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Leveraging Rust Types
for Modular Specification and Verification
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FEDERICO POLI, ETH Zurich, Switzerland
ALEXANDER J. SUMMERS, ETH Zurich, Switzerland

Rust’s type system ensures memory safety: well-typed Rust programs are guaranteed to not exhibit problems
such as dangling pointers, data races, and unexpected side effects through aliased references. Ensuring
correctness properties beyond memory safety, for instance, the guaranteed absence of assertion failures or
more-general functional correctness, requires static program verification. For traditional system programming
languages, formal verification is notoriously difficult and requires complex specifications and logics to reason
about pointers, aliasing, and side effects on mutable state. This complexity is a major obstacle to the more-
widespread verification of system software.

In this paper, we present a novel verification technique that leverages Rust’s type system to greatly simplify
the specification and verification of system software written in Rust. We analyse information from the Rust
compiler and synthesise a corresponding core proof for the program in a flavour of separation logic tailored
to automation. To verify correctness properties beyond memory safety, users can annotate Rust programs
with specifications at the abstraction level of Rust expressions; our technique weaves them into the core proof
to verify modularly whether these specifications hold. Crucially, our proofs are constructed and checked
automatically without exposing the underlying formal logic, allowing users to work exclusively at the level of
abstraction of the programming language. As such, our work enables a new kind of verification tool, with the
potential to impact a wide audience and allow the Rust community to benefit from state-of-the-art verification
techniques. We have implemented our techniques for a subset of Rust; our evaluation on several thousand
functions from widely-used Rust crates demonstrates its effectiveness.

1 INTRODUCTION
Producing reliable system software is challenging. Pointer manipulation, mutable heap data and
concurrency are typically employed to achieve high performance, but cause subtle bugs that are
notoriously difficult to uncover and reproduce.
The Rust programming language addresses this problem by preventing some errors statically

through its type system, which associates an exclusive capability [Boyland et al. 2001] with each
mutable memory location. At any time, each exclusive capability is held by at most one executing
function: only that code may access the memory location. When aliasing is desired, these exclusive
capabilities can be exchanged for shared capabilities, with whichmany references can read a location,
but none can modify it. Rust’s type system enforces this discipline, ensuring that well-typed Rust
programs are guaranteed to not exhibit data races, have dangling pointers or unexpected side
effects through aliased references.
Going beyond memory safety, to guarantee absence of assertion failures or to prove func-

tional correctness, requires static program verification. Despite recent successes [Bhargavan et al.
2017; Hawblitzel et al. 2015, 2014; Klein et al. 2009], formal verification of system software is
notoriously difficult. Reasoning about pointers, aliasing, mutable state, and concurrency requires
complex program logics, often based on separation logic [O’Hearn 2004; Reynolds 2002], dynamic
frames [Kassios 2011; Leino 2010], or object ownership [Cohen et al. 2009; Leino and Müller 2004].
The expressive power of such logics comes at a price: they describe program behaviours via a rich
language of custom assertions (e.g. the points-to predicates, separating conjunction, and magic
wands of separation logic). Users are forced to understand these logics to write specifications and
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direct the construction of a suitable proof. Furthermore, these logics typically require a substantial
initial specification effort, even to prove simple properties such as crash-freedom or absence of
overflow. Consequently, the application of these logics remains the domain of expert researchers,
forming a major obstacle to the more-widespread verification of system software.
In this paper, we present a novel verification technique that leverages Rust’s type system to

greatly simplify the specification and verification of Rust programs. Our key insight is to combine
the rich capability information implicit in Rust’s type system with user-provided assertions that
express functional behaviour to automatically construct a proof in an expressive program logic. We
analyse information from the Rust compiler and synthesise a core proof of memory safety of the
program in a flavour of separation logic that facilitates the integration of functional correctness
properties. Crucially, our proofs are constructed and checked automatically; users of our technique
never work with the underlying formal logic. They can add specifications at the abstraction level
of Rust expressions; our technique interweaves these specifications automatically into the core
proof to verify them modularly. Consequently, our technique shields users completely from the
complexity of the underlying logic; assertions and error messages are expressed at the level of Rust
expressions, which makes our technique accessible to programmers.

Contributions. The main contributions of our work are:
(1) We define a specification language for expressing functional properties of Rust programs,

suitable for modular verification. Our language is based on Rust expressions, and does not
expose the complexity of the underlying verification logic.

(2) We propose pledges: a novel specification construct that enables modular specification and
verification of Rust functions that yield borrowed references.

(3) We define a verification technique that encodes both capability information and user-provided
assertions into the implicit dynamic frames logic [Smans et al. 2012], a close relative of
separation logic [Parkinson and Summers 2012].

(4) We automate our verification technique by constructing a translation from the Rust program
and specifications into the Viper intermediate verification language [Müller et al. 2016]. Our
translation generates correct specifications and, crucially, synthesises all necessary auxiliary
annotations needed for proof checking to be completely automatic.

(5) We provide an implementation of our technique as a plugin for the Rust compiler. We used
our implementation to automatically construct core proofs for several thousand unannotated
Rust functions, and to verify a range of stronger properties (via our specification language)
for selected Rust implementations. We will submit our tool as an artifact.

Unsafe Code and Rustbelt. Rust’s type system enforces strong rules, but provides an escape hatch
for when these are too restrictive: code blocks and functions can be declared unsafe, weakening the
compiler’s checks, and correspondingly risking the guarantees they provide. Unsafe code should be
encapsulated by libraries such that client code cannot observe its usage [Rust contributors 2019b].
The ongoing Rustbelt project [Jung et al. 2017] is aimed at defining formal semantic foundations
for making this requirement precise and verifiable. Our work has fundamentally different (and
complementary) aims and technical contributions. We do not address unsafe code in this paper,
but present a verification technique enabling user-specifications at a high level of abstraction and
automatic proofs; Rustbelt verification entails directly using an advanced separation logic based on
Iris [Jung et al. 2015], for which proofs are interactive (in Coq [Coq Team 2014]), and constructed
by experts (see also Sec. 8).

Outline. The rest of this paper is organised as follows. We illustrate our approach on an example
in Sec. 2. Sec. 3 presents our specification and verification technique for Rust without references;
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1 struct Point {
2 x: i32, y: i32
3 }
4
5 #[ensures="p.x == old(p.x) + s"]
6 #[ensures="p.y == old(p.y)"]
7 fn shift_x(p: &mut Point, s: i32) {
8 p.x = p.x + s
9 }

10 fn compress(
11 mut segm: (Box<Point>, Box<Point>)
12 ) -> (Box<Point>, Box<Point>)
13 {
14 let diff = (*segm.0).x - (*segm.1).x;
15 shift_x(&mut segm.1, diff + 1);
16 assert!((*segm.0).x < (*segm.1).x);
17 segm
18 }

Fig. 1. Points in Rust. Proving that the assertion holds requires properties guaranteed by the Rust ownership
system as well as a user-provided specification for function shift_x.

Secs. 4 and 5 extend our technique to handle mutable and shared references, respectively. Sec. 6
introduces pledges, used to attach functional specifications to mutable borrows. We describe and
evaluate our implementation in Sec. 7, discuss related work in Sec. 8, and conclude in Sec. 9.
Appendix A includes a detailed illustration of our encoding on a simple example.

2 MOTIVATING EXAMPLE
In this section, we illustrate the basics of our approach from a programmer’s perspective. Details
are explained in subsequent sections.

Example. Fig. 1 shows a simple Rust program, which declares a struct Point with two integer
fields, and two functions. The function shift_x, shifts the x-coordinate of a given Point instance.
Rust types express capabilities to access memory. Here, the type &mut Point expresses that p is a
mutable reference, also called a mutable borrow. When the function is called, the capabilities to
access the fields of the passed Point instance are temporarily transferred from the caller to the
callee function, and back when the function terminates. Since the borrow is mutable, shift_x is
allowed to modify the instance, here, by assigning to its x field.
Function compress takes the capabilities for a mutable pair of boxed points. A value of type

Box<T> represents a pointer (with capabilities) to a value of type T; this indirection allows the
Points to be passed by-reference (instead of by copying them). The selectors .0 and .1 select
elements of the parameter pair.

The assert! statement performs a runtime check that its parameter evaluates to true. Evaluating
*(segm.1).x here is allowed although segm.1 was borrowed on the previous line (&mut segm.1
creates a mutable reference to segm.1), as the compiler infers that the borrow is no longer used after
the call. Therefore, the borrow expires after the call, restoring capabilities to the borrowed-from
segm.1.

Correctness Arguments. Consider what is needed to prove that the assert! statement can never
fail at runtime. Showing this property for all calls to compress requires the following properties, in
which p0 and p1 denote the Point instances passed into function compress as segm.0 and segm.1:

(1) The call to shift_x increases the value of p1.x by the value of diff + 1.
(2) The call does not modify p0.x. Therefore, right after the call, we have p0.x < p1.x.
(3) The call to shift_x does not modify the tuple segm, that is, we still have p0=segm.0 and

p1=segm.1 and, therefore, (*segm.0).x < (*segm.1).x.
(4) The code is data race free and, thus, the values of all memory locations are stable throughout

the execution.
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Except for property 1, all of these properties are guaranteed by Rust’s type system. In particular,
segm.0 and segm.1 are guaranteed to reference different Point instances p0 and p1; since only the
capabilities for p1 are transferred to function shift_x, all fields of p0 are guaranteed to be left
unchanged by the call (property 2, and analogously for property 3). Preserving information about
mutable state, so-called framing, is one of the main difficulties of modular verification [Kassios
2011; Leino and Nelson 2002; Reynolds 2002]; by leveraging information from Rust’s type system,
our technique solves the frame problem without imposing substantial overhead on programmers.
Property 4 is a consequence of the fact that Rust’s type system requires an exclusive capability

in order to mutate a memory location. It allows one to verify the assertion without reasoning about
thread interleavings [Jones 1983; Owicki and Gries 1976] or explicit proofs of race freedom [O’Hearn
2004], which would increase the specification effort for programmers.
Property 1 follows from the functional behaviour of function shift_x, which is expressed as a

user-provided postcondition, written as a Rust annotation. Our specification language is based on
Rust boolean expressions, extended with few (but powerful) additional constructs; here, the old
construct [Leavens et al. 2011] is used to refer to the pre-state value of a mutable memory location,
which allows one to express relational properties between the pre- and post-state of a call. The
second postcondition of shift_x is not needed to verify the assertion, but would likely be required
by other client code. Since shift_x takes a mutable borrow to the Point instance p, the type system
allows it to modify any fields of p. The second postcondition tightens framing by guaranteeing that
p.ywill remain unchanged. Note that our specifications are as simple as traditional contracts [Meyer
1992], but enable the sound verification of concurrent, heap-manipulating programs.

The assertion could in principle be proved without the postconditions, by inlining the implemen-
tation of shift_x. However, verifying a call against a specification, instead of an implementation,
makes verification modular, which is important for scalability, to provide guarantees for library
code, and to reduce and localise the re-verification effort when parts of a codebase are changed.

Verification. Our example illustrates that correctness proofs for Rust programs need to combine
information about capabilities for memory locations (aliasing, side effects, framing, data race
freedom) with information about their values. While the former is provided by the type system, the
latter must be supplied as assertions (the inference of value information is possible, but orthogonal).
To formally integrate both sources of information, our technique encodes capabilities and user-
provided functional properties into a program logic that is sufficiently expressive to capture both
and reason about their interactions.

Our verification technique encodes the capability information and statement semantics of Rust
programs into a formal logic, resulting in a core proof that captures information about aliasing and
side effects that is essential for verification, in particular, for framing. It is crucial that this encoding,
as well as the checking of our core proofs, is completely automatic; any required user interaction
would expose the complexity of the underlying program logic to the programmer and, thereby,
break the abstraction that our work aims to provide. For program logics (such as separation logics)
expressive enough to model Rust’s type capabilities, this degree of automation is beyond the state
of the art.
Our core proofs provide the technical foundations for verifying stronger properties, such as

the correctness of user-provided assertions, and absence of arithmetic overflows and various
kinds of exceptions (called panics in Rust), including assert! failures. Constructing the core proof
is challenging, especially handling complex forms of (re)borrowing and synthesising auxiliary
annotations to automate the proof search, as we will explain later.

A major virtue of our approach is that it lowers the barrier to applying verification. The construc-
tion of the core proof from a well-typed Rust program is fully automatic, such that programmers
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1 #[ensures="old((*p).x + s) == (*result).x"]
2 #[ensures="old((*p).y) == (*result).y"]
3 fn shift_x(p: Box<Point>, s:i32) -> Box<Point> {
4 box Point { x: (*p).x + s, y: (*p).y }
5 }
6
7 fn compress(mut segm: (Box<Point>, Box<Point>)) -> (Box<Point>, Box<Point>) {
8 let mut end = segm.1; // move assignment
9 // segm.1 is now inaccessible
10 let diff = (*segm.0).x - (*end).x;
11 end = shift_x(end, diff + 1);
12 segm.1 = end;
13 // end is now inaccessible
14 assert!((*segm.0).x < (*segm.1).x);
15 segm
16 }

Fig. 2. A variation of the example from Fig. 1 that uses move assignments instead of borrowing. The move
assignment in line 8 removes the capability for segm.1 until it is restored in line 12, which prevents accesses
in between. In particular, omitting line 12 would cause a compiler error, since it would not be possible to
assemble the full capabilities required by the return type.

can immediately focus on verifying the main properties of interest, such as the validity of a given
assertion. They can control the required effort by writing simpler or more comprehensive spec-
ifications; if the (optional) checks for built-in properties such as overflow are not enabled, the
minimal specification is none at all. This is in stark contrast to most existing verification techniques,
which require a substantial initial effort to set up predicates, invariants, or ghost state and to verify
memory safety, before programmers can turn to the properties they care about most.

3 RUST’S CAPABILITIES FOR VERIFICATION
In this section, we explain our specification and verification technique for Rust code without
borrowing, which we defer until Secs. 4 and 5. We present the capability information that is needed
to construct a core proof, explain how we encode this proof to Viper, and then show how to
incorporate user-provided assertions.
We present our work for a small but technically-challenging subset of safe Rust. It includes:

bool, integer, char, struct and enum types, move and copy assignments, heap-allocated data
(including Box types), shared and mutable borrows (including reborrowing), traits, generics, loops,
and function calls, including common use-cases of lifetime parameters to functions. Commonly-
used Rust features which fall outside of our subset include: lifetime parameters to struct types, as
well as unsafe code; these are left for future work.

3.1 Ownership and Capabilities
The Rust type system enforces a strict discipline governing not only which values can be stored
in which locations, but also which places (Rust’s terminology for expressions denoting memory
locations [Rust community 2018b]) can be used to access those values at each program point.

Ownership. In Rust, every value stored in memory has a unique owner, which is a variable
(variables always include function parameters) in a currently-active function execution. Ownership
is transitive: the owner of a struct value is also the owner of its fields. The scope of a value’s owner
implicitly determines the deallocation time of the owned memory. Rust’s type rules guarantee that
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by the time the owner goes out of scope (or if the owning variable is reassigned), no place will have
the capability to access the underlying memory, preventing dangling pointers. Rust types typically
convey ownership of the corresponding memory; for instance, Box<T> is the type of an owning
pointer.
Fig. 2 shows a variation of the example from Fig. 1 without borrowing (which we will explain

shortly). The assignment in line 8 is a move assignment, which transfers ownership from segm.1
to end, making segm.1 unusable. Similarly, the call to shift_x transfers ownership from end
to parameter p. end becomes usable again (and owns its contents) on its reassignment when
the function terminates, and analogously for segm.1 in line 12. The subsequent assertion holds
for reasons similar to those outlined in the previous section for Fig. 1. In particular, ownership
guarantees that the two points are distinct objects, and provides framing for the call to shift_x.

Capabilities. Owning a memory location does not necessarily provide the right to access it. For
instance, function compress in Fig. 1 owns both points throughout its execution, but the right to
access the point in segm.1 is temporarily transferred to shift_x using a borrow1. Borrowing affects
who may access a location, but not who owns it. To distinguish these concepts, we use the term
place capability (or capability for short) to denote the right to access the value stored in a place.
Precise knowledge of the capabilities at any given program point is crucial for verification,

especially framing. For instance, function compress in Fig. 1 may frame the value of (*segm.0).x
around the call to shift_x because it retains the corresponding capability, whereas (*segm.1).x
may change because the capability is transferred for the call. Note that Rust source types do not
provide complete capability information: for instance, throughout a function body, struct-typed
variables retain the same Rust type, but capabilities to their fields vary as they are borrowed or
moved. To make this information explicit, we defined an algorithm to compute precise summaries
of the capabilities held at each program point, which we call place capability sets.
In the following, we define the type of results our algorithm computes, but omit the algorithm

itself for brevity. At verification boundaries such as function pre- and post-states, we extract these
results directly from the Rust compiler: we use the declared types of all definitely-assigned variables
in scope at these program points to compute a suitable summary of the capabilities held. However,
to elaborate this to an automatable formal proof we need explicit information about how these
capabilities evolve at each intermediate program point. This is information which, in principle, is
internally computed by the Rust type checker, but using representations which are not exposed;
our algorithm therefore recovers these intermediate steps to produce a detailed account of the
capabilities at every program point.

Definition 3.1 (Place Capability Sets). Places, ranged over by p, are expressions defined by the
following grammar: p ::= x | p. f | (∗p). For a place p of the form p ′. f and (∗p ′), place p ′ is
called a sub-place of p; this notion is extended transitively. A place capability set (PCS) is a finite set
of places.

The initial PCS for a function contains exactly the capabilities for its parameters: for instance,
{segm} for function compress in Fig. 2. Every subsequent statement may require certain capabilities
to be in the PCS and then transform the PCS. For instance, the move assignment on line 8 requires
the PCS before the assignment to contain segm.1, and transforms the PCS from {segm.0,segm.1}
to {segm.0,end}, reflecting the move of capabilities. These PCS transformations are defined for
each primitive statement; we provide details in App. B.

The evolution of capabilities during Rust type checking can require additional operations on top
of the requirements for individual Rust statements. For example, the PCS before the assignment on
1In this and the next section, we will discuss only exclusive capabilities; we extend our work to shared capabilities in Sec. 5.
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line 8 is obtained from the initial PCS of the function by exploiting transitivity of capabilities. Since
the capabilities of a place also imply capabilities for all its sub-places, the type checker can unpack
the capability for segm into {segm.0,segm.1}. Unpacking is one of several PCS operations the type
checker may perform to manipulate PCSs:

Definition 3.2 (PCS Operations). A PCS operation is a remove, unpack, or pack of a capability in a
PCS. Remove is defined as the corresponding set operation.

Let p be a place of struct type, and let f1, . . . , fn be the fields of the struct. For a PCS S such that
p ∈ S , the unpacking of p in S is the PCS (S \ {p}) ∪ {p.f1, . . . ,p.fn }. If p is instead of box type, the
unpacking is (S \ {p}) ∪ {(*p)}.
The packing of p in S is the inverse operation. It is defined only when the p.fi (or *p ) are in S .

The Rust type checker implicitly employs these operations between statements to show that the
capabilities required by the next statement are present. Unpack is used to enable operations on
individual fields of structs (e.g. the move on line 8), and pack is used when the entire struct is
passed as argument or result to check that capabilities for all sub-places can be reassembled, e.g. at
the end of compress in Fig. 2. All three operations can be used at join points in the control flow if
the joined paths provide different capabilities: remove is needed to drop the capabilities available
in one path but not the other (e.g. due to moving out a struct field in a branch), while pack and
unpack are needed to unify the PCSs of the joining paths.
By combining type information extracted from the compiler and our own analysis, we infer

automatically, for each statement, the PCS before the statement, a sequence of necessary PCS
operations to be applied before the statement, and the PCS after the statement, describing the actual
flow of capabilities implied by Rust’s type rules. This information is vital for the construction of the
core proof, as we explain in the next subsection. Since it provides a detailed account of why a Rust
program type-checks, we believe that it could also be repurposed as the basis of other analysis,
verification and visualisation tools.

3.2 Constructing the Core Proof
We verify Rust programs by encoding the program, capability information, and user-provided
specifications into the intermediate verification language Viper [Müller et al. 2016], and using
Viper’s existing verification tools. Viper provides a simple heap-based imperative language, along
with a number of reasoning primitives for expressing verification problems; each Viper method is
equipped with a precondition and a postcondition; Viper loops are equipped with loop invariants.
For each function in the Rust program, we generate a corresponding method in our Viper program,
such that successful verification of the Viper method implies correctness of the Rust original.

Viper Resources. Viper’s heap is object-based: heap locations are identified by a pair of a Ref-typed
value and a field name. Viper’s type system is simple: the built-in Ref type is the only type for
objects in the Viper heap, and all fields declared in a Viper program are in principle available in all
objects. Akin to separation logic, Viper enforces that a field location can be accessed only when
permission is held to do so. Conversely, so long as the permission to a field location is held, Viper
assumes that its value cannot change, which provides framing. Viper field permissions are tracked
in the program state as affine resources; they can be explicitly added or removed from a program
state, or implicitly dropped if not required.

Viper’s logic is based on implicit dynamic frames [Smans et al. 2009], a close relative of separation
logic [Parkinson and Summers 2012], but with the important facility to incorporate heap-dependent
expressions in logical assertions (including calls to side-effect-free functions) [Smans et al. 2010].
Assertions called accessibility predicates, written acc(e.f) are used to denote the exclusive field



1:8 Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers

permission for the field f of the object denoted by e. Viper’s conjunction && acts multiplicatively
(in the sense of linear logic [Girard 1987]); analogously to separating conjunction in separation
logic, it requires the sum of the necessary resources in each conjunct. For example, the assertion
acc(x.f) && acc(y.f) denotes two exclusive permissions, which implies that x and y cannot alias.
In addition to accessibility predicates, our work makes crucial use of two other kinds of Viper
resource assertions adopted from separation logic: predicates and magic wands, which will be
explained later.

Modelling Memory. We model Rust’s program states in Viper by mapping every Rust memory
location to a corresponding Viper field location. We model any non-primitive type in Rust as a
Viper object (of Ref type); each transitive element of the Rust type (struct fields, tuple elements,
box contents, reference targets) is modelled as a field of the Viper object. Since Rust references
make it possible to take the address at which any value is stored, we also model Rust primitive
types with an additional indirection; any primitive type is modelled as a Viper object with a single
field that contains the actual value.
As an example, the parameter segm in Fig. 2 is modelled as a Viper Ref with fields elt0: Ref,

elt1: Ref for the two elements of the tuple; in turn, each of these values is a box, modelled as an
object with a single field val_ref: Ref. Similarly to pairs, Point struct values are Viper objects
with two fields, while their individual i32 fields (also addressable in Rust) are modelled as objects
with a single field val_i32: Int. Here, we use Viper’s built-in Int type for unbounded integers; if
overflow-checking is enabled, we encode bounds using additional assertions.

Modelling Rust Types. As explained above the core proof requires precise capability information,
for instance, to enable sound framing. To provide this information, we model the capabilities repre-
sented by Rust types as resource assertions in Viper. Since place capabilities can have unboundedly
many sub-places (struct types may recurse via e.g. box types), we cannot enumerate these explicitly.
Instead, we translate each Rust type into an instance of a Viper predicate. Predicates are a standard
means of defining parameterised, possibly recursive assertions [Parkinson and Bierman 2005];
predicate instances are tracked as affine resources in Viper.

We define a Viper predicate per Rust type in the source program; each predicate is parameterised
by a single Ref-typed parameter (the Viper object representing the Rust place): for primitive
types, the body contains an accessibility predicate for the single field storing the value, while for
structures and tuples, it consists of the conjunction of accessibility predicates for each field, as well
as a predicate instance for the translation of the field’s type. As a simple example, we translate a
place capability of type i32 using the following i32 predicate (the bounds properties within the
predicate body are omitted if overflow-checking is disabled):

field val_i32 : Int

predicate i32(self: Ref) {
acc(self.val_i32) && i32MIN <= self.val_i32 <= i32MAX

}

For polymorphic types such as Box<T> where the type parameter T is known we monomorphise,
generating a specialised predicate e.g. for Box<Point>, where Point is the predicate generated for
the Rust Point type:

predicate BoxPoint(self: Ref) {
acc(self.val_ref) && Point(self.val_ref)

}
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When the type parameter of a polymorphic type is not known, e.g. when encoding Box<T> in
a generic function under a parameter T, we encode the type parameter as an abstract predicate,
whose body is unspecified. For example, the encoding of Box<T> becomes:

predicate T(self: Ref);

predicate BoxT(self: Ref) {
acc(self.val_ref) && T(self.val_ref)

}

The predicate instance T(self.val_ref) represents exclusive capability to the boxed value; by
making the predicate abstract, it conveys no further information about this value.

For enumeration types (a form of tagged unions) we model the discriminant (tag) of the enumer-
ation as an integer field with bounded values. This discriminant is then used on the left-hand-side
of implications to guard which accessibility predicates for the variant’s fields are actually included
in the predicate. An example is provided for the Option<T> type in App. A.

Modelling Place Capabilities. As explained in the previous subsection, Rust types prescribe the
available capabilities at function boundaries, but the PCS may change throughout the function.
Using the predicates defined above, we can directly translate a place capability set into a corre-
sponding Viper assertion: each element of the PCS gives rise to an instance of the Viper predicate
corresponding to its type.We call the Viper assertion consisting of the conjunction of these predicate
instances the Viper embedding of the PCS.

This embedding allows us to map each Rust function to a corresponding Viper method, along with
corresponding preconditions and postconditions at the Viper level. The precondition is the Viper
embedding of the PCS representing all input parameters to the Rust function; the postcondition is
the Viper embedding of the PCS representing the output parameters. We use the precondition to
prescribe the initial state for verifying the Viper method, while the postcondition is checked at the
end of the method body. Analogously, the Viper embedding of the PCS at each loop head provides
a loop invariant that lets Viper verify loops for our core proof automatically.

As an example, when we generate a Viper method for the Rust function compress in Fig. 2, the
precondition will be PairBoxPoint(segm), where PairBoxPoint is a Viper predicate whose body
contains permission to the pair’s fields and a BoxPoint predicate instance for each. Analogously,
the postcondition will be PairBoxPoint(result), where result refers to the method’s return
value.

Many program verifiers, including Viper, prevent indefinite unrolling of recursive predicates
by treating predicates isorecursively [Abadi and Fiore 1996; Crary et al. 1999; Summers and
Drossopoulou 2013]: exchanging a predicate instance for its body is not done automatically, but
requires explicit operations in the program, called fold and unfold in Viper. These statements
are needed exactly at those program points at which the Rust type checker performs the packing
and unpacking PCS operations. By exploiting the PCS information we summarise for the Rust
program, we are therefore able to instrument our generated Viper program with exactly the nec-
essary additional annotations required for Viper to be able to reason about these predicates fully
automatically, without any user interaction. Recall that full automation is essential to preserve the
abstraction provided by our work and shield programmers from the complexity of the underlying
logic employed in Viper.

Modelling Capability Transfer. In order to model Rust function calls, we need to correctly reflect
the transfer of place capabilities. Having generated Viper methods, along with appropriate pre-
conditions and postconditions, we want to model a call by removing the Viper resources in the
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precondition, and subsequently adding the Viper resources in the postcondition. Viper provides
inhale and exhale statements for such explicit manipulation of resources [Müller et al. 2016]. A
statement exhale A has the effect of checking that the assertion A is true in the current state, and
removing all resources it requires. Moreover, when permission to a memory location is removed,
Viper removes any knowledge about the value stored in the location to reflect that the value could
be changed by another function. Dually, inhale A adds the resources prescribed by A.

Using these Viper statements, we encode a Rust-level function call as an exhale of the precondi-
tion (reflecting that the corresponding capabilities become unavailable to the caller), followed by an
inhale of the postcondition (reflecting those which are returned). Via the capability information
extracted from the Rust compiler (in PCS form) and our Viper embedding of this information, this
handling of Viper resources corresponds precisely to the transfer of capabilities in Rust. More
details are illustrated in App. A.

3.3 Functional Specifications
The core proof we have constructed so far, by itself, does not go beyond the guarantees provided
by the type system. However, it provides the foundation for verifying stronger properties such as
functional correctness. In particular, it provides precise aliasing information and framing, which is
essential for sound and modular reasoning about the Rust heap. Due to the design of our modelling
of Rust types, and choice of underlying logic, extending our core proof to properties beyondmemory
safety is surprisingly simple.

We enable optional checking of generic properties such as absence of overflows and absence of
panics (e.g. assertion failures) simply, by generating additional assertions in the Viper program. For
example, to prove absence of assertion failures, it suffices to insert an assert false statement into
the branch of the code that raises a panic when the runtime-check fails, to verify that this branch
is unreachable.
User-provided assertions such as function pre and postconditions are translated and conjoined

to the corresponding assertions of the core proof. This simple treatment is enabled by our choice of
implicit dynamic frames for the underlying logic: unlike standard separation logics, implicit dynamic
frames separates resource properties from value properties, as in acc(x.f) && x.f > 0. Similarly,
predicate instances can be combined with applications of heap-dependent mathematical functions
to constrain the resources in the predicate. We use this feature to allow user-provided specifications
to include calls to side-effect-free Rust functions, similarly to JML’s pure methods [Leavens et al.
2011], which is useful to express properties of unbounded data structures and to make use of
abstractions already provided in the Rust program.

The technique presented so far supports the specification and verification of programs using
only move and copy assignments. The treatment of borrowing is more intricate, both for the core
proof and for functional specifications, as explained in the next sections.

4 MUTABLE BORROWS
One of the most important and intricate features of Rust’s type system is borrowing: creation of
references that temporarily take capabilities, but do not change ownership of the referenced value.
In this section, we extend the construction of the core proof tomutable borrows; shared (immutable)
borrows are covered in the next section. The specification and verification of functional properties
in the presence of borrows will be discussed in Sec. 6.
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1 // List of Points
2 struct Route {
3 current: Point,
4 rest: Option<Box<Route>>
5 }
6
7 #[pure]
8 #[ensures="result > 0"]
9 fn length(r: &Route) -> i32 {
10 1 + match r.rest {
11 Some(box ref q) => length(q),
12 None => 0
13 }
14 }
15
16 #[pure]
17 #[requires="0 <= n && n < length(r)"]
18 fn nth_x(r: &Route, n: i32) -> i32
19 {
20 if n == 0 { r.current.x } else {
21 match r.rest {
22 Some(box ref q) =>
23 nth_x(q, n-1),
24 None => unreachable!()
25 }
26 }
27 }
28

29 #[requires="0 <= n && n < length(r)"]
30 #[ensures="result.x ==
31 old(nth_x(r, n))"]
32 #[ensures="???"] // See Sec. 6
33 fn nth_point(r:&mut Route, n: i32) ->
34 &mut Point {
35 if n == 0 { &mut r.current } else {
36 match r.rest {
37 Some(box ref mut q) =>
38 nth_point(q, n-1),
39 None => unreachable!()
40 }
41 }
42 }
43
44 #[requires="0 <= n && n < length(r)"]
45 #[ensures="length(r) ==
46 old(length(r))"]
47 #[ensures="nth_x(r, n) ==
48 old(nth_x(r, n)) + s"]
49 #[ensures="forall i: i32 ::
50 (0<=i && i<length(r) && i != n) ==>
51 nth_x(r, i) ==
52 old(nth_x(r, i))"]
53 fn shift_nth_x(r: &mut Route,
54 n: i32, s:i32) {
55 let p = nth_point(r, n);
56 shift_x(p, s);
57 }

Fig. 3. An implementation of routes (sequences of points from Fig. 1), illustrating borrows. Function
shift_nth_x borrows a route from its caller. This reference is reborrowed in the call to nth_point, which
returns a reference to a point in the route. Both borrows expire after the call to shift_x on line 56. Functions
annotated with [pure] are side-effect-free, which can be used in specifications. The missing ??? specification
will be explained in Sec. 6.

4.1 Borrows and Lifetimes
Fig. 3 shows an example built upon the Point example from Fig. 1. Function shift_nth_x borrows
a route from its caller; that is, the capability for the parameter r is transferred to the function.
Each borrow has a lifetime, computed by the Rust compiler, representing an extent in the program
execution for which the borrow needs to remain live; a lifetime always includes at least all program
points where the borrow is used. Note that lifetimes are typically not explicit in the program text,
but chosen implicitly by the compiler. At the end of a borrow’s lifetime, the borrow is said to
expire, and the capabilities associtated with it are restored to the borrowed-from place. Since r in
shift_nth_x is a function argument, its lifetime spans the entire function body.

Reborrowing. It is possible to reborrow either the full place or a sub-place of an existing borrow.
The call to nth_point at line 55 of Fig. 3 implicitly reborrows r and transfers its capability to
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that function. More interestingly, function nth_point creates a borrow to a sub-place of the route,
namely its nth point, and returns it to its caller; this reborrow’s lifetime persists beyond the call in
which it is made. Reflecting this possibility, after the call to nth_point, r is blocked from being
used until p expires, since p’s capabilities could (and indeed are, in this example) be for a part of
the same memory that r had capabilities to access; if r were usable, this would violate exclusivity
of these capabilities.
Reborrowing extends the lifetime of the borrowed-from reference: the original borrow cannot

expire until all (transitive) reborrows are known to have expired. In our example, the lifetime of the
reborrow created for the call to nth_point is extended until the further reborrow p expires after
the call to shift_x2.

Borrow Information. As we have explained in the previous section, constructing the core proof
for a Rust program requires precise capability information, which we have so far represented via
place capability sets and place capability operations at each program point (see Sec. 3.1). This
information is insufficient for programs with borrows; in particular, it does not explain how, when
borrows expire, the capabilities (and corresponding permissions in our Viper encoding) are restored
to where they were borrowed from. For this we need precise information about which borrows are
active for which lifetimes, and which reborrow each other.

We obtain information about the lifetimes selected by the Rust compiler from the latest borrow
checker implementation [Rust contributors 2019a] and additional compiler analyses. In some cases,
we also need to fill in missing information to explain this information; in general, the Rust compiler
tracks negative information (sufficient to check whether an error should be raised), but does not
always store explicit positive information witnessing why type-checking succeeds. We represent
the extracted information as follows: we assign identities to each borrow operation in a function,
as well as every move assignment of a reference (which we treat as a further reborrow), and every
function call which returns a borrow. In terms of these identifiers, we record the set of identifiers of
borrows which are alive before each statement. Moreover, we extract a reborrow relation: a binary
relation on borrow identifiers, indicating which borrows may directly reborrow from which.

4.2 Encoding Borrows as Resource Assertions
In this subsection, we explain how we encode the capabilities associated with a mutable borrow
as well as those for the remainder of the place from which it was borrowed. The next subsection
discusses how the core proof manipulates these capabilities when borrows are created or expire.

The place capabilities associated with a mutable reference are encoded analogously to those for
a box type (cf. Sec. 3.2). We define a Viper predicate to represent each reference type used in the
program. For instance, predicate RefMutPoint for mutable references to points includes an instance
of predicate Point for the referenced point, stored with an extra indirection through val_ref:

predicate RefMutPoint(self: Ref) {
acc(self.val_ref) && Point(self.val_ref)

}

When a Rust function returns a borrow, this must always be a reborrow (possibly transitively) of
a borrow passed as one of the function’s parameters. Rust does not allow returning borrows to
memory owned within the function (for instance, a local variable) because the returned borrow
would become a dangling pointer when the function returns and the owned memory is deallocated.
We refer to functions which take a mutable borrow as parameter and return a borrow as lenders.
2The exact rules depend on the version of Rust; in Rust 1.0, only entire explicit scopes (with a few exceptions) can be used
as lifetimes. The recently introduced non-lexical lifetimes [Rust community 2017] are more fine-grained; we support both.
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Intuitively, when a lender function such as nth_point creates and returns a borrow then it takes
the capability for a parameter place (here, r) and splits it into two parts: the capability for the
borrow returned by the function and any remainder of the original capabilities. Rust does not
provide a way of representing such types with missing capabilities, nor are they used at function
boundaries in Rust’s type checking; instead, the borrowed-from place (including this remainder) is
simply unusable until the returned borrow expires. However, to track information about the values
stored in the borrowed-from data structure, we need to represent this remainder formally in our
core proof and, thus, need a suitable formal model for these remainder capabilities.
Our key insight here is that the separation logic magic-wand connective [O’Hearn et al. 2001]

lets us formally model the remainder capabilities resulting from a reborrow; it can express partial
permissions to data structures, such as the Route with one Point missing. A magic wand assertion
A −∗ B represents a resource which can be combined with the resource A, and A −∗ B and A together
then exchanged for the resource B; this is called applying the magic wand. For our purposes, we
use A to represent the resources that are given up by the expiring borrow, and B to represent those
of the borrowed-from place; the magic wand thus abstractly represents the remainder. In particular,
assertion A and B each encode Rust types for which we already have translations. Magic wands are
also supported by Viper [Schwerhoff and Summers 2015].
For lender functions, we generate Viper postconditions to be a conjunction of: (1) the Viper

embedding of the PCS for the places returned by the function, (2) the translation of any user
postconditions regarding these places, and (3) a magic wand A −∗ B, where A is the same assertion
as (1), and B is the Viper embedding of the capabilities for the parameter from which the returned
reference was borrowed. For example, for the nth_point function of Fig. 3, we generate3:

method nth_point(r: Ref, n: Ref) returns (res: Ref)
requires RefMutRoute(r) && i32(n) && 0 <= n.val && n.val < length(r)
ensures RefMutPoint(res) &&

res.val.x == old(nth_x(r, n)) &&
(RefMutPoint(res) --* RefMutRoute(r))

where RefMutPoint and RefMutRoute are the predicates generated for mutable references to structs
Point and Route, respectively. The magic wand in the example represents both the partial capability
for r and the promise that this partial capability can be combined with the capability currently
associated with res to obtain those originally associated with r; by applying the magic wand (at
call site), we make use of this promise to restore full capabilities for r. As we will show in Sec. 6,
the ability to connect the capabilities returned on expiry with the capabilities of the borrowed-from
data structure is also essential for adding functional specification to lender functions.

4.3 Automating Proofs with Borrows
Viper supports the magic wand connective, but requires annotations in order to reason about
it [Schwerhoff and Summers 2015]. We generate these annotations using our recorded information
from Sec. 4.1.

Restoring Capabilities. In our core proof, we generate operations to formally explain how ca-
pabilities are restored when borrows expire. Intuitively, we use the recorded borrow information
to undo the borrows in an order opposite to that in which they were created, using our extracted
reborrow relation. Starting from the PCS describing the capabilities just before the borrows expire,
we perform the following steps for each borrow. (1) We synthesise any necessary pack/unpack
3Viper also requires us to unfold predicates around expressions which require permissions from their bodies; our work
generates these annotations too, but we elide them here for readability.
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operations to obtain the place capability for the borrower (for instance, the left-hand side of a
borrowing assignment); these are encoded in Viper as fold/unfold operations as explained in
Sec. 3.2. (2) We replace this capability with the place capability from which it was borrowed (for
instance, the right-hand side of a borrowing assignment). For a direct assignment, this is a no-op
in Viper (which already knows the equality of the two locations); for reborrows returned from
lender functions, the replacement is encoded by applying the corresponding magic wand, directed
in Viper via an explicit apply statement.

Consider for example the program point after the call to shift_x at line 56 in Fig. 3. At this point,
the borrow p expires. Based on the information we record, we know that p was returned from the
lender function nth_point, blocking the function’s parameter r from being usable, so we apply the
wand RefMutPoint(p) --* RefMutRoute(r), which was returned by the Viper encoding of the
function call.

Creating Reborrows. When verifying the definition of a function returning a borrow (such as
nth_point above), our core proof needs to create the required magic wand, which is done in Viper
using a package statement. This Viper statement must be annotated with a proof of how, given any
state satisfying the wand’s left-hand side, one will be able to reassemble the wand’s right-hand-side.
As a side-effect, the package statement consumes any additional resources needed to obtain this
right-hand-side (these reflect the remainder capabilities discussed in Sec. 4.2). We generate these
proofs automatically, in an analogous way to the explanation of expiring borrows in the previous
paragraph. The annotations required to automate our proofs in Viper can be elaborate, but we
demonstrate in Sec. 7 that we are consistently able to generate them fully automatically.

We now have the machinery in place to construct a core proof for Rust code that may include
mutable borrows and reborrows. We use similar techniques to handle reborrows inside loops (for
example, when a Rust reference is used to traverse a recursive heap data structure) in order to
generate the required loop invariants at the Viper level completely automatically. In the next section
we will explain how to extend our core proof to shared borrows, and in Sec. 6 how to specify and
verify functional properties concerning reborrows, e.g. to add specification to lender functions such
as the missing postcondition of function shift_nth_x in Fig. 3.

5 SHARED BORROWS
Mutable borrows provide temporary exclusive access to a place, but prevent multiple usable aliases.
In contrast, Rust’s shared references (or shared borrows) permit multiple references to exist to the
same place, or to a place and its sub-places, simultaneously. To ensure the absence of data races
and unexpected side effects via aliasing, Rust’s type system enforces that the shared parts of the
data structure are immutable while at least one such shared reference exists. In this section, we
extend the verification technique presented so far to support shared references.

5.1 Read and Write Capabilities
To distinguish between exclusive, mutable access and shared, immutable access, we refine the
capabilities associated with a place. We associate shared capability with places that store shared
borrows, or which are currently borrowed from by a shared borrow, and use exclusive capability for
all other places (exclusive capabilities correspond to the capabilities used in the previous sections).
This refinement also affects the PCS and PCS operations from Sec. 3: we refine place capability sets
into maps PCS→ {exclusive, shared} to specify which capability is associated with each place in a
PCS. In the initial PCS of a function, parameters of a shared-reference type (such as &Point) are
mapped to a read capability, and parameters of other types to a write capability.
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Pack and unpack operations (cf. Def. 3.2) are extended accordingly: unpacking assigns to all the
sub-places the capability of the unpacked place, while packing requires all the sub-places to have
the same kind of capability, which is then assigned to the packed place. Recall that PCS operations
are applied between statements to reorganise capabilities. In order to go between exclusive and
shared capability, we employ two additional PCS operations, called downgrade and upgrade. These
exchange an exclusive place capability for a shared one and vice versa.

When a shared borrow is created by borrowing a place for which exclusive capability was held,
this causes a downgrade to shared capability, which is then duplicated for both the borrowed-from
place (to make it immutable while the shared borrow exists) and the newly-created borrow. The
original exclusive capability of the borrowed-from place is restored (by an upgrade) only when
the borrow checker has determined that all shared borrows have expired, and so the place (and its
sub-places) can no longer be aliased via shared references.

1 // Count the points of `r` inside the rectangle identified by `a` and `b`
2 fn count_inside(r: &Route, a: &Point, b: &Point) -> u32 { /* ... */ }
3
4 // Move the first point until it is unique in `r`
5 fn make_first_unique(r: &mut Route) {
6 let first = &r.current;
7 // r.current.x += 1;
8 let first2 = first;
9 if count_inside(r, first, first2) > 1 {
10 assert!(first.x == r.current.x);
11 r.current.x += 1;
12 make_first_unique(r);
13 }
14 }

Fig. 4. An example using shared references. Function make_first_unique keeps incrementing the x-
coordinate of the first point in route r until this point’s coordinates are unique among all points in r. By
calling function count_inside with shared references to the same point for parameters a and b, it yields
how often that point occurs in r.

Function make_first_unique in Fig. 4 illustrates the use of shared references. Line 6 creates a
shared reference, which downgrades r to be temporarily immutable for as long as a shared borrow
exists. The type system disallows modifying r in line 7 because r has a shared capability; in contrast,
the assignment in line 11 is permitted because the last shared borrow for r expires at line 10, causing
an upgrade to exclusive capability for r. In the meantime, the assignment in line 8 creates a second
shared borrow, which expires after the call to count_inside. Since this function takes only shared
references, it cannot modify r and, therefore, the assertion in line 10 holds.

5.2 Encoding Read Capabilities
Many separation logics support fractional permissions [Boyland 2003] to distinguish between read
and write access to memory locations. In these logics, a permission can be split into several fractions.
A full permission allows (exclusive) write access, whereas any non-zero fraction permits read access.
After a full permission has been split into fractions, those fractions can be re-combined to get back
the full permission and, thus, write access.

Viper supports fractional permissions as its standard means of expressing read-only access to the
heap; we therefore use these to model shared capabilities. However, in order to accurately reflect
Rust’s type-checking, and fully exploit the information we can extract from the Rust compiler, we
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use fractional permissions in a non-standard way. Constructing a standard proof in a fractional-
permission logic would require elaborate specifications to keep track of the fractional amounts
of permission associated with each shared borrow (which changes as new borrows are created)
and to describe how fractional permissions are transferred between different function executions.
In particular, we would need to precisely reassemble these fractional amounts to justify restoring
write access to a Viper heap location. However, it is not such accounting which should conceptually
justify write access: it is the point at which the Rust compiler performs an upgrade to restore an
exclusive capability because all involved shared references have expired.

Therefore, we construct our core proof relying on Rust’s borrow checker to indicate when a first
shared borrow for a place is created (and a downgrade is performed to make the borrowed-from
place temporarily immutable) and when the last shared borrow expires (and a corresponding
upgrade is performed, so that the place becomes mutable again). In particular, our core proof does
not need to add up fractions in order to reassemble a full permission and, thus, the precise fractional
amounts associated with shared borrows are irrelevant, as long as we can distinguish between read
and write access.

Our encoding uses full permissions for write access (as in the previous sections) and a so-called
symbolic read permission [Heule et al. 2013] for read access. A symbolic read permission uses a
fractional amount that is unspecified, but constrained to satisfy the following properties: (1) it is
greater zero and, thus, permits read access, and (2) the sum of all symbolic amounts for any given
resource is less than a full permission. The latter property allows one to create additional symbolic
read permissions without the risk of ever obtaining (or exceeding) a full permission.
Our encoding maintains the following invariant for each place p whose type is not a shared-

reference type: if p is not borrowed from, there exists a full permission for the associated Viper
resource; otherwise, if there exist shared borrows for p then p and each of the shared references is
associated with a symbolic read permission. To maintain this invariant, we encode operations on
shared borrows as follows. When the capability for p is downgraded, we replace the full permission
for the corresponding Viper resource with a symbolic read permission (through a Viper exhale
operation) and create a symbolic read permission for the new shared reference (through an inhale
operation). Conversely, when the last shared borrow expires (and a downgrade is performed), we
remove its read permission and restore the full permission of the borrowed-from place. In between,
when additional shared borrows are created, we simply give them an additional symbolic read
permission. This forging of symbolic read permissions is sound because, as we explained above, the
sum of all symbolic read permissions is constrained to be less than a full permission. Analogously,
we forge a new symbolic read permission when a shared reference p is passed to a function call.
This encoding allows the caller to retain its read permission to p and to use it for framing, that is,
conclude that the function call cannot change the referenced value.
In the example of Fig. 4, function make_first_unique starts out with a full permission to r

because it is a mutable reference. The assignment in line 6 creates the first shared borrow for r
and, thus, replaces r’s full permission with a symbolic read permission. Line 8 creates another
shared borrow with another read permission. When calling the function in line 9, the caller retains
a read permission to r and is therefore able to conclude that the call does not affect the equality
first == r.current, which was established in line 6 and which implies the assertion in line 10.
After this assertion, the last shared borrow of r expires, which restores full permission and, thus,
enables the assignment in line 11 as well as the subsequent recursive call.

6 PLEDGES FOR MUTABLE BORROWS
It is common for Rust functions to be passed a reference (borrow) as parameter, create a further
reference from it (via reborrowing) and to return the new reference to their callers. This idiom
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1 #[ensures="after_expiry<result>(
2 length(r) == old(length(r)) &&
3 nth_x(r, n) == before_expiry<result>(result.x) &&
4 forall i: i32 :: (0<=i && i<length(r) && i != n) ==>
5 nth_x(r, i) == old(nth_x(r, i))
6 )"]
7 fn nth_point(r: &mut Route, n: i32) -> &mut Point { /* ... */ }

Fig. 5. An example of our pledge specification feature. The postcondition shown here is the missing third
postcondition of nth_point from Fig. 3. The first conjunct states that the function does not change the
length of the route before creating the borrow, by relating the prestate of a call to nth_point to the state in
which the result borrow expires. Similarly, the third conjunct states that all points other than the nth have
unchanged x-values. The second conjunct relates the result borrow right before the expiry to the rest of
the borrowed-from place.

is for instance used in getters such as function nth_point in Fig. 3. Callers of such lender func-
tions require information about the new borrow as well as the borrowed-from place in order to
determine properties of the data structure when the borrow expires. For instance, verifying the
three postconditions of shift_nth_x in Fig. 3 relies on the fact that the call to nth_point does not
modify the route r; if the call, for instance, removed the first point from the route, none of the
postconditions would hold.
Since lender functions (such as nth_point) may modify the borrowed-from place before the

borrow is created, information about the presence or absence of such side effects needs to be
conveyed to callers via the function’s postcondition. For shared borrows, this is possible because
the borrowed-from place remains usable and, thus, may be accessed in the function’s postcondition.
However, as we discussed in Sec. 4, returning a mutable borrow renders the borrowed-from param-
eter unusable until the borrow expires. Consequently, referring to the borrowed-from place in the
postcondition would violate Rust’s type rules and have an unclear semantics as it would introduce
aliasing among mutable references. In this section, we introduce pledges, a novel specification
construct that lets us specify lender functions. For instance, pledges let us express that nth_point
does not modify the route r (despite having the capabilities to do so, according to its signature).

Pledges. Pledges are assertions that can be used in postconditions of lenders to specify properties
of borrowed-from places guaranteed to hold at the time when the borrow expires, that is, when
the borrowed-from place becomes usable again. This design is compliant with the Rust rules as
it avoids referring to unusable places; as we will explain towards the end of the section, it is also
essential for modular reasoning.
When a lender returns a mutable borrow, this effectively separates the place for the borrowed-

from parameter into a part that can still be accessed through the returned borrow and an unusable
remainder. For example, for nth_point from Fig. 3, these are the returned point p and the remainder
of the route r. In general (though not in our example), a lender could have modified both parts
of the borrowed-from parameter before returning. After returning, the unusable remainder is
known to be unchanged until the new borrow expires. However, the part that can be accessed
through the returned borrow may get modified by client code, after calling the lender. For instance,
shift_nth_x modifies the borrowed point p. In a modular setting, lenders cannot anticipate how
the returned borrow will be modified. Therefore, pledges specify their guarantees parametrically
with the state of the returned borrow when it expires. For example, for nth_point we need a way
to explain how r will look after p expires, irrespective of how the client manipulates the borrowed
memory.
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Fig. 5 shows the third postcondition for nth_point from Fig. 3. It contains a pledge, expressed
as argument to the after_expiry construct, which is parameterised by the borrow it specifies
(here, result). The pledge itself expresses three guarantees: (1) the length of the borrowed-from
Route r will be unchanged since the prestate of the call to nth_point, (2) the x-coordinate of r’s
nth Point will be equal to that of the returned borrow at the time the borrow expires, and (3) all
other x-coordinates of the Route will be unchanged. Note that nth_point can guarantee these
properties because the remainder of r cannot be modified until the borrow expires and because
they hold irrespective of the changes made to result.x until then. The before_expiry notation
lets a pledge refer to the borrow right before it expires; it is needed because the borrow is no longer
usable after it expires.

This pledge is sufficiently strong to verify the postcondition of shift_nth_x in Fig. 3. It provides
strong guarantees about the borrowed-from place without constraining how clients may modify
the borrow and, thus, enables modular specifications.

Modularity. Our pledges feature respects Rust’s typing discipline by expressing properties of the
borrowed-from place (r in our example) only in states in which Rust allows it to be used. One might
be tempted to consider a simpler alternative design which does allow such violations for the sake of
writing standard postconditions: e.g. allowing nth_point to express directly that r is unchanged us-
ing forall i: i32 :: (0<=i && i<length(r)) ==> nth_x(r, i) == old(nth_x(r, i)). Yet,
such a postcondition is useless to a caller that subsequently makes modifications via the returned
borrow p. Since p aliases a sub-place of r, any such change may affect properties of r, for instance,
the value of nth_x(r, i). Consequently, we no longer obtain an automatic way to precisely frame
such properties. Clients would need to know precisely how to reach p from r and how the functions
length and nth_x are defined, which would violate information hiding. Moreover, clients would
have to prove inductive lemmas to show how changes via p affect properties of r, losing automation.
Our pledges avoid these problems.

Encoding. The encoding of our verification technique to Viper extends naturally to pledges; a
pledge is translated as an additional conjunct on the right-hand-side of the magic wand that is
created when a mutable borrow is created. Recall from Sec. 4.2 that the right-hand-side indeed
represents the state as it will look once the borrow expires; pledges let us complement the resources
there with properties of the values stored in the borrowed-from place.
When such a magic wand is packaged (cf. Sec. 4.3), Viper proves that the claimed pledge will

indeed hold for any future state of the borrowed memory, which is necessary to soundly account for
any possible changes to the borrow. Viper permits expressions old[lhs](e) on the right-hand-side
of a magic wand, which evaluate to e’s value in the state in which the wand is applied; this feature
enables us to encode our before_expiry construct in a straightforward way.

7 IMPLEMENTATION AND EVALUATION
We have implemented our work as a plugin for the Rust compiler, and evaluated it on a wide
variety of crates (Rust packages) from the Rust package repository. The evaluation shows that our
technique can generate core proofs fully automatically and verify interesting correctness properties
without the need for complicated specifications.

7.1 Implementation
We implemented a tool called Prusti as a Rust compiler plugin, usable with Cargo, the official package
manager for Rust. Working with Prusti provides a similar experience to existing tools used by Rust
developers, such as the Rust linter Clippy [Clippy contributors 2019]. Prusti performs its main work
after the type checking pass of the Rust compiler. We extract the compiler’s CFG representation
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(MIR) along with type and borrow-checker information, construct the corresponding Viper program,
and verify it with Viper’s symbolic execution verifier; verification results are translated back from
Viper to Rust and reported using the Rust compiler’s error reporting mechanisms. In addition to
proving user specifications, Prusti optionally checks absence of panics and overflows.
Our current tool works on an interesting subset of safe Rust, including for instance heap-

allocated data and Box types, shared and mutable borrows, traits, generics, and common use cases
of lifetime parameters to functions. We have not yet implemented support for reborrowing inside
loops, pure functions returning non-primitive types, and abrupt termination of loop bodies; these
restrictions will be lifted in the future (and can typically be worked around by rewriting the
program). During the development we built a test suite of more than 300 correct and incorrect Rust
programs (annotated with expected verification errors) to check that we model corner cases of
Rust’s semantics correctly.

To support libraries, our tool provides a #[trusted] annotation, allowing us to equip functions
with contracts used by callers but not checked against the function’s implementation.

7.2 Evaluation
We evaluate our work in three ways: (1) we evaluate the construction of core proofs on all functions
from the top 500 Rust crates that fall within our supported language subset; (2) we evaluate the
ability to verify simple functional properties by proving the absence of overflows in examples
that check for overflow at runtime, to determine whether these runtime checks may ever fail
(without any user-provided specifications); (3) we evaluate the use of user-provided specifications
by verifying panic freedom and richer functional correctness properties of existing implementations
of well-known algorithms. All timings were performed using a clean Ubuntu 18.04.1 installation,
on a desktop with a 4-core (8 hyper-threads) Intel i7-2600K 3.40GHz CPU, 32GB of RAM and an
SSD disk.

(1) Core Proofs. To test the automation of our core proof construction, we took the 500 most
popular Rust community crates [Rust community 2018a], and applied three simple filters: firstly, we
discarded any crates (148) which did not compile successfully within 15 minutes using the standard
compiler4 (without our tool); secondly, we filtered all remaining 56,257 functions (top-level, impl
and trait functions) with a simple syntactic check for unsupported language features; thirdly, we
manually discarded ten unusually large functions that would have taken more than one minute
just for the encoding, due to the large number of local variables used (five implement 4×4 matrix
operations; the other five contain huge match expressions with up to 2,000 cases). This left us with
11,791 functions (21% of the total) to evaluate our work on. We re-ran the compiler with Prusti on
the unmodified source code of these functions to generate and verify core proofs.

The verification of these 11,791 functions succeeded as expected, without any need for manual
intervention. This shows that we generate sufficient annotations to automate the core proof in
Viper. These annotations are non-trivial: we generated a total of 1,140,384 lines of Viper code, of
which 138,499 are fold, unfold, package or apply statements to automate the proofs.

We measured how much time is required by Viper to verify each function, reporting results
(averaged across three runs) in Fig. 6 (left). We observe that the average verification time per
function is 1.2 seconds, that only 0.16 seconds are enough to verify 50% of the functions, and that
almost all the functions (98.6%) are verified in less than 10 seconds each. A small fraction of the
functions takes more than 10 seconds to verify, for the same reasons as the ten unusually-large
functions we discarded (see above). Since the MIR representation used for the encoding is highly
4rustc nightly-2018-06-27; flags -Zborrowck=mir -Zpolonius -Znll-facts and using the reference Polonius
algorithm (“Naïve”).
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assert!(..) might not hold 2
unreachable!(..) might be reachable 1
add with overflow 77
remainder with a divisor of zero 50
remainder with overflow 48
divide by zero 42
divide with overflow 45
multiply with overflow 105
negate with overflow 18
subtract with overflow 71
solver incompleteness 8

Fig. 6. Left: cumulative distribution of the verification time (horizontal axis, in seconds) required for the
core proof verification of each of the 11,791 supported functions (177 functions required between 10 and 120
seconds; 11 required between 120 and 888 seconds). Right: distribution of error messages for the overflow
freedom evaluation on 520 functions.

unoptimized and uses significantly more (temporary) local variables than the source program, we
can reduce this overhead in the future by enabling simple optimisations that the compiler runs in
later stages.

(2) Overflow Freedom. We identified 520 functions which potentially raise panics due to overflows
or assertions. We re-ran Prusti on these, enabling checks for panics and overflows (again, without
specifications). Interestingly, 52 of these functions verified; on manual inspection, this was due to
expressions that cannot overflow (e.g. x-x/4), or that were guarded by range checks. Since our tool
proves soundly that these checks can never fail, one could eliminate them to improve performance
without compromising safety.

For each of the remaining 467 functions, Prusti reported a verification error, listed in Fig. 6 (right).
Manual inspection showed that these are mostly due to implicit assumptions on argument ranges;
our technique makes it possible for developers to make these assumptions explicit as preconditions,
and verify them at each call site. In eight cases, Prusti failed to prove that Rust’s dynamic overflow
checks actually imply that an operation does not overflow. Our inspection revealed that these
verification failures are due to the handling of non-linear arithmetic in the underlying Z3 SMT
solver. Increasing Viper’s timeout for each Z3 query from 10 to 60 seconds results in “divide by
zero” verification errors in all eight cases, which is the expected result.

(3) Specifications and Functional Behaviour. In the third part of the evaluation, we investigated
the specification and verification of both absence of panics and richer functional properties, using
examples from the programming chrestomathy site Rosetta Code [Rosetta Code contributors 2018],
a Rust tutorial on linked lists [Rust community 2019], and from Matsakis’ blog posts on Rust’s
language design [Matsakis 2018a,b]. From Rosetta Code, we manually selected a diverse list of
eleven examples that either fall into the supported subset of the language or can be adapted without
major changes. In order to handle examples using standard library types, we wrote wrappers
marked with #[trusted] for these types (as explained above); we also rewrote for loops as while
loops, and restructured some code to avoid return and break statements.
The table in Fig. 7 gives an overview of the verified examples (we provide the code including

specifications as auxiliary material). Before any manual modifications, the Rosetta Code examples
had between 10 to 89 lines of code (excluding blank lines and comments) and between 1 and 6
functions. The average total verification time (averaged over 3 runs) is typically less than 30 seconds,
which we consider reasonable for our so far unoptimised encoding and tool. The slowest examples
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Example LOC #Fns Spec. Time (s) No No Verified Additional
LOC All Viper Panic Overflow Properties

100 doors 19 2 7 10.9 7.4 ✓ ✓
Binary Search (generic) 16 1 2 16.2 12.9 ✓ ✓
Heapsort 39 3 18 30.6 26.2 ✓ ✓
Knight’s tour 89 6 71 127.6 120.2 ✓ ✓
Knuth Shuffle 16 2 3 9.5 6.2 ✓ ✓
Langton’s Ant 58 4 22 16.7 11.8 ✓ ✓
Selection Sort (generic) 20 2 8 19.2 15.2 ✓ ✓

Ackermann Func. 16 2 17 7.4 4.4 - × Correct result
Binary Search (monomorphic) 16 1 29 25.5 21.4 ✓ ✓ Correct result
Fibonacci Seq. 46 6 26 9.1 5.7 - - Correct result
Knapsack Problem/0-1 27 1 86 139.4 131.6 ✓ × Correct computation
Linked List Stack 59 5 60 21.4 16.9 ✓ - Correct behaviour
Selection Sort (monomorphic) 20 2 34 29.6 24.2 ✓ ✓ Sorted result
Towers of Hanoi 10 2 5 5.9 3.2 - ✓ Correct param. range
Borrow First 7 1 1 6.6 3.6 ✓ ✓
Message 13 1 0 7.2 4.2 × -

Fig. 7. An overview of the examples verified in the third part of the evaluation. The column “LOC” indicates
the number of lines in the unmodified example; “#Fns” is the number of verified functions; “Spec. LOC” is
the number of lines used for specification and ghost code; “All Time” indicates the time in seconds required
to encode and verify the example; “Viper Time” is just the time needed by the Viper symbolic execution
back-end verifier to verify the encoding. “No Panic”/“No Overflow” shows whether we verified absence of
panics/overflows (“–” means that the example contains no operations that could panic/unchecked arithmetic).
The first two groups of examples are taken from the Rosetta Code website [Rosetta Code contributors 2018],
except the “Linked List Stack” example which we took from [Rust community 2019] because it is more
complete than the one in Rosetta. The second group differs from the first one in that we verified some
functional properties. For example, for the “Ackermann Func.” and “Fibonacci Seq.” examples, we showed
that multiple implementations all compute the correct result. We had to monomorphise “Binary Search” and
“Selection Sort” for proving stronger functional properties because Prusti does not yet support intrinsic trait
properties such as transitivity of the equivalence operator. The precondition we chose for the Ackermann
functions do not prevent overflow and, thus, this aspect could not be verified (indicated by “×”). In “Knapsack
Problem/0-1” we verified correctness of all intermediate computations; correctness of the result and absence
of overflow would require sum comprehensions, an advanced specification feature not yet supported in Prusti.
The two examples in the last group are fromMatsakis’ blog posts about non-lexical lifetimes in Rust [Matsakis
2018a,b]. For one of them, proving panic freedom failed because the program does not handle all IO errors.

“Knight’s tour” and “Knapsack Problem/0-1” take less than two and a half minutes (each of them
contains one large function that takes most of the time). In all cases, standard deviations were
around 1 second.
For most examples, we verified the absence of panics and overflows, by adding specifications

where necessary. In some cases, for example for “Binary Search”, this required adding only a simple
invariant that the indices are no larger than the vector’s length, which allowed the verifier to prove
not only the absence of out-of-bounds accesses, but also the absence of overflows. In other cases,
for example for “Knight’s tour”, we had to add ghost code to encode object invariants. The most
interesting specification for proving panic-freedom is for “Langton’s Ant”, which required not only
quantifiers to specify an invariant of the grid on which the ant walks, but also a pledge to specify
how changes made via borrows affect the invariant of the grid. Via our evaluation, we found a bug
in the source code of this example, which causes an integer overflow during execution. We fixed
this error by correcting existing boundary checks and types.
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For seven examples, we also verified properties that go beyond basic safety. For two of them,
we had to monomorphise the generic parameters to integers in order to use integer comparisons
instead of a trait function. Functional correctness of the binary search example initially failed to
verify; closer inspection revealed an off-by-one bug in the source code (a fixed version verifies with
our tool). We encode other properties such as sortedness (“Selection Sort”), functional correctness
of recursive and iterative implementations (“Fibonacci Seq.” and “Ackermann Func.”), functional
correctness of a data structure (“Linked List Stack”), correctness of intermediate computations
(“Knapsack Problem/0-1”), and validity of parameter values in function calls (“Towers of Hanoi”).

These seven examples require on average 1.3 lines of annotation per line of code. While this
overhead is not negligible, it is lower than the overhead required by existing verifiers for heap-
manipulating programs. Moreover, our annotations are conceptually much simpler since they are
expressed in terms of Rust expressions rather than complex program logics. Another core advantage
of our approach is that the user is not forced to provide all of them from the beginning, but can
add them gradually to strengthen the verified properties. For instance, proving safety for “Binary
Search” requires only two lines of annotations. To additionally prove that the returned index is
correct if Some is returned, the user needs to add two additional straightforward assertions. Finally,
proving correctness for the case that None is returned is slightly more involved because it requires
to write a quantifier that expresses that the vector is sorted. Nevertheless, none of these assertions
expose the complexity of program logics for concurrent, heap-manipulating programs.

We also evaluated our tool on two examples from Matsakis’s blog [Matsakis 2018a,b], designed
to illustrate difficult borrowing patterns. The support for the first example was added to stable Rust
only recently, while the second one still requires a nightly-build version of Rust. Both examples are
already supported by our tool (using the corresponding new borrow checker implementation).

8 RELATEDWORK
Capability-Based Type Systems. Many other type systems can also be understood to associate

capabilities with reference types [Boyland et al. 2001]. Some extend pre-existing languages (e.g.
Sing♯ [Barnett et al. 2011], C♯ [Gordon et al. 2012] and Scala actors [Haller and Odersky 2010]);
more recently, several programming languages have built these in (e.g. Pony [Clebsch et al. 2015],
AEminium [Stork et al. 2014], and Rust itself [Matsakis and Klock II 2014]). Such built-in type
systems are exploitable by the compiler: e.g. for memory management in Rust, or to enable the
distributed garbage collection in Pony. While these systems provide programmers with stronger
guarantees than traditional type safety, functional correctness of programs cannot be expressed: our
work shows how to layer such verification concerns on top, while exploiting the benefits provided
by the type system.

Type Systems for Verification. Liquid Types [Rondon et al. 2008] equip types with logical qualifiers
prescribing value properties; their extension to Alias Refinement Types [Bakst and Jhala 2016]
applies to mutable heap data structures. Type checking is decidable, and loop invariants can be
inferred. Unlike our work (cf. Secs. 4 and 6), there is no support for references (reborrows) which
persist beyond the function calls or loops they are created in.

SYMPLAR [Bierhoff 2011] targets formal verification for Java, employing a notion of permissions
to separate reasoning about aliases from verification conditions concerning values. Like our work,
user-specification is at the level of the programming language. A planned addition to SPARK (a
subset of Ada designed for formal verification) will add pointer support [Maalej et al. 2018], using
a type system similar to Rust. In both systems, returning reborrowed references is not supported.

Rust Verification Tools. CRUST [Toman et al. 2015], a recent adaptation of SMACK [Baranowski
et al. 2018], and Lindner et al. [Lindner et al. 2018] provide bounded verification tools for Rust
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(including unsafe code); these tools allow user checks to be added as Rust expressions. These
tools work on C/LLVM code where Rust’s type information is absent. By contrast, we exploit this
information formodular unbounded (sound) verification, and support richer functional specifications
via old expressions and pledges.

Ullrich [Ullrich 2016] encodes safe Rust programs into functional programs, to be interactively
verified in Lean [de Moura et al. 2015]. Reborrows are supported via lenses [Foster et al. 2005].
Recent work at Galois similarly reduces reasoning about a subset of safe Rust to proofs about
functional programs in Saw [Dockins et al. 2016]. In contrast to these works, our technique does
not require the manual construction of proofs or verifier directives; in addition, our underlying
separation logic formalism will provide a suitable (imperative-style) model for an extension to
unsafe code in the future.
As a general point, we believe our implementation to be the first verification technology so far

to operate directly on the Rust compiler’s analysis results and representations of source programs;
there is no gap between the Rust programs and notions and the starting point for our work.

Rust Semantics and Formalisations. A number of formalisms for subsets of Rust have been
designed, focusing on type soundness results [Kan et al. 2018; Reed 2015; Wang et al. 2018; Weiss
et al. 2018]. It would be interesting to compare these formal models with the PCS/borrow summaries
that our work produces from the compiler.

Rustbelt [Jung et al. 2017] provides a formalisation aimed at proving unsafe library implementa-
tions to encapsulate their unsafe behaviour, and defining formally what this notion should mean for
Rust. As explained in the introduction, the goals and contributions of our work are very different;
we do not address Rust semantics, and our technique enables users to be shielded from the com-
plexity of formal logics capable of expressing such semantics. There are also important technical
differences in the underlying logics: Rustbelt’s handling of borrow expiry supports more cases of
borrows (even in unsafe code), but does not express a direct connection between the contents of
memory returned by these borrows and the resulting contents of borrowed-from memory (handled
by magic wand assertions in our work); without substantial additional ghost code, we believe that
our pledges specifications cannot be directly encoded in Rustbelt’s logic.

9 CONCLUSIONS
We presented a new specification and verification technique for Rust, leveraging the guarantees
provided by the language’s type system, and synthesising from these automatic core proofs in a
logic akin to separation logic. By providing specifications at the level of abstraction of the Rust
language, programmers can extend this core proof to verify rich functional properties. Verification
is performed via an automatic translation to the Viper infrastructure. A key virtue of our technique
is that it does not expose the complexity of the underlying verification logic; programmers work
exclusively on the level of Rust programs, which facilitates adoption. Our work is implemented
and freely available. Our evaluation shows that we can reliably automatically construct core proofs
for real-world Rust code and verify functional correctness properties without resorting to complex
program logics.

Our main goal for future work is to extend the subset of Rust supported by our technique and tool,
in particular, to add iterators, closures, and structures with lifetime parameters; these extensions
will broaden the applicability of our technique to a wider range of real-world code. We also plan to
add support for certain classes of unsafe code.
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A ENCODING TO VIPER
In this section we will show step-by-step how the method force_inc provided in Fig. 8 is encoded
to Viper. Some technical details are simplified, because the compiler internally translates the source
program to MIR: a CFG-based representation, much more verbose than the original program. At a
high level, Prusti encodes each Rust function to a Viper method, each Rust pure function to a Viper
function, and each Rust type to a Viper predicate.

A.1 Encoding of functions
The encoding of functions is structured in three parts:

(1) generation of pack and unpack operations;
(2) encoding of the function signature;
(3) encoding of function’s statements.

Pack and unpack. The technique described in Sec. 3 is used to annotate the MIR representation
with pack and unpack operations. In the case of force_inc the generated operations are shown as
comments in the source program of Fig. 8. The first three unpack are required to access r.current.x;
then at lines 22-23 further unpack are needed to access*r.rest.0 , due to the (implicit) initialization
of rest at line 25. Note that one unpack needs to know the variant of r.rest, which inside the
branch the compiler knows to be Some. At the end of the branch, lines 29-30, the pack operations
are needed to unify the PCS with the one coming from the (empty) else branch, in which no
unpack was ever performed. Note that in this case joining the two PCSs is only possible by using
pack operations, because line 22 used a branch-specific information. Finally, at lines 33-35 the
pack operations are used to restore the initial fully-packed state of r: the only argument of type
reference, whose capability needs to be transferred back to the caller.

Pre- and postcondition. The signature of the function is then used to generate the signature of
the Viper method, in which each Rust argument is encoded as a Viper reference. The type of the
arguments is used to encode the first inhale in the Viper method, which encodes the permissions
of the precondition — that is, the capabilities transferred to the function. Similarly, the last exhale
statement encodes the permissions of the postcondition — that is, the capabilities that the function
gives back to the caller. In Fig. 8, only the capabilities of r go back to the caller, because it is the
only argument of type reference. When specified, the functional specification of the precondition
is conjoined to the expression of the first inhale, and the postcondition to the expression of the
last exhale, as in the case of force_inc.

Statements. Each statement is then encoded independently. Considering Fig. 8:

(1) At unpack-1 and unpack-2 the unpack statements are encoded as Viper’s unfold. Similarly,
at pack-1 and pack-2 the pack statements are encoded as Viper’s fold. Since which fields
compose the enumeration r.rest depends on the value of the discriminant, the related pack
and unpack PCS operations depend as well on the variant of the enumeration — in this case
Some. The pack operations at unpack-2 are needed to join with the PCS of the (empty) else
branch.

(2) At pure-call an assignment and call of a function marked as pure is encoded with a cor-
responding Viper assignment and function call. Since the Viper encoding uses one more
indirection than Rust, any statement that needs to access the value of a Rust type is wrapped
in pairs of unfold-fold statements; in this case to access the last field of min_x.val_i32 and
r.val_ref.current.x.val_i32.



1:28 Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers

1 #[pure]
2 fn max(a: i32, b: i32) -> i32 {
3 if a < b { b } else { a }
4 }
5
6 #[ensures="<post>"]
7 fn force_inc(r: &mut Route,
8 min_x: i32)
9 {
10 // unpack r
11 // unpack (*r)
12 // unpack (*r).current
13
14 r.current.x = max(
15 r.current.x,
16 min_x
17 );
18
19 if let Some(
20 box ref mut q
21 ) = r.rest {
22 // unpack (*r).rest as Some
23 // unpack (*r).rest.0
24
25 // let q = &mut(*r.rest.0)
26
27 force_inc(q, r.current.x);
28
29 // pack (*r).rest.0
30 // pack (*r).rest as Some
31 }
32
33 // pack (*r).current
34 // pack (*r)
35 // pack r
36 }

method force_inc(r: Ref, min_x: Ref) {
inhale RefMutRoute(r) && i32(min_x)
label pre

unfold RefMutRoute(r)
unfold Route(r.val_ref)
unfold Point(r.val_ref.current)
unfold i32(r.val_ref.current.x)
unfold i32(min_x)
r.val_ref.current.x.val_i32 := max(
r.val_ref.current.x.val_i32,
min_x.val_i32

)
fold i32(min_x)
fold i32(r.val_ref.current.x)
var discriminant: Int := unfolding ...

in r.val_ref.rest.discriminant
if (discriminant == 1) {
unfold OptionBoxPoint(r.val_ref.rest)
unfold BoxPoint(r.val_ref.rest.elt0)

var q: Ref
inhale acc(q.val_ref)
q.val_ref :=

r.val_ref.rest.elt0.val_ref
fold RefMutRoute(q)

var arg2: Ref
inhale i32(arg2)
unfold i32(arg2)
unfold i32(r.val_ref.current.x)
arg2.val_i32 :=

r.val_ref.current.x.val_i32
fold i32(r.val_ref.current.x)
fold i32(arg2)
label call_pre
exhale RefMutRoute(q) && i32(arg2)
inhale RefMutRoute(q) && <post>

fold BoxPoint(r.val_ref.rest.elt0)
fold OptionBoxPoint(r.val_ref.rest)

}
fold Point(r.val_ref.current)
fold Route(r.val_ref)
fold RefMutRoute(r)

exhale RefMutRoute(r) && <post>
}
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Fig. 8. An encoding of force_inc to Viper. The function is augmented with pack and unpack operations,
and is then translated to the Viper method shown on the right. The encoding of the postcondition<post> is
in Fig. 10. Note that Rust implicitly dereferences r when accessing its fields.
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(3) The if let construct is encoded as a lookup of the value of the discriminant, used immediately
after as guard in the branching. The unfolding expression acts similarly to a pair of unfold-
fold statements, temporarily unfolding r.val_ref.rest to access the discriminant field.

(4) At assign the allocation and initialization of the local variable q is encoded using a Viper local
variable and an assignment that sets its referenced object. The predicate instance that encodes
its type, RefMutRoute, is obtained in three steps: first the variable obtains at its allocation the
access predicate for the val_ref field; then, the predicate instance for the referenced object
is obtained from the assignment; finally, a fold statement packs the wanted predicate.

(5) At copy and call a call of a non-pure function is encoded. Initially, a temporary local variable
arg2 is introduced to encode the copy of the second argument. Then, at call the precondition
of the called function is exhaled and its postcondition inhaled. The label call_pre is used in
the encoding of expressions of the postcondition that refer to the state of the precondition.

A.2 Encoding of types
To verify the example in Fig. 9 it is necessary to encode in Viper (as already described in Sec. 3) all the
types used in the program: i32, Point, Box<Point>, Option<Box<Point>>, Route, and &mut Route.

Primitive types. The encoding of i32 consists of a Viper reference with a field of type Int, which
stores the value of the type.

Structures and enumerations. The encoding of Rust structures, like Point and Route, follows the
intuition that a structure is just a set of fields. Indeed, the predicate of each structure encodes the
permission to access the fields, plus the type of each field.

Rust enumerations are a generalization of structures. The main difference with structures is that
enumerations need to store the discriminant: a tag that identifies which variant of the enumeration
is actually stored in memory. The value of the discriminant dictates which fields compose an
enumeration, and this aspect is encoded using implications in the predicate, as can be seen in the
encoding of Option<Box<Point>>.

Mutable references and boxes. Since in Rust it is possible to reference both local variables and heap
allocated structures, the Viper encoding needs a uniform way to identify the referenced memory
location. For this reason, we decided to model all Rust values as Viper objects, such that each Viper
reference models a Rust memory location. The encoding of Rust references like &mut Route, thus,
consists in a Viper reference with a field that stores the referenced location, which holds an instance
of the corresponding predicate.

Similar requirements need to be satisfied for the encoding of boxes, already presented in Sec. 3,
and the resulting encoding is identical to the encoding of references.

A.3 Encoding of pure functions and specifications
The encoding of Rust functions marked as pure consists in the construction of a single Viper
expression that defines the value returned by the Rust function. The computed expression is then
used as body in the definition of a Viper function. Primitive types, in the case of pure functions, are
directly encoded with Viper’s Int and Bool types. The resulting encoding of max is almost identical
to its Rust version:

function max(a: Int, b: Int): Int { a < b ? b : a }

The same technique is used to encode the specifications defined in the requires, ensures and
invariant attributes. Valid Rust code contained in the specifications is converted to an equivalent
Viper expression, with the only difference that old(..) expressions need a Viper label that specifies
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to which state they refer to. For this reason, label statements are generated in Viper to identify
with pre the program point in which the precondition holds, and with other labels the program
point before each function call. Missing preconditions or postconditions are considered to be true
by default.
Continuing the example of Fig. 8, the encoding of a possible postcondition for force_inc is

shown in Fig. 10.

B PCS TRANSFORMATIONS
As explained in Sec. 3, each Rust statement may require certain capabilities to be in the PCS and
then transform the PCS. The transformation can be defined as a function that given an input PCS
computes the output PCS, corresponding to the post-state of the statement. In this appendix we
provide additional details with an example.

Definition B.1. The prefixes of a place p is the set of places Pp containing p and all places that
are the sub-place of an element of Pp . The proper prefixes of a place p is the set of the prefixes
of p, excluding p itself. The extensions of a place p is the set of places Ep containing p and all the
places p ′ that have a prefix in Ep . The proper extensions of a place p is the set of the extensions of p,
excluding p itself.

Consider the move assignment rhs = lhs, where lhs and rhs are places. The requirement of
this statement is that the input PCS must contain rhs. The output PCS is then computed from the
input PCS by performing the following operations:
(1) remove rhs;
(2) remove all proper extensions of lhs;
(3) unpack proper prefixes of lhs, if any, until lhs is obtained;
(4) add lhs.
The first step is needed to mark that rhs is moved, thus unusable. The following two steps are

needed to bring the PCS in a state in which lhs and rhs have the same capability. If lhs can not
be reached that way, the last step adds it. This happens e.g. when initializing new variables or
moved-out places.

Example. We can see in Fig. 11 an example with two assignments, of which the first is an implicit
statement generated by the if let construct. Starting from the top, if let requires curr.next to
be in the PCS, so the unpack at line 8 is generated.

The first assignment has *curr.next.0 on the right-hand-side, so the requirement is to have it
in the PCS. This is fulfilled by lines 13 and 15, which make use of the type-checker information
regarding the variant of curr.next. The assignment then transforms the PCS using steps (1) and
(4), introducing for the first time tail in the PCS.

The requirement of the second assignment is already fulfilled by the PCS, so no pack/unpack is
needed. The statement then uses steps (1), (2) and (4) to transform the PCS. Note that in the resulting
PCS there is no mention of tail, which has been moved-out; curr is fully packed, meaning that it
does not contain moved-out subfields.
After the assignments, the two branches of if let need to be joined, but they have different

PCS. The conflict is thus resolved by unpacking curr in the first branch. An alternative solution
would be to pack curr in the else branch.

The final PCS has no special requirements, since no expression is returned to the caller and no
parameter is passed by reference.
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predicate i32(self: Ref) {
acc(self.val_i32)

}

predicate Point(self: Ref) {
acc(self.x) && i32(self.x) &&
acc(self.y) && i32(self.y)

}

predicate Route(self: Ref) {
acc(self.current) &&
Point(self.current) &&
acc(self.rest) &&
OptionBoxPoint(self.rest)

}

// Encoding of type `Box<Point>`
predicate BoxPoint(self: Ref) {

acc(self.val_ref) &&
Point(self.val_ref)

}

// Encoding of type `Option<Box<Point>>`
predicate OptionBoxPoint(self: Ref) {

acc(self.discriminant) &&
0 <= self.discriminant &&
self.discriminant <= 1 &&

// Variant 0: `None`
(self.discriminant == 0 ==> true) &&

// Variant 1: `Some(Box<Point>)`
(self.discriminant == 1 ==>
acc(self.elt0) &&
BoxPoint(self.elt0)

)
}

// Encoding of type `&mut Routè
predicate RefMutRoute(self: Ref) {

acc(self.val_ref) &&
Route(self.val_ref)

}

Fig. 9. Encoding of the types used in Fig. 8. All the fields are of type Ref, except for discriminant and
val_i32 which are Int.

1 #[ensures="length(r) == old(length(r))"]
2 #[ensures="r.current.x == max(old(r.current.x), min_x)"]
3 #[ensures="r.current.y == old(r.current.y)"]
4 #[ensures="forall i: i32 :: (1 <= i && i < length(r)) ==>
5 nth_x(r, i) == max(nth_x(r, i - 1), old(nth_x(r, i)))"]
6 fn force_inc(r: &mut Route, min_x: i32) { /* ... */ }

method force_inc(r: Ref, min_x: Ref) {
// ...
exhale RefMutRoute(r) &&

length(r) == old[pre](length(r)) &&
(unfolding ... r.val_ref.current.x.val_i32) == max(

old[pre](unfolding ... r.val_ref.current.x.val_i32),
old[pre](unfolding ... min_x.val_i32)

) &&
(unfolding ... r.val_ref.current.y.val_i32) ==

old[pre](unfolding ... r.val_ref.current.y.val_i32) &&
forall i: Int :: (1 <= i && i < length(r)) ==>

nth_x(r, i) == max(nth_x(r, i - 1), old[pre](nth_x(r, i)))
}

Fig. 10. A possible postcondition for method force_inc from Fig. 8, with an encoding as Viper expression.
min_x is implicitly evaluated in the pre state, because it is the only state in which the caller can see it.
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1 struct List {
2 v: i32,
3 next: Option<Box<List>>
4 }
5
6 fn foo(mut curr: List) {
7 // PCS: { curr }
8 unpack curr;
9 // PCS: { curr.v, curr.next }
10
11 if let Some(box mut tail) = curr.next {
12 // PCS: { curr.v, curr.next }
13 unpack curr.next as Some;
14 // PCS: { curr.v, curr.next.0 }
15 unpack curr.next.0;
16 // PCS: { curr.v, *curr.next.0 }
17
18 // Requires: *curr.next.0
19 // Input PCS: { curr.v, *curr.next.0 }
20 let mut tail = *curr.next.0; // Implicit
21 // Output PCS: { curr.v, tail }
22
23 // Requires: tail
24 // Input PCS: { curr.v, tail }
25 curr = tail;
26 // Output PCS: { curr }
27
28 // PCS: { curr }
29 unpack curr;
30 // PCS: { curr.v, curr.next }
31 } else {
32 // PCS: { curr.v, curr.next }
33 }
34
35 // PCS: { curr.v, curr.next }
36 }

Fig. 11. Example of Rust program annotated with pack/unpack operations and PCS for each program point.


