
DISS. ETH NO. 25166

A parallel space-time solver for the
Navier–Stokes equations with

periodic forcing

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

DANIEL HUPP

MSc ETH CSE, ETH Zurich

born on 09.09.1987

citizen of Germany

accepted on the recommendation of

Prof. Dr. Peter Arbenz (ETH Zurich), examiner

Prof. Dr. Dominik Obrist (University of Bern), co-examiner

Prof. Dr. Patrick Jenny (ETH Zurich), co-examiner

Prof. Dr. Rolf Krause (Università della Svizzera italiana), co-examiner

2018

Abstract

Many problems in science and engineering are driven by time-periodic forces. In fluid
dynamics, this occurs for example in turbines, rotors or in human blood flow. These
problems are described by the Navier–Stokes equations. The traditional way to solve
them is to use a time-stepping method and compute the whole transitional phase until
the time-periodic steady state is reached.

We are using a different approach. We model directly the steady state by using periodic
boundary conditions in time. This results into time-periodic Navier–Stokes equations.
We use two different ways to discretize these equations in time. One way is to use a
truncated Fourier series to represent the solution. The equations are then discretized
by a spectral Galerkin method. The other way is to use the finite difference method
in time. Both temporal discretization are accompanied by spatial finite differences in
space.

We solve the resulting nonlinear space-time problem with a Picard iteration method. A
linear system of equation has to be solved in each Picard iteration. This linear system is
solved by preconditioned Krylov methods. We provide problem specific preconditioners.
For the spectral in time method, we use a block-tridiagonal preconditioner. The (1, 1)
block is a diagonal approximation of the multi-harmonic convection-diffusion matrix.
The (2, 2) block is an approximation of the Schur complement based on a commutator.
For the finite differences in time, we use a geometric multigrid method with a space-time
box smoother.

The described discretizations and solvers have been implemented in a templated C++
library. This library is very flexible and uses the message passing interface (MPI) to
parallelize the space-time problems. The parallelization is done in space and time.

We applied the spectral in time method to various problems. A Rayleigh streaming
has been computed to test the preconditioner of the linear solvers. A Taylor–Green
vortex has been computed to compare the spectral in time method with a traditional
time-stepping method. A channel flow with an oscillating obstacle has been computed to
evaluate the parallel performance in time. A time-periodically disturbed swept Hiemenz
flow has been computed to test the solver for turbulent flows. Such turbulent flows are
not purely time-periodic. Only its statistics are time-periodic.

i

Zusammenfassung

Viele Probleme in Wissenschaft und Technik sind von zeitperiodischen Kräften an-
getrieben. In der Strömungslehre kommt das in Turbinen, Rotoren, oder im men-
schlichen Blutfluss vor. Solche Probleme werden durch die Navier–Stokes-Gleichungen
beschrieben. Traditionell werden diese Probleme mit einem Zeitschriftverfahren gelösst,
welches die transitive Phase solange durchschreitet bis ein zeitperiodischer stationärer
Zustand erreicht wird.

Wir haben eine andere Herangehensweise. Wir modellieren direkt den zeitperiodis-
chen stationären Zustand, indem wir periodische Randbedingungen in der Zeit ein-
führen. Dies führt zu zeitperiodischen Navier–Stokes-Gleichungen. Wir diskretisieren
diese Gleichungen in der Zeit auf zwei verschiedene Arten. Die erste Art verwendet eine
abgeschnittene Fourier Reihe um die Lösung zu beschreiben. Die Gleichungen werden
dann mit einer spektralen Galerkin-Methode diskretisiert. Die zweite Arte verwendet
die Finite-Differenzen-Methode in der Zeit. Beide zeitlichen Diskretisierungen werden
mit finiten Differenzen im Raum verbunden.

Wir lösen das resultierende Raumzeit Problem mit einer iterativen Picard Methode.
In jedem Picard Schritt muss ein lineares Gleichungssystem gelöst werden. Dieses lin-
eare Gleichungssystem wird mit einer vorkonditionierten Krylov Methode gelöst. Wir
benutzen Problem spezifische Vorkonditioniere. Für die spektrale Methode in der Zeit
verwenden wir einen Block Dreiecksvorkonditionierer. Der (1, 1) Block ist eine diagonale
Approximation einer multi harmonischen Konvektions-Diffusions-Gleichung. Der (2, 2)
Block ist eine Approximation des Schurkomplements, basierend auf einem Kommutator.
Für die finiten Differenzen in der Zeit verwenden wir ein geometrisches Mehrgitterver-
fahren mit einem Raumzeit Box Glätter.

Die beschriebenen Diskretisierungen und Löser wurden in einer templierten C++ Biblio-
thek implementiert. Diese Bibliothek is sehr flexibel und verwendet die Message Passing
Interface (MPI) um die Raumzeit Probleme zu parallelisieren. Die Parallelisierung wird
im Raum und der Zeit angewendet.

Wir wenden die spektrale Method in der Zeit auf verschiedene Probleme an. Eine
Rayleigh Strömung wurde berechnet um die Vorkonditionierer für die linearen Probleme
zu testen. Ein Taylor–Green Wirbel wurde berechnet um die spektrale Methode in der
Zeit mit einem traditionellen Zeitschrittverfahren zu verwenden. Eine Kanalströmung

iii

mit oszillierendem Hindernis wurde berechnet um das parallele Verhalten in der Zeit zu
testen. Eine zeitperiodisch angeregte schiebende Hiemenz-Strömung wurde berechnet
um den Löser für turbulente Strömungen zu testen. Solche turbulenten Strömungen
sind nicht rein zeitperiodisch. Nur ihre Statistiken sind zeitperidisch.

iv

Acknowledgments

First of all I want to thank Prof. Peter Arbenz for giving me the opportunity to work on
this project. I am very thankful for his support and of course his patience. He always
took the time to discuss problems and new ideas, which has been a huge help to me.
Also special thanks go to Prof. Dominik Obrist, whose insights and ideas have been very
valuable to this project. His dedication and interest have been a big motivation to me.

I would also like to thank my co-examiners, Prof. Patrick Jenny and Prof. Rolf Krause,
for taking the time to review this thesis.

I had the pleasure to supervise the master’s thesis of Pietro Benedusi. His work and his
rewarding collaboration made valuable contributions to this project. I want to thank
him for that.

I also want to thank ETH Zürich and in particular the computer science department.
They are providing a productive and motivating environment with many nice colleagues.
I specially thank my colleagues Stefan Pauli, Tulin Kaman, and Marija Kranjčević for
their interest and fruitful discussions.

I thank the Swiss National Science Foundation for funding this project by the Grant
No. 200021 147052. I am also very grateful that I had the opportunity to present my
work at many international conferences and workshops.

Last but not least I want to thank my family and friends for their nonacademic support
and their understanding in times of heavy load.

v

vii

Contents

Notation xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Current research . 2

1.2.1 Parallel-in-time methods . 2

1.2.2 Methods for time-periodic problems 5

1.2.3 Related work . 8

1.3 Outline of the thesis . 9

2 Discretization of the time-periodic Navier–Stokes equations 11

2.1 Governing equations . 11

2.2 Time discretization . 13

2.2.1 Spectral in time discretization . 13

2.2.2 Finite differences in time . 17

2.3 Spatial discretization . 17

3 Numerical solvers for the time-periodic Navier–Stokes problems 21

3.1 A nonlinear solver for the spectral in time discretization 21

3.1.1 Picard iteration . 22

3.1.2 Solution based spectral refinement 29

3.1.3 Residual based spectral refinement 30

3.1.4 Preconditioning . 31

3.1.4.1 Picard problem . 32

3.1.4.2 Multi-harmonic convection-diffusion problem 36

3.1.4.3 Harmonic convection-diffusion problem 37

ix

Contents

3.1.4.4 Stationary convection-diffusion problems 39

3.1.4.5 Poisson problem . 41

3.2 A nonlinear solver for the finite differences in time discretization 42

3.2.1 Picard iteration . 43

3.2.2 Preconditioning . 44

3.2.2.1 Four-dimensional restriction and interpolation 45

3.2.2.2 Box-smoothing . 45

4 Implementation of the parallel time-periodic solvers 47

4.1 Implementation process . 47

4.2 Interfaces . 49

4.3 Parallelization . 56

5 Experiments 61

5.1 Rayleigh streaming . 61

5.1.1 Problem . 62

5.1.2 Performance . 64

5.2 Time-periodic Taylor–Green vortex . 69

5.2.1 Problem . 69

5.2.2 Convergence of the time discretization 71

5.2.3 Convergence of the method . 72

5.2.4 Scaling . 73

5.2.5 Time to solution . 74

5.2.6 Conclusions . 77

5.3 Channel flow with oscillating obstacle . 79

5.3.1 Problem . 79

5.3.2 Performance . 81

5.3.3 Scaling . 84

x

Contents

5.3.4 Conclusions . 86

5.4 Swept Hiemenz flow . 88

5.4.1 Problem . 88

5.4.2 Results . 91

5.4.3 Conclusions . 103

6 Conclusions and future work 105

6.1 Conclusions . 105

6.2 Future work . 107

A List of integrals of trigonometric functions 109

B Backtracking 111

C Computing null space of the pressure problem 113

D Getting Pimpact 117

xi

Notation

Constants

α Womersley number
Re Reynolds number
St Strouhal number

Picard iteration

·(m) mth Picard iteration
δ· Picard correction
q Space-time solution vector
r Space-time residual vector

Multi-harmonic variables

p̂0 Zero pressure coefficient
p̂cl lth cosine pressure coefficient
p̂sl lth sine pressure coefficient
û0 Zero velocity coefficient
ûcl lth cosine velocity coefficient
ûsl lth sine velocity coefficient

Space-time operators

D Multi-harmonic divergence operator
F Multi-harmonic or time-periodic convection-diffusion operator
G Multi-harmonic gradient operator
H Picard matrix
I Multi-harmonic identity operator
J Multi-harmonic boundary condition operator
S Multi-harmonic Schur complement
K Harmonic convection-diffusion operator

xiii

Notation

Preconditioner

MF Preconditioner of the multi-harmonic convection-diffusion operator
MH Preconditioner for the Picard matrix
MS Approximation of the multi-harmonic Schur complement
MK Preconditioner of the harmonic convection-diffusion operator

Spatial operators

∇ Nabla operator
∆ Laplace operator
D Spatially divergence operator ∇·
G Spatially gradient operator Re∇
I Identity matrix
Ī Identity matrix for inner spatial grid points, zero for boundary condi-

tions grid points
J Identity matrix, with boundary conditions scaling/interpolation

xiv

1
Introduction

1.1 Motivation

The field of this thesis is computational fluid dynamics (CFD). CFD is part of compu-
tational science and engineering and deals with the simulation of fluids, such as water
or air. Incompressible viscous fluids are described by the Navier–Stokes equation.

Modern solvers for the Navier–Stokes equations are optimized for massively-parallel
computing platforms and can easily use many thousands of processing units by de-
composing the spatial flow domain into small subdomains. This allows nowadays the
solution of complex unsteady flow problems at high Reynolds numbers with billions of
grid points.

The continued increase in computational power allows us to simulate ever larger flow
problems as long as we are able to decompose the flow domain into sufficiently many
subdomains. The excellent weak scaling performance of modern solvers suggests that
we should be able to scale the simulations without any limit in sight. However, this
optimistic extrapolation does not factor in the increasing number of time steps which
typically comes along with larger flow domains. This problem is aggravated for a large
class of flow problems which are concerned with the spatial evolution of time-harmonic
perturbations, e.g., a vibrating ribbon perturbing a boundary layer flow. The numerical
simulation of such problems with classical time marching methods requires long transient
periods at the beginning of each simulation. These transient periods are of no particular
physical interest for many applications. The relevant flow field is only established when
a periodic (or at least statistically steady) solution has been reached. In terms of
dynamical systems, this can be understood as the asymptotic approach to a limit cycle
of a given system.

For such problems with periodic forcing, the spatial decomposition of the computational
domain might not yield sufficient parallelism for the efficient usage of modern massively-

1

Chapter 1. Introduction

parallel supercomputers. Only a parallelization of the time integration could ease this
potential scaling limit for flow problems of this type. The development and implemen-
tation of such parallel-in-time integration of harmonic perturbed problems is the topic
of this thesis. But first we give a short overview of current and related research that
also deals with these problems.

1.2 Current research

Domain decomposition is the state-of-the-art technique to parallelize the solution of par-
tial differential equations with many degrees of freedom on massively parallel computer
systems. Domain decomposition divides the computational domain into subdomains
which are then distributed to different computing units. The global problem is finally
solved using iterative methods which are either based on distributed linear algebra [78]
or based on mathematically modeling a subproblem for each subdomain [91].

For time-dependent problems a time integrator is used to compute the evolution of the
spatially discretized problem. If the time integrator is explicit, a discretized spatial
operator has to be applied many times sequentially in time. If the time integrator is
implicit, a discretized spatial problem has to be solved many times sequentially in time.
It follows that if we have to compute long time spans, the restriction of parallelism to
space becomes the limiting factor if processor numbers increase. This can be improved
only if the time integration is parallelized as well. The development of parallel-in-time
methods is an active field of research.

1.2.1 Parallel-in-time methods

For an extensive overview of parallel-in-time methods over the last 50 years we refer
to [33]. A short overview of the most promising methods and their applications is given
here.

The “parareal” approach [64] is one of the first broadly used methods to parallelize
the time integration. Similar to the domain decomposition idea the time dimension is
divided. The time interval [0, T] is split into multiple subintervals [ti, ti+1]. A ‘coarse
integrator’ and a ‘fine integrator’ is used on these subintervals. The objective is to obtain
a solution with the accuracy of the fine integrator in shorter computation time then the

2

1.2. Current research

fine integrator. In a first initializing step the time-dependent problem is solved by the
coarse integrator on the subinterval bounds ti. This solution is used as initial guess and
initial value for each subinterval. Then the main “parareal” iteration ist started. The
iteration contains two steps.

1. A solution is computed on the right of each subinterval, by the fine and coarse
integrator. The initial value on each subinterval is the value from the previous
“parareal” iteration. This step is computed in parallel for each subinterval.

2. The solutions on the interfaces are updated. The new value on the right bound of
a subinterval is computed by a coarse integrated value of the new value from the
left bound and the difference of the two results of the parallel-in-time step. As the
new value on the right bound depends on the new value from the left, this step
has to be done sequentially.

The global solution is obtained through iterating these two steps. To obtain a good
speedup with regard to the sequential fine integrator over the whole time interval [0, T],
it is important that the coarse integrator is computationally much cheaper than the fine
integrator, and that the number of “parareal” iterations is smaller than the number
of subintervals. This “parareal” method has also recently been applied to the Navier–
Stokes equations [19, 23] and to plasma turbulence [80].

The parallel full approximation scheme in space and time (PFASST) [27] combines three
concepts, the spectral deferred correction scheme, parallel-in-time integration, and the
multigrid full approximation scheme [92]. For the spectral deferred correction scheme, an
ordinary differential equation is formulated for the error given an approximate solution.

1. An approximate solution is computed by a low order time integrator.

2. The error is estimated by a higher order Gauss quadrature rule.

3. The solution is improved by subtracting the estimated error.

Through iterating these steps, a high order solution is obtained. To parallelize the
spectral deferred correction scheme, multiple subintervals are treated simultaneously. To
do that instead of waiting until the spectral deferred correction iteration is finished, the
next subinterval is already started with the current approximate solution. This hybrid
“parareal” spectral deferred correction method [66] can be used as a smoother plugged

3

Chapter 1. Introduction

into a multigrid full approximation scheme. This allows to use more levels of spectral
deferred correction scheme and makes it easier to combine with spatial multigrid. This
method has been successfully applied to N-body problems [87]. Recently, in [11], the
convergence has been investigated by analyzing PFASST as a multigrid method.

The multigrid reduction in time (MGRIT) [32] can be seen as a more direct extension
of the “parareal” method. Here the idea of having two different time levels for the
“parareal” method is extended to multiple levels. These levels can be traversed in an F,
V, or W-cycle way, using a full approximation scheme [92].

1. The restriction is done by injection.

2. The interpolation is done in an optimal reduction way.

3. The relaxation is done by a fine relaxation sweep followed by a coarse relaxation
sweep, followed by another fine relaxation sweep. The coarse relaxation means to
solve multiple coarse time-step sequentially. The fine relaxation means to solve
for every coarse time-step a finer discretized problem in parallel.

These are the components of the multigrid reduction in time method, which shows good
scalability. The advantage of this method is that existing time-stepping methods and
implementation can be easily plugged in. Only a propagator with adjustable time-
step size is needed. It has been applied to nonlinear parabolic problems [29] and to
compressible fluid problems [28].

In [35, 68] a multigrid method is proposed but not only in time but also in space. The
authors propose to discretize partial differential equations with finite elements in space
and discontinuous Galerkin in time. This results in a lower block bidiagonal matrix.
Each block corresponds to a spatial problem. A multigrid method is applied to this
matrix.

1. Standard multigrid restriction and interpolation is used.

2. A block Jacobi iteration is used as smoother, which is the key idea.

The convergence is analyzed analytically and experimentally. Also good parallel per-
formance could be shown experimentally. Time periodicity has been assumed for the
theoretical convergence analysis. Therefore it can be expected that this method might
work well for time-periodic problems.

4

1.2. Current research

All these methods are data parallel methods as time subintervals or space-time subdo-
mains are processed in parallel. But there are also task parallel methods, for example
the revisionist integral defect correction method (RIDC) [17]. RIDC can be seen as a
prediction-correction method, that is like PFASST based on the spectral deferred cor-
rection method. The same integral error formulation is used that allows to increase
iteratively the order of a time integrator. This is done by integrating the error for a
given approximate solution. Then the approximate solution is improved by subtract-
ing the error. PFASST does multiple time-intervals in parallel, using the current best
solution from the previous time-interval. Instead RIDC pipelines the prediction and
correction steps.

1. One core computes sequentially predictions.

2. The next core computes the first corrections lagging one time step behind.

3. The next cores compute the next corrections and so on.

This works very well on multi-core machines, as communication is cheap. So if the
pipeline is filled up, this method can produce high order results in the same computa-
tional time as a low order method. However one disadvantage of this method is that the
achieved parallelism directly depend on the used order. So for most applications, only a
small number of additional parallelism can be achieved. In [18] this RIDC method has
been coupled with spatial parallelization. Additive Schwartz iteration is used as domain
decomposition method in space.

1.2.2 Methods for time-periodic problems

There has also research been done that is focusing on time-periodic problems, by as-
suming the existence of a time-periodic steady state. The problem has already been
considered before the advent of massively parallel computer systems in 1964 in [90].
There the time-periodic steady state is computed for the heat equation. The heat equa-
tion has been discretized by finite differences in space and time. The resulting linear
system of equations has a p-cyclic structure. A matrix is p-cyclic if it can be permuted
such that it has p blocks on the diagonal; p−1 blocks on the first lower off-diagonal and
one entry in the top right block. The convergence rate of the block Jacobi iteration and
block symmetric overrelaxation is shown by using properties of p-cyclic matrices. The

5

Chapter 1. Introduction

successive overrelaxation is optimized for this specific matrix structure. It is shown that
this successive overrelaxations is more efficient than the standard step by step solution
process. The problem has been picked up in [74], where an efficient direct solver has
been constructed.

Later Hackbusch studied time-periodic linear and nonlinear problems in [39]. He refor-
mulated the time-periodic steady state problem into a fixed-point problem. He showed
that the according fixed-point iteration has good smoothing properties. Thus he pro-
posed to use the multigrid method as a solver for this kind of problem. Therefore he
constructs a hierarchy of grids, which are traversed in a full multigrid fashion. Full
multigrid means that one starts to solve the problem on the coarsest grid. The coarse
grid solutions is interpolated to the next finest grid and is used as initial guess for a V or
W-cycle. This is repeated till one has obtained a solution on the finest grid. By numer-
ical experiments he observed that one iteration of the full multigrid yields a satisfactory
approximation of the solution. Additionally, the same approach has been formulated
and applied to nonlinear time-periodic problems.

Also in computational electrodynamics the efficient computation of time-periodic steady
states has been of interest. In [43] the authors computed a time-periodic steady state of a
nonlinear diffusion equation by using finite differences in space and first order backward
finite differences in time with periodic boundary conditions. The nonlinear space-time
system is solved by a modified Newton method. The iteration matrix has a p-cyclic
structure so the top right entry is moved to the right hand side, with the values from the
previous Newton iteration step, such that one can solve the system by block wise forward
substitution. The authors showed that this method provides correct results and that
the time to solution is shorter in comparison to a time-stepping method. In [96] time-
periodic magnetic fields have been computed by using a Fourier ansatz in time and finite
elements in space. The authors could verify the correctness of the method by simulating
a reactor and a magnet of shading coils. In [21], this multi-harmonic finite element
approach has been used for three-dimensional eddy current problems. The nonlinear
system of equations has been solved with Picard iteration. The authors showed that for
specific quasi-coupled problems the multi-harmonic approach is beneficial. This has been
pursued in [4, 5] for time-periodic eddy current problems. An inexact Newton method
is used to solve the nonlinear space-time problem. As the complex Fourier series is not
differentiable the authors are using a real Fourier series. An optimal preconditioner is
constructed for this specific type of problem.

6

1.2. Current research

Motivated by the simulation of turbomachinery with rotating blades the harmonic bal-
ance method has been developed [42]. Again the solution is expressed as a truncated
Fourier series, assuming the existence of a time-periodic steady state. The truncated
Fourier series is plugged into the governing equations. As the method is developed for
turbomachinery, the governing equations are the Euler equations or the Reynolds av-
eraged Navier–Stokes equations. The equations with the plugged-in Fourier ansatz are
then simplified such that each coefficient of each simple function is expected to become
zero. Hence the method’s name includes balance. This gives rise to a system of non-
linear equations. But instead of solving directly the nonlinear system of equations, an
additional artificial time derivative is introduced in the frequency space. This artificial
time is called pseudo time. It is used to drive the individual Fourier coefficients into a
steady state where the solution is balanced. The advantage of using a pseudo time step
to solve the nonlinear system of equations is that existing and well developed accelerat-
ing techniques for steady state flow solvers can be applied. This is the basic harmonic
balance method which has been further developed. For an overview we refer to [41].
The harmonic balance method is similar to the method presented later in this thesis as
it uses a Fourier series to describe the solution. It differs in the derivation of the equa-
tions and the nonlinear system solver. The harmonic balance method is actively used
to solve time-periodic fluid problems, as, for example, incompressible Navier–Stokes
problems [20], or for multi-frequent turbomachinery problems [37].

Following the harmonic balance idea, the time-spectral method [36] has been developed
using the same spectral description of the time-periodic steady-state solution. Here,
instead of the pseudo time-stepping in the frequency domain, the time-spectral method
does the pseudo time-stepping in the time domain. This means that instead of a diagonal
time derivative operator and fully populated nonlinear operator one obtains a fully
populated time derivative operator and a diagonal nonlinear operator. So the time-
spectral method belongs to the pseudo-spectral methods. In [58, 59] the time-spectral
method has been used to simulate periodically moving solid bodies in fluids. This
causes problems for the time-spectral method, as the Fourier coefficients have an infinite
support in time for every individual spatial grid point. But some spatial grid points can
belong to the fluid phase at one point in time and to the solid body at another point
in time. The authors suggest to treat these points separately and not to use a Fourier
series for them. Instead they suggest to use as local approximation for the temporal
subintervals that belong to the fluid phase. To use the same temporal collection points in

7

Chapter 1. Introduction

those subdomains, barycentric rational interpolants are the functions of choice. In [65],
the time-spectral method has been extended to quasi-periodic problems. Quasi-periodic
problems are driven by a fast strong periodic part and a slow weak transient part,
e.g. flying helicopters. The authors suggest to solve such problems by adding to the
time-periodic Fourier ansatz a linear or quadratic polynomial. Furthermore the authors
suggest to parallelize not only in space but also in time, which means here that different
time-slices are advanced on different processors. This has been also pursued in [60],
where the parallelized time-spectral method has been compared with a finite difference
in time method. The finite difference in time method uses second order central finite
differences for the time-derivative operator. This second order central difference operator
is quite sparse, such that less communication is necessary as for the fully populated time-
spectral operator.

There is also current research done that combines the parallel-in-time method “parareal”
with the idea of having periodic boundary conditions in time. In [34] the authors suggest
two so-called periodic “parareal” methods. Both methods use the same parallel-in-time
step using a fine and coarse integrator in the same way as the standard “parareal”
method. But they differ in the correction step. One method solves the whole coarse
periodic problem for updating the values. The other method uses the same sequential
update process as the standard “parareal” method, but uses as new initial value on the
left side of the time interval the value from the previous iteration from the right side of
the time interval. The convergence of both methods is analyzed for linear and nonlinear
problems. The periodic “parareal” with periodic coarse problem showed overall better
convergence, but is also computationally more expensive. This approach has also been
further developed by including waveform relaxation for the periodic coarse problem
in [84] and for the initial value coarse problem in [85].

1.2.3 Related work

This thesis has been preceded by investigating different methods that directly solve for
the time-periodic steady state assuming periodic boundary conditions in time. In [70]
the authors proposed a temporal spectral discretization mixed with a spatial finite dif-
ference method for the Burgers equation. This discretized problem is solved by a special
nonlinear iteration method. The iteration matrix for this iteration method is the block
diagonal part of the Newton iteration matrix. Each block contains all spatial values of

8

1.3. Outline of the thesis

one mode. It shows relatively slow convergence but a large degree of parallelism.

In [1] and [48] the authors used the finite difference method to discretize the shallow-
water equations in space and time. This discretization is parallelized in space and
time. The nonlinear problem is solved by an inexact Newton iteration. The linear
system has been solved with preconditioned GMRES. The preconditioner is a circulant
approximation of the original Newton matrix. The Fourier transformed circulant ap-
proximation leads to uncoupled modal problems that can be solved in parallel. These
modal problems were again circulant approximated in the spatial directions and then
Fourier transformed. The iteration number for the inner problems varied significantly
such that the individual modes had to be load balanced.

In [2] and [49] the same space-time discretization and parallelization has been applied
to the Navier–Stokes equation. The nonlinear problem has been solved with Newton
iteration again. The circulant preconditioner has been replaced by a block incomplete
LU-decomposition. Additionally, immersed boundaries have been introduced to the
space-time formulation to model an oscillating disc. This method shows good paral-
lelization properties which leads to a strong reduction of the time to solution.

1.3 Outline of the thesis

The goals of this thesis are to develop and to implement new efficient solvers for time-
periodic forced Navier–Stokes problems. The new solvers are parallel-in-time, so that
the new implementation has better scalability than just using spatial domain decompo-
sition. Furthermore, the solvers are able to circumvent the necessity to simulate long
transition phases for obtaining the time-periodic steady state. We introduce two differ-
ent temporal discretizations in Chapter 2. Namely a spectral time discretization and
a finite differences in time discretization. Also the spatial discretization is shown. In
Chapter 3 we show how these space-time problems can be solved efficiently. The im-
plementation of these solvers is explained in Chapter 4. The physical problems that
are solved for verification and optimization are a two-dimensional Taylor–Green vortex,
a two-dimensional Rayleigh streaming, a three-dimensional channel flow which is dis-
turbed by an oscillating sphere, and a periodically disturbed three-dimensional swept
Hiemenz flow. The results of these experiments are discussed in Chapter 5. At last we
will conclude in Chapter 6.

9

2
Discretization of the time-periodic

Navier–Stokes equations

In this chapter we first introduce the governing equations. The governing equations
are the time-periodic Navier–Stokes equations. They are the basis of this thesis. We
use two different methods for the temporal discretization of the time-periodic Navier–
Stokes equations. In section 2.2.1 we describe a temporal spectral Galerkin method.
In section 2.2.2 we describe a temporal finite differences method. These two temporal
discretizations lead to continuous spatial problems. We describe a possible discretization
of these problems in section 2.3,

2.1 Governing equations

The Navier–Stokes equations are conservation laws for density and momentum of an
incompressible Newtonian fluid, such as air or water. The incompressible Navier–Stokes
equations are written in their dimensional form [57] as

ρ∂′tu′ + ρ(u′ ·∇′)u′ − µ∆′u′ + ∇′p′ = ρf ′,

∇′ · u′ = 0,
x′ ∈ Ω′, t′ > 0. (2.1)

We use bold variables for vectors. There are three components for the coordinate vector
x′ = [x′, y′, z′]T and for the dimensional fluid velocity vector u′ = [u′, v′, w′]T . p′

denotes the dimensional pressure, µ the dynamic viscosity coefficient, ρ the density,
and f ′ an external force density. The dimensional nabla and Laplace operators are
defined by ∇′ = [∂′x, ∂′y, ∂′z]T , ∆′ = [∂′2x + ∂′2y + ∂′2z , ∂

′2
x + ∂′2y + ∂′2z , ∂

′2
x + ∂′2y + ∂′2z]T ,

respectively. To obtain a dimensionless form of the Navier–Stokes equations we use
the following substitutions x′ = Lrefx, t′ = (Tref/2π)t, u′ = Urefu, p′ = (ρU2

ref)p, and

11

Chapter 2. Discretization of the time-periodic Navier–Stokes equations

f ′ = (U2
ref/Lref)f . x, t, u, p, and f are the according dimensionless variables. Uref, Lref

and Tref are reference velocity, reference length, and reference time (typically taken to
be the inverse fundamental frequency f ′ref). With these substitutions (2.1) becomes

2π Lref

UrefTref

ρUrefLref

µ
∂tu+ ρUrefLref

µ
(u·∇)u−∆u+ ρUrefLref

µ
∇p= ρUrefLref

µ
f,

∇ · u=0,
x∈Ω, t>0.

(2.2)
The Reynolds number is defined as

Re = ρUrefLref

µ
. (2.3)

The Reynolds number can be seen as the ratio between inertia forces and viscous forces
of the according flow [57]. The Strouhal number is defined as

St = Lref

UrefTref
= Lreffref

Uref
. (2.4)

The Strouhal number can be seen as the ratio between unsteady acceleration and ad-
vective acceleration [57]. The Womersley number α is the geometric mean of Reynolds
number and Strouhal number,

α =
√

2πStRe = Lref

√
ρω

µ
. (2.5)

The Womersley number can be seen as the ratio between unsteady inertial forces and
viscous forces [57]. As one of the three above numbers can be computed from the other
two, we provide just two. Normally we provide the Reynolds number Re and either the
Womersley number α or Strouhal number St. We get the dimensionless formulation

α2∂tu + Re(u ·∇)u−∆u + Re∇p = Re f ,

∇ · u = 0,
x ∈ Ω, t > 0. (2.6)

These equations are complemented by boundary conditions, for example by Dirichlet
boundary conditions

u(x, t) = ubc(x, t), x ∈ ∂Ω, t > 0, (2.7)

12

2.2. Time discretization

where ubc is a prescribed velocity on the boundary ∂Ω. For rectangular domains Ω =
[0, Lx]×[0, Ly]×[0, Lz], also periodic boundary conditions are possible

u([0, y, z]T , t) = u([Lx, y, z]T , t), y ∈ [0, Ly], z ∈ [0, Lz], t > 0,

u([x, 0, z]T , t) = u([x, Ly, z]T , t), x ∈ [0, Lx], z ∈ [0, Lz], t > 0,

u([x, y, 0]T , t) = u([x, y, Lz]T , t), x ∈ [0, Lx], y ∈ [0, Ly], t > 0.

(2.8)

Also the combination of different boundary conditions on different parts of the boundary
is possible.

2.2 Time discretization

For a time-periodic external forcing f ′(x′, t′) = f ′(x′, t′+1/fref) and time-periodic bound-
ary conditions u′bc(x′, t′) = u′bc(x′, t′ + 1/fref), the steady-state solution will be periodic
in time with the same fundamental frequency fref. Note that stationary forcing or sta-
tionary boundary conditions can be seen as time-periodic. The quadratic nonlinear term
transfers energy only to higher harmonics 2fref, 3fref, . . . or to the stationary mean flow.
At this point, we exclude cases with high Reynolds number. A high Reynolds number
may lead to a turbulent non-harmonic flow.

Hence, we can assume that in the time-periodic steady state, the condition holds that
u′(x′, t′) = u′(x′, t′+ 1/fref). We employ this condition as periodic boundary conditions
in time. So, the equations can be discretized by a multi-harmonic ansatz, which will be
discussed in subsection 2.2.1, or with finite differences in four dimension, which will be
discussed in subsection 2.2.2. In contrast to the method of lines [81] we first discretize
the equations in time and then in space.

2.2.1 Spectral in time discretization

We discretize the time-periodic Navier–Stokes equations (2.6), using a spectral Galerkin
method [16]. To this end we use a multi-harmonic ansatz, here a truncated Fourier

13

Chapter 2. Discretization of the time-periodic Navier–Stokes equations

series,

u(x, t) ≈ uNf (x, t) =
Nf∑

l=−Nf

ũl(x) exp(ilt),

p(x, t) ≈ pNf (x, t) =
Nf∑

l=−Nf

p̃k(x) exp(ilt).
(2.9)

We call Nf the number of frequencies. This series can be easily written as a real
trigonometric series by using the transformations ũl =

(
ûc|l| − sgn(l)ûs|l|i

)
/2 for l =

±1, . . . ±Nf and ũ0 = û0 + 0i and the identity exp(ilt) = cos(lt) + i sin(lt). The same
applies for the pressure coefficients. We call the ·0, ·c, and ·s the zero coefficient, the
cosine coefficient and the sine coefficient, respectively. We refer to a mode as either the
zero mode coefficient, or as the combined cosine and sine coefficient that have the same
index. The sign function sgn(l) extracts the sign of l such that for positive l it gives
plus one and for negative l it gives minus one. Thus the real trigonometric series reads
as

uNf (x, t) := û0(x) +
Nf∑
k=1

ûck(x) cos(kt) +
Nf∑
k=1

ûsk(x) sin(kt),

pNf (x, t) := p̂0(x) +
Nf∑
k=1

p̂ck(x) cos(kt) +
Nf∑
k=1

p̂sk(x) sin(kt).
(2.10)

In our publications [3], [50], and [51] the concise complex formulation (2.9) has been
used. But our implementation is using the real formulation (2.10), because it has been
easier to integrate it into the preexisting software. We stick to the real formulation for
the rest of this thesis to better reflect the implementation.

As test functions we use the set {1/2π, cos(lt)/π, sin(lt)/π : 1 ≤ l ≤ Nf}. As inner
product for two functions φ(t) and ν(t) we use (φ, ν) =

∫ 2π
0 φ(t) · ν(t) dt. We plug the

truncated Fourier series (2.10) into the Navier–Stokes equations (2.6), multiply them
with a test function φ(t), and integrate over the time domain, which gives rise to the
weak formulation of the problem

α2
∫ 2π

0
(∂tuNf)φ dt+ Re

∫ 2π

0
(uNf ·∇)uNfφ dt−

∫ 2π

0
∆uNfφ dt+ Re

∫ 2π

0
∇pNfφ dt = Re

∫ 2π

0
fφ dt,∫ 2π

0
∇ · uNfφ dt = 0.

(2.11)
We substitute uNf and pNf and isolate the integrals. As this leads to rather long
expressions the integrals are treated individually. The weak formulation of the time

14

2.2. Time discretization

derivative is

α2
∫ 2π

0
(∂tuNf)φ dt =α2

∫ 2π

0
(∂tû0)φ dt

+
Nf∑
k=1

α2ûck
∫ 2π

0
(∂t cos(kt))φ dt+

Nf∑
k=1

α2ûsk
∫ 2π

0
(∂t sin(kt))φ dt

=−
Nf∑
k=1

α2kûck
∫ 2π

0
sin(kt)φ dt+

Nf∑
k=1

α2kûsk
∫ 2π

0
cos(kt)φ dt.

(2.12)

The nonlinear convective term expands to

Re
∫ 2π

0
(uNf ·∇)uNfφ dt =

Re(û0 ·∇)û0
∫ 2π

0
φ dt+

Nf∑
k=1

Re(û0 ·∇)ûck
∫ 2π

0
cos(kt)φ dt+

Nf∑
k=1

Re(û0 ·∇)ûsk
∫ 2π

0
sin(kt)φ dt

+
Nf∑
n=1

Re(ûcn ·∇)û0
∫ 2π

0
cos(nt)φ dt+

Nf∑
n=1

Nf∑
k=1

Re(ûcn ·∇)ûck
∫ 2π

0
cos(nt) cos(kt)φ dt

+
Nf∑
n=1

Nf∑
k=1

Re(ûcn ·∇)ûsk
∫ 2π

0
cos(nt) sin(kt)φ dt+

Nf∑
n=1

Re(ûsn ·∇)û0
∫ 2π

0
sin(nt)φ dt

+
Nf∑
n=1

Nf∑
k=1

Re(ûsn ·∇)ûck
∫ 2π

0
sin(nt) cos(kt)φ dt+

Nf∑
n=1

Nf∑
k=1

Re(ûsn ·∇)ûsk
∫ 2π

0
sin(nt) sin(kt)φ dt

(2.13)

The linear terms (diffusion, gradient, and divergence) give rise to

∫ 2π

0
∆uNfφ dt = ∆û0

∫ 2π

0
φ dt+

Nf∑
k=1

∆ûck
∫ 2π

0
cos(kt)φ dt+

Nf∑
k=1

∆ûsk
∫ 2π

0
sin(kt)φ dt,

∫ 2π

0
∇pNfφ dt = ∇p̂0

∫ 2π

0
φ dt+

Nf∑
k=1

∇p̂ck

∫ 2π

0
cos(kt)φ dt+

Nf∑
k=1

∇p̂sk

∫ 2π

0
sin(kt)φ dt,

∫ 2π

0
∇ · uNfφ dt = ∇ · û0

∫ 2π

0
φ dt+

Nf∑
k=1

∇ · ûck
∫ 2π

0
cos(kt)φ dt+

Nf∑
k=1

∇ · ûsk
∫ 2π

0
sin(kt)φ dt.

(2.14)
After plugging in the different test functions φ(t) = 1/2π, φ(t) = cos(lt)/π, φ(t) =
sin(lt)/π, for l = 1, . . . , Nf , we get integrals of products of one to three trigonomet-
ric functions. To conveniently express the results of these integrals we introduce the

15

Chapter 2. Discretization of the time-periodic Navier–Stokes equations

Kronecker symbol,

δlk =

1 if l = k, l ≤ Nf and k ≤ Nf ,

0 otherwise.

All occurring integrals of trigonometric functions in (2.12)–(2.14) are stated in (A.1)–
(A.11). For the constant test function φ(t) = 1/2π, we arrive at

Re(û0 ·∇)û0 +
Nf∑
k=1

Re
2 (ûck ·∇)ûck +

Nf∑
k=1

Re
2 (ûsk ·∇)ûsk −∆û0 + Re∇p̂0 = Re f̂0,

∇ · û0 = 0.
(2.15)

So we obtain for the test functions φ(t) = cos(lt)/π for l=1, . . . , Nf

α2lûsl + Re(û0 ·∇)ûcl + Re(ûcl ·∇)û0

+
Nf∑
n=1

Nf∑
k=1

Re
2 (ûcn ·∇)ûck

[
δn(k+l) + δ(n+k)l + δ(n+l)k

]

+
Nf∑
n=1

Nf∑
k=1

Re
2 (ûsn ·∇)ûsk

[
δn(k+l) − δ(n+k)l + δ(n+l)k

]
−∆ûcl + Re∇p̂cl = Re f̂ cl ,

∇ · ûcl = 0.

(2.16)

Then we obtain for the test functions φ(t)=sin(lt)/π with l=1, . . . , Nf

− α2lûcl + Re(û0 ·∇)ûsl + Re(ûsl ·∇)û0

+
Nf∑
n=1

Nf∑
k=1

Re
2 (ûcn ·∇)ûsk

[
−δn(k+l) + δ(n+k)l + δ(n+l)k

]

+
Nf∑
n=1

Nf∑
k=1

Re
2 (ûsn ·∇)ûck

[
+δn(k+l) + δ(n+k)l − δ(n+l)k

]
−∆ûsl + Re∇p̂sl = Re f̂ sl ,

∇ · ûsl = 0.
(2.17)

Note that f̂0, f̂ cl and f̂ sl are defined by the integrals (1/2π)
∫ 2π

0 f dt, (1/π)
∫ 2π

0 f cos(lt) dt,
and (1/π)

∫ 2π
0 f sin(lt) dt. In most cases, these integrals can be computed analytically.

Otherwise the terms can be computed numerically by an appropriate quadrature rule.
This can happen if the periodic forcing is moving in space and time.

So (2.15)–(2.17) are 2Nf + 1 spatial systems of equations. Each spatial system has
one equation for the conservation of momentum and one for the conservation of mass.

16

2.3. Spatial discretization

Assuming that u(x, t) and p(x, t) exist and are continuously differentiable with regard
to t, uNf and pNf , it can be expected that they converge exponentially to the solution
with growing Nf [16].

2.2.2 Finite differences in time

Another possibility to discretize the equations (2.6) is using finite differences in time.
We use equidistant grid points in time

tl = l∆t, for l = 0, . . . , Nt − 1, (2.18)

where Nt is the number of grid points in the time domain [0, 2π]. The time mesh width
is

∆t = 2π
Nt

. (2.19)

We consider the values of the velocity and pressure just at the time grid points

u(x, tl) = ul(x), p(x, t) = p
l
(x), f(x, t) = fl(x), for l = 0, . . . , Nt − 1. (2.20)

We use a first order backward finite differences stencil for the time derivative, so that
we obtain the strong formulation

α2

∆t(ul − ul−1) + Re(ul ·∇)ul −∆ul + Re∇p
l

= Re fl,

∇ · ul = 0,
for l = 0, . . . , Nt−1. (2.21)

There are Nt coupled nonlinear systems of equations to solve. Each spatial system has
one equation for the conservation of momentum and one for the conservation of mass.
The solution of this system is converging with order one in time.

2.3 Spatial discretization

The spectral in time and the finite differences in time discretizations presented in the
previous section and partly the solvers presented in the next chapter are independent of
the spatial discretization. So, any spatial discretization scheme (such as finite volume
method, finite element method, spectral methods, or finite differences method) could

17

Chapter 2. Discretization of the time-periodic Navier–Stokes equations

be used for (2.15)–(2.17) or for (2.21). In this thesis however the high order finite
differences method is used as described in [15], [44] and [45]. A rectangular domain
Ω = [0, Lx]×[0, Ly]×[0, Lz] is assumed, such that it can perfectly be approximated by
a Cartesian grid ΩNx . The Cartesian grid ΩNx has Nx×Ny ×Nz grid points, with the
coordinates

xijk =

xi

yj

zk

 for
i = 1, . . . , Nx,

j = 1, . . . , Ny,

k = 1, . . . , Nz.

(2.22)

The distances between grid points can be equal or can be varied such that the accuracy
is increased in certain areas of the domain. We assume

0 = x1 < x2 < · · · < xNx−1 < xNx = Lx,

0 = y1 < y2 < · · · < yNy−1 < yNy = Ly,

0 = z1 < z2 < · · · < zNz−1 < zNz = Lz.

(2.23)

The grid is staggered to avoid the decoupling of the velocity and pressure variables,
which otherwise can lead to a checkerboard pattern in the pressure field. The pressure
unknowns are defined on the grid vertices pijk = p(xijk), and each velocity component
is defined on the grid edges that are parallel to their velocity direction, cf. Figure 2.1.

ui+ 1
2 jk

= u(xi+ 1
2 jk

) for i = 0, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz,

vij+ 1
2k

= v(xij+ 1
2k

) for i = 1, . . . , Nx, j = 0, . . . , Ny, k = 1, . . . , Nz,

wijk+ 1
2

= w(xijk+ 1
2
) for i = 1, . . . , Nx, j = 1, . . . , Ny, k = 0, . . . , Nz.

(2.24)

The staggered coordinates xi+ 1
2
, yj+ 1

2
, and zk+ 1

2
are not necessarily in the exact middle

of their neighboring coordinates. In three dimension we get Nx×Ny ×Nz grid points
for the pressure, Nx×Ny×Nz + Ny×Nz grid points for the velocity in x-direction,
Nx×Ny×Nz+Nx×Nz grid points for the velocity in y-direction, and Nx×Ny×Nz+Nx×Ny

grid points for the velocity in z-direction.

As described in [44] we compute the finite-difference coefficients directly on the stretched
grids from a truncated Taylor series. The kth derivative of a function f(x) at x′ is
approximated by

∂kxf(x′) ≈
n∑
i=0

ηif(xi) (2.25)

Note that for k=0 we obtain the interpolation operator. To compute the coefficients ηi

18

2.3. Spatial discretization

y

x
z

Figure 2.1: Three-dimensional staggered grid cell with grid points for p , u , v , and w .

for the n grid points, we define a square Vandermonde matrix V ∈ Rn×n by

Vij = (x′ − xj)i−1, for i, j = 1, . . . , n. (2.26)

The stencil coefficients are computed by the k+ 1-row of the inverse Vandermonde
matrix [61, Chapter 1]

ηi = k!V−1
i,1+k for i = 1, . . . , n. (2.27)

The derivatives of the Polynomials of order n−1 are represented correctly by (2.25).
Otherwise the convergence order can be expected to be n−1, assuming that the distances
of the grid points are evenly distributed and that x′ is close to the middle of x1 and
xn. All stencils to approximate the spacial derivatives in (2.15)–(2.17) and (2.21) can
be constructed by (2.27). The divergence operator ∇ ·u=∂xu+ ∂yv+ ∂zw is evaluated
on the pressure grid. The gradient operator ∇p= [∂xp, ∂yp, ∂zp]T is evaluated on the
individual velocity grids. The diffusion operator ∆u = [∂2

xu + ∂2
yu + ∂2

zu, ∂
2
xv + ∂2

yv +
∂2
zv, ∂

2
xw+∂2

yw+∂2
zw]T is also evaluated on the different velocity grids. The convective

terms (u ·∇)u = [u∂xu + v∂yu + w∂zu, u∂xv + v∂yv + w∂zv, u∂xw + v∂yw + w∂zw]T

are also discretized on the different velocity grids. Therefore the convective velocities
have to be interpolated between the different velocity grids. To increase the stability
these derivatives are discretized by an upwinding stencil. An upwinding stencil means
that the stencil at each grid point is shifted in the opposite direction of the convection
direction.

We use n= 7 for inner grid points. At boundaries n reduces up to three. Also for the

19

Chapter 2. Discretization of the time-periodic Navier–Stokes equations

upwinding stencils n is reduces to five.

20

3
Numerical solvers for the

time-periodic Navier–Stokes
problems

In Chapter 2, we introduced the governing equations and showed how they can be
discretized in space and time. In this chapter, we show how the discretized nonlinear
space-time problem can be solved efficiently.

In general there are many ways to solve a nonlinear system of equation. A general
strategy is to linearize the nonlinear system of equations, which leads then to a fixed
point iteration. In each iteration step a linear system has to be solved. The two most
prominent linearization strategies are Newton’s method and Picard’s method, which
lead to Newton iteration and Picard iteration, respectively. Newton iteration has locally
quadratic convergence, whereas Picard iteration has only linear convergence. But Picard
iteration has a much larger ball of convergence [25, Chapter 8]. For certain cases it can
even be shown that Picard iteration is globally converging [53]. We are valuing a robust
method over a potential faster converging method, therefore we are limiting ourself to
Picard iteration in this thesis.

We introduce the Picard iteration for the spectral in time discretization in section 3.1
and for finite differences in time in section 3.2.

3.1 A nonlinear solver for the spectral in time discretiza-
tion

First we formulate the Picard iteration for the spectral in time discretization in 3.1.1.
Then we extend the Picard iteration by spectral refinement in 3.1.2 and 3.1.3. Finally

21

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

we construct an efficient preconditioner for the linearized problem in 3.1.4.

3.1.1 Picard iteration

We apply Picard’s method to the equations (2.15)–(2.17). To this end we write the
velocity coefficients as

û0 = û0(m) + δû0,

ûck = ûc(m)

k + δûck,

ûsk = ûs(m)

k + δûsk,
for k = 1, . . . , Nf .

(3.1)

and the pressure coefficients by

p̂0 = p̂0(m) + δp̂0,

p̂ck = p̂c
(m)

k + δp̂ck,

p̂sk = p̂s
(m)

k + δp̂sk,
for k = 1, . . . , Nf .

(3.2)

In (3.1)–(3.2) quantities indicated by the superscript ·(m) denote the solution at the mth
Picard iteration step. We write δ· for the Picard correction. We plug the expression (3.1)
and (3.2) into the equations (2.15)–(2.17) to determine the Picard corrections δ·. All
terms that just contain coefficients of the current solution are moved to the right hand
side. The right hand sides define the residual coefficients. The terms that contain the
Picard corrections are kept on the left side. Applying Newton’s method all the nonlinear
terms that contain the higher order terms (δû0/c/s ·∇)δû0/c/s are dropped. Applying
Picard’s method the terms that contain the correction term as the convection velocity
(δû0/c/s ·∇)û0/c/s(m) are additionally dropped. With that the equations (2.15) of the
zero coefficient become

Re(û0(m) ·∇)δû0 +
Nf∑
k=1

Re
2 (ûc(m)

k ·∇)δûck +
Nf∑
k=1

Re
2 (ûs(m)

k ·∇)δûsk

−∆δû0 + Re∇δp̂0 = r̂0(m)

u ,

∇ · δû0 = r̂0(m)

p ,

(3.3)

22

3.1. A nonlinear solver for the spectral in time discretization

with the residual coefficients

r̂0(m)

u :=Re f̂0 − Re(û0(m) ·∇)û0(m) −
Nf∑
k=1

Re
2 (ûc(m)

k ·∇)ûc(m)

k −
Nf∑
k=1

Re
2 (ûs(m)

k ·∇)ûs(m)

k

+ ∆û0(m) − Re∇p̂0,

r̂0(m)

p :=−∇ · û0(m)
.

(3.4)
For the equations (2.16) of the cosine coefficient and l=1, . . . , Nf , we obtain

α2lδûsl + Re(û0(m) ·∇)δûcl + Re(ûc(m)

l ·∇)δû0

+
Nf∑
n=1

Nf∑
k=1

Re
2 (ûc(m)

n ·∇)δûck
[
+δn(k+l) + δ(n+k)l + δ(n+l)k

]

+
Nf∑
n=1

Nf∑
k=1

Re
2 (ûs(m)

n ·∇)δûsk
[
+δn(k+l) − δ(n+k)l + δ(n+l)k

]
−∆δûcl + Re∇δp̂cl = r̂c(m)

ul
,

∇ · δûcl = r̂c
(m)

pl
,

(3.5)

with the residual coefficients

r̂c(m)

ul
:=Re f̂ cl − α2lûs(m)

l − Re(û0(m) ·∇)ûc(m)

l − Re(ûc(m)

l ·∇)û0(m)

−
Nf∑
n=1

Nf∑
k=1

Re
2 (ûc(m)

n ·∇)ûc(m)

k

[
+δn(k+l) + δ(n+k)l + δ(n+l)k

]

−
Nf∑
n=1

Nf∑
k=1

Re
2 (ûs(m)

n ·∇)ûs(m)

k

[
+δn(k+l) − δ(n+k)l + δ(n+l)k

]
+ ∆ûc(m)

l − Re∇p̂c
(m)

l ,

r̂c
(m)

pl
:=−∇ · ûc(m)

l .

(3.6)

23

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

For the equations (2.17) of the sine coefficient and l=1, . . . , Nf , we get

−α2lδûcl + Re(û0(m) ·∇)δûsl + Re(ûs(m)

l ·∇)δû0

+
Nf∑
n=1

Nf∑
k=1

Re
2 (ûc(m)

n ·∇)δûsk
[
−δn(k+l) + δ(n+k)l + δ(n+l)k

]

+
Nf∑
n=1

Nf∑
k=1

Re
2 (ûs(m)

n ·∇)δûck
[
+δn(k+l) + δ(n+k)l − δ(n+l)k

]
−∆δûsl + Re∇δp̂sl = r̂s(m)

ul
,

∇ · δûsl = r̂s
(m)

pl
,

(3.7)

with the residual coefficients

r̂s(m)

ul
:=Re f̂ sl + α2lûc(m)

l − Re(û0(m) ·∇)ûs(m)

l − Re(ûs(m)

l ·∇)û0(m)

−
Nf∑
n=1

Nf∑
k=1

Re
2 (ûc(m)

n ·∇)ûs(m)

k

[
−δn(k+l) + δ(n+k)l + δ(n+l)k

]

−
Nf∑
n=1

Nf∑
k=1

Re
2 (ûs(m)

n ·∇)ûc(m)

k

[
+δn(k+l) + δ(n+k)l − δ(n+l)k

]
+ ∆ûs(m)

l − Re∇p̂s
(m)

l ,

r̂s
(m)

pl
:=−∇ · ûs(m)

l .

(3.8)

The equations (3.3), (3.5), and (3.7) are linear with regard to the correction terms so
that they can be solved by a linear solver. We put all the coefficients of the solution,

24

3.1. A nonlinear solver for the spectral in time discretization

the correction, and the residual into individual vectors

q(m) :=

û0(m)

ûc(m)
1

ûs(m)
1
...

ûc(m)
Nf

ûs(m)
Nf

p̂0(m)

p̂c
(m)

1

p̂s
(m)

1
...

p̂c
(m)
Nf

p̂s
(m)
Nf

, δq :=

δû0

δûc1
δûs1
...

δûcNf

δûsNf

δp̂0

δp̂c1

δp̂s1
...

δp̂cNf

δp̂sNf

, r(m) :=

r̂0(m)
u

r̂c(m)
u1

r̂s(m)
u1
...

r̂c(m)
uNf

r̂s(m)
uNf

r̂0(m)
p

r̂c
(m)
p1

r̂s
(m)
p1
...

r̂c
(m)
pNf

r̂s
(m)
pNf

. (3.9)

Each entry in these vectors denotes a full spatial field, such that in case of finite differ-
ences one entry contains all values for all the spatial grid points. Now we can write the
equations (3.3), (3.5), and (3.7) in matrix form

Re∇
Re∇

F (m) Re∇
. . .

Re∇
Re∇

∇·
∇·

∇·
. . .

∇·
∇·

︸ ︷︷ ︸

=:H(m)

δû0

δûc1
δûs1
...

δûcNf

δûsNf

δp̂0

δp̂c1

δp̂s1
...

δp̂cNf

δp̂sNf

︸ ︷︷ ︸

=δq

=

r̂0(m)
u

r̂c(m)
u1

r̂s(m)
u1
...

r̂c(m)
uNf

r̂s(m)
uNf

r̂0(m)
p

r̂c
(m)
p1

r̂s
(m)
p1
...

r̂c
(m)
pNf

r̂s
(m)
pNf

︸ ︷︷ ︸
=r(m)

.

(3.10)

25

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

Note that the different Fourier modes are only coupled in F (m), due to the nonlinearity
of the convective term of the Navier–Stokes equations. We call F (m) the multi-harmonic
convection-diffusion operator. F (m) comprises 2Nf + 1 coupled spatial problems, which
means that F (m) has 2Nf + 1 non-zero block entries. The first row corresponds to the
equations for the zero coefficient in (3.3), which is defined as

F (m)
1j =

Re(û0(m) ·∇)−∆ if j=1,
Re
2 (ûc(m)

j/2 ·∇) if j is even,
Re
2 (ûs(m)

(j−1)/2 ·∇) if j is odd and j>1.

(3.11)

If 1<i< 2Nf + 1 and i is even then the rows correspond to the equations (3.5) of the
cosine coefficients. Those rows are defined as

F (m)
ij =

Re(ûc(m)

i/2 ·∇) if j=1,

Re(û0(m) ·∇) + Re
2 (ûc(m)

i ·∇)−∆ if j= i,

α2i/2 + Re
2 (ûs(m)

i ·∇) if j= i+1,
Re
2 (ûc(m)

(i+j)/2 ·∇) + Re
2 (ûc(m)

(i−j)/2 ·∇) + Re
2 (ûc(m)

(j−i)/2 ·∇) if j is even and j 6= i,

Re
2 (ûs(m)

(i+j−1)/2 ·∇)−Re
2 (ûs(m)

(i−j+1)/2 ·∇)+ Re
2 (ûs(m)

(j−i−1)/2 ·∇) if j is odd and j 6= i+1.
(3.12)

Note that ûcl = ûsl = 0 for l>Nf and l≤0. If 1<i≤2Nf + 1 and i is odd then the rows
correspond to the equations (3.7) of the sine coefficients. Those rows are defined as

F (m)
ij =

Re(ûs(m)

(i−1)/2 ·∇) if j=1,

Re(û0(m) ·∇) + Re
2 (ûs(m)

i−1 ·∇)−∆ if j= i,

−α2j/2 + Re
2 (ûs(m)

j ·∇) if j= i−1,

−Re
2 (ûc(m)

(i+j−2)/2 ·∇)+ Re
2 (ûc(m)

(i−i)/2 ·∇)+ Re
2 (ûc(m)

(i−j)/2 ·∇) if j is odd and j 6= i,

Re
2 (ûs(m)

(j+i−1)/2 ·∇)+ Re
2 (ûs(m)

(i−j−1)/2 ·∇)−Re
2 (ûs(m)

(j−i+1)/2 ·∇) if j is even and j 6= i−1.
(3.13)

The multi-harmonic convection-diffusion matrix F (m) is nonsymmetric and nonsingular.
The individual blocks F (m)

ij are sparse, as we are using finite differences in space. So the
matrix F (m) is sparse even though every block of F (m) is populated.

The Picard matrix H(m) is sparse, nonsymmetric, and singular. Because F (m) is nonsin-
gular and the rows of the spatial gradient operator Re∇ sum up to zero, the null space

26

3.1. A nonlinear solver for the spectral in time discretization

of H is thus given by

null
(
H(m)

)
= span

0
...
0
1
0
...
0

,

0
...
0
0
1
...
0

, . . . ,

0
...
0
0
0
...
1

. (3.14)

Here the block entry 1 means that the pressure coefficient is one over the whole spatial
domain. The null space has dimension 2Nf +1. The pressure coefficients of δq are
only given up to a constant. After we solved for δq we orthogonalize it to the null
space (3.14), such that the average of each pressure correction coefficient is zero.

For such problems the generalized minimum residual method (GMRES) [79] is the
method of choice. GMRES is suited to solve sparse linear systems, as it requires from
the matrix only the matrix-vector product. The sparse matrix-vector product is compu-
tationally cheap. Also it is known that GMRES converges to a least squares solution for
singular problems [14]. We use the zero vector as initial guess for the GMRES solver,
δq = 0. When we use a preconditioner that varies in each of its application, we use
flexible GMRES [77].

The Picard iteration is started with an initial guess q(0). Then the linear system (3.10)
is solved for the Picard correction δq. Then the current solution is updated q(m+1) =
q(m)+δq, and a new correction can be computed. This is repeated until the solution has
converged. There are different ways to deem a solution converged. We consider three
stopping criteria. They can be used individually or combined. The first simple stopping
criterion compares the residual norml with a prescribed tolerance

‖r(m)‖ < tolr. (3.15)

This stopping criterion indicates how well the current solution satsifys the equations.
But this does not necessarily indicate how close the current solution is to the real
solution, especially if the nonlinear system is not well conditioned. Note that we are
using an absolute stopping criterion which means that the tolerances have to be choosen
carefully and adpeted to the problem. Other possibilites are to consider the residual

27

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

norm relative to the intial residual, as in [25, Chapter 9]; or a combination of relative
and absolute residual can be considered as in [55, Chapter 5].

The second stopping criterion is
‖δq‖ < tolδq. (3.16)

This stopping criterion is indicating how much the current solution has been changed.
Again this does not necessarily mean that the current solution is close to the real so-
lution. In any way it is good to stop if the improvement is minor. The third stopping
criterion is a stagnation stopping criterion for m > 1

‖r(m)‖
‖r(m−1)‖

> tolstag and ‖r(m−1)‖
‖r(m−2)‖

> tolstag. (3.17)

This stopping criterion is used for practical and safety reasons. It is indicating that the
method has been stagnating for the last two iterations. Reasons for that can be that
the discretization error is reached, the linear solver is not finding any good direction
anymore. This can occur in combination with backtracking. Backtracking is introduced
in the Appendix B. In any case if this criterion is satisfied, we cannot expect any further
improvement of the solution.

This completes the Picard iteration, summarized in Algorithm 1. Solving the linear
system in each iteration step is the most time consuming part in this method. Thus it is
important to solve it as efficiently as possible which is discussed in detail in section 3.1.4.

Algorithm 1 Picard iteration
1: m← 0.
2: Choose an initial guess q(0).
3: Compute r(0).
4: while not converged do
5: Solve H(m)δq = r(m) for δq.
6: Update q(m+1) ← q(m) + δq.
7: Compute r(m+1).
8: m← m+ 1.

28

3.1. A nonlinear solver for the spectral in time discretization

3.1.2 Solution based spectral refinement

We complement the Picard iteration with spectral refinement. We start the solution
process with a small numberN start

f of Fourier coefficients and execute the Picard iteration
until the approximated solution is deemed converged. Then we check if the norm of the
highest Fourier coefficient of the solution is smaller than a certain tolerance tolf scaled
by the norm of the lowest Fourier coefficient

‖ûNf
‖

‖û1‖
≤ tolf . (3.18)

The norm ‖ûl‖ reads as the norm of the mode, meaning it is the norm of the combined
cosine and sine coefficient

∥∥∥[ûcl , ûsl]T
∥∥∥. If the criterion (3.18) is not satisfied, we refine the

solution. We increase the number of Fourier coefficients Nf by N inc
f , which means that

additional Fourier coefficients are appended to the solution vector q(m). The additional
Fourier modes are set to zero initially. The Picard iteration is restarted. This is repeated
until the Fourier modes associated with the highest mode are small enough or the
requested number N end

f of Fourier coefficients is attained. This method is summarized
in Algorithm 2. Spectral refinement has two advantages over fixed Nf . First, the
computation is accelerated and, second, the truncation error of the ansatz (2.10) can be
controlled. This is demonstrated in section 5.3.

Algorithm 2 Picard iteration with solution based spectral refinement
1: m← 0.
2: Choose an initial guess q(0) with Nf = N start

f .
3: Compute r(0).
4: while Nf ≤ N end

f do
5: while not converged do
6: Solve H(m)δq = r(m) for δq.
7: Update q(m+1) ← q(m) + δq.
8: Compute r(m+1).
9: m← m+ 1.
10: if

∥∥∥û(m)
Nf

∥∥∥ < tolf
∥∥∥û(m)

1

∥∥∥ then
11: exit.
12: else
13: Refine the solution vector q(m) by appending additional Fourier coefficients.
14: Nf ← Nf +N inc

f .

29

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

3.1.3 Residual based spectral refinement

The solution based spectral refinement is an improvement over fixed number of frequen-
cies. But to use the refinement criterion (3.18) it is necessary to solve the non-refined
problem till full accuracy is achieved. Otherwise the criterion might stop the iteration
prematurely. The problem is solved completely in each refinement level which can lead
to large increases in the residual, cf. section 5.3. With hindsight we would like to al-
ready have refined when the residual of the non-refined solution is in the same order
of magnitude as the refined solution. Luckily we can precisely compute the gain in
the residual through a potential refinement. We even can do that efficiently, which
means we do not have to construct the whole refined system matrix and do not have
to compute the whole matrix-vector product again for that. Having a current solution
with the number of frequencies Nf , only Nf additional modes û(m)

l =0 and p̂(m)
l =0 for

l=Nf +1, . . . , 2Nf +1 can increase the residual. To compute the residual for the refined
system we can see from equation (3.10) that the residual coefficients r̂(m)

ul
and r̂(m)

pl
for

l = 1, . . . , Nf are not affected by considering more coefficients. The coefficients r̂(m)
pl

are
zero for l=Nf + 1, . . . , 2Nf + 1 as the divergence of zero is zero. So the difference in the
residual is only due to the terms r̂(m)

ul
for l=Nf + 1, . . . , 2Nf + 1. For those terms (3.6)

and (3.8) simplify to

r̂c(m)

ul
=−

Nf∑
n=1

Nf∑
k=1

Re
2 (ûc(m)

n ·∇)ûc(m)

k δ(n+k)l +
Nf∑
n=1

Nf∑
k=1

Re
2 (ûs(m)

n ·∇)ûs(m)

k δ(n+k)l,

r̂s(m)

ul
=−

Nf∑
n=1

Nf∑
k=1

Re
2 (ûc(m)

n ·∇)ûs(m)

k δ(n+k)l −
Nf∑
n=1

Nf∑
k=1

Re
2 (ûs(m)

n ·∇)ûc(m)

k δ(n+k)l.

(3.19)

We compute the norm of these residual terms

rl = ‖r̂(m)
ul
‖, l = Nf + 1, . . . , 2Nf + 1. (3.20)

From that we determine the number of additional frequencies N inc
f for which we get a

substantial contribution to the overall residual. We want to compute the global solution
such that ‖r(m)‖<tolr. So we take the biggest possible number of additional frequencies
0 ≤ N inc

f ≤ Nf such that
rNf +N inc

f
> tolr. (3.21)

Having the number of additional frequencies and the residuals rl we can compute the

30

3.1. A nonlinear solver for the spectral in time discretization

residual increase

∆r =

√√√√√Nf +N inc
f∑

l=Nf +1
r2
l . (3.22)

We use the refinement criterion

‖r(m)‖
∆r < tolrefine, (3.23)

to decide if we refine the solution by N inc
f or not. Namely we refine if the current residual

is tolrefine-times smaller than the increase of the residual ∆r. This spectral residual based
refinement method is summarized in Algorithm 3.

Algorithm 3 Picard iteration with residual based spectral refinement
1: m← 0.
2: Choose an initial guess q(0) with Nf = N start

f .
3: Compute r(0).
4: while ‖r(m)‖ > tolr do
5: Solve H(m)δq = r(m) for δq.
6: Update q(m+1) ← q(m) + δq.
7: m← m+ 1.
8: Compute r(m+1), N inc

f , and ∆r.
9: if ‖r

(m)‖
∆r < tolrefine then

10: Refine the solution vector q(m) by appending additional Fourier coefficients.
11: Nf ← Nf +N inc

f .

3.1.4 Preconditioning

As noted before the computationally most expensive portion of Algorithm 1, 2, and 3
is step 5 or 6, in which a large linear system of equations (3.25) has to be solved. We
are using GMRES to solve the linear system. The convergence of GMRES depends on
the condition number κ of H(m). Naturally the condition number increases with bigger
system sizes and finer discretizations. To ease this deficit we precondition the matrix
with an preconditionerM−1

H .

A good preconditioner has two properties. Firstly, systems with the preconditioner
can inexpensively be solved. Secondly, the preconditioner is a good approximation of
the original linear system, which leads to low iteration numbers of the iterative Krylov
solver. Ideally these iteration numbers are then independent of the discretization and

31

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

the flow problem. An additional desirable property of a preconditioner is that it can be
applied in parallel. General preconditioning strategies are algebraic multigrid, incom-
plete matrix factorization, or matrix splitting methods. These methods are working on
general matrices and can be used as a black boxes, but there performance is often not
ideal.

We are employing a problem specific preconditioner. This problem specific precondi-
tioner divides the whole problem into subproblems. The different subproblems are shown
in the next five subsections. First we start in section 3.1.4.1 with the most outer layer,
where the whole Picard system is tackled. This is done in such a way that it possible to
deal with the velocity and pressure problems individually. The preconditioner for the
velocity problems is then discussed in sections 3.1.4.2–3.1.4.4. The efficient solution of
the problem arising for the pressure is shown in section 3.1.4.5.

3.1.4.1 Picard problem

The linear system (3.10) which has to be solved in each Picard step has a saddle point
structure. To construct the preconditioner in a compact way we split the vectors δq,
and r(m) into two subvectors. One subvector contains all the velocity coefficients, the
other subvector contains all the pressure coefficients, such that

δu :=

δû0

δûc1
δûs1
...

δûcNf

δûsNf

, δp :=

δp̂0

δp̂c1

δp̂s1
...

δp̂cNf

δp̂sNf

, r(m)

u :=

r̂0(m)
u

r̂c(m)
u1

r̂s(m)
u1
...

r̂c(m)
uNf

r̂s(m)
uNf

, r(m)

p :=

r̂0(m)
p

r̂c
(m)
p1

r̂s
(m)
p1
...

r̂c
(m)
pNf

r̂s
(m)
pNf

. (3.24)

The linear system (3.10) can then be written in compact form as
F (m) G
D 0

δu
δp

 =
r(m)

u

r(m)
p

 . (3.25)

The operators D and G correspond to the multi-harmonic divergence and gradient op-
erators. They are applied to each Fourier coefficient individually. So they have a block

32

3.1. A nonlinear solver for the spectral in time discretization

diagonal structure

Dij =

∇· if i = j,

0 otherwise,
Gij =

Re∇ if i = j,

0 otherwise,
1 ≤ i, j ≤ 2Nf + 1. (3.26)

The multi-harmonic convection-diffusion operator F (m) has already been defined in (3.11)–
(3.13). The matrix in (3.25) can easily be block LU-decomposed

F (m) G
D 0

 =
 I 0
DF (m)−1 I

F (m) G
0 −DF (m)−1G

 . (3.27)

The matrix I is the identity matrix. The negative lower right block of the U-factor
is called the Schur complement S = DF (m)−1G. Note that if the U-factor is used
as preconditioner, the GMRES algorithm converges in three steps [67]. But for that
the Schur complement has to be inverted. As the Schur complement is dense, it is
computationally too expensive to do so. Therefore we use an approximation M(m)

S of
the Schur complement. We employ the block triangular preconditioner

MH =
F (m) G

0 −M(m)
S

 . (3.28)

To solve with this preconditioner it is necessary to approximately solve with the multi-
harmonic convection-diffusion operator F (m) and the approximated Schur complement
M(m)
S . Furthermore the application of G is needed. The efficient solution with the multi-

harmonic convection-diffusion operator F (m) will be discussed in section 3.1.4.2. The
efficient solution and approximation of the Schur complement will be discussed next.

There are different choices to construct a good Schur complement approximationM(m)
S .

In [54] and [82] the authors proposed to approximate the Schur complement by com-
muting the gradient operator with the convection-diffusion operator. This is reasonable
as the commutator of the continuous gradient and the continuous convection-diffusion
operator,

((u ·∇)−∆)∇−∇((u ·∇)−∆), (3.29)

can be assumed to be small for smooth u. We discretize the resulting convection-
diffusion operator Fp for the pressure variable in the same fashion as the velocities
variables. We conclude from a small continuous commutator (3.29) that the discretized

33

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

operators
FG ≈ GFp. (3.30)

By left multiplying (3.30) by DF−1 and right multiplying by F−1
p we get an approxi-

mation of the Schur complement

DGF−1
p ≈ DF−1G = S. (3.31)

The solution with this Schur complement approximation, involves the application of a
convection-diffusion operator and the solution of a Poisson problem DG. The application
of a convection-diffusion operator is computationally cheap anyway and the solution of
a Poisson problem can be done very efficiently. A drawback is that the convection-
diffusion operator Fp has to be constructed. This can prevented by expressing Fp in
terms of D, F , and G, which has been proposed by Elman et al. [24]. We determine
the columns j of Fp by minimizing columnwise the squared 2-norm of the discretized
commutator

min ‖[FG]j − G[Fp]j‖2
2 . (3.32)

Assuming D = GT , 3.32 has the least squares solution by

Fp = (DG)−1(DFG). (3.33)

By plugging (3.33) into (3.31) we obtain

(DG)(DFG)−1(DG) ≈ DF−1G. (3.34)

In [24] and [26] it has been show that scaling the velocity variables by J (determined
later) can improve the performance of the preconditioner. So with the scaling J the
Schur complement approximation is

M(m)
S = (DJ −1G)(DJ −1F (m)J −1G)−1(DJ −1G). (3.35)

The authors showed that this preconditioner is robust with regard to the mesh size
and is moderately sensitive to the Reynolds number. The authors propose to use the
diagonal of the velocity mass matrix as J and a special scaling for equations on the
boundaries. As we are using finite differences in space the mass matrix is the identity
matrix. In case for the multi-harmonic approach in time, we propose the block diagonal

34

3.1. A nonlinear solver for the spectral in time discretization

matrix,

Jij =

J if i = j,

0 otherwise,
for 1 ≤ i, j ≤ 2Nf + 1. (3.36)

Here, J is the identity matrix except on the boundaries. It operates on the three velocity
grids. In the inner domain, the row of J has a one on the diagonal and is zero everywhere
else. On the Dirichlet boundaries that are tangential to the velocity direction, the row
of J has ε on the diagonal and is zero everywhere else. On the boundaries that belong
to Dirichlet boundary conditions and that are normal to the velocity direction, the row
contains the coefficients to interpolate the velocity to the boundaries, cf. Figure 3.1.
Also these coefficients are scaled with ε. The magnitude of ε does not have a strong
impact to the performance of the solver. The purpose of ε is just to scale the equations
for the Dirichlet boundary conditions up to give them a stronger weight over the inner
points. If not mentioned otherwise we set ε = 102.

Figure 3.1: The J operator in x-direction. The rows that belong to the inner points , have
just a one on the diagonal. The rows that belong to values that are on tangential Dirichlet
boundaries have the scaling factor ε on the diagonal. The rows that belong to values that
are on normal Dirichlet boundary condition , store the coefficients to interpolate from the
velocity grid to the boundary . Also these coefficients are scaled with ε.

The main advantage of this preconditioner is that the dense the Schur complement is
replaced by two efficiently solvable systems (Poisson equations) and the application of
D, two times J −1, H(m), and G. The efficient solution of the Poisson problems is shown
in section 3.1.4.5. For the multi-harmonic ansatz (2.10) there is an additional advantage
since the structure of DJ −1G in (3.26) leads to 2Nf + 1 independent spatial Poisson
problems that can be solved in parallel.

35

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

3.1.4.2 Multi-harmonic convection-diffusion problem

In the application of the triangular preconditioner (3.28), a system with the multi-
harmonic convection-diffusion operator F (m) has to be solved

F (m)

δû0

δûc1
δûs1
...

δûcNf

δûsNf

=

r̂0(m)
u

r̂c(m)
u1

r̂s(m)
u1
...

r̂c(m)
uNf

r̂s(m)
uNf

. (3.37)

We assume that the sine and cosine coefficients ûc/sl for l= 1, . . . , Nf are much smaller
than the zero coefficient û0. So for the preconditioner we set the sine and cosine coef-
ficients to zero. We obtain a block diagonal preconditioner. On the main diagonal we
get the stationary convection-diffusion operator F (m)

11 = Re(û0(m) ·∇) − ∆. For each
harmonic mode l we get an entry α2l̄I on the first upper off-diagonal, and −α2l̄I on
the first lower off-diagonal. The elements of Ī are zero except of the diagonal elements
that are not corresponding to equations of Dirichlet or Neumann boundary conditions.
These diagonal elements are zero. Thus the preconditioner has the form

M(m)
F =

F (m)
11

F (m)
11 α2Ī
−α2Ī F (m)

11
. . .

. . .
F (m)

11 α2Nf Ī
−α2Nf Ī F (m)

11

. (3.38)

This preconditioner works very well if the matrix is block diagonally dominant. The
matrix F (m) is block diagonal dominant if the assumption of small higher velocity modes
holds. But the matrix F (m) can be also block diagonal dominant if the assumption of
small higher velocity modes does not hold. This is the case when the Womersley number
α is large, or the Reynolds number Re is small. In these cases F (m) can be safely
replaced with M(m)

F in the block triangular preconditioner (3.28). The preconditioner

36

3.1. A nonlinear solver for the spectral in time discretization

for the Picard problem reads then as

M(m)
H =

M(m)
F G
0 −M(m)

S

 . (3.39)

The quality of the preconditioner (3.38) for different Womersley numbers, different
Reynolds number and different flows is studied in Chapter 5, especially sections 5.1
and 5.3. The preconditioner (3.38) has the advantage that it leads to Nf +1 indepen-
dent problems, which makes it appealing for the parallelization in time.

3.1.4.3 Harmonic convection-diffusion problem

As seen in the previous section the application of the block diagonal matrix (3.38) gives
rise to Nf independent harmonic convection-diffusion problems

Kl :=
 F (m)

11 α2l̄I
−α2l̄I F (m)

11

ûc(m)
l

ûs(m)
l

 =
r̂c(m)

ul

r̂s(m)
ul

 , l = 1, . . . , Nf . (3.40)

We precondition the harmonic convection-diffusion problems by

MKl =
I I

I −I

α2l̄I + F (m)
11

α2l̄I + F (m)
11

 . (3.41)

The identity matrix is denoted by I. This preconditioner was originally proposed [4] for
time-periodic eddy-current problems that have been discretized with a multi-harmonic
ansatz in time and finite elements in space. In [5] the authors showed that this precon-
ditioner holds the condition number constant for the linear problem independent of the
discretization parameters, using just algebraic arguments.

Following their proof, we introduce the matrix A := α2l̄I + F (m)
11 for the stationary

convection-diffusion problem. Looking at the linear case when û0 = 0 and periodic
boundary conditions, the matrix A = α2l̄I−∆ is symmetric positive definite. Such that
(Axc · yc) = (xc · ATyc) defines a scalar product for the vectors for the vectors xc and
yc. Building on that, we introduce a special scalar product and its induced vector norm

37

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

for the harmonic vectors x=[xc, xs]T and y=[yc, ys]T . Namely,

(x · y)A := (Axc · yc) + (Axs · ys) and

‖x‖A :=
√

(x · x)A.
(3.42)

We are computing the condition number of M−1
K K relative to the norm (3.42). The

condition number is defined by

κ
(
M−1

K K
)

=
∥∥∥M−1

K K
∥∥∥

A
·
∥∥∥∥(M−1

K K
)−1

∥∥∥∥
A
. (3.43)

To find an upper bound for (3.43) we look at the two terms individually. We start with
the first term which can be simplified to

M−1
K K =

A
A

−1
1
2

I I
I −I

 F (m)
11 α2l̄I
−α2l̄I F (m)

11

=
A

A

−1
1
2

−α2l̄I + F (m)
11 α2l̄I + F (m)

11

α2l̄I + F (m)
11 α2l̄I−F (m)

11

︸ ︷︷ ︸

:=B

.
(3.44)

We bound the euclidean scalar product of Bx with y

(Bx · y) =1
2
[(

(−α2l̄I + F (m)
11)xc · yc

)
+ (xs · yc)A + (xc · ys)A +

(
(α2l̄I−F (m)

11)xs · ys
)]

≤1
2 [‖xc‖A‖yc‖A + ‖xs‖A‖yc‖A + ‖xc‖A‖ys‖A + ‖xc‖A‖ys‖A]

≤
[
‖xc‖2

A + ‖xs‖2
A

] 1
2
[
‖yc‖2

A + ‖ys‖2
A

] 1
2

=‖x‖A‖y‖A.

(3.45)
Using those two results (3.44) and (3.45), we can bound the first term from (3.43)

∥∥∥M−1
K K

∥∥∥
A

= sup
x

‖M−1
K Kx‖A

‖x‖A
= sup

x,y

(
M−1

K Kx · y
)

A
‖x‖A‖y‖A

= sup
x,y

(Bx · y)
‖x‖A‖y‖A

≤ 1. (3.46)

The second term of (3.43) expands to

∥∥∥(M−1
K K)−1

∥∥∥
A

= sup
u

‖u‖A

‖M−1
K Ku‖A

. (3.47)

38

3.1. A nonlinear solver for the spectral in time discretization

Then the denominator of (3.47) can be bound

∥∥∥M−1
K Ku

∥∥∥
A

= sup
v

(
M−1

K Ku · v
)

A
‖v‖A

= sup
v

(Bu · v)
‖v‖A

≥

B
uc

us

 ·
us

uc

‖u‖A

= 1
2‖u‖A,

(3.48)
which means that (3.47) is bound by two. Eventually we can bound the condition
number (3.43)

κ
(
M−1

K K
)
≤ 2. (3.49)

For the application of the preconditioner it is necessary to solve with α2lI +F (m)
11 , which

we replace by the application of a fixed number of multigrid cycles, which is explained
in the next section. For a detailed investigation for the performance of different flow
types, discretizations and parameters, we refer to Chapter 5.

More recent work [56] proposes another preconditioner for the same harmonic problem.
This preconditioner has the form

M′K =
α2l̄I + F (m)

11

−
(
α2l̄I + F (m)

11

) . (3.50)

The bound of the condition number for this preconditioner is even better. Namely
κ
(
M′K

−1K
)
≤
√

2. But in our experiments there has not been a significant performance
improvement such that we stick to the preconditioner (3.41).

3.1.4.4 Stationary convection-diffusion problems

Stationary convection-diffusion problems have to be solved for the application of the
multi-harmonic (3.38) and the harmonic convection-diffusion preconditioner (3.41). The
stationary convection-diffusion problems are written as

(
β Ī + Re(û0(m) ·∇)−∆

)
δû = r̂u, (3.51)

where β can be either zero or a multiple of α2. δû and r̂u are simply any unknown
correction velocity with an according residual. Note that (3.51) is strictly speaking
only a stationary convection-diffusion problem if β = 0. Otherwise (3.51) is a shifted
convection-diffusion problem which is time-independent. Thus we refer to it as sta-

39

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

tionary convection-diffusion problem, also to have a clear distinction to the harmonic
and multi-harmonic convection-diffusion problem. In [92, Chapter 7] it is shown that
stationary convection-diffusion problems discretized by a first order upwinding scheme
can be efficiently solved by geometric multigrid. If its parameters are chosen properly
it can have linear complexity. As we need the solution of a higher order discretized
stationary convection diffusion problem, we incorporate the high order defect correction
method [92, Chapter 5] to the multigrid solver, cf. Algorithm 4.

Algorithm 4 Multigrid V-cycle with high order defect correction to solve Ax=b, where
A is a high order discretization of an partial differential operator on the fine grid Ω1.
Aj is a lower order discretization, on the grid Ωj, where j equal one is the finest grid
and j=Ngrids is the coarsest grid.
1: for i = 1, . . . , Ncycles do
2: r1 ← b− Ax.
3: for j = 1, . . . , Ngrids − 1 do
4: Pre smooth(Aj, rj, ej)
5: dj ← rj − Ajej
6: Restrict dj to rj+1

7: Coarse grid solve ANgridseNgrids = rNgrids

8: for j = Ngrids − 1, . . . , 1 do
9: Interpolate ej+1 to dj
10: ej ← ej + dj
11: Post smooth(Aj, rj, ej)
12: x← x + e1

Four ingredients have to be defined for the multigrid algorithm, interpolation, restriction,
smoothing, and a coarse grid solver. For geometric multigrid we generate coarser grids,
by using the same domain but reduce the number of grid points in each dimension. The
stationary convection-diffusion operator is then constructed on each of these grids. To
transfer the vectors from the coarse grid to the fine grid bi- or trilinear interpolation is
used, cf. Figure 3.2a. To transfer the vectors from the fine grid to the coarse grid full
weighting restriction is used, cf. Figure 3.2b. Usable smoothers are damped Jacobi or
Gauss–Seidel. As coarse grid solver either a smoother or an iterative linear solver such
as GMRES can be used. Note, that the performance of the Gauss–Seidel smoother is
enhanced for matrices that are close to lower triangular. This occurs, when an upwinding
discretization for the convective terms is used, and the unknowns are ordered according
to the convection direction. In literature this is called downwinding [10], [40] or down
stream relaxation [13], [97]. If there is one dominant flow direction this can be done

40

3.1. A nonlinear solver for the spectral in time discretization

(a) Interpolation. (b) Restriction.

Figure 3.2: Transfer operators for the velocity in x-direction. The black lines, the gray lines,
the marker, and the marker denote the coarse grid, the fine grid, the velocity variables
on the coarse grid, the velocity variables on the fine grid, respectively. The arrows in the left
Figure 3.2a show the bilinear interpolation from the coarse to the fine grid. The arrows in the
right Figure 3.2b show the restriction from the fine to the coarse grid.

quite easily. The lexicographic numbering has just to be adjusted by starting in the
appropriate corner of the domain. For very large Reynolds numbers these smoothers
come close to direct solvers [25, Chapter 7]. If the flow is recirculating, this becomes
difficult. In this case we use alternating directions of the relaxation.

3.1.4.5 Poisson problem

The subproblems that arise in the approximation of the Schur complement (3.35) are
Poisson problems. They have to be solved for each pressure coefficient and are written
as (

DJ−1G
)
δp̂ = r̂p, (3.52)

where D and G denote the spatially discretized ∇· and Re∇, respectively. δp̂ and p̂u are
simply any unknown correction velocity with an according residual. The matrix J has
already been introduced in section 3.1.4.1. In case of Dirichlet boundary conditions for
the velocities, this problem has Neumann boundary conditions for the pressure which
leads to a singular matrix. Also these problems can be solved by an iterative solver
with a geometric multigrid preconditioner, cf. Algorithm 4. The convergence of the
multigrid method for Poisson problems has been analyzed in great detail and is well
understood [92]. We are using standard Lagrangian interpolation and full weighting
restriction, illustrated for two dimensions in Figure 3.3. Chebyshev, damped Jacobi,
Gauss–Seidel or line smoother can be used. As coarse grid solver either a smoother, an

41

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

iterative linear solver or a direct solver can be used.

As the matrix in (3.52) is singular it can be necessary to make sure that the right hand
side is in the image of the matrix [44]. To achieve that, the right hand side vector
can be projected into the image of the matrix. For that the null space vector χ has to
be known. A non unique null space vector χ can be computed by solving iteratively
(DJ−1G)T χ = 0 or can be constructed. The construction of χ and the projection is
explained in the appendix C.

(a) Interpolation. (b) Restriction.

Figure 3.3: Transfer operators for the pressure variables. The black lines, the gray lines, the
marker, and the marker denote the coarse grid, the fine grid, the pressure variables on

the coarse grid, the pressure variables on the fine grid, respectively. The arrows in the left
Figure 3.3a show the bilinear interpolation from the coarse to the fine grid. The arrows in the
right Figure 3.3b show the restriction from the fine to the coarse grid.

3.2 A nonlinear solver for the finite differences in time
discretization

In the previous section, we introduced a nonlinear solver for the spectral in time dis-
cretization from section 2.2.1. In this section however, we introduce a nonlinear solver
for the finite differences in time discretization from section 2.2.2. To that end we first
use Picard’s method to linearize the finite differences in time method in section 3.2.1.
This section is quite similar to the section 3.1.1. Then in section 3.2.2 a preconditioner
is presented for the linearized problem.

42

3.2. A nonlinear solver for the finite differences in time discretization

3.2.1 Picard iteration

As for the spectral in time method, we apply Picard’s method to the nonlinear equa-
tions (2.21), that arise from the finite differences in time. We linearize the velocity and
pressure for every time slice i=0, . . . , Nt − 1

ui = u(m)
i + δui,

p
i

= p(m)
i

+ δpi.
(3.53)

Also here the superscript ·(m) denotes the current solution of the mth Picard iteration
step. And δ· denotes the Picard correction. We are plugging the linearization (3.53)
into (2.21). All terms that just contain coefficients of the current solution ·(m) are put
to the right hand side. The right hand side defines the residual for each time slice. The
terms that contain the correction terms δ· are kept on the left side. Applying Picard’s
method we drop the terms that contain the correction term as the convection velocity
(δui ·∇)u(m)

i and the terms that contain the correction term twice (δui ·∇)δui. With
that the equations (2.21) at each time slice i=0, . . . , Nt − 1 become

α2

∆t(δui − δui−1) + Re(u(m)
i ·∇)δui −∆δui + Re∇δpi = r(m)

ui
,

∇ · δui = r(m)
pi
.

(3.54)

The residual at each time slice i=0, . . . , Nt − 1 is defined by

r(m)
ui

:= Refi −
α2

∆t(u
(m)
i − u(m)

i−1)− Re(u(m)
i ·∇)u(m)

i + ∆u(m)
i − Re∇p(m)

i
,

r(m)
pi

:= −∇u(m)
i .

(3.55)

We put all the time slices of the solution, the correction, and the residual into one vector
each

q(m) =

u(m)
0
...

u(m)
Nt−1

p(m)
0
...

p(m)
Nt−1

, δq =

δu0
...

δuNt−1

δp0
...

δpNt−1

, r(m) =

r(m)
u0
...

r(m)
uNt−1

r(m)
p0
...

r(m)
pNt−1

. (3.56)

43

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

Each entry in these vectors denotes a full spatial field. We write the equations (3.54) in
matrix form

F (m)
11 F (m)

1Nt−1 Re∇
F (m)

21 F (m)
22 Re∇
. Re∇

F (m)
Nt−2Nt−1 F

(m)
Nt−1Nt−1 Re∇

∇·
∇·

. . .
∇·

︸ ︷︷ ︸

=:H(m)

δu0

δu1
...

δuNt−1

δp0

δp1
...

δpNt−1

=

r(m)
u0

r(m)
u1
...

r(m)
uNt−1

r(m)
p0

r(m)
p1
...

r(m)
pNt−1

.

(3.57)
Also this Picard matrix H(m) is sparse, nonsymmetric, and singular. It has Nt different
eigenvectors corresponding to the eigenvalue zero. For the same reason that the rows
of the gradient operator Re∇ sum up to zero. F (m) is the so-called time-periodic
convection-diffusion operator. F (m) comprises Nt spatial problems. Therefore F (m) has
Nt different block entries. They are defined as

F (m)
ij =

α2Ī + Re(u(m)

i ·∇)− Re∆ if i = j,

−α2Ī if i− j = 1 or i = 1 and j = Nt − 1,

0 otherwise.

(3.58)

The Picard iteration for the spectral in time discretization reads the same as for the
finite differences in time. So the Algorithm 1 can be used. The difference is in the
definition of q, r and H. Also the previously introduced stopping criteria (3.15)–(3.17)
can be used here.

3.2.2 Preconditioning

We used the block structure to precondition the Picard matrix of the multi-harmonic
approach in section 3.1.4. The blocks correspond to spatial problems that can be solved
by multigrid. For the Picard matrix arising from the finite differences in time (3.57),
we propose a multigrid preconditioner (Algorithm 4) for the whole space-time prob-
lem. Therefore we are introducing four dimensional restriction and interpolation in

44

3.2. A nonlinear solver for the finite differences in time discretization

section 3.2.2.1. In section 3.2.2.2 we are introducing a box smoother.

3.2.2.1 Four-dimensional restriction and interpolation

The interpolation and restriction in space is the same as for the subproblems for the
pressure and the velocity components, cf. Figure 3.2 and 3.3. We combine the spatial
interpolation and restriction with temporal interpolation and restriction. Therefore we
first interpolate in space and then in time. The temporal coarser grid is given by halving
the number of time steps Nt/2, such that the coarser grid is given by

tI = I2∆t, I = 0, . . . , Nt/2− 1. (3.59)

The coarse fields ū and p̄ are thus given by the already in space coarsened fine fields u
and p by

ūI = uI/2−1 + 2uI/2 + uI/2+1

4 ,

p̄I = pI/2−1 + 2pI/2 + pI/2+1

4 ,
I = 0, . . . , Nt/2− 1. (3.60)

The fine fields u and p are thus given by the already in space interpolated coarse fields
ū and p̄ by

ui =

ūi/2 if i is even,
1
2 ū(i−1)/2 + 1

2 ū(i−1)/2+1 otherwise,

pi =

p̄i/2 if i is even,
1
2 p̄(i−1)/2 + 1

2 p̄(i−1)/2+1 otherwise,

i = 0, . . . , Nt − 1. (3.61)

3.2.2.2 Box-smoothing

Box-smoothers also called symmetric coupled Gauss-Seidel smoothers were introduced
by Vanka [94, 95]. They are smoothing the full discretized Stokes (Re→0) or Navier–
Stokes equation. The idea behind box smoothing is that a small number of neighboring
variables are relaxed by solving directly a small system for those variables. The so-called
box is classically chosen such that one box contains one pressure variable and the two
adjacent velocity variables in each direction, cf. Figure 3.4a. We end up with seven
unknowns for one box, and seven equations (one for the continuity and one momentum

45

Chapter 3. Numerical solvers for the time-periodic Navier–Stokes problems

equation for each velocity variable). A 7×7 linear system has to be solved for each box.
As each velocity variable belongs to two boxes, it is updated twice. The boxes can be
traversed in a lexicographic, red-black or alternating direction fashion. This smoother
has been analyzed by local Fourier analysis [63, 83]. Local Fourier analysis has been
proposed by Brandt [12] and is a handy tool to analyze the smoothing properties of a
smoother on infinite grids.

y

x
z

(a) Three-dimensional box. Seven unknowns per
box.

y

x
z

t

(b) Four-dimensional box. 14 unknowns per box.

Figure 3.4: Box smoother.

The idea of box-smoothers can be extended to four-dimension for the finite differences in
time method. In four dimension a box contains two pressure variables at the same spatial
position but for two adjacent time steps and all neighboring velocity variables. We end
up with 14 unknowns per box cf. Figure 3.4b. We are solving a linear system with 14
equations for each box, two continuum equations and 12 momentum equations. Now
every pressure variable belongs to two boxes and each velocity variable to four boxes.
They are updated accordingly two and four times. The four-dimensional space-time
smoother has been analyzed by local Fourier analysis and experimentally tested in [8, 9].
We have shown that the four-dimensional box has better smoothing properties than
the three-dimensional box in theory and experiment. Local Fourier analysis assumes
periodicity or an infinite domain. But it still is used to indicate the performance on
bounded domains. Therefore we expect the four-dimensional box smoother to work well
for spatial bounded domains, which we have observed in experiments. But even more
interesting we expect this in the temporal dimension for initial values problems.

46

4
Implementation of the parallel

time-periodic solvers

In Chapter 3 we introduced numerical methods to solve the discretized space-time prob-
lems of Chapter 2. In this chapter we show how these space-time solvers have been
implemented and parallelized. First we describe the implementation process. Then we
describe the basic structure and key ideas, that are necessary to understand and to work
with the code. Then we focus on the parallelization.

4.1 Implementation process

We defined as a goal to have an implementation that is as flexible, scalable, and efficient
as possible. By flexible we mean that abstraction layers are used such that different
temporal and spatial discretizations can be combined, and solvers can be easily con-
structed. This facilitates the development, the extensibility, and the usability with
external libraries. An overview of the implemented interfaces will be given in the next
section. The scalability is obtained by parallelizing with MPI1 [30]. The message passing
interface MPI is a library which encapsulates the communication between processors.
The paralleliztion will be explained in detail in section 4.3. For the efficiency we rely on
low level array manipulation and generic programming. Low level array manipulation
allows the compiler to apply many optimizations such as vectorization or loop unrolling.
Generic programming in C++ is done using templates. Templates have advantages over
object orientation. Namely, overhead is prevented that occurs through virtual function
calls, and the compiler can do more potential optimizations as templates are resolved
during compile time. Furthermore we required that the spatial operators, especially the
finite difference stencils, are equivalent to the so-called Impact code [44]. The reason

1mpi-form.org

47

http://www.mpi-forum.org/

Chapter 4. Implementation of the parallel time-periodic solvers

for that is that results of our new implementation can be directly compared with result
of Impact. This has been achieved by reusing parts of Impact, which are written in
Fortran90.

The development process has been chosen to be test driven [7]. Test driven development
means that firstly an interface or function is defined and then according unit tests are
written for testing the defined functionality. Only then is the functionality implemented,
which can afterwards immediately be tested. This is beneficial as the developer auto-
matically focuses on providing easy to use interfaces with a clear structure. It is also
beneficial as the functionality can be guaranteed and be tested throughout. So problems
can be easily spotted that occur by changing the platform or by version changes of de-
pending libraries. Furthermore these unit test can be seen as mini tutorials, which allow
a new user to quickly understand what the implementation is capable of and how it is
supposed to be used. In that way our implementation is accompanied by over 200 unit
test, that can be run with different parameters (parallelization, boundary conditions,
and so on). The tests range from tests of simple vector additions, to convergence tests
of finite differences operators.

The result of this implementation process including all unit tests is available under an
open source license at github.com/huppd/PINTimpact. The implementation has been
documented with Doxygen2. Doxygen is a tool for writing software documentation,
where the documentation is written by annotating comments directly into the code. In
that way the documentation can be easily kept up to date. Additionally, our implemen-
tation is using Trilinos [46]. Trilinos is a large collection of packages, that solves
various problems occurring in computational science and engineering applications. We
use only three of its packages: the Teuchos package for its smart pointers, parameter
lists, and unit testing framework; the Belos package [6] for its linear iterative solvers;
and the NOX package for its nonlinear solvers. Note that we are not requiring the
Epetra or Tpetra (the linear algebra packages of Trilinos), as we are providing
our own vector and operator implementation. We introduce the interfaces to our vector
and operator classes in the next section.

2doxygen.org

48

https://github.com/huppd/PINTimpact
www.doxygen.org

4.2. Interfaces

4.2 Interfaces

As noted before, we have introduced different layers of interfaces to make the imple-
mentation flexible. A brief overview over the top layer, that is used to implement the
solvers from the previous chapter, is given here. But before that let us give the nam-
ing conventions used in the code and this chapter. We use upper camel case for class
names and lower camel case for function names. Camel case means that each word or
abbreviation in the middle of a name begins with a capital letter with no intervening
underscore. Lower camel case means that the first letter of a name is written with a
lowercase letter. Upper camel case means that the first letter of a name is written with
uppercase letter. Class member names are written with lower camel case and are ended
with an underscore. Aliases for class types are indicated by the suffix capital letter T.
We show different UML-diagrams, but they only show the most important dependencies
and are not extensive, also signatures have been simplified. For an extensive overview
we refer to the Doxygen documentation. Note that we use a typewriter font to indicate
C++ classes, functions or concepts.

In the center of our implementation is the Grid class. The Grid class represents a
space-time grid. This class has four template parameters; ScalarT which denotes the
type for scalar, usually double; the OrdinalT which is the type for indexing, usually
int; the integer sdimension can be two or three and denotes the spatial dimension;
the integer dimension can be three or four and denotes the dimension of the space-
time grid; the integer dNC denotes a parameter to choose the order of finite differences.
The Grid class is composited of different classes, such as StencilWidths, DomainSize,
BoundaryConditions, GridSize, IndexSpace, ProcGrid, and Coordinates. We are
not explaining them in detail, but want to remind that we are using a staggered grid,
which means that in the Coordinates class coordinates for the pressure grid points and
the individual velocity grid points are stored.

In Figure 4.1, we show the two main concepts that are built on top of the Grid class
namely the Field concept and the Operator concept. In generic programming a concept
is a description of supported operations and function members of a type. So concepts
are similar to abstract base types but concepts do not require to inherit from a base
type.

The field concept makes sure that the functionality is provided that is needed by the
iterative solvers of Belos and NOX. The required member function to model the

49

Chapter 4. Implementation of the parallel time-periodic solvers

Grid

StencilWidths<dimensions, dNC>
DomainSize<ScalarT, dimensions>
BoundaryConditions<dimensions>
GridSize<OrdinalT, dNC>
IndexSpace<OrdinalT, dNC>
ProcGrid<OrdinalT, dNC>
Coordinates<ScalarT, OrdinalT, dimensions>

<ScalarT, OrdinalT, sdimension, dimension, dNC>

�Concept�
Field

clone(...)
getLength()
add(...)
abs()
reciprocal(...)
dot(...)
norm(...)
assign(...)
init(...)
random(...)
scale(...)

�Concept�
Operator

typename DomainFieldT
typename RangeFieldT
apply(const DomainFieldT& x,

RangeFieldT& y)
assignField(const DomainFieldT& x)

Figure 4.1: UML-diagram.

50

4.2. Interfaces

concept Field are a clone method that allows to create copies of a field; a getLength
method that returns the number of elements in a field in the sense of a vector; an add
method that adds two fields; an abs method that takes elementwise the absolute value;
a reciprocal method that takes elementwise the reciprocal; a dot method that takes
the scalar product with another field; a norm method that returns the norm of a field; an
init method that initializes a field with a scalar value; a random method that initializes
a field with random vectors; two scale methods one that scales the field by a scalar, a
second that scale with another field.

The Operator concept is more concise. Two member types have to be defined, the
DomainFieldT and the RangeFieldT. Ideally these two types model the Field concept.
To implement the Operator concept also a member function apply has to be provided
that takes a field of type DomainFieldT and returns the result of the applied opera-
tor in a field of the type RangeFieldT. Furthermore the Operator concept contains
the member function assignField, which is necessary for operators that depend on
a field like the convection operators. In that case this field can be assigned by the
assignField function. In case the operator is not depending on a field this function
can be implemented empty.

�Concept�
Field

ScalarField

<GridT>

VectorField

<GridT>

CompoundField

<Field1T,Field2T>

ModeField

<InnerFieldT>

MultiHarmonicField

<InnerFieldT>

TimeField

<InnerFieldT>

MultiField

<InnerFieldT>

Figure 4.2: UML-diagram for the different field classes.

51

Chapter 4. Implementation of the parallel time-periodic solvers

In Figure 4.2, we see the different field classes that model the Field concept. Further-
more they are managing their memory and the exchange of ghost layers, which will
be explained in the next section. Each field or vector that has been defined in the
previous chapter has its own C++-class representation. The spatial pressure field p is
represented by the ScalarField class; the spatial velocity field u is represented by the
VectorField class; the vector that contains a cosine and a sine inner field [·c, ·s]T is
represented by the ModeField<·> class; the vector that contains the complete series of
coefficients [·0, ·c1, ·s1, . . . , ·cNf

, ·sNf
]T is represented by the MultiHarmonicField<·> class;

the vector that contains a time series [·0, . . . , ·Nt−1]T is represented by the TimeField<·>
class; and the vector that contains two different types of fields [·, ·]T is represented by
the CompoundField<·, ·> class. Furthermore we provide the MultiField class, which
adds the possibility to use multiple fields at once in a block fashion. This is nec-
essary for certain linear iterative solvers. These flexible classes allow to combined
them in different ways. For example we can define a CompoundField<MultiHarmonic-
Field<·>,MultiHarmonicField<·>> class or a MultiHarmonicField<CompoundField<·>
> class. Both classes provided the same functionality but differ in the acces of the inner
fields and how their values are laid out in memory.

These fields are accompanied by operator classes that model the Operator concept. In
Figure 4.3, the most important operator classes are shown. An operator class constructs
the stencils and manages the according memory if necessary. The stencils are stored
for each dimension individually, so we get for each dimension an array with the length
of number of locally stored grid points times the number of used stencil coefficients.
It also provides an apply method that takes a domain field and returns the result of
the applied operator in a range field. Also each operator that has been defined in the
previous chapter has its own C++-class representation. There are the basic operators
that can be applied on ScalarField or VectorField, which are the divergence operator
(∇·) that is represented by the DivOp class; the gradient operator (Re∇·) represented
by the GradOp class; the Laplace operator (∆) represented by the DiffusionOp class;
the convection operator (u ·∇) represented by the ConvectionOp. Additionally, we pro-
vide the operator classes InterpolateV2SOp and InterpolateS2VOp, that interpolate
between the velocity and pressure grids.

Here we illustrate the apply method for the DivOp class. For this operator class the
DomainFieldT type is a VectorField<GridT> and the RangeFieldT type is Scalar-
Field<GridT>. Both have to use the same GridT type as template parameter.

52

4.2. Interfaces

�Concept�
Operator

DivOp

DomainFieldT =
VectorField<GridT>

RangeFieldT =
ScalarField<GridT>

<GridT>

ConvectionOp

DomainFieldT =
VectorField<GridT>

RangeFieldT =
VectorField<GridT>

<GridT>

DiffusionOp

DomainFieldT =
VectorField<GridT>

RangeFieldT =
VectorField<GridT>

<GridT>

GradOp

DomainFieldT =
ScalarField<GridT>

RangeFieldT =
VectorField<GridT>

<GridT>

MultiHarmonicConvectionDiffusionOp

DomainFieldT =
MultiHarmonicField<VectorField<GridT>>

RangeFieldT =
MultiHarmonicField<VectorField<GridT>>

<GridT>

MultiHarmonicOpWrap

DomainFieldT =
MultiHarmonicField<OpT::DomainFieldT>

RangeFieldT =
MultiHarmonicField<OpT::RangeFieldT>

<OpT>

TimeConvectionDiffusionOp

DomainFieldT =
TimeField<VectorField<GridT>>

RangeFieldT =
TimeField<VectorField<GridT>>

<GridT>

TimeOpWrap

DomainFieldT =
TimeField<OpT::DomainFieldT>

RangeFieldT =
TimeField<OpT::RangeFieldT>

<OpT>

Figure 4.3: UML-diagram for the most important operator classes.

53

Chapter 4. Implementation of the parallel time-periodic solvers

void apply(const VectorField <GridT >& x,
ScalarField <GridT >& y) const {

using OT = typename GridT :: OrdinalT ;

for(int dir =0; dir <GridT :: sdimension ; ++ dir)
x. exchange (dir , dir);

for(OT k=grid_ ->si(F::S,Z);k<= grid_ ->ei(F::S,Z);++k)
for(OT j=grid_ ->si(F::S,Y);j<= grid_ ->ei(F::S,Y);++j)

for(OT i=grid_ ->si(F::S,X);i<= grid_ ->ei(F::S,X);++i)
y(i, j, k) = innerStenc (x, i, j, k);

y. changed ();
}

For simplification we use an alias for the OrdinalT type. The exchange method updates
the ghost layer. The first function parameter indicates the velocity component and the
second parameter indicates the direction in which has to be communicated. The operator
has pointer grid_ to an instance of type GridT. We are looping over all grid points.
The start index and end index are given by the function si and ei. Both functions
take as parameter an enum class F, which indicates the type of grid, as the divergence
is computed on the scalar grid, it is of value S. The second parameter here indicates in
which dimension. The innerStenc(x, i, j, k) function adds the first derivative in
X direction of x(F::U), with the first derivative x(F::V) in Y direction, and with the
first derivative in Z direction x(F::W). In the end, we indicate that the local values of
y have been modified by the changed method.

But there are also operators that are applied to the MultiHarmonicField class, such as
the MultiHarmonicConvectionDiffusionOp that represents the multi-harmonic con-
vection-diffusion operator F . But also the MultiHarmonicOpWrap, that has as template
parameter another operator which will be applied to every coefficient in MultiHarmonic-
Field individually, which corresponds the multi-harmonic diagonal operator for the
inner operator.

Here we illustrate MultiHarmonicOpWrap, the DomainFieldT type and RangeFieldT

54

4.2. Interfaces

type are MultiHarmonicField version of the DomainFieldT and RangeFieldT of the
operator type that is wrapped.

void apply(
const MultiHarmonicField < typename OpT :: DomainFieldT >& x,
MultiHarmonicField < typename OpT :: RangeFieldT >& y) const {

using OT = typename GridT :: OrdinalT ;

if (0== grid_ ->si(F::S, T))
op_ ->apply(x. get0Field (), y. get0Field ());

for(OT i=std :: max(grid_)->si(F::S, T), 1);
i<= grid_ ->ei(F::S, T); ++i) {

op_ ->apply(x. getCField (i), y. getCField (i));
op_ ->apply(x. getSField (i), y. getSField (i));

}

y. changed ();
}

This operator basically applies the wrapped operator to all locally stored coefficients.
So, no communication is necessary. The class stores an pointer op_ to the wrapped
operator. Also here are the locally stored coefficients are indicated by the member
functions si and ei of the grid class. The member function get0Field, getCField(i),
and getSField(i), return a reference to the zero coefficient, to the ith cosine coefficient,
and to the ith sine coefficient, respectively.

Similarly there are also operators that are applied to the TimeField classes, such as the
TimeConvectionDiffusionOp that represents the time convection-diffusion operator F .
But also the TimeOpWrap, that works in the same way as the MultiHarmonicOpWrap,
i.e., every inner operator is applied to each temporal time-step individually.

55

Chapter 4. Implementation of the parallel time-periodic solvers

4.3 Parallelization

In this section we explain the parallelization using MPI. First we show how the data
is distributed by domain decomposition. Then we explain how the communication is
handled.

The domain decomposition of the spatial domain it is described in detail in [44]. In short
the spatial domain is partitioned into npx×npy×npz subdomains, such that (Nx/npx)×
(Ny/npy)×(Nz/npz) grid points belong to one MPI-rank. We require that the number
of grid points N is integer divisible by the number of ranks np in each dimension and
that the resulting subdomain size is equal or larger than the stencil width. On top of
the spatial parallelization also the temporal domain is partitioned into npt subdomains.
For the spectral in time approach this means that the individual Fourier coefficients are
distributed. We allow a maximum ofNf+1 MPI-ranks in the time domain. Theoretically,
it would be also possible to distribute the coefficients of one mode to two different
MPI-ranks, but this has not been implemented as the benefit can be assumed to be
rather small. For the finite differences in time approach the different time steps are
divided into different time slices. In total each MPI-rank is responsible for ((2Nf +
1)/npt)×(Nx/npx)×(Ny/npy)×(Nz/npz) grid points for the spectral in time method or
(Nt/npt)×(Nx/npx)×(Ny/npy)×(Nz/npz) grid points for the finite differences in time.
Usually we run our applications such that every MPI-rank is attributed to one core.

MPI allows to add a virtual topology to an MPI-communicator, for example a Cartesian
topology. The Cartesian topology simplifies the communication with directly neighbor-
ing MPI-ranks and the creation of subcommunicators containing only one or multiple
subdimensions. The MPI-topology is oblivious of the underlying Cartesian grid, such
that communication of for example ghost layer exchange cannot directly be handled
by MPI. The MPI runtime environment can also match this virtual topology to the
hardware network topology. We add such a four-dimensional Cartesian topology to the
according communicator. This has been abstracted into a ProcGrid class. The Grid
class has a pointer to a ProcGrid, so that each field that models the Field concept has
access to it. The process grid is illustrated for one temporal and two spatial dimensions
in Figure 4.4.

The user has to set the parameters npx, npy, npz, and npt. These parameter are best
chosen such that communication is minimized. The communication can be minimized
by having the largest volume with the smallest surface for each subdomain, which is the

56

4.3. Parallelization

y

x
t

Figure 4.4: Process grid with a three-dimensional Cartesian topology (npx = 4, npy = 3,
npt=3). The black spheres correspond to MPI-ranks.

case for cubical subdomains. If a downwinding Gauss–Seidel smoother is used for the
convection-diffusion problems, the quality of this smoother is improved if the subdomains
are elongated in the downwind direction. In this case one has to trade between smoother
quality and minimal communication.

After setting up the domain decomposition, the parallelization and communication is
mostly hidden from the user and the solver developer. This makes using and developing
the code easier and is less error-prone. The main communication is internally handled
by the individual field classes. There are two kinds of communication patterns. The first
kind are collective communication such as reductions that have to be done, when norms
or scalar products are called; or gathers that have to be done by specific multi-harmonic
operators. The second kind is the exchange of ghost layers. Ghost layers are grid cells
that are additionally stored on each rank and are mirroring grid cells that are stored on
different ranks. They have to be updated by point to point communication whenever
grid points have to be accessed that are stored by neighboring ranks.

Reductions are done when an user or an external library is calling the norm or scalar
product of a field instance. Then the field is computing locally the norm or scalar
product, and afterwards an MPI_Allreduce is done. The field decides on which com-
municator this is done, so for ScalarField, VectorField, and ModeField this done
on the subcommunicator that contains only the ranks from the same time slice or fre-
quency slice, see Figure 4.5. The TimeField and MultiHarmonicField use the whole
space-time communicator. The CompoundField and MultiField use the inner fields
communicator so either the communicator for the temporal slice, or the whole space-
time communicator.

57

Chapter 4. Implementation of the parallel time-periodic solvers

y

x
t

Figure 4.5: Independent parallel-in-time communication pattern.

As said before the exchange of the ghost layers is only necessary when values have to
be accessed that are not stored in local memory but in the memory of MPI-ranks. This
only happens by the application of stencils, which occurs in the apply method of certain
operator classes. So if those operators need to access this data, they call an exchange
method which is implemented in the according field class. Each field has an exchange
state witch is set to true, if the ghost layers have been updated and is set to false if the
local field values are modified. This makes sure that for applying different operators
successively to a field does not lead to repeated unnecessary updates of the ghost layer.
This is done for the ScalarField, VectorField, TimeField. Also for certain multi-
harmonic operators it is necessary to communicate the individual coefficients stored in
the MultiHarmonicField, which are strictly speaking no ghost layer, but are handled
in the same way. We discuss them separately.

We are starting with the ScalarField class. The VectorField class is basically a
composition of multiple ScalarField classes, so the communication works the same
for each component as for ScalarField. The reason for the composition is that each
component of the velocity is defined on a different grid. The exchange of the ghost layer
has been already explained in [44] and is done the same way for the most operators.
Only for the restriction operator it differs, as we introduced full weighting restriction
instead of half weighting restriction. Therefore we have to communicate also values
to diagonal neighboring ranks. We are doing this by consecutively exchanging in each
direction and widen the ghost layer length, for two dimensions see Figure 4.6. These
point to point communications are done with MPI_Send and MPI_Irecv.

The TimeField class implements its own exchange method to communicate its ghost
layers. As for the time derivative also a finite difference stencil is used, the ghost layer

58

4.3. Parallelization

Figure 4.6: Exchange of ghost layers, such that diagonal grid points are exchanged too. First
values are sent along the dashed arrows, then along the dotted arrows.

only contains the direct neighboring cells, with the only difference that one cell here
means the whole spatial subdomain of one time slice. They are as well exchanged by
point to point messages.

The exchange method of the MultiHarmonicField is quite different to the previous
discussed ones. All coefficient have to be accessed for the computation of one block
element of the range vector of the multi-harmonic convection-diffusion operator F . The
coefficients are communicated by an MPI_Allgatherv on the subcommunicator that
contains all the ranks of the same spatial subdomain, cf. Figure 4.7.

y

x
t

Figure 4.7: Communication for nonlinear terms along time dimension MPI_Allgather.

As a small final remark in this section we want to mention that each implemented field
class can be written to a file and also be restored from file using HDF53. HDF5 is a
hierarchical data format and is supported on most computer cluster. It allows to write

3hdfgroup.org

59

https://www.hdfgroup.org/

Chapter 4. Implementation of the parallel time-periodic solvers

from many processors to one file in an efficient and high performance way. This allows
to restart an application in the case of an occurring failure. It is also used to analyze
and visualize the solution.

60

5
Experiments

In this chapter we show the performance and applicability of the spectral in time solver to
different time-periodic flow problems. The first problem is a steady streaming between
two plates with a time-periodic in and out flow. This flow problem is used to investigate
the performance of the different preconditioners. The second flow problem is a time-
periodic Taylor–Green vortex. It is used to validate the correctness of the spectral
in time method and to investigate the parallel performance in comparison to a time-
stepping method. The third flow problem is a channel flow with an oscillating obstacle.
It is used to show the performance of the spectral refinement algorithm and the scaling
of the time parallelization. The fourth problem is a swept Hiemenz flow. This flow
problem is used to investigate the applicability of the spectral in time method to a
highly complex three-dimensional flow. The structure of the flow allows to investigate
the performance of the spectral in time method on laminar, transitional and turbulent
flows.

5.1 Rayleigh streaming

In this section a Rayleigh streaming problem is computed to validate our spectral in
time method. Rayleigh [75] observed in 1884 that a steady flow between to two plates
can be induced through acoustic waves. This has lead to many studies and experiments
under the name acoustic streaming [62, 69, 88]. But also incompressible flows can show a
time-averaged motion induced by oscillating components, such as oscillating boundaries,
oscillating in and out-flows, or oscillating body forces. If a streaming is occurring in an
incompressible flow it is called steady streaming [76].

In this section we are focusing on the performance of the preconditioner for the spectral
in time solver. The preconditioners are described in section 3.1.4. The performance
of the preconditioners is examined with regard to varying Reynolds number, Strouhal

61

Chapter 5. Experiments

number, and spatial discretization. The preconditioners will be investigated with regard
to the temporal discretization in detail in section 5.3. Parts of this section have been
published in [51].

5.1.1 Problem

0.0 0.5 1.0 1.5

x

0.0

0.5

1.0

1.5

2.0

y

û0

0.00

0.05

0.10

0.15

0.20

Figure 5.1: Streamlines of the velocity field
of the zero coefficient at Re=100 and St=1.
The zero coefficient is the constant coefficient
from the Fourier ansatz (2.10), which cor-
responds to the time-averaged velocity field.
Colors indicate the velocity magnitude.

We investigate a two-dimensional flow be-
tween two plates with time-periodic in and
outflow. This flow is a solution of the two-
dimensional Navier–Stokes equations

α2∂tu + Re(u ·∇)u−∆u + Re∇p = 0,

∇ · u = 0,
(5.1)

for x ∈ Ω=[0, 2]×[0, 2] and t ∈ [0, 2π]. The
reference length scale Lref is set to be half
the channel width. The reference velocity
Uref is the maximum inflow velocity. The
parameters Re, St, and the spatial system
size Nx =Nx×Ny are varied. The number
of frequencies is fixed Nf = 14 throughout.
Periodic boundary conditions are used in x-
direction, whereas Dirichlet boundary conditions are used in y-direction. The prescribed
velocity profile at the boundaries y=0 and y=2 is

ubc(x, t) =
 0

sin(t) sin(πx)

 .
Although the time-averaged inflow and outflow is zero, one can still observe a time-
averaged flow. In our method, this streaming field corresponds to the zero coefficient
û0. This coefficient is illustrated in Figure 5.1 for Re = 100 and St = 1. The first and
second mode is illustrated in Figures 5.2 and 5.3, respectively. The time snapshot for
t= 0 and t= π/2 can be seen in Figure 5.4. One can observe the different behavior of
fluid in the area of suction (x>1, y<1) and ejection (x<1, y<1).

We mainly investigate the performance of the linear solver. Therefore a fixed number of

62

5.1. Rayleigh streaming

0.0 0.5 1.0 1.5

x

0.0

0.5

1.0

1.5

2.0

y

ûc1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.0 0.5 1.0 1.5

x

0.0

0.5

1.0

1.5

2.0

y

ûs1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.2: Streamlines of the velocity field of the first mode at Re = 100 and St = 1. Colors
indicate the velocity magnitude.

0.0 0.5 1.0 1.5

x

0.0

0.5

1.0

1.5

2.0

y

ûc2

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.0 0.5 1.0 1.5

x

0.0

0.5

1.0

1.5

2.0

y
ûs2

0.00

0.02

0.04

0.06

0.08

0.10

Figure 5.3: Streamlines of the velocity field of the second mode at Re=100 and St=1. Colors
indicate the velocity magnitude.

0.0 0.5 1.0 1.5

x

0.0

0.5

1.0

1.5

2.0

y

u(t = 0)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

0.0 0.5 1.0 1.5

x

0.0

0.5

1.0

1.5

2.0

y

u(t = π/2)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.4: Streamlines of the velocity field at Re=100 and St=1. Colors indicate the velocity
magnitude.

63

Chapter 5. Experiments

0 2 4 6 8 10 12 14

k

10−15

10−12

10−9

10−6

10−3

100

1
2‖ûk‖22

α≈25.07

α≈2.51

α≈0.25

Figure 5.5: Energy spectrum for varying α.

frequencies is used in Algorithm 1 with the update stopping criterion (3.16) with a tol-
erance tolδq =10−6. The linear Picard problem (3.10) is solved with flexible GMRES up
to a tolerance of 10−2 with the 2-by-2 block-triangular preconditioner (3.28), where the
(1,1) block is a multi-harmonic convection-diffusion operator (3.37) and the (2,2) block
is a least squares commutator based approximation of the Schur complement (3.35).
The inner subproblems are also solved with flexible GMRES up to a tolerance of 10−6

which gives results almost as accurate as with a direct solver. So we can neglect influ-
ences of solving the problems only inexactly. We note that this is not the most efficient
strategy. For the stationary convection-diffusion problems we use as preconditioner two
multigrid V-cycles. As smoother we use two Jacobi iteration steps with a damping fac-
tor of one half. As coarse grid solver we use a four-direction Gauss–Seidel iteration. For
explanations and references we refer to section 3.1.4.4. For the Poisson problem we use
Jacobi iteration as smoother and coarse grid solver with a damping factor of 6/7 with
eight smoothing sweeps and one V-cycle.

5.1.2 Performance

In this section the Womersley numbers α≈ 0.25, α≈ 2.51, and α≈ 25.1 refer to Re = 1
and St=0.01, Re=10 and St=0.1, Re=100 and St=1, respectively. In Figure 5.5, we
can see the half of the squared 2-norm of each velocity coefficient, which corresponds to

64

5.1. Rayleigh streaming

the energy as the norm of a velocity coefficient is the square root of the doubled energy.
We observe that for higher Womersley numbers α the energy is decaying much slower,
and that the energy transfer to the zero mode is also higher. This also relates to the
spectral in time discretization error. The discretization error is the truncation error as
higher modes for k>Nf are neglected.

100 101 102

Re

10−2

10−1

100

S
t

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Figure 5.6: Number of Picard steps for vary-
ing Re and St.

In Figure 5.6, we can see the necessary Pi-
card steps to satisfy the update stopping cri-
terion (3.16) for varying Re and St. It can
be observed that for small Reynolds num-
bers only a few steps are needed. But for
larger Reynolds and lower Strouhal numbers
more Picard steps are needed.

In Figure 5.7–5.11, we can see the number of
iteration steps necessary to solve the differ-
ent problems (3.25), (3.37), (3.40), (3.51),
and (3.52) for different Re, St and a system size Nx = 1282. We considered the average
number of one linear iteration solve. For the different system sizes we also indicate the
standard deviation.

100 101 102

Re

10−2

10−1

100

S
t

4

5

6

7

8

9

10

11

12

322 642 1282 2562

Nx

4

8

iteration steps

α≈25.07

α≈2.51

α≈0.25

Figure 5.7: Average number of iteration steps for the Picard problem. On the left side for
varying Re and St. On the right side for different system sizes.

All problems show optimal behavior for the different system sizes. Only the Picard
problem shows a slight increase of the iteration numbers with growing system size. The
solvers for the stationary convection-diffusion problem (Figure 5.10) and the Poisson
problem (Figure 5.11) show also the same number of iterations steps for all the Reynolds

65

Chapter 5. Experiments

and Womersley numbers.

100 101 102

Re

10−2

10−1

100

S
t

0

60

120

180

240

300

360

420

480

322 642 1282 2562

Nx

4

8

16

32

iteration steps

α≈25.07

α≈2.51

α≈0.25

Figure 5.8: Average number of iteration steps for the multi-harmonic convection-diffusion
problem. On the left side for varying Re and St. On the right side for different system sizes.

The preconditioner for the Picard problems leads to small numbers of iteration steps.
The number of iterations steps are slightly higher for small Strouhal numbers and low
Reynolds numbers. But they are still acceptable. The solver for the multi-harmonic
convection-diffusion problem on the other hand is suffering under a huge increase of the
number of linear iteration steps. The maximum of 500 iteration steps is even reached
in some cases, see Figure 5.8. This is due to the non block diagonal dominant property
in these cases. The solver for the harmonic convection-diffusion problem shows a good
behavior for a broad range of Reynolds and Strouhal numbers. For small Reynolds and
Strouhal numbers it is even better.

The standard deviation of the problems of stationary, harmonic convection-diffusion and
Poisson problems is small, which is a very desired result. As these solves are done in
parallel and a high standard deviation would lead otherwise to load balancing problems.

66

5.1. Rayleigh streaming

100 101 102

Re

10−2

10−1

100

S
t

15.0

15.6

16.2

16.8

17.4

18.0

18.6

19.2

19.8

322 642 1282 2562

Nx

8

16

iteration steps

α≈25.07

α≈2.51

α≈0.25

Figure 5.9: Average number of iteration steps for the harmonic convection-diffusion problem.
On the left side for varying Re and St. On the right side for different system sizes.

100 101 102

Re

10−2

10−1

100

S
t

5.55
5.70
5.85
6.00
6.15
6.30
6.45
6.60
6.75
6.90

322 642 1282 2562

Nx

4

8

iteration steps

α≈25.07

α≈2.51

α≈0.25

Figure 5.10: Average number of iteration steps for the convection-diffusion problem. On the
left side for varying Re and St. On the right side for different system sizes.

100 101 102

Re

10−2

10−1

100

S
t

6.90

7.05

7.20

7.35

7.50

7.65

7.80

7.95

8.10

322 642 1282 2562

Nx

4

8

iteration steps

α≈25.07

α≈2.51

α≈0.25

Figure 5.11: Average number of iteration steps for the Poisson problem. On the left side for
varying Re and St. On the right side for different system sizes.

67

Chapter 5. Experiments

These results show that the proposed preconditioners are close to optimal for a broad
range of parameters. Except for certain cases where the block diagonal approximation
of the multi-harmonic convection-diffusion operator is losing quality. Optimal precon-
ditioners are a necessity to solve larger problems and more complex flows. We study
larger problems and more complex flows in the next sections.

68

5.2. Time-periodic Taylor–Green vortex

5.2 Time-periodic Taylor–Green vortex

In this section we compare the performance of a classical time-stepping method and
the spectral in time method presented in section 3.1. For this comparison a time-
periodic Taylor–Green vortex is computed. Taylor–Green vortices have been studied to
get a deeper understanding of the production of smaller eddies from larger eddies [89].
Furthermore Taylor–Green vortices are studied to validate and benchmark the time-
integration of fluid solvers [93]. We compare the scaling behavior and the time to
solution of the two mentioned methods. These findings have been published in [3].

5.2.1 Problem

We consider of the two-dimensional Navier–Stokes equations

α2∂tu + Re(u ·∇)u−∆u + Re∇p = Re f ,

∇ · u = 0,
x ∈ Ω, t > 0, (5.2)

on a spatial domain Ω = [0, 2π/a]× [0, 2π/b], with periodic boundary conditions. We
consider the time-periodic force density

f(t) =
α2A cos(ax) sin(by) cos(t) + A(a2 + b2) cos(ax) sin(by)(1 + sin(t))
α2B sin(ax) cos(by) cos(t) +B(a2 + b2) sin(ax) cos(by)(1 + sin(t))

 ,
The incompressibility condition implies that the parameters have to satisfy aA+bB=0.
This periodic forcing leads to the time-periodic steady state

usol(x, t) =
A cos(ax) sin(by)(1 + sin(t))
B sin(ax) cos(by)(1 + sin(t))

 , (5.3)

with
psol(x, t) = −ReA

2 cos(2ax) +B2 cos(2by)
4 (1 + sin(t))2. (5.4)

This can be seen as a Taylor–Green vortex, that periodically changes its magnitude.
The velocity field and pressure field at t= π/4 with the parameters a= b= 1, A= 0.5,
B=−0.5, and Re=10 are visualized in Figure 5.12. These are also the parameters used
throughout this section.

69

Chapter 5. Experiments

0 1 2 3 4 5 6

x

0

1

2

3

4

5

6

y

u

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

0 1 2 3 4 5 6

x

0

1

2

3

4

5

6

y

v

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

0 1 2 3 4 5 6

x

0

1

2

3

4

5

6

y

p

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

Figure 5.12: Velocity/pressure fields, for a=b=1, A=−B=0.5, Re=10 at t = π/4.

The first method we use is a classical time-stepping method. It employs a mixed Crank–
Nicolson Runge–Kutta time-integration, see [45]. The time-periodic structure of the
problem is not exploited. We start with initial conditions u(x, 0)=0 and p(x, 0)=0. The
time-integration is stopped if the relative difference in the solution after one period of
time is smaller than a prescribed tolerance. The time-stepping method is not parallelized
in time.

The second method we use is the spectral in time method, described in Chapters 2 and 3.
This method exploits the time-periodic structure of the problem. As the needed number
of frequencies is known before hand we use fixed number of frequencies Algorithm 1,
with Nf =2. The Picard iteration is started with a zero initial guess. The linear Picard
problem (3.10) is solved with flexible GMRES up to a tolerance of 10−2 with the 2-
by-2 block-triangular preconditioner (3.28), where the (1,1) block is a multi-harmonic
convection-diffusion matrix (3.37) and the (2,2) block is a least squares commutator
based approximation of the Schur complement (3.35). The inner subproblems are also
solved with flexible GMRES but up to a tolerance 10−1. For the stationary convection-
diffusion problems we use as preconditioner one multigrid V-cycle. As smoother we use
two Jacobi iteration steps with a damping factor of one half. As coarse grid solver we

70

5.2. Time-periodic Taylor–Green vortex

use a four-direction Gauss–Seidel iteration. For explanations and references we refer to
section 3.1.4.4. For the Poisson problem we use as preconditioner one multigrid V-cycle.
We use Jacobi iteration as smoother and coarse grid solver with a damping factor of
6/7 with four smoothing sweeps.

To compare the two different approaches, we consider the relative error of the approxi-
mated with the analytical steady-state solution (5.3)

e = ‖usol − u‖2

‖usol‖2
.

Here, ‖ · ‖2 is the grid error function norm [61]. Note that the norm is taken over
the whole spatial domain as well as over the whole period of time. For the spectral
method this amounts to the square root of the sum of the squared norms of the Fourier
coefficients.

The measured error is compounded of three different components, the spatial discretiza-
tion error, the temporal discretization error, and the difference of the approximate to the
steady-state solution. The latter we call the methodical error. If we want to estimate
just one error component, we have to make sure that the other two are much smaller.

Since the 6th order finite difference stencil on the fine 128×128 grid implies a spatial
discretization error of about the order of 10−9 we only consider the temporal and me-
thodical errors in sections 5.2.2 and 5.2.3, respectively. The strong scaling performance
of both methods is investigated in section 5.2.4.

5.2.2 Convergence of the time discretization

First we consider the temporal discretization error. The problem is solved for different
numbers of time steps per period. To make sure we just measure the temporal dis-
cretization error we stop each computation when there is no change in the approximate
solution anymore, so that the methodical error is smaller than the temporal discretiza-
tion error. The spectral approach has no discretization error if Nf≥2 for this particular
problem. For other problems one has to consider also the truncation error, which can
be controlled through spectral refinement Algorithm 2 or Algorithm 3.

Note that for small Womersley numbers at least 128 time steps per period have to
be used to satisfy the CFL condition. The rate of convergence is independent of the
Womersley number in both cases. In Figure 5.13, we can see that for higher Womersley

71

Chapter 5. Experiments

32 64 128 256 512

number of time steps per period

10−7

10−6

10−5

10−4

e

1

−2

α≈2.5

α≈7.9

α≈25.1

Figure 5.13: Convergence of the temporal discretization error over the number of time steps
per period.

numbers the discretization error is smaller and that the expected convergence order of
two is obtained.

5.2.3 Convergence of the method

In this section we investigate the methodical error (the difference between the approxi-
mated solution and the steady-state solution). In the time-stepping method we fix the
time step and use 128 time steps per period. Note that the decay in the error over the
number of periods of time does not depend on the spatial and temporal discretization,
because it is a physical property of the problem. Hence it depends only on the Womers-
ley number. In Figure 5.14a, we see that the transition phase (the time until the steady
state is reached) is much shorter for smaller Womersley numbers than for larger ones.
In the latter case it takes hundreds of time periods to get to the steady state.

The decay in the error after each nonlinear solver step depends on the solver, here the
Picard method, and the stopping criterion of the inner iterative solver. Here, we set a
tolerance of 10−2 for the scaled residual. We always set Nf =2. In Figure 5.14b, we see
that only a few Picard steps are needed to obtain a solution with an error smaller than
10−5. For Womersley numbers α= 7.9 and α= 25.1 the spectral method converges in
four steps. For α=2.5 in the first four Picard steps, the backtracking algorithm has to

72

5.2. Time-periodic Taylor–Green vortex

cut the step width in half to enforce a decrease in the residual norm. The decay in the
error is small in these steps.

0 200 400 600 800

simulated period of time

10−6

10−4

10−2

100

e

α≈2.5

α≈7.9

α≈25.1

(a) Time-stepping method.

0 1 2 3 4 5 6 7 8

Picard step

10−5

10−4

10−3

10−2

10−1

100

e

α≈2.5

α≈7.9

α≈25.1

(b) Spectral method.

Figure 5.14: Methodical error over method iteration step. In case of the time-stepping one
method method iteration step is simulating one period of time, in case of the spectral method
one method method iteration step is one Picard step.

5.2.4 Scaling

All computations and timings were done on the Euler cluster1 at ETH Zürich. We
employ Euler III with quad-core Intel Xeon E3-1285Lv5 processors at 3.0–3.7GHz con-
nected by a 10Gb/s–40Gb/s Ethernet network and Euler II with dual 12-core Intel Xeon
E5-2680v3 at 2.7–3.3GHz connected by a 56Gb/s InfiniBand FDR network. Both are
equipped with DDR4 memory clocked at 2133MHz. Euler III has 32GB memory per
node, whereas Euler II has varying memory from 64GB up to 512GB per node. The
GCC 4.8.2 compiler is used in combination with OpenMPI 1.6.5. For the time-stepping
method, the computation time of one time period is presented. For the spectral method,
the execution time of the last Picard step is given. This is essentially the time for the
solution of the linear system with the highest condition number [25]. To get rid of over-
head from the runtime environment and the operating system, the minimal computation
time of ten runs is presented. The time-discretization is fixed. For the time-stepping

1https://scicomp.ethz.ch/wiki/Euler

73

https://scicomp.ethz.ch/wiki/Euler

Chapter 5. Experiments

method the numbers of time steps per period are 184, 58, and 42 for the Womersley
numbers α = 2.5, 7.9, and 25.1, respectively. By this choices of parameters the CFL
condition is satisfied and the temporal discretization error is approximately equal (cf.
Figure 5.13). For the spectral method, Nf = 2 is used which means that the problem
can be divided to three subgroups of processing units. Spatial grids of size 64×64,
128×128, 256×256, and 512×512 are considered. The results can be seen for Euler III
in Figure 5.15 and for for Euler II in Figure 5.16.

From the left column of Figure 5.15 we see that for the time-stepping method we only
get reasonable speedups for up to four cores, in particular for small system sizes. This is
due to the relatively small system sizes and the slow network connection. The execution
time is increasing with the Womersley number.

In the right column of Figure 5.15, we see that the spectral method can obtain decent
speedups up to 48 cores despite the small system sizes and the slow network connection.
The execution time is decreasing with the Womersley number.

In comparison the scaling behavior overall is better on Euler II, due to slower processing
units, a faster network and more cores per node, cf. Figure 5.15 and Figure 5.16.

5.2.5 Time to solution

Both methods are very different in terms of computing the time-periodic steady state
of the Navier–Stokes equations, so that they can only be compared by their times to
solution. To this end we compare the computing time needed to reduce the error below
10−5. We compute the time to solution by multiplying the necessary periods of time
from section 5.2.3 with the best wall-clock time to compute one period of time, or by
multiplying the necessary number of Picard steps with the wall-clock time to compute
one Picard step (cf. Figure 5.15). We consider only the spatial discretization with 1282

grid points. In Table 5.1, we can see that the time to compute one period of time is
decreasing with the Womersley number α, as fewer time steps have to be executed. But
the overall time to solution is increasing as the transition phase extends even faster.
Furthermore, we see that for the spectral method the time to compute one Picard step
is decreasing with the Womersley number, as the preconditioner has higher quality for
higher Womersley numbers. This will be also observed in section 5.3.

In summary we observe that for the Womersley number α = 2.5 the time-stepping
method and the spectral in time method take roughly the same time. But for α= 7.9

74

5.2. Time-periodic Taylor–Green vortex

100

101

102

103

104

ti
m

e[
s]

Time-stepping method

α≈2.5

Spectral in time method

642

1282

2562

5122

100

101

102

103

104

ti
m

e[
s]

α≈7.9 642

1282

2562

5122

21 23 25

number of cores

100

101

102

103

104

ti
m

e[
s]

21 23 25

number of cores

α≈25.1 642

1282

2562

5122

Figure 5.15: Execution times for the time-stepping method (left column) and the spectral
method (right column), for different Womersley numbers α=2.5, 7.9, and 25.1 (first, second,
and third row, respectively), for systems sized 64×64, 128×128, 256×256, and 512×512 (with
dashed, dashed-dotted, dotted, and solid line, respectively) on Euler III. The ideal speedups
are indicated by thin dashed black lines. 512×512 starts at 8 cores for memory reasons.

75

Chapter 5. Experiments

100

101

102

103

104

ti
m

e[
s]

Time-stepping method

α≈2.5

Spectral in time method

642

1282

2562

5122

100

101

102

103

104

ti
m

e[
s]

α≈7.9 642

1282

2562

5122

21 23 25

number of cores

100

101

102

103

104

ti
m

e[
s]

21 23 25 27

number of cores

α≈25.1 642

1282

2562

5122

Figure 5.16: Execution times for the time-stepping method (left column) and the spectral
method (right column), for different Womersley numbers α=2.5, 7.9, and 25.1 (first, second,
and third row, respectively), for systems sized 64×64, 128×128, 256×256, and 512×512 (with
dashed, dashed-dotted, dotted, and solid line, respectively) on Euler II. The ideal speedups
are indicated by thin dashed black lines.

76

5.2. Time-periodic Taylor–Green vortex

Table 5.1: Time to solution in seconds.

Time-stepping Spectral in time
α Euler III Euler II Euler III Euler II

number of periods/Picard step 6 8
2.5 time to compute one period/step 16.87 10.13 7.376 4.877

time to solution 101.2 60.75 59.01 39.02
number of periods/Picard step 57 4

7.9 time to compute one period/step 4.928 4.464 1.189 0.771
time to solution 280.9 254.4 4.756 3.085

number of periods/Picard step 560 4
25.1 time to compute one period/step 2.874 2.827 0.8771 0.5368

time to solution 1609. 1583. 3.508 2.147

the spectral method is 60 to 80 times faster, and for α=25.1 it is even 400 to 700 times
faster than the time stepping method. This is due to the extended transition phase that
has to be traversed by the time-stepping method, and the limited degree of parallelism
by just using spatial domain decomposition.

5.2.6 Conclusions

We have compared two methods for computing time-periodic steady states of the Navier–
Stokes equations. For the relatively small system sizes that we considered the time-
stepping method already suffers from the limited degree of parallelism that is offered
by the partitioning of only the spatial dimensions. We note that this saturation of
the parallelism also occurs for larger problems, but then for higher number of cores.
Additionally, the transition phase extends with the Womersley number which increases
the number of time steps needed to reach the time-periodic state.

In contrast, the spectral in time method shows a good scaling behavior, even for small
problem sizes, thanks to the (implicit) parallelization in time. Also there are just a few
Picard steps necessary to compute a good approximation of the solution. So, we can
conclude that if the Womersley number is sufficient large and there are enough cores
available, then the spectral in time method can drastically outperform a time-stepping
approach. If the Womersley number is low and the number of available cores is limited,
it is faster to traverse the relatively short transition phase by a time-stepping method.

These findings indicate that the use of the spectral method will also be beneficial for

77

Chapter 5. Experiments

larger and more complex problems, where no analytical steady state is known. More
complex problems entail the need to use more Fourier coefficient, which will also entail
more parallelism. The number of Picard’s iterations is expected to grow, but so will the
transition time for the time-stepping method.

78

5.3. Channel flow with oscillating obstacle

5.3 Channel flow with oscillating obstacle

In this section a channel flow with an oscillating spherical obstacle is computed by the
spectral in time method, cf. section 3.1. The spectral refinement is evaluated as well as
the scaling behavior of the time parallelization. Parts of this section have been published
in [50].

5.3.1 Problem

To test the proposed spectral in time method, we consider a three-dimensional plane
channel flow in the spatial domain Ω=[0, 8]×[0, 2]×[0, 4]. This flow is a solution of the
three-dimensional Navier–Stokes equations

α2∂tu + Re(u ·∇)u−∆u + Re∇p = Re f ,

∇ · u = 0,
x ∈ Ω, t ∈ [0, 2π]. (5.5)

Unless mentioned otherwise, a spatial grid of 257×65×129 grid points is used. We set
the tolerances tolr =10−6 andtolf =10−4. The reference length scale Lref is set to be half
the channel width. We enforce a Poiseuille flow at x=0 and x=8 as Dirichlet boundary
conditions and use the centerline velocity as reference velocity Uref. The channel flow is
disturbed by a periodic pulsating force density

f(x, t) =

−2

cos(t)
0

 exp
(
−(x− 1)2 + (y − 1)2 + (z − 2)2

0.22

)
. (5.6)

A Poiseuille flow is used as the initial guess for the velocity field. The schematic set-up
can be seen in Figure 5.17.

The linear Picard problem (3.10) and the inner problems are solved with flexible GMRES
up to a tolerance of 10−1. The 2-by-2 block-triangular preconditioner (3.28) is used,
where the (1,1) block is a multi-harmonic convection-diffusion problem and the (2,2)
block is an approximation of the Schur complement. For the stationary convection-
diffusion problems we use as preconditioner one multigrid V-cycle. As smoother we use
four Jacobi iterations steps with a damping factor of one half. As coarse grid solver we
use GMRES. For the Poisson problem we use as preconditioner one multigrid V-cycle

79

Chapter 5. Experiments

f

y

x
z

Figure 5.17: Schematic set-up of channel with oscillating obstacle force.

with a Jacobi iteration as smoother with a damping factor of 6/7 with four smoothing
sweeps. As coarse grid solver we use a direct solver.

Figure 5.18: Isosurfaces of velocity magnitude ‖u(x, t=0)‖=0.8.

To visualize a typical result, we simulate this flow for Re=200 and Strouhal number 0.2
which corresponds to α≈16. The stopping criterion tolf is matched for Nf =7. A time
snapshot of the isosurface for t= 0 can be seen in Figure 5.18. Isosurfaces of the first
few resulting Fourier modes can be seen in Figures 5.19 and 5.20. We find that the
disturbance is spread over the whole domain and the higher modes are excited as well.
Furthermore, the periodic forcing modifies the mean flow shown in Figure 5.19.

80

5.3. Channel flow with oscillating obstacle

Figure 5.19: Isosurfaces of the velocity magnitude of the zero Fourier mode ‖û0(x)‖2 =0.9.

5.3.2 Performance

First we assess the performance of the proposed nonlinear solver. We investigate how
residuals decrease when using spectral refinement with N start

f =1≤Nf ≤N end
f =7 and a

fixed number Nf =7 of Fourier modes, respectively. We assume that the computational
cost of one nonlinear iteration step is proportional to Nf times the linear iteration steps
for solving (3.25). For both methods we plot the residual against the computational
costs cf. Figure 5.21. We find that although the residual is increased by the spectral
refinement, indicated by kinks, the overall convergence is much faster.

In Table 5.2, we give the numbers of nonlinear iteration steps necessary for getting
a converged solution. The Reynolds number ranges from 10 and 200. The Strouhal
number St varies from 0.05 to 0.4 which corresponds to a Womersley number ranging
from 1.7 to 22.4. We observe that for higher Strouhal numbers and higher Reynolds
numbers the number of nonlinear solver steps increases. This is to be expected as
nonlinear effects become stronger and the solution gets more contributions in the higher
modes. To investigate the quality of the proposed preconditioner we look at the averaged
numbers of linear iteration steps per solve. In Table 5.3, we observe similar behavior for
the linear solver of the full Picard system as for the nonlinear solver, namely increasing
numbers of iterations for increasing Re. But for different Strouhal numbers it seems that
the maximum is reached between St=0.1 and 0.2. Note that the Strouhal number of the

81

Chapter 5. Experiments

(a) ‖ûc
1(x)‖2 =0.009.

(b) ‖ûc
2(x)‖2 =0.0009.

Figure 5.20: Isosurfaces of the velocity magnitude of the first (a) and second (b) cos coefficient.

82

5.3. Channel flow with oscillating obstacle

0 312 855 1055 1939

costs(linear iteration steps times Nf)

10−7

10−6

10−5

10−4

10−3

10−2

‖r‖

Nf = 1 Nf = 3

Nf = 5

Nf = 7

Nf = 7

Figure 5.21: Comparison between spectral refinement and fixed Nf . Note that tolr =10−6.

Table 5.2: Number of Picard iteration steps.

Picard steps
St

Re 0.05 0.1 0.2 0.4
10 6 4 11 11
100 16 18 18 16
200 23 25 25 23

83

Chapter 5. Experiments

vortex shedding behind a cylindrical obstacle is expected to be approximately 0.2 [57,
Chapter 10]. For solving the time-periodic convection-diffusion problem, the number of
iterations is very low which means that it is well approximated by the diagonal blocks.
In Table 5.4, we investigate the linear iteration steps for the different stages of Nf in our

Table 5.3: Average number of linear iteration steps for the full problem and the upper left
block F .

linear iteration steps for H linear iteration steps for F
St

Re 0.05 0.1 0.2 0.4 0.05 0.1 0.2 0.4
10 9.5 5.0 8.9 8.2 1.0 1.0 1.0 1.0
100 13.5 11.5 10.9 8.9 2.2 2.0 2.0 2.0
200 17.0 18.9 16.9 11.2 3.0 2.9 2.9 3.0

method. We consider only the Strouhal number 0.2. Again we list the averaged numbers
of iterations for one solve with the Picard matrix (3.25). The number of iterations is
not increasing with the number of modes.

Table 5.4: Averaged number of linear iteration steps for the full problem and the upper left
block.

linear iteration steps for H linear iteration steps for F
Nf

Re 1 3 5 7 1 3 5 7
10 11.9 6.0 1.0 1.0
100 16.6 10.2 6.0 1.9 1.9 2.0
200 28.4 22.6 10.0 6.5 2.4 2.7 3.3 3.0

5.3.3 Scaling

To assess the parallel performance of our implementation, we measure the wall-clock time
of one Picard update step. We consider the case Re=100 and St=0.1. All computations
and timings were done on the Brutus cluster2 at ETH Zürich with AMD Opteron 6174
12-core CPUs connected by an Infiniband QDR network.

2https://scicomp.ethz.ch/wiki/Brutus

84

https://scicomp.ethz.ch/wiki/Brutus

5.3. Channel flow with oscillating obstacle

1 2 3 4 5 6 7 8 9 10 12

number of cores

104

105

time[s]

0.0

0.2

0.4

0.6

0.8

1.0

efficiency

Figure 5.22: Strong scaling on multiple cores on a 12-core CPU. Wall-clock time is indicated
by red solid line. Efficiency is indicated by blue dashed line.

First, we consider the performance on one CPU. A spatial grid with 493 grid points is
used with twelve Fourier modes (Nf = 11). The number of cores varies between one
and twelve. We consider only the parallelization in time, i.e. the spatial domain is not
distributed to different processing units in this experiment. In Figure 5.22, we observe
good parallel performance if the number of Fourier modes is a multiple of the number of
cores. If this is not the case, i.e., for 5, 7, 8, 9, and 10 cores, the execution time equals the
one of the next smaller dividing core number. The efficiency drops accordingly. The case
of 11 cores is special. Here, each core executes one of the full modes 1 to 11 consisting
of a cosine and a sine part. One of the cores has to compute in addition the zero mode.
Since the zero mode contains only one mode instead of two the computational costs
are only half the costs of the higher modes. Thus, the load of the core that computes
mode 0 is only 50% higher than the average load. Therefore, the execution time with
11 cores is shorter compared to the 6 cores case.

Second, we consider the performance on multiple CPUs. Here, the spatial discretization
is fixed with 653 grid points. In the strong scaling test we fix the number of Fourier
modes Nf such that the problem size remains the same as the core count increases.
Ideally, the execution time is inversely proportional to the number of used cores. In
the weak scaling test we increase the Fourier modes in proportion with the increasing

85

Chapter 5. Experiments

number of cores. Ideally, the execution time stays constant. In Figure 5.23, timings are
plotted in double-logarithmic scale for both strong and weak scaling relative to runs on
32 cores. We observe good strong and weak scaling behavior.

32 64 128 256 512

number of cores

102

103

time[s]

Nf = 2
Nf = 4 Nf = 8 Nf = 16

Nf
#pf

= 8

Nf
#pf

= 4

Nf
#pf

= 2

Nf
#pf

= 1

Figure 5.23: Strong scaling in color with solid lines, weak scaling in black and dashed lines,
ideal scaling in gray and dotted lines.

5.3.4 Conclusions

The efficiency of the spectra in time solver has been demonstrated by numerical ex-
periments. The method combines the fast convergence of Fourier series with the linear
convergence of Picard’s method. A parameter study has been performed to investigate
the solver behavior for different Reynolds and Strouhal number. It shows that the cost
for the nonlinear and the linear solvers rise for higher Reynolds numbers. It has been
observed that the maximal cost is achieved for Strouhal numbers St between 0.1 and
0.2. These experiments show that the good properties of the least-squares commutator
carry over to the time-periodic problem formulation. Furthermore the block diago-
nal approximation of the multi-harmonic convection-diffusion problem shows very good
properties, such that for this problem the diagonal approximation of the multi-harmonic
convection-diffusion problem could have been directly used in the triangular precondi-
tioner as in (3.39). This is done in the next section. The scaling results presented in

86

5.3. Channel flow with oscillating obstacle

Figure 5.23 promise good parallel performance, especially if very large problems with
millions of spatial grid points and tenth of temporal Fourier modes will be considered.

87

Chapter 5. Experiments

5.4 Swept Hiemenz flow

In this section we investigate the applicability of the spectral in time method (cf. sec-
tion 3.1) to the swept Hiemenz flow. The swept Hiemenz flow [47] is a model of a
boundary layer at the attachment line of a swept wing. This flow can be seen as the
composition of a two-dimensional boundary layer along the streamwise coordinate and a
two-dimensional Hiemenz flow along the chordwise coordinate. Thus the swept Hiemenz
flow is a fully three-dimensional flow. The stability and the transition to turbulence of
this flow has been studied in great detail with many methods [22, 71, 86]. We can there-
fore validate our method with previous results computed by a time-stepping method.
The transition to turbulence is happening along the streamwise coordinate. Therefore
we can limit the computation domain along this coordinate to consider the flow as
laminar, transitional or turbulent. We explore limits of our approach for these three
cases.

5.4.1 Problem

We have the three-dimensional velocity profile of the swept Hiemenz flow, which we
denote by uSHF(x). This flow uSHF(x) is a solution of the stationary tree-dimensional
Navier–Stokes equations on the domain Ω = [0, ∞]× [0, ∞]× [−∞, ∞]. We consider
on the other hand only the spatial subdomain Ω=[0, Lx]×[0, Ly]×[−Lz/2, Lz/2]. On
which we solve the tree-dimensional time-periodic Navier–Stokes equation

α2∂tu + Re(u ·∇)u−∆u + Re∇p = 0,

∇ · u = 0,

for x ∈ Ω and t ∈ [0, 2π]. On the spatial domain boundaries we use Dirichlet boundary
conditions, where we prescribe the swept Hiemenz flow plus a time-periodic disturbance
uSHF(x)+uPER(x, t). uPER(x, t) will be defined later. The x, y, and z-coordinate are the
so-called wall-normal, streamwise, and chordwise direction, respectively. The reference
length is given by Lref =

√
ν/S∗. The reference velocity Uref is given by the free-stream

streamwise velocity v∞. We will later in this section compare our results with previously
computed results from [71], so we consider the same Reynolds number Re = 300. A
schematic set-up of the problem can be seen in Figure 5.24.

We disturb this base flow with an inflow perturbation at y = 0. This perturbation

88

5.4. Swept Hiemenz flow

Figure 5.24: Schematic set-up of the time-periodically disturbed swept Hiemenz flow. This
figure has been extracted and adjusted from [71, Figure 1].

changes its magnitude periodically uPER(x, t) = (A1 +A2 sin t)[u′(x, z), 0, w′(x, z)]T .
The disturbance velocities u′ and w′ are given for x<b by

u′(x, z) =

1
2 sin π(z−zc)

b

(
− cos π(x−xc)

b
+cos π(z+zc)

b

)
if |z − zc|<b and |z + zc|<b,

1
2 sin π(z−zc)

b

(
1 + cos π(x−xc)

b

)
if |z − zc|<b and |z + zc|>b,

−1
2 sin π(z−zc)

b

(
1 + cos π(x+xc)

b

)
if |z − zc|>b and |z + zc|>b,

0 otherwise.

w′(x, z) =

−1
2 sin π(x−xc)

b

(
cos π(z−zc)

b
+cos π(z+zc)

b

)
if |z − zc|<b and |z + zc|<b,

−1
2 sin π(x−xc)

b

(
1 + cos π(z−zc)

b

)
if |z − zc|<b and |z + zc|>b,

1
2 sin π(x−xc)

b

(
1 + cos π(z+zc)

b

)
if |z − zc|>b and |z + zc|<b,

0 otherwise.
(5.7)

−2.5 0.0 2.5

z

0

2

4

6

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Figure 5.25: Streamlines of the perturbation
field [u′, w′]T at y = 0. White lines indicate
the streamlines. The color indicates the ve-
locity magnitude.

The disturbance velocities are visualized in
Figure 5.25. This perturbation is considered
optimal [38], which means that the energy
growth along the streamwise direction is
maximized. We consider the case A1 =10−1,
A2 = 10−3, α≈ 7.93. This Womersley num-
ber and Reynolds number corresponds to
the reference frequency fref = 1/30. From
previous studies [71] we know that for these
parameters, the break down to turbulence
occurs the earliest in streamwise direction,
namely for y > 200. So we investigate the

89

Chapter 5. Experiments

performance of our solver by controlling the streamwise length. For the streamwise do-
main length Ly=75 the solution is laminar, for Ly=150 the solution is transient and for
Ly=300 the flow becomes turbulent. The parameters of the spatial discretization (grid
and degrees of freedom (DOF)), parallelization and domain size are given in Table 5.5.
The distances between grid points in the wall-normal coordinate are stretched due to
the velocity profile of the base flow.

Table 5.5: Domain and spatial discretization

Lx Ly Lz spatial grid spatial DOF npx · npy · npz
laminar 22.5 75 169 65× 129× 385 12′900′000 24
transitional 22.5 150 169 65× 257× 385 25′700′000 48
turbulent 22.5 300 169 65× 513× 385 51′400′000 96

The residuals based spectral refinement (Algorithm 3) is used with the residual stopping
criterion (3.15) with a tolerance tolr = 10−6 and for the refinement tolrefine = 2. Note
that the norms are scaled with the number of coefficients 2Nf +1. The linear Picard
problem (3.10) is solved with flexible GMRES up to a tolerance of 10−2 with the 2-by-2
block-triangular preconditioner (3.39), where the (1,1) block is a diagonal approxima-
tion of the multi-harmonic convection-diffusion matrix (3.38) and the (2,2) block is a
least squares commutator based approximation of the Schur complement (3.35). The
inner subproblems are also solved by the transpose-free quasi-minimal residual method
(TFQMR) [31]. For the stationary and harmonic convection-diffusion subproblems we
use a tolerance of 10−1. The convection-diffusion problem is preconditioned with two
V-cycles of multigrid with Gauss–Seidel iteration as smoother and as coarse grid solver
with downwinding in y-direction and alternating directions in x and z direction. For
explanations and references we refer to section 3.1.4.4. Also the Poisson problem is
solved by TFQMR but with fixed number of iteration steps, that is 14. The reason
for that is that this leads to a more equal load for all cores. As preconditioner for the
Poisson problem we use eight multigrid V-cycles. As smoother and coarse grid solver
we use eight Jacobi iteration steps. These are set much higher than in the previous
experiments. This is necessary because of the grid stretching.

90

5.4. Swept Hiemenz flow

5.4.2 Results

First we analyze the results in terms of performance then with regard to the solution in
comparison with the result of a time-stepping method.

In Figure 5.26, we can observe the performance of the residual based spectral refinement
Algorithm 3 for the laminar (Ly = 75), the transitional (Ly = 150), and the turbulent
case (Ly = 300). In the laminar and transitional case we observe convergence until the
overall residual is below 10−6. Furthermore we observe that the increase of the number
of frequencies does not lead to a substantial increase of the residual as in the previous
section where Algorithm 2 was used. We conclude that no compute power is wasted
by not solving the lower number of frequencies problems completely. Furthermore the
algorithm nicely adapts to the more complex flow structure of the laminar case by
including more frequencies. But in the turbulent case we observe that the method is
diverging after the 10th Picard step. There the algorithm is stopped, when the number
of linear iteration steps is reaching the prescribed maximum of 200, cf. Figure 5.27.
Note that despite the diverging residual, see Figure 5.26c, our approximate solution,
see Figure 5.30b, is still converging to the expected solution, see Figure 5.29b. We
expect that we get growing contributions to the residual that can not be resolved by the
truncated Fourier series.

In Figure 5.27, we show the number of linear iteration steps that are necessary to solve
the Picard problem for the three different cases. For the laminar case we observe that
the number of linear iteration steps is around 16 and does not increase with the number
of frequencies. For the transitional case we observe that the number of linear iteration
steps is only a little bit larger than for the laminar case roughly around 20. But the
number of linear iteration steps increases up to 30 along with the number of frequencies.
Also the turbulent case has in the beginning only a slight increase of the number of linear
iteration steps at around 24 in contrast to the laminar and transitional case. But as the
number of frequencies is increasing also the number of linear iteration steps is increasing
drastically. When the number of linear iterations steps is surpassing 400 iteration steps,
we stop the linear and nonlinear solver. It cannot expected that this number of linear
iteration steps is dropping for continuing the Picard iteration or through increasing the
number of frequencies.

In Table 5.6 we show the performance of the linear solvers of the inner subproblems.
We show the averaged number of linear iteration steps for the stationary and harmonic

91

Chapter 5. Experiments

10−5

10−3

10−1

101

‖r‖
∆r

0 3 6 9 12 15 18 21 24 27

Picard step

0
2
4
6
8

10
12
14
16

Nf

N inc
f

(a) Ly =75.

10−5

10−3

10−1

101

‖r‖
∆r

0 5 10 15 20 25 30 35 40

Picard step

0
2
4
6
8

10
12
14
16

Nf

N inc
f

(b) Ly =150.

10−5

10−3

10−1

101

‖r‖
∆r

0 2 4 6 8 10 12 14

Picard step

0
2
4
6
8

10
12
14
16

Nf

N inc
f

(c) Ly =300.

Figure 5.26: Performance of the residual based spectral refinement algorithm for the three
different cases. On the top we show the residual in red with circular markers and show the
residual increase through potential refinement (3.22) in blue with triangular markers. On the
bottom we show the number of frequencies in red with crossed markers and the number of
potential additional frequencies in blue with diamond markers.

92

5.4. Swept Hiemenz flow

0 5 10 15 20 25 30 35

Picard step

0

50

100

150

200

250

300

350

400

linear iteration steps

Ly=75

Ly=150

Ly=300

Figure 5.27: Linear iteration steps for the Picard problem.

Table 5.6: Average of the number of linear iteration steps for the stationary and harmonic
convection-diffusion problem. Average of the achieved tolerance for the Poisson problem.

Ly=75 Ly=150 Ly=300
Stationary convection-diffusion problem 3.26 2.96 2.77
Harmonic convection-diffusion problem 18.7 20.3 40.6
Poisson problem 1.79 · 10−4 8.22 · 10−5 7.67 · 10−5

93

Chapter 5. Experiments

convection-diffusion problem for one solve. We observe that average number of linear
iterations per solve is slightly decreasing for the stationary convection-diffusion problem,
which is ideal. The averaged number of linear iterations for the harmonic convection-
diffusion problem however is relatively large and is increasing from 19 to 44. As the
number of linear iteration steps is fixed for the Poisson problem they do not vary, but
the achieved tolerance varies, therefore we show the averaged achieved tolerance for one
solve. The averaged relative achieved tolerance for Poisson problem stays the same and
is independent of the problem size.

0 2 4 6 8 10 12 14 16

k

10−16

10−13

10−10

10−7

10−4

10−1

1
2‖ûk‖22

Ly=75

Ly=150

Ly=300

Figure 5.28: Energy spectrum.

In Figure 5.28, we show the energy density over the different coefficients k. Note that the
norm here is scaled with the inversed domain size 1/(LxLyLz). We observe that for the
laminar case much fewer frequencies are needed and the energy is decaying much faster
than for the transitional case. In case of the turbulent flow the energies are even higher.
We note that our intermediate solution of the turbulent flow is not deemed converged
with regard to the residual stopping criterion. We expect many more frequencies for a
converged solution.

To validate the correctness of our solution we analyze the solution by its Fourier-Hermite
modal energy densities. This modal energy density analysis, introduced in [73], trans-
forms the disturbance flow velocities into Fourier series in time and then into Hermite
polynomials in the chordwise direction. For the spectral in time method we get the

94

5.4. Swept Hiemenz flow

Fourier coefficients out of the box. It is only necessary to transfer the individual Fourier
coefficients into Hermite modes. We only consider the pure disturbance without the
base flow. As the base flow is constant in time, only the zero mode has to be adjusted
to get the pure disturbance,

û0′ = û0 − uSHF. (5.8)

The Hermite polynomials are orthogonal with regard to the scalar product

(f · g) =
∫ ∞
−∞

fg exp
(
− z2

2γ2

)
dz.

They are recursively defined by

H0(z) = 1
(
√

2πγ) 1
2
,

H1(z) = 1
(
√

2πγ) 1
2
z,

Hn(z) = zHn−1(z)−
√
n− 1Hn−2(z)√
n

, n > 1.

(5.9)

We transfer the velocity coefficients in x-direction into the chordwise Hermite modes by

û′0n(x, y) =
∫ Lz/2

−Lz/2
û0′Hn(z/γ) exp

(
− z2

2γ2

)
dz,

û
c/s
kn (x, y) =

∫ Lz/2

−Lz/2
û
c/s
k Hn(z/γ) exp

(
− z2

2γ2

)
dz.

(5.10)

The velocities coefficients in the y and z-direction are treated the same as the velocity
coefficients in x-direction. To get the modal Fourier-Hermite energy densities along the
streamwise coordinate y, we sum up the squares of all three velocity directions and
integrate over the wall-normal coordinate x

e0n(y) = 1
π

∫ ∞
0

(
|û′0n−1|2 + |v̂′0n−1|2 + |ŵ′0n|2

)
dx,

ekn(y) = 1
π

∫ ∞
0

(
|ûckn−1|2 + |v̂ckn−1|2 + |ŵckn|2 + |ûskn−1|2 + |v̂skn−1|2 + |ŵskn|2

)
dx.

(5.11)

Note that, we combine the order n in the chordwise coordinate with the n−1 order
in wall-normal and streamwise coordinates. This is motivated by the structure of the
vortices [72].

95

Chapter 5. Experiments

e01
e11
e21
e03
e13
e23

(a) Transitional flow.

e01
e11
e21
e03
e13
e23

(b) Turbulent flow.

Figure 5.29: Modal energy densities. Dashed lines are extracted from [71, Figure 5b]. Sold
lines have been computed by the spectral in time method.

96

5.4. Swept Hiemenz flow

For the comparison in Figure 5.29a and 5.29b we extracted the data from [71, Figure 5b].
We compare the energy densities of the solution of the spectral in time method and the
solution of a time-stepping method. For the time-stepping method a explicit Runge–
Kutta scheme has been used. The case Ly = 75 is not shown as the data matches
the same way as for the case Ly = 150. The transitional case matches the data from
the time-stepping perfectly. The turbulent case matches the data only up to y = 150,
afterwards the two results differ, which is expected as the solution is not converged.

In Figure 5.30, we can see the energy modes for different Picard steps. It can be
observed that the solution converges more quickly upstream and that for lower modes
a good approximation of the solution is obtain after only a couple of Picard steps.

To visualize our results we show the streamwise velocity component in a plane at x=1
for the zero coefficient in Figure 5.31 and for the first cosine coefficient in Figure 5.32.

In Figure 5.31, we compare temporal snapshots of the spectral in time method with the
time-stepping method from [71]. For the the spectral in time method, we have added
the coefficient to get the field for a time snapshot at t=0 (û0+∑Nf

i=1 ûck). We show the
streamwise velocity component in a plane at x=1.

At last we show the isosurface of the λ2 vortex criterion [52] in Figure 5.34. We show the
result from the spectral in time method in comparison with the time-stepping method
from [71]. They should be the same up to y=100 according to Figure 5.29b. We assume
that the differnce is due to the slightly different spatial discretization.

97

Chapter 5. Experiments

0 100 200 300

y

10−3

10−2

10−1
e

(11)
01

e
(14)
01

e
(19)
01

e
(27)
01

e
(35)
01

e
(38)
01

0 100 200 300

y

10−7

10−6

10−5

10−4

10−3

10−2

e
(11)
11

e
(14)
11

e
(19)
11

e
(27)
11

e
(35)
11

e
(38)
11

0 100 200 300

y

10−12

10−10

10−8

10−6

10−4
e

(14)
21

e
(19)
21

e
(27)
21

e
(35)
21

e
(38)
21

(a) Ly =150.

0 100 200 300

y

10−3

10−2

10−1

e
(10)
01

e
(12)
01

e
(14)
01

e
(15)
01

0 100 200 300

y

10−7

10−6

10−5

10−4

10−3

10−2

e
(10)
11

e
(12)
11

e
(14)
11

e
(15)
11

0 100 200 300

y

10−12

10−10

10−8

10−6

10−4

e
(12)
21

e
(14)
21

e
(15)
21

(b) Ly =300.

Figure 5.30: Energy densities for first Hermite mode and for the zero Fourier mode on top,
the first Fourier mode in the middle, and the second Fourier mode on the bottom. On the left
side is the transitional case and on the right side is the turbulent case. They are plotted at
the Picard steps when the solution is refined.

98

5.4. Swept Hiemenz flow

Figure 5.31: Streamwise velocity of û0 at x=1.

99

Chapter 5. Experiments

Figure 5.32: Streamwise velocity of ûc1 at x=1.

100

5.4. Swept Hiemenz flow

(a) Spectral in time method.

(b) Time-stepping method. The green color indicates a velocity of 0.5 which corresponds to
the base flow configuration, whereas red and blue indicate high and low velocity, respectively.

Figure 5.33: Snapshots of the streamwise velocity in a plane at x=1 for the spectral in time
method on top and the time-stepping method below. The plot of the time-stepping method
has been extracted and adjusted from [71, Figure 4.b].

101

Chapter 5. Experiments

(a) Spectral in time method.

(b) Time-stepping method.

Figure 5.34: Isosurface of λ2 = −10−4. For comparison, we show the result from the spectral
in time method on top and the result from the time-stepping method below. The plot of the
time-stepping method has been extracted and adjusted from [71, Figure 3].

102

5.4. Swept Hiemenz flow

5.4.3 Conclusions

We applied the spectral in time method to a “real world” problem. We could show
that the spectral in time method works well for laminar and transitional problems and
produces correct results. Only for turbulent problems the method shows deficits. This
is not too surprising as the core assumption of a pure time-periodic flow is violated.
Nevertheless we expect that the spectral in time method could be improved such that
it can compute efficiently close an approximation of the turbulent flow.

We expect that the diverging of the nonlinear solver can be overcome by using more
frequencies. As we expect that the residual is getting more and more contributions that
can be only resolved by coefficients belonging to higher frequencies. But to do that it is
necessary to be able to solve the linear Picard problem in a reasonable amount of time.

The current linear solver for the Picard problem is suffering from a strong increase of
linear iteration steps when the solution is getting close to the turbulent solution. The
reason for that is that presumably the approximation of multi-harmonic convection-
diffusion is losing quality. So we propose to include in the preconditioner also more
off-diagonals, which might mean that the parallelization in the time domain has to be
reduced. This does not necessarily mean that efficiency is reduced, as the traversing of
the transition phase is still prohibited and as considering multiple Fourier coefficients
for every spatial grid points increases the parallelize-ability in space.

The performance of the harmonic convection-diffusion problem is not fully satisfactory.
The iteration numbers are relatively high and they are increasing with the system size.
The solution of these subproblems is becoming the most time-consuming part of the
overall time to solution. This means if the preconditioner could be improved such
that by equal costs the iteration numbers is reduced from 44 to 10 then the time to
solution could be approximately decreased four times. We suppose this can be achieved
by constructing a preconditioner that better incorporates the convective terms. This
could be done for example by multigrid that is applied to the full harmonic convection-
diffusion problems not only to its diagonal blocks. This has been implemented but a
good smoother has not yet been found. We detect a potential decrease of the time to
solution but this will have no influence on the two main problems, the diverging Picard
iteration and the increasing number of linear iteration steps for the Picard problem,
discussed above.

103

6
Conclusions and future work

In this chapter we conclude this thesis and give an outlook on potential future work.

6.1 Conclusions

We developed and implemented new efficient solvers for time-periodic forced Navier–
Stokes problems. The new solvers are parallel in time, so that the implementation
has better scalability than just using spatial domain decomposition. Furthermore, the
solvers are able to circumvent the necessity to simulate long transition phases for ob-
taining the time-periodic steady state. Different physical problems have been solved for
verification and optimization such as a Rayleigh streaming, a Taylor–Green vortex, a
three-dimensional channel flow with an oscillating obstacle, and a swept Hiemenz flow.
In Figure 6.1, we show for which parameters we applied the spectral in time method.
Overall we observed that if the Womersley number α or the Strouhal number St is large
enough our spectral in time method is faster than a time-stepping method. But in
general it is hard to predict if our spectral in time method can be applied successfully.
As seen for the swept Hiemenz flow this strongly depends on the property of the flow,
namely if the flow is laminar, transitional, or turbulent. The classification of a flow in
those categories is a research topic in itself.

We could answer several research questions. First we could show that the new spectral
in time method promises good strong and weak temporal scalability. Also we could show
that the scalability can be extended beyond the saturation of the spatial parallelization.
Furthermore we addressed the question if it is possible to compute the time-periodic
steady state faster than a commonly used time-stepping method. We could show that for
certain cases, by comparing our spectral in time method with a classical time-stepping
method. Furthermore we investigated what happens in the case of turbulence when
the time-periodic assumption holds only for averaged quantities. It appears that the

105

Chapter 6. Conclusions and future work

100 101 102 103

Re

10−2

10−1

100

101

S
t RS

CF

T
G

V

SHF

Figure 6.1: The colored areas denote the partially successful application of the spectral in
time method. RS, TGV, CF, and SHF stands for Rayleigh streaming, Taylor–Green vortex,
channel flow, and swept Hiemenz flow, respectively.

current method is not able to handle turbulent flows as the method is not converging
to a solution in a reasonable amount of compute time and compute resources. Further
investigations are necessary.

To compare the spectral in time method with parallel-in-time methods, one has to keep
in mind that they are designed for two different problems. Most parallel-in-time methods
are designed for general transient and unsteady problems, whereas the spectral in time
method is limited to time-periodic problems with a priori known fundamental frequency.
So parallel-in-time methods can traverse the transition faster than a sequential time-
stepping method, but will not circumvent the traversal. So the application area for
time-stepping methods can be broaden by introducing parallel-in-time methods. But
nevertheless if the transition phase is long enough the spectral in time method can be
still faster.

The novel software tool can highly efficiently solve time-periodic Navier–Stokes problems
using different temporal discretization. The software is put under a free software license,
so that it can be used by all researchers who are studying time-periodic Navier–Stokes
problems. These contributions are also significant to a wider scientific community, be-
cause the modular approach of the parallelization concept ensures its applicability to
other existing flow solvers. This means that the scheme for discretizing and paral-

106

6.2. Future work

lelizing the time axis does not impose any requirements on (possibly already existing)
discretizations (e.g. finite element method, finite volume method or spectral method)
and/or parallelization concepts for the spatial dimensions. The resulting method can
also be adapted to time-periodic problems that arise in other research fields, for example
in chemistry or physics.

6.2 Future work

Possible future work can be divided in two categories. The first category are possi-
ble applications where the developed methods can be used. The second category are
improvements of the current methods such that either the current applications can be
solved even more efficiently or the application range can be broadened.

To start with possible applications, we propose to apply our method to various flow
problems that occur in biofluid dynamics. In biofluid dynamics flows are investigated
that occur inside or outside of living beings. Many such flows are strongly periodically
driven for example human blood flow.

Another possible application is the uncertainty quantification of time-periodic steady
states. Most methods for uncertainty quantification need the solution of many flow
problems for different sets of parameters. The application of a classical time-stepping
method becomes unfeasible as the transition phase to reach the steady state has to be
traversed for every parameter set. For our spectral in time or finite differences in time
method however not only the cost of computing the transition phase is circumvented
but also solutions from previously computed sets of parameters can be reused as initial
guesses for a new set of parameters. These initial guesses are potentially close to the
solution of the new set of parameters.

We showed that the efficiency of the spectral in time method could be improved by
spectral refinement. This has been done for whole spatial domains. We assume that the
efficiency could be further increased by introducing the spectral refinement not to the
global spatial domain, but individually to spatial subdomains. This means that spatial
areas with no or little temporal variation are discretized by few coefficients, and areas
with strong temporal variation are discretized with many coefficients. This can reduce
memory consumption and reduce the amount of computations.

Another way to make this time-periodic method applicable to turbulent flows can be

107

Chapter 6. Conclusions and future work

turbulent modeling. We propose turbulent modeling in such a way that one solves
only for the averaged quantities that are indeed time-periodic. This could be done for
example by using the described discretizations to the Reynolds averaged Navier–Stokes
equations.

108

A
List of integrals of trigonometric

functions

We provide here a list of integrals of trigonometric functions, that occur in section 2.2.1.
We assume k, l, n ∈ N+.

∫ 2π

0
sin(kt) dt = 0 (A.1)∫ 2π

0
cos(kt) dt = 0 (A.2)

1
π

∫ 2π

0
sin(kt) sin(lt) dt = δkl (A.3)

1
π

∫ 2π

0
sin(kt) cos(lt) dt = 0 (A.4)

1
π

∫ 2π

0
cos(kt) cos(lt) dt = δkl (A.5)

1
π

∫ 2π

0
sin(nt) sin(kt) sin(lt) dt = 0 (A.6)

1
π

∫ 2π

0
sin(nt) cos(kt) cos(lt) dt = 0 (A.7)

1
π

∫ 2π

0
sin(nt) sin(kt) cos(lt) dt = 1

2
[
+δn(k+l) − δ(n+k)l + δ(n+l)k

]
(A.8)

1
π

∫ 2π

0
sin(nt) cos(kt) sin(lt) dt = 1

2
[
+δn(k+l) + δ(n+k)l − δ(n+l)k

]
(A.9)

1
π

∫ 2π

0
cos(nt) sin(kt) sin(lt) dt = 1

2
[
−δn(k+l) + δ(n+k)l + δ(n+l)k

]
(A.10)

1
π

∫ 2π

0
cos(nt) cos(kt) cos(lt) dt = 1

2
[
+δn(k+l) + δ(n+k)l + δ(n+lk)

]
(A.11)

109

B
Backtracking

There are different problems that can occur solving nonlinear problems by an inexact
fixed-point iteration. The initial guess might be outside of the ball of convergence. The
inexact linear solver might fail to find a good reducing direction. If these problems
occur the residual will not decrease but increase. But we are still assuming a descent
direction.

So if the residual is increasing ‖r(m+1)‖>‖r(m)‖, there are different line search methods.
A line search method tries to find a step width λ such that

‖r(m+1)‖ ≤ ‖r(m)‖ with

q(m+1) = q(m) + λδq
(B.1)

Backtracking [55, Chapter 8] is a simple and robust line search method. It starts with
the step width λ= 1, if the new solution does not lead to a reduction of the residual
norm, the step width is halved. This is repeated until a step width is found, that
decreases the residual norm or a minimal step width λmin is reached (cf. Algorithm 5).
Therefore we replace the steps 6–7/7–8 of Algorithm 1, 2, and 3 with backtracking.

Algorithm 5 Backtracking
1: λ← 1.
2: q(m+1) ← q(m) + λδq
3: Compute r(m+1).
4: while ‖r(m+1)‖ > ‖r(m)‖ and λ > λmin do
5: λ← λ/2.
6: q(m+1) ← q(m) + λδq
7: Recompute r(m+1).

111

C
Computing null space of the pressure

problem

As the matrix in (3.52) is singular it is necessary to make sure that the right hand side
is in the image of the matrix span (DJ−1G) = null((DJ−1G)T)⊥. To make sure of that,
the right hand side vector rp is orthogonalized to a null space vector Ψ of DJ−1G

r̂′p = r̂p −
(Ψ · r̂p)
(Ψ ·Ψ) Ψ. (C.1)

A vector Ψ 6= 0 in the left null space satisfies

ΨTDJ−1G = 0T , (C.2)

which is equivalent to
GTJ−TDTΨ = 0. (C.3)

For periodic boundary conditions, J is the identity matrix, and the rows of DT sum to
zero, such that Ψ = 1 everywhere. The right and left null space are then the same. In
the case of Dirichlet boundary conditions D and J have full rank. The rank deficiency
is due to G. We expand the three operators with regard to the individual velocity
components

DT =

DT
x

DT
y

DT
z

 , JT =

JTx

JTy

JTz

 , GT =
(
GT
x GT

y GT
z

)
. (C.4)

113

Appendix C. Computing null space of the pressure problem

Here, Di and Gi denote the partial derivatives in direction i. Ji denotes the ith compo-
nent of the diagonal J. Those operators have the dimensions

DT
x ∈ R(Nx+1)NyNz×NxNyNz , JTx ∈ R(Nx+1)NyNz×(Nx+1)NyNz , GT

x ∈ RNxNyNz×(Nx+1)NyNz ,

DT
y ∈ RNx(Ny+1)Nz×NxNyNz , JTy ∈ RNx(Ny+1)Nz×Nx(Ny+1)Nz , GT

y ∈ RNxNyNz×Nx(Ny+1)Nz ,

DT
z ∈ RNxNy(Nz+1)×NxNyNz , JTz ∈ RNxNy(Nz+1)×NxNy(Nz+1), GT

z ∈ RNxNyNz×NxNy(Nz+1).

(C.5)
So equation (C.3) can be rewritten as

(
DT
x J
−T
x GT

x +DT
y J
−T
y GT

y +DT
z J
−T
z GT

z

)
Ψ = 0. (C.6)

As the operators are defined over three dimensional domains and we are using finite
differences they can be written as dyadic products. The operators in x-direction read
as

Dx = D̃x ⊗ Ĩy ⊗ Ĩz, Jx = J̃x ⊗ Ĩy ⊗ Ĩz, Gx = G̃x ⊗ Ĩy ⊗ Ĩz, (C.7)

where D̃T
x ∈ RNx+1×Nx and G̃T

x ∈ RNx×Nx+1 are the one dimensional transposed first
derivative operators in x direction. Ĩx ∈ RNy×Ny and Ĩz ∈ RNz×Nz are the identity
matrices. The operator J̃x ∈ RNx+1×Nx+1 has the following structure in case of Dirichlet
boundary conditions

J̃x =

c0 c1 · · · cbu

0 1
. . .

1 0
cNx−bu · · · cNx−1 cNx

. (C.8)

bl and bu are the lower and upper stencil widths. c are the coefficients to interpolate the
velocity values to the boundary. The J̃x operator can be easily transposed and inverted.
The transposed inverse of J̃x is

J̃−Tx =

1/c0 0
−c1/c0 1 −cNx−bu/cNx

...
−cbu/c0 1 −cNx−1/cNx

0 1/cNx

. (C.9)

114

Because of structure in (C.7), we can compute the left null space in x-direction by

G̃T
x J̃
−T
x D̃T

x Ψ̃x = 0. (C.10)

For simplicity we show the computation of the left null space vector only in one dimen-
sion Ψ̃x, the other dimension Ψ̃y and Ψ̃z can be treated analogously. A left null space
vector in two or three dimension can then be constructed from the dyadic product.

Ψ = Ψ̃x ⊗ Ψ̃y ⊗ Ψ̃z (C.11)

As stated before D̃x and J̃x have full rank but not G̃x. So to find Ψ̃x from (C.10), we
construct the null space vector first for G̃T

x and from that go to the right. The structure
of G̃x is given by

0 0 · · · 0
g1,0 g1,1 · · · g1,gu

g2,−1 g2,0 g2,1 . . . g2,gu

...
. . .

. . .
. . .

. . .
g1−gl,gl

· · · g1−gl,−1 g1−gl,0 g1−gl,1 · · · g1−gl,gu

. . .
. . .

. . .
. . .

. . .
gNx−1−gu,gl

· · · gNx−1−gu,−1 gNx−1−gu,0 gNx−1−gu,1 · · · gNx−1−gu,gu

. . .
. . .

. . .
. . .

...
gNx−1,gl

· · · · · · gNx−1,−1 gNx−1,0

0 · · · · · · 0 0

,

(C.12)

where gi,j is the coefficient to compute the first derivative at the grid point xi from the
function values at xj. The lower and upper stencil width are denoted by gl and gu. The
first and last rows of G̃x are zero as the pressure gradient does not contribute on the
boundaries. The null space of G̃T

x is therefore

null
(
G̃T
x

)
= span

1
0
...
0

 ,

0
...
0
1

.

︸ ︷︷ ︸
:=Φ̃x

(C.13)

To compute the null space of the G̃xJ̃
−T
x we transform the null space (C.13) G̃x with

115

Appendix C. Computing null space of the pressure problem

J̃Tx from the left. So we obtain

null
(
G̃T
x J̃
−T
x

)
= span

{
J̃Tx Φ̃x

}

= span

c0

c1
...
cbu

0
...
0

,

0
...
0

cNx−bl
...

cNx−1

cNx

︸ ︷︷ ︸
:=χ̃x

. (C.14)

So we finally can compute Ψ̃x from

D̃T
x Ψ̃x = χ̃x. (C.15)

For the left null space of the full Picard problem we define a new vector

Φ =

Φ̃x ⊗ Ĩy ⊗ Ĩz
Ĩx ⊗ Φ̃y ⊗ Ĩz
Ĩx ⊗ Ĩy ⊗ Φ̃z

 . (C.16)

From (C.13) we know already that GTΦ = 0. Furthermore we can easily see that
∆Φ = χ, where χ is the three dimensional expanded version of χi. The null space of
the transposed Picard system is therefore given by

null
(
HT

)
= span

Φ
0
...
0
−Ψ
0
...
0

,

0
Φ
...
0
0
−Ψ
...
0

, . . . ,

0
...
0
Φ
0
0
...
−Ψ

. (C.17)

116

D
Getting Pimpact

The afore mentioned implementation is called Pimpact. Pimpact is the acronym for
periodic incompressible Navier–Stokes solver on massively parallel computers.

To get the code, one has to execute

git clone https :// github.com/huppd/ PINTimpact .git

in a shell. This will download the folder Pimpact into the folder of execution. This
folder has the following structure

/PINTimpact

/run

/src

/src_c

/src_f

/test

/XML

The run folder contains various python scripts, that start multiple jobs and create
folder hierarchies for parameter studies or scaling tests. The src folder contains three
subfolders, src_c for the C++ part of the code, src_f for the Fortran90 part of the
code, and test for the unit-tests. The XML folder contains various xml parameter files.
These are used to set up the parameters and problems for the Pimpact solver.

The documentation can be created by executing

doxygen Doxyfile

in the PINTimpact folder. This will generate the documentation in the doc folder. The
documentation can be read by opening the file doc/html/index.html in the preferred
browser. Further information about compiling and using the code can be found there.

117

Bibliography

[1] P. Arbenz, A. Hiltebrand, and D. Obrist, A Parallel Space-Time Finite
Difference Solver for Periodic Solutions of the Shallow-Water Equation, in Par-
allel Process. Appl. Math., R. Wyrzykowski, J. Dongarra, K. Karczewski, and
J. Waśniewski, eds., vol. 7204 of LNCS, Springer Berlin Heidelberg, 2012, pp. 302–
312.

[2] P. Arbenz, D. Hupp, and D. Obrist, A Parallel Solver for the Time-Periodic
Navier–Stokes Equations, in Parallel Process. Appl. Math., R. Wyrzykowski,
J. Dongarra, K. Karczewski, and J. Waśniewski, eds., vol. 8385 of LNCS, Springer
Berlin Heidelberg, 2014, pp. 291–300.

[3] , Comparison of Parallel Time-Periodic Navier-Stokes Solvers, in Parallel Pro-
cess. Appl. Math., R. Wyrzykowski, J. Dongarra, E. Deelman, and K. Karczewski,
eds., vol. 10777 of LNCS, Cham, 2018, Springer International Publishing, pp. 57–67.

[4] F. Bachinger, U. Langer, and J. Schöberl, Numerical analysis of nonlinear
multiharmonic eddy current problems, Numer. Math., 100 (2005), pp. 593–616.

[5] F. Bachinger, U. Langer, and J. Schöberl, Efficient solvers for nonlinear
time-periodic eddy current problems, Comput. Vis. Sci., 9 (2006), pp. 197–207.

[6] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist, Ame-
sos2 and Belos: Direct and iterative solvers for large sparse linear systems, Sci.
Program., 20 (2012), pp. 241–255.

[7] K. Beck, Test-driven development : by example, Addison-Wesley, Boston, 18th ed.,
2013.

[8] P. Benedusi, A parallel multigrid solver for time periodic incompressible Navier–
Stokes equations, master’s thesis, Università della Svizzera Italiana, 2015.

[9] P. Benedusi, D. Hupp, P. Arbenz, and R. Krause, A Parallel Multigrid
Solver for Time-Periodic Incompressible Navier–Stokes Equations in 3D, in Nu-
mer. Math. Adv. Appl. ENUMATH 2015, B. and others Karasözen, ed., vol. 112,
Springer, 2016, pp. 265–273.

119

Bibliography

[10] J. Bey and G. Wittum, Downwind numbering: robust multigrid for convection-
diffusion problems, Appl. Numer. Math., 23 (1997), pp. 177–192.

[11] M. Bolten, D. Moser, and R. Speck, A multigrid perspective on the parallel
full approximation scheme in space and time, Numer. Linear Algebr. Appl., 24
(2017), p. e2110.

[12] A. Brandt, Multi-Level Adaptive Solutions to Boundary-Value Problems, Math.
Comput., 31 (1977), p. 333.

[13] A. Brandt and I. Yavneh, On multigrid solution of high-reynolds incompressible
entering flows, J. Comput. Phys., 101 (1992), pp. 151–164.

[14] P. N. Brown and H. F. Walker, GMRES On (Nearly) Singular Systems, SIAM
J. Matrix Anal. Appl., 18 (1997), pp. 37–51.

[15] A. Brüger, B. Gustafsson, P. Lötstedt, and J. Nilsson, High order ac-
curate solution of the incompressible Navier–Stokes equations, J. Comput. Phys.,
203 (2005), pp. 49–71.

[16] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spec-
tral Methods Fundamentals in Single Domains, Scientific Computation, Springer,
Berlin, Heidelberg, 2006.

[17] A. A. J. Christlieb, C. B. C. Macdonald, and B. B. W. Ong, Parallel
high-order integrators, SIAM J. Sci. Comput., 32 (2010), pp. 818–835.

[18] A. J. Christlieb, R. D. Haynes, and B. W. Ong, A Parallel Space-Time
Algorithm, SIAM J. Sci. Comput., 34 (2012), pp. C233–C248.

[19] R. Croce, D. Ruprecht, and R. Krause, Parallel-in-Space-and-Time Sim-
ulation of the Three-Dimensional, Unsteady Navier-Stokes Equations for Incom-
pressible Flow, in Model. Simul. Optim. Complex Process. - HPSC 2012, H. G.
Bock, X. P. Hoang, R. Rannacher, Schlöder, and J. P., eds., Springer International
Publishing, Cham, 2014, pp. 13–23.

[20] G. Cvijetic, H. Jasak, and V. Vukcevic, Finite Volume Implementation
of the Harmonic Balance Method for Periodic Non-Linear Flows, in 54th AIAA
Aerosp. Sci. Meet., vol. Im, Reston, Virginia, jan 2016, American Institute of Aero-
nautics and Astronautics, pp. 1–21.

120

Bibliography

[21] H. De Gersem, H. Vande Sande, and K. Hameyer, Strong coupled multi-
harmonic finite element simulation package, COMPEL - Int. J. Comput. Math.
Electr. Electron. Eng., 20 (2001), pp. 535–546.

[22] A. Dimas, B. Mowli, and U. Piomelli, Large-eddy simulation of subcritical
transition in an attachment-line boundary layer, Comput. Math. with Appl., 46
(2003), pp. 571–589.

[23] A. Eghbal, A. G. Gerber, and E. Aubanel, Acceleration of unsteady hy-
drodynamic simulations using the parareal algorithm, J. Comput. Sci., 19 (2017),
pp. 57–76.

[24] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro,
Block preconditioners based on approximate commutators, SIAM J. Sci. Comput.,
27 (2006), pp. 1651–1668.

[25] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative
Solvers, Oxford University Press, 2014.

[26] H. C. Elman and R. S. Tuminaro, Boundary conditions in approximate com-
mutator preconditioners for the Navier–Stokes equations, Electron. Trans. Numer.
Anal., 35 (2009), pp. 257–280.

[27] M. Emmett and M. L. Minion, Toward an efficient parallel in time method
for partial differential equations, Commun. Appl. Math. Comput. Sci., 7 (2012),
pp. 105–132.

[28] R. D. Falgout, A. Katz, T. V. Kolev, and J. B. Schroder, Parallel Time
Integration with Multigrid Reduction for a Compressible Fluid Dynamics Applica-
tion, 2014.

[29] R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B. Schroder,
Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study,
SIAM J. Sci. Comput., 39 (2017), pp. S298–S322.

[30] M. P. I. Forum, MPI: A Message-Passing Interface Standard, Version 3.1, High
Performance Computing Center Stuttgart (HLRS), 2015.

[31] R. W. Freund, A Transpose-Free Quasi-Minimal Residual Algorithm for Non-
Hermitian Linear Systems, SIAM J. Sci. Comput., 14 (1993), pp. 470–482.

121

Bibliography

[32] S. Friedhoff, R. D. Falgout, T. V. Kolev, J. B. Schroder, and S. P.
MacLachlan, A Multigrid-in-Time Algorithm for Solving Evolution Equations in
Parallel, in Sixt. Copp. Mt. Conf. Multigrid Methods, 2012.

[33] M. J. Gander, 50 Years of Time Parallel Time Integration, in Mult. Shoot. Time
Domain Decompos. Methods MuS-TDD, T. Carraro, M. Geiger, S. Körkel, and
R. Rannacher, eds., Springer International Publishing, Heidelberg, 2015, pp. 69–
113.

[34] M. J. Gander, Y.-L. Jiang, B. Song, and H. Zhang, Analysis of Two
Parareal Algorithms for Time-Periodic Problems, SIAM J. Sci. Comput., 35 (2013),
pp. A2393–A2415.

[35] M. J. Gander and M. Neumüller, Analysis of a New Space-Time Parallel
Multigrid Algorithm for Parabolic Problems, SIAM J. Sci. Comput., 38 (2016),
pp. A2173–A2208.

[36] A. Gopinath and A. Jameson, Time Spectral Method for Periodic Unsteady
Computations over Two- and Three- Dimensional Bodies, 43rd AIAA Aerosp. Sci.
Meet. Exhib., (2005), pp. 1–14.

[37] T. Guédeney, A. Gomar, and F. Sicot, Multi-frequential harmonic balance
approach for the computation of unsteadiness in multi-stage turbomachines, 21ème
Congrès Français de Mécanique, (2013), pp. 1–6.

[38] A. Guégan, P. J. Schmid, and P. Huerre, Spatial optimal disturbances in
swept attachment-line boundary layers, J. Fluid Mech., 603 (2008), pp. 179–188.

[39] W. Hackbusch, Fast Numerical Solution of Time-Periodic Parabolic Problems by
a Multigrid Method, SIAM J. Sci. Stat. Comput., 2 (1981), pp. 198–206.

[40] W. Hackbusch and T. Probst, Downwind Gauß-Seidel Smoothing for Convec-
tion Dominated Problems, Numer. Linear Algebr. Appl., 4 (1997), pp. 85–102.

[41] K. C. Hall, K. Ekici, J. P. Thomas, and E. H. Dowell, Harmonic balance
methods applied to computational fluid dynamics problems, Int. J. Comput. Fluid
Dyn., 27 (2013), pp. 52–67.

122

Bibliography

[42] K. C. Hall, J. P. Thomas, and W. S. Clark, Computation of unsteady
nonlinear flows in cascades using a harmonic balance technique, AIAA J., 40 (2002),
pp. 879–886.

[43] T. Hara, T. Naito, and J. Umoto, Time-periodic finite element method for
nonlinear diffusion equations, IEEE Trans. Magn., 21 (1985), pp. 2261–2264.

[44] R. Henniger, Direct and large-eddy simulation of particle transport processes in
estuarine environments, doctoral thesis, ETH Zürich, 2011.

[45] R. Henniger, D. Obrist, and L. Kleiser, High-order accurate solution of the
incompressible Navier–Stokes equations on massively parallel computers, J. Com-
put. Phys., 229 (2010), pp. 3543–3572.

[46] M. A. Heroux and J. M. Willenbring, A new overview of the Trilinos project,
Sci. Program., 20 (2012), pp. 83–88.

[47] K. Hiemenz, Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom
eingetauchten geraden Kreiszylinder, PhD thesis, Universität Göttingen, 1911.

[48] A. Hiltebrand, Parallel solution of time-periodic problems, master’s thesis, ETH
Zürich, 2010.

[49] D. Hupp, A parallel space-time solver for Navier–Stokes, master’s thesis, ETH
Zürich, 2013.

[50] D. Hupp, P. Arbenz, and D. Obrist, A parallel Navier–Stokes solver using
spectral discretisation in time, Int. J. Comput. Fluid Dyn., 30 (2016), pp. 489–494.

[51] D. Hupp, D. Obrist, and P. Arbenz, Multigrid preconditioning for time-
periodic Navier–Stokes problems, in Proc. Appl. Math. Mech., vol. 15, 2015,
pp. 595–596.

[52] J. Jeong and F. Hussain, On the identification of a vortex, J. Fluid Mech., 285
(1995), p. 69.

[53] O. A. Karakashian, On a Galerkin–Lagrange Multiplier Method for the Station-
ary Navier–Stokes Equations, SIAM J. Numer. Anal., 19 (1982), pp. 909–923.

[54] D. Kay, D. Loghin, and A. Wathen, A Preconditioner for the Steady-State
Navier–Stokes Equations, SIAM J. Sci. Comput., 24 (2002), pp. 237–256.

123

Bibliography

[55] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, vol. 16,
Society for Industrial and Applied Mathematics, Philadelphia, 1995.

[56] M. Kolmbauer and U. Langer, A Robust Preconditioned MinRes Solver for
Time-periodic Eddy Current Problems, Comput. Methods Appl. Math., 13 (2013),
pp. 1–20.

[57] P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics, Elsevier,
Boston, 6th ed., 2016.

[58] J. Leffell, An Overset Time-Spectral Method for Relative Motion, doctoral thesis,
Stanford University, 2014.

[59] J. Leffell, S. Murman, and T. Pulliam, An Extension of the Time-Spectral
Method to Overset Solvers, in 51st AIAA Aerosp. Sci. Meet. Incl. New Horizons
Forum Aerosp. Expo., Reston, Virigina, jan 2013, American Institute of Aeronautics
and Astronautics, pp. 1–25.

[60] J. I. Leffell, J. Sitaraman, V. K. Lakshminarayan, and A. M. Wissink,
Towards Efficient Parallel-in-Time Simulation of Periodic Flows, in 54th AIAA
Aerosp. Sci. Meet., no. January, Reston, Virginia, jan 2016, American Institute of
Aeronautics and Astronautics, pp. 4–8.

[61] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential
Equations, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2007.

[62] S. J. Lighthill, Acoustic streaming, J. Sound Vib., 61 (1978), pp. 391–418.

[63] J. Linden, G. Lonsdale, B. Steckel, and K. Stüben, Multigrid for the
steady-state incompressible Navier-Stokes equations: A survey, in 11th Int. Conf.
Numer. Methods Fluid Dyn., vol. 323, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1989, pp. 57–68.

[64] J.-l. Lions, Y. Maday, and G. Turinici, A “parareal” in time discretization
of PDE’s, C. R. Math. Acad. Sci. - Ser. I - Math., 332 (2001), pp. 661–668.

[65] D. J. Mavriplis and Z. Yang, Time Spectral Method for Periodic and Quasi-
Periodic Unsteady Computations on Unstructured Meshes, Math. Model. Nat. Phe-
nom., 6 (2011), pp. 213–236.

124

Bibliography

[66] M. Minion, A hybrid parareal spectral deferred corrections method, Commun. Appl.
Math. Comput. Sci., 5 (2010), pp. 265–301.

[67] M. F. Murphy, G. H. Golub, and A. J. Wathen, A Note on Preconditioning
for Indefinite Linear Systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969–1972.

[68] M. Neumüller, Space-Time Methods: Fast Solvers and Applications, doctoral
thesis, Graz University of Technology, 2013.

[69] W. L. M. Nyborg, Acoustic Streaming, in Phys. Acoust., vol. 2, ACADEMIC
PRESS INC., 1965, pp. 265–331.

[70] D. Obrist, R. Henniger, and P. Arbenz, Parallelization of the time integra-
tion for time-periodic flow problems, in Proc. Appl. Math. Mech., vol. 10, 2010,
pp. 567–568.

[71] D. Obrist, R. Henniger, and L. Kleiser, Subcritical spatial transition of
swept Hiemenz flow, Int. J. Heat Fluid Flow, 35 (2012), pp. 61–67.

[72] D. Obrist and P. J. Schmid, On the linear stability of swept attachment-line
boundary layer flow. Part 1. Spectrum and asymptotic behaviour, J. Fluid Mech.,
493 (2003), pp. 1–29.

[73] , On the linear stability of swept attachment-line boundary layer flow. Part 2.
Non-modal effects and receptivity, J. Fluid Mech., 493 (2003), pp. 31–58.

[74] M. R. Osborne, A note on the numerical solution of a periodic parabolic problem,
Numer. Math., 7 (1965), pp. 155–158.

[75] L. Rayleigh, On the circulation of air observed in Kundt’s tubes and some allied
acoustical problems, Philos. Trans. R. Soc. London, 175 (1884), pp. 1–21.

[76] N. Riley, Steady Streaming, Annu. Rev. Fluid Mech., 33 (2001), pp. 43–65.

[77] Y. Saad, A Flexible Inner-Outer Preconditioned GMRES Algorithm, SIAM J. Sci.
Comput., 14 (1993), pp. 461–469.

[78] Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia, PA,
2nd ed., 2003.

125

Bibliography

[79] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput., 7
(1986), pp. 856–869.

[80] D. Samaddar, D. Newman, and R. Sánchez, Parallelization in time of numer-
ical simulations of fully-developed plasma turbulence using the parareal algorithm,
J. Comput. Phys., 229 (2010), pp. 6558–6573.

[81] W. E. Schiesser and G. W. Griffiths, A Compendium of Partial Differential
Equation Models: Method of Lines Analysis with Matlab, Cambridge University
Press, Cambridge, 2009.

[82] D. Silvester, H. Elman, D. Kay, and A. Wathen, Efficient preconditioning
of the linearized Navier–Stokes equations for incompressible flow, J. Comput. Appl.
Math., 128 (2001), pp. 261–279.

[83] S. Sivaloganathan, The use of local mode analysis in the design and comparison
of multigrid methods, Comput. Phys. Commun., 65 (1991), pp. 246–252.

[84] B. Song and Y.-L. Jiang, Analysis of a new parareal algorithm based on wave-
form relaxation method for time-periodic problems, Numer. Algorithms, 67 (2014),
pp. 599–622.

[85] , A new parareal waveform relaxation algorithm for time-periodic problems, Int.
J. Comput. Math., 92 (2015), pp. 377–393.

[86] P. Spalart, Direct Numerical Study Of Leading-Edge Contamination, in AGARD,
Fluid Dyn. Three-Dimensional Turbul. Shear Flows Transit., no. 438, 1988, p. 13.

[87] R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel,
and P. Gibbon, A massively space-time parallel N-body solver, in 2012 Int. Conf.
High Perform. Comput. Networking, Storage Anal., Salt Lake City, UT, nov 2012,
IEEE, pp. 1–11.

[88] Y. K. Suh and S. Kang, Acoustic Streaming, in Encycl. Microfluid. Nanofluidics,
Springer US, Boston, MA, 2014, pp. 1–15.

[89] G. I. Taylor and A. E. Green, Mechanism of the Production of Small Eddies
from Large Ones, Proc. R. Soc. A Math. Phys. Eng. Sci., 158 (1937), pp. 499–521.

126

Bibliography

[90] G. J. Tee, An application of p-cyclic matrices, for solving periodic parabolic prob-
lems, Numer. Math., 6 (1964), pp. 142–159.

[91] A. Toselli and O. Widlund, Domain Decomposition Methods - Algorithms and
Theory, vol. 34 of Springer Series in Computational Mathematics, Springer-Verlag,
2004.

[92] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic
Press, 2001.

[93] W. M. van Rees, A. Leonard, D. I. Pullin, and P. Koumoutsakos, A
comparison of vortex and pseudo-spectral methods for the simulation of periodic
vortical flows at high Reynolds numbers, J. Comput. Phys., 230 (2011), pp. 2794–
2805.

[94] S. Vanka, A calculation procedure for three-dimensional steady recirculating flows
using multigrid methods, Comput. Methods Appl. Mech. Eng., 55 (1986), pp. 321–
338.

[95] S. Vanka, Block-implicit multigrid solution of Navier–Stokes equations in primitive
variables, J. Comput. Phys., 65 (1986), pp. 138–158.

[96] S. Yamada and K. Bessho, Harmonic field calculation by the combination of fi-
nite element analysis and harmonic balance method, Magn. IEEE Trans., 24 (1988),
pp. 2588–2590.

[97] I. Yavneh, C. H. Venner, and A. Brandt, Fast Multigrid Solution of the
Advection Problem with Closed Characteristics, SIAM J. Sci. Comput., 19 (1998),
pp. 111–125.

127

Curriculum Vitae

Personal details

Name Daniel Hupp
Birth September 9, 1987 in Wangen im Allgäu
Citizenship Germany

Education

7.2013 – 5.2018 PhD Studies in Computer Science
at ETH Zürich, Switzerland

2.2012 – 6.2013 MSc Studies in Computational Science and Engineering
at ETH Zürich, Switzerland

9.2007 – 11.2012 BSc Studies in Computational Science and Engineering
at ETH Zürich, Switzerland

9.1998 – 6.2007 High school, Droste-Hülshoff-Gymnasium
in Freiburg im Breisgau, Germany

Publications
• D. Hupp, M. Mendoza, I. Bouras, S. Succi, and H. J. Herrmann, Rela-
tivistic lattice Boltzmann method for quark-gluon plasma simulations, Phys. Rev.
D, 84 (2011), p. 125015.

• P. Arbenz, D. Hupp, and D. Obrist, A Parallel Solver for the Time-Periodic
Navier–Stokes Equations, in Parallel Process. Appl. Math., vol. 8385 of LNCS,
Springer Berlin Heidelberg, 2014, pp. 291–300.

• D. Hupp, D. Obrist, and P. Arbenz, Multigrid preconditioning for time-
periodic Navier–Stokes problems, in Proc. Appl. Math. Mech., vol. 15, 2015, pp.
595–596.

• P. Benedusi, D. Hupp, P. Arbenz, and R. Krause, A Parallel Multigrid
Solver for Time-Periodic Incompressible Navier–Stokes Equations in 3D, in Nu-
mer. Math. Adv. Appl. ENUMATH 2015, vol. 112, Springer, 2016, pp. 265–273

• D. Hupp, P. Arbenz, and D. Obrist, A parallel Navier–Stokes solver using
spectral discretisation in time, Int. J. Comput. Fluid Dyn., 30 (2016), pp. 489–494.

• P. Arbenz, D. Hupp, and D. Obrist, Comparison of Parallel Time-Periodic
Navier-Stokes Solvers, in Parallel Process. Appl. Math., vol. 10777 of LNCS,
Cham, 2018, Springer International Publishing, pp. 57–67.

129

	Contents
	Notation
	Introduction
	Motivation
	Current research
	Parallel-in-time methods
	Methods for time-periodic problems
	Related work

	Outline of the thesis

	Discretization of the time-periodic Navier–Stokes equations
	Governing equations
	Time discretization
	Spectral in time discretization
	Finite differences in time

	Spatial discretization

	Numerical solvers for the time-periodic Navier–Stokes problems
	A nonlinear solver for the spectral in time discretization
	Picard iteration
	Solution based spectral refinement
	Residual based spectral refinement
	Preconditioning
	Picard problem
	Multi-harmonic convection-diffusion problem
	Harmonic convection-diffusion problem
	Stationary convection-diffusion problems
	Poisson problem

	A nonlinear solver for the finite differences in time discretization
	Picard iteration
	Preconditioning
	Four-dimensional restriction and interpolation
	Box-smoothing

	Implementation of the parallel time-periodic solvers
	Implementation process
	Interfaces
	Parallelization

	Experiments
	Rayleigh streaming
	Problem
	Performance

	Time-periodic Taylor–Green vortex
	Problem
	Convergence of the time discretization
	Convergence of the method
	Scaling
	Time to solution
	Conclusions

	Channel flow with oscillating obstacle
	Problem
	Performance
	Scaling
	Conclusions

	Swept Hiemenz flow
	Problem
	Results
	Conclusions

	Conclusions and future work
	Conclusions
	Future work

	Appendices
	List of integrals of trigonometric functions
	Backtracking
	Computing null space of the pressure problem
	Getting Pimpact

