaker assumption (C) and exploit only shifts in the
covariance matrices.

Appendix 3.E Additional figures
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Figure 3.5.: Synthetic data. Stability selection results for backShift with
parameters E(V ) = 2 and πthr = 0.75. The intensity of the edges illustrates
the relative magnitude of the estimated coefficients, the width shows how often
an edge was selected. The edge from node 6 to node 10 is associated with the
smallest coefficient in absolute value. It is retained in none of the settings in the
stability selection procedure.





Chapter 4.

Invariant Causal Prediction for
nonlinear models

An important problem in many domains is to predict how a system will
respond to interventions. This task is inherently linked to estimating the
system’s underlying causal structure. To this end, Invariant Causal Pre-
diction (ICP) (Peters et al., 2016) has been proposed which learns a causal
model exploiting the invariance of causal relations using data from differ-
ent environments. When considering linear models, the implementation
of ICP is relatively straightforward. However, the nonlinear case is more
challenging due to the difficulty of performing nonparametric tests for con-
ditional independence.

In this work, we present and evaluate an array of methods for nonlin-
ear and nonparametric versions of ICP for learning the causal parents of
given target variables. We find that an approach which first fits a non-
linear model with data pooled over all environments and then tests for
differences between the residual distributions across environments is quite
robust across a large variety of simulation settings. We call this procedure
“invariant residual distribution test”. In general, we observe that the per-
formance of all approaches is critically dependent on the true (unknown)
causal structure and it becomes challenging to achieve high power if the
parental set includes more than two variables.

As a real-world example, we consider fertility rate modeling which is cen-
tral to world population projections. We explore predicting the effect of
hypothetical interventions using the accepted models from nonlinear ICP.
The results reaffirm the previously observed central causal role of child
mortality rates.
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4.1. Introduction

Invariance based causal discovery (Peters et al., 2016) relies on the obser-
vation that the conditional distribution of the target variable Y given its
direct causes remains invariant if we intervene on variables other than Y .
While the proposed methodology in Peters et al., 2016 focuses on linear
models, we extend Invariant Causal Prediction to nonlinear settings. We
first introduce the considered structural causal models in §4.1.1 and review
related approaches to causal discovery in §4.1.2. The invariance approach
to causal discovery from Peters et al., 2016 is briefly summarized in §4.1.3
and we outline our contribution in §4.1.4. In §4.1.5 we introduce the prob-
lem of fertility rate modeling which we consider as a real-world example
throughout this work.

4.1.1. Structural causal models

Assume an underlying structural causal model (also called structural equa-
tion model) (e.g. Pearl, 2009)

Z1 ← g1(Zpa1) + η1,

Z2 ← g2(Zpa2) + η2,

...
Zq ← gq(Zpaq ) + ηq,

for which the functions gk, k = 1, . . . , q, as well as the parents pak ⊆
{1, . . . , q} \ {k} of each variable are unknown. Here, we have used the
notation ZS = (Zi1 , . . . , Zis) for any set S = {i1, . . . , is} ⊆ {1, . . . , q}. We
assume the corresponding directed graph to be acyclic. We further require
the noise variables η1, . . . , ηq to be jointly independent and to have zero
mean, i.e. we assume that there are no hidden variables.

Due to its acyclic structure, it is apparent that such a structural causal
model induces a joint distribution P over the observed random variables.
Interventions on the system are usually modeled by replacing some of the
structural assignments (e.g. Pearl, 2009). If one intervenes on variable
Z3, for example, and sets it to the value 5, the system again induces
a distribution over Z1, . . . , Zq, that we denote by P (·|do(Z3 ← 5)). It
is usually different from the observational distribution P . We make no
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counterfactual assumptions here: we assume a new realization η is drawn
from the noise distribution as soon as we make an intervention.1

4.1.2. Causal discovery

In causal discovery (also called structure learning) one tries to reconstruct
the structural causal model or its graphical representation from its joint
distribution (e.g. Chickering, 2002b; Hauser and Bühlmann, 2015; Heck-
erman, 1997; Pearl, 2009; Peters and Bühlmann, 2014; Peters et al., 2017;
Spirtes et al., 2000).

Existing methods for causal structure learning can be categorized along a
number of dimensions, such as (i) using purely observational data vs. us-
ing a combination of interventional and observational data; (ii) score-based
vs. constraint-based vs. “other” methods; (iii) allowing vs. precluding the
existence of hidden confounders; (iv) requiring vs. not requiring faithful-
ness;2 (v) type of object that the method estimates. Moreover, different
methods vary by additional assumptions they require. In the following, we
give brief descriptions of the most common methods for causal structure
learning3.

The PC algorithm (Spirtes et al., 2000) uses observational data only and
estimates the Markov equivalence class of the underlying graph structure,
based on (conditional) independence tests under a faithfulness assumption.
The presence of hidden confounders is not allowed. Based on the PC
algorithm, the IDA algorithm (Maathuis et al., 2009) computes bounds on
the identifiable causal effects.

The FCI algorithm is a modification of the PC algorithm. It also relies on
purely observational data while it allows for hidden confounders. The out-
put of FCI is a partial ancestral graph (PAG), i.e. it estimates the Markov
1The new realization of η under an intervention and the realization under observational
data can be assumed to be independent. However, such an assumption is untestable
since we can never observe realizations under different interventions simultaneously and
we do not make statements or assumptions about the joint distribution of observational
and interventional settings.

2A distribution satisfies faithfulness and the global Markov condition with respect to a
graph G if the following statement holds for all disjoint sets A, B, and C of variables:
A is independent of B, given C, if and only if A is d-separated (in G) from B, given
C. The concept of d-separation (Pearl, 1985, 1988) is defined in Peters et al. (2017,
Def. 6.1), for example.

3Also see Heinze-Deml et al., 2018a for a review and empirical comparison of recently
proposed causal structure learning algorithms.
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equivalence class of the underlying maximal ancestral graph (MAG). Faster
versions, RFCI and FCI+, were proposed by Colombo et al. (2012) and
Claassen et al. (2013), respectively.

The PC, FCI, RFCI and FCI+ algorithms are formulated such that they
allow for an independence oracle that indicates whether a particular (con-
ditional) independence holds in the distribution. These algorithms are
typically applied in the linear Gaussian setting where testing for condi-
tional independence reduces to testing for vanishing partial correlation.

One of the most commonly known score-based methods is greedy equiv-
alence search (GES). Using observational data, it greedily searches over
equivalence classes of directed acyclic graphs for the best scoring graph
(all graphs within the equivalence class receive the same score) where the
score is given by the Bayesian information criterion, for example. Thus,
GES is based on an assumed parametric model such as linear Gaussian
structural equations or multinomial distributions. The output of GES is
the estimated Markov equivalence class of the underlying graph structure.
Heckerman (1997) describe a score-based method with a Bayesian score.

Greedy interventional equivalence search (GIES) extends GES to operate
on a combination of interventional and observational data. The targets
of the interventions need to be known and the output of GIES is the
estimated interventional Markov equivalence class. The latter is typically
smaller than the Markov equivalence class obtained when using purely
observational data.

Another group of methods makes restrictive assumptions which allows for
obtaining full identifiability. Such assumptions include non-Gaussianity
(Shimizu et al., 2006) or equal variances (Peters et al., 2013) of the errors
or non-linearity of the structural equations in additive noise models (Hoyer
et al., 2008; Peters and Bühlmann, 2014).

Instead of trying to infer the whole graph, we are here interested in settings,
where there is a target variable Y of special interest. The goal is to infer
both the parental set S∗ for the target variable Y and confidence bands
for the causal effects.

4.1.3. Invariance based causal discovery

This work builds on the method of Invariant Causal Prediction (ICP)
(Peters et al., 2016) and extends it in several ways. The method’s key
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observation is that the conditional distribution of the target variable Y
given its direct causes remains invariant if we intervene on variables other
than Y . This follows from an assumption sometimes called autonomy or
modularity (Aldrich, 1989; Haavelmo, 1944; Hoover, 1990; Pearl, 2009;
Schölkopf et al., 2012). In a linear setting, this implies, for example, that
regressing Y on its direct causes yields the same regression coefficients
in each environment, provided we have an infinite amount of data. In a
nonlinear setting, this can be generalized to a conditional independence
between an index variable indicating the interventional setting and Y ,
given X; see Eq. (4.3). The method of ICP assumes that we are given data
from several environments. It searches for sets of covariates, for which the
above property of invariance cannot be rejected. The method then outputs
the intersection of all such sets, which can be shown to be a subset of the
true set with high probability, see §4.2.1 and Algorithm 2 in Appendix 4.B
for more details. Such a coverage guarantee is highly desirable, especially
in causal discovery, where information about ground truth is often sparse.

In many real life scenarios, however, relationships are not linear and the
above procedure can fail: The true set does not necessarily yield an in-
variant model and the method may lose its coverage guarantee, see Exam-
ple 4.4. Furthermore, environments may not come as a categorical variable
but as a continuous variable instead. In this work, we extend the concept
of ICP to nonlinear settings and continuous environments. The following
paragraph summarizes our contributions.

4.1.4. Contribution

Our contributions are fivefold.

Conditional independence tests. We extend the method of ICP to non-
linear settings by considering conditional independence tests. We discuss
in §4.3 and in more length in Appendix 4.B several possible nonlinear and
nonparametric tests for conditional independence of the type (4.3) and
propose alternatives. There has been some progress towards nonparamet-
ric independence tests (Bergsma and Dassios, 2014; Blum et al., 1961;
Hoeffding, 1948; Rényi, 1959; Székely et al., 2007; Zhang et al., 2011).
However, in the general nonparametric case, no known non-trivial test of
conditional independence has (even asymptotically) a type I error rate less
than the pre-specified significance level. This stresses the importance of
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empirical evaluation of conditional independence tests.

Defining sets. We discuss in §4.2.2 cases of poor identifiability of the
causal parents. If there are highly correlated variables in the dataset, we
might get an empty estimator if we follow the approach proposed in (Peters
et al., 2016). We can, however, extract more information via defining sets.
The results are to some extent comparable to similar issues arising in
multiple testing (Goeman and Solari, 2011). For example, if we know that
the parental set of a variable Y is either S = {1, 3} or S = {2, 3}, we
know that {3} has to be a parent of Y . Yet we also want to explore the
information that one variable out of the set {1, 2} also has to be causal for
the target variable Y , even if we do not know which one out of the two.

Confidence bands for causal effects. Beyond identifying the causal par-
ents, we can provide nonparametric or nonlinear confidence bands for the
strength of the causal effects, as shown in §4.2.3.

Prediction under interventions. Using the accepted models from non-
linear ICP, we are able to forecast the average causal effect of external
interventions. We will discuss this at hand of examples in §4.2.4.

Software. R (R Core Team, 2017) code for nonlinear ICP is provided in
the package nonlinearICP. The proposed conditional independence tests
are part of the package CondIndTests. Both packages are available from
CRAN.

4.1.5. Fertility rate modeling

At the hand of the example of fertility rate modeling, we shall explore
how to exploit the invariance of causal models for causal discovery in the
nonlinear case.
Developing countries have a significantly higher fertility rate compared to
Western countries. The fertility rate can be predicted well from covariates
such as ‘infant mortality rate’ or ‘GDP per capita’. Classical prediction
models, however, do not answer whether an active intervention on some
of the covariates leads to a change in the fertility rate. This can only be
answered by exploiting causal knowledge of the system.
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Traditionally, in statistics the methods for establishing causal relations
rely on carefully designed randomized studies. Often, however, such ex-
periments cannot be performed. For instance, factors like ‘infant mortality
rate’ are highly complex and cannot be changed in isolation. We may still
be interested in the effect of a policy that aims at reducing the infant mor-
tality rate but this policy cannot be randomly assigned to different groups
of people within a country.

There is a large body of work that is trying to explain changes in fertility;
for an interesting overview of different theories see Hirschman (1994) and
the more recent Huinink et al. (2015). There is not a single established
theory for changes in fertility and we should clarify in the beginning that
all models we will be using will have shortcomings, especially the short-
coming that we might not have observed all relevant variables. We would
nevertheless like to take the fertility data as an example to establish a
methodology that allows data-driven answers; discussing potential short-
falls of the model is encouraged and could be beneficial in further phrasing
the right follow-up questions and collecting perhaps more suitable data.

An interesting starting point for us was the work of Raftery et al. (1995)
and very helpful discussions with co-author Adrian Raftery. That work
tries to distinguish between two different explanatory models for a decline
in fertility in Iran. One model argues that economic growth is mainly
responsible; another argues that transmission of new ideas is the primary
factor (ideation theory). What allows a distinction between these mod-
els is that massive economic growth started in 1955 whereas ideational
changes occurred mostly 1967 and later. Since the fertility began to drop
measurably already in 1959, the demand theory seems more plausible and
the authors conclude that reduced child mortality is the key explanatory
variable for the reduction in fertility (responsible for at least a quarter of
the reduction).

Note the way we decide between two potential causal theories for a decline
in fertility: if a causal model is valid, it has to be able to explain the
decline consistently. In particular, the predictions of the model have to be
valid for all time-periods, including the time of 1959 with the onset of the
fertility decline. The ideation theory wrongly places the onset of fertility
decline later and is thus dismissed as less plausible.

The invariance approach of Peters et al. (2016) we follow here for linear
models has a similar basic idea: a causal model has to work consistently.
In our case, we choose geographic location instead of time for the example
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and demand that a causal model has to work consistently across geographic
locations or continents. We collect all potential models that show this in-
variance and know that if the underlying assumption of causal sufficiency
is true and we have observed all important causal variables then the causal
model will be in the set of retained models. Clearly, there is room for a
healthy and interesting debate to what extent the causal sufficiency as-
sumption is violated in the example. It has been argued, however, that
missing variables do not allow for any invariant model, which renders the
method to remain conservative (Peters et al., 2016, Prop. 5).
We establish a framework for causal discovery in nonlinear models. Inci-
dentally, the approach also identifies reduced child mortality as one of key
explanatory variables for a decline in fertility.

4.2. Nonlinear Invariant Causal Prediction

We first extend the approach of Peters et al. (2016) to nonlinear mod-
els, before discussing defining sets, nonparametric confidence bands and
prediction under interventions.

4.2.1. Invariance approach for causal discovery

Peters et al., 2016 proposed an invariance approach in the context of linear
models. We describe the approach here in a notationally slightly different
way that will simplify statements and results in the nonlinear case and
allow for more general applications. Assume that we are given a struc-
tural causal model (SCM) over variables (Y,X,E), where Y is the target
variable, X the predictors and E so-called environmental variables.

Definition 4.1 (Environmental variables) We know or assume that
the variables E are neither descendants nor parents of Y in the causal
DAG of (Y,X,E). If this is the case, we call E environmental variables.

In Peters et al., 2016, the environmental variables were given and non-
random. Note that the definition above treats the variables as random
but we can in practice condition on the observed values of E. The defini-
tion above excludes the possibility that there is a direct causal connection
between one of the variables in E and Y . We will talk in the following
about the triple of random variables (Y,X,E), where the variable X of
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predictor variables is indexed by X1, . . . , Xp. With a slight abuse of no-
tation, we let S∗ ⊆ {1, . . . , p} be the indices of X that are causal parents
paY of Y . Thus, the structural equation for Y can be written as

Y ← f(XS∗) + ε, (4.1)

where f : R|S∗| → Y. We let F be the function class of f and let FS be
the subclass of functions that depend only on the set S ⊆ {1, . . . , p} of
variables. With this notation we have f ∈ FS∗ .
The assumption of no direct effect of E on Y is analogous to the typical
assumptions about instrumental variables (Angrist et al., 1996; Imbens,
2014). See §5 in Peters et al., 2016 for a longer discussion on the rela-
tion between environmental variables and instrumental variables. The two
main distinctions between environmental and instrumental variables are
as follows. First, we do not need to test for the “weakness” of instru-
mental/environmental variables since we do not assume that there is a
causal effect from E on the variables in X. Second, the approaches are
used in different contexts. With instrumental variables, we assume the
graph structure to be known typically and want to estimate the strength
of the causal connections, whereas the emphasis is here on both causal
discovery (what are the parents of a target?) and then also inference for
the strength of causal effects. With a single environmental variable, we
can identify in some cases multiple causal effects whereas the number of
instrumental variables needs to match or exceed the number of variables
in instrumental variable regression. The instrumental variable approach,
on the other hand, can correct for unobserved confounders between the
parents and the target variable if their influence is linear, for example. In
these cases, our approach could remain uninformative (Peters et al., 2016,
Proposition 5).

Example 4.2 (Fertility data) In this work, we analyze a data set pro-
vided by the United Nations, 2013. Here, Y,X and E correspond to the
following quantities:
(a) Y ∈ R is the total fertility rate (TFR) in a country in a given year,
(b) X ∈ R9 are potential causal predictor variables for TFR:

– IMR – infant mortality rate
– Q5 – under-five mortality rate
– Education expenditure (% of GNI)
– Exports of goods and services (% of GDP)
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– GDP per capita (constant 2005 US$)
– GDP per capita growth (annual %)
– Imports of goods and services (% of GDP)
– Primary education (% female)
– Urban population (% of total)

(c) E ∈ {C1, C2, C3, C4, C5, C6} is the continent of the country, divided
into the categories Africa, Asia, Europe, North and South America
and Oceania. If viewed as a random variable (which one can argue
about), the assumption is that the continent is not a descendant of
the fertility rate, which seems plausible. For an environmental vari-
able, the additional assumption is that the TFR in a country is only
indirectly (that is via one of the other variables) influenced by which
continent it is situated on (cf. Figure 4.1).

Clearly, the choices above are debatable. We might for example also want
to include some ideation-based variables in X (which are harder to mea-
sure, though) and also take different environmental variables E such as
time instead of geographic location. We could even allow for additive ef-
fects of the environmental variable on the outcome of interest (such as a
constant offset for each continent) but we do not touch this debate much
more here as we are primarily interested in the methodological develop-
ment.

Continent

Education

GDP

TFR

IMR

Continent

Education

GDP

TFR

IMR

Continent

Education

GDP

TFR

IMR

Figure 4.1.: Three candidates for a causal DAG with target total fertility rate
(TFR) and four potential causal predictor variables. We would like to infer
the parents of TFR in the true causal graph. We use the continent as the
environment variable E. If the true DAG was one of the two graphs on the left,
the environmental variable would have no direct influence on the target variable
TFR and ‘Continent’ would be a valid environmental variable, see Definition 4.1.
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The basic yet central insight underlying the invariance approach is the
fact that for the true causal parental set S∗ := paY we have the following
conditional independence relation under Definition 4.1 of environmental
variables:

Y ⊥⊥ E | XS∗ . (4.2)

This follows directly from the local Markov condition (e.g. Lauritzen,
1996). The goal is to find S∗ by exploiting the above relation (4.2). Sup-
pose we have a test for the null hypothesis

H0,S : Y ⊥⊥ E | XS . (4.3)

It was then proposed in Peters et al., 2016 to define an estimate Ŝ for the
parental set S∗ by setting

Ŝ :=
⋂

S:H0,S not rejected
S. (4.4)

Here, the intersection runs over all sets S, s.t. E ∩ S = ∅. If the index set
is empty, i.e. H0,S is rejected for all sets S, we define Ŝ to be the empty
set. If we can test (4.3) with the correct type I error rate in the sense that

P
(
H0,S∗ is rejected at level α

)
≤ α, (4.5)

then we have as immediate consequence the desired statement

P
(
Ŝ ⊆ S∗

)
≥ P

(
H0,S∗ accepted

)
≥ 1− α.

This follows directly from the fact that S∗ is accepted with probability at
least 1− α since H0,S∗ is true; see Peters et al., 2016 for details.
In the case of linear models, the method proposed by Peters et al. (2016,
Eq. (16)) considers a set S as invariant if there exist linear regression coef-
ficients β and error variance σ which are identical across all environments.
We consider the conditional independence relation in (4.3) as a general-
ization, even for linear relations. In the following example the regression
coefficients are the same in all environments, and the residuals have the
same mean and variance, but differ in higher order moments (cf. Peters
et al., 2016, Eq. (3)):

Example 4.3 Consider a discrete environmental variable E. If in E = 1
we have

Y = 2X +N,N ⊥⊥ X,
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and in E = 2
Y = 2X +M,M ⊥⊥ X,

where M and N have the same mean and variance but differ in higher
order moments. In this case, we would have E 6⊥⊥ Y |X, but the hypothesis
“same linear regression coefficients and error variance” cannot be rejected.

The question remains how to test (4.3). If we assume a linear function
f in the structural equation (4.1), then tests that can guarantee the level
as in (4.5) are available (Peters et al., 2016). The following examples
show what could go wrong if the data contain nonlinearities that are not
properly taken into account.

Example 4.4 (Linear model and nonlinear data) Consider the fol-
lowing SCM, in which X2 and X3 are direct causes of Y .

X1 ← E + ηX

X2 ←
√

3X1 + ηX1

X3 ←
√

2X1 + ηX2

Y ← X2
2 −X2

3 + ηY

Due to the nonlinear effect, a linear regression from Y on X2 and X3 does
not yield an invariant model. If we regress Y on X1, however, we obtain
invariant prediction and independent residuals. In this sense, the linear
version of ICP fails but it still chooses a set of ancestors of Y (it can be
argued that this failure is not too severe).

Example 4.5 (Linear model and nonlinear data) In this example,
the model misspecification leads to a wrong set that includes a descendant
of Y . Consider the following SCM

X1 ← E + η1

Y ← f(X1) + ηY

X2 ← g(X1) + γY + η2

with independent Gaussian error terms. Furthermore, assume that

∀x ∈ R : f(x) = αx+ βh(x)
∀x ∈ R : g(x) = h(x)− γf(x)

βγ2 − γ = −βvar(η2)/var(ηY )
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for some α, β and h : R → R. Then, in the limit of an infinite sample
size, the set {X1, X2} is the only set that, after a linear regression, yields
residuals that are independent of E. (To see this write Y = f(X1) + ηY
as a linear function in X1, X2 and show that the covariance between the
residuals and X2 is zero.) Here, the functions have to be “fine-tuned” in
order to make the conditional Y |X1, X2 linear in X1 and X2.4 As an
example, one may choose Y ← X1 + 0.5X2

1 + ηY and X2 ← 0.5X2
1 −X1 +

Y + η2 and η1, ηY , η2 i.i.d. with distribution N (0, σ2 = 0.5).

The examples show that ICP loses its coverage guarantee if we assume
linear relationships for testing (4.3) while the true data generating process
is nonlinear.
In the general nonlinear and nonparametric case, however, it becomes
more difficult to guarantee the type I error rate when testing the condi-
tional independence (4.3) (Shah and Peters, 2018). This in contrast to
nonparametric tests for (unconditional) independence (Bergsma and Das-
sios, 2014; Székely et al., 2007). In a nonlinear conditional independence
test setting, where we know an appropriate parametric basis expansion
for the causal effect of the variables we condition on, we can of course re-
vert back to unconditional independence testing. Apart from such special
circumstances, we have to find tests that guarantee the type I error rate
in (4.5) as closely as possible under a wide range of scenarios. We describe
some methods that test (4.3) in §4.3 but for now let us assume that we are
given such a test. We can then apply the method of nonlinear ICP (4.4)
to the example of fertility data.

Example 4.6 (Fertility data) The following sets were accepted at the
level α = 0.1 when using nonlinear ICP with invariant conditional quantile
prediction (see Appendix 4.B for details) as a conditional independence
test:

S1 = {Q5}
S2 = {IMR, Imports of goods and services, Urban pop. (% of total)}
S3 = {IMR, Education expend. (% of GNI), Exports of goods and services,

GDP per capita}

As the intersection of S1, . . . , S3 is empty, we have Ŝ = ∅. This motivates
the concept of defining sets.
4This example is motivated by theory that combines linear and nonlinear models with
additive noise (Rothenhäusler et al., 2018b).
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4.2.2. Defining sets

It is often impossible to distinguish between highly correlated variables.
For example, infant mortality IMR and under-five mortality Q5 are highly
correlated in the data and can often be substituted for each other. We
accept sets that contain either of these variables. When taking the in-
tersection as in (4.4), this leads to exclusion of both variables in Ŝ and
potentially to an altogether empty set Ŝ. We can instead ask for the defin-
ing sets (Goeman and Solari, 2011), where a defining set D̂ ⊆ {1, . . . , p}
has the properties
(i) S ∩ D̂ 6= ∅ for all S such that H0,S is accepted.

(ii) there exists no strictly smaller setD′ withD′ ⊂ D̂ for which property
(i) is true.

In words, we are looking for subsets D̂, such that each accepted set S has
at least one element that also appears in D̂. If the intersection Ŝ (4.4) is
non-empty, any subset of Ŝ that contains only one variable is a defining set.
Defining set are especially useful, however, in cases where the intersection
Ŝ is empty. We still know that, with high probability, at least one of the
variables in the defining set D̂ has to be a parent. Defining sets are not
necessarily unique. Given a defining set D̂, we thus know that

P (S∗ ∩ D̂ = ∅) ≤ P (H0,S∗ rejected) ≤ α.

That is, a) at least one of the variables in the defining set D̂ is a parent of
the target, and b) the data do not allow to resolve it on a finer scale.

Example 4.7 (Fertility data) We obtain seven defining sets:

D̂1 = {IMR, Q5}

D̂2 = {Q5, Education expenditure (% of GNI), Imports of goods and services}

D̂3 = {Q5, Education expenditure (% of GNI), Urban pop. (% of total)}

D̂4 = {Q5, Exports of goods and services, Imports of goods and services}

D̂5 = {Q5, Exports of goods and services, Urban pop. (% of total)}

D̂6 = {Q5, GDP per capita, Imports of goods and services}

D̂7 = {Q5, GDP per capita, Urban pop. (% of total)}

Thus the highly-correlated variables infant mortality IMR and under-five
mortality Q5 indeed form one of the defining sets in this example in the
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sense that we know at least one of the two is a causal parent for fertility
but we cannot resolve which one it is or whether both of them are parents.

4.2.3. Confidence bands

For a given set S, we can in general construct a (1 − α)-confidence band
F̂S for the regression function when predicting Y with the variables XS .
Note that if f is the regression function when regressing Y on the true set
of causal variables XS∗ and hence, then, with probability 1− α, we have

P (f ∈ F̂S∗) ≥ 1− α.

Furthermore, from §4.2.1 we know that H0,S∗ is accepted with probability
1−α. We can hence construct a confidence band for the causal effects as

F̂ :=
⋃

S:H0,S not rejected
F̂S . (4.6)

Using a Bonferroni correction, we have the guarantee that

P
(
f ∈ F̂

)
≥ 1− 2α,

where the coverage guarantee is point-wise or uniform, depending on the
coverage guarantee of the underlying estimators F̂S for all given S ⊆
{1, . . . , p}.

4.2.4. Average causal effects

The confidence bands F̂ themselves can be difficult to interpret. Inter-
pretability can be guided by looking at the average causal effect in the
sense that we compare the expected response at x̃ and x:

ACE(x̃, x) := E
(
Y
∣∣do(X = x̃)

)
− E

(
Y
∣∣do(X = x)

)
. (4.7)

For the fertility data, this would involve a hypothetical scenario where we
fix the variables to be equal to x for a country in the second term and,
for the first term, we set the variables to x̃, which might differ from x
just in one or a few coordinates. Eq. (4.7) then compares the average
expected fertility between these two scenarios. Note that the expected
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response under a do-operation is just a function of the causal variables
S∗ ⊆ {1, . . . , p}. That is—in the absence of hidden variables—we have

E
(
Y
∣∣do(X = x)

)
= E

(
Y
∣∣do(XS∗ = xS∗)

)
,

and the latter is then equal to

E
(
Y
∣∣do(XS∗ = xS∗)

)
= E

(
Y
∣∣XS∗ = xS∗

)
,

that is it does not matter whether we set the causal variables to a specific
value xS∗ or whether they were observed in this state.
Once we have a confidence band as defined in (4.6), we can bound the
average causal effect (4.7) by the interval

ÂCE(x̃, x) :=
[

inf
g∈F̂

(g(x̃)− g(x)), sup
g∈F̂

(g(x̃)− g(x))
]
,

with the immediate guarantee that

P
(
ACE(x̃, x) ∈ ÂCE(x̃, x)

)
≥ 1− 2α, (4.8)

where the factor 2α is guarding, by a Bonferroni correction, against both
a probability α that S∗ will not be accepted—and hence Ŝ ⊆ S∗ is not
necessarily true—and another probability α that the confidence bands will
not provide coverage for the parental set S∗.

Example (Fertility data). The confidence bands F̂ , required for the com-
putation of ÂCE(x̃, x), are obtained by a time series bootstrap (Künsch,
1989) as the fertility data contain temporal dependencies. The time se-
ries bootstrap procedure is described in Appendix 4.A. We use a level of
α = 0.1 which implies a coverage guarantee of 80% as per (4.8). In the
examples below, we set x to an observed data point and vary only x̃.
In the first example, we consider the observed covariates for Nigeria in 1993
as x. The point of comparison x̃ is set equal to x, except for the variables
in the defining set D̂1 = {IMR, Q5}. In Figures 4.2(a) and (b), these are
varied individually over their respective quantiles. The overall confidence
interval F̂ consists of the union of the shown confidence intervals F̂S . If
x = x̃ (shown by the vertical lines), the average causal effect is zero, of
course. In neither of the two scenarios shown in Figures 4.2(a) and (b),
we observe consistent effects different from zero as some of the accepted
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Figure 4.2.: Data for Nigeria in 1993: The union of the confidence bands F̂S ,
denoted by F̂ , bounds the average causal effect of varying the variables in the
defining set D̂1 = {IMR, Q5} on the target log(TFR). IMR and Q5 have been
varied individually, see panels (a) and (b), as well as jointly, see panel (c), over
their respective quantiles. In panels (a) and (b), we do not observe consistent
effects different from zero as some of the accepted models do not contain IMR and
some do not contain Q5. However, when varying the variables D̂1 = {IMR, Q5}
jointly (see panel (c)), we see that all accepted models predict an increase in
expected log(TFR) as IMR and Q5 increase.
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models do not contain IMR and some do not contain Q5. However, when
varying the variables D̂1 = {IMR, Q5} jointly (see Figure 4.2(c)), we see
that all accepted models predict an increase in expected log(TFR) as IMR
and Q5 increase.

In the second example, we compare the expected fertility rate between
countries where all covariates are set to the value x, which is here chosen
to be equal to the observed values of all African countries in 2013. The
expected value of log-fertility under this value x of covariates is compared
to the scenario where we take as x̃ the same value but set the values of
the child-mortality variables IMR and Q5 to their respective European
averages. The union of intervals in Figure 4.3 (depicted by the horizontal
line segments) correspond to ÂCE(x̃, x) for each country under nonlinear
ICP with invariant conditional quantile prediction. The accepted models
make largely coherent predictions for the effect associated with this com-
parison. For most countries, the difference is negative, meaning that the
average expected fertility declines if the child mortality rate in a country
decreases to European levels. The countries where ÂCE IMR+Q5(x̃, x) con-
tains 0 typically have a child mortality rate that is close to European levels,
meaning that there is no substantial difference between the two points x̃, x
of comparison.

For comparison, in Figure 4.4, we show the equivalent computation as in
Figure 4.3 when all covariates are assumed to have a direct causal effect on
the target and a Random Forest is used for estimation (Breiman, 2001).
We observe that while the resulting regression bootstrap confidence inter-
vals often overlap with ÂCE IMR+Q5(x̃, x), they are typically much smaller.
This implies that if the regression model containing all covariates was—
wrongly—used as a surrogate for the causal model, the uncertainty of the
prediction would be underestimated. Furthermore, such an approach ig-
noring the causal structure can lead to a significant bias in the prediction of
causal effects when we consider interventions on descendants of the target
variable, for example.

Lastly, we consider a cross validation scheme over time to assess the cov-
erage properties of nonlinear ICP. We leave out the data corresponding
to one entire continent and run nonlinear ICP with invariant conditional
quantile prediction using the data from the remaining five continents.
We perform this leave-one-continent-out scheme for different values of α.
For each value of α, we then compute the predicted change in the response
log (TFR) from 1973 – 2008 for each country belonging to the continent
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Table 4.1.: Coverage

Coverage guarantee 0.95 0.90 0.8 0.5

Coverage with nonlinear ICP 0.99 0.95 0.88 0.58
Coverage with Random Forest 0.76 0.71 0.61 0.32
Coverage with mean change 0.95 0.88 0.68 0.36

that was left out during the estimation procedure. The predictions are
obtained by using the respective accepted models.5 We then compare the
union of the associated confidence intervals with the real, observed change
in log (TFR). This allows us to compute the coverage statistics shown in
Table 4.1. We observe that nonlinear ICP typically achieves more accu-
rate coverage compared to (i) a Random Forest regression model including
all variables and (ii) a baseline where the predicted change in log (TFR)
for a country is the observed mean change in log (TFR) across all conti-
nents other than the country’s own continent. Figures 4.5—4.8 show the
confidence intervals and the observed values for all African countries (Fig-
ure 4.5) and all countries (Figures 4.6—4.8) with observed log (TFR) in
1973 and 2008.

Recall that one advantage of a causal model is that, in the absence of
hidden variables, it does not matter whether certain variables have been
intervened on or whether they were observed in this state – the result-
ing prediction remains correct in any of these cases. On the contrary,
the predictions of a non-causal model can become drastically incorrect
under interventions. This may be one reason for the less accurate cov-
erage statistics of the Random Forest regression model—in this example,
it seems plausible that some of the predictors were subject to different
external ‘interventions’ across continents and countries.

5Their number differs according to α: for a smaller α, additional models can be accepted
compared to using a larger value of α. In other words, the accepted models for α2
where α1 < α2 are a subset of the accepted models for α1.
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4.3. Conditional independence tests

We present and evaluate an array of methods for testing conditional in-
dependence in a nonlinear setting, many of which exploit the invariance
of causal models across different environments. Here, we briefly sketch
the main ideas of the considered tests, their respective assumptions and
further details are provided in Appendix 4.B. All methods (A) – (F) are
available in the package CondIndTests for the R language. Table 4.2 in
Appendix 4.B.7 shows the supported methods and options. An experi-
mental comparison of the corresponding power and type I error rates of
these tests can be found in §4.4.

(A) Kernel conditional independence test. Use a kernel conditional
independence test for Y ⊥⊥ E | XS (Fukumizu et al., 2008; Zhang et
al., 2011). See Appendix 4.B.1 for further details.

(B) Residual prediction test. Perform a nonlinear regression from Y
on XS , using an appropriate basis expansion, and apply a variant of
a Residual Prediction (RP) test (Shah and Bühlmann, 2018). The
main idea is to scale the residuals of the regression such that the re-
sulting test statistic is not a function of the unknown noise variance.
This allows for a straight-forward test for dependence between the
residuals and (E, XS). In cases where a suitable basis expansion is
unknown, random features (Rahimi and Recht, 2007; Williams and
Seeger, 2001) can be used as an approximation. See Appendix 4.B.2
for further details.

(C) Invariant environment prediction. Predict the environment E,
once with a model that uses XS as predictors only and once with a
model that uses (XS , Y ) as predictors. If the null is true and we find
the optimal model in both cases, then the out-of-sample performance
of both models is statistically indistinguishable. See Appendix 4.B.3
for further details.

(D) Invariant target prediction. Predict the target Y , once with
a model that uses XS as predictors only and once with a model
that uses (XS , E) as predictors. If the null is true and we find the
optimal model in both cases, then the out-of-sample performance of
both models is statistically indistinguishable. See Appendix 4.B.4
for further details.

(E) Invariant residual distribution test. Pool the data across all
environments and predict the response Y with variables XS . Then
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test whether the distribution of the residuals is identical in all envi-
ronments E. See Appendix 4.B.5 for further details.

(F) Invariant conditional quantile prediction. Predict a 1−β quan-
tile of the conditional distribution of Y , given XS , by pooling the
data over all environments. Then test whether the exceedance of
the conditional quantiles is independent of the environment vari-
able. Repeat for a number of quantiles and aggregate the resulting
individual p-values by Bonferroni correction. See Appendix 4.B.6 for
further details.

Another interesting possibility for future work would be to devise a con-
ditional independence test based on model-based recursive partitioning
(Hothorn and Zeileis, 2015; Zeileis et al., 2008).

Non-trivial, assumption-free conditional independence tests with a valid
level do not exist (Shah and Peters, 2018). It is therefore not surprising
that all of the above tests assume the dependence on the conditioning
variable to be “simple” in one form or the other. Some of the above tests
require the noise variable in (4.1) to be additive in the sense that we do
not expect the respective test to have the correct level when the noise is
not additive. As additive noise is also used in §4.2.3 and §4.2.4, we have
written the structural equations above in an additive form.

One of the inherent difficulties with these tests is that the estimation bias
when conditioning on potential parents in (4.3) can potentially lead to a
more frequent rejection of a true null hypothesis than the nominal level
suggests. In approaches (C) and (D), we also need to test whether the
predictive accuracy is identical under both models and in approaches (E)
and (F) we need to test whether univariate distributions remain invariant
across environments. While these additional tests are relatively straight-
forward, a choice has to be made.

Discussion of power. Conditional independence testing is a statistically
challenging problem. For the setting where we condition on a continuous
random variable, we are not aware of any conditional independence test
that holds the correct level and still has (asymptotic) power against a
wide range of alternatives. Here, we want to briefly mention some power
properties of the tests we have discussed above.

Invariant target prediction (D), for example, has no power to detect if the
noise variance is a function of E, as shown by the following example
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Example 4.8 Assume that the distribution is entailed by the following
model

E ← 0.2ηE
X ← ηX

Y ← X2 + E · ηY ,

where ηE , ηX , ηY
i.i.d.∼ N (0, 1). Then, any regression from Y on X and E

yields the same results as regressing Y on X only. That is,

for all x, e : E[Y |X = x] = E[Y |X = x,E = e]

although
Y 6⊥⊥ E |X.

The invariant residual distribution test (E), in contrast, assumes homoscedas-
ticity and might have wrong coverage if this assumption is violated. Fur-
thermore, two different linear models do not necessarily yield different
distributions of the residuals when performing a regression on the pooled
data set.

Example 4.9 Consider the following data generating process

Y e=1 ← 2Xe=1 +Ne=1

Y e=2 ← −Xe=2 + 0.3Ne=2,

where the input variables Xe=1 and Xe=2 and the noise variables Ne=1

and Ne=2 have the same distribution in each environment, respectively.
Then, approach (E) will accept the null hypothesis of invariant prediction.

It is possible to reject the null hypothesis of invariant prediction in Exam-
ple 4.9 by testing whether in each environment the residuals are uncorre-
lated from the input.
Invariant conditional quantile prediction (F) assumes neither homoscedas-
ticity nor does it suffer from the same issue of (D), i.e. no power against
an alternative where the noise variance σ is a function of E. However,
it is possible to construct examples where (F) will have no power if the
noise variance is a function of both E and the causal variables XS∗ . Even
then, though, the noise level would have to be carefully balanced to re-
duce the power to 0 with approach (F) as the exceedance probabilities of
various quantiles (a function of XS∗) would have to remain constant if we
condition on various values of E.
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4.4. Simulation study
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Figure 4.9.: The structure of the causal graph used in the simulations. The
causal order is unknown for the simulations. All edge weights are 1 in absolute
value.

For the simulations, we generate data from different nonlinear additive
noise causal models and compare the performance of the proposed con-
ditional independence tests. The structural equations are of the form
Zk ← gk(Zpak) + ηk, where the structure of the DAG is shown in Fig-
ure 4.9 and kept constant throughout the simulations for ease of compari-
son. We vary the nonlinearities used, the target, the type and strength of
interventions, the noise tail behavior and whether parental contributions
are multiplicative or additive. The simulation settings are described in
Appendix 4.C in detail.

We apply all the conditional independence tests (CITs) that we have in-
troduced in §4.3, implemented with the following methods and tests as
subroutines:
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CIT Implementation

(A) KCI without Gaussian process estimation
(B)(i) RP w/ Fourier random features
(B)(ii) RP w/ Nyström random features and RBF kernel
(B)(iii) RP w/ Nyström random features and polynomial

kernel (random degree)
(B)(iv) RP w/ provided polynomial basis (random degree)
(C) Random forest and χ2-test
(D)(i) GAM with F-Test
(D)(ii) GAM with Wilcoxon test
(D)(iii) Random forest with F-Test
(D)(iv) Random forest with Wilcoxon test
(E)(i) GAM with Kolmogorov-Smirnov test
(E)(ii) GAM with Levene’s test + Wilcoxon test
(E)(iii) Random forest with Kolmogorov-Smirnov test
(E)(iv) Random forest with Levene’s test + Wilcoxon test
(F) Quantile regression forest with Fisher’s exact test

As a disclaimer we have to note that KCI is implemented without Gaussian
process estimation. The KCI results shown below might improve if the
latter is added to the algorithm.

Baselines. We compare against a number of baselines. Importantly, most
of these methods contain various model misspecifications when applied in
the considered problem setting. Therefore, they would not be suitable
in practice. However, it is instructive to study the effect of the model
misspecifications on performance.

1. The method of Causal Additive Models (CAM) (Bühlmann et al.,
2014) identifies graph structure based on nonlinear additive noise
models (Peters and Bühlmann, 2014). Here, we apply the method in
the following way. We run CAM separately in each environment and
output the intersection of the causal parents that were retrieved in
each environment. Note that the method’s underlying assumption
of Gaussian noise is violated.

2. We run the PC algorithm (Spirtes et al., 2000) in two different vari-
ants. We consider a variable to be the parent of the target if a di-
rected edge between them is retrieved; we discard undirected edges.
In the first variant of PC we consider, the environment variable is
part of the input; conditional independence testing within the PC
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algorithm is performed with KCI, for unconditional independence
testing we use HSIC (Gretton et al., 2008, 2005), using the imple-
mentation from Pfister and Peters, 2017 (denoted with ‘PC(i)’ in
the figures). In the second variant, we run the PC algorithm on
the pooled data (ignoring the environment information), testing for
zero partial correlations (denoted with ‘PC(ii)’ in the figures). Here,
the model misspecification is the assumed linearity of the structural
equations.

3. We compare against linear ICP (Peters and Bühlmann, 2014) where
the model misspecification is the assumed linearity of the structural
equations.

4. We compare against LiNGAM (Shimizu et al., 2006), run on the
pooled data without taking the environment information into ac-
count. Here, the model misspecifications are the assumed linearity
of the structural equations and the i.i.d. assumption which does not
hold.

5. We also show the outcome of a random selection of the parents that
adheres to the FWER-limit by selecting the empty set (Ŝ = ∅) with
probability 1−α and setting Ŝ = {k} for k randomly and uniformly
picked from {1, . . . , p} \ k′ with probability α, where k′ is the index
of the current target variable. The random selection is guaranteed
to maintain FWER at or below 1− α.

Thus, all considered baseline models in 1. – 4. —except for ‘PC(i)‘—contain
at least slight model misspecifications.

Metrics. Error rates and power are measured in the following by

(i) Type I errors are measured by the family-wise error rate (FWER),
the probability of making one or more erroneous selections

P
(
Ŝ * S∗

)
.

(ii) Power is measured by the Jaccard similarity, the ratio between
the size of the intersection and the size of the union of the estimated
set Ŝ and the true set S∗. It is defined as 1 if both S∗ = Ŝ = ∅ and
otherwise as

|Ŝ ∩ S∗|
|Ŝ ∪ S∗|

.
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Figure 4.10.: Average Jaccard similarity (y-axis) against average FWER (x-
axis), stratified according to which conditional independence test (A) – (F) or
baseline method has been used. The nominal level is α = 0.05, illustrated by
the vertical dotted line. The shown results are averaged over all target variables.
Since the empty set is the correct solution for target variable 1 and 5, methods
that mostly return the empty set (such as random or linear ICP) perform still
quite well in terms of average Jaccard similarity. Since all variables are highly
predictive for the target variable Y , see Figure 4.9, classical variable selection
techniques as LASSO have a FWER that lies far beyond α. Importantly, the
considered baselines are not suitable for the considered problem setting due to
various model misspecifications. We show their performance for comparison to
illustrate the influence of these misspecifications.

The Jaccard similarity is thus between 0 and 1 and the optimal value
1 is attained if and only if Ŝ = S∗.

Type-I-error rate of conditional independence tests. Figure 4.10 shows
the average FWER on the x-axis (and the average Jaccard similarity on
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Figure 4.11.: Average Jaccard similarity over the conditional independence tests
(A) – (F) (y-axis) against average FWER (x-axis), stratified according to various
parameters (from top left to bottom right): sample size ‘n’, type of nonlinearity
‘id’, ‘target variable’, intervention location ‘interv’, multiplicative effects indi-
cator ‘multiplic’, ‘strength’ of interventions, mean value of interventions ‘mean-
shift’, shift intervention indicator ‘shift’ and degrees of freedom for t-distributed
noise ‘df’. For details, see the description in Appendix 4.C. The FWER is within
the nominal level in general for all conditional independence tests. The average
Jaccard similarity is mostly determined by the target variable under considera-
tion, see top right panel.

the y-axis) for all methods. The FWER is close but below the nominal
FWER rate of α = 0.05 for all conditional independence tests, that is
P (Ŝ ⊆ S∗) ≥ 1 − α. The same holds for the baselines linear ICP and
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(a) Target variable 2
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(b) Target variable 3
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(c) Target variable 4
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(d) Target variable 6

Figure 4.12.: The identical plot to Figure 4.10 separately for target variables
2, 3, 4 and 6. For all target variables, method (E)(ii)—an invariant residual
distribution test using GAM with Levene’s test + Wilcoxon test—performs con-
stantly as good or nearly as good as the optimal method among the considered
tests.

random selection. Notably, the average Jaccard similarity of the random
selection baseline is on average not much lower than for the other methods.
The reason is mostly a large variation in average Jaccard similarity across
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the different target variables, as discussed further below and as will be
evident from Figure 4.11 (top right plot). In fact, as can be seen from
Figure 4.12, random guessing is much worse than the optimal methods
on each target variable. The FWER of the remaining baselines CAM,
LiNGAM, PC(i) and PC(ii) lies well above α.

A caveat of the FWER control seen in Figure 4.10 is that while the FWER
is maintained at the desired level, the test H0,S∗ might be rejected more
often than with probability α. The error control rests on the fact that
H0,S∗ is accepted with probability higher than 1−α (since the null is true
for S∗). However, if a mistake is made and H0,S∗ is falsely rejected, then
we might still have Ŝ ⊆ S∗ because either all other sets are rejected, too,
in which case Ŝ = ∅, or because other sets (such as the empty set) are
accepted and the intersection of all accepted sets is—by accident—again
a subset of S∗. In other words: some mistakes might cancel each other
out but overall the FWER is very close to the nominal level, even if we
stratify according to sample size, target, type of nonlinearity and other
parameters, as can be seen from Figure 4.11.

Power. Figures 4.10 shows on the y-axis the average Jaccard similarity
for all methods. The optimal value is 1 and is attained if and only if Ŝ =
S∗. A value 0 corresponds to disjoint sets Ŝ and S∗. The average Jaccard
similarity is around 0.4 for most methods and not clearly dependent on
the type I errors of the methods. Figure 4.11 shows the average FWER
and Jaccard similarities stratified according to various parameters.

One of the most important determinants of success (or the most important)
is the target, that is the variable for which we would like to infer the causal
parents; see top right panel in Figure 4.11. Variables 1 and 5 as targets
have a relatively high average Jaccard similarity when trying to recover the
parental set. These two variables have an empty parental set (S∗ = ∅) and
the average Jaccard similarity thus always exceeds 1−α if the level of the
procedure is maintained as then Ŝ = ∅ = S∗ with probability at least 1−α
and the Jaccard similarity is 1 if both Ŝ and S∗ are empty. As testing for
the true parental set corresponds to an unconditional independence test in
this case, maintaining the level of the test procedure is much easier than
for the other variables.

Figure 4.12 shows the same plot as Figure 4.10 for each of the more dif-
ficult target variables 2, 3, 4, and 6 separately. As can be seen from the
graph in Figure 4.9 and the detailed description of the simulations in Ap-
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pendix 4.C, the parents of target variable 3 are difficult to estimate as the
paths 1→ 2→ 3 and 1→ 3 cancel each other exactly in the linear setting
(and approximately for nonlinear data), thus creating a non-faithful dis-
tribution. The cancellation of effects holds true if interventions occur on
variable 1 and not on variable 2. A local violation of faithfulness leaves
type I error rate control intact but can hurt power as many other sets be-
sides the true S∗ can get accepted, especially the empty set, thus yielding
Ŝ = ∅ when taking the intersection across all accepted sets to compute
the estimate Ŝ in (4.4). Variable 4, on the other hand, has only a single
parent, namely S∗ = {3}, and the recovery of the single parent is much
easier, with average Jaccard similarity up to a third. Variable 6 finally
again has average Jaccard similarity of up to around a tenth only. It does
not suffer from a local violation of faithfulness as variable 3 but the size
of the parental set is now three, which again hurts the power of the pro-
cedure, as often already a subset of the true parents will be accepted and
hence Ŝ in (4.4) will not be equal to S∗ any longer but just a subset. For
instance, when variable 5 is not intervened on in any environment it cannot
be identified as a causal parent of variable 6, as it is then indistinguishable
from the noise term. Similarly, in the linear setting, merely variable 3 can
be identified as a parent of variable 6 if the interventions act on variables
1 and/or 2 only.

The baselines LiNGAM and PC show a larger Jaccard similarity for target
variables 3, 4 (only LiNGAM), and 6 at the price of large FWER values.

In Appendix 4.D, Figures 4.13 – 4.16 show the equivalent to Figure 4.11,
separately for target variables 2, 3, 4 and 6. For the sample size n, we ob-
serve that increasing it from 2000 to 5000 decreases power in case of target
variables 4. This behavior can be explained by the fact that when testing
S∗ in Eq. (4.3), the null is rejected too often as the bias in the estimation
performed as part of the conditional independence test yields deviations
from the null that become significant with increasing sample size. For
the nonlinearity, we find that the function f4(x) = sin(2πx) is the most
challenging one among the nonlinearities considered. It is associated with
very low Jaccard similarity values for the target variables that do have par-
ents. For the intervention type, it may seem surprising that ‘all’ does not
yield the largest power. A possible explanation is that intervening on all
variables except for the target yields more similar intervention settings—
the intervention targets do not differ between environments 2 and 3, even
though the strength of the interventions is different. So more heterogeneity
between the intervention environments, i.e. also having different interven-
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tion targets, seems to improve performance in terms of Jaccard similarity.
Lastly, we see that power is often higher for additive parental contributions
than for multiplicative ones.

In summary, all tests (A) – (F) seem to maintain the desired type I error,
chosen here as the family-wise error rate, while the power varies consid-
erably. An invariant residual distribution test using GAM with Levene’s
test and Wilcoxon test produces results here that are constantly as good
or nearly as good as the optimal methods for a range of different settings.
However, it is only applicable for categorical environmental variables. For
continuous environmental variables, the results suggest that the residual
prediction test with random features might be a good choice.

4.5. Discussion and future work

Causal structure learning with the invariance principle was proposed Pe-
ters et al., 2016. However, the assumption of linear models in Peters et al.,
2016 is unrealistic in many applications. In this work, we have shown how
the framework can be extended to nonlinear and nonparametric models
by using suitable nonlinear and nonparametric conditional independence
tests. The properties of these conditional independence tests are critically
important for the power of the resulting causal discovery procedure. We
evaluated many different test empirically in the given context and high-
lighted approaches that seem to work robustly in different settings. In
particular we find that fitting a nonlinear model with pooled data and
then testing for differences between the residual distributions across envi-
ronments results in desired coverage and high power if compared against
a wide range of alternatives.

Our approach allowed us to model how several interventions may affect the
total fertility rate of a country, using historical data about decline and rise
of fertilities across different continents. In particular, we provided bounds
on the average causal effect under certain (hypothetical) interventions such
as a reduction in child mortality rates. We showed that the causal predic-
tion intervals for hold-out data have better coverage than various baseline
methods. The importance of infant mortality rate and under-five mortal-
ity rate on fertility rates is highlighted, reconfirming previous studies that
have shown or hypothesized these factors to be important (Hirschman,
1994; Raftery et al., 1995). We stress that the results rely on causal suffi-
ciency of the used variables, an assumption that can and should be debated
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for this particular example.
We also introduced the notion of ‘defining sets’ in the causal discovery
context that helps in situations where the signal is weak or variables are
highly correlated by returning sets of variables of which we know that at
least one variable (but not necessarily all) in this set are causal for the
target variable in question.
Finally, we provide software in the R (R Core Team, 2017) package
nonlinearICP. A collection of the discussed conditional independence tests
are part of the package CondIndTests and are hopefully of independent
interest.
In applications where it is unclear whether the underlying models are linear
or not, we suggest the following. While our proposed methods also hold
the significance level if the underlying models are linear, we expect the
linear version of ICP to have more power. Therefore, it is advisable to
use the linear version of ICP if one has strong reasons to believe that the
underlying model is indeed linear. In practice, one might first apply ICP
with linear models and apply a nonlinear version if, for example, all linear
models are rejected. One would then need to correct for multiple testing
by a factor of 2.
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Appendix 4.A Time series bootstrap procedure

In the time series bootstrap procedure used to obtain the confidence bands
F̂ in §4.2.4, B bootstrap samples of the response Y are generated by first
fitting the model on all data points. We then use the fitted values and
residuals from this model. Each bootstrap sample is generated by resam-
pling the residuals of this fit block- and country-wise. In more detail, we
define the block-length lb of residuals that should be sampled consecutively
(we use lb = 3) and we sample a number of time points ts1 , . . . , tsk from
which the residuals are resampled. For a country a and the first time point
t1, consider the fitted values at point t1 and the fitted values for the lb− 1
consecutive observations. We then sample a country b and add country
b’s residuals from time points ts1 , ts1+1, . . . ts1+lb−1 to the fitted values of
country a for the considered period t1, . . . , tlb . We then proceed with the
next lb consecutive fitted values for country a and add country b’s residuals
from observations ts2 , ts2+1, . . . ts2+lb−1, until all fitted values of country
a are covered. This procedure is applied to each country. Finally, to ob-
tain the confidence intervals, we fit the model on each of the B bootstrap
samples (Y b, X), consisting of the response Y b generated from the fitted
values and the resampled residuals, and the observations X which have
not been modified.

Appendix 4.B Conditional independence tests

For completeness, we first restate the generic method for Invariant Causal
Prediction from Peters et al., 2016:

Algorithm 2 Generic method for Invariant Causal Prediction
Input: i.i.d. sample of (Y , X, E), α
1: for each S ⊆ {1, . . . , p} do
2: Test whether H0,S holds at level α.
3: end for
4: Set Ŝ :=

⋂
S:H0,S not rejected S

Output: Ŝ

The conditional independence tests discussed in this work can be used to
perform the test in Step 2 of Algorithm 2. Therefore, the inputs to these
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tests consist of an i.i.d. sample of (Y,XS , E) and α where XS contains
the variables corresponding to S ⊆ {1, . . . , p}, i.e. the subset to be tested.
Additionally, some test specific parameters might need to be specified. The
return value of the tests is the respective test’s decision about H0,S .
For most tests, E ∈ Rd can be either discrete or continuous. As all empir-
ical results in this work use an environment variable that is discrete and
one-dimensional, the descriptions below focus on this setting. We then
denote the index set of different environments with E . We will comment
on the required changes for the continuous and higher-dimensional case
in the respective sections. Whenever applying the test for environmental
variables E ∈ Rd with d > 1 is infeasible with the method, each test can
be applied separately for each variable in E. The overall p-value is ob-
tained by multiplying the minimum of the individual p-values by d, i.e.
by applying a Bonferroni correction for the number of environmental vari-
ables. When applying the function CondIndTest() from the R package
CondIndTests with a conditional independence test that does not sup-
port a multidimensional environment variable, the described Bonferroni
correction is applied.

4.B.1 Kernel conditional independence test

Setting and assumptions. We use the kernel conditional independence
test proposed in Zhang et al., 2011. When E is discrete, we use a delta
kernel for E, and otherwise an RBF kernel. The test is also applicable
when E contains more than one environmental variable as the inputs can
be sets of random variables.

4.B.2 Residual prediction test

Setting and assumptions. We do not expect this test to have the correct
level when the noise in Eq. (4.1) is not additive. The described procedure
does not need to be modified for higher-dimensional and/or continuous
environmental variables E.
We consider a version of a Residual Prediction test as proposed in Shah and
Bühlmann, 2018 to determine whetherH0,S holds at level α for a particular
set of variables S. The main idea is to find a suitable basis expansion of
f that allows us to regress Y on XS by reverting back to the linear case.
Given an appropriate basis expansion, the scaled ordinary least squares
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residuals can then be tested for possible remaining nonlinear dependencies
between the scaled residuals and (E,XS). The scaling ensures that the
resulting test statistic is not a function of the noise variance. Under the
null, the scaled residuals are expected to behave roughly like the noise
term. In other words, there should be no dependence between the scaled
residuals and the environmental variables and XS , so there should be no
signal left in the residuals that could be fitted by a nonparametric method
like a random forest using E and XS as predictors. This necessitates to
make an assumption on the noise distribution Fε, e.g. ε ∼ N (0, 1).

In order to generalize the method to settings where an appropriate basis
expansion of f is unknown, we look at ways to find such a suitable basis
expansion automatically by using random features (Rahimi and Recht,
2007; Williams and Seeger, 2001).

Algorithm 3 Residual Prediction tests applied to nonlinear ICP
Input: i.i.d. sample of (Y , XS , E), α, Fε, B, a subroutine to compute
the basis functions hm(·) for m = 1, . . . ,M
1: Compute the non-linear transformations hm(XS),m = 1, . . . ,M and

create the design matrix HXS ∈ Rn×M comprising these M nonlinear
features.

2: Regress Y on HXS with ordinary least squares.
3: Predict (a function of) the scaled residuals with the environment vari-

able E and XS .
4: Compute a statistic for the prediction accuracy to be used as test

statistic.
5: for b from 1 to B do
6: Simulate one sample of size n from the assumed noise distribution

Fε.
7: Predict (a function of) these simulated values after rescaling with

the environment variable E and XS .
8: Compute a statistic for the prediction accuracy.
9: end for
10: The B simulated values for prediction accuracy yield the empirical null

distribution from which the p-value is obtained.
Output: Decision about H0,S

Step 1. The choice of hm(XS),m = 1, . . . ,M can be based on domain
knowledge, e.g. when the nonlinearity in Eq. (4.1) is known to be a poly-
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nomial of a given order. If such domain knowledge is not available, the
linear basis expansion can be approximated by random features, e.g. using
the Nyström method or by random Fourier features. For these methods,
the kernel function needs to be chosen as well as the kernel parameters
and the number of random features to be generated.

Step 3. For instance, a random forest can be used for the estimation. If
the residuals only differ in the second moments, predicting the expectation
of the residuals is not sufficient as the predictors E have no discriminative
power for this task. In such a setting, the absolute value of the residuals
can be predicted to exploit the heterogeneity in the second moments across
environments.

Step 4. For instance, the mean squared error can be used here.

Step 5. If the error term is non-Gaussian, the appropriate distribution
can be used at this stage to accommodate non-Gaussianity of the noise.

Parameter settings used in simulations. In the simulations, we use
B = 250 and ε ∼ N (0, 1). In step 1, we consider the following options: (a)
Fourier random features (approach (B)(i) in §4.4), (b) Nyström random
features and RBF kernel ((B)(ii)), (c) Nyström random features and poly-
nomial kernel of random degree ((B)(iii)), (d) polynomial basis of random
degree ((B)(iv)). The number of random features in (c) and (d) is chosen
to be dn/4e. In step 7, we predict the mean as well as the absolute value
of the residuals and aggregate the results using a Bonferroni correction.

4.B.3 Invariant environment prediction

Setting and assumptions. The described procedure does not need to be
modified for continuous environmental variables E. For higher-dimensional
E the test would need to be applied for each variable separately and the
resulting p-values would need to be aggregated with a Bonferroni correc-
tion.
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Algorithm 4 Invariant environment prediction for nonlinear ICP
Input: i.i.d. sample of (Y , XS , E), α, subroutine for test in step 5.
1: Split the sample into training and test set.
2: Use the training set to train a model to predict E with (Y,XS) as

predictors.
3: Use the training set to train a model to predict E with XS as predic-

tors.
4: For both fits, compute the prediction accuracy on the test set.
5: Use a one-sided test at the significance level α to assess whether the

prediction accuracy of the fit using (Y,XS) as predictors is larger than
the prediction accuracy of the fit using only XS as predictors.

Output: Decision about H0,S

Step 3. When a random forest is used to predict the environment vari-
able, one can also use XS and a permutation of Y as predictors to ensure
the random forest fits are based on the same number of predictor vari-
ables. As the number of variables considered for each split in the random
forest estimation procedure is a function of the total number of predictor
variables, this helps to mitigate differences between the prediction accu-
racies that are only due to artifacts of the estimation procedure. This is
especially relevant for small sets S.

Step 5. For instance, a χ2 test can be used here. If the null is true and we
find the optimal model in both cases, then the out-of-sample performance
of both models is statistically indistinguishable as Y is independent of E
given XS . If the null is not true, we expect the model containing the
response to perform better as Y contains additional information in this
case (since Y is not independent of E given XS).

Parameter settings used in simulations. In step 1, we use 2/3 of the data
points for training and 1/3 for testing. In step 3, we use a random forest
to predict the environment variable and use XS and a permutation of Y
as predictors. In step 4, we use the χ2 test implemented in prop.test()
(Wilson, 1927) from the stats package in R.
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4.B.4 Invariant target prediction

Setting and assumptions. The described procedure does not need to
be modified for continuous and/or higher-dimensional environmental vari-
ables E.

Algorithm 5 Invariant target prediction for nonlinear ICP
Input: i.i.d. sample of (Y , XS , E), α, subroutine for test in step 5.
1: Split the sample into training and test set.
2: Use the training set to train a model to predict Y with (XS , E) as

predictors.
3: Use the training set to train a model to predict Y with XS as predic-

tors.
4: For both fits, compute the prediction accuracy on the test set.
5: Use a one-sided test at the significance level α to assess whether the

prediction accuracy of the fit using (XS , E) as predictors is larger than
the prediction accuracy of the fit using only XS as predictors.

Output: Decision about H0,S

Step 3. When a random forest is used, one can also use XS and a per-
mutation of E as predictors to ensure the random forest fit is based on the
same number of predictor variables. As the number of variables considered
for each split in the random forest estimation procedure is a function of
the total number of predictor variables, this helps to mitigate differences
between the prediction accuracies that are only due to artifacts of the es-
timation procedure. This is especially relevant for small sets S. As an
alternative to using a random forest, one could use GAMs as the estima-
tion procedure, implying the implicit assumption that the components in
f(X) in Eq. (4.1) are additive.

Step 5. For instance, an F-test can be used here. Another option is a
Wilcoxon test using the difference between the absolute residuals. If the
null is true and we find the optimal model in both cases, then the out-
of-sample performance of both models is statistically indistinguishable as
Y is independent of E given XS . If the null is not true, we expect the
model additionally containing E to perform better as E contains additional
information in this case (since Y is not independent of E given XS).
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Parameter settings used in simulations. In step 1, we use 2/3 of the
data points for training and 1/3 for testing. In step 3, to predict Y we use
a GAM or a random forest. In step 5, we use an F-test or a Wilcoxon test
(wilcox.test() from the stats package in R). These combinations yield
approaches (D)(i) – (iv) in §4.4. When using a random forest in step 3,
we use XS and a permutation of E as predictors.

4.B.5 Invariant residual distribution test

Setting and assumptions. We do not expect this test to have the correct
level when the noise in Eq. (4.1) is not additive. It is only applicable to
discrete environmental variables. For higher-dimensional E the test would
need to be applied for each variable separately and the resulting p-values
would need to be aggregated with a Bonferroni correction.

Algorithm 6 Invariant residual distribution test for nonlinear ICP
Input: i.i.d. sample of (Y , XS , E), α, subroutine for test in step
4.
1: Pool the data from all environments and fit a model to predict Y with
XS .

2: Initialize pv ← 1, t← 0.
3: for each e ∈ E do
4: Use a two-sample test to assess whether the residuals of samples

from environment e have the same distribution as the residuals of
samples from environments in the index set E ′ where E ′ = E \{e},
yielding the p-value pve.

5: t← t+ 1
6: pv ← min(pv, pve).
7: if | E | = 2 then
8: break
9: end if
10: end for
11: Apply a Bonferroni correction for the number of performed tests t:

pv ← t · pv.
Output: Decision about H0,S

Step 1. For instance, one could use a random forest or a GAM as the
estimation procedure. The latter implicitly assumes that the components
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in f in Eq. (4.1) are additive.

Step 4. For instance, a nonparametric test such as Kolmogorov-Smirnov
can be used here. Alternatively, we can limit the test to assess equality of
first and second moments by first using a Wilcoxon test for the expectation
with an one-vs-all scheme as described in the algorithm. Subsequently,
Levene’s test for homogeneity of variance across groups can be used to test
for equality of the second moments of the residual distributions. In this
case, the final p-value would be twice the minimum of (a) the Bonferroni-
corrected p-value from the one-vs-all Wilcoxon test and (b) the p-value
from Levene’s test.

Parameter settings used in simulations. In step 1, we use a GAM or
a random forest. In step 4, we use both approaches described above,
using (a) ks.test() from the stats package in R (Conover, 1971) and
(b) wilcox.test() and levene.test() (the latter being contained in the
lawstat package in R (Gastwirth et al., 2015; Levene, 1960)). These
combinations yield approaches (E)(i) – (iv) in §4.4.

4.B.6 Invariant conditional quantile prediction

Setting and assumptions. For continuous and/or higher-dimensional en-
vironmental variables E the test described in Steps 4 – 11 which assesses
whether Exceedance ⊥⊥ E would need to be modified according to the
structure of E.
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Algorithm 7 Invariant conditional quantile prediction for nonlinear ICP
Input: i.i.d. sample of (Y , XS , E), α, set of quantiles B, subroutine for
test in step 7.
1: Initialize pv ← 1, t← 0.
2: for each β ∈ B do
3: Predict 1− β quantile Q1−β(x) of Y |XS = x.
4: for each e ∈ E do
5: Define one-vs-all environment I = 1{E=e}
6: Define exceedance E1−β = 1{Y >Q̂1−β(x)}
7: Test whether E1−β is independent of I: pve,β ←

StatTest(E1−β , I, α)
8: t← t+ 1, pv ← min(pv, pve,β)
9: if | E | = 2 then
10: break
11: end if
12: end for
13: end for
14: Apply a Bonferroni correction for the number of performed tests t:

pv ← t · pv
Output: Decision about H0,S

Step 3. For instance, a Quantile Regression Forest (Meinshausen, 2006)
can be used here.

Step 7. For instance, Fisher’s exact test can be used here by computing
the 2 × 2 contingency table of the exceedance of the residuals for the
quantile 1− β for I = 0 and for I = 1.

Parameter settings used in simulations. In step 3, we use a quantile
regression forest for B = {0.1, 0.5, 0.9}. In step 7, we use fisher.test()
from the stats package in R.

4.B.7 Overview of conditional independence tests in
CondIndTests package

The described conditional independence tests are available in the R pack-
age CondIndTests. A wrapper function CondIndTest() is provided which
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takes the respective test as the argument method. The package supports
the estimation procedures, subroutines and statistical tests shown in Ta-
ble 4.2. The column E indicates whether the environmental variables can
be discrete (’D’), continuous (’C’), or both; the column d shows the sup-
ported dimensionality of E.

As described at the beginning of Appendix 4.B, a Bonferroni correction
is applied when calling the function CondIndTest() with a conditional
independence test that does not support a multidimensional environment
variable. Similarly, a Bonferroni correction is applied when the first input
argument Y to the respective test is multidimensional and if the specified
test does not support this internally.

Appendix 4.C Experimental settings for
numerical studies

For each simulation, we compare the performance of all methods and con-
ditional independence tests while choosing the following parameters ran-
domly (but keeping them constant for one simulation): In total, there are
27478 simulations from 1240 distinct settings that are evaluated for each
of the 22 considered methods.

(i) Sample size. Sample size ‘n’ is chosen randomly in the set
{100, 200, 500, 2000, 5000}.

(ii) Target variable. We sample one of the variables in the graph in
Figure 4.9 at random as a target variable (variable ‘target’ is chosen
uniformly from {1, 2, . . . , 6} in other words).

(iii) Tail behavior of the noise. The noise ηk for k = 1, . . . , 6 is
sampled from a t-distribution and the degrees of freedom are chosen
at random from df ∈ {2, 3, 5, 10, 20, 50, 100}, where the latter is very
close to a Gaussian distribution.

(iv) Multiplicative or additive effects. For each simulation setting,
we determine whether gk(·) has additive or multiplicative compo-
nents. We sample additive components of the form gk(Zpak) =∑
j∈pak f(εj,k · Zj) (multiplic = FALSE) and multiplicative compo-

nents of the form gk(Zpak) =
∏
j∈pak f(εj,k ·Zj) (multiplic = TRUE)

with equal probability, where the signs εj,k ∈ {−1, 1} are as shown
in Figure 4.9 along the relevant arrows.
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Table 4.2.: Overview of implemented test combinations in CondIndTests pack-
age
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(v) Shift- or do-Interventions. The variable ‘shift’ is set with equal
probability to either TRUE (shift-interventions) or FALSE (do-inter-
ventions). For do-interventions we replace the structural equation of
the intervened variable k ∈ {1, . . . , q} by

Zk ← ek,

where ek is the randomly chosen intervention value which is sam-
pled i.i.d for each observation as described under (vi). For shift-
interventions, the value ek is added as

Zk ← gk(Zpak) + ηk + ek.

See for example §5 of Peters et al., 2016 for a more detailed discussion
of shift interventions.

(vi) Strength of interventions The intervention values ek are cho-
sen independently for all variables from a t-distribution with ‘df’
degrees of freedom, shifted by a constant ‘meanshift’ (chosen uni-
formly at random in {0, 0.1, 0.2, 0.5, 1, 2, 5, 10}, and scaled by a factor
‘strength’, chosen uniformly at random in {0, 0.1, 0.2, 0.5, 1, 2, 5, 10}).

(vii) Non-linearities. For the functions f = fid we consider the following
four nonlinear functions, where the index ‘id’ is sampled uniformly
from {1, 2, 3, 4} and the same nonlinearity is used throughout the
graph:

f1(x) = x,

f2(x) = max{0, x},

f3(x) = sign(x) ·
√
|x|,

f4(x) = sin(2πx),

(viii) Location of interventions. Each sample is independently assigned
into one environment in E = {1, 2, 3}, where {1} corresponds to ob-
servational data, that is all samples in environment {1} are sampled
as observational data, where samples in environments {2, 3} are in-
tervention data. The intervention targets and strengths for samples
in environment {2} are drawn as per the description below and kept
constant for all samples in environment {2} and then analogously
for environment {3}, where intervention targets are drawn indepen-
dently and identically to environment {2}. The variable ‘interv’ is
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set uniformly at random to one of the values {‘all’,‘rand’,‘close’}.
If it is equal to ‘all’, then interventions in environments {2, 3} oc-
cur at all variables except for the target variable. If it is equal to
‘rand’, then interventions occur at one ancestor, chosen uniformly
at random, and one descendant of the target variable, chosen again
uniformly at random (the empty set is chosen in case there are no
ancestors or descendants). Finally, if it is equal to ‘close’, interven-
tions occur at one parent, chosen uniformly at random, and one child
of the target variable, chosen again uniformly at random (and again
no interventions occur if these sets are empty).

Appendix 4.D Additional experimental results

Figures 4.13 – 4.16 show the equivalent to Figure 4.11, separately for target
variables 2, 3, 4 and 6. For the sample size n, we observe that increasing
it from 2000 to 5000 decreases power in case of target variable 4. This be-
havior can be explained by the fact that when testing S∗ in Eq. (4.3), the
null is rejected too often as the bias in the estimation performed as part of
the conditional independence test yields deviations from the null that be-
come significant with increasing sample size. For the nonlinearity, we find
that the function f4(x) = sin(2πx) is the most challenging one among the
nonlinearities considered. It is associated with very low Jaccard similarity
values for the target variables that do have parents. For the intervention
type, it may seem surprising that ‘all’ does not yield the largest power. A
possible explanation is that intervening on all variables except for the tar-
get yields more similar intervention settings—the intervention targets do
not differ between environments 2 and 3, even though the strength of the
interventions is different. So more heterogeneity between the intervention
environments, i.e. also having different intervention targets, seems to im-
prove performance in terms of Jaccard similarity. Lastly, we see that power
is often higher for additive parental contributions than for multiplicative
ones.
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Figure 4.13.: Average Jaccard similarity over the conditional independence tests
(A) – (F) (y-axis) against average FWER (x-axis) when estimating the parents
of variable 2. The figure is otherwise generated analogously to Figure 4.11.
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Figure 4.14.: Average Jaccard similarity over the conditional independence tests
(A) – (F) (y-axis) against average FWER (x-axis) when estimating the parents
of variable 3. The figure is otherwise generated analogously to Figure 4.11.
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Figure 4.15.: Average Jaccard similarity over the conditional independence tests
(A) – (F) (y-axis) against average FWER (x-axis) when estimating the parents
of variable 4. The figure is otherwise generated analogously to Figure 4.11.
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Figure 4.16.: Average Jaccard similarity over the conditional independence tests
(A) – (F) (y-axis) against average FWER (x-axis) when estimating the parents
of variable 6. The figure is otherwise generated analogously to Figure 4.11.
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Appendix 4.E Example

Here we illustrate the methods presented in this manuscript by considering
a causal DAG X1 → X2 → X3. Figure 4.17 visualizes the generated data.
There are six environments with shift interventions. The latter act on
X1 in two environments (green, yellow) and on X3 in four environments
(green, cyan, blue, magenta). The red environment consists of observa-
tional data. We run the proposed approaches (A) – (F) to retrieve the
parents of X2, i.e. S∗ = {X1}. Below we give an overview of which sets
were accepted by the respective methods with α = 0.05. We see that ap-
proaches (A), (B)(i)+(ii), (E)(i)-(iii) and (F) retrieve S∗ correctly, while
the other approaches return the empty set.
CIT S0 = {} S1 = {X1} S2 = {X3} S3 = {X1, X3} Ŝ

(A) X X {X1}
(B)(i) X X {X1}
(B)(ii) X X {X1}
(B)(iii) {}
(B)(iv) {}
(C) X X X {}
(D)(i) X X X {}
(D)(ii) X X X X {}
(D)(iii) {}
(D)(iv) X X {}
(E)(i) X X {X1}
(E)(ii) X X {X1}
(E)(iii) X {X1}
(E)(iv) {}
(F) X X {X1}
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Figure 4.17.: Visualization of the sample considered in the example in Ap-
pendix 4.E.





Chapter 5.

Conditional variance penalties
and domain shift robustness

When training a deep neural network for supervised image classification,
one can broadly distinguish between two types of latent features of images
that will drive the classification. Following the notation of Gong et al.
(2016), we can divide latent features into (i) ‘core’ or ‘conditionally invari-
ant’ features Xcore whose distribution Xcore|Y , conditional on the class Y ,
does not change substantially across domains and (ii) ‘style’ or ‘orthogonal’
features Xstyle whose distribution Xstyle|Y can change substantially across
domains. These latter orthogonal features would generally include features
such as position, rotation, image quality or brightness but also more com-
plex ones like hair color or posture for images of persons. Guarding against
future adversarial domain shifts implies that the influence of the second
type of style features in the prediction has to be limited. In contrast to
previous work, we assume that the domain itself is not observed and hence
a latent variable. Therefore, we can not directly see the distributional
change of features across different domains.
We do assume, however, that we can sometimes observe a typically discrete
identifier or ID variable. We know in some applications, for example, that
two images show the same person, and ID then refers to the identity of
the person. In data augmentation, we generate several images from the
same original image, and ID then refers to the relevant original image. The
method requires only a small fraction of images to have an ID variable.
The causal framework of Gong et al. (2016) is adapted by adding the
identifier ID variable to the model and making domain a latent vari-
able. We group data samples if they share the same class and identifier
(Y, ID) = (y, id) and penalize the conditional variance of the prediction
if we condition on (Y, ID). The regularization is equivalent to penalizing
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with an appropriate graph Laplacian. Using this grouping-by-ID approach
is shown to protect against shifts in the distribution of the style variables
for both regression and classification models. Specifically, the conditional
variance penalty CoRe is shown to be equivalent to minimizing the risk
under noise interventions in a regression setting and is shown to lead to
adversarial risk consistency in a partially linear classification setting.
We show empirically that the CoRe penalty substantially improves perfor-
mance in settings where domains changes occur in terms of image quality,
brightness and color while we also look at more complex changes such as
changes in movement and posture. The attractive property is that the
type of domain change on future data does not need to be known a priori.

5.1. Introduction

Deep neural networks (DNNs) have achieved outstanding performance on
prediction tasks like visual object and speech recognition (He et al., 2015;
Krizhevsky et al., 2012; Szegedy et al., 2015). Issues can arise when the
learned representations rely on dependencies that vanish in test distribu-
tions, see for example Csurka (2017), Quionero-Candela et al. (2009), and
Torralba and Efros (2011) and references therein. Such domain shifts can
be caused by changing conditions such as color, background or location
changes. Predictive performance is then likely to degrade. The “Russian
tank legend” is an example where the training data was subject to sampling
biases that were not replicated in the real world. Concretely, the story re-
lates how a machine learning system was trained to distinguish between
Russian and American tanks from photos. The accuracy was very high but
only due to the fact that all images of Russian tanks tended to be of bad
quality while the photos of American tanks were not. The system learned
to discriminate between images of different qualities but would have failed
badly in practice (Emspak, 2016)1. For a directly equivalent example, see
§5.7.2. Existing biases in datasets used for training machine learning al-
gorithms tend to be replicated in the estimated models (Bolukbasi et al.,
2016). For another example involving Google’s photo app, see Crawford
(2016) and Emspak (2016). In §5.7 we show many examples where un-
wanted biases in the training data are picked up by the trained model.
As any bias in the training data is in general used to discriminate be-
tween classes, these biases will persist in future classifications, raising also
1A different version of this story can be found in Yudkowsky, 2008.



5.1 Introduction 143

considerations of fairness and discrimination (Barocas and Selbst, 2016).

Addressing the issues outlined above, we propose Conditional variance
Regularization (CoRe) to give differential weight to different latent fea-
tures. Conceptually, we take a causal view of the data generating process
and categorize the latent data generating factors into ‘conditionally invari-
ant’ (core) and ‘orthogonal’ (style) features, as in Gong et al. (2016). It is
desirable that a classifier uses only the core features as they pertain to the
target of interest in a stable and coherent fashion. Basing a prediction on
the core features alone yields a stable predictive accuracy even if the style
features are altered. CoRe yields an estimator which is approximately in-
variant under changes in the conditional distribution of the style features
(conditional on the class labels). Consequently, it is robust with respect to
adversarial domain shifts, arising through arbitrarily strong interventions
on the style features. CoRe relies on the fact that for certain datasets we
can observe ‘grouped observations’ in the sense that we observe the same
object under different conditions. Rather than pooling over all examples,
CoRe exploits knowledge about this grouping, i.e. that a number of in-
stances relate to the same object. By penalizing between-object variation
of the prediction less than variation of the prediction for the same object,
we can steer the prediction to be based more on the latent core features
and less on the latent style features.

The remainder of this manuscript is structured as follows: §5.2 starts
with a few motivating examples, showing simple settings where the style
features change in the test distribution such that standard empirical risk
minimization approaches would fail. In §5.3 we review related work, in-
troduce notation in §5.4 and in §5.5 we formally introduce conditional
variance regularization CoRe. In §5.6, CoRe is shown to be equivalent
to minimizing the risk under noise interventions in a regression setting
and is shown to lead to adversarial risk consistency in a partially linear
classification setting. In §5.7 we evaluate the performance of CoRe in a
variety of experiments.

To summarize, our contributions are the following:

(i) Causal framework. We extend the causal framework of Gong et
al. (2016) to address situations where the domain variable itself is
latent.

(ii) Conditional variance penalties and distributional robust-
ness. We introduce conditional variance penalties, which are equiv-
alent to a suitable graph Laplacian penalty. For classification, we
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(d) Example 2, test set.

(e) Example 3, training set. (f) Example 3, test set.

Figure 5.1.: Three motivating examples: a linear example in (a) and (b), a
nonlinear example in (c) and (d) and an example where the goal is to predict
whether a person is wearing glasses in (e) and (f). The distributions are shifted
in test data by style interventions where style in example (a/b) is the linear
direction (1,−0.75), the polar angle in example (c/d), and the image quality in
example (e/f). In this latter example, a 5-layer CNN achieves 0% training error
and 2% test error for images that are sampled from the same distribution as
the training images (e), but a 65% error rate on images where the confounding
between image quality and glasses is changed (f). See §5.7.2 for more details.
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show in Theorem 5.2 that we can achieve consistency under a risk
definition that allows adversarial domain changes. For regression,
we show in Theorem 5.3 that estimator achieves distributional ro-
bustness against intervention distributions where the noise variance
of domain-specific noise is increased. A one-to-one correspondence
between the penalty parameter and the set of distributions we are
protected against is shown.

(iii) Software. We illustrate our ideas using synthetic and real-data
experiments. A TensorFlow implementation of CoRe as well as
code to reproduce some of the experimental results are available at
https://github.com/christinaheinze/core.

5.2. Motivating examples

To motivate the methodology we propose, consider the examples shown in
Figure 5.1. Example 1 shows a setting where a linear decision boundary
is suitable. Panel (a) shows a subsample of the training data where class
1 is associated with red points, dark blue points correspond to class 0. If
we were asked to draw a decision boundary based on the training data,
we would probably choose one that is approximately horizontal. The style
feature here corresponds to a linear direction (1,−0.75)t. Panel (b) shows
a subsample of the test set where the style feature is intervened upon for
class 1 observations: class 1 is associated with orange squares, cyan squares
correspond to class 0. Clearly, a horizontal decision boundary would have
misclassified all test points of class 1.

Example 2 shows a setting where a nonlinear decision boundary is required.
Here, the core feature corresponds to the distance from the origin while
the style feature corresponds to the angle between the x1-axis and the
vector from the origin to (x1, x2). Panel (c) shows a subsample of the
training data and panel (d) additionally shows a subsample of the test
data where the style—i.e. the distribution of the angle—is intervened
upon. Clearly, a circular decision boundary yields optimal performance
on both training and test set but is unlikely to be found by a standard
classification algorithm when only using the training set for the estimation.
We will return to these examples in §5.5.4.

Lastly, we mimic the Russian tank legend in the third example by manip-
ulating the face images from the CelebA dataset (Liu et al., 2015): in the

https://github.com/christinaheinze/core
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training set images of class “wearing glasses” are associated with a lower
image quality than images of class “not wearing glasses”. Examples are
shown in panel (e). In the test set, this relation is reversed, i.e. images
showing persons wearing glasses are of higher quality than images of per-
sons without glasses, with examples in panel (f). We will return to this
example in §5.7.2 and show that training a convolutional neural network to
distinguish between people wearing glasses or not works well on test data
that are drawn from the same distribution (with error rates below 2%) but
fails entirely on the shown test data, with error rates worse than 65%.

5.3. Related work

For general distributional robustness, the aim is to learn

argminθ sup
F∈F

EF (`(Y, fθ(X))) (5.1)

for a given set F of distributions, loss `, and prediction fθ(x). The set F
is the set of distributions on which one would like the estimator to achieve
a guaranteed performance bound and the set is often taken to be of the
form F = Fε(P0) with

Fε(P0) := {distributions Q such that D(Q,P0) ≤ ε}, (5.2)

with ε > 0 a small constant and D(Q,P0) being, for example, a φ-
divergence (Bagnell, 2005; Ben-Tal et al., 2013; Namkoong and Duchi,
2017) or a Wasserstein-distance (Gao et al., 2017; Shafieezadeh-Abadeh
et al., 2017; Sinha et al., 2018). The distribution P0 can be the true (but
generally unknown) population distribution P from which the data were
drawn or its empirical counterpart Pn. The distributionally robust tar-
gets (5.1) can often be expressed in penalized form; see Gao et al., 2017;
Sinha et al., 2018; Xu et al., 2009.

In this work, we do not try to achieve robustness with respect to a set
of distributions that are pre-defined by a Kullback-Leibler divergence or
a Wasserstein metric as in (5.2). We try to achieve robustness against
a set of distributions that are generated by interventions on latent style
variables. As such the right distribution set F in (5.1) has to be learnt
from data and we need a causal model to define the set of distributions we
would like to protect ourselves against.
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Similar to this work in terms of their goals are the work of Gong et al., 2016
and Domain-Adversarial Neural Networks (DANN) proposed in Ganin et
al. (2016), an approach motivated by the work of Ben-David et al., 2007.
The main idea of Ganin et al. (2016) is to learn a representation that
contains no discriminative information about the origin of the input (source
or target domain). This is achieved by an adversarial training procedure:
the loss on domain classification is maximized while the loss of the target
prediction task is minimized simultaneously. The data generating process
assumed in Gong et al., 2016 is similar to our model, introduced in §5.4.2,
where we detail the similarities and differences between the models (cf.
Figure 5.2). Gong et al. (2016) identify the conditionally independent
features by adjusting a transformation of the variables to minimize the
squared MMD distance between distributions in different domains2. The
fundamental difference between these very promising methods and our
approach is that we use a different data basis. The domain identifier is
explicitly observable in Gong et al., 2016 and Ganin et al. (2016), while
it is latent in our approach. In contrast, we exploit the presence of an
identifier variable ID that relates to the identity of an object (for example
identifying a person). In other words, we do not assume that we have data
from different domains but just different realizations of the same object
under different interventions.
Causal modeling has related aims to the setting of transfer learning and
guarding against adversarial domain shifts. Specifically, causal models
have the defining advantage that the predictions will be valid even under
arbitrarily large interventions on all predictor variables (Aldrich, 1989;
Haavelmo, 1944; Magliacane et al., 2018; Pearl, 2009; Peters et al., 2016;
Rojas-Carulla et al., 2018; Schölkopf et al., 2012; Yu et al., 2017; Zhang et
al., 2013a, 2015a). There are two difficulties in transferring these results to
the setting of adversarial domain changes in image classification. The first
hurdle is that the classification task is typically anti-causal since the image
we use as a predictor is a descendant of the true class of the object we are
interested in rather than the other way around. The second challenge is
that we do not want to guard against arbitrary interventions on any or all
variables but only would like to guard against a shift of the style features.
It is hence not immediately obvious how standard causal inference can be
used to guard against large domain shifts. Recently, various approaches
have been proposed that leverage causal motivations for deep learning or
2The distinction between ‘conditionally independent’ features and ‘conditionally trans-
ferable’ (which is the former modulo location and scale transformations) is for our
purposes not relevant as we do not make a linearity assumption in general.
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use deep learning for causal inference. Chalupka et al., 2014 characterize
learning the visual causes for a certain target behavior and thereby model
perceiving systems. Various approaches focus on cause-effect inference
where the goal is to find the causal relation between two random variables,
X and Y (Goudet et al., 2017; Lopez-Paz and Oquab, 2017; Lopez-Paz et
al., 2017). Lopez-Paz et al., 2017 propose the Neural Causation Coefficient
(NCC) to estimate the probability of X causing Y and apply it to finding
the causal relations between image features. Specifically, the NCC is used
to distinguish between features of objects and features of the objects’ con-
texts. Lopez-Paz and Oquab, 2017 note the similarity between structural
equation modeling and CGANs (Mirza and Osindero, 2014). One CGAN
is fitted in the direction X → Y and another one is fitted for Y → X.
Based on a two-sample test statistic, the estimated causal direction is re-
turned. Goudet et al., 2017 use generative neural networks for cause-effect
inference, to identify v-structures and to orient the edges of a given graph
skeleton. Bahadori et al., 2017 devise a regularizer that combines an `1
penalty with weights corresponding to the estimated probability of the
respective feature being causal for the target. The latter estimates are ob-
tained by causality detection networks or scores such as estimated by the
NCC. Besserve et al., 2018 draw connections between GANs and causal
generative models, using a group theoretic framework. Kocaoglu et al.,
2018 propose causal implicit generative models to sample from conditional
as well as interventional distributions, using a conditional GAN architec-
ture (CausalGAN). The generator structure needs to inherit its neural
connections from the causal graph, i.e. the causal graph structure must be
known. Louizos et al., 2017 propose the use of deep latent variable models
and proxy variables to estimate individual treatment effects. Kilbertus
et al., 2017 exploit causal reasoning to characterize fairness considerations
in machine learning. Distinguishing between the protected attribute and
its proxies, they derive causal non-discrimination criteria. The resulting
algorithms avoiding proxy discrimination require classifiers to be constant
as a function of the proxy variables in the causal graph, thereby bearing
some structural similarity to our style features. Distinguishing between
core and style features can be seen as some form of disentangling factors
of variation. Estimating disentangled factors of variation has gathered a
lot of interested in the context of generative modeling (Bouchacourt et al.,
2018; Chen et al., 2016; Higgins et al., 2017). For example, Matsuo et al.,
2017 propose a “Transform Invariant Autoencoder” where the goal is to
reduce the dependence of the latent representation on a specified trans-
form of the object in the original image. Specifically, Matsuo et al. (2017)
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predefine location as the style feature and the goal is to learn a latent
representation that does not include Xstyle. Our approach is different as
we do not predefine which features are considered style features. The style
features in our approach could be location but also image quality, posture,
brightness, background and contextual information or something entirely
unknown. We try to learn a representation of style and core features from
data by exploiting the grouping of training samples. Additionally, the ap-
proach in Matsuo et al., 2017 cannot effectively deal with a confounding
situation where the distribution of the style features differs conditional
on the class (this is a natural restriction for their work, however, as the
class label is not even observed in the autoencoder setting). As in CoRe,
Bouchacourt et al., 2018 exploit grouped observations. In a variational
autoencoder framework, they aim to separate style and content—they as-
sume that samples within a group share a common but unknown value
for one of the factors of variation while the style can differ. Denton and
Birodkar, 2017 propose an autoencoder framework to disentangle style
and content in videos using an adversarial loss term where the grouping
structure induced by clip identity is exploited. Here we try to solve a clas-
sification task directly without estimating the latent factors explicitly as
in a generative framework.

5.4. Setting

We first describe the general notation used before describing the causal
graph that allows us to compare the setting of adversarial domain shifts
to transfer learning, domain adaptation and adversarial examples.

5.4.1. Notation

Let Y ∈ Y be a target of interest. Typically Y = R for regression or
Y = {1, . . . ,K} in classification withK classes. LetX ∈ Rp be a predictor,
for example the p pixels of an image. The prediction ŷ for y, givenX = x, is
of the form fθ(x) for a suitable function fθ with parameters θ ∈ Rd, where
the parameters θ correspond to the weights in a DNN. For regression,
fθ(x) ∈ R, whereas for classification fθ(x) corresponds to the conditional
probability distribution of Y ∈ {1, . . . ,K}. Let ` be a suitable loss that
maps y and ŷ = fθ(x) to R+. A standard goal is to minimize the expected
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loss or risk
L(θ) = E

[
`(Y, fθ(X))

]
.

Let (xi, yi) for i = 1, . . . , n be the samples that constitute the training data
and ŷi = fθ(xi) the prediction for yi. The standard approach is to simply
pool over all available observations, ignoring any grouping information
that might be available. The pooled estimator thus treats all examples
identically by summing over the empirical loss as

θ̂pool = argminθ
1
n

n∑
i=1

[
`
(
yi, fθ(xi)

)]
+ γ · pen(θ), (5.3)

where pen(θ) is a complexity penalty, for example a ridge term ‖θ‖22 on
the weights of a convolutional neural network. All examples that compare
to the pooled estimator will include a ridge penalty as default. Different
penalties can exploit underlying geometries, such as the Laplacian regu-
larized least squares (Belkin et al., 2006). In fact, the proposed estimator
will be of this form, exploiting grouping information in the data.

5.4.2. Causal graph

The full causal structural model for all variables is shown in the panel (b)
of Figure 5.2. The domain variable D is latent, in contrast to Gong et al.
(2016) whose model is shown in panel (a) of Figure 5.2. We add the ID
variable (identity of a person, for example), whose distribution can change
conditional on Y . In Figure 5.2, Y → ID but in some settings it might
be more plausible to consider ID → Y . For our proposed method both
options are possible since we condition on ID and Y . The ID variable is
used to group observations. The variable is typically discrete and relates
to the identity of the underlying object. The variable can be assumed to
be latent in the setting of Gong et al. (2016).

The rest of the graph is in analogy to Gong et al. (2016). The prediction is
anti-causal, that is the predictors X that we use for Ŷ are non-ancestral to
Y . In other words, the class label is causal for the image and not the other
way around. The causal effect from the class label Y on the image X is
mediated via two types of latent variables: the so-called core or ‘condition-
ally invariant’ features Xcore and the orthogonal or style features Xstyle.
The distinguishing factor between the two is that external interventions
∆ are possible on the style features but not on the core features. If the
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Figure 5.2.: Observed quantities are shown as shaded nodes; nodes of latent
quantities are transparent. Left: data generating process for the considered
model as in Gong et al. (2016), where the effect of the domain on the orthogonal
features Xstyle is mediated via unobserved noise ∆. The style interventions
and all its descendants are shown as nodes with dashed borders to highlight
variables that are affected by style interventions. Observed variables are shaded.
Middle: our setting. The domain itself is unobserved but we can now observe
the (typically discrete) ID variable we use for grouping. Right: the same model
as in the middle if marginalizing out over the unobserved Xcore.
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interventions ∆ have different distributions in different domains, then the
distribution P (Xcore|Y ) is constant across domains while P (Xstyle|Y ) can
change across domains. The style features Xstyle and Y are confounded, in
other words, by the latent domain D. In contrast, the core or ‘condition-
ally invariant’ features satisfy Xcore⊥⊥ D|Y . The style variable can include
point of view, image quality, resolution, rotations, color changes, body pos-
ture, movement etc. and will in general be context-dependent3. The style
intervention variable ∆ influences both the latent style Xstyle, and hence
also the image X. In potential outcome notation, we let Xstyle(∆ = δ) be
the style under intervention ∆ = δ and X(Y, ID,∆ = δ) the image for class
Y , identity ID and style intervention ∆. The latter is sometimes abbrevi-
ated as X(∆ = δ) for notational simplicity. Finally, fθ(X(∆ = δ)) is the
prediction under the style intervention ∆ = δ. For a formal justification
of using a causal graph and potential outcome notation simultaneously see
Richardson and Robins (2013).

To be specific, if not mentioned otherwise we will assume a causal graph
as follows. For independent εY , εID, εstyle in R,R,Rq respectively with
positive density on their support and continuously differentiable functions
ky, kid, and kstyle, kcore, kx,

Y ← ky(D, εY )
identifier ID← kid(Y, εID)

core or conditionally invariant features Xcore ← kcore(Y, ID)
style or orthogonal features Xstyle ← kstyle(Y, ID, εstyle) + ∆

image X ← kx(Xcore, Xstyle). (5.4)

Of these, Y , X and ID are observed whereas D,Xcore, Xstyle,∆ and the
noise variables are latent. The model can be generalized by allowing fur-
ther independent noise terms inside kx and kcore but the model above is
already fairly general and keeps notational simplicity more constrained
than the fully general version.

3The type of features we regard as style and which ones we regard as core features can
conceivably change depending on the circumstances—for instance, is the color “gray”
an integral part of the object “elephant” or can it be changed so that a colored elephant
is still considered to be an elephant?
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5.4.3. Data

To summarize, we assume we have n samples (xi, yi, idi) for i = 1, . . . , n,
where the observations idi with i = 1, . . . , n of variable ID can also contain
unobserved values. Let m ≤ n be the number of unique realizations of
(Y, ID) and let S1, . . . , Sm be a partition of {1, . . . , n} such that, for each
j ∈ {1, . . . ,m}, the realizations (yi, idi) are identical4 for all i ∈ Sj . The
cardinality of Sj is denoted by nj := |Sj | ≥ 1. Then n =

∑
i ni is again

the total number of samples and c = n−m, the total number of grouped
observations. Typically ni = 1 for most samples and occasionally ni ≥ 2
but one can also envisage scenarios with larger groups of the same identifier
(y, id).

5.4.4. Domain adaptation, adversarial examples and
adversarial domain shifts

In this work, we are interested in guarding against adversarial domain
shifts. We use the causal graph to explain the related but not identical
goals of domain adaptation, transfer learning and guarding against adver-
sarial examples.

(i) Domain adaptation and transfer learning. Assume we have J
different domains, each with a new distribution Fj for the joint dis-
tribution of (Y,∆). The shift of Fj for different domains j = 1, . . . , J
causes a shift in both the distribution of X and in the conditional
distribution Y |X. If we consider domain adaptation and transfer
learning together, the goal is generally to give the best possible pre-
diction Ŷj(x) in each domain j = 1, . . . , J . In contrast, we do not
aim to give the best possible prediction in each domain as we aim
to infer a single prediction that should work as well as possible in
a worst-case sense over a set of distributions generated by domain
changes. Some predictive accuracy needs to be sacrificed compared
to the best possible prediction in each domain.

(ii) Standard adversarial examples. The setting of adversarial ex-
amples in the sense of Szegedy et al. (2014) and Goodfellow et al.
(2015) can also be described by the causal graph above by using
Xstyle(∆) = ∆ and identifying Xstyle with pixel-by-pixel additive ef-

4Observations where the ID variable is unobserved are not grouped, that is each such
observation is counted as a unique observation of (Y, ID).
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fects. The magnitude of the intervention ∆ is then typically assumed
to be within an ε-ball in `q-norm around the origin, with q = ∞ or
q = 2 for example. If the input dimension is large, many impercepti-
ble changes in the coordinates of X can cause a large change in the
output, leading to a misclassification of the sample. The goal is to
devise a classification in this graph that minimizes the adversarial
loss

E
[

max
∆∈Rq : ‖∆‖q≤ε

`
(
Y, fθ

(
X(∆)

))]
, (5.5)

whereX(∆) is the image under the intervention ∆ and Ŷ = fθ(X(∆))
is the estimated conditional distribution of Y , given the image under
the chosen interventions. See Sinha et al. (2018) for recent work on
achieving robustness to a pre-defined class of distributions.

(iii) Adversarial domain shifts. Here we are interested in arbitrarily
strong interventions ∆ ∈ Rq on the style features Xstyle, which are
not known explicitly in general. Analogously to (5.5), the adversarial
loss under arbitrarily large style interventions is

Ladv(θ) = E
[

max
∆∈Rq

`
(
Y, fθ

(
X(∆)

))]
. (5.6)

In contrast to (5.5) the interventions can be arbitrarily strong but we
assume that the style features Xstyle can only change certain aspects
of the image, while other aspects of the image (mediated by the core
features) cannot be changed. In contrast to Ganin et al., 2016, we
use the term “adversarial” to refer to adversarial interventions on the
style features, while the notion of “adversarial” in domain adversar-
ial neural networks describes the training procedure. Nevertheless,
the motivation of Ganin et al., 2016 is equivalent to ours—that is,
to protect against shifts in the distribution(s) of test data which we
characterize by distinguishing between core and style features. We
also look at random interventions ∆. Each distribution of the ran-
dom interventions is inducing a distribution for (X,Y ). Let F be
the set of all such induced distributions. We then try to minimize
the worst-case across this distribution class, as in (5.1), with the dif-
ference to standard distributional robustness being that the set F
takes a specific form induced by the causal graph.

The adversarial loss Ladv(θ) of the pooled estimator (5.3) will in general be
infinite; see §5.6.1 for a concrete example. Using panel (b) in Figure 5.2,
one can show that the pooled estimator will work well in terms of the
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adversarial loss Ladv if both (i) Y ⊥⊥ X|Xcore and (ii) Y 6⊥⊥ Xcore|Xstyle.
The first condition (i) implies that if the estimator learns to extract Xcore

from the image X, there is no further information in X that explains
Y and, therefore, the direction corresponding to Xstyle is not required
for predicting Y . The second condition (ii) prevents that the relations
between Y , Xcore, and Xstyle are deterministic and ensures that Xstyle

cannot replace Xcore in the first condition. From (i) and (ii), we see that
the pooled estimator will work well in terms of the adversarial loss Ladv if
(a) the edge from Xstyle to X is absent or if (b) both the edge from D to
Xstyle and the edge from Y to Xstyle are absent (cf. Figure 5.2).

5.5. Conditional variance regularization

5.5.1. Invariant parameter space

In order to minimize the adversarial loss (5.6) we have to ensure fθ(x(∆))
is as constant as possible as a function of the style variable ∆ for all x ∈ Rp.
Let I be the invariant parameter space

I := {θ : fθ(x(∆)) is constant as function of ∆ for all x ∈ Rp}.

For all θ ∈ I, the adversarial loss (5.6) is identical to the loss under no
interventions at all. More precisely, let X be a shorthand notation for
X(∆ = 0), the images in absence of external interventions:

if θ ∈ I, then E
[

max
∆∈Rq

`
(
Y, fθ

(
X(∆)

))]
= E

[
`
(
Y, fθ

(
X
))]

.

The optimal predictor in the invariant space I is

θ∗ = argminθ E
[
`(Y, fθ(X))

]
such that θ ∈ I. (5.7)

If fθ is only a function of the core features Xcore, then θ ∈ I. The challenge
is that the core features are not directly observable and we have to infer
the invariant space I from data.
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5.5.2. CoRe estimator

To get an approximation to the optimal invariant parameter vector (5.7),
we use empirical risk minimization under an invariance constraint:

θ̂core = argminθ
1
n

n∑
i=1

`
(
yi, fθ(xi)

)
such that θ ∈ In, (5.8)

where the first part is the empirical version of the expectation in (5.7). The
unknown invariant parameter space I is approximated by an empirically
invariant space In. For all structural equation models of the form (5.4), the
invariant space I is constrained by the space of models that have vanishing
expected conditional variance in the sense that

I ⊆ {θ : Cθ = 0}, where Cθ := E(Var(fθ(X)|Y, ID))

is the expected conditional variance of fθ(X), given (Y, ID). As empirical
approximation In = In(τ) we use

In(τ) :=
{
θ : Ĉθ ≤ τ

}
, where Ĉθ := Ê(V̂ar(fθ(X)|Y, ID)) (5.9)

is an estimate of the expected variance (details below). Setting τ = 0
is equivalent to demanding that the conditional variance vanishes which
implies that the estimated predictions for the class labels are identical
across all images that share the same identifier (y, id) while slightly larger
values of τ allow for some small degree of variations. Under the right
assumptions we get In(τ) → I for n → ∞ and τ → 0. We return to
this question in §5.6.1. One can equally use the Lagrangian form of the
constrained optimization in (5.8), with a penalty parameter λ instead of a
constraint τ , to get

θ̂core = argminθ
1
n

n∑
i=1

`
(
yi, fθ(xi)

)
+ λ · Ĉθ. (5.10)

We will give an explicit interpretation of this conditional variance penalty
λ in §5.6.2. We can also add a standard ridge penalty in addition to the
conditional variance penalty.

Before showing numerical examples, we first discuss the estimation of the
expected conditional variance in §5.5.3, before returning to the simple ex-
amples of §5.2 in §5.5.4. Adversarial risk consistency in a classification
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setting for a partially linear version of (5.4) is shown in §5.6.1. Further-
more, we discuss the population limit of the penalized version in §5.6.2,
where we show that the regularization parameter λ ≥ 0 is proportional to
the size of the future style interventions (or rather proportional to the mag-
nitude of the noise on the style variables) that we want to guard against
for future test data.

5.5.3. Estimating expected conditional variance as a
graph Laplacian

Recall that Sj ⊆ {1, . . . , n} contains samples with identical realizations of
(Y, ID) for j ∈ {1, . . . ,m}. For each j ∈ {1, . . . ,m}, define the arithmetic
mean across all fθ(xi), i ∈ Sj as µθ,j . As estimator of the conditional
variance Ĉθ we use

Ĉθ := 1
m

m∑
j=1

1
|Sj |

∑
i∈Sj

(fθ(xi)− µθ,j)2,

where the right hand side can also be interpreted as the graph Laplacian
(Belkin et al., 2006) of an appropriately weighted graph that fully connects
all observations i ∈ Sj for each j ∈ {1, . . . ,m}. If there are no groups of
samples that share the same identifier (y, id), the graph Laplacian is zero
and we also define Ĉθ to vanish in this case. The CoRe estimator is then
identical to pooled estimation in this special case.

As an alternative to penalizing with the expected conditional variance of
the predicted response, we can constrain I by looking at the expected
conditional variance of the loss

I ⊆ {θ : C`θ = 0}, where C`θ = E(Var(`(Y, fθ(X))|Y, ID))

and get an empirical estimate as

I`n(τ) :=
{
θ : Ĉ`θ ≤ τ

}
, where Ĉ`θ = Ê(V̂ar(`(Y, fθ(X))|Y, ID)). (5.11)

The penalty is then taking a similar form to Namkoong and Duchi (2017).
A crucial difference of our approach is that we penalize with the expected
conditional variance. That we take a conditional variance is here important
as we try to achieve distributional robustness with respect to interventions
on the style variables. Conditioning on ID allows to guard specifically
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against these interventions. An unconditional variance penalty, in con-
trast, can achieve robustness against a pre-defined class of distributions
such as a ball of distributions defined in a Kullback-Leibler or Wasserstein
metric; see for example Sinha et al., 2018 for an application in the con-
text of adversarial examples. Some further discussion is in §5.6.2. If not
mentioned otherwise we use the conditional variance of the predictions as
in (5.9) as a conditional variance penalty.

5.5.4. Classification example

We revisit the first and the second example from §5.2. Figure 5.3 shows
subsamples of the respective training and test sets with the estimated de-
cision boundaries for different values of the penalty parameter λ; in both
examples, n = 20000 and c = 500. Additionally, grouped examples that
share the same (y, id) are visualized: two grouped observations are con-
nected by a line or curve, respectively. In each example, there are ten
such groups visualized (better visible in the nonlinear example). Panel (a)
shows the linear decision boundaries for λ = 0, equivalent to the pooled
estimator, and for CoRe with λ ∈ {.1, 1}. The pooled estimator misclas-
sifies all test points of class 1 as can be seen in panel (b). In contrast,
the decision boundary of the CoRe estimator with λ = 1 aligns with the
direction along which the grouped observations vary, classifying the test
set with almost perfect accuracy. Panels (c) and (d) show the correspond-
ing plots for the second example for penalty values λ ∈ {0, 0.05, 0.1, 1}.
While all of them yield good performance on the training set, only a value
of λ = 1, which is associated with a circular decision boundary, achieves
almost perfect accuracy on the test set.

5.6. Adversarial risk consistency and
distributional robustness

We show two properties of the CoRe estimator. First, adversarial risk con-
sistency is shown for logistic models. Second, we show that the population
CoRe estimator protects optimally against an increase in the variance of
the noise in the style variable in a regression setting.
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(a) Example 1, training set.
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(b) Example 1, test set.
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(c) Example 2, training set.
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(d) Example 2, test set.

Figure 5.3.: The decision boundary as function of the penalty parameters λ for
the examples 1 and 2 from Figure 5.1. There are ten pairs of samples visualized
that share the same identifier (y, id) and these are connected by a line resp. a
curve in the figures (better visible in panels (c) and (d)). The decision boundary
associated with a solid line corresponds to λ = 0, the standard pooled estimator
that ignores the groupings. The broken lines are decision boundaries for increas-
ingly strong penalties, taking into account the groupings in the data. Here, we
only show a subsample of the data to avoid overplotting.
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5.6.1. Adversarial risk consistency for classification and
logistic loss

We analyze the adversarial loss, defined in Eq. (5.6), for the pooled and the
CoRe estimator in a one-layer network for binary classification (logistic
regression). The proof is given in §5.A.

Assume the structural equation for the image X ∈ Rp is linear in the style
features Xstyle ∈ Rq (with generally p� q) and we use logistic regression
to predict the class label Y ∈ {−1, 1}. Let the interventions ∆ ∈ Rq act
additively on the style features Xstyle (this is only for notational conve-
nience) and let the style features Xstyle act in a linear way on the image X
via a matrix W ∈ Rp×q (this is an important assumption without which
results are more involved). The core or ‘conditionally invariant’ features
are Xcore ∈ Rr, where in general r ≤ p but this is not important for the fol-
lowing. For independent εY , εID, εstyle, εX in R,R,Rq,Rp respectively with
positive density on their support and continuously differentiable functions
ky, kid, kstyle, kcore, kx,

class Y ← ky(D, εY )
identifier ID← kid(Y, εID)

core or conditionally invariant features Xcore ← kcore(Y, ID)
style or orthogonal features Xstyle ← kstyle(Y, ID, εstyle) + ∆

image X ← kx(Xcore, εX) +WXstyle.
(5.12)

Of these, Y , X and ID are observed whereas D,Xcore, Xstyle,∆ and the
noise variables are latent. The distribution of ∆ can depend on the unob-
served domain.

We assume a logistic regression as a prediction of Y from the image data
X:

fθ(x) := exp(xtθ)
1 + exp(xtθ) .

Given training data with n samples, we estimate θ with θ̂ and use here
a logistic loss `θ(yi, xi) = log(1 + exp(−yi(xtiθ))) for training and testing.
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We want to compare the following losses on test data

L(θ) = E
[
`
(
Y, fθ(X))

)]
Ladv(θ) = E

[
max
∆∈Rq

`
(
Y, fθ(X(∆))

)]
,

where the X in the first loss is a shorthand notation for X(∆ = 0), that is
the images in absence of interventions on the style variables. The first loss
is thus a standard logistic loss in absence of adversarial interventions. The
second loss is the loss under adversarial style or domain interventions as
we allow arbitrarily large interventions on Xstyle here. The corresponding
benchmarks are

L∗ = min
θ
L(θ), and L∗adv = min

θ
Ladv(θ).

The formulation of Theorem 5.2 relies on the following assumptions.

Assumption 5.1 We require the following conditions:
(A1) Assume ∆ is sampled from a distribution for training data in Rq with

positive density (with respect to the Lebesgue measure) in an ε-ball
in `2-norm around the origin for some ε > 0.

(A2) Assume the matrix W has full rank q.
(A3) For a fixed number n of samples, the samples of (Y, ID, X) are drawn

iid from a distribution such that the number m ≤ n of unique realiza-
tions of (Y, ID) is smaller than n− q with probability pn and pn → 1
for n→∞.

The last assumption guarantees that the number c = n − m of grouped
examples is at least as large as the dimension of the style variables. If we
have too few or no grouped examples (small c), we cannot estimate the
conditional variance accurately. Under these assumptions we can prove
adversarial risk consistency.

Theorem 5.2 (Adversarial risk consistency) Under model (5.12) and
Assumption 5.1, with probability 1 with respect to the training data, the
pooled estimator (5.3) has infinite adversarial loss

Ladv(θ̂pool) =∞.
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The CoRe estimator (5.8) with τ = 0 in (5.9) is adversarial loss consis-
tent, in the sense that for n→∞,

Ladv(θ̂core)→p L
∗
adv.

A proof is given in §5.A. The respective ridge penalties in both estima-
tors (5.3) and (5.10) are assumed to be zero for the proof, but the proof
can easily be generalized to include ridge penalties that vanish sufficiently
fast for large sample sizes. The Lagrangian regularizer λ is assumed to be
infinite for the CoRe estimator. Again, this could be generalized to finite
values if the adversarial interventions ∆ are constrained to be in a region
with finite `2-norm. An equivalent result can be derived for misclassifi-
cation loss instead of logistic loss, where the adversarial misclassification
error of the pooled estimator is then 1 while the adversarial misclassifica-
tion error of the CoRe estimator will converge to the optimal adversarial
value.

5.6.2. Population limit: optimal robustness against
increases of the style-noise variance

We look at a partially linear version of the causal graph and least squares
loss as a special case, using the marginalized version of the causal graph
as in panel (c) of Figure 5.2. Let Y ∈ R be a continuous target variable,
ID ∈ Z an integer-valued identity variable, and Xstyle ∈ Rr the style or
orthogonal features and the observed vector X ∈ Rp. Let εY , εID, εstyle
be independent mean-zero random vectors in R,R,Rr respectively with
positive density on their respective support, variance σ2

Y for εY and non-
singular covariance Σstyle for εstyle5. We look at the population limit of
the CoRe estimator in its penalized form (5.10)

θcore(λ) = argminb∈Rp E
[
`
(
Y, btX

)]
+ λ · Cθ, (5.13)

where again Cθ := E(Var(fθ(X)|Y, ID)) is the expected conditional vari-
ance and `(y, z) = (y − z)2. We analyze the case where interventions ∆
are random and follow the same distribution as the noise εstyle, just with a
different scaling that can depend on the domain. Specifically, as a special
case of the marginalized version of the causal graph in panel (c) of Fig-
ure 5.2, consider a partially linear version of (5.4) with a constant marginal
5We can also add an independent noise term εX for X but choose to omit it here to
retain notational simplicity.
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distribution of Y in all domains

Y ← εY ∈ R
ID← kid(Y, εID)

Xstyle ← kstyle(Y, ID) + εstyle + κ · ε′style (5.14)
X ← kx(Y, ID) +BXstyle

for suitable functions kid : R × R 7→ Z, kstyle : R × Z 7→ Rr, kx : R × Z ×
Rp 7→ Rp and matrix B ∈ Rp×r. As mentioned above, the interventions
∆ are modeled as random interventions κε′style, where ε′style has the same
distribution as εstyle but the two random variables are independent. The
scaling κ ≥ 1 is variable. In a standard setting, we might have κ = 0
for training data but we suppose that κ can increase in the future. In a
new domain, for example, it might be larger. We would like to have a
prediction of Y that works well even if the scaling κ of the ‘style noise’
increases substantially. Let Eκ denote the expectation under model (5.14)
with parameter κ ∈ R+.

Theorem 5.3 (Distributional robustness) Under model (5.14), the
population CoRe estimator (5.13) is optimal against the class of distribu-
tions generated by varying the style noise level κ in [0,

√
λ],

θcore(λ) = argminb sup
κ≤
√
λ

Eκ(`(Y, btX)).

A proof is given in §5.B.

The CoRe estimator hence optimizes the worst case among all noise scal-
ings of the style variable. The value of the penalty λ determines the level
up to which we are protected when the noise variance increases. More
precisely, a penalty λ = κ2 is mimicking an increase in the variance of the
noise in the style variable and allows using the current training data (with
κ = 0) to optimize the loss under arbitrarily large values of the additional
style variance κ2. In this sense, there is a clear interpretation of the penalty
factor λ in the CoRe estimator (5.10). Choosing λ = 0 means that we ex-
pect the variance of the style variable to remain unchanged, whereas using
a strong penalty λ → ∞ assumes that the variance of the style variable
will grow very large in the future and the performance of the estimator
will then not be affected even under arbitrarily strong interventions on the
style variable.
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A similar result is shown in Rothenhäusler et al. (2018a) who propose “an-
chor regression”. Anchor regression penalizes the ordinary least squares
objective with a quantity that relies on so-called “anchors” A which are
exogeneous variables. This quantity corresponds to the change in loss un-
der shift interventions of a given strength. Anchor regression is shown
to yield optimal predictive performance under such interventions. While
the theoretical results have a similar form as the estimator is shown to
be distributionally robust, they do not follow as corollaries from each
other. Both CoRe and anchor regression rely on the presence of “aux-
iliary variables”—in CoRe, we exploit the grouping information given by
ID while anchor regression relies on the exogeneous anchor variable A.
However, ID and A play almost orthogonal roles. In anchor regression,
the aim is to achieve predictive stability if the variance term explained by
A is varying. In CoRe, the aim is to retain the variance term explained
by ID as we expect the variance under a constant ID = id to grow in the
future. The interventions considered in anchor regression are shift inter-
ventions and it protects against specific distributional shifts up to a given
strength. In Theorem 5.3, we consider noise interventions on the latent
style variable.

While Theorem 5.3 was derived for regression under squared error loss, a
similar result can be obtained for classification under (truncated) squared
error loss. The (truncated) quadratic loss `(Y, fθ(X)) = (Y − fθ(X))2 is
classification-calibrated (Bartlett et al., 2003) and the truncation is even
unnecessary in our case. For example, if Y ∈ {0, 1}, let fθ(x) ∈ [0, 1]
be the predicted probability of Y = 1, given X = x. Taking a first-
order Taylor approximation of fθ one can derive an analogous result to
Theorem 5.3, where the approximation error of the Taylor expansion hinges
on the magnitude of the future interventions and hence on the penalty level
of the CoRe estimator. For loss functions other than truncated squared
error loss one could make a similar argument but one would have to use
the conditional variance of the loss as a penalty as in (5.11). This approach
would then be similar to Namkoong and Duchi (2017), with the important
difference that we work with conditional variances instead of unconditional
variances. Conditioning on the ID variable is crucial in our context as we
do not want to protect against general shifts in distribution but specifically
against shifts in the distribution of the style variable. Conditioning on ID
allows us to distinguish between the conditional variance caused by the
unknown style variable (which we assume will change in the future) and
the conditional variance caused by the randomness of ID (which we expect
to stay constant in the future). Exploring the possibility of using the
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conditional variance of the loss instead of the prediction for general loss
functions would be interesting follow-up work.

5.7. Experiments

We perform an array of different experiments, showing the applicability
and advantage of the conditional variance penalty for two broad settings:

1. Settings where we do not know what the style variables correspond
to but still want to protect against a change in their distribution in
the future. In the examples we show cases where the style variable
ranges from brightness (§5.7.7), image quality (§5.7.2), movement
(§5.7.3) and fashion (§5.7.4), which are all not known explicitly to
the method. We also include genuinely unknown style variables in
§5.7.1 (in the sense that they are unknown not only to the methods
but also to us as we did not explicitly create the style interventions).

2. Settings where we do know what type of style interventions we
would like to protect against. This is usually dealt with by data
augmentation (adding images which are, say, rotated or shifted com-
pared to the training data if we want to protect against rotations
or translations in the test data (Schölkopf et al., 1996)). The con-
ditional variance penalty is here exploiting that some augmented
samples were generated from the same original sample and we use as
ID variable the index of the original image. We show that this ap-
proach generalizes better than simply pooling the augmented data,
in the sense that we need fewer augmented samples to achieve the
same test error. This setting is shown in §5.7.5.

Details of the network architectures can be found in Appendix §5.C. All
reported error rates are averaged over five runs of the respective method.
A TensorFlow (Abadi et al., 2015) implementation of CoRe can be found
at https://github.com/christinaheinze/core.

5.7.1. Eyeglasses detection with small sample size

We use a subsample of the CelebA dataset (Liu et al., 2015), without
editing the images. We try to classify images according to whether the
person in the image is wearing glasses or not. For construction of the
ID variable we exploit the fact that several photos of the same person

https://github.com/christinaheinze/core
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Training data (n = 321)

5-layer CNN test error: 0%
with added CoRe penalty: 2%

Test set (n = 5000)

5-layer CNN test error: 25%
with added CoRe penalty: 17%

Figure 5.4.: Eyeglass detection for CelebA dataset. The goal is to predict
whether a person wears glasses or not. Random samples from training and test
data are shown. Groups of observations in the training data that have common
(Y, ID) here correspond to pictures of the same person with either glasses on or
off. These are labelled by red boxes in the training data and the conditional
variance penalty is calculated across these groups of pictures.

are available and set ID to be the identifier of the person in the dataset.
Figure 5.4 shows examples from both the training and the test data set.
The conditional variance is estimated across groups of observations that
share a common (Y, ID), which here corresponds to pictures of the same
person, where all pictures show the person either with glasses (if Y = 1)
or all pictures show the person without glasses (Y = 0).

The standard approach would be to pool all examples. The only additional
information we exploit is that some observations can be grouped. We
include m = 10 identities in the training set, resulting in a total sample
size n = 321 as there are approximately 30 images of each person. If using
a 5-layer convolutional neural network (details can be found in Table 5.1)
and pooling all data with a standard ridge penalty, the test error on unseen
images is 24.76%. Using ImageNet pre-trained features from Inception V3
does not yield lower error rates. Exploiting the group structure with the
CoRe penalty (in addition to a ridge penalty) reduces the test error to
16.89%. Results are not very sensitive to the specific choice of the penalty,
as discussed further in 5.D.6.

The surprising aspect here is that both training and test data are drawn
from the same distribution so we would not expect a distributional shift.
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Training data
(n = 20000):

5-layer CNN training
error: 0%

with added CoRe
penalty: 10%

Test set 1
(n = 5344):

5-layer CNN test error:
2%

with added CoRe
penalty: 13%

Test set 2
(n = 5344):

5-layer CNN test error:
65%

with added CoRe
penalty: 29%

Figure 5.5.: Eyeglass detection for CelebA dataset with image quality interven-
tions (which are unknown to any procedure used). The JPEG compression level
is lowered for Y = 1 (glasses) samples on training data and test set 1 and lowered
for Y = 0 (no glasses) samples for test set 2. To the human eye, these inter-
ventions are barely visible but the CNN that uses pooled data without CoRe
penalty has exploited the correlation between image quality and outcome Y to
achieve a (arguably spurious) low test error of 2% on test set 1. However, if the
correlation between image quality and Y breaks down, as in test set 2, the CNN
that uses pooled data without a CoRe penalty has a 65% misclassification rate.
The training data on the left show paired observations in two red boxes: these
observations share the same label Y and show the same person ID. They are
used to compute the conditional variance penalty for the CoRe estimator that
does not suffer from the same degradation in performance for test set 2.

The distributional shift in this example is caused by statistical fluctuations
alone (by chance the background of eyeglass wearers might, for example,
be darker in the training sample than test samples, the eyeglass wearers
might be more outdoors, might be more women than men etc.). The
following examples are more concerned with biases that will persist even if
the number of training and test samples is very large. A second difference
to the subsequent examples is the grouping structure—in this example,
we consider only a few identities, namely m = 10, with a relatively large
number of associated observations (ni ≈ 30 for all i). In the following
examples, m is much larger while ni is typically smaller than five.



168 Chapter 5: Conditional variance penalties and domain shift robustness

5.7.2. Eyeglasses detection with known and unknown
image quality intervention

We revisit the third example from §5.2. We again use the CelebA dataset
and consider the problem of classifying whether the person in the image
is wearing eyeglasses. In contrast to §5.7.1 we modify the images in the
following way: in the training set and in test set 1, we sample the image
quality6 for all samples {i : yi = 1} (all samples that show glasses) from a
Gaussian distribution with mean µ = 30 and standard deviation σ = 10.
Samples with yi = 0 (no glasses) are unmodified. In other words, if the
image shows a person wearing glasses, the image quality tends to be lower.
In test set 2, the quality is reduced in the same way for yi = 0 samples
(no glasses), while images with yi = 1 are not changed. Figure 5.5 shows
examples from the training set and test sets 1 and 2. This setting mimics
the confounding that occurred in the Russian tank legend (cf. §5.1). For
the CoRe penalty, we calculate the conditional variance across images
that share the same ID if Y = 1, that is across images that show the
same person wearing glasses on all images. Observations with Y = 0 (not
wearing glasses) are not grouped. Two examples are shown in the red box
of Figure 5.5. Here, we have c = 5000 grouped observations among a total
sample size of n = 20000.

Figure 5.5 shows misclassification rates for CoRe and the pooled estimator
on test sets 1 and 2. The pooled estimator (only penalized with an `2
penalty) achieves low error rates of 2% on test set 1, but suffers from a
65% misclassification error on test set 2, as now the relation between Y
and the implicit Xstyle variable (image quality) has been flipped. The
CoRe estimator has a larger error of 13% on test set 1 as image quality
as a feature is penalized by CoRe implicitly and the signal is less strong
if image quality has been removed as a dimension. However, in test set 2
the performance of the CoRe estimator is 28% and improves substantially
on the 65% error of the pooled estimator. The reason is again the same:
the CoRe penalty ensures that image quality is not used as a feature to
the same extent as for the pooled estimator. This increases the test error
slightly if the samples are generated from the same distribution as training
data (as here for test set 1) but substantially improves the test error if the
distribution of image quality, conditional on the class label, is changed on

6We use ImageMagick (https://www.imagemagick.org) to change the quality of the
compression through convert -quality q_ij input.jpg output.jpg where qi,j ∼
N (30, 100).

https://www.imagemagick.org
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Training data
(n = 20000):

5-layer CNN training
error: 0%

with added CoRe
penalty: 3%

Test set 1
(n = 5344):

5-layer CNN test error:
2%

with added CoRe
penalty: 7%

Test set 2
(n = 5344):

5-layer CNN test error:
65%

with added CoRe
penalty: 13%

Figure 5.6.: Eyeglass detection for CelebA dataset with image quality interven-
tions. The only difference to Figure 5.5 is in the training data where the paired
images now use the same underlying image in two different JPEG compressions.
The compression level is drawn from the same distribution. The CoRe penalty
performs better than for the experiment in Figure 5.5 since we could explicitly
control that only Xstyle ≡ image quality varies between grouped examples. On
the other hand, the performance of the pooled estimator is not changed in a
noticeable way if we add augmented images as the (spurious) correlation be-
tween image quality and outcome Y still persists in the presence of the extra
augmented images. Thus, the pooled estimator continues to be susceptible to
image quality interventions.

test data (as here for test set 2).

Eyeglasses detection with known image quality intervention To com-
pare to the above results, we repeat the experiment by changing the
grouped observations as follows. Above, we grouped images that had the
same person ID when Y = 1. We refer to this scheme of grouping ob-
servations with the same (Y, ID) as ‘Grouping setting 2’. Here, we use an
explicit augmentation scheme and augment c = 5000 images with Y = 1 in
the following way: each image is paired with a copy of itself and the image
quality is adjusted as described above. In other words, the only difference
between the two images is that image quality differs slightly, depending
on the value that was drawn from the Gaussian distribution with mean
µ = 30 and standard deviation σ = 10, determining the strength of the
image quality intervention. Both the original and the copy get the same
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value of identifier variable ID. We call this grouping scheme ‘Grouping
setting 1’. Compare the left panels of Figures 5.5 and 5.6 for examples.

While we used explicit changes in image quality in both above and here, we
referred to grouping setting 2 as ‘unknown image quality interventions’ as
the training sample as in the left panel of Figure 5.5 does not immediately
reveal that image quality is the important style variable. In contrast, the
augmented data samples (grouping setting 1) we use here differ only in
their image quality for a constant (Y, ID).

Figure 5.6 shows examples and results. The pooled estimator performs
more or less identical to the previous dataset. The explicit augmenta-
tion did not help as the association between image quality and whether
eyeglasses are worn is not changed in the pooled data after including the
augmented data samples. The misclassification error of the CoRe esti-
mator is substantially better than the error rate of the pooled estima-
tor. The error rate on test set 2 of 13% is also improving on the rate
of 28% of the CoRe estimator in grouping setting 2. We see that using
grouping setting 1 works best since we could explicitly control that only
Xstyle ≡ image quality varies between grouped examples. In grouping
setting 2, different images of the same person can vary in many factors,
making it more challenging to isolate image quality as the factor to be
invariant against.

5.7.3. Stickmen image-based age classification with
unknown movement interventions

In this example we consider synthetically generated stickmen images; see
Figure 5.7 for some examples. The target of interest is Y ∈ {adult, child}.
The core feature Xcore is here the height of each person. The class Y
is causal for height and height cannot be easily intervened on or change
in different domains. Height is thus a robust predictor for differentiating
between children and adults. As style feature we have here the movement
of a person (distribution of angles between body, arms and legs). For the
training data we created a dependence between age and the style feature
‘movement’, which can be thought to arise through a hidden common cause
D, namely the place of observation. The data generating process is illus-
trated in Figure 5.17. For instance, the images of children might mostly
show children playing while the images of adults typically show them in
more “static” postures. The left panel of Figure 5.7 shows examples from
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Training data
(n = 20000):

5-layer CNN training
error: 4%

with added CoRe
penalty: 4%

Test set 1
(n = 20000):

5-layer CNN test error:
3%

with added CoRe
penalty: 4%

Test set 2
(n = 20000):

5-layer CNN test error:
41%

with added CoRe
penalty: 9%

Figure 5.7.: Classification into {adult, child} based on stickmen images, where
children tend to be smaller and adults taller. In training and test set 1 data,
children tend to have stronger movement whereas adults tend to stand still. In
test set 2 data, adults show stronger movement. The two red boxes in the panel
with the training data show two out of the c = 50 pairs of examples over which
the conditional variance is calculated. The CoRe penalty leads to a network that
generalizes better for test set 2 data, where the spurious correlation between age
and movement is reversed, if compared to the training data.

the training set where large movements are associated with children and
small movements are associated with adults. Test set 1 follows the same
distribution, as shown in the middle panel. A standard CNN will exploit
this relationship between movement and the label Y of interest, whereas
this is discouraged by the conditional variance penalty of CoRe. The lat-
ter is pairing images of the same person in slightly different movements as
shown by the red boxes in the leftmost panel of Figure 5.7. If the learned
model exploits this dependence between movement and age for predicting
Y , it will fail when presented images of, say, dancing adults. The right
panel of Figure 5.7 shows such examples (test set 2). The standard CNN
suffers in this case from a 41% misclassification rate, as opposed to the 3%
on test set 1 data. For as few as c = 50 paired observations, the network
with an added CoRe penalty, in contrast, achieves also 4% on test set 1
data and succeeds in achieving an 9% performance on test set 2, whereas
the pooled estimator fails on this dataset with a test error of 41%.

These results suggest that the learned representation of the pooled esti-
mator uses movement as a predictor for age while CoRe does not use
this feature due to the conditional variance regularization. Importantly,



172 Chapter 5: Conditional variance penalties and domain shift robustness

Training data
(n = 17000):

5-layer CNN training
error: 0%

with added CoRe
penalty: 9%

Inception v3: 2%
with added CoRe

penalty: 9%

Test data 1
(n = 4224):

5-layer CNN test error:
3%

with added CoRe
penalty: 8%

Inception v3: 2%
with added CoRe

penalty: 8%

Test data 2
(n = 1120):

5-layer CNN test error:
44%

with added CoRe
penalty: 26%

Inception v3: 42%
with added CoRe

penalty: 23%

Figure 5.8.: Classification for Y ∈ {woman,man}. There is an unknown con-
founding here as men are very likely to wear glasses in training and test set 1
data, while it is women that are likely to wear glasses in test set 2. Estimators
that pool all observations are making use of this confounding and hence fail for
test set 2. The conditional variance penalty for the CoRe estimator is computed
over groups of images of the same person (and consequently same class label),
such as the images in the red box on the left. Here, c = 500.

including more grouped examples would not improve the performance of
the pooled estimator as these would be subject to the same bias and hence
also predominantly have examples of heavily moving children and “static”
adults (also see Figure 5.18 which shows results for c ∈ {20, 500, 2000}).

5.7.4. Gender classification with unknown confounding

We work again with the CelebA dataset. This time we consider the prob-
lem of classifying whether the person in the image is male or female. We
create a confounding on training and test set 1 by including mostly im-
ages of men wearing glasses and women not wearing glasses. In test set 2
the association between gender and glasses is flipped: women always wear
glasses while men never wear glasses. Examples from the training and test
sets 1 and 2 are shown in Figure 5.8.
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Training data (n = 10200):

3-layer CNN training error: 0%
with added CoRe penalty: 1%

Test set (n = 10000):

3-layer CNN test error: 22%
with added CoRe penalty: 10%

Figure 5.9.: Data augmentation for MNIST images. The left shows training
data with a few rotated images. Evaluating on only rotated images from the
test set, a standard network achieves only 22% accuracy. We can add the CoRe
penalty by computing the conditional variance over images that were generated
from the same original image. The test error is then lowered to 10% on the test
data of rotated images.

To compute the conditional variance penalty, we use again images of the
same person. The ID variable is, in other words, the identity of the person
and gender Y is constant across all examples that have a constant ID.
Conditioning on (Y, ID) is hence identical to conditioning on ID alone.
Another difference to the other experiments is that we consider a binary
style feature here.

For this example, we computed the relevant results both with a 5-layer
CNN if trained end-to-end as well as for using Inception V3 pre-trained
features and retraining the last softmax layer. Interestingly, the results
do not change much and both models lead to misclassification error rates
above 40% for test set 2 data and c = 500 paired examples. Adding the
CoRe penalty has the desired effect in both models, as the performance
is much more stable across all data sets. Additional results for different
sample sizes and different numbers of paired examples can be found in
Appendix §5.D.2.
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5.7.5. MNIST: more sample efficient data augmentation

The goal of using CoRe in this example is to make data augmentation
more efficient in terms of the required samples. In data augmentation,
one creates additional samples by modifying the original inputs, e.g. by
rotating, translating, or flipping the images (Schölkopf et al., 1996). In
other words, additional samples are generated by interventions on style
features. Using this augmented data set for training results in invariance
of the estimator with respect to the transformations (style features) of
interest. For CoRe we can use the grouping information that the original
and the augmented samples belong to the same object. This enforces the
invariance with respect to the style features more strongly compared to
normal data augmentation which just pools all samples. We assess this
for the style feature ‘rotation’ on MNIST (LeCun et al., 1998) and only
include c = 200 augmented training examples for m = 10000 original
samples, resulting in a total sample size of n = 10200. The degree of the
rotations is sampled uniformly at random from [35, 70]. Figure 5.9 shows
examples from the training set. By using CoRe the average test error on
rotated examples is reduced from 22% to 10%. Very few augmented sample
are thus sufficient to lead to stronger rotational invariance. The standard
approach of creating augmented data and pooling all images requires, in
contrast, many more samples to achieve the same effect. Additional results
for m ∈ {1000, 10000} and c ranging from 100 to 5000 can be found in
Figure 5.16 in Appendix §5.D.3.

5.7.6. Elmer the Elephant

In this example, we want to assess whether invariance with respect to the
style feature ‘color’ can be achieved. In the children’s book ‘Elmer the
elephant’7 one instance of a colored elephant suffices to recognize it as
being an elephant, making the color ‘gray’ no longer an integral part of
the object ‘elephant’. Motivated by this process of concept formation, we
would like to assess whether CoRe can exclude ‘color’ from its learned
representation by penalizing conditional variance appropriately.
We work with the ‘Animals with attributes 2’ (AwA2) dataset (Xian et
al., 2017) and consider classifying images of horses and elephants. We
include additional examples by adding grayscale images for c = 250 images
of elephants. These additional examples do not distinguish themselves
7https://en.wikipedia.org/wiki/Elmer_the_Patchwork_Elephant

https://en.wikipedia.org/wiki/Elmer_the_Patchwork_Elephant
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Training data
(n = 1850):

5-layer CNN training
error: 0%

with added CoRe
penalty: 0%

Test data 1
(n = 414):

5-layer CNN test error:
24%

with added CoRe
penalty: 30%

Test data 2
(n = 414):

5-layer CNN test error:
52%

with added CoRe
penalty: 30%

Figure 5.10.: Elmer-the-Elephant dataset. The left panel shows training data
with a few additional grayscale elephants. The pooled estimator learns that color
is predictive for the animal class and achieves test error of 24% on test set 1 where
this association is still true but suffers a misclassification error of 53% on test
set 2 where this association breaks down. By adding the CoRe penalty, the test
error is consistently around 30%, irrespective of the color distribution of horses
and elephants.

strongly from the original training data as the elephant images are already
close to grayscale images. The total training sample size is 1850.

Figure 5.10 shows examples and misclassification rates from the training
set and test sets for CoRe and the pooled estimator on different test sets.
Examples from these and more test sets can be found in Figure 5.21. Test
set 1 contains original, colored images only. In test set 2 images of horses
are in grayscale and the colorspace of elephant images is modified, effec-
tively changing the color gray to red-brown. We observe that the pooled
estimator does not perform well on test set 2 as its learned representation
seems to exploit the fact that ‘gray’ is predictive for ‘elephant’ in the train-
ing set. This association is no longer valid for test set 2. In contrast, the
predictive performance of CoRe is hardly affected by the changing color
distributions. More details can be found in Appendix §5.D.6.

It is noteworthy that a colored elephant can be recognized as an elephant
by adding a few examples of a grayscale elephant to the very lightly colored
pictures of natural elephants. If we just pool over these examples, there
is still a strong bias that elephants are gray. The CoRe estimator, in
contrast, demands invariance of the prediction for instances of the same
elephant and we can learn color invariance with a few added grayscale
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Training data
(n = 20000):

5-layer CNN training
error: 0%

with added CoRe
penalty: 6%

Test set 1
(n = 5344):

5-layer CNN test error:
4%

with added CoRe
penalty: 6%

Test set 2
(n = 5344):

5-layer CNN test error:
37%

with added CoRe
penalty: 25%

Figure 5.11.: Eyeglass detection for CelebA dataset with brightness interven-
tions (which are unknown to any procedure used). On training data and test set
1 data, images where people wear glasses tend to be brighter whereas on test set
2 images where people do not wear glasses tend to be brighter.

images.

5.7.7. Eyeglasses detection: unknown brightness
intervention

As in §5.7.2 we work with the CelebA dataset and try to classify whether
the person in the image is wearing eyeglasses. Here we analyze a con-
founded setting that could arise as follows. Say the hidden common cause
D of Y and Xstyle is a binary variable and indicates whether the image was
taken outdoors or indoors. If it was taken outdoors, then the person tends
to wear (sun-)glasses more often and the image tends to be brighter. If the
image was taken indoors, then the person tends not to wear (sun-)glasses
and the image tends to be darker. In other words, the style variable Xstyle

is here equivalent to brightness and the structure of the data generating
process is equivalent to the one shown in Figure 5.17. Figure 5.11 shows
examples from the training set and test sets. As previously, we compute
the conditional variance over images of the same person, sharing the same
class label (and the CoRe estimator is hence not using the knowledge
that brightness is important). Two alternatives for constructing grouped
observations in this setting are discussed in §5.D.1. We use c = 2000 and
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n = 20000. For the brightness intervention, we sample the value for the
magnitude of the brightness increase resp. decrease from an exponential
distribution with mean β = 20. In the training set and test set 1, we
sample the brightness value as bi,j = [100+yiei,j ]+ where ei,j ∼ Exp(β−1)
and yi ∈ {−1, 1}, where yi = 1 indicates presence of glasses and yi = −1
indicates absence.8 For test set 2, we use instead bi,j = [100− yiei,j ]+, so
that the relation between brightness and glasses is flipped.

Figure 5.11 shows misclassification rates for CoRe and the pooled esti-
mator on different test sets. Examples from all test sets can be found in
Figure 5.13. First, we notice that the pooled estimator performs better
than CoRe on test set 1. This can be explained by the fact that it can
exploit the predictive information contained in the brightness of an image
while CoRe is restricted not to do so. Second, we observe that the pooled
estimator does not perform well on test set 2 as its learned representa-
tion seems to use the image’s brightness as a predictor for the response
which fails when the brightness distribution in the test set differs signif-
icantly from the training set. In contrast, the predictive performance of
CoRe is hardly affected by the changing brightness distributions. Results
for β ∈ {5, 10, 20} and c ∈ {200, 5000} can be found in Figure 5.14 in
Appendix §5.D.1.

5.8. Conclusion

Distinguishing the latent features in an image into core and style features,
we have proposed conditional variance regularization (CoRe) to achieve
robustness with respect to arbitrarily large interventions on the style or
“orthogonal” features. The main idea of the CoRe estimator is to exploit
the fact that we often have instances of the same object in the training
data. By demanding invariance of the classifier amongst a group of in-
stances that relate to the same object, we can achieve invariance of the
classification performance with respect to adversarial interventions on style
features such as image quality, fashion type, color, or body posture. The
training also works despite sampling biases in the data.

There are two main application areas:

8Specifically, we use ImageMagick (https://www.imagemagick.org) and modify the
brightness of each image by applying the command convert -modulate b_ij,100,100
input.jpg output.jpg to the image.

https://www.imagemagick.org
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1. If the style features are known explicitly, we can achieve the same
classification performance as standard data augmentation approaches
with substantially fewer augmented samples, as shown for example
in §5.7.5. Additionally, the augmented images do not need to be
balanced carefully for the CoRe estimator, as shown for example in
§5.7.6, where adding grayscale images to a set of grayish elephants
leads to invariance to color with the CoRe approach while a pooled
estimator is still using color to predict the animal class with the same
dataset.

2. Perhaps more interesting are settings in which it is unknown what
the style features are, with examples in §5.7.1, §5.7.2, §5.7.3, §5.7.4,
and §5.7.7. CoRe regularization forces predictions to be based on
features that do not vary strongly between instances of the same ob-
ject. We could show in the examples and in Theorems 5.2 and 5.3
that this regularization achieves distributional robustness with re-
spect to changes in the distribution of the (unknown) style variables.

An interesting line of work would be to use larger models such as Inception
or large ResNet architectures (He et al., 2016; Szegedy et al., 2015). These
models have been trained to be invariant to an array of explicitly defined
style features. In §5.7.4 we include results which show that using Incep-
tion V3 features does not guard against interventions on more implicit
style features. We would thus like to assess what benefits CoRe can bring
for training Inception-style models end-to-end, both in terms of sample
efficiency and in terms of generalization performance. While we showed
some examples where the necessary grouping information is available, an
interesting possible future direction would be to use video data since ob-
jects display temporal constancy and the temporal information can hence
be used for grouping and conditional variance regularization.



Appendices 179

Appendix 5.A Proof of Theorem 5.2

First part. To show the first part, namely that with probability 1,

Ladv(θ̂pool) =∞,

we need to show that W tθ̂pool 6= 0 with probability 1. The reason this is
sufficient is as follows: if W tθ 6= 0, then Ladv(θ) =∞ as we can then find
a v ∈ Rq such that γ := θtWv 6= 0. Setting ∆κ = κv for κ ∈ R, we get
x(∆κ)tθ = x(∆ = 0)tθ + κγ. Hence log(1 + exp(−y · x(∆κ)tθ)) → ∞ for
either κ→∞ or κ→ −∞.
To show thatW tθ̂pool 6= 0 with probability 1, let θ̂∗ be the oracle estimator
that is constrained to be orthogonal to the column space of W :

θ̂∗ = argminθ:W tθ=0 Ln(θ) with Ln(θ) := 1
n

n∑
i=1

`(yi, fθ(xi(∆i))).

(5.15)
We show W tθ̂pool 6= 0 by contradiction. Assume hence that W tθ̂pool = 0.
If this is indeed the case, then the constraint W tθ = 0 in (5.15) becomes
non-active and we have θ̂pool = θ̂∗. This would imply that taking the
directional derivative of the training loss with respect to any δ ∈ Rp in
the column space of W should vanish at the solution θ̂∗. In other words,
define the gradient as g(θ) = ∇θLn(θ) ∈ Rp. The implication is then that
for all δ in the column-space of W ,

δtg(θ̂∗) = 0 (5.16)

and we will show the latter condition is violated.
As we work with the logistic loss and Y ∈ {−1, 1}, the loss is given by
`(yi, fθ(xi(∆i))) = log(1 + exp(−yixi(∆i)tθ)). Define ri(θ) := yi/(1 +
exp(yixi(∆i)tθ)). For all i = 1, . . . , n we have ri 6= 0. Then

g(θ̂∗) = 1
n

n∑
i=1

ri(θ̂∗)xi(∆i). (5.17)

Let xi(0) for i = 1, . . . , n be training data in absence of any interventions,
that is under ∆i = 0. We call these data in the following the (counterfac-
tual) intervention-free training data. Since the interventions only have an
effect on the column space of W in X, the oracle estimator θ̂∗ is identical
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under the true training data and the intervention-free training data x(0).
By assumption, xi−xi(0) = W∆i and (5.17) can hence also be written as

δtg(θ̂∗) = 1
n

n∑
i=1

ri(θ̂∗)xi(0)tδ + 1
n

n∑
i=1

ri(θ̂∗)∆t
iW

tδ. (5.18)

Since δ is in the column-space ofW , there exists u ∈ Rq such that δ = Wu
and we can write (5.18) as

δtg(θ̂∗) = 1
n

n∑
i=1

ri(θ̂∗)xi(0)tWu+ 1
n

n∑
i=1

ri(θ̂∗)∆t
iW

tWu. (5.19)

From (A2) we have that the eigenvalues of W tW are all positive. Also
ri(θ̂∗) is not a function of the interventions ∆i since, as above, the esti-
mator θ̂∗ is identical whether trained on the original data xi or on the
intervention-free data xi(0). If we condition on everything except for the
random interventions by conditioning on (xi(0), yi) for i = 1, . . . , n, then
the rhs of (5.19) can be written as

atu+Btu,

where a ∈ Rq is fixed (again conditional on the intervention-free training
data) and B = 1

n

∑n
i=1 ri(θ̂∗)∆t

iW
tW ∈ Rq is a random vector and B 6=

−a ∈ Rq with probability 1 as the interventions ∆i are, by (A1), drawn
from a continuous distribution. Hence the left hand side of (5.19) has a
continuous distribution for any δ in the column-space of W , and the left
hand side of (5.19) is not identically 0 with probability 1 for any given
δ in the column-space of W . This shows that the implication (5.16) is
incorrect with probability 1 and hence completes the proof of the first
part by contradiction.

Second part. For the second part, we first show that with probability
at least pn, as defined in (A3), θ̂core = θ̂∗ with θ̂∗ defined as in (5.15).
Note that the invariant space for this model is the linear subspace I = {θ :
W tθ = 0} and by their respective definitions,

θ̂∗ = argminθ
1
n

n∑
i=1

`(yi, fθ(xi)) such that θ ∈ I,

θ̂core = argminθ
1
n

n∑
i=1

`(yi, fθ(xi)) such that θ ∈ In.
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Since we use In = In(τ) with τ = 0,

In =
{
θ : Ê(Var(fθ(X)|Y, ID)) = 0

}
.

This implies that for θ ∈ In it holds that fθ(xi) = fθ(xi′) if i, i′ ∈ Sj
for some j ∈ {1, . . . ,m} (recall that (yi, idi) = (yi′ , idi′) if i, i′ ∈ Sj as
the subsets Sj , j = 1, . . . ,m, collect all observations that have a unique
realization of (Y, ID)). Since fθ(x) = fθ(x′) implies (x − x′)tθ = 0, it
follows that (xi−xi′)tθ = 0 if i, i′ ∈ Sj for some j ∈ {1, . . . ,m} and hence

In ⊆
{
θ : (xi − xi′)tθ = 0 if i, i′ ∈ Sj for some j ∈ {1, . . . ,m}

}
.

Since Xstyle has a linear influence on X in (5.12), xi−xi′ = W (∆i−∆i′) if
i, i′ are in the same group Sj of observations for some j ∈ {1, . . . ,m}. Note
that the number of grouped examples n−m is equal to or exceeds the rank
q of W with probability pn, using (A3), and pn → 1 for n→∞. By (A2),
it follows then with probability at least pn that In ⊆ {θ : W tθ = 0} = I.
As, by definition, I ⊆ In is always true, we have with probability pn that
I = In. Hence, with probability pn (and pn → 1 for n → ∞), θ̂core = θ̂∗.
It thus remains to be shown that

Ladv(θ̂∗)→p L
∗
adv. (5.20)

Since θ̂∗ is in I, we have `(y, x(∆)) = `(y, x(0)), where x(0) are the previ-
ously discussed intervention-free data. Hence

θ̂∗ = argminθ
1
n

n∑
i=1

`(yi, fθ(xi(0))) such that θ ∈ I, (5.21)

that is the estimator is unchanged if we use the data without interventions
(∆i = 0) as training data. Define the population-optimal vector as

θ∗ = argminθ E
[

max
∆

`(Y, fθ(X(∆)))
]
such that θ ∈ I,

which can for the same reason be written as

θ∗ = argminθ E
[
`(Y, fθ(X(∆ = 0)))

]
such that θ ∈ I. (5.22)

Hence (5.21) and (5.22) can be written as

θ̂∗ = argminθ:θ∈I L(0)
n (θ) where L(0)

n (θ) := 1
n

n∑
i=1

`(yi, fθ(xi(0)))

θ∗ = argminθ:θ∈I L(0)(θ) where L(0)(θ) := E[`(Y, fθ(X(∆ = 0)))].
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Comparing (5.21) and (5.22), by uniform convergence of L(0)
n to the pop-

ulation loss L(0), we have L(0)(θ̂∗) →p L
(0)(θ∗). By definition of I and

θ∗, we have L∗adv = Ladv(θ∗) = L(0)(θ∗). As θ̂∗ is in I, we also have
Ladv(θ̂∗) = L(0)(θ̂∗). Since, from above, L(0)(θ̂∗) →p L

(0)(θ∗), this also
implies Ladv(θ̂∗) →p Ladv(θ∗) = L∗adv. Using the previously established
result that θ̂core = θ̂∗ with probability at least pn and pn → 1 for n→∞,
this completes the proof.

Appendix 5.B Proof of Theorem 5.3

Let Ŷ = θtX be the prediction under parameter vector θ. Let Eκ be again
the expectation with respect to random (Y,X) under model (5.14),

Y ← εY ∈ R
ID← kid(Y, εID)

Xstyle ← kstyle(Y, ID) + εstyle + κ · ε′style
X ← kx(Y, ID) +BXstyle.

Looking at the expected squared error in a bias-variance decomposition
(with the classical roles of Y and Ŷ here reversed due to the nature of the
causal graph),

Eκ

[
(Y−θtX)2

]
= Eκ

[
(Y−Ŷ )2

]
= Eκ

[
(Eκ(Ŷ |Y )− Y )2

]
︸ ︷︷ ︸
constant with respect to κ

+Eκ

[
Varκ(Ŷ |Y )

]
︸ ︷︷ ︸
increasing with κ

.

(5.23)
The bias term in (5.23) is unaffected by a change in κ as we can write the
structural equation for X for a suitable function g(Y, ID) = kx(Y, ID) +
Bkstyle(Y, ID) as

X ← g(Y, ID) +Bεstyle + κBε′style,

and hence, using that the expected values of εstyle and ε′style vanish and
both are here independent of Y and ID,

Eκ(Ŷ |Y ) = Eκ(θtX|Y ) = Eκ(θtg(Y, ID)|Y ) = E0(θtg(Y, ID)|Y ). (5.24)
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The variance term in (5.23) can be decomposed by the law of total variance
as

Eκ

[
Varκ(Ŷ |Y )

]
= Eκ

[
Varκ(Ŷ |Y, ID)︸ ︷︷ ︸

proportional to (1 + κ2)

]
+ Varκ

[
Eκ(Ŷ |Y, ID)︸ ︷︷ ︸

constant with respect to κ

]
.

(5.25)
The second term is not a function of κ, using the analogous argument
as in (5.24). Using that εstyle and ε′style are independent and identically
distributed, the first term in (5.25) can be written as

Varκ(Ŷ |Y, ID) = Varκ(θtBεstyle) + κ2Varκ(θtBε′style)
= (1 + κ2)Varκ(θtBεstyle)
= (1 + κ2)Varκ=0(θtBεstyle)
= (1 + κ2)Eκ=0

[
Varκ=0(Ŷ |Y, ID)

]
= (1 + κ2)Cθ.

The expected loss under a scaling κ of the noise is then

Eκ

[
(Y − θtX)2

]
= Eκ=0

[
(Y − θtX)2

]
+ κ2 · Cθ,

where Cθ = Eκ=0(Varκ=0(fθ(X)|Y, ID)) is the expected conditional vari-
ance under κ = 0. If we thus have training data generated under κ = 0,
then the CoRe estimator with λ = κ2 is optimizing the loss function un-
der an increased style noise level, anticipating that the multiplier κ will
rise potentially from the current value of 1 to higher values in different
domains. In other words, the population CoRe estimator (5.13) is

θcore(λ) = argminθ Eκ=0

[
(Y − θtX)2

]
+ λ · Cθ

= argminθ Eκ=
√
λ

[
(Y − θtX)2

]
= argminθ sup

κ≤
√
λ

Eκ

[
(Y − θtX)2

]
,

which completes the proof.

Appendix 5.C Network architectures

We implemented the considered models in TensorFlow (Abadi et al., 2015).
The model architectures used are detailed in Table 5.1. CoRe and the
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y ≡ glasses

P̂ core(gl.) = 1.00

P̂pool(gl.) = 0.21

y ≡ no glasses

P̂ core(no gl.) = 0.84

P̂pool(no gl.) = 0.13

y ≡ glasses

P̂ core(gl.) = 0.90

P̂pool(gl.) = 0.14

(a) Examples of misclassified observations.
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(b) Misclassification rates.

Figure 5.12.: CelebA eyeglasses detection with brightness interventions, group-
ing setting 1. (a) Misclassified examples from the test sets. (b) Misclassification
rates for β = 20 and c = 2000. Results for different test sets, grouping settings,
β ∈ {5, 10, 20} and c ∈ {200, 5000} can be found in Figure 5.14.

pooled estimator use the same network architecture and training proce-
dure; merely the loss function differs by the CoRe regularization term.
In all experiments we use the Adam optimizer (Kingma and Ba, 2015).
All experimental results are based on training the respective model five
times (using the same data) to assess the variance due to the randomness
in the training procedure. In each epoch of the training, the training data
xi, i = 1, . . . , n are randomly shuffled, keeping the grouped observations
(xi)i∈Ij for j ∈ {1, . . . ,m} together to ensure that mini batches will con-
tain grouped observations. In all experiments the mini batch size is set
to 120. For small c this implies that not all mini batches contain grouped
observations, making the optimization more challenging.

Appendix 5.D Additional experiments

5.D.1 Eyeglasses detection: known and unknown
brightness interventions

Here, we show additional results for the experiment discussed in §5.7.7.
Recall that we work with the CelebA dataset and consider the problem
of classifying whether the person in the image is wearing eyeglasses. We
discuss two alternatives for constructing different test sets and we vary
the number of grouped observations in c ∈ {200, 2000, 5000} as well as the
strength of the brightness interventions in β ∈ {5, 10, 20}, all with sample
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Table 5.1.: Details of the model architectures used.
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(a) Grouping setting 1, β =
5

(b) Grouping setting 1, β =
10

(c) Grouping setting 1, β =
20

(d) Grouping setting 2, β =
5

(e) Grouping setting 2, β =
10

(f) Grouping setting 2, β =
20

(g) Grouping setting 3, β =
5

(h) Grouping setting 3, β =
10

(i) Grouping setting 3, β =
20

Figure 5.13.: Examples from the CelebA eyeglasses detection with brightness
interventions, grouping settings 1–3 with β ∈ {5, 10, 20}. In all rows, the first
three images from the left have y ≡ no glasses; the remaining three images have
y ≡ glasses. Connected images are grouped examples. In panels (a)–(c), row
1 shows examples from the training set, rows 2–4 contain examples from test
sets 2–4, respectively. Panels (d)–(i) show examples from the respective training
sets.

size n = 20000. Generation of training and test sets 1 and 2 were already
described in §5.7.7. Here, we consider additionally test set 3 where all
images are left unchanged (no brightness interventions at all) and in test
set 4 the brightness of all images is increased.

Furthermore, we consider three different ways of grouping images. In §5.7.7
we used images of the same person to create a grouped observation by
sampling a different value for the brightness intervention. We refer to this
as ‘Grouping setting 2’ here. An alternative is to use the same image of the
same person in different brightnesses (drawn from the same distribution)
as a group over which the conditional variance is calculated. We call this
‘Grouping setting 1’ and it can be useful if we know that we want to
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(a) Grouping setting 1, c = 200
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(b) Grouping setting 1, c = 2000
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(c) Grouping setting 2, c = 2000
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(d) Grouping setting 2, c = 5000
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(e) Grouping setting 3, c = 2000
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(f) Grouping setting 3, c = 5000

Figure 5.14.: Misclassification rates for the CelebA eyeglasses detection with
brightness interventions, grouping settings 1–3 with c ∈ {200, 2000, 5000} and
the mean of the exponential distribution β ∈ {5, 10, 20}.
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protect against brightness interventions in the future. For comparison, we
also evaluate grouping with an image of a different person as a baseline
(‘Grouping setting 3’). Examples from the training sets using grouping
settings 1, 2 and 3 can be found in Figure 5.13.
Results for all grouping settings, β ∈ {5, 10, 20} and c ∈ {200, 5000} can be
found in Figure 5.14. We see that using grouping setting 1 works best since
we could explicitly control that only Xstyle ≡ brightness varies between
grouping examples. In grouping setting 2, different images of the same
person can vary in many factors, making it more challenging to isolate
brightness as the factor to be invariant against. Lastly, we see that if
we group images of different persons (‘Grouping setting 3’), the difference
between CoRe estimator and the pooled estimator becomes much smaller
than in the previous settings.
Regarding the results for grouping setting 1 in Figure 5.12, we notice that
the pooled estimator performs better than CoRe on test set 1. This can
be explained by the fact that it can exploit the predictive information
contained in the brightness of an image while CoRe is restricted not to do
so. Second, we observe that the pooled estimator does not perform well
on test sets 2 and 4 as its learned representation seems to use the image’s
brightness as a predictor for the response which fails when the brightness
distribution in the test set differs significantly from the training set. In
contrast, the predictive performance of CoRe is hardly affected by the
changing brightness distributions.

5.D.2 Gender classification

In §5.7.4 we assessed whether the results differ when (a) training a five-
layer CNN (as detailed in Table 5.1) end-to-end versus (b) using Inception
V3 features and merely retraining the softmax layer. Here, we show some
additional results for different sample sizes and number of grouped obser-
vations. Figure 5.15 shows the results for varying numbers of n and c—in
the left column for training a five-layer CNN; in the right column for using
Inception V3 features. Overall, we see the same trends: As c increases,
the performance difference between CoRe and the pooled estimator be-
comes smaller. This is due to the fact that Xstyle is binary in this example
and, therefore, including grouped examples corresponds to data augmen-
tation. Interestingly, the pooled estimator performs worse on test set 2 as
n becomes larger. It thus seems to exploit Xstyle to a larger extent as n
grows.
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(a) n = 5000, 5-layer CNN
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(b) n = 5000, Inception V3
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(c) n = 10000, 5-layer CNN
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(d) n = 10000, Inception V3
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(e) n = 17000, 5-layer CNN

c: 200 c: 500 c: 1000 c: 2000

Tr Te1 Te2 Tr Te1 Te2 Tr Te1 Te2 Tr Te1 Te2

0
5

10
15
20
25
30
35
40
45
50

Dataset

M
IS

C
LA

S
S

. R
AT

E
 (

IN
 %

)

Method CORE pooled

(f) n = 17000, Inception V3

Figure 5.15.: Misclassification rates for the CelebA gender classification datasets
with varying numbers for n and c. The left column shows results for training
a five-layer CNN (cf. Table 5.1) end-to-end, the right column shows results for
using Inception V3 features and retraining the softmax layer.
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(a) m = 1000
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(b) m = 10000

Figure 5.16.: Data augmentation setting: Misclassification rates for MNIST
and Xstyle ≡ rotation. In test set 1 all digits are rotated by a degree randomly
sampled from [35, 70]. Test set 2 is the usual MNIST test set.

5.D.3 MNIST: more sample efficient data augmentation

Here, we show further results for the experiment introduced in §5.7.5. We
vary the number of augmented training examples c from 100 to 5000 for
m = 10000 and c ∈ {100, 200, 500, 1000} for m = 1000. The degree of the
rotations is sampled uniformly at random from [35, 70]. Figure 5.16 shows
the misclassification rates. Test set 1 contains rotated digits only, test set
2 is the usual MNIST test set. We see that the misclassification rates of
CoRe are always lower on test set 1, showing that it makes data augmen-
tation more efficient. For m = 1000, it even turns out to be beneficial for
performance on test set 2.

5.D.4 Stickmen image-based age classification

Here, we show further results for the experiment introduced in §5.7.3.
Figure 5.17 illustrates the data generating process. Recall that test set
1 follows the same distribution as the training set. In test sets 2 and
3 large movements are associated with both children and adults, while
the movements are heavier in test set 3 than in test set 2. Figure 5.18b
shows results for different numbers of grouping examples. For c = 20
the misclassification rate of CoRe estimator has a large variance. For c ∈
{50, 500, 2000}, the CoRe estimator shows similar results. Its performance
is thus not sensitive to the number of grouped examples, once there are
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place of observation D

adult/child Y

movement Xstyle(∆)

∆person ID

height Xcore

image X(∆) Ŷ (X(∆))
fθ

Figure 5.17.: Data generating process for the stickmen example.

(a) Examples from test sets 1–3.
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(b) Misclassification rates.

Figure 5.18.: a) Examples from the stickmen test set 1 (row 1), test set 2 (row
2) and test sets 3 (row 3). In each row, the first three images from the left have
y ≡ child; the remaining three images have y ≡ adult. Connected images are
grouped examples. b) Misclassification rates for different numbers of grouped
examples.
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sufficiently many grouped observations in the training set. The pooled
estimator fails to achieve good predictive performance on test sets 2 and
3 as it seems to use “movement” as a predictor for “age”.

5.D.5 Eyeglasses detection: image quality intervention

Here, we show further results for the experiments introduced in §5.7.2.
Specifically, we consider interventions of different strengths by varying the
mean of the quality intervention in µ ∈ {30, 40, 50}. Recall that we use
ImageMagick to modify the image quality. In the training set and in test
set 1, we sample the image quality value as qi,j ∼ N (µ, σ = 10) and
apply the command convert -quality q_ij input.jpg output.jpg if
yi ≡ glasses. If yi ≡ no glasses, the image is not modified. In test set
2, the above command is applied if yi ≡ no glasses while images with
yi ≡ glasses are not changed. In test set 3 all images are left unchanged
and in test set 4 the command is applied to all images, i.e. the quality of
all images is reduced.
We run experiments for grouping settings 1–3 and for c = 5000, where the
definition of the grouping settings 1–3 is identical to §5.D.1. Figure 5.19
shows examples from the respective training and test sets and Figure 5.20
shows the corresponding misclassification rates. Again, we observe that
grouping setting 1 works best, followed by grouping setting 2. Interestingly,
there is a large performance difference between µ = 40 and µ = 50 for the
pooled estimator. Possibly, with µ = 50 the image quality is not sufficiently
predictive for the target.
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(a) Grouping setting 1, µ =
50

(b) Grouping setting 1, µ =
40

(c) Grouping setting 1, µ =
30

(d) Grouping setting 2, µ =
50

(e) Grouping setting 2, µ =
40

(f) Grouping setting 2, µ =
30

(g) Grouping setting 3, µ =
50

(h) Grouping setting 3, µ =
40

(i) Grouping setting 3, µ =
30

Figure 5.19.: Examples from the CelebA image quality datasets, grouping set-
tings 1–3 with µ ∈ {30, 40, 50}. In all rows, the first three images from the left
have y ≡ no glasses; the remaining three images have y ≡ glasses. Connected
images are grouped observations over which we calculate the conditional vari-
ance. In panels (a)–(c), row 1 shows examples from the training set, rows 2–4
contain examples from test sets 2–4, respectively. Panels (d)–(i) show examples
from the respective training sets.
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(a) Grouping setting 1
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(b) Grouping setting 2
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(c) Grouping setting 3

Figure 5.20.: Misclassification rates for the CelebA eyeglasses detection with
image quality interventions, grouping settings 1–3 with c = 5000 and the mean
of the Gaussian distribution µ ∈ {30, 40, 50}.
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Figure 5.21.: Examples from the subsampled and augmented AwA2 dataset
(Elmer-the-Elephant dataset). Row 1 shows examples from the training set,
rows 2–5 show examples from test sets 1–4, respectively.

5.D.6 Elmer the Elephant

The color interventions for the experiment introduced in §5.7.6 were cre-
ated as follows. In the training set, if yi ≡ elephant we apply the follow-
ing ImageMagick command for the grouped examples convert -modulate
100,0,100 input.jpg output.jpg. Test sets 1 and 2 were already dis-
cussed in §5.7.6: in test set 1, all images are left unchanged. In test
set 2, the above command is applied if yi ≡ horse. If yi ≡ elephant,
we sample ci,j ∼ N (µ = 20, σ = 1) and apply convert -modulate
100,100,100-c_ij input.jpg output.jpg to the image. Here, we con-
sider again some more test sets than in §5.7.6. In test set 4, the latter
command is applied to all images. It rotates the colors of the image, in
a cyclic manner9. In test set 3, all images are changed to grayscale. The
causal graph for the data generating process is shown in Figure 5.23. Ex-
amples from all four test sets are shown in Figure 5.21 and classification
results are shown in Figure 5.22.

9For more details, see http://www.imagemagick.org/Usage/color_mods/#color_mods.

http://www.imagemagick.org/Usage/color_mods/#color_mods
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y ≡ horse

P̂ core(horse) = 0.72

P̂pool(horse) = 0.01

y ≡ horse

P̂ core(horse) = 1.00

P̂pool(horse) = 0.01

y ≡ elephant

P̂ core(ele.) = 0.95

P̂pool(ele.) = 0.00

(a) Examples of misclassified observations.
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(b) Misclassification rates.

Figure 5.22.: Elmer-the-Elephant dataset. (a) Misclassified examples from the
test sets. (b) Misclassification rates on test sets 1 to 4.

place of observation D

animal class Y

color Xstyle(∆)

∆animal ID

Xcore

image X(∆) Ŷ (X(∆))
fθ

Figure 5.23.: Data generating process for the Elmer-the-Elephant example.
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(a) Test set 1.
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(b) Test set 2.
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(c) Test set 3.
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(d) Test set 4.

Figure 5.24.: Misclassification rates of CoRe on the subsampled and augmented
AwA2 dataset (Elmer-the-Elephant dataset) as a function of the penalty λ. The
outcome does not depend strongly on the chosen value.

The value of the penalty parameter λ in Eq. (5.10) is chosen depending
on the expected strength of future interventions. Figure 5.24 shows the
misclassification rates of CoRe on the subsampled and augmented AwA2
dataset (Elmer-the-Elephant dataset) as a function of the penalty λ. We
see that performance is not very sensitive to the choice of the penalty
parameter in a reasonable range.





Part III.

Distributed Estimation





Chapter 6.

DUAL-LOCO: Distributing
statistical estimation using
random projections

We present Dual-Loco, a communication-efficient algorithm for distributed
statistical estimation. Dual-Loco assumes that the data is distributed
across workers according to the features rather than the samples. It re-
quires only a single round of communication where low-dimensional ran-
dom projections are used to approximate the dependencies between fea-
tures available to different workers. We show that Dual-Loco has bounded
approximation error which only depends weakly on the number of workers.
We compare Dual-Loco against a state-of-the-art distributed optimiza-
tion method on a variety of real world datasets and show that it obtains
better speedups while retaining good accuracy. In particular, Dual-Loco
allows for fast cross validation as only part of the algorithm depends on
the regularization parameter.

6.1. Introduction

Many statistical estimation tasks amount to solving an optimization prob-
lem of the form

min
β∈Rp

J(β) :=
n∑
i=1

fi(β>xi) + λ

2 ‖β‖
2 (6.1)

where λ > 0 is the regularization parameter. The loss functions fi(β>xi)
depend on labels yi ∈ R and linearly on the coefficients, β through a
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vector of covariates, xi ∈ Rp. Furthermore, we assume all fi to be con-
vex and smooth with Lipschitz continuous gradients. Concretely, when
fi(β>xi) = (yi − β>xi)2, Eq. (6.1) corresponds to ridge regression; for
logistic regression fi(β>xi) = log (1 + exp (−yiβ>xi)).
For large-scale problems, it is no longer practical to solve even relatively
simple estimation tasks such as (6.1) on a single machine. To deal with
this, approaches to distributed data analysis have been proposed that take
advantage of many cores or computing nodes on a cluster. A common idea
which links many of these methods is stochastic optimization. Typically,
each of the workers only sees a small portion of the data points and per-
forms incremental updates to a global parameter vector. It is typically
assumed that the number of data points, n, is very large compared with
the number of features, p, or that the data is extremely sparse, meaning
that many entries in the data matrix are zero. In such settings—which
are common, but not ubiquitous in large datasets—distributed stochastic
optimization algorithms perform well but may converge slowly otherwise.
A fundamentally different approach to distributed learning is for each
worker to only have access to a portion of the available features. Dis-
tributing according to the features could be a preferable alternative for
several reasons. Firstly, for high-dimensional data, where p is large rel-
ative to n, better scaling can be achieved. This setting is challenging,
however, since most loss functions are not separable across coordinates.
High-dimensional data is commonly encountered in the fields of bioinfor-
matics, climate science and computer vision. Furthermore, for a variety
of prediction tasks it is often beneficial to map input vectors into a higher
dimensional feature space, e.g. using deep representation learning or con-
sidering higher-order interactions. Secondly, individual blocks of features
could correspond to sensitive information (such as medical records) which
should be included in the predictive model but is not allowed to be com-
municated in an un-disguised form due to privacy concerns.

Our contribution. In this work we introduce Dual-Loco to solve prob-
lems of the form (6.1) in the distributed setting when each worker only
has access to a subset of the features. Dual-Loco is an extension of the
Loco algorithm (Heinze et al., 2014) which was recently proposed for solv-
ing distributed ridge regression in this setting. We propose an alternative
formulation where each worker instead locally solves a dual optimization
problem. Dual-Loco has a number of practical and theoretical improve-
ments over the original algorithm:
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• Dual-Loco is applicable to a wider variety of smooth, convex `2 pe-
nalized loss minimization problems encompassing many widely used
regression and classification loss functions, including ridge regression,
logistic regression and others.

• In §6.4 we provide a more intuitive and tighter theoretical result
which crucially does not depend on specific details of the ridge re-
gression model and has weaker dependence on the number of workers,
K.

• We also show that adding (rather than concatenating) random fea-
tures allows for an efficient implementation yet retains good approx-
imation guarantees.

In §6.5 we report experimental results with high-dimensional real world
datasets corresponding to two different problem domains: climate science
and computer vision. We compare Dual-Loco with CoCoA+, a recently
proposed state-of-the-art algorithm for distributed dual coordinate ascent
(Ma et al., 2015). Our experiments show that Dual-Loco demonstrates
better scaling withK than CoCoA+ while retaining a good approximation
of the optimal solution. We provide an implementation of Dual-Loco
in Apache Spark1. The portability of this framework ensures that Dual-
Loco is able to be run in a variety of distributed computing environments.

6.2. Related work

6.2.1. Distributed estimation

Recently, several asynchronous stochastic gradient descent (SGD) methods
(Duchi et al., 2013a; Recht et al., 2011) have been proposed for solving
problems of the form (6.1) in a parallel fashion in a multi-core, shared-
memory environment and have been extended to the distributed setting.
For such methods, large speedups are possible with asynchronous updates
when the data is sparse. However, in some problem domains the data
collected is dense with many correlated features. Furthermore, the p� n
setting can result in slow convergence. In the distributed setting, such
methods can be impractical since the cost of communicating updates can
dominate other computational considerations.

Jaggi et al. (2014) proposed a communication-efficient distributed dual
1http://spark.apache.org/

http://spark.apache.org/
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coordinate ascent algorithm (CoCoA resp. CoCoA+) (Jaggi et al., 2014;
Ma et al., 2015). Each worker makes multiple updates to its local dual
variables before communicating the corresponding primal update. This
allows for trading off communication and convergence speed. Notably they
show that convergence is actually independent of the number of workers,
thus CoCoA+ exhibits strong scaling with K.

Other recent work considers solving statistical estimation tasks using a
single round of communication (Liu and Ihler, 2014; Zhang et al., 2015b).
However, all of these methods consider only distributing over the rows of
the data where an i.i.d. assumption on the observations holds.

On the other hand, few approaches have considered distributing across the
columns (features) of the data. This is a more challenging task for both
estimation and optimization since the columns are typically assumed to
have arbitrary dependencies and most commonly used loss functions are
not separable over the features. Recently, Loco was proposed to solve
ridge regression when the data is distributed across the features (Heinze
et al., 2014). Loco requires a single round to communicate small matrices
of randomly projected features which approximate the dependencies in the
rest of the dataset (cf. Figure 6.1). Each worker then optimizes its own
sub-problem independently and finally sends its portion of the solution
vector back to the master where they are combined. Loco makes no as-
sumptions about the correlation structure between features. It is therefore
able to perform well in challenging settings where the features are corre-
lated between blocks and is particularly suited when p� n. Indeed, since
the relative dimensionality of local problems decreases when splitting by
columns, they are easier in a statistical sense. Loco makes no assump-
tions about data sparsity so it is also able to obtain speedups when the
data is dense.

One-shot communication schemes are beneficial as the cost of communi-
cation consists of a fixed cost and a cost that is proportional to the size
of the message. Therefore, it is generally cheaper to communicate a few
large objects than many small objects.

6.2.2. Random projections for estimation and optimization

Random projections are low-dimensional embeddings Π : Rτ → Rτsubs
which approximately preserve an entire subspace of vectors where τsubs
denotes the projection dimension. They have been extensively used to
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Figure 6.1.: Schematic for the distributed approximation of a large data set
with random projections, used by Dual-Loco.

construct efficient algorithms when the sample-size is large in a variety of
domains such as: nearest neighbours (Ailon and Chazelle, 2009), matrix
factorization (Boutsidis and Gittens, 2012), least squares (Dhillon et al.,
2013; McWilliams et al., 2014) and recently in the context of optimization
(Pilanci and Wainwright, 2017).

We concentrate on the Subsampled Randomized Hadamard Transform
(SRHT), a structured random projection (Tropp, 2011). The SRHT con-
sists of a projection matrix, Π =

√
τ/τsubsDHS (Boutsidis and Gittens,

2012) with Π ∈ Rτ×τsubs and the definitions:

(i) S ∈ Rτ×τsubs is a randomly chosen subsampling matrix,

(ii) D ∈ Rτ×τ is a diagonal matrix whose entries are drawn indepen-
dently from {−1, 1},

(iii) H ∈ Rτ×τ is a normalized Walsh-Hadamard matrix.

The key benefit of the SRHT is that due to its recursive definition the
product between Π> and u ∈ Rτ can be computed in O (τ log τ) time
while never constructing Π explicitly.
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For moderately sized problems, random projections have been used to re-
duce the dimensionality of the data prior to performing regression (Kabán,
2014; Lu et al., 2013). However after projection, the solution vector is in
the compressed space and so interpretability of coefficients is lost. Fur-
thermore, the projection of the low-dimensional solution back to the origi-
nal high-dimensional space—obtained by multiplying Π with the solution
vector—is in fact guaranteed to be a bad approximation of the optimum
(Zhang et al., 2012).

Dual Random Projections. Recently, Zhang et al. (2014, 2012) studied
the effect of random projections on the dual optimization problem. For
the primal problem in Eq. (6.1), defining K = XX>, we have the corre-
sponding dual

max
α∈Rn

−
n∑
i=1

f∗i (αi)−
1

2nλα>Kα (6.2)

where f∗ is the conjugate Fenchel dual of f and λ > 0. For example, for
squared loss functions fi(u) = 1

2 (yi−u)2, we have f∗i (α) = 1
2α

2 +αyi. For
problems of this form, the dual variables can be directly mapped to the
primal variables, such that for a vector α∗ which attains the maximum of
(6.2), the optimal primal solution has the form β∗(α∗) = − 1

nλX>α∗.

Clearly, a similar dual problem to (6.2) can be defined in the projected
space. Defining K̃ = (XΠ)(XΠ)> we have

max
α∈Rn

−
n∑
i=1

f∗i (αi)−
1

2nλα>K̃α. (6.3)

Importantly, the vector of dual variables does not change dimension de-
pending on whether the original problem (6.2) or the projected problem
(6.3) is being solved. Under mild assumptions on the loss function, by
mapping the solution to this new problem, α̃, back to the original space
one obtains a vector β̃(α̃) = − 1

nλX>α̃ , which is a good approximation to
β∗, the solution to the original problem (6.1) (Zhang et al., 2014, 2012).

6.3. The Dual-Loco algorithm

In this section we detail the Dual-Loco algorithm. Dual-Loco differs
from the original Loco algorithm in two important ways. (i) The random
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features from each worker are summed, rather than concatenated, to obtain
a τsubs dimensional approximation allowing for an efficient implementation
in a large-scale distributed environment. (ii) Each worker solves a local
dual problem similar to (6.3). This allows us to extend the theoretical
guarantees to a larger class of estimation problems beyond ridge regression
(§6.4).

We consider the case where p features are distributed across K different
workers in non-overlapping subsets P1, . . . ,PK of equal size2, τ = p/K.

Algorithm 8 Dual-Loco
Input: Data: X, Y , # workers: K; Params.: τsubs, λ
1: Partition {1, . . . , p} intoK subsets of equal size τ and distribute feature

vectors in X accordingly over K workers.
2: for each worker k ∈ {1, . . .K} in parallel do
3: Compute the SRHT projection matrix Πk.
4: Send random features XkΠk to other workers.
5: Receive random features from other workers and construct X̄k.
6: α̃k ← LocalDualSolver(X̄k, Y, λ)
7: β̂k = − 1

nλX>k α̃k

8: Send β̂k to driver.
9: end for
Output: Solution vector: β̂ =

[
β̂1, . . . , β̂K

]
Since most loss functions of interest are not separable across coordinates,
a key challenge addressed by Dual-Loco is to define a local minimiza-
tion problem for each worker to solve independently and asynchronously
while still maintaining important dependencies between features in differ-
ent blocks and keeping communication overhead low. Algorithm 8 details
Dual-Loco in full.

We can rewrite (6.1) making explicit the contribution from block k. Letting
Xk ∈ Rn×τ be the sub-matrix whose columns correspond to the coordi-
nates in Pk (the “raw” features of block k) and X(−k) ∈ Rn×(p−τ) be the
remaining columns of X, we have

J(β) =
n∑
i=1

fi

(
x>i,kβraw + x>i,(−k)β(−k)

)
+ λ
(
‖βraw‖2 + ‖β(−k)‖2

)
. (6.4)

2This is for simplicity of notation only, in general the partitions can be of different sizes.
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Where xi,k and xi,(−k) are the rows of Xk and X(−k) respectively. We re-
place X(−k) in each block with a low-dimensional randomized approxima-
tion which preserves its contribution to the loss function. This procedure
is described in Figure 6.1 and we describe some steps in more detail below.
In Step 3, each worker computes its local SRHT projection matrix Πk

(cf. §6.2.2), which is independent from the other workers’ SRHT projection
matrices.
In Step 4, the matrices of random features XkΠk are communicated and
in Step 5, worker k constructs the matrix

X̄k =

Xk,

K∑
k′=1,k′ 6=k

Xk′Πk′

 i.e. X̄k ∈ Rn×(τ+τsubs) (6.5)

which is the concatenation of worker k’s raw features and the sum of the
random features from all other workers.
As we prove in Lemma 6.2, summing Rτ → Rτsubs -dimensional random
projections from (K − 1) blocks is equivalent to computing the R(p−τ) →
Rτsubs -dimensional random projection in one go. The latter operation is
impractical for very large p and not applicable when the features are dis-
tributed. Therefore, summing the random features from each worker allows
the dimensionality reduction to be distributed across workers. Addition-
ally, the summed random feature representation can be computed and
combined very efficiently. We elaborate on this aspect in §6.5.
For a single worker the local, approximate primal problem is then

min
β̄∈Rτ+τsubs

Jk(β̄) :=
n∑
i=1

fi(β̄
>x̄i) + λ

2 ‖β̄‖
2 (6.6)

where x̄i ∈ Rτ+τsubs is the ith row of X̄k. The corresponding dual problem
for each worker in the Dual-Loco algorithm is

max
α∈Rn

−
n∑
i=1

f∗i (αi)−
1

2nλα>K̃kα, K̃k = X̄kX̄>k . (6.7)

The following steps in Algorithm 8 detail respectively how the solution to
(6.7) and the final Dual-Loco estimates are obtained.
Step 6. LocalDualSolver. The LocalDualSolver computes the solution
for (6.7), the local dual problem. The solver can be chosen to best suit the



6.4 Dual-Loco approximation error 209

problem at hand. This will depend on the absolute size of n and τ + τsubs
as well as on their ratio. For example, we could use SDCA (Shalev-Shwartz
and Zhang, 2013) or Algorithm 1 from Zhang et al. (2012).
Step 7. Obtaining the global primal solution. Each worker maps its
local dual solution to the primal solution corresponding only to the coor-
dinates in Pk. In this way, each worker returns coefficients corresponding
only to its own raw features. The final primal solution vector is obtained
by concatenating the K local solutions. Unlike Loco, we no longer require
to discard the coefficients corresponding to the random features for each
worker. Consequently, computing estimates is more efficient (especially
when p� n).

6.4. Dual-Loco approximation error
In this section we bound the recovery error between the Dual-Loco so-
lution and the solution to Eq. (6.1).

Theorem 6.1 (Dual-Loco error bound) Consider a matrix X ∈
Rn×p with rank at most r. Assume that the loss f(·) is smooth with Lip-
schitz continuous gradients. For a subsampling dimension τsubs ≥ c1pK
where 0 ≤ c1 ≤ 1/K2, let β∗ be the solution to (6.1) and β̂ be the estimate
returned by Algorithm 8. We have with probability at least 1−K

(
δ + p−τ

er

)
‖β̂ − β∗‖ ≤ ε

1− ε‖β
∗‖ where ε =

√
c0 log(2r/δ)r

c1p
< 1. (6.8)

Proof. By Lemma 6.5 and applying a union bound we can decompose
the global optimization error in terms of the error due to each worker as
‖β∗ − β̂‖ =

√∑K
k=1 ‖β

∗
k − β̂k‖2 ≤

√
K ρ

1−ρ‖β
∗‖, which holds with prob-

ability 1 − K
(
δ + p−τ

er

)
. The final bound, (6.8) follows by setting ρ =√

c0 log(2r/δ)r
τsubs

and τsubs ≥ c1pK and noting that
√
K ·

ε√
K

1− ε√
K

≤ ε
1−ε .

Theorem 6.1 guarantees that the solution to Dual-Loco will be close to
the optimal solution obtained by a single worker with access to all of the
data. Our result relies on the data having rank r � p. In practice, this as-
sumption is often fulfilled, in particular when the data is high dimensional.
For a large enough projection dimension, the bound has only a weak de-
pendence onK through the union bound used to determine the probability
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with which Eq. (6.8) holds. The error is then mainly determined by the
ratio between the rank and the random projection dimension. When the
rank of X increases for a fixed p, we need a larger projection dimension to
accurately capture its spectrum. On the other hand, the failure probabil-
ity increases with p and decreases with r. However, this countering effect
is negligible as typically log (p− τ)� r.

6.5. Implementation and experiments
In this section we report on the empirical performance of Dual-Loco
in two sets of experiments. The first demonstrates the performance of
Dual-Loco in a large, distributed classification task. The second is an
application of `2 penalized regression to a problem in climate science where
accurate recovery of the coefficient estimates is of primary interest.
Cross validation. In most practical cases, the regularization parameter
λ is unknown and has to be determined via v-fold cross validation (CV).
The chosen algorithm is usually run entirely once for each fold and each of
l values of λ, leading to a runtime that is approximately v · l as large as the
runtime of a single run3. In this context, Dual-Loco has the advantage
that steps 3-5 in Algorithm 8 are independent of λ. Therefore, these steps
only need to be performed once per fold. In step 6, we then estimate α̃k

for each value in the provided sequence for λ. Thus, the runtime of Dual-
Loco will increase by much less than v · l compared to the runtime of a
single run. The performance of each value for λ is then not only averaged
over the random split of the training data set into v parts but also over
the randomness introduced by the random projections which are computed
and communicated once per fold. The procedure is provided in full detail
in Algorithm 9 in Appendix 6.C.
Implementation details. We implemented Dual-Loco using the Apache
Spark framework4. Spark is increasingly gaining traction in the research
community as well as in industry due to its easy-to-use high-level API and
the benefits of in-memory processing. Spark is up to 100× faster than
Hadoop MapReduce. Additionally, Spark can be used in many differ-
ent large-scale computing environments and the various, easily-integrated
libraries for a diverse set of tasks greatly facilitate the development of
applications.
3“Approximately” since the cross validation procedure also requires time for testing.
For a single run we only count the time it takes to estimate the parameters.

4Available from: http://christinaheinze.github.io/loco-lib/.

http://christinaheinze.github.io/loco-lib/
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Figure 6.2.: Schematic for the aggregation of the random features in Spark.
(a) When concatenating the random features naively, every worker node (exec.)
sends its random features to the driver from where they are broadcasted to all
workers. (b) Using the treeReduce scheme we can reduce the load on the driver
by summing the random features from each worker node as this operation is
associative and commutative. Worker k is only required to subtract its own
random features locally.

When communicating and summing the random features in Spark, Dual-
Loco leverages the treeReduce scheme as illustrated in Figure 6.2(b).
Summing has the advantage that increasing the number of workers simply
introduces more layers in the tree structure (Figure 6.2b) while the load
on the driver remains constant and the aggregation operation also benefits
from a parallel execution. Thus, when increasing K only relatively little
additional communication cost is introduced which leads to speedups as
demonstrated below.
In practice, we used the discrete cosine transform (DCT) provided in the
FFT library jTransforms56 and we ran Dual-Loco as well as CoCoA+

on a high-performance cluster7.
Competing methods. For the classification example, the loss function
is the hinge loss. Although the problem is non-smooth, and therefore
not covered by our theory, we still obtain good results suggesting that
Theorem 6.1 can be generalized to non-smooth losses. Alternatively, for
classification the smoothed hinge or logistic losses could be used. For the
5https://sites.google.com/site/piotrwendykier/software/jtransforms
6For the Hadamard transform, τ must be a power of two. For the DCT there is no
restriction on τ and very similar theoretical guarantees hold.

7CoCoA+ is also implemented in Spark with code available from https://github.com/
gingsmith/cocoa.

https://sites.google.com/site/piotrwendykier/software/jtransforms
https://github.com/gingsmith/cocoa
https://github.com/gingsmith/cocoa
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regression problem we use the squared error loss and modify CoCoA+

accordingly. As the LocalDualSolver we use SDCA (Shalev-Shwartz and
Zhang, 2013).

We also compared Dual-Loco against the reference implementation of
distributed loss minimization in the MLlib library in Spark using SGD
and L-BFGS. However, after extensive cross-validation over regularization
strength (and step size and mini-batch size in case of SGD), we observed
that the variance was still very large and so we omit the MLlib implemen-
tations from the figures. A comparison between CoCoA and variants of
SGD and mini-batch SDCA can be found in Jaggi et al. (2014).

Kaggle Dogs vs Cats dataset. This is a binary classification task
consisting of 25, 000 images of dogs and cats8. We resize all images to
430×430 pixels and use Overfeat (Sermanet et al., 2014)—a pre-trained
convolutional neural network—to extract p = 200, 704 fully dense feature
vectors from the 19th layer of the network for each image. We train on
ntrain = 20, 000 images and test on the remaining ntest = 5, 000. The size
of the training data is 37GB with over 4 billion non-zero elements. All
results we report in the following are averaged over five repetitions and by
“runtime” we refer to wall clock time.

Figure 6.3 shows the median normalized training and test prediction MSE
of Dual-Loco and CoCoA+ for different numbers of workers9. For
Dual-Loco, we also vary the size of the random feature representation
and choose τsubs = {0.005, 0.01, 0.02} × (p− τ). The corresponding errors
are labeled with Dual-Loco 0.5, Dual-Loco 1 and Dual-Loco 2. Note
that combinations of K and τsubs that would result in τ < τsubs cannot
be used since the projection dimension τsubs should be smaller than τ to
achieve a dimensionality reduction (e.g. this is the case for K = 192 and
τsubs = 0.01× (p− τ)). We ran CoCoA+ until a duality gap of 10−2 was
attained so that the number of iterations varies for different numbers of
workers10. Notably, for K = 48 more iterations were needed than in the
other cases which is reflected in the very low training error in this case.
The fraction of local points to be processed per round was set to 10%. We
determined the regularization parameter λ via 5-fold cross validation.

While the differences in training errors between Dual-Loco and CoCoA+

8https://www.kaggle.com/c/dogs-vs-cats
9In practice, this choice will depend on the available resources in addition to the size
of the data set.

10For K ranging from 12 to 192, the number of iterations needed were
77, 207, 4338, 1966, resp. 3199.

https://www.kaggle.com/c/dogs-vs-cats
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Figure 6.3.: Dogs vs Cats data: Median normalized training and test prediction
MSE based on 5 repetitions.

are notable, the differences between the test errors are minor as long as
the random feature representation is large enough. Choosing τsubs to be
only 0.5% of p− τ seems to be slightly too small for this data set. When
setting τsubs to be 1% of p − τ the largest difference between the test er-
rors of Dual-Loco and CoCoA+ is 0.9%. The averaged mean squared
prediction errors and their standard deviations are collected in Table 6.1
in Appendix 6.C.

Next, we would like to compare the wall clock time needed to find the
regularization parameter λ via 5-fold cross validation. For CoCoA+, using
the number of iterations needed to attain a duality gap of 10−2 would lead
to runtimes of more than 24 hours for K ∈ {48, 96, 192} when comparing
l = 20 possible values for λ. One might argue that using a duality gap of
10−1 is sufficient for the cross validation runs which would speed up the
model selection procedure significantly as much fewer iterations would be
required. Therefore, for K ≥ 48 we use a duality gap of 10−1 during cross
validation and a duality gap of 10−2 for learning the parameters, once λ
has been determined. Figure 6.4 shows the runtimes when l = 20 possible
values for λ are compared; Figure 6.6(a) compares the runtimes when
cross validation is performed over l = 50 values. The absolute runtime of
CoCoA+ for a single run is smaller for K = 12 and K = 24 and larger
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Figure 6.4.: Total wall clock time including 5-fold CV over l = 20 values for λ.
For CoCoA+, we use a duality gap (DG) of 10−1 for the CV runs when K ≥ 48.

for K ∈ {48, 96, 192}, so using more workers increased the amount of wall
clock time necessary for job completion. The total runtime, including cross
validation and a single run to learn the parameters with the determined
value for λ, is always smaller for Dual-Loco, except when K = 12 and
l = 20.

Figures 6.5 and 6.6(b) show the relative speedup of Dual-Loco and
CoCoA+ when increasing K. The speedup is computed by dividing
the runtime for K = 12 by the runtime achieved for the corresponding
K = {24, 48, 96, 192}. A speedup value smaller than 1 implies an increase
in runtime. When considering a single run, we run CoCoA+ in two differ-
ent settings: (i) We use the number of iterations that are needed to obtain
a duality gap of 10−2 which varies for different number of workers10. Here,
the speedup is smaller than 1 for all K. (ii) We fix the number of outer
iterations to a constant number. As K increases, the number of inner iter-
ations decreases, making it easier for CoCoA+ to achieve a speedup. We
found that although CoCoA+ attains a speedup of 1.17 when increasing
K from 12 to 48 (equivalent to a decrease in runtime of 14%), CoCoA+

suffers a 24% increase in runtime when increasing K from 12 to 192.

For Dual-Loco 0.5 and Dual-Loco 1 we observe significant speedups
as K increases. As we split the design matrix by features the number of
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Figure 6.5.: Relative speedup for (a) a single run and (b) 5-fold CV over l = 20
values for λ.

observations n remains constant for different number of workers. At the
same time, the dimensionality of each worker’s local problem decreases
with K. Together with the efficient aggregation of the random features,
this leads to shorter runtimes. In case of Dual-Loco 2, the communica-
tion costs dominate the costs of computing the random projection and of
the LocalDualSolver, resulting in much smaller speedups.

Although CoCoA+ was demonstrated to obtain speedups for low-dimensional
data sets (Ma et al., 2015) it is plausible that the same performance cannot
be expected on a very high-dimensional data set. This illustrates that in
such a high-dimensional setting splitting the design matrix according to
the columns instead of the rows is more suitable.

Climate data. This is a regression task where we demonstrate that
the coefficients returned by Dual-Loco are interpretable. The data set
contains the outcome of control simulations of the GISS global circulation
model (Knutti et al., 2013; Schmidt et al., 2014) and is part of the CMIP5
climate modeling ensemble. We aim to forecast the monthly global average
temperature Y in February using the air pressure measured in January.
Results are very similar for other months. The p = 10, 368 features are
pressure measurements taken at 10, 368 geographic grid points in January.
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Figure 6.6.: 5-fold CV over l = 50 values for λ: (a) Total wall clock time and
(b) relative speedup.

The time span of the climate simulation is 531 years and we use the results
from two control simulations, yielding ntrain = 849 and ntest = 213.

In Figure 6.7 we compare the coefficient estimates for four different meth-
ods. The problem is small enough to be solved on a single machine so that
the full solution can be computed (using SDCA; cf. Figure 6.7(a)). This
allows us to report the normalized parameter estimation mean squared
error (MSEβ̂) with respect to the full solution in addition to the normal-
ized mean squared prediction error (MSE). The solution indicates that
the pressure differential between Siberia (red area, top middle-left) and
Europe and the North Atlantic (blue area, top left and top right) is a
good predictor for the temperature anomaly. This pattern is concealed in
Figure 6.7(b) which shows the result of up-projecting the coefficients esti-
mated following a random projection of the columns. Using this scheme
for prediction was introduced in Lu et al. (2013). Although the MSE is
similar to the optimal solution, the recovered coefficients are not inter-
pretable as suggested by Zhang et al. (2012). Thus, this method should
only be used if prediction is the sole interest. Figure 6.7(c) shows the es-
timates returned by Dual-Loco which is able to recover estimates which
are close to the full solution. Finally, Figure 6.7(d) shows that CoCoA+

also attains accurate results.
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Figure 6.7.: Climate data: The regression coefficients are shown as maps with
the prime median (passing through London) corresponding to the left and right
edge of the plot. The Pacific Ocean lies in the center of each map.
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Considering a longer time period or adding additional model variables such
as temperature, precipitation or salinity rapidly increases the dimension-
ality of the problem while the number of observations remains constant.
Each additional variable adds 10, 368 dimensions per month of simulation.
Estimating very high-dimensional linear models is a significant challenge
in climate science and one where distributing the problem across features
instead of observations is advantageous. The computational savings are
much larger when distributing across features as p� n and thus reducing p
is associated with larger gains than when distributing across observations.

6.6. Conclusions and further work
We have presented Dual-Loco which considers the challenging and rarely
studied problem of statistical estimation when data is distributed across
features rather than samples. Dual-Loco generalizes Loco to a wider
variety of loss functions for regression and classification. We show that
the estimated coefficients are close to the optimal coefficients that could
be learned by a single worker with access to the entire dataset. The result-
ing bound is more intuitive and tighter than previous bounds, notably with
a very weak dependence on the number of workers. We have demonstrated
that Dual-Loco is able to recover accurate solutions for large-scale es-
timation tasks whilst also achieving better scaling than a state-of-the-art
competitor, CoCoA+, as K increases. Additionally, we have shown that
Dual-Loco allows for fast model selection using cross-validation.

The dual formulation is convenient for `2 penalized problems but other
penalties are not as straightforward. Similarly, the theory only holds for
smooth loss functions. However, as demonstrated empirically Dual-Loco
also performs well with a non-smooth loss function.

As n grows very large, the random feature matrices may become too large
to communicate efficiently even when the projection dimension is very
small. For these situations, there are a few simple extensions we aim to
explore in future work. One possibility is to first perform row-wise random
projections (cf. Mahoney (2011)) to further reduce the communication
requirement. Another option is to distribute X according to rows and
columns.

Contrary to stochastic optimization methods, the communication of Dual-
Loco is limited to a single round. For fixed n, p and τsubs, the amount of
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communication is deterministic and can be fixed ahead of time. This can
be beneficial in settings where there are additional constraints on commu-
nication (for example when different blocks of features are distributed a
priori across different physical locations).
Clearly with additional communication, the theoretical and practical per-
formance of Dual-Loco could be improved. For example, Zhang et al.
(2012) suggest an iterative dual random projection scheme which can re-
duce the error in Lemma 6.5 exponentially. A related question for fu-
ture research involves quantifying the amount of communication performed
by Dual-Loco in terms of known minimax lower bounds (Zhang et al.,
2013b).
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Appendix 6.A Supplementary results

Here we introduce two lemmas. The first describes the random projection
construction which we use in the distributed setting.

Lemma 6.2 (Summing random features) Consider the singular value de-
composition X = UΣV> where U ∈ Rn×r and V ∈ Rp×r have orthonor-
mal columns and Σ ∈ Rr×r is diagonal; r = rank(X). In addition to the
raw features, let X̄k ∈ Rn×(τ+τsubs) contain random features which result
from summing the K − 1 random projections from the other workers, as
defined in (6.5). Furthermore, assume without loss of generality that the
problem is permuted so that the raw features of worker k’s problem are the
first τ columns of X and X̄k. Let ΠS denote the row-wise concatenation
of the SRHT projection matrices Πk′ from the K − 1 other workers, i.e.
ΠS = [Π>k′ ]>k′∈{1,...,K\k} and ΠS ∈ R(p−τ)×τsubs . Finally, let

ΘS =
[
Iτ 0
0 ΠS

]
∈ Rp×(τ+τsubs)

such that X̄k = XΘS .

There exists a fixed positive constant c0 such that

‖V>ΘSΘ>SV−V>V‖ ≤

√
c0 log(2r/δ)r

τsubs
.

with probability at least 1−
(
δ + p−τ

er

)
.

Proof. See Appendix 6.B.

Definition 6.3 For ease of exposition, we shall rewrite the dual problems
so that we consider minimizing convex objective functions. More formally,
the original problem is then given by

α∗ = argmin
α∈Rn

{
D(α) :=

n∑
i=1

f∗i (αi) + 1
2nλα>Kα

}
. (6.9)

The problem worker k solves is described by

α̃ = argmin
α∈Rn

{
D̃k(α) :=

n∑
i=1

f∗i (αi) + 1
2nλα>K̃kα

}
. (6.10)
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Recall that K̃k = X̄kX̄>k , where X̄k is the concatenation of the τ raw
features and τsubs random features for worker k.

To proceed we need the following result which relates the solution of the
original problem to that of the approximate problem solved by worker k.

Lemma 6.4 (Adapted from Lemma 1 in Zhang et al. (2014).) Let α∗

and α̃ be as defined in Definition 6.3. We obtain

1
λ

(α̃−α∗)>
(
K− K̃k

)
α∗ ≥ 1

λ
(α̃−α∗)>K̃k(α̃−α∗). (6.11)

Proof. See Zhang et al. (2014).

For our main result, we rely heavily on the following variant of Theorem
1 in Zhang et al. (2014) which bounds the difference between the coeffi-
cients estimated by worker k, β̂k and the corresponding coordinates of the
optimal solution vector β∗k.

Lemma 6.5 (Local optimization error. Adapted from Zhang et al. (2014).)
For ρ =

√
c0 log(2r/δ)r

τsubs
the following holds

‖β̂k − β∗k‖ ≤
ρ

1− ρ‖β
∗‖

with probability at least 1−
(
δ + p−τ

er

)
.

The proof closely follows the proof of Theorem 1 in Zhang et al. (2014)
which we restate here identifying the major differences.

Proof. Let the quantities D̃k(α), K̃k, be as in Definition 6.3. For ease of
notation, we shall omit the subscript k in D̃k(α) and K̃k in the following.
By the SVD we have X = UΣV>. So K = UΣΣU> and
K̃ = UΣV>ΘSΘ>SVΣU> with ΘS as defined in Lemma 6.2. We can
make the following definitions

γ∗ = ΣU>α∗, γ̃ = ΣU>α̃.

Defining M̃ = V>ΘSΘ>SV and plugging these into Lemma 6.4 we obtain

(γ̃ − γ∗)>(I− M̃)γ∗ ≥ (γ̃ − γ∗)>M̃(γ̃ − γ∗). (6.12)
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We now bound the spectral norm of I− M̃ using Lemma 6.2. Recall that
Lemma 6.2 bounds the difference between a matrix and its approximation
by a distributed dimensionality reduction using the SRHT.
Using the Cauchy-Schwarz inequality we have for the l.h.s. of (6.12) with
ρ =

√
c0 log(2r/δ)r

τsubs

(γ̃ − γ∗)>
(
I− M̃

)
γ∗ ≤ ρ‖γ∗‖‖γ̃ − γ∗‖.

For the r.h.s. of (6.12), we can write

(γ̃ − γ∗)>M̃(γ̃ − γ∗)
= ‖γ̃ − γ∗‖2 − (γ̃ − γ∗)>

(
I− M̃

)
(γ̃ − γ∗)

≥ ‖γ̃ − γ∗‖2 − ρ‖γ̃ − γ∗‖2

= (1− ρ)‖γ̃ − γ∗‖2.

Combining these two expressions and inequality (6.12) yields

(1− ρ)‖γ̃ − γ∗‖2 ≤ ρ‖γ∗‖‖γ̃ − γ∗‖
(1− ρ)‖γ̃ − γ∗‖ ≤ ρ‖γ∗‖. (6.13)

From the definition of γ∗ and γ̃ above and β∗ and β̃, respectively we have

β∗ = − 1
nλ

Vγ∗, β̃ = − 1
nλ

Vγ̃

so 1
nλ‖γ

∗‖ = ‖β∗‖ and ‖β̃ − β∗‖ = 1
nλ‖γ̃ − γ

∗‖ due to the orthonormal-
ity of V. Plugging this into (6.13) and using the fact that ‖β∗ − β̃‖ ≥
‖β∗k − β̂k‖ we obtain the stated result.

Appendix 6.B Proof of row summing lemma

Proof of Lemma 6.2 . Let Vk contain the first τ rows of V and let V(−k)
be the matrix containing the remaining rows. Decompose the matrix prod-
ucts as follows

V>V = V>k Vk + V>(−k)V(−k)

and
V>ΘSΘ>SV = V>k Vk + Ṽ>k Ṽk
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with Ṽ>k = V>(−k)ΠS . Then

‖V>ΘSΘ>SV−V>V‖
= ‖V>k Vk + Ṽ>k Ṽk −V>k Vk −V>(−k)V(−k)‖

= ‖V>(−k)ΠSΠ>SV(−k) −V>(−k)V(−k)‖.

Since ΘS is an orthogonal matrix, from Lemma 3.3 in Tropp (2011) and
Lemma 6.6, summing (K−1) independent SRHTs from τ to τsubs is equiv-
alent to applying a single SRHT from p − τ to τsubs. Therefore we can
simply apply Lemma 1 of Lu et al. (2013) to the above to obtain the
result.

Lemma 6.6 (Summed row sampling) Let W be an n× p matrix with or-
thonormal columns. Let W1, . . . ,WK be a balanced, random partitioning
of the rows of W where each matrix Wk has exactly τ = n/K rows. De-
fine the quantity M := n ·maxj=1,...n ‖e>j W‖2. For a positive parameter
α, select the subsample size

l ·K ≥ αM log(p).

Let STk ∈ Rl×τ denote the operation of uniformly at random sampling a
subset, Tk of the rows of Wk by sampling l coordinates from {1, 2, . . . τ}
without replacement. Now denote SW as the sum of the subsampled rows

SW =
K∑
k=1

(STkWk) .

Then √
(1− δ)l ·K

n
≤ σp(SW)

and

σ1(SW) ≤
√

(1 + η)l ·K
n

with failure probability at most

p ·
[

e−δ

(1− δ)1−δ

]α log p

+ p ·
[

eη

(1 + η)1+η

]α log p
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Proof. Define w>j as the jth row of W and M := n ·maxj ‖wj‖2. Suppose
K = 2 and consider the matrix

G2 : = (S1W1 + S2W2)>(S1W1 + S2W2)
= (S1W1)>(S1W1) + (S2W2)>(S2W2)

+ (S1W1)>(S2W2) + (S2W2)>(S1W1).

In general, we can express G := (SW)>(SW) as

G :=
K∑
k=1

∑
j∈Tk

wjw>j +
∑
k′ 6=k

∑
j′∈T ′k

wjw>j′

 .

By the orthonormality of W, the cross terms cancel as wjw>j′ = 0, yielding

G := (SW)> (SW) =
K∑
k=1

∑
j∈Tk

wjw>j .

We can consider G as a sum of l ·K random matrices

X(1)
1 , . . . ,X(K)

1 , . . . ,X(1)
l , . . . ,X(K)

l

sampled uniformly at random without replacement from the family X :={
wiw>i : i = 1, . . . , τ ·K

}
.

To use the matrix Chernoff bound in Lemma 6.7, we require the quantities
µmin, µmax and B. Noticing that λmax(wjw>j ) = ‖wj‖2 ≤ M

n , we can set
B ≤M/n.
Taking expectations with respect to the random partitioning (EP ) and the
subsampling within each partition (ES), using the fact that columns of W
are orthonormal we obtain

E
[
X(k)

1

]
= EPESX(k)

1 = 1
K

1
τ

Kτ∑
i=1

wiw>i = 1
n

W>W = 1
n

I

Recall that we take l samples in K blocks so we can define

µmin = l ·K
n

and µmax = l ·K
n

.

Plugging these values into Lemma 6.7, the lower and upper Chernoff
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bounds respectively yield

P
{
λmin (G) ≤ (1− δ) l ·K

n

}
≤ p ·

[
e−δ

(1− δ)1−δ

]l·K/M
for δ ∈ [0, 1), and

P
{
λmax (G) ≥ (1 + δ) l ·K

n

}
≤ p ·

[
eδ

(1 + δ)1+δ

]l·K/M
for δ ≥ 0.

Noting that λmin(G) = σp(G)2, similarly for λmax and using the identity
for G above obtains the desired result.

For ease of reference, we also restate the Matrix Chernoff bound from
Tropp (2011, 2010) but defer its proof to the original papers.

Lemma 6.7 (Matrix Chernoff from Tropp (2011)) Let X be a finite set
of positive-semidefinite matrices with dimension p, and suppose that

max
A∈X

λmax(A) ≤ B

Sample {A1, . . . ,Al} uniformly at random from X without replacement.
Compute

µmin = l · λmin(EX1) and µmax = l · λmax(EX1)
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Then

P

{
λmin

(∑
i

Ai

)
≤ (1− δ)µmin

}

≤ p ·
[

e−δ

(1− δ)1−δ

]µmin/B

for δ ∈ [0, 1), and

P

{
λmax

(∑
i

Ai

)
≥ (1 + δ)µmax

}

≤ p ·
[

eδ

(1 + δ)1+δ

]µmax/B

for δ ≥ 0.
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Appendix 6.C Supplementary material for §6.5

Algorithm 9 Dual-Loco – cross validation
Input: Data: X, Y , no. workers: K, no. folds: v
Parameters: τsubs, λ1, . . . λl

1: Partition {p} into K subsets of equal size τ and distribute feature
vectors in X accordingly over K workers.

2: Partition {n} into v folds of equal size.
3: for each fold f do
4: Communicate indices of training and test points.
5: for each worker k ∈ {1, . . .K} in parallel do
6: Compute and send Xtrain

k,f Πk,f .
7: Receive random features and construct X̄train

k,f .
8: for each λj ∈ {λ1, . . . λl} do
9: α̃k,f,λj ← LocalDualSolver(X̄train

k,f , Y trainf , λj)
10: β̂k,f,λj = − 1

nλj
Xtrain
k,f

>
α̃k,f,λj

11: Ŷ testk,f,λj
= Xtest

k,f β̂k,f,λj
12: Send Ŷ testk,f,λj

to driver.
13: end for
14: end for
15: for each λj ∈ {λ1, . . . λl} do
16: Compute Ŷ testf,λj

=
∑K
k=1 Ŷ

test
k,f,λj

.
17: Compute MSEtestf,λj with Ŷ testf,λj

and Y testf .
18: end for
19: end for
20: for each λj ∈ {λ1, . . . λl} do
21: Compute MSEλj = 1

v

∑v
f=1 MSEf,λj .

22: end for
Output: Parameter λj attaining smallest MSEλj
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Algorithm K TEST MSE TRAIN MSE
Dual-Loco 0.5 12 0.0343 (3.75e-03) 0.0344 (2.59e-03)
Dual-Loco 0.5 24 0.0368 (4.22e-03) 0.0344 (3.05e-03)
Dual-Loco 0.5 48 0.0328 (3.97e-03) 0.0332 (2.91e-03)
Dual-Loco 0.5 96 0.0326 (3.13e-03) 0.0340 (2.67e-03)
Dual-Loco 0.5 192 0.0345 (3.82e-03) 0.0345 (2.69e-03)
Dual-Loco 1 12 0.0310 (2.89e-03) 0.0295 (2.28e-03)
Dual-Loco 1 24 0.0303 (2.87e-03) 0.0307 (1.44e-03)
Dual-Loco 1 48 0.0328 (1.92e-03) 0.0329 (1.55e-03)
Dual-Loco 1 96 0.0299 (1.07e-03) 0.0299 (7.77e-04)
Dual-Loco 2 12 0.0291 (2.16e-03) 0.0280 (6.80e-04)
Dual-Loco 2 24 0.0306 (2.38e-03) 0.0279 (1.24e-03)
Dual-Loco 2 48 0.0285 (6.11e-04) 0.0293 (4.77e-04)
CoCoA+ 12 0.0282 (4.25e-18) 0.0246 (2.45e-18)
CoCoA+ 24 0.0278 (3.47e-18) 0.0212 (3.00e-18)
CoCoA+ 48 0.0246 (6.01e-18) 0.0011 (1.53e-19)
CoCoA+ 96 0.0254 (5.49e-18) 0.0137 (1.50e-18)
CoCoA+ 192 0.0268 (1.23e-17) 0.0158 (6.21e-18)

Table 6.1.: Dogs vs Cats data: Normalized training and test MSE: mean and
standard deviations (based on 5 repetitions).



Chapter 7.

Preserving privacy between
features in distributed estimation

Privacy is crucial in many applications of machine learning. Legal, ethical
and societal issues restrict the sharing of sensitive data making it difficult
to learn from datasets that are partitioned between many parties. One
important instance of such a distributed setting arises when information
about each record in the dataset is held by different data owners (the
design matrix is “vertically-partitioned”).
In this setting few approaches exist for private data sharing for the pur-
poses of statistical estimation and the classical setup of differential privacy
with a “trusted curator” preparing the data does not apply. We work with
the notion of (ε, δ)-distributed differential privacy which extends single-
party differential privacy to the distributed, vertically-partitioned case.
We propose PriDE, a scalable framework for distributed estimation where
each party communicates perturbed random projections of their locally
held features ensuring (ε, δ)-distributed differential privacy is preserved.
For `2-penalized supervised learning problems PriDE has bounded estima-
tion error compared with the optimal estimates obtained without privacy
constraints in the non-distributed setting. We confirm this empirically on
real world and synthetic datasets.

7.1. Introduction

Data driven personalization—from user experience on the web to medicine
and healthcare—relies on aggregating a large amount of potentially sensi-
tive data relating to individuals from disparate sources in order to answer
statistical queries. Understandably, from a privacy perspective it may be
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...
Y X1

......
Available to 
party 1

Y XK

......

Y X2

......

Available to 
party 2

Available to 
party K

Figure 7.1.: Vertically partitioned data: Each party holds a subset of the total
number of features, containing the data from the same set of individuals. Each
party with access to Y can estimate βk.

undesirable—or even impossible—for such data to be shared in an undis-
guised form. For example, in healthcare and medical science applications,
highly personal information is collected about individuals which can be
invaluable for diagnosis, treatment and drug discovery. The use and shar-
ing of such data is governed by relevant laws such as the Health Insurance
Portability and Accountability Act (HIPAA) which typically only allow
data to be shared if it has been de-identified (Sarwate et al., 2014). How-
ever, even after a dataset has been sanitized, the risk of subjects being re-
identified is an ongoing concern and in many such cases privacy breaches
actually occurred (El Emam et al., 2011).

Differential privacy (DP) (Dwork, 2006) constitutes a powerful theoret-
ical framework for guaranteeing that the output of a suitable algorithm
will not allow the identification of individuals in a dataset. Recently, it
has been considered as a method of complying with the many regulations
for sharing data in e.g. healthcare applications (Dankar and El Emam,
2013). Informally, a differentially private algorithm is one that ensures
information identifying an individual cannot be learned from the output
of that algorithm on two datasets which differ only by that individual.
(Many definitions with subtle differences are used; we will formally state
a definition for our purposes in §7.4.) In case of supervised learning, re-
search has mainly focused on ensuring that a model estimated in the single
party setting can be publicly released (Chaudhuri et al., 2011). However,
in many application areas where sensitive data is held by several parties—
e.g. health informatics, risk modeling and computational social science
(D’Orazio et al., 2015)—estimating a model and performing statistical in-
ference, rather than coefficient release, is often the stated goal. Therefore,
an important open question concerns how sensitive data can be shared
among different parties in a distributed computation framework to opti-
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X Y

C

Figure 7.2.: Scenario (A): The data held by some parties is sensitive while
the data held by other parties is public and not sensitive (e.g. Burkhardt et
al. (2015)). It is possible to publish coefficients of the public blocks—here,
corresponding to the variables X—while still accounting for confounding effects
of the private blocks—here corresponding to the variables in C. The confounders
in C influence both the variables in X as well as the response Y .

mize a global statistical learning objective.

Summary of contributions. In §7.2 we formally introduce the problem
setting—statistical estimation where sensitive data is partitioned vertically
between multiple parties—and describe some of the unique challenges in
this setting. In §7.3 we propose PriDE (Private Distributed Estimation),
a scalable algorithm for differentially private statistical estimation when
the data are partitioned vertically among multiple parties. Our key insight
is that to ensure privacy, we require a small algorithmic change to the
recently proposed Dual-Loco framework (Heinze et al., 2016). In §7.4,
we show the following theoretical properties of PriDE:

§7.4.1 Privacy: PriDE preserves (ε, δ)-distributed differential privacy (cf.
Definition 7.2).

§7.4.2 Utility: The estimation error of PriDE with respect to the opti-
mal coefficients (estimated in the non-distributed setting under no
privacy constraints) is bounded.

The second main contribution is an extensive evaluation of the empirical
behavior of PriDE on a variety of simulated and real datasets in §7.5 and
§7.D. We observe that PriDE improves upon a fully-private baseline which
avoids communicating any data between parties and quickly approaches
the performance of the optimal solution. Related work is discussed in
§7.6.
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7.2. Problem setting

In this work, we are interested in objectives of the form

min
b∈Rp

{
J(b) := 1

n

n∑
i=1

fi(b>xi) + λ

2 ‖b‖
2

}
(7.1)

where λ > 0 is the regularization parameter. The loss functions fi(b>xi)
depend on a response yi ∈ R and linearly on the coefficients, b ∈ Rp
through a vector of covariates, xi ∈ Rp. Furthermore, we assume all fi to
be convex and smooth with Lipschitz continuous gradients. For example
when fi(b>xi) = (yi − b>xi)2, Eq. (7.1) corresponds to ridge regression;
for logistic regression fi(b>xi) = log (1 + exp (−yib>xi)). Let β denote
the true underlying coefficients of interest.

In the multi-party setting where the data are vertically partitioned, each
party k has some proportion of the features corresponding to all of the
observations (cf. Figure 7.1). Given a design matrix X ∈ Rn×p whose
rows are x>i , each party holds a disjoint subset of the p available features,
P1, . . . ,PK of size τ = p/K belonging to the same observations (in general
the partitions can be of different sizes). Throughout, we assume that the
columns of X are normalized to have mean zero and unit variance. Let
Xk ∈ Rn×τ be the sub-matrix whose columns correspond to the coordi-
nates in Pk. The set P−k contains all coordinates not in Pk. Each party
aims to estimate βk ∈ Rτ , the portion of the true underlying parameter
vector β corresponding to the features it holds, while accounting for the
contribution of the features held by the remaining parties. However, due to
privacy concerns the parties are not allowed to share their locally-held fea-
tures. This scenario is of particular interest in healthcare and biomedicine
(Li et al., 2015; Ohno-Machado, 2012; Que et al., 2012; Wu et al., 2012)
but also in customer profiling and personalization.

Example scenarios. Here we briefly outline (non-exhaustively) two spe-
cial cases of the general problem setting which cover a wide range of pos-
sible use cases—in particular in medical analyses—where a thorough ac-
counting of confounding factors requires a mixture of public and private
data to be aggregated.

(A) The data held by some parties is sensitive while the data held by
other parties is public and not sensitive (e.g. Burkhardt et al. (2015)).
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It is possible to publish coefficients of the public blocks while still
accounting for possible confounding effects of the private blocks.

(B) The response is not known to all parties. Then coefficients are only
estimated for the blocks which know the response. The remaining
parties just provide their data in secure form.

A concrete example of (A) is described graphically in Figure 7.2. Con-
sider the response Y being a variable measuring a cancer patient’s health.
Both genomic factors (contained in the set C) as well as gene expressions
(in set X) have an influence on Y . In turn, genomic factors affect gene
expressions. It is impossible to conduct a randomized study to estimate
the effect of X on Y because gene expressions cannot be randomized. Ad-
ditionally, due to its highly personal and sensitive nature, genomic data is
rarely publicly available so C and X are stored separately (i.e. the full de-
sign matrix is vertically partitioned as in Burkhardt et al. (2015)). Due to
the confounding links between C and X, only including gene expressions
in the model can result in heavily biased estimates for the effect of X on
Y (e.g. Pearl, 2009). Conducting studies that offer a holistic view on the
factors influencing the response—as opposed to relying on biased estimates
resulting from marginal studies—is tremendously important. However, it
is an open question how to estimate the full model while providing formal
privacy guarantees on the data sharing mechanism.

7.3. The PriDE algorithm

In this section we propose PriDE, a scalable low-communication algorithm
which extends the Loco framework (Heinze et al., 2016) for distributed
estimation to the private setting. Key to the PriDE algorithm is the
data sharing mechanism. The schematic is given in Figure 7.3. The full
procedure is presented in Algorithm 10. We explain the following steps in
more detail:

In Step 2, we compute the random features (XkΠk) ∈ Rn×τsubs . Πk ∈
Rτ×τsubs is the subsampled randomized Hadamard transform (SRHT) ma-
trix which admits fast matrix-vector products (Tropp, 2011). We then
perturb this by a Gaussian random matrix Wk ∈ Rn×τsubs ∼ N (0, σ2

kI) to
get Ẑk = XkΠk + Wk. The exact form of σk is given in Theorem 7.3.

In Step 4, the matrices of random features are communicated. For ease
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...
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Feature-wise distributed 
data from multiple parties

Compress raw features 
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Concatenate perturbed 
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append to raw features 
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Raw
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...

Figure 7.3.: PriDE’s distributed private data sharing mechanism.

of notation, let τK = (K − 1)τsubs. Party k then constructs the matrix

X̄k ∈ Rn×(τ+τK) =
[
Xk,

[
Ẑk′
]
k′ 6=k

]
, (7.2)

which is the column-wise concatenation of party k’s raw features and the
perturbed random features from all other parties.

In Step 5 each party solves the following local dual optimization problem

α̃k = argmax
α∈Rn

−
n∑
i=1

f∗i (αi)−
1

2nλα>X̄kX̄>k α, (7.3)

where f∗ is the conjugate Fenchel dual of f . For example, for squared loss
functions fi(u) = 1

2 (yi − u)2, we have f∗i (α) = 1
2α

2 + αyi. This is solved
using e.g. SDCA (Shalev-Shwartz and Zhang, 2013).

The main difference to Dual-Loco is the perturbation of the random
features in Step 2. Although a small algorithmic difference, this has
important consequences for the analysis which we present in the following
section.
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Algorithm 10 PriDE
Input: Y , X vertically-partitioned over K parties, τsubs, λ, ε,
δ

1: for each party k ∈ {1, . . .K} in parallel do
2: Compute perturbed random features

Ẑk = XkΠk + Wk.
3: Communicate Ẑk to all parties k′ where k′ 6= k.
4: Construct local design matrix X̄k.
5: α̃k ← LocalDualSolver(X̄k, Y, λ)
6: β̂k = − 1

nλX>k α̃k

7: end for
Output: Each party k obtains β̂k.

7.4. Analysis

For the discussion which follows we use the following definition of privacy
which is concerned with changes in the attribute values of the observations
rather than the difference in observations1.

Definition 7.1 ((ε, δ,S)-differential privacy) A randomized algorithm
Alg satisfies (ε, δ,S)-differential privacy if for all inputs X and X′ dif-
fering in at most one user’s one attribute value of an attribute in S ⊆
{1, . . . , p}, and for all sets of possible outputs D ⊆ range(Alg)

P [Alg(X) ∈ D] ≤ eε P [Alg(X′) ∈ D] + δ (7.4)

where the probability is computed over the randomness of the algorithm.

When S = {1, . . . , p}, (ε, δ,S)-differential privacy reduces to (ε, δ)-differential
privacy. Informally, this states that (up to the parameters of the differen-
tial privacy guarantee) an adversary cannot infer a single attribute value
for a single observation of an attribute in S from the output of the al-
gorithm despite knowing the values of all other attributes for all other
observations. In the following definition, we use Definition 7.1 to formu-
late differential privacy in the distributed setting. The definition is close
to Definition 2.4 in Beimel et al. (2008); here, we state it in our notation
and for the case when δ > 0.
1Many definitions with subtle differences are used; here, we follow the definition used
in Kenthapadi et al. (2013).
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Definition 7.2 ((ε, δ)-distributed differential privacy) A random-
ized algorithm Alg satisfies (ε, δ)-distributed differential privacy, if Alg
satisfies (ε, δ,S)-differential privacy for all S ∈ {P−k; k = 1, . . . ,K} where
P−k is the set of indices corresponding to the features non-local to party
k.

A randomized algorithm Alg is (ε, 0)-distributed differentially private if
Definition 2.4 in Beimel et al. (2008) is fulfilled for t = maxk |Pk|. The
condition in Beimel et al. (2008) is a bit stricter than ours as it requires
(ε, δ,S)-differential privacy for all sets S with |Sc| ≤ t and not just for P−k
with k = 1, . . . ,K as we do here. We also want to allow for δ > 0 with
Definition 7.2.

PriDE achieves (ε, δ)-distributed differential privacy by perturbing ran-
dom features with Gaussian noise before communicating them. As detailed
in §7.4.1, this procedure preserves differential privacy according to Defini-
tion 7.2. While perturbing the random features has an adverse effect on
the accuracy of the coefficient estimates, we prove an upper bound on the
coefficient estimation error in §7.4.2. The error bound shows an interest-
ing trade-off between the desired level of privacy and the accuracy of the
random feature representation.

7.4.1. Distributed privacy guarantee

Theorem 7.3 (Adapted from Kenthapadi et al. (2013).) Let
w2(Πk) denote the maximum `2-norm of any row in the projection ma-
trix Πk and let the range of the columns of Xk be upper bounded by θk.
P−k is the set of indices corresponding to the features non-local to party
k. Assuming δ < 1

2 , let the entries of party k’s noise matrix Wk be drawn
from N (0, σ2

kI) with

σk >
w2(Πk) · θk

ε

√
2(ln(1/2δ) + ε).

Then PriDE satisfies (ε, δ)-distributed differential privacy.

The proof follows by adapting Kenthapadi et al. (2013) to hold for (ε, δ)-
distributed differential privacy. When Πk is the SRHT, w2(Πk) = 1.
Theorem 7.3 guarantees that an adversary who has access to the data held
by party k and knows all values of all attributes for every individual except
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for a single non-locally stored attribute value cannot infer that value from
the perturbed random features which have been communicated to party
k. This ensures PriDE fulfills Definition 7.2. In contrast to the Laplace
mechanism, the use of the Gaussian mechanism has the advantage that
the required noise level is independent of the dimension of the projection
matrix.

7.4.2. Approximation error of PriDE

We now bound the coefficient approximation error between the PriDE
solution and the optimal solution to Eq. (7.1).

Assumption 7.4 Letting r denote the rank of X and τK = (K − 1)τsubs,
we require the following conditions to hold:

(A1) The projection dimension is chosen such that τK & r log r.
(A2) The problem is high-dimensional, i.e. n ≤ p, and r = n.

Theorem 7.5 (PriDE approximation guarantee) Assume all fi in
Eq. (7.1) to be convex and smooth with Lipschitz continuous gradients.
Under Assumption 7.4 the overall error between the optimal solution to
Eq. (7.1) β∗ and the solution returned by PriDE β̂ is bounded with prob-
ability at least 1−Kζ by

‖β̂ − β∗‖ ≤
√
Kρ

(1− 2ρ)‖β
∗‖︸ ︷︷ ︸

(i)

+
√
Kρ

(1− 2ρ)
σ

dmin

(
2 + στK + στ2

K

dmin

)
‖β∗‖︸ ︷︷ ︸

(ii)

(7.5)

where ρ = C
√

r log(2r/ξ)
τK

, σ = maxk σk and dmin = dr(X), the smallest
non-zero singular value of X. C and ξ are absolute positive constants.
The exact form of ζ is given in §7.A.

Proof strategy. (Full details are given in §7.A.) We require to bound the
local coefficient estimation error of a single party k which can then be
combined with a union bound to obtain the global approximation error. To
bound the local error (Theorem 7.6), a key step is bounding the difference
between the full (non-perturbed, single-party) kernel matrix K and the
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projected-and-perturbed kernel matrix K̃ (omitting the subscript k for
ease of notation) where

K = XX> and K̃ = (XΘ + E)(XΘ + E)>,
Θ = diag(Iτ ,Π1, . . . ,ΠK−1) ∈ Rp×(τ+τK) and
E =

[
0τ W1 . . . WK−1

]
∈ Rn×(τ+τK).

When privacy is not required, σ = 0 and E = 0 in which case we recover
the approximation guarantee of Dual-Loco which relies on the fact that
‖K− K̃‖ ≤ ρ (Heinze et al., 2016). However, this bound does not hold
when i.i.d. Gaussian noise is added to those entries of XΘ corresponding
to the random features (i.e. σ > 0 and E 6= 0). Now, we require to find
an upper bound on ‖K− K̃‖ and the proof also requires a lower bound
on ‖K̃‖. We can bound ‖K− (XΘ)(XΘ)>‖ ≤ ρ and use Lemma 7.10
to bound the terms involving E with high probability. While the exact
expressions are more involved, intuitively, in expectation the cross terms
are zero while the diagonal elements of EE> are at most σ2τK . Finally,
lower bounding K̃ requires a different technique as the involved cross terms
are not positive semidefinite. Using that terms involving E are centered
around 0 and applying a Chernoff bound (Lemma 7.11) allows us to show
‖K̃‖ ≥ 1− 2ρ. Full details are given in §7.A. �

Discussion. The bound in Theorem 7.5 consists of two terms: (i) The
approximation error due to the (distributed) random projection represen-
tation. This decreases as the projection dimension τsubs increases, pro-
viding a more accurate approximation to the non-local features. (ii)
The error due to the perturbation necessary for guaranteeing privacy.
This term is increasing in τsubs—a larger dimensional random feature
representation contributes more noisy dimensions which act like an ad-
ditional `2-regularizer. This can be seen clearly when comparing the so-
lutions to the dual formulation of the ridge regression objective: The op-
timal solution is given by α∗ = (K + λI)−1Y while party k computes
α̃ = ((XΘ + E)(XΘ + E)> + λI)−1Y . The diagonal elements of EE> are
centered around σ2τK = σ2(K − 1)τsubs, so using a larger projection di-
mension τsubs increases the regularizing effect (and therefore bias) induced
by EE> which acts in addition to the one caused by λ. In §7.C we show
that for the primal formulation of the least-squares objective, the effect
of E can be understood as an `2-regularizer which acts on the random
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Table 7.1.: Data set statistics: maxk (θk) is the largest bound on the range
of the columns of Xk among all parties, dmin is the smallest non-zero singular
value of the design matrix, reff(X) denotes the effective rank and Ju denotes the
number of principal components that capture u% of the variance in the data set.

ntrain p maxk (θk) dmin reff(X) J80 J90

Synthetic 800 400 7.41 3.7e-6 2.03 3 5

Climate 849 10, 368 8.51 3.32 4.03 29 54
Cancer 188 2, 000 10.92 11.57 4.53 65 107

features only. On the other hand, the bias can be decreased by increasing
ε (decreasing σ) implying a weaker privacy guarantee.

We thus observe a trade-off between approximation quality and privacy.
When a very strong privacy guarantee is required—implying a large value
of σ—a smaller τsubs should be chosen so that the additional regularization
does not become too strong. On the other hand, if the privacy requirements
are less stringent, a larger τsubs together with a larger ε will yield better
approximation quality. In general, PriDE will be most effective when the
rank of the problem is such that a relatively small projection dimension
will capture most of the important structure in the data. We demonstrate
the effect of this trade-off empirically in the following section. Importantly,
we shall see that the induced bias that results from not communicating any
data is often much larger than the bias of the PriDE estimates.

7.5. Experiments

We present results on three datasets summarized in Table 7.1: results for
simulated data and an application from climate science are presented in
§7.5.1 and §7.5.2, respectively. A gene expression dataset is analyzed in
§7.D.1. Table 7.1 also contains the smallest non-zero singular value of
the design matrix, dmin; the effective rank reff(X) = tr

(
X>X

)
/‖X‖2 and

the largest bound on the range of the columns of Xk among all parties,
maxk (θk). Informally, the effective rank (Vershynin, 2010) is a measure
of the intrinsic dimension of a matrix which captures whether the matrix
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lies near to a low-dimensional subspace. We compare the performance of
five methods:
(a) “Semi-Naive Bayes” (NB). Here, a separate model is learned by each

party independently:

β̂
NB
k = argminbk

∑n
i=1 fi(x>k bk) + λ‖bk‖2.

Since no data is communicated, the features are kept completely
private.

(b) The standard Dual-Loco algorithm (corresponding to PriDE with
σk = 0 ∀k). Since the random features are not perturbed this does
not guarantee privacy according to Theorem 7.3.

(c) Our proposed PriDE algorithm. We show the effect of varying the
privacy parameter ε by varying the noise variance σ2

k. We fix δ = 0.05
as varying δ has only little effect on σk. As σk also depends on the
maximal range of the columns of Xk, we report the maximum of σk
for k = 1, . . . ,K in Table 7.3.

(d) In the non-distributed setting: Glmnet (Friedman et al., 2010) and
SDCA (Shalev-Shwartz and Zhang, 2013).

For both Dual-Loco and PriDE we show results for different values
of the projection dimension τsubs. The absolute dimensions are given in
Table 7.2. Details on the cross validation procedure are given in §7.E.

7.5.1. Simulated data

We revisit example (A) given in §7.2. The data are simulated according to
the model in Figure 7.2. Full simulation details are given in §7.D.32. We
consider two blocks of features, C and X. For example, C could contain
genomic data such as measurements of single nucleotide polymorphisms
(SNPs). Due to its highly personal and sensitive nature, genomic data
arising from techniques like SNP genotyping is rarely publicly available.
The other block, X could hold gene expression data. Some of the genomic
features have an effect on some of the gene expression features and both
sets of features contribute to the response Y . We distribute the two blocks
of features over K = 2 parties so that X and C are kept separately. In this
experiment we aim to analyze the parameter estimation error with respect
to the true underlying coefficients β. Due to the dependence between C
2The data generating code is available at https://onlinelibrary.wiley.com/doi/abs/
10.1002/sta4.189.

https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.189
https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.189
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Figure 7.4.: Simulated data: Results for projection dimension τsubs = 0.2τ .
Parameter estimation errors are computed w.r.t. the data generating model.
Additional plots for τsubs = {0.05, 0.1} · τ can be found in Figures 7.11–7.12 in
the supplementary information.
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and X one cannot obtain accurate coefficient estimates for the effect of X
on Y when only including X into the model. We aim to assess whether
the perturbed random projections used by PriDE suffice to communi-
cate enough information to obtain accurate estimates in this challenging
estimation task.
Comparisons of normalized coefficient estimation error with respect to the
data generating coefficients β are shown for τsubs = 0.2τ in Figure 7.4(a)-
(c). There is a significant difference between the NB and Dual-Loco
and SDCA solutions, particularly for block X. This performance gap is to
be expected due to the confounding effect of C. It shows that in order to
obtain accurate coefficient estimates in the distributed setting some degree
of communication is crucial which allows to adjust for the dependencies
between the features. For small ε (more privacy) PriDE performs similarly
to NB, i.e. the incurred biases are on the same scale. As ε increases,
PriDE approaches and eventually equals the performance of Dual-Loco
and SDCA. This demonstrates that PriDE is able to approximate the
true β accurately for sufficiently large values of ε. Thus PriDE allows
to adjust for the confounding effects from C on X while guaranteeing
(ε, δ,S)-differential privacy.
Figure 7.4d shows the normalized prediction MSE on the test set. All
methods perform similarly. Due to the confounding effect of C and X, NB
is unable to obtain accurate coefficient estimates but it can achieve good
predictive performance in this example. This experiment also suggests that
Assumption 7.4 can be weakened to settings where the effective rank of
the data is low while n > p. Different proof techniques would be required
to extend Thereom 7.5 to such cases.

7.5.2. Climate model data

Next, we present an application to a problem in climate modeling. We
consider data from part of the CMIP5 climate modeling ensemble which
are taken from control simulations of the GISS global circulation model
(Schmidt et al., 2014). We aim to forecast the monthly global average
temperature Y in February using the air pressure measured in January.
The features are pressure measurements taken at p = 10, 368 geographic
grid points. The model simulates the climate for a range of 531 years and
we use the output from two control simulation runs. The data set is split
into training (ntrain = 849) and test set (ntest = 213), and we distribute
the problem across K = 4 parties.
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Figure 7.5.: Climate model data: Results for projection dimension τsubs =
0.05τ . The parameter estimation metrics are computed w.r.t. the optimal
single-machine solution β∗ obtained with SDCA. Additional plots for τsubs =
{0.01, 0.1, 0.2} · τ can be found in Figures 7.13–7.15.
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Comparisons of correlation and estimation error, global training and test
error (all normalized) are shown for τsubs = 0.05τ in Figure 7.5. Since the
true coefficients β are unknown in this example, comparisons of correlation
and estimation error are computed with respect to the empirical risk mini-
mizer, i.e. the optimal parameters β∗, estimated using SDCA where all the
data was available, non-perturbed, on a single machine. The parameter
estimation error is the quantity which is bounded in Theorem 7.5.

Importantly, there is a significant difference between the NB and Dual-
Loco solutions. This performance gap shows that in the distributed set-
ting some degree of communication is crucial for good statistical estimation
and predictive accuracy for this problem as not communicating any fea-
tures incurs a large bias. In Figures 7.13–7.15 we observe that increasing
τsubs does not cause a large change in the accuracy achieved by Dual-
Loco. This suggests that the problem is nominally low rank and a small
projection dimension suffices to capture the structure of the data. This
is to be expected given the high degree of spatial correlation of pressure
measurements and is confirmed by the estimate of the effective rank and
the PCA statistics in Table 7.1. For reasonable values of ε, the PriDE
solution quickly approaches the Dual-Loco solution for all four measures
of accuracy. Importantly, PriDE achieves a test prediction error within
the margin of error of the Dual-Loco prediction error.

We observe the trade-off implied by Theorem 7.5: As the projection dimen-
sion increases, the Dual-Loco approximation error decreases (i.e. term
(i) in Eq. (7.5)). However, term (ii) grows with σ2(K − 1)τsubs. For very
small values of ε this second contribution dominates so a smaller projection
dimension typically yields better performance. As ε increases, the gain in
approximation quality starts to outweigh the regularization bias incurred
by increasing τsubs, so that for large values of ε a large projection dimen-
sion performs best. In Figures 7.13–7.15, this trade-off is reflected in a
slower convergence to the Dual-Loco solution for larger values of τsubs.

In summary, the behavior predicted by Theorem 7.5 is confirmed empir-
ically. The best performance of PriDE can be obtained by finding the
optimum of the accuracy-privacy trade-off, respecting the problem-specific
constraints on privacy. That is, by choosing a projection dimension τsubs
that suffices to capture the signal contained in the non-local features, so
that term (i) in Eq. (7.5) is as small as possible without over-regularizing
the objective and introducing a large bias from term (ii). Finding the opti-
mal projection dimension is then a problem of model selection. We discuss
the challenges of a privacy preserving cross validation scheme in §7.E.
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In general, given a suitable projection dimension, PriDE can significantly
improve upon the NB solution: the bias of the NB estimates is often
much larger than the bias of the PriDE estimates. This suggests that the
PriDE framework allows for accurate distributed statistical estimation
while guaranteeing (ε, δ)-distributed differential privacy.

7.6. Related work

Privacy-aware learning. Ensuring differential privacy in supervised learn-
ing techniques has garnered increasing interest in recent years (Bassily et
al., 2014; Chaudhuri and Monteleoni, 2009; Chaudhuri et al., 2011; Ka-
siviswanathan et al., 2008; Sheffet, 2017) and approaches have been pro-
posed to solve more general convex optimization problems in a private
fashion (Song et al., 2013). Many of these approaches achieve privacy
by either applying noise to the coefficient vector before it is returned or
perturbing the objective with noise during optimization.

Kenthapadi et al. (2013) apply a Johnson-Lindenstrauss random projection
to compress the column space of the design matrix and perturb the result-
ing matrix with Gaussian noise. This procedure allows the compressed,
perturbed data matrix to be published but forfeits the interpretability of
the features as any subsequent queries must be performed in the com-
pressed space. This approach is related to local privacy (Duchi et al.,
2013b; Smith et al., 2017) where the algorithm only observes a disguised
version of the data.

Distributed statistical estimation. Distributed estimation and optimiza-
tion when the data is horizontally partitioned has been a popular topic in
recent years (Jaggi et al., 2014; Zhang et al., 2015b). However, the prob-
lem of statistical estimation when the data is vertically partitioned has
been less well studied since most loss functions of interest are not separa-
ble across coordinates. A key challenge addressed by Heinze et al. (2014)
and Heinze et al. (2016) was to define a local minimization problem for
each worker to solve independently while still maintaining important de-
pendencies between features held by different parties. This is achieved
by communicating low-dimensional random projections of the data held
by each party which keeps communication overhead low. Although this
obfuscates the data to some degree, it does not guarantee privacy.
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Preserving privacy in distributed learning. McGregor et al. (2010) in-
troduce the notion of two-party differential privacy which is generalized
to an arbitrary number of parties in Beimel et al. (2008). We discuss the
relation to Definitions 7.1 and 7.2 in §7.4.1.

In distributed supervised learning, private approaches have been much
less studied and focus mainly on the setting where data is horizontally
partitioned (Huang et al., 2015; Zhang and Zhu, 2016). Few approaches
have been considered for privacy preserving learning in the distributed
setting when the data is partitioned vertically (Mangasarian et al., 2008;
Mohammed et al., 2014; Wu et al., 2012; Yu et al., 2006). However, no
formal guarantees with respect to both privacy and utility are given.

7.7. Conclusions and further work

We have proposed PriDE which addresses some of the important concerns
in learning from sensitive, vertically partitioned data in a principled and
scalable way. PriDE preserves (ε, δ)-distributed differential privacy while
maintaining a low approximation error with respect to the optimal, non-
private, non-distributed model. To the best of our knowledge, no other
methods with similar guarantees have been proposed for the considered
problem setting.

PriDE only communicates perturbed low-dimensional random projections
of the original features so the communication overhead is small. Since
estimation is performed on a combination of raw and random features,
the solution is returned in the original space preserving interpretability of
the coefficients. This allows to assess a feature’s impact on the response
while accounting for the contribution of—possibly confounding—sensitive
features held by other parties. For prediction tasks, each party can use its
own local design matrix, consisting of raw and perturbed random features.

Empirically, we have shown on simulated and real-world datasets that
the PriDE estimates greatly improve upon the performance of the fully-
private semi-Naive Bayes model and approach (i) the true underlying coef-
ficients, and (ii) the estimates of the non-private and non-distributed Glm-
net and SDCA solvers. PriDE also performs well in areas not specifically
covered by Theorem 7.5, as shown for the low-dimensional synthetic data.
This suggests that our result could be generalized to when the effective
rank of the problem is small.
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Perturbing the random features is necessary to preserve privacy but adds
bias to the solution. An open question concerns whether recent approaches
to errors-in-variables regression (Loh and Wainwright, 2012) could be used
to obtain an unbiased solution and perhaps improve the performance of
local cross validation. For ensuring differentially private public coefficient
release, existing techniques such as perturbing the coefficients, objective
(Chaudhuri and Monteleoni, 2009; Chaudhuri et al., 2011), or dual vari-
ables (Zhang and Zhu, 2016) with additive heavy-tailed noise may be used.



248 Chapter 7: Preserving privacy between features in distributed estimation

Appendix 7.A Proofs

We first state and prove a theorem which bounds the estimation error for
a single party, k. The proof of Theorem 7.5 follows straightforwardly from
combining this result for all K parties and applying a union bound.

Theorem 7.6 Assume all fi in Eq. (7.1) to be convex and smooth with
Lipschitz continuous gradients. Under Assumption 7.4, the local difference
between the optimal solution to Eq. (7.1) at party k, β∗k, and the solution
returned by PriDE at party k, β̂k, is bounded with probability 1− ζ by

‖β̂k − β∗k‖ ≤
ρ

(1− 2ρ)

(
1 + σ

dmin

(
2 + στK + στ2

K

dmin

))
‖β∗‖ (7.6)

where ζ = 3c1 exp(−c2 log r) + 2ξ+ 2 p
er + e−(τ+τK)/16, τK = (K − 1)τsubs,

ρ = C
√

r log(2r/ξ)
τK

, σ = maxk σk and dmin = dr(X), the smallest non-zero
singular value of X. C, c1, c2, and ξ are absolute positive constants.

Definition 7.7 For ease of exposition, we shall rewrite the dual problems
so that we consider minimizing convex objective functions. More formally,
the original problem is then given by

α∗ = argmin
α∈Rn

{
D(α) :=

n∑
i=1

f∗i (αi) + 1
2nλα>Kα

}
. (7.7)

The problem party k solves is described by

α̃ = argmin
α∈Rn

{
D̃k(α) :=

n∑
i=1

f∗i (αi) + 1
2nλα>K̃kα

}
. (7.8)

Recall that K̃k = X̄kX̄>k , where X̄k is the concatenation of the τ raw
features and (K − 1)τsubs perturbed random features for party k as in
Step 4 of Algorithm 10.

Proof of Theorem 7.6. For ease of notation, we shall omit the subscript k
in K̃k in the following. Defining

Θ =


Iτ 0 . . . 0

0 Π1 0
...

... . . .
. . . 0

0 . . . . . . ΠK−1

 ∈ Rp×(τ+(K−1)τsubs) (7.9)
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and

E =
[
0τ W1 . . . WK−1

]
∈ Rn×(τ+(K−1)τsubs), (7.10)

we can write the original as well as the projected and perturbed kernel
matrices explicitly as

K = XX> and K̃ = (XΘ + E)(XΘ + E)>

respectively. Applying Lemma 7.8, on the l.h.s. of (7.18) we have

(α̃−α∗)>(K− K̃)α∗ =
(α̃−α∗)>

(
XX> − (XΘ)(XΘ)> − (XΘE>)− (XΘE>)> −EE>

)
α∗.

Denoting UDV> = X, γ̃ = DU>α̃ and γ∗ = DU>α∗ we have

(α̃−α∗)>(K− K̃)α∗ = (γ̃ − γ∗)>
(
V>V−V>ΘΘ>V−V>ΘE>UD−1

− D−1U>EΘ>V−D−1U>EE>UD−1) γ∗.
By Assumption 7.4 r = n, so we have UU> = In. Adding and subtracting
(γ̃−γ∗)>D−1U>

(
σ2(K − 1)τsubsI

)
UD−1γ∗ where σ2 = maxk(σ2

k) yields

(α̃−α∗)>(K− K̃)α∗ =
(γ̃ − γ∗)>

(
Ir −V>ΘΘ>V

)︸ ︷︷ ︸
(I)

γ∗

− (γ̃ − γ∗)>
(
V>ΘE>UD−1 + D−1U>EΘ>V

)︸ ︷︷ ︸
(II)

γ∗

+ (γ̃ − γ∗)>D−1U>
(
σ2(K − 1)τsubsI−EE>

)
UD−1︸ ︷︷ ︸

(III)

γ∗

− (γ̃ − γ∗)>D−1U>
(
σ2(K − 1)τsubsI

)
UD−1︸ ︷︷ ︸

(IV)

γ∗.

We now focus on bounding each of the terms (I), (II), (III) and (IV) in
turn.

(I). This term is bounded with probability 1−
(
ξ + p−τ

er

)
by ρ1 =

√
cr log(2r/ξ)
(K−1)τsubs

which follows directly from applying Lemma 7.9.
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(II). We aim to bound the term D−1U>EΘ>Vγ∗. Since the random
terms are sub-Gaussians, we will bound this term using Lemma 7.10 with
Y = (U>E)> ∈ Rτ+(K−1)τsubs×r, X = (Θ>V) ∈ Rτ+(K−1)τsubs×r and
E
[
U>EΘ>V

]
= 0. Since the first τ rows of Y are Y0 = 0, we decompose

Y and the corresponding rows in X as

Y =
[
Y0 = 0
Y1

]
X =

[
X0
X1

]
.

According to this decomposition we can write Y >X = Y >0 X0 + Y >1 X1.
Clearly Y >0 X0 = 0 so Y >X only has (K − 1)τsubs non-zero summands.
Now, applying Lemma 7.10, with probability 1− c1 exp(−c2 log r)

‖D−1U>EΘ>Vγ∗‖ ≤ 1
dmin

‖U>EΘ>Vγ∗‖

≤
√
r

dmin

∣∣|U>EΘ>Vγ∗
∣∣ |∞

≤ σc0
dmin

‖γ∗‖

√
r log r

(K − 1)τsubs
.

(III). Since each entry of E is an independent Gaussian with variance
bounded by σ2, E

[
EE>

]
= σ2(K − 1)τsubsI. By Lemma 7.10 we have

with probability 1− c1 exp(−c2 log r)

‖D−1U>
(
EE> − σ2(K − 1)τsubsI

)
UD−1γ∗‖ ≤

σ2c0
d2
min
‖γ∗‖

√
r log r(K − 1)τsubs

(IV).

‖D−1U>
(
σ2(K − 1)τsubsI

)
UD−1γ∗‖ ≤ σ2(K − 1)τsubs

d2
min

‖γ∗‖ (7.11)

Combining (I) – (IV) and using

c0

√
r log r

(K − 1)τsubs
≤ c′ρ1 = ρ
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where ρ = C
√

r log(2r/ξ)
τK

and τK = (K − 1)τsubs, we have with probability
1−

(
3c1 exp(−c2 log r) + ξ + p−τ

er

)
(α̃−α∗)>(K−K̃)α∗ ≤

‖γ̃ − γ∗‖‖γ∗‖ρ
(

1 + 2 σ

dmin
+ σ2

d2
min

(
τK + τ2

K

))
(7.12)

On the r.h.s. of (7.18) we have with a = γ̃ − γ∗

(α̃−α∗)>K̃(α̃−α∗) = a>(V>Θ + D−1U>E)(V>Θ + D−1U>E)>a.

Denoting w = Θ>Va and m = E>UD−1a we have

(α̃−α∗)>K̃(α̃−α∗) = (w + m)>(w + m).

For convenience say τ̃ = τ + (K − 1)τsubs = τ + τK . Importantly, m is
symmetric around 0, so

(w + m)>(w + m) =
τ̃∑
i=1

(wi +mi)2 ≥
τ̃∑
i=1

w2
i · I{mi>0}. (7.13)

The r.h.s. of this expression corresponds to randomly subsampling sum-
mands from w>w = a>V>ΘΘ>Va where the subsampling scheme is de-
fined by the non-zero summands stemming from the indicator function in
Eq. (7.13). When only considering the non-zero summands, we can write
the resulting matrix product as

(α̃−α∗)>K̃(α̃−α∗) = (w+m)>(w + m) ≥
τ̃∑
i=1

w2
i · I{mi>0} = a>V>Θ̃Θ̃>Va

where Θ̃ contains the columns of Θ corresponding to the non-zero sum-
mands. In other words, Θ̃ corresponds to a random projection matrix that
projects to a lower-dimensional space than Θ. Next, we can write

(α̃−α∗)>K̃(α̃−α∗) ≥ a>V>Θ̃Θ̃>Va = ‖a‖2 − a>
(
I−V>Θ̃Θ̃>V

)
a︸ ︷︷ ︸

(V)

.

(7.14)
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To lower bound the r.h.s. of this expression, we need to upper bound (V).
We achieve this by first finding a lower bound on the number of non-zero
summands in Eq. (7.13), i.e. on the number of columns of Θ̃. Intuitively,
the smaller the projection dimension realized by Θ̃, the larger term (V)
becomes. Using the Chernoff bound from Lemma 7.11 with δ = 1/2,
we can bound the probability that the number of non-zero summands lies
below τ̃ /4 by exp(−τ̃ /16). We can then upper bound (V) using Lemma 7.9
for Θ̃ ∈ Rp×τ̃/4. So with τ̃ = τ + τK and ρ̃ =

√
cr log(2r/ξ)

τ/4+(K−1)τsubs/4 , we have
with probability 1− (ξ + p

er + e−(τ+τK)/16)

(α̃−α∗)>K̃(α̃−α∗) ≥ ‖a‖2 − a>
(
I−V>Θ̃Θ̃>V

)
a

≥ ‖a‖2 − ρ̃‖a‖2

≥ (1− ρ̃)‖a‖2

≥ (1− 2ρ)‖a‖2. (7.15)

Plugging 7.12 and 7.15 into Lemma 7.8 we have with probability at least
1−

(
3c1 exp(−c2 log r) + 2ξ + 2 p

er + e−(τ+τK)/16)

(1− 2ρ)‖γ̃ − γ∗‖2 ≤ ‖γ̃ − γ∗‖‖γ∗‖ρ
(

1 + σ

dmin

(
2 + στK + στ2

K

dmin

))
.

(7.16)

Finally, with the relationship β∗ = − 1
nλVγ∗ and β̃ = − 1

nλVγ̃ we have
1
nλ‖γ

∗‖ = ‖β∗‖ and ‖β̃ − β∗‖ = 1
nλ‖γ̃ − γ

∗‖ due to the orthonormality of
V. Thus, we obtain the following error bound for the coefficients estimated
by party k

‖β̂k − β∗k‖ ≤ ‖β̃ − β∗‖ ≤ ρ

(1− 2ρ)

(
1 + σ

dmin

(
2 + στK + στ2

K

dmin

))
‖β∗‖

(7.17)

which holds with probability at least
1−

(
3c1 exp(−c2 log r) + 2ξ + 2 p

er + e−(τ+τK)/16).
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Appendix 7.B Supporting results

Lemma 7.8 (Adapted from Lemma 1 from Zhang et al. (2014).) Let α∗

and α̃ be as defined in Definition 7.7. We obtain

1
λ

(α̃−α∗)>
(
K− K̃k

)
α∗ ≥ 1

λ
(α̃−α∗)>K̃k(α̃−α∗). (7.18)

Proof. See Zhang et al. (2014).

Lemma 7.9 (Concatenating random features (Lemma 3 from Heinze et
al. (2014))) Consider the singular value decomposition X = UDV> where
U ∈ Rn×r and V ∈ Rp×r have orthonormal columns and D ∈ Rr×r
is diagonal; r = rank(X). In addition to the raw features, let X̄k ∈
Rn×(τ+(K−1)τsubs) contain random features which result from concatenat-
ing the K − 1 random projections from the other parties. Furthermore,
assume without loss of generality that the problem is permuted so that the
raw features of party k’s problem are the first τ columns of X and X̄k.
Finally, let

ΘC =


Iτ 0 . . . 0

0 Π1 0
...

... . . .
. . . 0

0 . . . . . . ΠK−1

 ∈ Rp×(τ+(K−1)τsubs)

such that X̄k = XΘC .

With probability at least 1−
(
ξ + p−τ

er

)
‖V>ΘCΘ>CV−V>V‖ ≤

√
c log(2r/ξ)r
(K − 1)τsubs

.

Lemma 7.10 (Adapted from Lemma 14 from Loh andWainwright (2012).)
If X ∈ Rn×p1 and Y ∈ Rn×p2 are zero-mean sub-Gaussian matrices with
parameters (Σx, σ2

x) and (Σy, σ2
y) respectively. If n & log p then

P

(∣∣∣∣|(Y >Xn − E
[
Y >X

])∣∣∣∣ |∞ ≥ c0σxσy
√

log p
n

)
≤ c1 exp(−c2 log p).
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Lemma 7.11 (Chernoff bound for sum of independent Bernoulli trials
(Goemans, 2015)) Let X =

∑n
i=1Xi, where Xi = 1 with probability pi

and Xi = 0 with probability 1 − pi, and all Xi are independent. Let µ =
E(X) =

∑n
i=1 pi. Then

(i) Upper Tail:

P(X ≥ (1 + δ)µ) ≤ e−
δ2

2+δµ for all δ > 0;

(ii) Lower Tail:

P(X ≤ (1− δ)µ) ≤ e−µδ
2/2 for all 0 < δ < 1.

Appendix 7.C Connection between
(ε, δ,S)-differential privacy and
regularized least-squares
estimation

In the PriDE framework, consider the unregularized local objective func-
tion for a single party k when the functions fi are the squared error. From
(7.9) and (7.10) we have (omitting the subscript k for ease of notation)

‖Y − X̄b‖2 = ‖Y − (XΘ + E)b‖2.

Denoting X̃l, ∀ l 6= k as the concatenated random features we have

‖Y − (XΘ + E)b‖2 = ‖Y − (Xkbk +
∑
l 6=k

(X̃l + Wl)bl)‖2.

Since all of the elements in W are sampled i.i.d. from an independent
Gaussian with variance σ2, let us now consider taking the expectation of
this expression with respect to the randomness in W:

EW‖Y − (Xkbk +
∑
l 6=k

(X̃l + Wl)bl)‖2.
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Due to independence, we can simply consider the univariate expectation

Ew∼N (0,σ2) (y−(x̃l + w)bl)2

=
∫ ∞
−∞

1√
2πσ2

exp
{
− w2

2πσ2

}
· (y − (x̃l + w)bl)2

dw

= (y − x̃lbl)2 + σ2b2
l .

So in τ + (K − 1)τsubs dimensions we obtain a regularized least squares
objective where the regularization is only on the (K − 1)τsubs random
features

‖Y − (Xkbk +
∑
l 6=k

X̃lbl)‖2 + σ2
∑
l 6=k

b2
l . (7.19)

The strength of the regularization is governed by the variance of the per-
turbation.

Appendix 7.D Additional experimental details
and results

7.D.1 Breast cancer gene expression data

Finally, we show an application to a problem in clinical bioinformatics.
This experiment aims to assess the performance of PriDE on a real data
set from a domain where sensitive data is ubiquitous. We use the breast
cancer data set GSE34943 (Miller et al., 2005). Our task is to predict
the disease specific survival time of each patient in years where the objec-
tive can be reformulated via an Accelerated Failure Time model as a least
squares objective; here with constant weights. The median follow-up of pa-
tients was 122 months. Approximately 45, 000 gene expressions are avail-
able from n = 236 patients. We selected genes with the largest absolute
marginal correlation with the response, resulting in p = 2, 000 distributed
across K = 4 parties. The data set is split into training (ntrain = 188)
and test set (ntest = 48). In this application, accurate estimates of β are
of primary interest to assess which genes are good predictors for survival
time.
3http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3494.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3494
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The first and second column in Figures 7.6–7.9 show comparisons of cor-
relation and estimation error for τsubs = {0.05, 0.2} · τ with respect to the
SDCA solution β∗. The third and the fourth column show the normal-
ized training and test prediction MSE. As above, we again observe a large
difference between the NB and Dual-Loco solutions which is essential
for there to be some expected gain from using PriDE. We observe simi-
lar trends as in the previous experiments: as ε increases, PriDE improves
upon NB and approaches the Dual-Loco solution. The trade-off between
ε and τsubs (implied by Theorem 7.5 and discussed above) is again appar-
ent. The convergence to the Dual-Loco solution with increasing values
of ε is somewhat slower than in the previous experiment. This is partly
due to the gene expression data having heavier tails, resulting in a larger
maxk (θk). This requires a larger noise level to guarantee privacy leading
to a more heavily regularized learning problem (cf. Tables 7.1 and 7.3).
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Figure 7.6.: Gene expression data: Results for projection dimension τsubs =
0.01τ . In comparison to larger projection dimensions (cf. Figures 7.7–
Figures 7.9), a projection dimension of τsubs = 0.01τ is not sufficient to capture
the signal of the non-local features accurately. This is apparent from the gap
in performance between Dual-Loco and the Glmnet/SDCA estimates which
are obtained without any constraints on privacy or communication. Secondly,
when τsubs = 0.01τ , varying ε only has a very small effect on the performance of
PriDE: due to the small projection dimension the additional regularization in-
troduced by the additive noise can be attenuated by choosing smaller values for
λ also when ε is small. As τsubs increases, the performance of Dual-Loco and
PriDE improve as term (i) in Eq. (7.5) decreases. As predicted by Theorem 7.5,
we also observe the adverse effect on the approximation accuracy induced by
term (ii) in Eq. (7.5) for small values of ε and large values of τsubs.
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Figure 7.7.: Gene expression data: Results for projection dimension τsubs =
0.05τ .
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Figure 7.8.: Gene expression data: Results for projection dimension τsubs =
0.1τ .
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Figure 7.9.: Gene expression data: Results for projection dimension τsubs =
0.2τ .
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7.D.2 Data tables

Table 7.2.: Projection dimensions

K τ = p/K 0.01τ 0.05τ 0.1τ 0.2τ

Simulated 2 200 2 10 20 40

Climate 4 2, 592 26 130 259 518
Cancer 4 500 5 25 50 100

Table 7.3.: Largest noise standard deviation maxk (σk) when δ = 0.05

ε 0.1 0.25 0.5 0.75 1 2 5 10 20

Simulated 162.47 66.99 35.10 24.42 19.05 10.87 5.67 3.68 2.48

Climate 186.59 76.93 40.30 28.04 21.88 12.48 6.51 4.22 2.84
Cancer 239.41 98.71 51.71 35.98 28.07 16.02 8.35 5.42 3.65

7.D.3 Simulation setting

We consider K = 2 blocks of features. One block of features could, for
instance, contain genomic data, such as measurements of single nucleotide
polymorphisms (SNPs). We shall denote the set of features contained in
this block by C. Due to its highly personal and sensitive nature, genomic
data arising from techniques like SNP genotyping is hardly ever publicly
available. The other block of features could hold gene expression data.
We denote this second set of features by X. Some of the genomic features
have an effect on some of the gene expression features and both sets of fea-
tures contribute to the response Y . This results in the structure shown in
Figure 7.10. Due to the dependence between C and X one cannot obtain
accurate coefficient estimates for the effect of X on Y when only includ-
ing X into the model. In such settings, PriDE allows to adjust for the



262 Chapter 7: Preserving privacy between features in distributed estimation

X
e.g.
Gene
expression
data

Y
e.g.

Health
status

C
e.g.

Genomic
data

Figure 7.10.: The confounders in C influence both the variables in X as well as
the response Y .

confounding effects from C on X while guaranteeing (ε, δ,S)-differential
privacy.

Specifically, each blocks of features contains τ = 200 features. So p = 400
and we choose n = 1000 (ntrain = 800 resp. ntest = 200). In order to create
an interesting correlation structure both within the blocks of features and
between C and X, we consider a Gaussian random field on a 20 × 20
grid. So each grid point corresponds to one feature and we generate n
realizations from the model. We add confounding effects from C on X by
selecting 20 pairs of features from X and C at random. Denote the set of
tuples byM and a single tuple by m = (ix, jc) where ix is the index of the
chosen feature from X and jc is the index of the chosen feature from C.
For all tuples inM we set Xix ← Xix +Cjc . Subsequently, we create the
signal by aligning the coefficients β with the top 20 principal components of
the full design matrix. Finally, the response is generated as Y = Xβ + η.
The elements of η are i.i.d. zero-mean Gaussian noise with a standard
deviation set to achieve a signal-to-noise ratio SNR = ||Xβ| |22/ ||η| |22 of
approximately 0.75. In this simulation, a noise standard deviation of 500
yielded the desired SNR.

For all further details, we refer to the data generating code which is avail-
able at https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.189
in the script generate.R.

https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.189
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Figure 7.11.: Simulated data: Results for projection dimension τsubs = 0.05τ .
Normalized parameter estimation MSE w.r.t. true β: ((a)) overall, ((b)) for
block X and ((c)) for block C. ((d)) Normalized prediction MSE on test set.

7.D.4 Additional results for simulated data

In contrast to the other two experiments, Figures 7.11–7.12 show that
the performance of PriDE is not as sensitive to the chosen projection
dimension in case of the synthetic data set. The approximation quality is
fairly similar for τsubs = {0.05, 0.1, 0.2} ·τ even though the standard errors
are larger for τsubs = 0.05τ . This can be explained by the small value of
dmin—here, dmin seems to be the quantity mostly determining the term
(ii) in Eq. (7.5), so that manipulating τsubs only has a very small effect on
the overall bias.



264 Chapter 7: Preserving privacy between features in distributed estimation

● ●
●

●
●

●

●
●

●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.10 0.25 0.50 1.00 2.00 5.00 10.00 20.00

PRIVACY PARAMETER ε

PA
R

A
M

E
T

E
R

 E
S

T
IM

AT
IO

N
 M

S
E

●

●

●

●

●

DUAL−LOCO 10

GLMNET

NB

PriDE 10

SDCA

(a) ‖β̂ − β‖2/‖β‖2

●
●

●
●

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.10 0.25 0.50 1.00 2.00 5.00 10.00 20.00

PRIVACY PARAMETER ε

PA
R

A
M

E
T

E
R

 E
S

T
IM

AT
IO

N
 M

S
E

●

●

●

●

●

DUAL−LOCO 10

GLMNET

NB

PriDE 10

SDCA

(b) ‖β̂X − βX‖2/‖βX‖2

● ● ●
● ●

●
●

● ●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.10 0.25 0.50 1.00 2.00 5.00 10.00 20.00

PRIVACY PARAMETER ε

PA
R

A
M

E
T

E
R

 E
S

T
IM

AT
IO

N
 M

S
E

●

●

●

●

●

DUAL−LOCO 10

GLMNET

NB

PriDE 10

SDCA

(c) ‖β̂C − βC‖2/‖βC‖2

● ● ● ● ● ● ● ● ●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.10 0.25 0.50 1.00 2.00 5.00 10.00 20.00

PRIVACY PARAMETER ε

T
E

S
T

 M
S

P
E

●

●

●

●

●

DUAL−LOCO 10

GLMNET

NB

PriDE 10

SDCA

(d) Test MSPE

Figure 7.12.: Simulated data: Results for projection dimension τsubs = 0.1τ .
Normalized parameter estimation MSE w.r.t. true β: ((a)) overall, ((b)) for
block X and ((c)) for block C. ((d)) Normalized prediction MSE on test set.
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Figure 7.13.: Climate model data: Results for projection dimension τsubs =
0.01τ . In comparison to larger projection dimensions (cf. Figures 7.14–
Figures 7.15), a projection dimension of τsubs = 0.01τ is not sufficient to capture
the signal of the non-local features accurately. This is apparent from the gap
in performance between Dual-Loco and the Glmnet/SDCA estimates which
are obtained without any constraints on privacy or communication. Secondly,
when τsubs = 0.01τ , varying ε only has a very small effect on the performance
of PriDE: due to the small projection dimension the additional regularization
introduced by the additive noise can be attenuated by choosing smaller values
for λ also when ε is small.

7.D.5 Additional results for climate model data
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Figure 7.14.: Climate model data: Results for projection dimension τsubs =
0.1τ . As τsubs increases, the performance of Dual-Loco and PriDE improve as
term (i) in Eq. (7.5) decreases. As predicted by Theorem 7.5, we also observe the
adverse effect on the approximation accuracy induced by term (ii) in Eq. (7.5)
for small values of ε and large values of τsubs.
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Figure 7.15.: Climate model data: Results for projection dimension τsubs =
0.2τ . As τsubs increases, the performance of Dual-Loco and PriDE improve as
term (i) in Eq. (7.5) decreases. As predicted by Theorem 7.5, we also observe the
adverse effect on the approximation accuracy induced by term (ii) in Eq. (7.5)
for small values of ε and large values of τsubs.
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Appendix 7.E Privacy preserving cross
validation

When the regularization parameter λ is given, PriDE preserves (ε, δ,S)-
differential privacy (see Theorem 7.3). Finding a suitable λ via v-fold cross
validation (CV) without compromising privacy is challenging. In general,
useful privacy preserving model selection procedures are an active area
of research and few procedures have been proposed (Chaudhuri and Vin-
terbo, 2013). In Heinze et al. (2016), λ is tuned “globally”, i.e. the local
predictions for a particular λ are communicated, added and thus evalu-
ated on the global objective. Alternatively, the local objectives could be
targeted—in this case only the perturbed random features are commu-
nicated. Communicating predictions would compromise privacy so only
local CV is feasible in a setting where privacy is critical. The optimal λ
is then chosen by each party individually based on the CV performance
on the local design matrix, using both the raw and the perturbed random
features.
A few results concerning the selection of λ in local and global CV are
given in Table 7.4 which compares the chosen value for λ using global and
local cross validation on the climate dataset. For larger values of ε, local
CV selects similar values for λ as global CV. However, for small values
of ε (ε ≤ 0.5) the local cross validation scheme selects values for λ that
are much too large. Consequently, the predictive accuracy deteriorates,
making the local CV scheme infeasible for small values of ε. In §7.5, we
tuned the regularization parameter using 5-fold global cross validation for
all methods to assess the performance of PriDE without confounding the
comparison with this additional source of uncertainty.
One interesting aspect about the optimal value for λ chosen by global CV
is the following trend. The smaller ε, the smaller a value for λ tends to be
selected. This is consistent with the fact that the additive noise acts as an
additional regularizer (see discussion in §7.4.2 and §7.C). As this additional
regularization increases with σ2, the chosen λ decreases, keeping the total
regularization constant. However, this balancing effect is only possible as
long as the additional regularization is not too large—at some point the
chosen λ approaches zero and cannot be decreased further.
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Table 7.4.: Cross validation results: Comparison of the chosen value for λ
in local cross validation (LCV) and global cross validation (GCV) using
the climate simulation data with projection dimension τsubs = 0.05τ .
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What of the future? The future of data analysis can involve
great progress, the overcoming of real difficulties, and the pro-
vision of a great service to all fields of science and technology.
Will it? That remains to us, to our willingness to take up the
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without real attachments. Who is for the challenge?.
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