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‘Suave, mari magno turbantibus aequora ventis
E terra magnum alterius spectare laborem;

Non quia vexari quemquamst iucunda voluptas,
Sed quibus ipse malis careas quia cernere suavest.

Suave etiam belli certamina magna tueri
Per campos instructa tua sine parte pericli;

Sed nihil dulcius est, bene quam munita tenere
Edita doctrina sapientum templa serena,

Despicere unde queas alios passimque videre
Errare atque viam palantis quaerere vitae,

Certare ingenio, contendere nobilitate,
Noctes atque dies niti praestante labore

Ad summas emergere opes rerumque potiri.’

‘Il est doux, quand la vaste mer est soulevée par les vents, d’assister du rivage à la détresse
d’autrui; non qu’on trouve si grand plaisir à regarder souffrir; mais on se plaît à voir quels

maux vous épargnent. Il est doux aussi d’assister aux grandes luttes de la guerre, de suivre les
batailles rangées dans les plaines, sans prendre sa part du danger. Mais la plus grande douceur
est d’occuper les hauts lieux fortifiés par la pensée des sages, ces régions sereines d’où s’aperçoit
au loin le reste des hommes, qui errent çà et là en cherchant au hasard le chemin de la vie, qui
luttent de génie où se disputent la gloire de la naissance, qui s’épuisent en efforts de jour et de

nuit pour s’élever au faîte des richesses ou s’emparer du pouvoir.’

Lucrèce, De rerum natura, Liber II, Ier siècle avant notre ère.
Traduction par Henri Clouard.





Abstract
CubETH is a project of a scientific nano-satellite of 10 x 10 x 10 cm3 size. Its destination is a
Low Earth Orbit (LEO) at 450 km height above the Earth surface. The spacecraft is equipped
with ten Global Navigation Satellite Systems (GNSS) receivers and five GNSS antennas. The
employed GNSS receivers are manufactured by the Swiss company u-blox. They are called
‘commercial off-the-shelf’ chipsets, but are extremely well suited to be used in space: their power
consumption, their weight and their size are very small.

As the satellite is equipped with four antennas on its upper size, GNSS attitude determination
can be performed. The attitude is the orientation of the spacecraft relatively to a reference
frame, for instance the terrestrial reference frame. In GNSS attitude determination, the relative
position of the antennas with respect to each other is used.

As a first part of the present doctoral thesis, an algorithm for GNSS attitude determination
was developed. Compared to the algorithms in the scientific literature, the GNSS measurements
are extrapolated. The extrapolation term ranges approximately from −6 to +6 m. The need
for extrapolation is a consequence of the non-synchronicity of the receivers. The measurement
epoch lies within a window of 1 ms around the nominal measurement epoch. Because of the high
velocity of the spacecraft in LEO (about 8 km/s), extrapolation of the measurements is crucial.

The new algorithm was tested throughout. A hardware in the loop signal simulator test
campaign was conducted successfully. The algorithm was also proven to work in a static real
data experiment on the ground.

From the first experiences with a model of the CubETH spacecraft, it became obvious
that the limiting factor for the accuracy are the antennas. Mutual coupling of the antennas
can theoretically not be excluded for baselines shorter than one wavelength. A relative field
calibration was set up to obtain Phase Centre Corrections (PCC) for the antennas on the satellite
model. PCC are correction values that depend on the frequency and on the direction of the
incoming signals. PCC have been studied since the beginning of the US Global Positioning
System (GPS) in the 80s, theoretically and experimentally. However, low-cost antennas in the
vicinity of each other, as onboard CubETH, have never been in the scientific focus.

The results from the relative field calibration show that mutual coupling occurs. The
magnitude of the PCC range up to several centimetres. It is shown that the application of PCC
is crucial in order to estimate an unbiased attitude with GNSS. The experiments also showed
the limitation of the relative field calibration. It is extremely prone to multipath errors.

The focus of the second part of the present doctoral thesis lies on absolute field calibration
for GNSS antennas. This reorientation is a consequence of unexpected delay in the CubETH
project. In less than 18 months, an operational GNSS antenna calibration facility was developed.
It uses a six-axis industrial robot to bring the antenna to be calibrated into various orientations.
Reference data is collected on a station just a few metres away from the robot. The data is
processed on the triple-difference level, i.e., on time-differences of classical double-differences.
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The system is currently able to generate calibrations for any Code Division Multiple Access
(CDMA) signal, if enough GNSS spacecraft are visible. Calibration of the Russian GLONASS
Frequency Division Multiple Access (FDMA) signals is a matter of implementation.

Various analyses show that the repeatability of the calibrations is below the millimetre-level.
A comparison with the de facto standard, PCC from the German company Geo++® GmbH,
allowed to verify that the results are meaningful and that they are in the same accuracy range as
the reference PCC. Calibrations of GNSS receiver antennas for signals of the European satellite
navigation system Galileo were presented at the International GNSS Service (IGS) Workshop
2018 in Wuhan. Our new system is the first absolute field calibration that reportedly generated
calibrations for Galileo signals. This is an important step towards a better combination of all
available GNSS.

In contrast to the US GPS, Galileo satellites have calibrated emitter antennas. Eventually,
PCC of receiver antennas for Galileo signals could be the key to obtain a scale of the terrestrial
reference frame from GNSS measurements. This scale would be independent of other space
geodetic techniques. This requires both, the transmitter and the receiver antennas to be
accurately calibrated.
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Zusammenfassung
CubETH ist ein Projekt für einen wissenschaftlichen Satelliten von 10 x 10 x 10 cm3. Sein Ziel
ist eine tiefe Erdumlaufbahn in ungefähr 450 km Höhe über der Erdoberfläche. Der Satellit ist
mit zehn Global Navigation Satellite System (GNSS)-Empfängern und fünf GNSS-Antennen
ausgerüstet. Die verwendeten Empfänger werden von der Schweizer Firma u-blox hergestellt. Es
sind Chips aus der Serienproduktion, doch weisen sie Eigenschaften auf, die sie für einen Einsatz
im Weltraum attraktiv machen: sie brauchen wenig Strom, sind leicht und kompakt.

Weil der Satellit vier Antennen auf seiner nach oben gerichteten Fläche aufweist, kann mittels
GNSS die Attitude bestimmt werden. Die Attitude ist die Orientierung des Satelliten relativ
zu einem Referenzrahmen, zum Beispiel dem terrestrischen Referenzrahmen. Für die GNSS-
Attitude-Bestimmung wird das Prinzip der relativen Positionierung der Antennen gegenüber
den anderen Antennen ausgenutzt.

Als erster Teil der vorliegenden Doktorarbeit wurde ein Algorithmus für die Attitude-
Bestimmung entwickelt. Entgegen den in der wissenschaftlichen Literatur erwähnten Algorithmen
enthält der Algorithmus einen Extrapolationsterm. Der Extrapolationsterm beträgt zwischen
−6 und +6 m. Die Ursache für den Extrapolationsterm liegt in den nicht synchronisierten
Empfängern. Der Messzeitpunkt liegt innerhalb eines Zeitfensters von 1 ms um den nominalen
Messzeitpunkt. Wegen der hohen Geschwindigkeit des Satelliten (ungefähr 8 km/s) ist eine
Extrapolation der Messungen unabdingbar.

Der neue Algorithmus wurde intensiv getestet. Eine Studie mit einem Signalgenerator und
den Empfängern wurde erfolgreich durchgeführt. Der Algorithmus wurde ebenfalls mit echten
Daten aus einem statischen Experiment am Boden validiert.

Aus den ersten Experimenten liess sich schliessen, dass die Antennen den entscheidenden
Faktor für die Genauigkeit darstellen. Gegenseitige Beeinflussung der Antennen kann theoretisch
nicht ausgeschlossen werden, wenn die Basislinienlänge kürzer ist als eine Wellenlänge. Eine
relative Feldkalibration wurde aufgesetzt um Phasenzentrumskalibrationen (PZK) für ein Modell
des CubETH zu erhalten. PZK sind frequenz- und richtungsabhängige Korrekturwerte für die
eintreffenden GNSS-Signale. PZK werden seit Beginn des amerikanischen Global Positioning
System (GPS) untersucht, sowohl theoretisch wie auch experimentell. Dennoch war die Kalibra-
tion von preiswerten Antennen in direkter Nähe zueinander, wie sie auf CubETH vorkommen,
nie im wissenschaftlichen Fokus.

Die Resultate der relativen Feldkalibration zeigen auf, dass gegenseitige Beeinflussung der
Antennen untereinander stattfindet. Die ermittelten PZK betragen mehrere Zentimeter. Es
wurde aufgezeigt, dass die Verwendung von PZK für die fehlerfreie Schätzung von Attitude
unabdingbar ist. Gleichzeitig wurden die Grenzen der relativen Antennenkalibration aufgezeigt.
Sie ist extrem empfänglich für Fehler aus Mehrwegausbreitung.

Der Fokus des zweiten Teils der vorliegenden Doktorarbeit liegt bei absoluten Feldkalibra-
tionen für GNSS-Antennen. Unerwartete Verzögerungen im CubETH-Projekt sind der Grund für
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diese Neuausrichtung. In weniger als 18 Monaten wurde ein operationelles Kalibrierungssystem
für GNSS-Antennen entwickelt. Es benutzt einen Sechs-Achsen-Industrieroboter, um die Antenne
in alle möglichen Orientierungen zu bringen. Referenzdaten werden von einer nur wenige Meter
vom Roboter entfernten Station aufgenommen. Die Daten werden auf Dreifachdifferenz-Stufe
ausgewertet. Dreifachdifferenzen sind Zeitdifferenzen von klassischen Doppeldifferenzen.

Das System kann im jetzigen Zustand Kalibrationen für alle Code Division Multiple Access
(CDMA) Signale generieren, vorausgesetzt es sind genug Satelliten sichtbar. Kalibrationen
für die russischen GLONASS Frequency Division Multiple Access (FDMA) Signale sind auch
denkbar, sofern diese auch implementiert werden.

Diverse Analysen zeigen, dass die Wiederholbarkeit der Kalibrationen bei unter einem Milli-
meter liegt. Ein Vergleich mit dem de facto Standard, den PZK der deutschen Firma Geo++®

GmbH, zeigen auf, dass die erhaltenen Resultate plausibel sind und im selben Genauigkeits-
bereich liegen wie die Referenz. Kalibrationen von GNSS-Empfangsantenne für die Signale vom
europäischen Satelliten-Navigationssystem Galileo wurden am International GNSS Service (IGS)
Workshop 2018 in Wuhan vorgestellt. Unser System ist das erste absolute Feldkalibrationssystem,
das nachweislich Galileo-Kalibrationen generiert hat. Dies ist ein wichtiger Schritt zur besseren
Kombination aller verfügbaren GNSS.

Im Gegensatz zum amerikanischen GPS weisen Galileo-Satelliten kalibrierte Sendeantennen
auf. Letzten Endes wird die Kalibration von Empfängerantennen für die Galileo-Signale der
Schlüssel zur Bestimmung des Massstabs des terrestrischen Referenzrahmens aus GNSS sein.
Dieser Massstab wäre unabhängig von demjenigen anderer weltraumgeodätischen Techniken.
Dies erfordert jedoch, dass sowohl die Sendeantennen wie auch die Bodenantennen hochgenau
kalibriert werden.
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Résumé

CubETH est le projet d’un nano-satellite de 10 x 10 x 10 cm3. Il est destiné à une orbite basse
à environ 450 km d’altitude au-dessus de la surface de la terre. Cet astronef est équipé de dix
récepteurs de système de positionnement par satellites (Global Navigation Satellite System,
GNSS) et cinq antennes GNSS. Les récepteurs GNSS utilisés sont fabriqués par l’entreprise
suisse u-blox. Il s’agit d’équipement électronique standard, mais leurs performances les rendent
parfaits pour une utilisation dans l’espace : ils sont peu énergivores, de petite taille et légers.

Le satellite étant équipé de quatre antennes sur sa face supérieure, la détermination de
l’attitude devient possible. L’attitude est l’orientation du satellite par rapport à un cadre de
référence, par exemple le cadre de référence terrestre. La détermination de l’attitude par GNSS
est basée sur le positionnement relatif des antennes par rapport aux autres antennes.

Dans la première partie de cette thèse de doctorat, un algorithme pour la détermination de
l’attitude par GNSS a été développé. Contrairement aux autres algorithmes présents dans la
littérature scientifique, les données GNSS sont extrapolées. Le terme d’extrapolation mesure
entre −6 et +6 mètres. La nécessité du terme d’extrapolation découle du non- synchronisme des
récepteurs. L’instant de mesure se situe dans une plage de 1 ms autour de l’époque nominale.
A cause de la grande vitesse du satellite en orbite basse (environ 8 km/s), l’extrapolation des
mesures est indispensable.

Le nouvel algorithme a été soigneusement testé. Une simulation avec un générateur de
signaux GNSS et les récepteurs a été menée avec succès. Le bon fonctionnement de l’algorithme
a aussi été prouvé dans une expérience statique au sol et avec de vrais signaux GNSS.

Dès les premières expériences avec un modèle du satellite, il était évident que les antennes
seraient le facteur limitant la précision. Une influence mutuelle des antennes ne peut pas
être exclue pour des lignes de bases plus courtes qu’une longueur d’onde. Une calibration de
terrain relative est mise en place afin d’obtenir les Corrections des Centres de Phases (CCP)
pour les antennes du satellite. Les CCP sont des valeurs de correction qui dépendent de la
fréquence et de la direction du signal reçu. Les CCP sont étudiées depuis les débuts du Global
Positioning System (GPS) des États-Unis d’Amérique dans les années 80, tant à un niveau
théorique qu’expérimental. Cependant, la calibration d’antennes à bas coût à proximité l’une de
l’autre, comme sur CubETH, n’a jamais été au centre de l’attention scientifique.

Les résultats obtenus lors des calibrations relatives montrent qu’une influence mutuelle des
antennes se produit. La magnitude des CCP est de plusieurs centimètres. Il est démontré que
la prise en compte des CCP est cruciale afin d’estimer une attitude GNSS qui soit libre de
biais. Les expériences ont aussi montré les limites de la calibration de terrain relative. Elle est
susceptible aux erreurs dues aux propagation par trajets multiples.

Le focus de la deuxième partie de la présente thèse de doctorat sont les calibrations de terrain
absolues pour les antennes GNSS. Cette réorientation est une conséquence de retards imprévus
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dans le projet CubETH. En moins de 18 mois, un système opérationnel de calibrations d’antennes
GNSS a été développé. Il utilise un robot industriel à six axes afin de tourner l’antenne GNSS
dans tous les sens. Des données de références sont collectées par une station à quelques mètres
du robot. Les mesures sont traitées sous forme de triple-différences. Les triples-différences sont
des différences temporelles des doubles-différences classiques.

Le système est actuellement capable de générer des calibrations pour n’importe quel signal
modulé par accès multiple par répartition en code (AMRC), tant que suffisamment de satellites
sont visibles. Les calibrations pour les signaux modulés par accès multiple par répartition en
fréquence (AMRF) du système russe GLONASS sont en principe également possible; il s’agit de
les implémenter dans le logiciel.

Diverses analyses ont montré que la répétabilité des calibrations était meilleure que le
millimètre. Une comparaison avec le standard de facto, les PCC de l’entreprise allemande
Geo++® GmbH, ont permis de vérifier la vraisemblance des résultats. La précision des résultats
est similaire à la précision des résultats de référence. La calibration d’antennes pour les signaux
du système européen de navigation Galileo ont été présentés au Workshop 2018 du « International
GNSS Service » (IGS) à Wuhan. Notre nouveau système est la première calibration de terrain
absolue avérée à générer des calibrations pour les signaux Galileo. Ceci est une étape importante
vers une meilleure combinaison de tous les GNSS disponibles.

Contrairement au GPS américain, les antennes d’émission des satellites Galileo sont calibrées.
Un jour ou l’autre, les CCP des antennes de récepteurs pour les signaux Galileo pourraient être
la clé pour déterminer l’échelle du système de référence terrestre à partir de mesures GNSS.
Cette échelle serait indépendante des autres techniques de géodésie spatiale. Ceci requiert que
les antennes de transmission ainsi que les antennes de réception soient précisément calibrées.
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Foreword

The present thesis is the results of four years spent at the Chair of Mathematical and Physical
Geodesy (MPG) at ETH Zurich. Every single person that went through a doctoral thesis will
attest that this fabulous adventure has ups and downs. After a very enthusiastic start first
complications appeared in the CubETH project. Nothing but one thing was certain: the launch
of the mini-satellite with the Global Navigation Satellite System (GNSS) experiment on-board
would be delayed. The following period was difficult. What is the sense of working on a very
specific algorithm, tailored to an application, if the application is not going to exist before the
end of the doctoral thesis?

A slight reorientation of the topic, away from pure attitude determination towards antenna
calibration resolved the situation. The new branch of research was exciting and fascinating.
The usage of a robot gave me insights into a new field. But more importantly, with GNSS
antenna calibration I found a topic which is extremely meaningful in my eyes. The evident lack
of antenna field calibrations for Galileo was the biggest motivation. The European satellite
navigation system Galileo was designed as a civilian system from its very beginning. Unlike
the other GNSS, it has not principally a military, but economical, social and scientific goals. It
was a real pleasure to develop an antenna field calibration for Galileo, especially because of the
interest from the scientific community. I will leave ETH Zurich with a pleasant anticipation,
looking forward to new professional challenges, but also with a bit of sadness. Il faut s’arrêter
quand c’est le plus beau...
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Chapter 1

Introduction

CubETH is a nano-satellite project under the lead of the Institute of Geodesy and Photogram-
metry (IGP) at ETH Zurich. It is a collaboration between several universities, universities of
applied sciences and companies in Switzerland. This work is part of the CubETH project and
was supported by ETH Research Grant ETH-43 14-2.

The idea for CubETH was triggered by recent developments in Global Navigation Satellite
System (GNSS) receiver technology. u-blox, a receiver manufacturer located in Thalwil (Switzer-
land), is a world leader in miniaturized multi-GNSS receivers. Because of their remarkable
performance, the idea came up to use these commercial off-the-shelf (COTS) chipsets for a space
mission. This would highly reduce the cost of GNSS positioning in space and make precise
positioning affordable for small missions.

The design study foresees a spacecraft of 10 x 10 x 10 cm3, equipped with five GNSS antennas
and ten GNSS receivers (see Figure 1.0.1). The main mission goal is technology demonstration.
It will be attempted to prove that the u-blox receivers can be used in space. The secondary
mission goal is attitude determination. Attitude is a body’s orientation in space. Attitude
determination is possible because the tiny satellite is equipped with several antennas. Through
the relative positioning of the antennas with respect to each other, the attitude can be estimated.

The first part of this thesis deals with the challenge of attitude determination with the
u-blox receivers. The u-blox chips are not equipped with clock steering. Therefore, the different
receivers are not synchronised with each other. The goal of the work presented in Chapter 2 is
to develop an algorithm for attitude determination with non-synchronised receivers.

The classical way to enhance the accuracy of GNSS attitude determination is to increase the
length of the baselines between the antennas. On the small CubETH, the baseline lengths are
limited by the size of the satellite. Because the accuracy cannot be increased by increasing the
baseline length, special attention has to be put on the accuracy of the antennas. The shorter
the baseline, the larger the influence of antenna errors onto the estimation of the attitude. A
general introduction to antenna calibration is provided in Chapter 3.

An additional difficulty on very short baselines is the potential coupling of the antennas
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1 Introduction

Figure 1.0.1 : Digital rendering of a CAD model of the 10 x 10 x 10 cm3 CubETH spacecraft. The
white patches are the GNSS antennas. Four antennas are placed on the zenith looking
face, one antenna on the side serves experimental purposes.

because of their proximity. This challenge was addressed in Chapter 4; a relative field
calibration method was set up and a campaign was conducted with the goal to investigate the
behaviour of the antennas on the CubETH model.

The subsequent chapters present the development of an absolute field calibration method for
GNSS antennas. This method, using a robotic arm, is able to reduce the impact of multipath on
the estimated antenna calibration. Thus, it is expected to deliver more reliable results than the
relative field calibration.

In order to use the robotic arm for high-accuracy antenna calibration, its kinematics and its
accuracy needed to be studied: all aspects related to the kinematics of the robotic arm are
covered in Chapter 5. The absolute field calibration method using this robot is detailed in
Chapter 6.

2



Chapter 2

GNSS Attitude Determination

GNSS attitude determination has been performed since the very beginning of the Global
Positioning System (GPS). An excellent introduction on general attitude determination is
provided in Giorgi (2017). On spacecraft in Low Earth Orbit (LEO), GNSS attitude determination
is performed since the nineties (Cohen, 1992). GNSS attitude determination has some appreciable
advantages over other techniques, as star trackers or inertial navigation systems (INS). It is
autonomous in acquiring an initial solution, it needs only two visible GNSS satellites for a
deterministic solution, it is resistant to high spin rates and it provides position, velocity and
time (PVT; Arbinger and Enderle, 2000). Compared to INS, it is free of drift.

On the other hand, the amount of raw data to process is considerable and the system is very
sensitive to multipath. And maybe more importantly, its accuracy is very modest compared to
star trackers.

Nevertheless, GNSS attitude determination remains an attractive technique, especially if its
availability is granted for free, as in the case of the satellite CubETH. The four antennas on the
upper side of the spacecraft allow for GNSS attitude determination.

In the following chapter, the state of art of attitude determination onboard spacecraft in
LEO is discussed, followed by a presentation of the governing equations and principles. The
chapter is concluded by a summary of the first publication.

2.1 State of the Art

RADCAL was one of the first missions to perform attitude determination in space (Cohen et al.,
1994). Dedicated Trimble TANS Quadrex receivers, specially adapted by Stanford University,
were used. A receiver was connected to the four antennas, and a second receiver was carried as
spare. The four antennas are evenly distributed on the upper face of the cylindrical spacecraft
with a diameter of about 0.75 meters. The authors of the study compared the GPS attitude to
the attitude obtained from the gravitational dynamics of the spacecraft. The estimated accuracy
lies around 1 deg and is limited by uncertainties in the antenna Phase Centre Variations (PCV)
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2 GNSS Attitude Determination

and in the electrical delays. The authors state that the accuracy inherent to the system lies
around 0.3 deg.

In 2000, a modified Trimble Force-19 receiver was flown onboard the space shuttle Atlantis
in order to perform an attitude determination experiment (Um and Lightsey, 2001). Again,
dedicated space receivers were used. Attitude from a star tracker served as ground truth.
Interestingly, the authors tried to model the multipath originating from the spacecraft with a
spherical harmonics model. This approach was qualified unsuccessful. The lack of flight data and
the complex geometry of the environment were given as explanations. The authors also compared
two approaches for the combination with the INS, firstly using differentiated phase observables,
secondly using quaternion observations previously generated from GPS. The first approach was
clearly preferred, as the accuracy of the results increased. Additionally, phase measurements can
enter the filter algorithm even if not enough satellites are visible for a quaternion solution. In
the conclusions, the authors estimate that 90% of the error budget is due to multipath.

Other authors studied attitude determination (designed for space) in ground tests. All
authors use carrier phase observables, but many differences are found in the way of processing
the observations and in the parametrisation of the attitude.

Arbinger and Enderle (2000) tested a combination of GPS and a star tracker on a turn
table on the ground. The GPS-based solution is obtained using an iterative solution to Wahba’s
problem and after solving the phase ambiguities. The comparison led to the conclusion that the
GPS solution is affected by much more jitter than the star tracker solution. Furthermore, an
offset between the GPS solution and the star tracker solution remains unexplained.

Kim and Langley (2007) studied a system based on the COTS receivers Novatel OEM4-G2L,
aimed to operate on the small satellite CASSIOPE. The system consists of three receivers (and
an additional spare). Ambiguities are solved epoch-wise using a wide-lane linear combination
and adding the baseline lengths as pseudo-observations in the adjustment. The normalization of
the attitude matrix is achieved by transforming the matrix into Euler angles and then computing
an orthogonal matrix with these Euler angles. An experiment with a turning table demonstrated
the ability to reach 5 deg accuracy with baseline lengths between 1 and 1.6 m.

A last group of authors studied the behaviour of algorithms in GNSS simulator studies.
Ziebart and Cross (2003) used synthetic data and a very complete attitude determination
algorithm. Euler angles were chosen as parametrisation. The initial ambiguity resolution is
performed using a search in the attitude space. Under realistic observation noise, sub-degree
accuracy was found to be achievable with 2 to 3 m baselines. Assuming a realistic stochastic
model, the algorithm performs well in outlier detection.

Nadarajah et al. (2012) performed hardware-in-the-loop simulator tests with a Spirent
GSS6560 signal generator. NamuruV2Rx receivers were used. The processing is achieved in
two steps. First, an epoch-wise solution is generated with a modified version of the LAMBDA
algorithm (see for instance Park and Teunissen, 2003; Teunissen, 1995; Teunissen, 2010), then
this solution is filtered in an unscented Kalman filter. In conclusion, the angular error was found
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to depend strongly on the geometry of the GPS constellation. Root Mean Square Errors (RMSE)
in the order of one degree were obtained for a configuration with two baselines of one metre
length.

GNSS attitude determination is also intensely studied for other applications than on space-
craft. This includes studies on Earth, for instance on ships (Giorgi et al., 2012), onboard
planes (Van Graas and Braasch, 1991; Cannon and Sun, 1996), for UAV (Sabatini et al., 2012)
or for terrestrial applications (Chen and Qin, 2012; Aghili and Salerno, 2013).

2.2 Research gap

The CubETH project aims at using COTS receivers of the type u-blox M8. The u-blox receiver
clock is only partially steered, resulting in an actual measurement epoch within a time window
of 1 ms around the nominal 1 Hz measurement epoch (u-blox, 2014). The velocity of an Earth’s
satellite in an circular orbit can be computed as:

v =
√
µe
r

(2.1)

with µe being the Earth’s gravitational constant and r the radius of the orbit. For a satellite in
a 400 km orbit, this results in approximatively 8 km/s. At this speed, the spacecraft travels 8 m
in one millisecond, which is the synchronisation error of the receivers. It is obvious, that under
theses circumstances, an extrapolation of the measurements is of tremendous importance.

In previous studies, either dedicated receivers running on a common oscillator or receivers
with well steered clocks were used.

Furthermore, no paper gave a fully satisfactory solution for the handling of the parametrisation
of the attitude. The present chapter addresses both issues: a consistent mathematical formulation
for the attitude parametrisation within a Kalman filter is derived on the observation level and a
procedure for the extrapolation of the measurements is developed. The chosen extrapolation
method works in real-time and is not dependent on any precise products, like precise orbits or
precise clocks.

2.3 Parametrisation of attitude

The attitude describes the orientation of a body in space:

bworld = Rworld←body bbody (2.2)

where bsystem is the baseline vector in the respective coordinate system and R is the rotation
matrix between the two coordinate systems. The body coordinate system is usually attached to
the rigid body. For example, a rigid body coordinate system attached to a plane could have its
x-axis pointing in flight direction, its y-axis in wing direction, and the z-axis complementing
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the right-hand system. The space of all rotations is the 3D special orthogonal group SO(3).
Because attitude is described by a rotation, R ∈ SO(3).

In consequence:
R RT = R R−1 = I3 (2.3)

with I3 being the identity matrix. This condition expresses the orthogonality of the matrix.
Within an adjustment process, rotation matrices are difficult to handle, as additional constraints
are necessary in order to maintain the orthogonality.

The main alternatives to rotation matrices are Euler angle sequences and quaternions. Euler
angle sequences suffer from singularities, the so-called ‘gimbal lock’. Quaternions do not have
this disadvantage, but an additional parameter is needed. Various conventions exist for both
representation forms. The following section briefly presents the chosen convention. A complete
overview of attitude parametrisations is provided in Diebel (2006). Attitude parametrisation
is also discussed in the inertial navigation or GNSS literature, for instance in Jekeli (2001)
respectively in Giorgi (2017).

2.3.1 Euler angle sequences

An Euler angle sequence is the combination of three different coordinate axis rotations. Coordin-
ate axis rotations rotate a vector around one axis of the coordinate system and are defined as
follows:

R1(α) =


1 0 0
0 cosα sinα
0 − sinα cosα

 (2.4)

R2(α) =


cosα 0 − sinα

0 1 0
sinα 0 cosα

 (2.5)

R3(α) =


cosα sinα 0
− sinα cosα 0

0 0 1

 (2.6)

where Ri is a rotation around the i th axis of the coordinate system and α is the angle of rotation.
The 321 Euler sequence is defined as follows:

Rlocal←global = R1(γ) R2(β) R3(α) (2.7)

Note that this rotation matrix would be the transpose of the attitude matrix as defined in
Eq. 2.2. α, β and γ are the yaw, pitch and roll angles. If β = π

2 + nπ, n ∈ Z, the system is in a
singularity. In that case, the rotations R1 and R3 have the same derivatives and the system
looses one degree of freedom. Mechanically spoken, if thinking of cardans, the first and the last
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2 GNSS Attitude Determination

cardan would be parallel, thus being in gimbal lock.
The inverse function reads:

α = atan2 (R12, R11)

β = − arcsin (R13)

γ = atan2 (R23, R33)

 if |R13| 6= 1 (2.8)

α = atan2 (−R21, R22)

β = − arcsin (R13)

γ = 0

 if |R13| = 1 (2.9)

where Ri,j is the element in line i and column j of the matrix Rlocal←global. In case of a singularity,
an infinite number of solutions exists. One way to resolve this singularity is to set γ to zero.

The 323 Euler sequence consistently reads:

Rlocal←global = R3(γ) R2(β) R3(α) (2.10)

This parametrisation has a singularity at β = 0 + nπ, n ∈ Z and would therefore be useless for
the estimation of the attitude, but is convenient in other cases, for instance for the description
of the position of a robot. To give an another example, for the Earth orientation, the sequence
313 is frequently used.

The inverse function of the 323 Euler sequence reads:

α = atan2 (R32, R31)

β = arccos (R33)

γ = atan2 (R23,−R13)

 if |R33| 6= 1 (2.11)

α = atan2 (−R21, R22)

β = arccos (R33)

γ = 0

 if |R33| = 1 (2.12)
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2.3.2 Quaternions

Quaternions are four element vectors with a scalar part and a vector part:

qlocal←global =


q0

q1

q2

q3

 =

 q0

q1:3

 =

 cos
(
α
2
)

sin
(
α
2
)
n

 (2.13)

where q is a quaternion that represents a rotation by the angle α around the axis n. The
advantage of this parametrisation is its constant norm:

q =
√
q2

0 + q2
1 + q2

2 + q2
3 = 1 (2.14)

Quaternions not having a norm equal to one do not represent pure rotations. Within the
adjustment, several techniques can be applied to guarantee a norm of one:

i. Only three quaternion elements are estimated and the fourth one is computed,

ii. All four elements are estimated and a constraint on the norm is applied or

iii. All four elements are estimated and the quaternion is normalised after each iteration in
the estimation.

In the case of a Kalman filter, (iii) is largely sufficient, if the update rate of the filter is high
compared to the dynamics of the system. In this case, the change of the norm of the quaternion
is very small at every iteration step and can well be handled with normalisation.

Quaternions can be transformed to rotation matrices using following formula:

R =


q2

0 + q2
1 − q2

2 − q2
3 2 q1 q2 + 2 q0 q3 2 q1 q3 − 2 q0 q2

2 q1 q2 − 2 q0 q3 q2
0 − q2

1 + q2
2 − q2

3 2 q2 q3 + 2 q0 q1

2 q1 q3 + 2 q0 q2 2 q2 q3 − 2 q0 q1 q2
0 − q2

1 − q2
2 + q2

3

 (2.15)

A quaternion can be obtained from a rotation matrix using following relationship:

q =
1

2
√
k

(k,R23 −R32, R31 −R13, R12 −R21)T

k = 1 +R11 +R22 +R33


if R22 ≥ −R33, R11 ≥ −R22,

R11 ≥ −R33

(2.16)

q =
1

2
√
k

(R23 −R32, k, R12 +R21, R31 +R13)T

k = 1 +R11 −R22 −R33


if R22 < −R33, R11 ≥ R22,

R11 ≥ R33

(2.17)
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q =
1

2
√
k

(R31 −R13, R12 +R21, k, R23 +R32)T

k = 1−R11 +R22 −R33


if R22 ≥ R33, R11 < R22,

R11 < −R33

(2.18)

q =
1

2
√
k

(R12 −R21, R31 +R13, R23 +R32, k)T

k = 1−R11 −R22 +R33


if R22 < R33, R11 < −R22,

R11 < R33

(2.19)

The derivatives of the quaternions can be linked to angular velocities via the following function:

q̇(q,ω) = (q̇0, q̇1, q̇2, q̇3)T = 1
2 TT(q)ω (2.20)

T(q) =


−q1 +q0 −q3 +q2

−q2 +q3 +q0 −q1

−q3 −q2 +q1 +q0

 (2.21)

where ω is the rotation vector in the global frame and T is the quaternion rate matrix. Alternative
formulations allow to express the angular velocities in the local (or body) frame (see Diebel,
2006).

2.4 Principle of GNSS attitude determination

GNSS attitude determination is based on the following principle (see Figure 2.4.1): the baseline
vectors are perfectly known in the body-fixed frame of the spacecraft, but observed in a world
coordinate system, for instance WGS84:

r = eT
world Rworld←body bbody + v (2.22)

where r is a range difference, eT
world is the line-of-sight (LOS) in the world frame and v is the

observation noise, which is assumed to be normally distributed. This last term makes obvious
that Eq. 2.22 is an observation equation. The observable is typically a carrier phase observation.
Eq. 2.22 is valid assuming that the baselines are shorter than a few meters and that the body is
rigid.

If measurements are taken over several baselines and several satellites are seen by the
antennas, the attitude is over-determined and can be estimated with least-squares:

L (R) =
∑
k

∑
i

1
σ2
ik

(
rik − eiT R bk

)2
(2.23)

where L is the cost function and σik is the observation noise of the range difference on baseline
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k to satellite i. The minimization of this function is well known as Wahba’s problem (Farrell
et al., 1966). Some analytical solutions exist to solve this problem, but are limited to the case of
vector observations (Cohen, 1992). As processing speed is not critical nowadays, these methods
are not of much interest anymore. Preferentially, raw GNSS phase observations are processed
directly. The main advantage of a proper least-squares formulation is, that correlations between
the observations are properly taken into account, which is not the case in Eq. 2.23.

A GNSS phase observation reads (Hauschild, 2017a):

P iA = eiA
T
(
xi(tA − τA)− xA(tA)

)
+ c δtA − c δti + λN i

A + T iA + IiA + PCV i
A + viA (2.24)

where

P iA is the carrier phase observation between antenna A and satellite i,
eiA is the line-of-sight vector,
xi is the GNSS satellite position at signal emission time,
tA is the measurement epoch,
τA is the signal travel time,
xA is the position of the receiver antenna at signal reception,
c is the speed of light,
δtA is the receiver clock error,
δti is the satellite clock error,
λ is the carrier wavelength,
N i
A is the integer phase ambiguity,

T iA is the tropospheric delay,
IiA is ionospheric delay,
PCV i

A is the Phase Centre Variation (PCV) and
viA is the zero-difference observation noise.

The observations of two antennas can be subtracted from each other in order to obtain a
single-difference observation:

P iAB = P iB − P iA = eiB
T
(
xi(tB − τB)− xB(tB)

)
− eiA

T
(
xi(tA − τA)− xA(tA)

)
+ c δtB − c δtA + λN i

AB + viAB (2.25)

where

P iAB is a phase single-difference between antenna A and B,
N i
AB is the single-difference ambiguity term and

viAB is the single-difference observation noise.
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The satellite clock error as well as the tropospheric and ionospheric delays vanish as the
baseline is assumed to be short. The PCV vanish hypothetically, if identical antennas are used
(the following chapter will show that this assumption does not hold).

The baseline between antenna A and B, bAB, is defined as follows:

bAB = RT (xA − xB) (2.26)

where bAB is the baseline vector between antennas A and B in the body frame and R is the
attitude matrix from Eqs. 2.2 and 2.23. Assuming that:

i. The baseline is short and therefore eiA = eiB,

ii. The baseline is short and therefore τA = τB and

iii. The receivers are synchronised and therefore tA = tB.

Introducing Eq. 2.26 into Eq. 2.25 leads to the final expression for the single-difference observation
equation:

P iAB = P iB − P iA = ei T R bAB + c δtB − c δtA + λN i
AB + viAB (2.27)

The error which is induced due to approximation (i) is about:

ε = b sin
(

arctan b

2d

)
(2.28)

where

ε is the range error due to the approximation,
b is the length of the baseline and
d is the distance to the GNSS satellite.

Assuming a baseline length of 1 m and a distance to the GNSS spacecraft of 20 000 km, the
range error amounts to 2.5 · 10−8 m and is therefore negligible. The error due to approximation
(ii) is always smaller than the length of the baseline divided by the speed of light. For a baseline
length of 1 m, the resulting timing error never exceeds 3.3 · 10−9 seconds and thus, can be
neglected as well.
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Figure 2.4.1 : Principle of GNSS attitude determination. b is the baseline, r is the range difference
and e is the line-of-sight unit vector.
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2.5 Extrapolation of the GNSS measurements

Eq. 2.27 is based on assumptions that are not valid onboard a fast vehicle equipped with
non-synchronised receivers, for instance a spacecraft in LEO. As shown in Eq. 2.1, the velocity
of such a spacecraft is approximately 8 km/s. Within a millisecond, which is the maximal
synchronisation error, the spacecraft travels 8 m. That means that the receiver connected to
antenna A performs the GNSS measurements up to 8 m further from the coordinates, where the
receiver connected to antenna B performed its GNSS measurement. From this example, it is
obvious that an extrapolation is necessary.

Assuming that eiA = eiB = ei, Eq. 2.25 can be simplified to lead to following expression.

P iAB = P iB − P iA = ei T
(
xi(tB − τB)− xB(tB)− xi(tA − τA) + xA(tA)

)
+ c δtB − c δtA + λN i

AB + viAB (2.29)

The attitude of the spacecraft does not appear explicitly in this last equation. Therefore, we
introduce:

xA(tA) = xA(tA) + xA(tnom)− xA(tnom) (2.30)

xB(tB) = xB(tB) + xB(tnom)− xB(tnom) (2.31)

where tnom is the nominal measurement epoch. Substitution of Eqs. 2.30 and 2.31 into Eq. 2.29
leads to:

P iAB = ei T
(
xi(tB − τB)− xB(tnom)− xi(tA − τA) + xA(tnom)

− xB(tB) + xB(tnom) + xA(tA)− xA(tnom)
)

+ c δtB − c δtA + λN i
AB + viAB (2.32)

At this state, the equation can be combined with Eq. 2.26 again, as xA and xB appear with the
same time argument.

P iAB = ei T R(tnom) bAB + EiAB + c δtB − c δtA + λN i
AB + viAB (2.33)

EiAB = ei T
(
xi(tB − τB)− xi(tA − τA)− xB(tB) + xB(tnom) + xA(tA)− xA(tnom)

)
(2.34)

where EiAB is the extrapolation term.
The coordinates of an antenna can be expressed relatively to the coordinates of the centre of

mass of the spacecraft and the attitude of the spacecraft:

xA(t) = xcm(t) + R(t) bcm,A (2.35)

where
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xA(t) are the coordinates of the antenna A,
xcm(t) are the coordinates of the centre of mass of the spacecraft,
R(t) is the attitude matrix of the spacecraft and
bcm,A is the vector from the centre of mass of the spacecraft to antenna A.

Therefore:

xA(tA) = xcm(tA) + R(tA) bcm,A (2.36)

xA(tnom) = xcm(tnom) + R(tnom) bcm,A (2.37)

xB(tB) = xcm(tB) + R(tB) bcm,B (2.38)

xB(tnom) = xcm(tnom) + R(tnom) bcm,B (2.39)

Because the rotation rate of the satellite is small and the baselines are short, R(tA) = R(tB) =
R(tnom) can be assumed. The first order error introduced by this simplification is ∆x =
(tB − tA) Ṙ bAB . For a baseline of 10 cm, the error is smaller than 2 µm for rates up to 1 degree
per second.

Introducing this simplification and Eqs. 2.36 to 2.39 into Eq. 2.34 leads to the final expression
for the extrapolation term:

EiAB = ei T
(
xi(tB − τB)− xi(tA − τA)− xcm(tB) + xcm(tA)

)
(2.40)

The first part of this expression can be calculated with the broadcast ephemeris (see for instance
IS-GPS-200, 2015 for GPS broadcast ephemeris). The second half of this expression can be
computed using the receiver navigation solution or any other PVT solution. The quality of
the extrapolation will depend on the quality of the PVT estimation. The uncertainty in the
line-of-sight propagates linearly with time. Assuming an accuracy of the velocity of 1 m/s and
an extrapolation span of 1 ms, the accuracy of the extrapolation is 1 mm. In orbit, the accuracy
of the u-blox velocity estimation is better than 10 cm/s, as reported in Hollenstein et al. (2014).

The velocity of a GNSS spacecraft can be computed using the broadcast ephemeris. The
accuracy of GNSS spacecraft velocities derived in that way is around 1 mm/s for GPS (Zhang
et al., 2006) and therefore negligible compared to the accuracy of the PVT solution.

2.6 Practical aspects of GNSS measurement extrapolation with
Bernese

The Bernese GNSS Software V5.2 (Dach et al., 2015) was used to generate synthetic data. Bernese
is a widely used and well established GNSS processing and analysis software. It has a more
than 30 years long history. However, the processing of very fast stations with non-synchronised
receivers was originally not foreseen. In order to obtain reliable results, some minor software
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modifications had to be performed. These changes are documented here. The modifications
were validated by performing a comparison in Matlab. After the software modifications, the
synthetic observations are consistent to 10−6 m for LEO spacecraft.

In Bernese, GTLEOCO.f is the subroutine which allows to retrieve the coordinates of the centre
of mass of a LEO spacecraft in different coordinate systems, LEOSKY.f90 computes distance,
azimuth and elevation to GNSS satellites as seen from a LEO spacecraft and SMPRNG.f is the
actual range simulation routine. Table 2.6.1 holds a summary of the performed changes.

The main obstacle is the limited precision of the internal time representation. A Fortran
double is used for the representation of epochs, thus providing 15 digits. Because the time
is saved as a fractional Modified Julian Date (MJD), five digits are used for the integer part.
Ten digits are left for the fractional part of a day (which counts 86 400 seconds), leading to a
time resolution of only 86 400 s · 10−10 = 8.64 µs. This is insufficient to precisely position a
spacecraft with a speed of 8 km/s. A workaround consists of using the receiver clock error in
SMPRNG.f, which is in seconds, to hold the difference to the actual time and thus compensating
the truncation error due to the time representation in MJD.

Another change is the addition of the second order term in the position computation of
the LEO satellite in LEOSKY.f90. Finally, a new function is added in order to check whether a
signal is obstructed by the Earth or not. This feature was not present, as it is not necessary
when generating synthetic observations for stations with an antenna always pointing in zenith
direction. This is the case for stations on Earth, but also for GNSS antennas onboard satellites
with sophisticated attitude control.
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Table 2.6.1 : Summary of modifications to the Bernese GNSS Software.

Subroutine Performed changes

GTLEOCO.f Modified call of COOTRA

LEOSKY.f90 Added second order term in the position computation
of the LEO satellite

SMPRNG.f Modified call of XYZTIM

Modified call of TRUEEARTH

Modified call of LEOSKY

Correction of the rounding error due to the time
representation in MJD

Computation of Earth shadowing of signals and
removal of those

16



2 GNSS Attitude Determination

2.7 Phase ambiguity resolution

Eq. 2.33 is still affected by an unknown integer phase ambiguity N i
AB . In order to solve for phase

ambiguities, a double-difference solution is computed. At this stage, phase ambiguities can most
easily be resolved to integer numbers. Instantaneous methods are simple in the implementation,
but provide lower ambiguity resolution success rates. Methods using several epochs show better
success rates, but are sensitive to phase cycle slips. These must be detected and corrected or
dealt with properly in order not to bias the ambiguity resolution process.

Ambiguity resolution has been extensively studied in the past. A general introduction
to ambiguity resolution is provided in Teunissen (2017). The most prominent algorithm is
the so-called LAMBDA algorithm (Teunissen, 1995). In the case of ambiguity resolution for
attitude determination, prior information about the geometry of the antenna system can be
provided to the adjustment as pseudo-observations or as constraints and help to reduce the
ambiguity search space and do increase the ambiguity resolution success rate. Such algorithms
were presented in Park and Teunissen (2003) or Teunissen (2010) and successfully employed in
different use-cases (Teunissen et al., 2011). Ambiguity resolution for attitude determination is
also presented in Giorgi (2017, pp. 793–798).

In the case of the CubETH spacecraft, the simplest implementation proved to be very efficient.
An approximation for the carrier phase ambiguities was generated by setting the baseline length
to zero at double-difference level. The double-difference can for instance be derived from Eq. 2.33:

P ijAB =
(
ej − ei

)T
R bAB + EijAB + λN ij

AB + vijAB (2.41)

where

P ijAB is the double-difference phase observation,
EijAB is the double-difference extrapolation term,
N ij
AB is the double-difference phase ambiguity and

vijAB is the double-difference observation residual.

The receiver clock vanishes, as every antenna observes two GNSS satellites at exactly the
same time. The approximation for the phase ambiguity is:

Ñ ij
AB = P ijAB − E

ij
AB (2.42)

Strictly spoken, this approximation is only valid for baselines shorter than half a wavelength
or approximatively 10 cm. The true ambiguity must then lie in the interval [−1, 1] around
Ñ ij
AB (Van Graas and Braasch, 1991). As this search space is very narrow, it can easily be fully

searched through. The size of the search space for single-frequency receivers is:

ncandidates = 3nsatellites−1 (2.43)
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where ncandidates is the number of candidates in total and nsatellites is the number of satellites. If
the baseline length is significantly increased, other search strategies, as mentioned before, have
to be used.

2.8 Filter formulation

In the absence of a strong attitude control, a spacecraft will have a very regular attitude and
typically constant turn rates. This dynamics predestines the Kalman filter for the estimation
of the attitude. Details on the Kalman filter can be found in Welch and Bishop (2006). Two
successive states are linked by a process:

xs = f(xs−1) + us−1 (2.44)

us−1 ∼ N(0,Us−1) (2.45)

where

xs is the state at the epoch s,
f is the state transition function,
xs−1 is the state at the epoch s− 1,
us−1 is the process noise and
Us−1 is the process noise variance-covariance.

The observation equation reads as follows.

zs = h(xs) + vs (2.46)

vs ∼ N(0,Vs) (2.47)

where

z is the observation vector,
h is the observation function,
v is the observation noise and
V is the observation variance-covariance.

The filter update step is given by:

x̂−s = f(x̂s−1) (2.48)

P−s−1 = Fs−1 Ps−1 FT
s−1 + Us−1 (2.49)

Fij = ∂fi(x)
∂xj

(2.50)
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x̂−s is the propagated state, x̂s−1 is the state estimate of the previous epoch, P−s−1 is the
propagated state variance-covariance, Fs−1 is the matrix of partial derivatives and Ps−1 is the
variance-covariance of the state estimate of epoch s− 1. The filter measurement update reads as:

Ks = P−s HT
s

(
Hs P−s HT

s + Vs

)
(2.51)

x̂s = x̂−s + Ks

(
zs − h(x̂−s )

)
(2.52)

Ps = (I−Ks Hs) P−s (2.53)

Hij = ∂hi(x)
∂xj

(2.54)

where

Ks is the Kalman gain matrix,
Hs is the matrix of partial derivatives,
x̂s is the estimated state and therefore the result of the Kalman filter and
Ps is the variance-covariance matrix of this state.

2.8.1 State propagation

The Kalman filter state vector is composed of the quaternion q and the turn rates ω and reads
as follows:

x
7×1

=

q
ω

 =
(
q0 q1 q2 q3 ω1 ω2 ω3

)T
(2.55)

As the spacecraft is symmetrical, it is expected to have very regular turn rates. Furthermore,
no information about the attitude control (e.g. torques) is available. Therefore, a very simple
dynamical model has been chosen:

xs = xs−1 + (ts − ts−1) ẋs−1 (2.56)

=

q
ω


s−1

+ (ts − ts−1)

q̇
0


s−1

(2.57)

where (ts − ts−1) is the time between two successive epochs. This model assumes constant turn
rates.
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2.8.2 Stochastic model

The associated stochastic model can be derived starting from the state-space equation. It is
assumed, that the process noise affects the system only depends on the rotation rates, leading to:

ẋ(t) =

q̇(t)
ω̇(t)

 = a(x(t)) + G w(t) (2.58)

=

q̇(q(t),ω(t))
03x1

+

04x3

I3




w1(t)
w2(t)
w3(t)

 (2.59)

where

ẋ is the time derivative of the state,
a(x) is the system model function,
G is the noise shaping matrix and
w is the white noise entering the system.

After linearisation, this function reads:

δẋ = A δx + G w (2.60)

δẋ = ẋ− g(x0) (2.61)

δx = x− x0 (2.62)

Aij = ∂ai(x0)
xj

(2.63)

where A is the Jacobian matrix of the function a and x0 is the linearisation point. The solution
to the differential equation 2.60 reads:

δx(t) = e(t−t0)A δx(t0) +
∫ t

t0
e(t′−t0)A G w(t′) dt′

= e(t−t0)A δx(t0) + u (2.64)

Assuming that w is a stationary white noise process and that all three components have
the same standard deviation, variance-covariance propagation can be applied to obtain the
variance-covariance of the propagated state:

U =
∫ t

t0
e(t′−t0)A G I3 σ

2
w I3 GT

(
e(t′−t0)A

)T
dt′ (2.65)

where U is the Kalman filter process noise (see Eq. 2.45) and σ2
w is the noise variance. Integration
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of this equation leads to an analytical formula for U:

U = σ2
w

 Θ Ω
ΘT ∆t I3

 (2.66)

Θ =
∆t3

12


q2

1 + q2
2 + q2

3 −q0 q1 −q0 q2 −q0 q3

−q0 q1 q2
0 + q2

2 + q2
3 −q1 q2 −q1 q3

−q0 q2 −q1 q2 q2
0 + q2

1 + q2
3 −q2 q3

−q0 q3 −q1 q3 −q2 q3 q2
0 + q2

1 + q2
2

 (2.67)

Ω =
∆t2

4


−q1 −q2 −q3

q0 q3 −q2

−q3 q0 q1

q2 −q1 q0

 (2.68)

where ∆t is the time interval between two epochs and qi is the i th element of the quaternion.
The stochastic model of the double-difference observations V is simply obtained after application
of variance-covariance propagation:

V = D Qll DT (2.69)

where D is the differencing operator leading to double-difference observations and Qll is the
variance-covariance matrix of the zero-difference observations. If equal weighting of all observa-
tions is assumed, Eq. 2.69 becomes:

V = D In σ2
p In DT (2.70)

where σ2
p is the zero-difference observation variance and n is the number of zero-difference

observations.

2.9 Paper I –GNSSAttitudeDeterminationwithNon-Synchro-
nized Receivers and Short Baselines Onboard a Spacecraft

The first paper presents a summary of the algorithm for attitude determination as well as results
obtained from synthetic data and from a validation conducted with signal simulator data. It
was published in GPS Solutions, Volume 21, Issue 4, pp. 1605–1617, October 2017 (first online
18 may 2017) with the title GNSS Attitude Determination with Non-Synchronized Receivers and
Short Baselines Onboard a Spacecraft.

21



2 GNSS Attitude Determination

2.9.1 Abstract

A new algorithm for GNSS attitude determination is presented. It is based on a Kalman filter
which uses GNSS phase measurements as input. A rigorous approach for the combination of
data from several baselines in the Kalman filter is presented.

Because the u-blox receivers used in this study do not perform clock steering, the measure-
ments must be extrapolated to a common epoch. Therefore, an extrapolation term is derived. It
ranges from −6 to +6 m, which shows that a proper extrapolation is crucial.

The article presents a validation based on both, a synthetic data study and a signal simulator
study. Both studies demonstrated the good performance and the validity of the approach. This
is an important contribution to attitude determination in space with receivers without clock
steering. The filter formulation including a derivation of the process noise is of general interest
in the context of attitude determination.

2.9.2 Author’s contribution

The following section attempts to give a summary of the author’s contribution to paper I (Willi
and Rothacher, 2017). The author’s contribution is summarized in Table 2.9.1. The theoretical
developments as well as the implementation in Matlab were nearly exclusively carried out by
the author. This includes the development of a quaternion maths library, routines for reading
the observations, for double differencing, for parameter estimation, for ambiguity resolution, for
orbit interpolation and routines for the Kalman filter.

The generation of synthetic data was done by the author using Bernese. For the signal
simulator study, a processing pipeline including a RINEX parser for binary u-blox UBX files
was developed. Standard RINEX parsers for UBX files could not be used, as the receivers used
within this study are equipped with a customized firmware.

2.9.3 Relevance to the field

The algorithm was originally designed especially for the real-time needs of the CubETH spacecraft.
The developed algorithm, especially the extrapolation part, is a novelty. The paper published
in GPS Solutions is nicely complementary to the literature available, as it presents a full
framework for attitude determination, including a clean parametrisation with quaternions and
the corresponding filter formulation and a stochastic model.
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Table 2.9.1 : Summary of the author’s contribution to paper I – GNSS Attitude Determination with
Non-Synchronized Receivers and Short Baselines Onboard a Spacecraft.
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2.10 Outlook

Unfortunately, the CubETH project was not continued, giving us no opportunity to pursue the
development of the algorithm. The present work is a solid base. It could easily be enhanced with
outlier detection, a robust initialization and a more powerful ambiguity resolution algorithm.
These three topics were extensively studied in the past and do not represent novel scientific
issues.

The next step after the synchronisation of the receivers is the modelling of the Phase Centre
Calibrations (PCC). Because of the short baselines, any uncorrected PCV has a huge impact on
the accuracy. This topic is addressed in the next chapters.
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Chapter 3

GNSS Antenna Calibration

GNSS antennas are a key factor in GNSS measurements. Antennas transform incoming electro-
magnetic signals into voltage. They are an essential part of any Satellite Navigation System, as
they are the interface between the GNSS signals and the receiver. A very good introduction to
GNSS antennas is provided in Maqsood et al. (2017) and in Rao et al. (2013).

Antennas are not perfect and are therefore subject to errors. When measuring coordinates
with a GNSS antenna, the coordinates refer to a mechanical point on the antenna, the Antenna
Reference Point (ARP). Usually, the intersection of the lowest horizontal surface of the antenna
with the vertical symmetry axis is defined as ARP. An updated list of the ARP for the most
common antennas including technical drawings is provided by the antenna working group (AGW)
of the International GNSS Service (IGS).1

The electronic centre of the antenna is not located in the ARP. Therefore, Phase Centre
Offsets (PCO) were introduced. The PCO is the vector from the ARP to the so-called Mean
Phase Centre (MPC). The MPC is a purely conventional point, as the measurement locations of
the incoming electromagnetic waves never meet in a single point. First theoretical considerations
for interferometric baseline measurements were made already at the end of the seventies (Coun-
selman and Shapiro, 1979). Very soon, phase centre calibrations were studied, attempted and
achieved (Sims, 1985; Geiger, 1988; Tranquilla and Colpitts, 1989).

The result of a successful calibration is a map of the so-called Phase Centre Variations (PCV),
which are corrections that are added on top of the PCO. PCV are typically in the range of
several millimetres (Rothacher, 2001), but can reach centimetre level for miniaturized low-cost
antennas. Although this nomenclature is a bit confusing, as the MPC is arbitrary and the
PCV directly depends on the chosen PCO, this convention is still widely used in the antenna
calibration community after its introduction in the early nineties (Geiger, 1990). Nowadays, the
term Phase Centre Correction (PCC) should be used to designate calibrations that include PCO
and PCV.

1Antenna information file of the IGS AWG, ftp://igs.org/pub/station/general/antenna.gra.
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3 GNSS Antenna Calibration

The present chapter describes antenna calibration in general, the parametrisation of PCC
and the underlying estimation theory. Chapter 4 presents the relative field calibration approach
tailored to the calibration of attitude determination systems. Robot specific questions are
addressed in Chapter 5, followed by Chapter 6 on absolute field calibrations using a robot.

3.1 Definitions

Within the present document, following nomenclature is adopted.

Phase Centre Correction (PCC) is the total correction to be applied to the measured
range in order to obtain the coordinates of the Antenna Reference Point (ARP). The PCC
is divided into:

i. The Phase Centre Offset (PCO), which is the vector from the ARP to the Mean
Phase Centre (MPC), an arbitrary point and

ii. The Phase Centre Variation (PCV), which is the actual direction dependent
correction function.

Generally, the MPC is chosen in such a way that the PCV is minimized. However, various
different conventions exist (see for instance in Dach et al. 2015, pp. 404–405). The obtained MPC
is dependent on the weighing of the observations and on the elevation cut-off angle. Therefore,
the PCC is the only meaningful quantity. The comparison of two or several antenna calibrations
should always be based on a comparison of the PCC. Figure 3.1.1 illustrates the relationship
between the different quantities.
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PCV

PC
O

ARP

APC APC

MPC

Signal 2

Signal 1

Figure 3.1.1 : Illustration of the relevant quantities in antenna calibration. The Antenna Reference
Point (ARP) is the mechanical reference of the antenna. The Phase Centre Offset
(PCO) is the vector from the ARP to the Mean Phase Centre (MPC). The MPC is
purely conventional and can be arbitrarily chosen. The actual direction dependent
correction, the Phase Centre Variation (PCV), is added on top of the PCO, leading to
the Apparent Phase Centre (APC). The Phase Centre Correction is the projection of
the vector from the ARP to the APC (drawn in orange) onto the line-of-sight.
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3.2 State of the art

Antenna calibration procedures can be divided into three categories: (Görres et al., 2006;
Rothacher, 2001)

i. Relative field calibration.

ii. Absolute calibration:

a. Anechoic chamber calibration.

b. Absolute field calibration using a robot.

Antenna calibrations are performed routinely worldwide by a dozen of groups. German insti-
tutions were particularly active in GNSS antenna calibration. A GNSS antenna calibration
workshop was held annually in Germany from 1999 to 2009.2 Nowadays, German institutions
are still leading in this field, as is shown in the following sections. German speaking practitioner
can find general information on antenna calibrations in Görres et al. (2018).

Various studies show that the results from different techniques agree well for the first GPS
frequency (L1), typically below the millimetre level, but some improvements are possible for
GPS L2 (Görres et al., 2006; Bilich et al., 2012).

The repeatability within each technique is very well documented for robot calibrations (Schmitz
et al., 2002; Wübbena et al., 2003) and for anechoic chamber measurements (Zeimetz and Kuhl-
mann, 2008).

3.2.1 Relative field calibration

In relative field calibration (Rothacher et al., 1995), a short baseline is set up and data is collected
over a period of at least one day. The first antenna of the baseline is the reference antenna. It
can either have perfectly known PCC or arbitrarily been set to zero. The second antenna of the
baseline is the uncalibrated antenna. During the estimation, a PCC function is fit through the
residuals, resulting in estimates of the station coordinates and of the PCC.

In order to decorrelate the PCO from the station coordinates, the antenna can be rotated
around its vertical axis of symmetry. Typically, four sessions with four different azimuths are
recorded, every session lasting for one hour. The vertical component of the PCO will still
correlate to 100% with the station height and needs to be constrained to a known value. This
value can be determined with terrestrial surveying methods (levelling). Alternatively, all three
components of the station position can be surveyed and fixed. In this case, only the PCC are set
up as parameters. The antenna still needs to be rotated, in order to probe the entire antenna
hemisphere and thus filling the north or the south hole respectively. These are the sections of the
sky which are never occupied by any GNSS satellite due to the inclination of the GNSS orbits.

2GNSS antenna workshops, University of Bonn, 10.03.2019, https://www.gib.uni-bonn.de/team/
lehrbeauftragte/bgoerres/antennen-workshops
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The relative field calibration method is illustrated in Chapter 4 based on the very specific
use-case of a GNSS attitude determination system.

3.2.2 Anechoic chamber calibration

In anechoic chamber measurements (Sims, 1985; Tranquilla and Colpitts, 1989; Schupler et al.,
1994; Zeimetz, 2010), the GNSS antenna is set up in an anechoic chamber together with a signal
source. The signal is received by the antenna and interfered with the original signal, leading to
a measurement of the phase shifts. Either the antenna is rotated or the sender is moved in order
to scan the antenna hemisphere. This will produce a map of phase shifts. Anechoic chamber
measurements are not affected by multipath and realise a very pure form of antenna calibration.
In return, the infrastructure is very demanding and the synchronisation of all the equipment is
difficult to achieve.

Currently, the University of Bonn is the only institution having been approved by the IGS
to deliver chamber calibrations.3

3.2.3 Absolute field calibration

Absolute field calibrations use a device to rotate the antenna around at least two axes. Calibra-
tions currently being undertaken make use of 2-axis robots (Bilich and Mader, 2010) or robots
with five or more axes (Wübbena et al., 2000; Menge, 2003; Kersten, 2014; Riddell et al., 2015;
Hu et al., 2015). The actuator rotates the antenna into different orientations, and therefore
decorrelates the PCC from the station coordinates.

Furthermore, the rotation allows to sample the antenna hemisphere much more efficiently.
As a consequence, an elevation mask can be applied. All low-elevation signals, for instance below
20 degrees elevation, are removed. Because the antenna is inclined towards all possible directions
by the robotic arm, reliable data can be collected even for low elevations in the antenna specific
coordinate system. In other words, the entire antenna hemisphere is sampled. As the calibration
procedure does not rely on low elevations anymore, multipath is mitigated.

The most sophisticated systems use a robot with five or more axes. The advantage is that
the coordinates of the antenna can be kept fixed during the calibration. The first robotic
calibration system was developed by the University of Hanover and the German company
Geo++® GmbH (Wübbena et al., 2000; Menge, 2003; Dilßner, 2008; Kersten, 2014). These two
institutions and the Landeskalibriereinrichtung of the Senatsverwaltung für Stadtentwicklung
Berlin are the only institutions performing robot type calibrations and being currently approved
by the IGS AWG.3

Other groups are currently setting up robotic calibration systems with six axes as well,
namely Wuhan University (Hu et al., 2015), Geoscience Australia (Riddell et al., 2015) and the

3Readme file of the IGS AWG, 27.11.2018, ftp://igs.org/pub/station/general/antenna_README.pdf.
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US American National Geodetic Survey (NGS; Bilich et al., 2018). The system developed at
ETH Zurich and related scientific questions are discussed in Chapter 6.

3.3 Phase Centre Correction Model

A GNSS phase observation reads (Hauschild, 2017a):

P iA = eiA
T
(
xi − xA,MPC

)
+ c δtA − c δti + λN i

A + PCV i
A + viA (3.1)

where

P iA is the carrier phase observation between antenna A and satellite i,
eiA is the line-of-sight vector,
xi is the GNSS satellite position at signal emission,
xA,MPC is the position of the receiver antenna MPC at signal reception,
c is the speed of light,
δtA is the receiver clock error,
δti is the satellite clock error,
λ is the carrier wavelength,
N i
A is the integer phase ambiguity,

PCV i
A is the PCV and

viA is the zero-difference observation noise.

Atmospheric delays (ionosphere and troposphere) and relativistic corrections were neglected
in this latest equation. The PCV in Eq. 3.1 is modelled as an azimuth and zenith angle dependent
correction as follows:

PCV i
A = PCVA(αi, zi) (3.2)

where αi is the azimuth angle of the GNSS satellite in the antenna-fixed coordinate system and
zi is the zenith angle. The coordinates of the conventional MPC are obtained after application
of the PCO to the geometrical reference of the antenna, the ARP, as follows:

xMPC = xARP + PCO (3.3)

where xARP is the position of the ARP and PCO is the PCO vector. Substitution of Eq. 3.3
into Eq. 3.1 and rearranging leads to:

P iA = eiA
T
(
xi − xA,ARP

)
+ c δtA − c δti + λN i

A + PCV i
A − eiT PCO + viA (3.4)

The PCV and the PCO term can be grouped into one term, the PCC. The total correction
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applied on top of the raw measurements is not affected:

PCC i
A = PCV i

A − eiT PCO (3.5)

where PCC i
A is the total range correction or PCC and ei is the line-of-sight (LOS; positively

pointing towards the GNSS spacecraft). The negative sign in Eq.3.5 emerges due to the ANTEX
sign convention (Rothacher and Schmid, 2010) and the choice of the direction of ei. A PCV can
always be transformed to any other PCO by the following relation:

PCV ′A(αi, zi) = PCVA(αi, zi) + ei T (PCO′ −PCO
)

(3.6)

where PCV ′A(αi, zi) is the PCV belonging to the offsets PCO′ and PCVA(αi, zi) is the PCV
belonging to the offsets PCO. In both cases, the total PCC is identical. PCV and PCO must
always be used consistently.

3.4 Phase Centre Parametrisations

Grid parametrisations with piecewise linear interpolation between the grid points and spherical
harmonics are the two most common types of PCC parametrisations. The different methods
will shortly be discussed hereafter.

3.4.1 Grid parametrisation

The PCC is represented as a regular grid covering the antenna hemisphere. A typical resolution
for an antenna pattern is 5 times 5 degrees. PCC values are available in a look-up table for
every point in the grid. The number of parameters equals:

nparameters =

 90
∆z + 1

 360
∆α [deg] (3.7)

where nparameters is the number of grid points, ∆z is the vertical resolution in degrees and ∆α is
the azimuthal resolution in degrees.

In the estimation process, the grid has to be constrained, because its constant part correlates
with the receiver clock (as can be seen for instance in Eq. 2.24). One way to make the system
regular is to constrain the PCC values at zenith to zero. This is very convenient, as the zenith
values have to be constrained in any case, as all points located in the zenith have the same value.
This operation reduces the degree of freedom of the system, leading to a final degree of freedom
of:

nparameters =
90
∆z ·

360
∆α [deg] (3.8)

In the case of the standard resolution of 5 degrees times 5 degrees, this represents 1296 parameters.
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The PCC between the grid points are obtained after two linear interpolations, one in zenith
angle and one in azimuth. These two linear interpolations, combined into one equation, read:

PCC(α0, z0) = w1 PCC(αi, zi) + w2 PCC(αi+1, zi)

+ w3 PCC(αi, zi+1) + w4 PCC(αi+1, zi+1) (3.9)

w1 = 1− rα − rz + rα rz (3.10)

w2 = rα − rα rz (3.11)

w3 = rz − rα rz (3.12)

w4 = rα rz (3.13)

rα =
α0 − αi
αi+1 − αi

(3.14)

rz =
z0 − zi
zi+1 − zi

(3.15)

where PCC(α0, z0) is the interpolated PCC and αi, zi, αi+1 and zi+1 are the coordinates of
the grid points (see Figure 3.4.1). This formulation is equivalent to performing two linear
interpolations, one in azimuth and one in zenith angle.

The drawback of this approach is the large distortions that appear close to zenith. The
grid parametrisation is inherently a representation of values on a plane. In contrast, spherical
harmonics are perfectly suited to represent scalar values on a sphere and should therefore be
preferred, if no evidence speaks against it.

3.4.2 Grid partial derivatives

After omission of the arguments α and z, Eq. 3.9 reads:

PCC = w1 PCC1 + w2 PCC2 + w3 PCC3 + w4 PCC4 (3.16)

The partial derivatives are trivial:

∂PCC
∂PCC1

= w1 (3.17)

∂PCC
∂PCC2

= w2 (3.18)

∂PCC
∂PCC3

= w3 (3.19)

∂PCC
∂PCC4

= w4 (3.20)
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Figure 3.4.1 : Principle of the grid interpolation. The actual parameters are the values at the grid
intersection points, marked in red. An interpolation along the azimuth (resulting in
the green values) is followed by an interpolation along the zenith, resulting in the
value at the requested azimuth and elevation (in blue). Source: Willi et al. (2018a).
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3.4.3 Spherical harmonics parametrisation

The phase centre correction, expressed as spherical harmonics, read as:

PCC(αi, zi) =
nmax∑
n=0

n∑
m=0

P̃nm(cos zi)
(
anm cos(mαi) + bnm sin(mαi)

)
(3.21)

where

n is the degree and
m is the order of the spherical harmonics series,
P̃nm are the normalized associated Legendre polynomials,
anm are the spherical harmonics cosine coefficients and
bnm are the spherical harmonics sine coefficients.

The typical resolution for spherical harmonics PCC is degree and order 8 or degree and
order 12. The total number of parameter equals:

nparameters = (n+ 1) (m+ 1) (3.22)

This count excludes all coefficients bn0, because their contribution equals zero, as sin 0 = 0.
Exactly as in the case of the grid parametrisation, the inversion of the unconstrained system
will lead to singularities. The absolute term a00 correlates with the receiver clock parameter and
is constrained to zero (see Figure 3.4.2). The parameters a10, a11 and b11 fully correlate with
the PCO components. Therefore, no explicit PCO parameters are necessary in the PCC model.

Because no measurements are available for the lower hemisphere of the antenna, a symmetry
assumption has to be made. If symmetry is assumed between the upper and the lower antenna
hemisphere, all coefficients that represent a function with an odd number of zeros between
z = 0 deg and z = 180 deg along z (called odd coefficients hereafter) have to be constrained to
zero. This is the case if n−m is odd (see Figure 3.4.2). Figure 3.4.3 illustrates odd and even
coefficients of spherical harmonics.

Assuming that n = m and that all odd coefficients but a10, a11 and b11 are constrained to
zero, the total number of parameters reads (Willi et al., 2018a):

nparameters = (n+ 2) (n+ 1)
2 (3.23)

This leads to 91 parameters for a degree and order 12 expansion and 45 parameters for a degree
and order 8 spherical harmonics expansion. Compared to a grid parametrisation, the number of
parameters is reduced. This reduction occurs at the cost of a lower resolution: A degree and
order 12 spherical harmonics has a resolution of about 15 degrees, as P̃12,0 has twelve zeros along
z, which ranges from 0 to 180 degrees and cos(mα) and sin(mα) have 24 zeros along α, which
ranges from 0 t 360 degrees.
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a00

b11 a10 a11

b22 b21 a20 a21 a22

b33 b32 b31 a30 a31 a32 a33

b44 b43 b42 b41 a40 a41 a42 a43 a44

b55 b54 b53 b52 b51 a50 a51 a52 a53 a54 a55

Figure 3.4.2 : Spherical harmonics coefficients up to degree and order five. The coefficient in red is
the absolute term, the coefficients in blue are fully correlated with the PCO and the
green coefficients are the odd terms. Source: Willi et al. (2018a).
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(a) coefficient a41 = 1

(b) coefficient a42 = 1

Figure 3.4.3 : Illustration of the contribution of an odd spherical harmonics coefficient (a) and an
even coefficient (b). Odd functions create fields with no symmetry with respect to the
equator (zenith angle of 90 deg), whereas even functions create equatorial symmetry.
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3.4.4 Spherical harmonics partial derivatives

Since the spherical harmonics expansion is a linear function of the coefficients (see Eq. 3.21), the
partial derivatives simply read:

∂PCC(αi, zi)
∂anm

= P̃nm(cos zi) cos(mαi) (3.24)

∂PCC(αi, zi)
∂bnm

= P̃nm(cos zi) sin(mαi) (3.25)

3.5 Multi-GNSS requirements

PCC are frequency-dependent. All current GNSS transmit ranging signals at different frequencies.
Thus, an independent calibration is generated for each frequency transmitted. The frequencies
of the GNSS included in RINEX 3.03 (RINEX Working Group and RTCM-SC104, 2015) are
presented in Table 3.5.1.

Traditionally, calibration institutes have generated calibrations for GPS L1, GPS L2,
GLONASS G1 and GLONASS G2.4

Since the new GPS L5 and the Galileo E5a signals are in the vicinity of the GPS L2 signal
(see Figure 3.5.1), a first approximation is to assume GPS L2 patterns for GPS L5 and for
Galileo E5a measurements. Unfortunately, no L5/E5a robot calibrations are available yet, as no
institution is providing those. However, Geo++® announced an upgrade to Galileo calibrations
for 2019.5 Individual chamber calibrations, which include all frequencies, are available for several
antennas of the European Permanent Network6 (EPN) and the IGS network7.

FDMA signals are a particular challenge for PCC calibration, because every satellite in view
has another frequency. As the PCC is modelled as frequency-dependent correction function, in
principle each satellite has a different PCC.

Wübbena et al. (2006) present a method to deal with the frequency changes within the
GLONASS signals. Basically, the PCC difference between GPS L1 and GLONASS G1 is used
to linearly extrapolate the GLONASS PCC for slot number k = 0 to any other GLONASS
frequency within the GLONASS G1 signal. The same procedure is applied for GPS L2 and
GLONASS G2. Frequency dependent PCC within a GNSS signal is not foreseen in the ANTEX
format version 1.4 (Rothacher and Schmid, 2010).

The frequency range within GLONASS G1 and GLONASS G2 are small compared to the

4As of November 2018, the official PCV file used by the IGS is igs14.atx available on ftp://igs.org/pub/
station/general. For receiver antennas, solely GPS L1, GPS L2, GLONASS G1 and GLONASS G2 calibrations
are available in this file.

5IGS AWG mail 508 from 15.11.2018 by Michael Moore, available at www.igs.org/mail for registered users.
6Which kind of antenna calibration is available for EPN stations can be checked under http://epncb.oma.

be/_networkdata/stationlist.php.
7Oral communication during the AWG splinter meeting, 31.10.2018, IGS Workshop, Wuhan, China.
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general spread of the GNSS frequencies. The difference between the highest and the lowest
frequencies is approximately 7.3 MHz within the GLONASS G1 signal and 5.7 MHz within
GLONASS G2, assuming slot numbers between k = −7 and k = 6. Therefore, the estimation of
a unique PCC at the GLONASS centre frequency (slot number k = 0) seems to be a reasonable
approximation.

3.6 Validation strategies

In order to verify the performance of any calibration system, validations are essential. In
principle, relative and absolute field calibrations can be validated in a similar manner. The
following methods require an important logistical effort. It would make no sense to carry out
such ambitious validations for a relative antenna calibration.

These methods are:

i. A validation on very short baselines is conducted. The baselines are surveyed and therefore,
a ground truth is available. The comparison is conducted either on the coordinate level or
on the observation residual level. This kind of validation is documented in (Kallio et al.,
2018).

ii. A so-called ‘ring calibration’ is conducted. This implies that the same antenna is shipped
to several calibration institutions and the results are compared at the PCC level.

Strategy (i) is difficult to carry out and requires a test field with as many pillars as antennas
and a sufficient number of multi-GNSS receivers. Antenna types should be mixed, in order to
investigate the behaviour of antennas with mixed equipment. A ground truth not only for the
height but also for the position of every pillar would strengthen the validation compared to the
method presented in Kallio et al. (2018). However, a full 3D ground truth at a precision of
0.1 mm is cumbersome and difficult to achieve. Strategy (ii) is complementary to approach (i).
As no ground truth is available, no absolute statement can be derived from a ring calibration.
However, the consistency between different calibration facilities is of uppermost importance,
especially, if PCC from different facilities are used together in a GNSS solution.

38



3 GNSS Antenna Calibration

Table 3.5.1 : Centre frequencies of the current GNSS according to the RINEX 3.03 standard (RINEX
Working Group and RTCM-SC104, 2015). 1 The frequencies of the GLONASS FDMA
signals G1 and G2 are dependent on the satellite slot number k. The slot numbers
range from k = −7 to k = 6; 2 E5 is the E5a+E5b AltBOC signal.
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1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650
Frequency [MHz]

GLONASS

Galileo

GPS

BeiDou

L5 L2 L1

G1G2G3

E1E6E5a E5 E5b

B3 B1B2

Figure 3.5.1 : Graphical overview of the frequencies of the main four GNSS. FDMA signals are
displayed in orange with two dots, marking the highest and the lowest frequency
assigned. CDMA signals are displayed in blue. L1 and E1 are compatible, as well as
L5 and E5a and E5b and B2 (see blue lines). The other signals do not match each
other.
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Chapter 4

Relative GNSS antennas field
calibrations

In relative field calibration, a GNSS antenna is set up in the field together with a reference station.
A PCC function can be estimated with the collected GNSS data. The result is a calibration
relative to the reference antenna, thus the name ‘relative calibration’. Depending on the latitude
of the experimental site, some portions of the antenna hemisphere are not sampled by any data
(this is the so-called north or south hole), preventing the estimation of azimuthal variations of
the PCC. To solve this issue, data is acquired with several different antenna orientations. This
rotation of the antenna has three effects:

i. Enhanced sampling of the antenna hemisphere (filling of the north or south hole).

ii. Multipath mitigation.

iii. Separation of the horizontal PCO from the station coordinates, as illustrated in Figure 4.0.1.

The relative field calibration was extensively used in the past (Rothacher et al., 1995). However,
its application decreased because of following limitations:

i. The obtained calibration is dependent on the reference antenna (thus the name ‘relative
calibration’).

ii. Multipath is not prevented from affecting the results.

iii. The method is not able to separate the height component of the PCO from the station
height.

iv. The method is not well suited to provide reliable PCC for low elevations.

Nowadays, the use of the relative field calibration is limited to validation campaigns, as for
instance shown in Kallio et al. (2018).
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PCO 
(azimuth 0 degree)

PCO
(azimuth 180 degrees)

ARP

Rotation axis

Figure 4.0.1 : The principle of PCO estimation in relative field calibration. The horizontal com-
ponents of the coordinates can be decorrelated from the horizontal offset by rotating
the antenna around its vertical axis. Measurement with more different azimuths (for
instance, 0 deg, 90 deg, 180 deg and 270 deg) further enhance the PCO estimation.

4.1 Observation equation

A GNSS phase observation reads (Hauschild, 2017a):

P iA = eiA
T
(
xi − xA,ARP

)
+ c δtA − c δti + λN i

A + T iA + IiA + PCC i
A +W i

A + viA (4.1)

where

P iA is the carrier phase observation between antenna A and satellite i,
eiA is the line-of-sight vector,
xi is the GNSS satellite position at signal emission,
xA,ARP is the position of the receiver antenna ARP at signal reception,
c is the speed of light,
δtA is the receiver clock error,
δti is the satellite clock error,
λ is the carrier wavelength,
N i
A is the integer phase ambiguity,

T iA is the tropospheric delay,
IiA is the ionospheric delay,
PCC i

A is the PCC,
W i
A is the phase wind-up and

viA is the zero-difference observation noise.
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In so-called double-differences (Hauschild, 2017b), measurements from two stations to two
satellites are differenced against each another:

P ijAB =
(
P jB − P

j
A

)
−
(
P iB − P iA

)
=P jB − P

j
A − P

i
B + P iA (4.2)

where P ijAB is the double-difference phase observation. In this differencing process, the receiver
clock error as well as the satellite clock error is eliminated.1 This can be seen by substitution
of Eq. 4.1 into Eq. 4.2. On short baselines, the tropospheric and ionospheric delays are highly
correlated between both stations. Therefore, it can be assumed that they vanish on double-
difference level. Assuming antenna rotations only around the antenna vertical axis, the phase
wind-up is identical to all observations of an antenna and therefore eliminated by the differencing
process as well. After simplification, the double-difference reads:

P ijAB = ρijAB + λN ij
AB + PCCB(αjB, z

j
B)− PCCB(αiB, ziB)

− PCCA(αjA, z
j
A) + PCCA(αiA, ziA) + vijAB (4.3)

where

ρijAB is the double-difference geometry term,
N ij
AB is the double-difference phase ambiguity,

α is the azimuth of a satellite as seen from the station,
z is the zenith angle of a satellite as seen from the station and
vijAB is the double-difference observation noise.

As can easily be seen from Eq. 4.3, the PCC of the antenna to be calibrated (which is the
parameter of interest) is fully correlated with the PCC of the reference antenna: any mismodelling
of the reference PCC will lead to a bias in the PCC estimation. The conclusion is that the
estimation of PCC on the double-difference level leads to relative PCC estimates.

4.2 Relative calibration of an attitude estimation platform

Although its limitations, relative antenna calibration has some appreciable advantages:

i. The set up is very easy.

ii. Virtually no infrastructure is needed.

1The satellite clock of satellite i is only completely eliminated, if the signal emission time of P iA is identical to
the signal emission time of P iB . This is the case for synchronised receivers on short baselines. Otherwise, the
double-difference is still affected by the differential satellite clock error. The differential satellite clock error is the
difference in satellite clock between the two emission times. It is due to the drift of the satellite clock.
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4 Relative GNSS antennas field calibrations

Therefore, the relative field calibration method is well suited for a first study of the PCC of the
CubETH satellite model.

In the very specific case of an attitude determination platform, all antennas of the platform
can be calibrated together in a unique field experiment. Figure 4.2.1 shows the implemented
processing pipeline for a case with four antennas on a common platform. The Bernese GNSS
Software V5.2 (Dach et al., 2015) was used for the processing.

The first step of the processing is to convert the RINEX data to Bernese observation files
(see Figure 4.2.2). This step can be carried out individually for every file. One additional nearby
antenna serves as common reference.

In a second step, baselines are formed and processed within every session (see Figure 4.2.3).
Each antenna observation file is differenced against the reference antenna observation file. A
standard processing pipeline leads to one normal equation system per antenna to be calibrated
and per session.

Normal 
equations

Session 1

Ref1 2 3 4

Ref1 2 3 4Preprocessing

1 2 3 4

Ref1 2 3 4Baseline processing

Session 2

Ref1 2 3 4

Ref1 2 3 4Preprocessing

1 2 3 4

Ref1 2 3 4Baseline processing

Stacked normal 
equation

Session …

PCC and coordinates 
estimation

Antennas

Figure 4.2.1 : Summary of the processing of relative field calibrations. Antennas 1 to 4 designate
the antennas which are to calibrated and Ref designates the reference antenna. Every
session results in one normal equation per antenna to be calibrated. The NEQ are
stacked before inversion. The NEQ system parameters are summarized in Table 4.2.1.
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The parameters present in the normal equation system after ambiguity resolution and after
stacking are shown in Table 4.2.1. The number of parameters does not increase with increasing
number of sessions. A unique set of station coordinates is set up for all sessions. The resulting
PCO are relative to the centre of rotation, which is identical to the estimated common station
coordinates. This principle is schematised for two antennas and two sessions in Figure 4.2.4. A
session-wise estimation of station coordinates is not possible, as the PCO fully correlates with
the station coordinates.

The rotation around a vertical axis decorrelates the horizontal station coordinates from the
horizontal PCO. The station height in contrary is constrained to the average height of all four
antennas, as it remains fully correlated with the PCO in up direction. Other rotations, for
instance around the x- or y-axis are necessary to decorrelate the height components as well.

Reading RINEX file

RINEX observation file

Single point solution

IGS precise clock

IGS precise orbits

IGS earth orientation parameters

Bernese observation file

Figure 4.2.2 : Preprocessing of the observations. This step is carried out individually for every
antenna and every session. The Single Point Positioning (SPP) is performed for
receiver clock synchronisation.

Table 4.2.1 : Relative field calibration NEQ parameters after ambiguity resolution. The number of
PCV parameters corresponds to a degree and order 8 spherical harmonics expansion.
The receiver clock parameters have vanished on double-difference level.

Parameter Number of parameters

Centre of rotation coordinates X, Y, Z 3

PCC antenna 1 3 PCO + 42 PCV

PCC antenna 2 3 PCO + 42 PCV

PCC antenna 3 3 PCO + 42 PCV

PCC antenna 4 3 PCO + 42 PCV
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For implementation reasons (for instance the support of PCV in the NEQ handling program
of Bernese) it is necessary to first estimate PCO and station coordinates. In a second iteration,
the PCO and the station coordinates are constrained to the estimated values and only PCV are
set up. This can be done separately for every baseline (but including all sessions). The results
are equivalent to the results that are obtained if all parameters are set up in one estimation
process. Differences might occur if the PCV is considered separately, but the PCC is identical in
both cases.

4.3 Paper II – GNSS Antenna Phase Center Variation Calibra-
tion for Attitude Determination on Short Baselines

The second paper presents the results obtained from antenna field calibrations and its application
to an attitude determination system. It was originally published in Proceedings of the 30th
International Technical Meeting of The Satellite Division of the Institute of Navigation (ION
GNSS+ 2017), Portland, Oregon, September 2017, pp. 3997–4010 with the title GNSS Antenna
Phase Center Variation Calibration for Attitude Determination on Short Baselines. This paper
was published after peer-review. Upon the recommendation of the session chairs, the same
article was submitted to the Journal of Navigation.

4.3.1 Abstract

A mock-up model of the CubETH satellite and an attitude determination platform are calibrated.
The mock-up model of the satellite is equipped with four 18 x 18 mm2 passive ceramic patch
antennas. The baseline lengths range from 5.7 cm to 6.5 cm. The experimental platform was
equipped with Trimble Bullet III low-cost geodetic antennas. Both systems are calibrated in a
field campaign using the approach presented above.

The first conclusion from the field calibration is that a massive shrinking of the electric
baseline lengths compared to the nominal baselines (from the mechanical centre of an antenna
to the mechanical centre of the other antenna) of the satellite model takes place: They measure
4.8 cm, 5.6 cm and 4.3 cm instead of 5.7 cm, 6.5 cm and 5.7 cm.

A simulator data study proved these corrections to be essential in order to correctly estimate
the attitude of a spacecraft. Otherwise, a systematic bias is present in the estimates of the
attitude. Because of the short baselines, the bias in yaw is up to 14 degrees if no correction is
applied.

In the field calibration, significant PCV were obtained for the ceramic patch antennas. The
corrections range up to 26 mm. The corrections are highly non-symmetrical. Further tests with
the attitude determination platform showed that the PCV is mainly dependent on the position
of the antenna on the ground plane and not the antenna itself. An experiment with permuted
antennas allowed this conclusion to be drawn.
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Single-differencing

Float solution

IGS precise clock

IGS precise orbits

IGS earth orientation parameters

Bernese observation file
Bernese observation file

(reference station)

Outlier detection and 
removal

Ambiguity resolution

Normal equation writing

Normal equation

Double-differencing

Figure 4.2.3 : Baseline processing of the observations. A baseline is formed between the reference
antenna and every antenna of the attitude determination system. At the end, a normal
equation is written for every baseline and every session.

Rotation centre 
constrained to
average height

Rotation axis

PCO  antenna 1
(azimuth 0 deg)
PCO  antenna 2
(azimuth 180 deg)

PCO antenna 1
(azimuth 180 deg)

PCO antenna 2
(azimuth 0 deg)

CubETH model

Figure 4.2.4 : Principle of PCO estimation on CubETH. The height component of the PCO cannot
be separated from the height of the station coordinates solely with rotations around a
vertical axis. To overcome this singularity, the height of the station is constrained to
the average height of the antennas.
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The PCV obtained in the field experiment with the Trimble Bullet III on the experimental
platform range from -20 mm to 15 mm. A real data validation proved that the estimated PCO
and PCV are meaningful, as they increase the accuracy of attitude determination from 6 degrees
without PCC to 4.5 degrees Root Mean Square Error (RMSE) with PCC.

4.3.2 Author’s contribution

The following section attempts to give a summary of the author’s contribution to paper II (Willi
et al., 2017). The author’s contribution is summarized in Table 4.3.1. The main implementation
task was the development of a processing pipeline in Bernese. The specificity of the data, 1 Hz
single-frequency, had to be taken into account and the software options had to be set accordingly.
This task was cumbersome but necessary for a clean processing.

The theoretical developments and the implementation of the calibration procedure presented
above were mainly undertaken by the author. The simulation study is built upon the developments
presented in paper I and only small modifications were necessary. Beside the main developments,
the author developed many additional tools for handling, editing and visualising PCC files.

4.3.3 Relevance to the field

Although antenna calibration has been studied extensively, no literature is available about
calibration of low-cost antennas by the GNSS community. This paper is among the first studies
investigating this topic. The paper presents strong evidence for mutual coupling of the antennas.
It was shown that the mutual coupling must be taken account in the PCC estimation process.

An easy to carry out relative field calibration method is developed and presented. The
novelty consists in the calibration of an entire system for attitude determination instead of
individual antennas. The paper clearly shows the necessity of antenna calibration, especially for
such short baselines.

4.4 Outlook

The Relative antenna calibration method gives a first insight into the expected magnitude of
the PCC for a small satellite. However, according to experience, the relative field calibration
method is prone to errors due to multipath. The implemented method does not allow a clean
assessment of multipath, neither its mitigation.

For these reasons, an absolute field calibration using a robotic arm is targeted. Such an
approach has the potential to significantly enhance the results. The implementation of an
absolute field calibration is presented in the next chapters.
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4 Relative GNSS antennas field calibrations

Table 4.3.1 : Summary of the author’s contribution to paper II – GNSS Antenna Phase Center
Variation Calibration for Attitude Determination on Short Baselines.
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Chapter 5

Robot geometry

Six-axis robots have some appreciable advantages over robots with less axes in the context of
antenna calibration. Five-axis robots lack one degree of freedom. Because the 6th axis is omitted
compared to six-axis robots, rotations around the antenna vertical axis are not possible. Robots
with two axes for instance do not allow to keep the antenna coordinates fixed while changing
its orientation. Six-axis robots have six degrees of freedom and are therefore best suited for
antenna calibration.

Among serial manipulator arms with six axes, the serial manipulator with an ortho-parallel
basis and a spherical wrist is the most common one (Brandstötter et al., 2014). An example for
such a robot is given in Figure 5.0.1. The underlying kinematic equations as well as an enhanced
kinematic model, allowing for the calibration of the robot, are presented in this chapter.

5.1 Definitions

In this Chapter, following terminology is applied:
The world coordinate system is any global reference frame, for instance WGS84.
The topocentric coordinate system is the East, North, Up system with respect to the

reference ellipsoid. This system is approximately parallel to the Local Level Frame (LLF), which
is aligned to the local gravity field. The convention East, North, Up instead of North, East, Up
is chosen in order to have a right-hand coordinate system.

The robot (base or root) coordinate system is a coordinate system attached to the
base of the robot (see Figure 5.1.2).

The flange coordinate system is a coordinate system attached to the flange of the robot
(see Figure 5.1.2).

The tool coordinate system is a coordinate system attached to the tool mounted on
the robot flange. For instance, if a welding equipment is mounted on the robot flange, the
tool coordinate system is centred at the welding flame and the x-axis of the coordinate system
is aligned with the flame. This coordinate system is meant to facilitate the computation of
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5 Robot geometry

Figure 5.0.1 : KUKA Agilus KR 6 R900 sixx mounted on the roof of the Institute of Geodesy and
Photogrammetry (IGP) at ETH Zurich. The robot is performing a GNSS antenna
calibration. The aluminium plate serves as interface between the four bolts inserted
into the concrete foundation and the robot base. The white antenna in the back is
used as reference station.
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poses and trajectories if a tool is attached to the robot. The relationship between the different
coordinate systems is shown in Figure 5.1.3.

The robot flange is the mechanical interface between the robot and any tool. Mathematically,
if referred to it as a point, the robot flange is the intersection between the last axis and the
surface of the flange.

The pose of the robot is the position and the orientation of the flange of the robot with
respect to the robot base. The pose can be given either in X, Y, Z, A, B and C or in angular
values for all axes. In the first case, KUKA applies the following convention:

Rt←r = (Rr←t)T = R1(C) R2(B) R3(A) (5.1)

where

Rt←r is the rotation from the robot coordinate system to the tool coordinate system,
Ri are the rotation matrices according to Eqs. 2.4 to 2.6 and
A, B, C are the three angles used by KUKA to describe the orientation of a point.

The posture is the topology of the robot, for instance shoulder up or shoulder down.
Figure 5.1.1 shows two postures of the same pose. The same posture can be identified for
different poses. For instance, if the robot goes to point A and then to a different point B without
changing its topology, these are different poses but the same posture.

The pose repeatability is the ability of the robot to reach the same pose in the same posture
several times (Willi and Guillaume, 2019) as precisely as possible. The standard deviation of
the positions is a quantitative measure for this ability.

The precision of the robot is the ability to precisely reach given coordinates with varying
orientations (Willi and Guillaume, 2019). The standard deviation is a quantitative indicator for
this ability.

The accuracy of the robot designates its ability to reach any pose in any posture with
the best accuracy. The Root Mean Square Error (RMSE) best quantifies this ability.

5.2 KUKA Agilus KR 6 R900 sixx

The KUKA Agilus KR 6 R900 sixx is a small six-axis serial manipulator. The main technical
data are shown in Table 5.2.1. The whole set-up comprises:

i. The robotic arm,

ii. the robot controller (manufacturer provided),

iii. a SmartPad (manufacturer provided) which acts basically as control panel for the controller
and

iv. an optional notebook computer to run custom software.
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Figure 5.1.1 : The KUKA robot in two different postures but in the same pose (position and
orientation of the flange).

x

y

z

x
y

z

Figure 5.1.2 : Robot (base) coordinate system and flange coordinate system. The orientation of the
flange coordinate system depends on the angular position of the last axis. Source:
Willi and Guillaume (2019).
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Astronomical longitude and 
latitude 

Orientation and rotation of the 
robot base 

Current robot pose
(position of every axis) 

World frame 
(for instance WGS84)

Topocentric system
(Local Level Frame)

Robot system
(robot base attached system)

Flange system
(robot flange attached system)

Orientation and position of the 
tool (shape of the tool) 

Tool system
(tool attached system)

Figure 5.1.3 : Overview of the different coordinate systems and of the transformations between each
of the coordinate systems.
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The components but the robotic arm are depicted in Figure 5.2.1. The interface which allows to
interact with the controller by UDP and XML is called RobotSensorInterface (RSI). A custom
software was developed for this specific task of interacting with the robot controller. It is called
QKuka and is written in C++. The overall scheme is presented in Figure 5.2.2. Implementation
details are given in the next section.

5.3 QKuka control software

A software called QKuka was developed to interact with the controller of the robotic arm. It
is written in C++ and runs on a standard laptop. The communication with the controller is
based on User Data Protocol (UDP) and Extensible Markup Language (XML). Figure 5.3.1
is an example for a file sent by the controller. The ‘IPOC’ integer which is contained in this
message must be returned within a specified time frame, typically 100 milliseconds. If this is
not the case, the robot executes an emergency stop. An example for an answer returning this
‘IPOC’ is displayed in Figure 5.3.2.

As soon as they are received, the XML files are interpreted within a program running on the
robot controller (see Figure 5.3.3). A program running on the controller executes the required
actions, for instance steering the tool of the robotic arm to a certain position.

5.4 Robot Kinematics

Forward kinematics is the task of computing the coordinates and the attitude of the flange (or of
the tool) from angular values for every of the six axes whereas inverse kinematics is the inverse
task. In general, no analytical solution to inverse kinematics is available. In some special cases,
analytical solutions can be derived from geometrical thoughts.

Robots with a configuration similar to the KUKA Agilus KR 6 are said to have an ortho-
parallel basis and a spherical wrist. The ortho-parallel basis consists of two parallel axes (axes 2
and 3) mounted on a first, perpendicular axis. In case of the spherical wrist, the last three axes

Table 5.2.1 : Size, weight, accuracy and operation temperature range of the KUKA KR 6 R900
sixx (Kuka, 2018).

Axes 6
Operation volume 2.85 m2

Operation radius 901.5 mm
Maximum payload 6 kg

Weight 52 kg
Pose repeatability 0.03 mm

Operation temperature +5℃ to +45℃
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Figure 5.2.1 : KUKA control equipment consisting of a standard notebook computer (1), the KUKA
controller (2) and the KUKA SmartPad (3). The notebook computer is used to run a
custom software. The interface is based on a network protocol called UDP and uses
XML files.

Notebook
running QKuka

(custom software)

XML
via UDP KUKA controller

KUKA SmartPad

KUKA Agilus KR 6 
R900 sixx

Figure 5.2.2 : Interface between the robotic arm, the controller, the SmartPad and QKuka.

1<Rob Type="KUKA">
2<RIst X=" 625.00043 " Y=" 0.00000 " Z=" 889.99976 "
3A=" 179.78603 " B=" 89.99429 " C=" 179.78603 "/>
4<AIPos A1=" 0.00000 " A2=" -77.16124" A3=" 75.60643 "
5A4=" 0.00000 " A5=" 1.56052 " A6=" -0.00002"/>
6<Delay D="1"/>
7<IINA >1</IINA >
8<IPOC >896032 </IPOC >
9</Rob >

Figure 5.3.1 : Example for a message sent by the robot controller. It contains the current position of
the tool (X, Y, Z), the Euler angles of the tool orientation (A, B, C) and the angular
readings of axes A1 to A6 as well as the integer ‘IPOC’ and the current delay.
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1<Sen Type=" ImFree ">
2<EStr ></EStr >
3<RKorr X=" 625.00 " Y="0.00" Z=" 890.00 "
4A="0.00" B="90.00" C="0.00"/>
5<TYPE >0</TYPE >
6<IOUT >1</IOUT >
7<IPOC >896032 </IPOC >
8</Sen >

Figure 5.3.2 : Example for a message sent to the robot controller. It contains a position and
orientation instruction for the tool (X, Y, Z, A, B and C) and two integers (TYPE
and IOUT) as well as the mandatory ‘IPOC’.

QKuka

reader

writer

Controller

qkuka.src

qkuka.rsi

qkuka.xml

<Rob>

<Sen>

Figure 5.3.3 : Details of the exchange of XML messages. A program (qkuka.src) is running on
the controller and executes predefined actions. The actual reading of the XML file
is achieved in qkuka.rsi, based on the format description of the XML file, which is
contained in qkuka.xml.

(axes 4 to 6) intersect in one point. The consequence is very pleasant, as this property allows to
separate the coordinate computation part from the attitude determination part. The following
developments are based on Brandstötter et al. (2014). As shown by the authors, this kind of
robots can be parametrized by only seven parameters. The values of the parameters for the
present case are given in Table 5.4.1. The six non-zero parameters are shown in Figure 5.4.1.
Figure 5.4.2 should convince the reader that all links and joints are in one plane and that b = 0.
The axes one to three control the coordinates, whereas the axes four to six control the attitude
of the flange. The variables θ1 to θ6 are the angles of rotation of every axis and therefore our
control variables.

5.4.1 Forward kinematics (Brandstötter et al., 2014)

The task of computing the position and the attitude of the flange of the robot or the tool
mounted on the robot flange, given the angle of every axis, is called forward kinematics. The
point C is the intersection of the last three axes (see also Figure 5.4.1). The coordinates c of the
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Table 5.4.1 : The seven geometrical parameters of the KUKA Agilus KR 6 R900 sixx. b is equal to
zero as all the links and joints are in one plane for this type of robot.

Parameter Value [mm]

a1 25

a2 -35

b 0

d1 400

d2 455

d3 420

d4 80

a1 = 25 mm

a2 = -35 mm

d2 = 455 mm

d1 = 400 mm

d3 =
 420 m

m

d4 =
 80 m

m

C

Figure 5.4.1 : The six non-zero geometrical parameters of the KUKA Agilus KR 6 R900 sixx. The
robot x-axis is on the left, the y-axis is pointing towards the reader. The red dot
shows the point C, which is the intersection of the last three axes.
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Figure 5.4.2 : Front view of the KUKA Agilus KR 6 R900 sixx. It can easily be seen that all links
and joints are in one plane.
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point C in the robot coordinate system are given by:

c =


cos θ1 − sin θ1 0
sin θ1 cos θ1 0

0 0 1

 c′ +


0
0
d1

 (5.2)

with

c′ =


d2 sin θ2 + k sin(θ2 + θ3 + φ3) + a1

b

d2 cos θ2 + k cos(θ2 + θ3 + φ3)

 (5.3)

and with

φ3 = arctan a2
d3

(5.4)

k =
√
a2

2 + d2
3 (5.5)

where

c is the set of coordinates, given in the robot coordinate system, of the
intersection of the last three axes,

θi is the angular reading of axis i,
c′ is an auxiliary point,
φ3 is an auxiliary variable and
k is an auxiliary variable as well.

The final coordinates of the flange are computed using the attitude of the flange and the
length of the last articulation:

u = c + d4 Rr←f


0
0
1

 (5.6)

with u being the coordinates of the flange. The angles four to six control the attitude of the
flange. The final attitude is the product of the attitude up to the point C and the attitude of
the last three axis.

Rr←f = Rr←c Rc←f (5.7)

Rc←f =


cθ4cθ5cθ6 − sθ4s(θ6) −cθ4cθ5sθ6 − sθ4cθ6 cθ4sθ5

sθ4cθ5cθ6 + cθ4sθ6 −sθ4cθ5sθ6 + cθ4cθ6 sθ4sθ5

−sθ5cθ6 sθ5sθ6 cθ5

 (5.8)
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Rr←c =


cθ1cθ2c

θ3
− c

θ1
sθ2sθ3 −sθ1 cθ1cθ2sθ3 + cθ1sθ2cθ3

sθ1cθ2cθ3 − sθ1sθ2sθ3 cθ1 sθ1cθ2sθ3 + sθ1sθ2cθ3

−sθ2cθ3 − cθ2sθ3 0 −sθ2sθ3 + cθ2cθ3

 (5.9)

where

Rr←f is the rotation from the flange attached system to the the robot system,
Rr←c is the rotation from the system associated with the point C to the robot coordinate system,
Rc←f is the rotation from the flange system to the system associated with point C,
sθi is the sine of θi and
cθi is the cosine of θi.

The separation, mentioned earlier, between the attitude computation and the coordinate
computation is well reflected by the fact that Rr←c only depends on θ1 to θ3 and Rc←f only
depends on θ4 to θ6.

In order to comply with the KUKA convention, following operations have to be performed:

θ1 = −θ′1 (5.10)

θ2 = θ′2 + π

2 (5.11)

θ4 = −θ′4 (5.12)

θ6 = −θ′6 (5.13)

with θ′i being the angles used by the KUKA controller (see also Figure 5.4.3).
If the tool is affected by an offset, an additional transformation leads to the coordinates of

the tool in the robot coordinate system:

Rr←t = Rr←f Rf←t (5.14)

t = u + t′′z Rr←t


0
0
1

+ t′′x Rr←t


1
0
0

+ t′′y Rr←t


0
1
0

 (5.15)

Where

t is the set of coordinates of the tool (in the robot coordinate system),
t′′x is the tool offset in x (in the tool system),
t′′y is the tool offset in y (in the tool system),
t′′z is the tool offset in z (in the tool system) and
Rf←t is the rotation from the tool system to the flange system.

Frequently, tools do have an offset in z- but not in x- and y-direction. This is the reason for
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1 (0°)

2 (-90°)

3 (90°)

4 (0°)5 (0°)6 (0°)

+ –

+ –

+

–

+
–

+
– +

–

Figure 5.4.3 : The KUKA angle convention for θ1 to θ6. Axes shown in yellow are parallel to the
image plane, red axes are out of plane. Source: Willi and Guillaume (2019).

the non-alphabetic order in Eq. 5.15. Typically, Rf←t is either an identity matrix (as in the case
of antenna calibrations) or its values are calibrated and therefore known. It can be expressed as
an Euler sequence:

Rt←f = (Rf←t)T = R1(γ′′) R2(β′′) R3(α′′) (5.16)

where α′′, β′′ and γ′′ are the tool yaw, pitch and roll angles. The final results of the algorithm
are the coordinates of the tool t and its orientation Rr←t in the robot coordinate system.

5.4.2 Inverse kinematics (Brandstötter et al., 2014)

Unsurprisingly, inverse kinematics is more complicated than forward kinematics. This tasks
consist of computing the angles θ1 to θ6 given the position and attitude of the tool. Again, the
problem can be solved in two parts. The coordinates of the tool t and its orientation Rr←t are
the input variables:

u = t− t′′z Rr←t


0
0
1

− t′′x Rr←t


1
0
0

− t′′y Rr←t


0
1
0

 (5.17)

Rr←f = Rr←t Rt←f = Rr←t (Rf←t)T (5.18)
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c = u− d4 Rr←f


0
0
1

 (5.19)

where

u is the set of coordinates of the flange in the robot system,
t is the set of coordinates of the tool in the robot system,
t′′x is the tool offset in x in the tool system,
t′′y is the tool offset in y in the tool system,
t′′z is the tool offset in z in the tool system,
Rr←t is the rotation from the tool system to the robot system,
Rr←f is the rotation from the flange system to the robot system and
c is the set of coordinates of the intersection of the last tree axis.

Once the coordinates c of the point C have been computed, they can be used to retrieve the
angular values of the first three axes. Eight different solutions exist. The eight possible postures
for a given pose are displayed in Figures 5.4.4 and 5.4.5. The solutions one to four for θ1 to θ3

read:

θ1,1 = atan2(c2, c1)− atan2(b, h1 + a1) (5.20)

θ1,2 = θ1,1 (5.21)

θ1,3 = atan2(c2, c1) + atan2(b, h1 + a1)− π (5.22)

θ1,4 = θ1,3 (5.23)

θ2,1 = − arccos s
2
1 + d2

2 − k2

2 s1 d2
+ atan2(h1, c3 − d1) (5.24)

θ2,2 = arccos s
2
1 + d2

2 − k2

2 s1 d2
+ atan2(h1, c3 − d1) (5.25)

θ2,3 = − arccos s
2
2 + d2

2 − k2

2 s2 d2
− atan2(h1 + 2 a1, c3 − d1) (5.26)

θ2,4 = arccos s
2
2 + d2

2 − k2

2 s2 d2
− atan2(h1 + 2 a1, c3 − d1) (5.27)

θ3,1 = arccos s
2
1 − d2

2 − k2

2 d2 k
− atan2(a2, d3) (5.28)

θ3,2 = − arccos s
2
1 − d2

2 − k2

2 d2 k
− atan2(a2, d3) (5.29)

θ3,3 = arccos s
2
2 − d2

2 − k2

2 d2 k
− atan2(a2, d3) (5.30)

θ3,4 = − arccos s
2
2 − d2

2 − k2

2 d2 k
− atan2(a2, d3) (5.31)

where θi,j is the j th solution of θi and ci is the i th component of c. The additional variables h1,
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s1, s2 and k are defined as follows:

h1 =
√
c12 + c22 − b2 − a1 (5.32)

s1 =
√
h2

1 + (c3 − d1)2 (5.33)

s2 =
√

(h1 + 2 a1)2 + (c3 − d1)2 (5.34)

k =
√
a2

2 + d2
3 (5.35)

The solutions five to eight for θ1 to θ3 are identical to solutions one to four for these three
angles:

θi,j = θi,j+4 i ∈ [1, 2, 3] , j ∈ [1, 2, 3, 4] (5.36)

Eq. 5.36 can easily be verified by comparing Figure 5.4.4 to Figure 5.4.5. The solutions for the
angles θ4 to θ6 read:

θ4,j = atan2 (R23 h3,j −R13 h2,j , R13 h3,j h5,j +R23 h2,j h5,j −R33 h4,j) (5.37)

θ4,j+4 = θ4,j + π (5.38)

θ5,j = atan2
(√

1− h2
6,j , h6,j

)
(5.39)

θ5,j+4 = −θ5,j (5.40)

θ6,j = atan2 (R12 h3,j h4,j +R22 h2,j h4,j +R32 h5,j ,

−R11 h3,j h4,j −R21 h2,j h4,j −R31 h5,j) (5.41)

θ6,j+4 = θ6,j − π (5.42)

where Rmn are the elements of Rr←f from Eq. 5.18 and j ∈ [1, 2, 3, 4]. The auxiliary variables
h2,j to h6,j are defined as follows:

h2,j = sin θ1,j (5.43)

h3,j = cos θ1,j (5.44)

h4,j = sin(θ2,j + θ3,j) (5.45)

h5,j = cos(θ2,j + θ3,j) (5.46)

h6,j = R13 h3,j h4,j +R23 h2,j h4,j +R33 h5,j (5.47)
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Figure 5.4.4 : View of the postures one to four (j ∈ [1, 2, 3, 4]), from left to right, for a given pose.
Source: Willi and Guillaume (2019).
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Figure 5.4.5 : View of the postures five to eight (j ∈ [5, 6, 7, 8]), from left to right, for a given pose.
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In order to match the KUKA sign and offset conventions, following changes must be performed:

θ′1 = −θ1 (5.48)

θ′2 = θ2 −
π

2 (5.49)

θ′4 = −θ4 (5.50)

θ′6 = −θ6 (5.51)

where θ′i denotes the KUKA angle convention and θi denotes the angles as computed by the
present algorithm.

5.5 Enhanced kinematic model

Every robot is affected by errors, as the actual geometry does not perfectly fit the nominal
geometry. In the same way as axis errors affect theodolites, axis errors also affect an industrial
robot: orthogonal axes are not necessarily perfectly orthogonal and parallel axes are not
necessarily perfectly parallel.

Furthermore, the dimensions do not necessarily fit the nominal values: the robot’s arms can
be slightly longer or shorter than indicated in the data-sheet. Finally, the axis angles can be
affected by offsets. The first kind of errors cannot be modelled by the kinematic model presented
in Section 5.4.1. Therefore, the so-called Denavit-Hartenberg (DH) convention is used (Corke,
2017; Hollerbach et al., 2016).

5.5.1 State of the art

Kinematic robot models based on DH parameters or a similar parametrisation are widely
used (Schröer, 1999; Motta, 2006; Hollerbach et al., 2016). The different robot calibration models
are very well discussed in (Schröer et al., 1997). Most typically, laser trackers are used for the
calibration. Nubiola and Bonev (2013) and Allman et al. (2018) are good examples for robot
calibrations using laser trackers. Typically, accuracies of 0.2 mm to 0.4 mm are obtained after
calibration of the robot (Nubiola and Bonev, 2013; Allman et al., 2018).

Menge (2003) and Kersten (2014) present a calibration model for a robot with five axes. The
subject of the calibration is a robot used for GNSS PCC estimation. The model comprises 20
parameters, including parameters for the joint elasticity. The accuracy of the calibrated robot is
0.2 to 0.3 mm. The measurements were performed with theodolites in the first case and with a
laser tracker in the second case.

5.5.2 Denavit-Hartenberg parametrisation

The basic idea is to represent every axis of the robot as a coordinate transformation in 3
dimensions. In principle, this would require three translational parameters and three rotational
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parameters. By adroitly attaching the coordinate systems to every axis, the number of parameters
can be reduced to four: two rotation angles and two translation. The principle is schematised in
Figure 5.5.1.

The first rotational parameter Θ is the angle between two subsequent x-axes. It is the control
variable and therefore the final angle reading from the robot. The signs were chosen to match
the KUKA convention. α is the angle between two successive y-axes and is 0 for parallel axes.
The length of a link is denoted by a and the lateral offset of a joint is denoted by d. The DH
parameters for the KUKA Agilus KR 6 R900 sixx are given in Table 5.5.1 and the non-zero
parameters are depicted in Figure 5.5.2. The addition of δΘ is necessary to comply with the
KUKA convention.

Using DH parameters, the coordinates and the orientation of the flange read as a homogeneous
transformation matrix:

T =
6∏
i=0

Ti =


Rr←f u

0 0 0 1

 (5.52)

where

T is the homogeneous transformation matrix of the flange,
Ti is the transformation associated with joint and link i,
Rr←f is the rotation from the flange system to the robot system and
u is the coordinates of the flange.

With i ∈ [1, 2, 3, 4, 5, 6]. The individual transformations are functions of the DH parameters:

Ti =


cos(Θi + δΘi) − sin(Θi + δΘi) cosαi sin(Θi + δΘi) sinαi ai cos(Θi + δΘi)
sin(Θi + δΘi) cos(Θi + δΘi) cosαi − cos(Θi + δΘi) sinαi ai sin(Θi + δΘi)

0 sinαi cosαi di

0 0 0 1


(5.53)

Table 5.5.1 : DH parameters for the KUKA Agilus KR 6 R900 sixx.

Θ [rad] δΘ [rad] α [rad] a [mm] d [mm]

1 −θ1 0 π/2 25 400

2 −θ2 0 0 455 0

3 −θ3 π/2 −π/2 35 0

4 θ4 0 π/2 0 -420

5 −θ5 0 −π/2 0 0

6 θ6 π π 0 -80
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0

1

2

3

4

5

6

α1 (90°)
θ2+δθ2 (-90°)

x y

z

Figure 5.5.1 : Application of the DH convention to a robot with the same configuration as the KUKA
Agilus KR 6 R900 sixx. A coordinate system is attached to every joint. Its z-axis is
collinear with the joint axis. Each joint and link pair is represented by four parameters.
The angle between two successive x-axes is called Θ and the angle between to successive
z-axes is α. Source: Willi and Guillaume (2019).

70



5 Robot geometry

a1 = 25 mm

a3 = 35 mm

a2 = 455 mm

d1 = 400 mm

d4 =
 -4

20 m
m

d6 =
 -8

0 m
m

Figure 5.5.2 : The non-zero DH length parameters (a and d) of the KUKA Agilus KR 6 R900 sixx.
Source: Willi and Guillaume (2019).
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If T0 is equal to the identity matrix, the obtained coordinates are in the robot coordinate
system. To obtain coordinates in an other frame, T0 can be initialized as follows:

T0 =


Rw←r

t′x

t′y

t′z

0 0 0 1

 (5.54)

where Rw←r is the rotation matrix from the robot system to the world system (e.g. a topocentric
system) and t′x, t′y and t′z are the offsets and therefore equal to the coordinates of the robot in
the world frame. This rotation can be expressed as Euler sequence:

Rr←w = (Rw←r)T = R1(γ′) R2(β′) R3(α′) (5.55)

where α′, β′ and γ′ are the yaw, pitch and roll angles of the robot in the world coordinate
system1. The convention for the rotation matrices is the same as in Eqs. 2.4 to 2.6. If desired,
the tool orientation and the tool offsets can be applied on top of this transformation exactly as
shown in Eqs. 5.14 and 5.15

5.5.3 Calibration model

Based on the developments of the previous chapter, a model with 36 parameters was defined.
The parameters are listed in Table 5.5.3. In order to decorrelate all parameters from each other,
measurements well distributed in the whole operation space of the robot would be needed. The
tool orientation can only be estimated if the attitude of the tool is observed. This is for instance
the case, if three or more targets are mount on the robot flange.

In general, it is not necessary to fully decorrelate the parameters. If a calibration is meant
to be used only over a confined part of the robot operation space, a reduced calibration can be
conducted. In general, the calibration will be valid at least in the vicinity of the measurement
points. In the specific case of GNSS antenna calibrations, a reduced sequence was found to work
well.

5.5.4 Model limitations

The current implementation has several limitations, namely:

i. Temperature dependency is not modelled,

ii. joint elasticity is not modelled and

iii. the non-linearity of axis six is not modelled.

1Note that in the software QKuka the opposite convention is used: Rw←r = R1(γ′) R2(β′) R3(α′).
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Table 5.5.3 : KUKA DH calibration model parameters. Source: Willi and Guillaume (2019).

1 to 6 δΘ1 to δΘ6 Axis angle offsets

7 to 12 α1 to α6 DH parameters α

13 to 18 a1 to a6 DH parameters a

19 to 24 d1 to d6 DH parameters d

25 to 27 t′′x, t′′y, t′′z Tool offsets in x, y and z

28 to 30 α′′, β′′, γ′′ Tool orientation as Euler sequence

31 to 33 t′x, t′y, t′z Robot coordinates in the world frame

34 to 36 α′, β′, γ′ Robot orientation in the world frame as Euler sequence

The latter two effects are well studied and presented in the literature. Nubiola and Bonev (2013)
included a stiffness model and a non-linearity model for axis six and obtained excellent results.
Inclusion of these two models is expected to enhance the accuracy of the calibrated robot. The
non-linearity model parameters can be estimated only if the orientation of the tool is observed
as well. This requires a laser tracker with a probe for six degrees of freedom.

The temperature dependence is more difficult to model. Theoretical considerations and
simulations lead to the conclusion that the temperature dependence can be neglected if using a
small robot and if high precision and not high accuracy is targeted (Willi and Guillaume, 2019).
However, further experiments are necessary to verify this assumption. A possible approach to
deal with temperature changes is to include temperature dependent DH parameters, as suggested
by Bilich et al. (2018).

5.6 Paper III – Calibration of a Six-Axis Robot for GNSS An-
tenna Phase Center Estimation

The third paper presents a novel method for the calibration of a six-axis robot. The paper was
submitted to the Journal of Surveying Engineering with the title Calibration of a Six-Axis Robot
for GNSS Antenna Phase Center Estimation. The article is in review.

5.6.1 Abstract

A new method for the calibration of a six-axis robot is presented. Using a kinematic model of
the robot based on its geometry, we were able to increase the precision of the positioning from
about 0.5 mm to below 0.1 mm. The kinematic robot model is based on the Denavit-Hartenberg
convention. The main innovation consists in using a micro-triangulation system which allows to
perform the calibration of the robot on site.
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Unlike standard calibrations based on similar models, our approach uses the exact sequence
of robot positions that is used for GNSS antenna calibrations. The result is a very efficient and
highly automatic calibration procedure, although its applicability is limited to the exact same
case of GNSS antenna calibrations.

5.6.2 Author’s contribution

This subsection summarises the author’s contribution to paper III. The main work packages
include the theoretical developments of the kinematic model, the derivation of the parametrisation,
the implementation of an estimation software in Matlab and the implementation of the correction
model in the control software of the robot.

The experimental part includes the data acquisition and the data processing. It should
be mentioned that a substantial part of the data acquisition was accomplished by students.
Table 5.6.1 quantifies the proportion of work carried out by the main author.

5.6.3 Relevance to the field

Robot calibrations based on DH models are present in the literature. The use of a calibration
sequence which is tailored to GNSS antenna calibration, in combination with the optical micro-
triangulation, however, is a novelty. The developed method is a very efficient means of calibrating
a robot in the field. Therefore, the it is of real benefit for the antenna calibration community,
which relies on well-calibrated robots.

5.7 Outlook

With the successful calibration, the robot is ready to be used for absolute antenna calibrations
(see Chapter 6). The use of the robot in the field, together with periodic recalibration, will help
to answer the open research questions. Namely:

i. How is the long-term stability of the calibration?

ii. How do temperature variations influence the DH parameters?

Further data will help to improve the understanding of the underlying processes and finally
improve the kinematic robot models.
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Table 5.6.1 : Summary of the author’s contribution to paper III – Calibration of a Six-Axis Robot
for GNSS Antenna Phase Center Estimation.
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Editorial work 80%
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Chapter 6

Absolute GNSS antenna field
calibration

Absolute field calibrations represent an enhancement of relative field calibration. Introducing
rotations around axes other than the antenna vertical axis allows to decorrelate all three
components of the PCO from the station coordinates. The other main advantages of absolute
field calibration over relative field calibration are:

i. The probing of the antenna hemisphere can be controlled by choosing appropriate rotations,
for instance by choosing a large inclination of the antenna,

ii. multipath can potentially be mitigated and

iii. the calibration result is independent from the calibration of the reference antenna.

Time-differenced GNSS observations fulfil requirement (ii) and (iii), unlike double-differenced or
single-differenced observations. This approach is presented in the following section.

6.1 Time-differencing mode

In principle, two differencing modes in time are imaginable:

i. Differences over a sidereal day and

ii. Differences over only a few seconds.

The first absolute field calibrations were performed using differences over a sidereal day (Wübbena
et al., 1997; Menge, 2003). As the GPS constellations repeats after a sidereal day, the same
multipath is expected to repeat as well. This technique does not apply to other GNSS with
other repeat periods. The drawback of this method is the very long calibration time of at
least a sidereal day plus the duration of the measurements on the second day. However, the
measurements on the first day do not necessarily need to cover 24 hours.

In the second differencing mode, a robotic manipulator is used to perform very fast rotations.
Multipath is a time varying quantity. Differencing epochs that are very close to each other
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eliminates the multipath fraction which is common to both epochs. In order to have a reasonable
correlation, the time between epochs should not exceed a few seconds. Multipath from the ground
has a rate of 1.73h ·10−4 m/s, where h is the antenna height over ground (Braasch, 2017, p. 447);
The multipath change (and thus the error in time-differences) already exceeds a millimetre after
five seconds. Objects located closer to the antenna (for instance the measurement pillar) will
have faster multipath rates and thus, their multipath contribution will not be eliminated in the
time-differencing process.

6.2 Triple-difference observation equation

A GNSS phase observation reads (Hauschild, 2017a):

P iA = eiA
T
(
xi − xA,ARP

)
+ c δtA − c δti + λN i

A + T iA + IiA + PCC i
A +W i

A + viA (6.1)

where

P iA is the carrier phase observation between antenna A and satellite i,
eiA is the line-of-sight vector,
xi is the GNSS satellite position at signal emission,
xA,ARP is the position of the receiver antenna ARP at signal reception,
c is the speed of light,
δtA is the receiver clock error,
δti is the satellite clock error,
λ is the carrier wavelength,
N i
A is the integer phase ambiguity,

T iA is the tropospheric delay,
IiA is ionospheric delay,
PCC i

A is the PCC,
W i
A is the phase wind-up and

viA is zero-difference observation noise.

The phase wind-up is modelled according to Wu et al. (1993). Triple-differences involve eight
measurements, as two satellites are observed from two stations at two epochs (Hauschild, 2017b):

P ijAB,t1t2 =
((
P jB − P

j
A

)
−
(
P iB − P iA

))
t2
−
((
P jB − P

j
A

)
−
(
P iB − P iA

))
t1

=
(
P jB − P

j
A − P

i
B + P iA

)
t2
−
(
P jB − P

j
A − P

i
B + P iA

)
t1

(6.2)

where P ijAB,t1t2 is the triple-difference involving epochs t1 and t2. After substitution of Eq. 6.1
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into Eq. 6.2 and simplification, the triple-difference reads:

P ijAB,t1t2 =
(
ρjB,t2 − ρ

j
A,t2
− ρiB,t2 + ρiA,t2

)
−
(
ρjB,t1 − ρ

j
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)
+
(
N j
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−N j
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−N i

B,t2 +N i
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)
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)
+
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j
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j
A,t2

)
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i
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i
A,t2)

)
−
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)

− PCCB(αiB,t1 , z
i
B,t1) + PCCA(αiA,t1 , z

i
A,t1)

)
+
(
W j
B,t2
−W j

A,t2
−W i

B,t2 +W i
A,t2

)
−
(
W j
B,t1
−W j

A,t1
−W i

B,t1 +W i
A,t1

)
+ vijAB,t1t2 (6.3)

where

ρ is the respective geometrical term,
vijAB,t1t2 is the triple-difference observation noise,
α is the azimuth of the GNSS satellite and
z is the zenith angle of a GNSS satellite as seen from the station.

The triple-difference observation noise is 2
√

2 times larger than the zero-difference observation
noise (assuming that all observations have the same standard deviation and are uncorrelated).
Assuming a short baseline, the ionospheric and the tropospheric delays are strongly reduced
already on station single-difference level, together with the satellite clock error (Hauschild, 2017b,
p. 594). Receiver clock errors vanish at double-difference level (Hauschild, 2017b, p. 597).

Assuming that the interval between the two epochs is very small, further simplifications can
be introduced:

i. In the absence of cycle slips, the ambiguity term is constant in time, thus:

a. N j
B,t1

equals N j
B,t2

,

b. N j
A,t1

equals N j
A,t2

,

c. N i
B,t1

equals N i
B,t2

and

d. N i
A,t1

equals N i
A,t2

.

ii. Because the reference antenna B does not rotate, its phase wind-up is almost constant
over short time intervals. Therefore:

a. W i
B,t1

equals W i
B,t2

and

b. W j
B,t1

equals W j
B,t2

.

iii. The apparent positions of the GNSS satellites change very slowly. Therefore:
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a. αiB,t1 equals αiB,t2 ,

b. αjB,t1 equals αjB,t2 ,

c. ziB,t1 equals ziB,t2 and

d. zjB,t1 equals zjB,t2 ,

practically leading to the elimination of the PCC of the reference antenna.

Introducing these simplifications into Eq. 6.3 leads to the following, final expression:

P ijAB,t1t2 = ρijAB,t1t2−PCCA(αjA,t2 , z
j
A,t2

) + PCCA(αiA,t2 , z
i
A,t2)

−PCCA(αjA,t1 , z
j
A,t1

) + PCCA(αiA,t1 , z
i
A,t1)

−W j
A,t2

+W i
A,t2 −W

j
A,t1

+W i
A,t1 + vijAB,t1t2 (6.4)

where ρijAB,t1t2 is the triple-difference geometry term. The geometry term can easily be modelled
using broadcast or precise satellite orbits and approximate station coordinates. The phase
wind-up is modelled according to Wu et al. (1993). Even though the phase wind-up and the
PCC of the reference antenna nearly vanish on triple-difference level, the modelled corrections
are applied in the processing software.

6.3 Absolute character of triple-difference antenna calibration

The last remaining deterministic signal component in Eq. 6.4 is the PCC. The PCC of the
reference antenna has vanished, leading to a truly absolute estimation of PCC. If the reference
antenna PCC is still present in the observation equation, the calibration cannot be said to be
truly ‘absolute’ (see also Bilich and Mader, 2010, p. 1371).

This independence on the reference PCC of the triple-differences is illustrated with the
help of a use case. A sequence of 4042 orientations and a precise orbit file from 22.8.2018
have been used to generate synthetic observations. Biases were added on the reference station
during the data generation process. The data was then processed with double-difference as
well as triple-difference algorithms. As can be seen in Table 6.3.1, the triple-difference is much
less sensitive to biases like the modelled PCC of the reference antenna. Even a very long
calibration sequence of over 4000 orientations is not able to eliminate the bias which is due to the
omission of the reference PCC, if double-differences are used. An error of up to 0.3 mm is the
consequence. If a five times larger PCC bias is applied, the difference between double-differences
and triple-differences becomes more obvious. In this case, the error on the estimated PCC
amounts to over 1.5 mm for the double-difference approach, while the triple-difference approach
leads to a PCC with only 0.16 mm maximal error.
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Table 6.3.1 : Results from a study on PCC biases conducted with synthetic data. Biases were added
to the data during the data generation process. During the estimation process, the
biases were not modelled. The results show a different sensitivity of the processing
based on triple-differences (TD) compared to the processing based on double-differences
(DD). In the first case, a PCO bias of 10 cm was added to the reference station. In
the second case, the PCC of the ‘SEPCHOKE_B3E6 SPKE’ antenna (IGS type mean
value) was added to the reference station. In the last case, a bias corresponding to
five times the PCC of the ‘SEPCHOKE_B3E6 SPKE’ antenna (IGS type mean value)
was added to the reference. The table holds the Root Mean Square error (RMSE), the
minimal error (Min.) and the maximal error (Max.) of the estimated PCC.

[mm] RMSE Min. Max.

PCO bias (100 mm) TD 0.03 -0.09 0.12

DD 0.03 -0.06 0.15

PCC bias I (80 mm) TD 0.03 -0.08 0.11

DD 0.08 -0.32 0.26

PCC bias II (400 mm) TD 0.03 -0.16 0.08

DD 0.34 -1.61 1.13
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Of course, the pure access to the PCC of the antenna to be calibrated has a cost, namely a
higher noise level of triple-differences compared to double-differences. As eight observations are
involved in a triple-difference, the standard deviation of one observation is 2

√
2 times higher than

the standard deviation of a zero-difference observation (in the case of uncorrelated observations
with equal weight). Nevertheless, triple-differences should always be preferred if:

i. The goal is to obtain unbiased estimates of the PCC and if

ii. enough measurements are available to reduce the variance of the estimates to a reasonable
level.

6.4 Rotation sequence

During the calibration, a point within the antenna, for instance the nominal GPS L1 phase
centre, is kept fixed in space. The nominal coordinates of the chosen point do not change during
the calibration. A fixed rotation point has following advantages:

i. The dynamics of the antenna is reduced. Therefore, dynamics induced tracking loop
responses are reduced and

ii. beside the tilt, the antenna is stationary with respect to its environment. Thus, the change
in the multipath pattern is reduced.

The algorithm for the generation of the rotation sequence is displayed in Figure 6.4.1. First,
a regular grid in azimuth and elevation is formed. This grid describes in which direction and
by which angle the antenna is tilted. This step and all subsequent steps are illustrated in
Figure 6.4.2. In a second step, a common rotation is applied to all normal vectors. The goal of
this additional rotation is to avoid pointing towards the north hole. In step three, the sequence
is randomized. Finally, rotations around the inclined antenna z-axis are added.

The randomisation of the rotation sequence is the key to successful antenna calibration.
Randomisation ensures that time correlated effects do not systematically bias the estimation of
the PCC. Another key factor is a good mixture between rotations around the antenna z-axis
and rotations around the two other axes.

Rotations around the antenna z-axis do not change the orientation of the antenna gain
pattern with respect to the site, because the gain pattern of geodetic antennas is typically highly
symmetrical. However, rotations around the z-axis do not add information about the zenithal
behaviour of the PCC. They strengthen the observability of azimuth variations of the PCC.
This is illustrated in Figure 6.4.3. Two or three different rotations of the antenna z-axis for each
orientation is a reasonable choice.
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List of all orientations of the 
antenna z-axis

Final rotation sequence

Common rotation
(tilt towards south)

Azimuth

Zenith angle

Randomisation of the sequence 

Application of antenna z-rotations 

Azimuth increment

Zenith angle increment

Maximal zenith angle

Minimal zenith angle

Figure 6.4.1 : Flowchart of the algorithm for the generation of the randomized rotation sequence.

1
South

2 4

Figure 6.4.2 : Algorithm for the generation of the randomized rotation sequence. In 1, all orientations
for the antenna z-axis are set up. In 2, the space of all rotations is tilted towards
south, in order to avoid the north-hole. Pointing towards the north-hole unnecessarily
reduces the number of observations. In 3 (not shown), the order of the sequence is
randomized. Finally, in 4, rotations around the antenna z-axis are added.
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Azimuthal
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Zenithal
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Figure 6.4.3 : Skyplot illustrating azimuthal and zenithal resolution. Azimuthal information is added
by rotating the antenna around the antenna z-axis. In this case, only the azimuth
satellite changes. Information on the zenithal variability of the PCC is obtained by
applying rotations around the antenna x- or y-axis (or both), in order to change the
elevation of the GNSS satellite.

6.5 Receiver dynamical stress

As pointed out in Häberling (2015), receiver suffer from dynamical stress in high dynamical
situations. The rotation around the nominal phase centre theoretically reduces the dynamics
during the change of orientation of the antenna. Only the PCC rate remains. However, the
KUKA robot does not perform trajectory control between two stationary positions. In fact, all
axes are driven linearly. This might induced a small dynamics. Within the frame of this thesis,
receiver dynamical stress was not given particular attention. From the comparisons of the results
obtained with various signals on the same frequency, it is obvious that the GPS L2W signals,
which are derived from the encrypted P-code, lead to absurd results. These measurements have
an inertia of several seconds and can therefore not be used for antenna calibration purposes.1

More information on the signal structure is found in Teunissen and Montenbruck (2017), more
information on GNSS receiver architecure is found in Kaplan and Hegarty (2017).

For most of the calibrations, Septentrio PolaRx 5 receivers with the default setting were
used.

1Personal communication from Septentrio at the ION GNSS+ 2018 conference, 24–28 September 2018, Miami.
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6.6 Differencing strategy

Two requirements drive the differencing strategy:

i. The triple-difference observations should be algebraically uncorrelated. This allows a
sequential parameter estimation process (normal equation stacking) and

ii. the time interval between two epochs being differentiated against each other should be
small.

A sequence fulfilling these requirements is displayed in Figure 6.6.1. Half of the measurements
taken at orientation k are differentiated against half of the measurements taken at orientation
k+1. The measurements acquired during the robot motion are discarded. Those measurements
can be taken into account, provided that the robot motion is sufficiently well-known between to
stationary positions and provided that the dynamics of the robot does not lead to dynamical
stress tracking errors.

In case of an odd number of measurement epochs, one epoch is discarded. The number of
epochs finally taken into account is dependent on:

i. The sampling rate of the receiver,

ii. the duration of the stationary position of the robot and

iii. the timing accuracy of the robot, which is less accurate than the timing accuracy of the
GNSS receivers.

time

ro
bo

t
or

ie
nt

at
io

n

measurement epochs

robot motionorientation k orientation k+1
approx. 1 sec

Figure 6.6.1 : Differencing strategy avoiding algebraic correlation between the triple-differences.
Source: (Willi et al., 2018a).
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6.7 Processing pipeline

A summary of the processing pipeline, which is implemented in Matlab, is presented in Fig-
ure 6.7.1. The pipeline uses the following input data:

i. GNSS observations:

a. A RINEX observation file from the reference station and

b. a RINEX observation file from the antenna to be calibrated.

ii. A file with the start time and the end time of each orientation (robot attitude file),

iii. a configuration file (see Table 6.7.1) and

iv. precise GNSS products:

a. Precise GNSS orbits,

b. precise GNSS clocks and

c. a RINEX navigation file for the ionospheric correction parameters.

The configuration file contains all options for the processing, for instance the signal for which
to generate a calibration. Its content is shown in Table 6.7.1. After data reading and automatic
download of precise products, a Single Point Positioning (SPP) solution is computed. The Centre
for Orbit Determination in Europe (CODE; Prange et al., 2017) is one example for a facility
offering precise orbits and clocks.2 The SPP solution uses the GPS user algorithm from the GPS
ICD 200 (2015) and the ionospheric model coefficients from a concatenated RINEX navigation
file. This file is available, for instance, at NASA’s Crustal Dynamics Data Information System
(CCDIS).3 The main goal of this processing step is to provide a receiver clock estimate with
respect to GPS time, which is necessary for the alignment of the measurements.

The alignment part consists of a loop establishing the time correspondence between the
GNSS observations from the reference station, the GNSS observations from the antenna to be
calibrated and the robot orientations, according to the scheme presented in Section 6.6 and in
Figure 6.6.1. The result is a list of simultaneous GNSS observations from both, the reference
station and the antenna to be calibrated, labeled with the orientation of the robot at that exact
moment.

The actual PCC estimation is achieved in the main computation loop, based on triple-
differences generated according to Section 6.2. The observation equation is set up, the derivatives
are computed and the normal equation matrix is populated. This operation is performed
sequentially and all normal equations are summed up. The inversion of the accumulated normal
equations leads to the final estimation of the PCC.

2http://ftp.aiub.unibe.ch

3ftp://cddis.gsfc.nasa.gov/gnss/data/daily. The daily concatenated navigation files containing the
coefficients are named brdcDOY0.YYn with DOY being the day of the year and YY being the two digit year.
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Data download

Data reading

Single Point Positioning

Alignment of the 
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Triple-difference 
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ANTEX file

Figure 6.7.1 : Overview of the processing of the GNSS observations for PCC estimation.
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Table 6.7.1 : Configuration options for PCC estimation. As suggested by the entry ‘Reference PCC’,
the PCC of the reference antenna are applied, even though they nearly vanish on
triple-difference-level.

Option Description E.g.
Folder Path to data folder
Campaign Name of the campaign for file naming
Save path Path for all result files
Date Date of the processing
RINEX Input GNSS observation files
Attitude Input file of robot orientations
Type Type of the antenna to be calibrated
Serial Serial number of the antenna
Offset to ARP X, Y and Z Offset of the ARP in the robot tool

system in mm
System 1 GNSS used for Single Point Positioning GPS
Signal 1 Signal used for Single Point Positioning C1C
System 2 GNSS to be calibrated Galileo
Signal 2 Signal to be calibrated L5Q
Pseudorange 2 Pseudorange associated with the above signal C5Q
Resolution Degree and order of the spherical harmonics expansion 8
Reference PCC Path to the ANTEX file of the reference antenna
Reference type Type of the reference antenna
Reference serial Serial number of the reference antenna
Robot
coordinates

Approximated coordinates (in the topocentric frame)
which were kept fix during the calibration

Reference station
coordinates

Approximated coordinates of the reference station

Coordinate
weight

Standard deviation of the reference coordinates in
metres. The coordinates are introduced as
pseudo-observations

Elevation mask Minimum elevation in the topocentric reference frame
Grid Optional estimation of PCC with the grid

parametrisation
Grid resolution Spacing of the grid in azimuth and elevation
Simulation Optional simulation ability
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All parameters are originally set up in the normal equation. The singular parameters, for
instance the spherical harmonics coefficients representing anti-symmetry (see section 3.4.3) are
hard-constrained to zero. The relative coordinates of the antenna to be calibrated (or more
accurately, the coordinates of the rotation point) with respect to the reference antenna are
introduced as pseudo-observation (soft-constrain). If a spherical harmonics parametrisation is
chosen, the PCO is not explicitly set up, as it is implicitly already contained in the spherical
harmonics series (see section 3.4.3).

The configuration file is needed a second time in order to generate the ANTEX file. In the
case of PCC parametrisation as spherical harmonics, the spherical harmonics are evaluated at
a regular spacing (typically 5 degrees). The best-fit PCO is estimated and subtracted from
the grid. The resulting grid is written into the ANTEX file instead of spherical harmonics
coefficients, as ANTEX does not support a spherical harmonics representation. If necessary for
conventional reasons, a best-fit PCO can be estimated and subtracted from the PCV before the
ANTEX file is written.

6.8 Paper IV – Absolute GNSS Antenna Phase Center Calib-
ration with a Robot

The forth paper presents preliminary results obtained with the new robot calibration system.
It was originally published in Proceedings of the 31st International Technical Meeting of The
Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, Florida, September
2018, pp. 3909–3926 with the title Absolute GNSS Antenna Phase Center Calibration with a
Robot. This paper was published after peer-review.

6.8.1 Abstract

Paper IV presents preliminary results obtained with the GNSS receiver antenna calibration
facility. A robotic arm brings the GNSS antenna to be calibrated into various orientations. The
acquired data is processed using data from a nearby reference station and a triple-difference
approach.

The system is described in detail, including a description of the rotation sequence and the
processing strategy. The authors demonstrated the ability of the system to estimate meaningful
PCC for GPS L1. The estimated PCC are statistically significant. First results show that the
estimated PCC are mostly insensitive to changes in the elevation cut-off angle. Repeatability
tests revealed a repeatability of the PCC at the order of 0.6 mm Root Mean Square (RMS),
using calibration sequences of only 40 minutes.

Although only GPS L1 results are presented, the system is ready to estimate PCC for any
Code Division Multiple Access (CDMA) signal.
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6.8.2 Author’s contribution

The following section gives a summary of the author’s contribution to paper IV (Willi et al.,
2018a). The idea of using a robot for PCC estimation is not new. However, a substantial amount
of work was necessary, as the system at ETH Zurich was developed from scratch.

The theoretical developments focused on the parametrisation of PCC and the parameter
estimation process, whereas the implementation effort was mostly spent on commissioning the
robot, writing the interface from the robot to the control computer, implementation of the
triple-difference processing approach and development of the entire processing pipeline, from
raw GNSS data to ANTEX.

Table 6.8.1 holds a summary of the author’s proportional contribution to the mentioned
peer-review publication.

6.8.3 Relevance to the field

No group has yet demonstrably developed a system performing field calibration of GNSS receiver
antennas for the new Galileo signals (E5a, E5b, E5, E6). With the present publication, the
validity of our approach is demonstrated and an important step towards a full Galileo calibrations
is achieved. Potentially, any other CDMA signal can be calibrated as well.

The calibration of GNSS receiver antennas for E5a is an important gap in the scientific
GNSS community. The European GNSS Agency released PCC for the spacecraft (European
GNSS Service Centre, 2018). However, this precious feature can only be fully exploited once the
ground network of receiving antennas is properly calibrated. Our contribution is a significant
step in that direction. Eventually, this could lead to a better estimate of the system scale, as a
lack in receiver and satellite PCC seems to be the primary factor currently preventing GNSS to
provide an independent scale to the International Terrestrial Reference Frame (ITRF; Altamimi
and Collilieux, 2009).

6.9 Pending publication

Extended results, including GPS L5 and Galileo E5 PCC and a validation campaign on short
baselines, are available since recently. A part of these results was presented at the IGS Workshop
2018 in Wuhan, China.4 A publication in a scientific journal with the full results is in preparation.

The short baseline experiment was conducted on the roof of the institute (see Figure 6.9.1).
Four antennas were set up on four pillars in four sessions, permuting the antennas after every
session. The distance between the stations is about 5 m. The duration of the sessions was at
least 24 h. The station coordinates were precisely surveyed before and after the experiment,
resulting in ground-truth coordinates with an accuracy of 0.2 mm. The acquired data was

4The presentations will be available online at www.igs.org/presents.
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Table 6.8.1 : Summary of the author’s contribution to paper IV – Absolute GNSS Antenna Phase
Center Calibration with a Robot.
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implementations 90%

Conduction of calibrations 50%

PCC analysis 100%

Editorial work 70%
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processed with the Bernese GNSS Software V5.2 (Dach et al., 2015). The six possible baselines
were processed individually, using one system and one frequency at a time. The north, east and
up residuals per baseline and per session were then reported on the plots.

Figure 6.9.2 shows the results for Galileo E1, Figure 6.9.3 for Galileo E5. The upper parts of
the plot holds the results obtained with the individual ETH Zurich PCC, the lower part the
results obtained with a mix between individual Geo++® calibrations and IGS type-mean PCC
(see Table 6.9.1). As no Galileo E5 reference PCC are available, GPS L2 is used. It can be seen
that the ETH Zurich calibration significantly reduces the spread and the systematic bias in
the coordinate domain. The main limitation of the experiment lies in the fact that individual
reference calibrations are available for two antennas of the same type and for no other antenna.
However, in order to see interesting effects, a mix of various antenna types with individual
calibrations would be of highest interest. Additionally, the up component in the lower part of
Figure 6.9.3 shows an unexpected behaviour: the spread of this component is much smaller than
the spread of the north and the east components. This effect is not explained yet.

Figure 6.9.1 : Set-up for the short baseline calibration.
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Table 6.9.1 : Antennas used in the short baseline validation.

Antenna Calibration type
JAV_GRANT-G3T IGS type-mean PCC
SEPCHOKE_B3E6 IGS type-mean PCC
TRM57971.00 Individual Geo++® PCC
TRM57971.00 Individual Geo++® PCC

Figure 6.9.2 : Coordinate residuals of all baseline used within the short baseline validation. The
relative coordinates were estimated using Galileo E1 only. The upper plot shows the
results obtained using the ETH Zurich patterns, the lower plot shows the results using
Geo++® individual calibrations (two antennas) and IGS type-mean calibrations (two
antennas).
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6.10 Outlook

The future effort will focus on further validation. The implementation of Frequency Division
Multiple Access Signals (FDMA) is foreseen as well.

Multipath will remain a big challenge. Software Defined Radio (SDR) GNSS receivers
(also called software receivers) are a very efficient way of quantifying and mitigating multipath
propagation errors. Efforts should be put in utilizing SDR GNSS receivers for GNSS antenna
calibration. SDR GNSS receivers allow to investigate dynamical stress errors and multipath on
the receiver tracking loop level. This is the key for an efficient quantification and mitigation of
multipath.

Figure 6.9.3 : Coordinate residuals of all baseline used within the short baseline validation. The
relative coordinates were estimated using Galileo E5 only. The upper plot shows the
results obtained using the ETH Zurich patterns, the lower plot shows the results using
Geo++® individual calibrations (two antennas) and IGS type-mean calibrations (two
antennas).
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Chapter 7

Conclusions and outlook

This doctoral thesis started with the study of the attitude onboard a spacecraft with baselines
of less than 10 cm. In a first step, the synchronisation of the receivers on a software level was
investigated. The result is an algorithm for the extrapolation of the measurements, which was
published in GPS Solutions (Willi and Rothacher, 2017). The algorithm was validated with a
synthetic data study and a signal simulator study.

The insights from the first studies led to further investigations on the Phase Centre Corrections
(PCC) of antennas in the vicinity of each other. A relative field calibration was set up. It allowed
to calibrate a model of the CubETH satellite and a GNSS attitude determination platform with
low-cost geodetic antennas at 15 cm distance from each other. The final results were published in
the ION GNSS proceedings 2017 (Willi et al., 2017) and in Navigation (Willi et al., 2018b). They
included a synthetic data study and a validation with real data. We showed that the correction
of the PCC is of tremendous importance on short baselines. Furthermore, we demonstrated
that mutual coupling affects antennas and that this effect must be taken into account when
performing PCC estimation.

Although the relative field calibration was suited to calibrate the GNSS attitude determin-
ation system, it has fundamental weaknesses. The delay in the CubETH project triggered a
reorientation of the present doctoral thesis. The main focused was moved away from GNSS
attitude determination, towards absolute GNSS antenna calibration. Within a short time, an
operational, absolute field calibration system for GNSS antennas was developed from scratch.
This includes the commissioning and the calibration of the industrial KUKA robot, which is
documented in Willi and Guillaume (2019).

Preliminary results obtained with the new calibration system were presented at the ION
GNSS+ 2018 (Willi et al., 2018a). The system obtained the attention of the international
community at the IGS Workshop 2018 in Wuhan, China, as being the first absolute field
calibration system able to produce calibrations for the new Galileo signals.

The need for high-accuracy, multi-GNSS antenna calibration is going to increase in the future.
Properly calibrated antennas are a central element of permanent station networks. The full
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strength of a multi-GNSS processing can only be exploited, if multi-GNSS antenna calibrations
are available for ground antennas. Eventually, calibrated GNSS antennas will help to better
quantify and assess socially relevant changes in the environment, as see level rise.

The need for calibrated low-cost antennas might rapidly increase as well. The 21th century is
already marked by the automation of transportation. Autonomous cars are the most prominent
example. GNSS will be one of the technologies used for the positioning of autonomous vehicles.
Due to significant advances in kinematic positioning, Phase Centre Corrections (PCC) of GNSS
antennas already tend to become the limiting factor in low-cost GNSS positioning.

Finally, well-calibrated antennas might be a key to further advances in Precise Point Pos-
itioning (PPP). A remarkable progress was achieved in the convergence time of PPP and in
PPP ambiguity resolution. PPP will sooner or later run into limitations due to the PCC of the
receiver antenna. Here again, precise muti-GNSS and multi-frequency calibrations will help to
reach the accuracy, which is inherent to PPP.
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Abstract A new algorithm for Global Navigation Satellite System (GNSS) attitude 

determination onboard a spacecraft was developed. A distinct feature of the algorithm is the 

extrapolation of the measurements to a common epoch within a Kalman filter. The necessity 

for the extrapolation arises from the usage of non-synchronized low-cost receivers. The 

extrapolation terms typically range from −6 m to +6 m for u-blox receivers. Thus, no solution 

can be obtained without a proper extrapolation. A validation was carried out with synthetic 

data as well as with signal simulator data. The algorithm delivers an attitude estimation with 

an accuracy below one degree for three orthogonal baselines of 10 cm length. In conclusion, 

the algorithm is proven to work, offering a very efficient method of attitude determination 

onboard a spacecraft. 

Keywords 

Attitude determination, quaternion, Kalman filter, low earth orbit, spacecraft, satellite 

Introduction 

The knowledge of the orbit and the attitude of a spacecraft is crucial to many applications, 

such as telecommunication or remote sensing. The utilization of Global Positioning System 

(GPS) receivers onboard spacecraft started in 1982 with the launch of the Landsat-4 satellite 

(Birmingham et al. 1983). Since then, many missions used Global Navigation Satellite Systems 

(GNSS), establishing this approach as one of the standard techniques for orbit determination. 

If three or more GNSS antennas are placed on a spacecraft, forming at least two baselines, 

attitude determination becomes possible. A few missions already used GNSS for attitude 

determination, such as RADCAL in 1993 (Cohen et al. 1994) or the SOAR experiment on the 

Space Shuttle Atlantis (Um and Lightsey 2001). Although having some appreciable 

advantages, such as being free from drift and being autonomous, employment of GNSS 

attitude determination is limited by the size, mass and power consumption of the receivers 

as well by its modest accuracy compared to other sensors used on spacecraft (Arbinger and 

Enderle 2000). Besides space applications, GNSS attitude determination is widely studied and 

used, often in combination with inertial sensors, namely for terrestrial applications (Chen and 
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Qin 2012, Aghili and Salerno 2013), on ships (Giorgi et al. 2012), onboard aircrafts (Graas and 

Braasch 1991, Cannon and Sun 1996) or for unmanned aerial vehicles (Sabatini et al. 2012). 

Recently, a trend towards small satellites and miniaturization of components can be 

observed (Montenbruck et al. 2008). The satellite project CubETH (Ivanov et al. 2015) reflects 

this evolution. CubETH will fly in a low earth orbit (LEO) between 400 km and 500 km height 

with a speed of approximately 8 km/s. The single unit CubeSat is of 10 x 10 x 10 cm3 size 

(CubeSat Design Specification 2015) and equipped with five GNSS antennas (Figure 1), each 

connected to two u-blox GNSS receivers. Hence, the spacecraft is equipped with ten u-blox 

receivers. Four antennas are located on the zenith-pointing face of the cube, forming two 

orthogonal baselines of 5.6 cm and 6.5 cm and a diagonal baseline of 8.6 cm length. The fifth 

antenna is side-looking and serves experimental purposes, as the study of the decay in signal 

strength of low elevation satellites. This set-up allows the determination of the attitude. The 

main difference to past missions lies in the highly non-synchronized receivers used. The 

measurements of each receiver are triggered by the 1 kHz signal of its internal oscillator (u-

blox M8 Receiver Description 2016), leading to an actual measurement epoch within a time 

window of approximately 1 ms around nominal GPS time. Therefore, an extrapolation 

procedure for observations was developed. Without extrapolation, no solution can be 

obtained, as the corrections typically range from −6 m to +6 m for u-blox receivers. 

 

 

Fig. 1 Model of the Swiss nano-satellite CubETH. The spacecraft measures 10 x 10 x 10 cm3. 

The four white patches on the upper face are the main GNSS antennas. The white patch on 

the side is the experimental side-looking antenna.  
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In the first part, we describe in detail the algorithm for onboard real-time attitude 

determination. In the second part, two distinct validation cases are shown. The results were 

obtained with synthetic data in the first case and with signal simulator data in the second 

case. Synthetic data was generated with the Bernese GNSS Software (Dach et al. 2015). Signal 

simulator data was obtained using a Spirent GNSS Signal Generator with two radio-frequency 

outputs and space-enabled u-blox M8 receivers. Both, the synthetic and the simulator data 

set were post-processed with a prototype of the attitude determination algorithm and 

compared to a ground truth. 

 

Attitude determination algorithm 

The first part of this section is a brief introduction to the principle of GNSS attitude 

determination. It is followed by a summary of the Kalman filter equations and a description 

of the attitude filter algorithm. This description includes details on the state vector, the 

dynamical model, the observation equation and the stochastic model. 

 

Principle of attitude determination 

GNSS attitude determination is based on the interferometric principle shown in Figure 2. A 

range difference 𝑟 involving two receivers and a GNSS satellite can be expressed as the 

projection of the baseline vector 𝒃 onto the normalized line-of-sight (LOS) vector 𝒆:  

 𝑟 = 𝒆world
T 𝑹world←body 𝒃body + 𝑣 (1) 

The baseline vector 𝒃 is expressed in the spacecraft body frame and the LOS vector 𝒆 in a 

world frame, e.g. the inertial frame. The rotation matrix 𝑹world←body ∈ SO(3), relating these 

two coordinate systems to each other, is an orthogonal matrix, thus 𝑹T𝑹 = 𝑰. 𝑣 is the 

measurement noise and follows a normal distribution with zero mean and standard deviation 

𝜎. For the sake of simplicity, the subscripts indicating the reference frame are omitted in all 

further developments. The optimal attitude is obtained after minimization of: 

 𝐿(𝑹) = ∑ ∑
1

𝜎2
(𝑟𝑘𝑖 − (𝒆

𝑖)
T
𝑹 𝒃𝑘)

2

𝑖𝑘  (2) 

where 𝐿 is the cost function, 𝑘 is the index of the baseline and 𝑖 is the GNSS satellite index. 

The minimization of (2) is often also referred to as Wahba's problem (Farrell et al. 1966). 

Besides the classical iterative least-squares solution, a number of analytical solutions to this 

problem exist, see for instance Cohen (1992) or Crassidis and Markley (1997). 
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Attitude determination algorithm 

The attitude is estimated within an extended Kalman filter. The processing sequence is shown 

in Figure 3. The initialization consists of solving phase ambiguities and baseline coordinates. 

Using the baseline coordinates, an initial value for the attitude is computed. An additional 

ambiguity resolution is necessary to solve phase ambiguities which were not present in the 

last filter update, e.g. due to a new satellite becoming visible. Since the attitude is known at 

this point and for short baselines, this step is trivial. The Kalman filter (Welch and Bishop 2006) 

consists of a prediction part, the so-called time update, and a correction part, the 

measurement update. For the sake of completeness, the following paragraphs briefly 

summarize the main filter equations.  

A process function 𝒇 links two temporally successive, true state vectors 𝒙𝑠 and 𝒙𝑠−1: 

 𝒙𝑠 = 𝒇(𝒙𝑠−1) + 𝒖𝑠−1  

 𝒖𝑠−1 ~ 𝑁(0, 𝑼𝑠−1) (3) 

where 𝒖𝑠−1 is the normally distributed process noise with zero mean and variance-covariance 

𝑼𝑠−1. A similar relation holds for the observations: 

 𝒛𝑠 = 𝒉(𝒙𝑠) + 𝒗𝑠  

 𝒗𝑠 ~ 𝑁(0, 𝑽𝑠) (4) 

where 𝒛𝑠 is the observation vector at time-step 𝑠, 𝒉 is the observation function and  𝒙𝑠 is the 

true state. 𝒗𝑠 is the normally distributed measurement noise with zero mean and variance-

covariance 𝑽𝑠. 

 

 

 

 

Fig. 2 Principle of interferometric attitude determination. 𝑟 is a range difference between 

antenna 1 and 2 and 𝒃 is the baseline between those two antennas. For very short baselines, 

the two line-of-sight vectors to one GNSS satellite can be assumed to be parallel.  
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Fig. 3 Attitude determination flow chart. The algorithm is autonomous and, besides the phase 

data, relies only on the receiver position, velocity and time (PVT) output and the ephemeris. 

The core of the algorithm is an extended Kalman filter, running on double-difference level. 

 

The filter time update is given by: 

 𝒙̂𝑠
 − = 𝒇(𝒙̂𝑠−1) (5) 

 𝑷𝑠
 − = 𝑨𝑠−1 𝑷𝑠−1 𝑨𝑠−1

T + 𝑼𝑠−1 (6) 

where 𝒙̂𝑠
 − with variance-covariance 𝑷𝑠

 − is the predicted state at time-step 𝑠, and 𝒙̂𝑠−1 with 

variance-covariance 𝑷𝑠−1 is the corrected state of the previous step. 𝑨𝑠−1 is the Jacobian 

matrix of 𝒇 with respect to 𝒙 evaluated at the time-step 𝑠 − 1. 

The filter measurement update is given by: 

 𝑲𝑠 = 𝑷𝑠
 − 𝑯𝑠

 T (𝑯𝑠 𝑷𝑠
 − 𝑯𝑠

 T + 𝑽𝑠)
−1 (7) 

 𝒙̂𝑠 = 𝒙̂𝑠
 − +𝑲𝑠(𝒛𝑠 − 𝒉(𝒙̂𝑠

 − )) (8) 

 𝑷𝑠 = (𝑰 − 𝑲𝑠 𝑯𝑠) 𝑷𝑠
 − (9) 

where 𝑲𝑠 is the Kalman gain, and 𝑯𝑠 is the Jacobian matrix of 𝒉 with respect to 𝒙 evaluated 

at the time-step 𝑠. 𝒙̂𝑠 with variance-covariance 𝑷𝑠 is the estimated state and consequently 

the result of the algorithm. 

 

State vector 

The state vector consists of a quaternion 𝒒 representing the attitude and the angular velocity 

vector 𝝎:  

 𝒙 = ( 
𝒒
𝝎
 )  (10) 
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Neither phase ambiguities nor clock errors are part of the filter state. The velocity vector and 

the unit quaternion are defined as follows, 

 𝒒 = (𝑞0 𝑞1 𝑞2 𝑞3)T = ( 
cos (

𝛼

2
)

sin (
𝛼

2
)𝒏 

 ) (11) 

 𝝎 = (𝜔1 𝜔2 𝜔3)T (12) 

where 𝛼 is the rotation angle and 𝒏 is the unit vector representing the rotation axis. 𝑞0 is the 

scalar part of the quaternion. A discussion of the different attitude representations can be 

found in Diebel (2006). The most widely used attitude representation is based on Euler angles. 

Euler angles are easy to interpret, e.g. the Euler sequence 1-2-3 which represents roll, pitch 

and yaw, but are not free of singularities. Unit quaternions are a valid alternative, although 

no intuitive interpretation of quaternions is possible. The norm of a quaternion reads as: 

 𝑞 = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 (13) 

Within the algorithm, the quaternion is normalized after the time and the measurement 

updates, since only quaternions with unity norm represent pure rotations. 

 

Dynamical model 

The state is propagated assuming a constant rotation rate. This assumption holds as the cube 

exhibits a high degree of symmetry. Therefore, the three axes of inertia will have similar 

values and the spacecraft will be subject to no or negligible precession. Disturbing torques 

such as air drag are small because of the symmetrical shape of the satellite, and can be 

neglected. External torques, e.g. steering torques from the satellite's attitude control system, 

are not included to keep the attitude determination independent from any other satellite 

subsystem. Moreover, additional parameters in the state generally blur the parameter 

estimation and seem to lead to good results only with proper force and torque models (Ward 

and Axelrad 1997). The state propagation (3) is given by: 

 𝒙𝑠 = 𝒙𝑠−1 + (𝑡𝑠 − 𝑡𝑠−1) 𝒙̇𝑠−1 = ( 
𝒒
𝝎
 )
𝑠−1

+ (𝑡𝑠 − 𝑡𝑠−1) ( 
𝒒̇
𝟎
 )
𝑠−1

= 𝒇(𝒙𝑠−1) (14) 

where 𝒒̇ is a vector which is composed of the time derivatives of the four quaternion elements 

and (𝑡𝑠 − 𝑡𝑠−1) is the time difference between time-step 𝑠 and 𝑠 − 1. The quaternion 

derivatives are a function of the quaternion and the angular velocity: 

 𝒒̇(𝒒, 𝝎) = (𝑞̇0 𝑞̇1 𝑞̇2 𝑞̇3)
T = 

1

2
𝑻(𝒒)T𝝎  (15) 

 𝑻(𝒒) =  (

−𝑞1 𝑞0 −𝑞3 𝑞2
−𝑞2 𝑞3 𝑞0 −𝑞1
−𝑞3 −𝑞2 𝑞1 𝑞0

)   (16) 

with 𝑻(𝒒) being the quaternion rate matrix. Further details on mathematics with  quaternions 

can be found in Diebel (2006). 
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Observation equation 

Let 𝑃 be a GNSS carrier phase observation onboard a spacecraft, 

 𝑃𝐴
𝑖 = 𝒆𝐴

𝑖 T(𝑿𝑖(𝑡𝐴 − 𝜏𝐴) − 𝑿LEO(𝑡𝐴) − 𝑹(𝑡𝐴) 𝑿𝐴) + 𝑐 𝛿𝑡𝐴 − 𝑐 𝛿𝑡
𝑖 + 𝜆 𝑁𝐴

𝑖 + 𝐼𝐴
𝑖 +Φ𝐴

𝑖 +

𝑣𝐴
𝑖   (17) 

where 𝒆𝐴
𝑖  is the normalized LOS vector, 𝑿𝑖  is the GNSS satellite position in the world frame, 

𝑡𝐴 is the time of signal reception, 𝜏𝐴 is the signal travel time, 𝑿LEO is the position of the 

spacecraft in the world frame, 𝑹 is the attitude matrix, 𝑿𝐴 is the position of the receiving 

antenna in the body frame (including the mean phase offset), 𝑐 is the speed of light, 𝛿𝑡𝐴 and 

𝛿𝑡𝑖  are the receiver and satellite clock errors, 𝜆 is the carrier wavelength, 𝑁𝐴
𝑖  is the integer 

phase ambiguity, 𝐼A
𝑖  is the ionospheric signal delay, Φ𝐴

𝑖  is the phase center variation (PCV) 

correction which is a function of the azimuth and the elevation angle of the incoming signal, 

and 𝑣𝐴
𝑖  is the Gaussian white noise affecting the measurements. 

The single-difference between receivers reads as: 

 𝑃𝐴𝐵
𝑖 = 𝑃𝐴

𝑖 − 𝑃𝐵
𝑖 = 𝒆𝐴

𝑖 T(𝑿𝑖(𝑡𝐴 − 𝜏𝐴) − 𝑿LEO(𝑡𝐴) − 𝑹(𝑡𝐴) 𝑿𝐴) − 𝒆𝐵
𝑖 T(𝑿𝑖(𝑡𝐵 − 𝜏𝐵) −

𝑿LEO(𝑡𝐵) − 𝑹(𝑡𝐵) 𝑿𝐵) + 𝑐 𝛿𝑡𝐴𝐵 + 𝜆 𝑁𝐴𝐵
𝑖 + 𝐼𝐴𝐵

𝑖 +Φ𝐴𝐵
𝑖 + 𝑣𝐴𝐵

𝑖  (18) 

where 𝛿𝑡𝐴𝐵 is the single-difference clock error, 𝑁𝐴𝐵
𝑖  is the single-difference phase ambiguity, 

𝐼𝐴𝐵
𝑖  is the differential ionospheric delay, Φ𝐴𝐵

𝑖  is the single-difference PCV correction, and 𝑣𝐴𝐵
𝑖  

is the single-difference noise term. 

Since the baseline is very small, the ionospheric delays experienced by both receivers 

are identical and 𝐼𝐴𝐵
𝑖 ≈ 0. Moreover, the two LOS vectors can be assumed to be parallel. 

Therefore, 𝒆𝐴
𝑖 = 𝒆𝐵

𝑖 = 𝒆𝑖. Since the rotation velocity of the spacecraft is expected to be small, 

𝑹(𝑡𝐴) = 𝑹(𝑡𝐵) = 𝑹 is a valid assumption; an angular velocity of 1 rad/sec would only induce 

a maximal range error of 0.1 mm, assuming the distance from the center of mass to the 

antenna is 10 cm. Introducing these simplifications into (18) leads to: 

 𝑃𝐴𝐵
𝑖 = 𝒆𝑖

T
𝑹 𝒃𝐴𝐵 + 𝐸𝐴𝐵

𝑖 + 𝑐 𝛿𝑡𝐴𝐵 + 𝜆 𝑁𝐴𝐵
𝑖 +Φ𝐴𝐵

𝑖 + 𝑣𝐴𝐵
𝑖  (19) 

 𝒃𝐴𝐵 = 𝑿𝐵 − 𝑿𝐴 (20) 

 𝐸𝐴𝐵
𝑖 = 𝒆𝑖

T
[𝑿𝑖(𝑡𝐴 − 𝜏𝐴

𝑖 )−𝑿𝑖(𝑡𝐵 − 𝜏𝐵
𝑖 ) − 𝑿LEO(𝑡𝐴) + 𝑿LEO(𝑡𝐵)] (21) 

where 𝒃𝐴𝐵 is the baseline vector, 𝐸𝐴𝐵
𝑖  is the extrapolation term, and 𝜏 is the signal travel time. 

The extrapolation term arises because the two receivers measure at the 1 kHz clock tick which 

is closest to the nominal epoch (u-blox M8 Receiver Description 2016). The extrapolation term 

typically reaches values between −6 m and +6 m for u-blox receivers. Figure 4 shows the 

values of 𝐸𝐴𝐵
𝑖  for an example case with a u-blox receiver. From the magnitude of the 

corrections, it is obvious that no solution can be obtained if this effect is not taken into 

account. The difference between the two measurement epochs 𝑡𝐴 − 𝑡𝐵 can reach values up 
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to 1 ms. In this time interval, a spacecraft in LEO moves by about 8 m. Consequently, 𝜏𝐴
𝑖 ≠ 𝜏𝐵

𝑖 . 

The position of the LEO spacecraft can be expressed as a second order Taylor series: 

 𝑿LEO(𝑡nom + Δ𝑡) = 𝑿LEO(𝑡nom) + Δ𝑡 𝑿̇LEO(𝑡nom) +
1

2
Δ𝑡2 𝑿̈LEO(𝑡nom) (22) 

where 𝑡nom is the nominal measurement epoch, Δ𝑡 = 𝑡 − 𝑡nom is the difference between the 

nominal and the actual measurement epoch, 𝑿̇LEO is the velocity of the LEO spacecraft and 

𝑿̈LEO is its acceleration. 𝑿̇LEO as well as Δ𝑡 are delivered by the u-blox receivers as part of the 

position, velocity and time (PVT) output, which is the result of a Kalman filter process. The 

velocity accuracy is better than 0.1 m/s (Hollenstein et al. 2014) and the time estimation is 

typically accurate to 50 ns. The acceleration is approximated with sufficient accuracy by the 

Kepler term: 

 𝑿̈(𝑿) = −
𝐺𝑀

𝑋2
𝑿

𝑋
 (23) 

where 𝐺 is the gravitational constant and 𝑀 is the mass of the earth. The position of a GNSS 

satellite can be expressed as a second order Taylor series as well: 

 𝑿𝑖(𝑡nom + Δ𝑡 − 𝜏
𝑖) = 𝑿𝑖(𝑡nom − 𝜏nom

𝑖 + Δ𝑡 − 𝛿𝜏𝑖) = 𝑿𝑖(𝑡nom − 𝜏nom
𝑖 ) + (Δ𝑡 −

𝛿𝜏𝑖) 𝑿̇𝑖(𝑡nom − 𝜏nom
𝑖  ) +

1

2
(Δ𝑡 − 𝛿𝜏𝑖)

2
 𝑿̈𝑖(𝑡nom − 𝜏nom

𝑖 ) (24) 

 𝛿𝜏𝑖 = 𝜏𝑖 − 𝜏nom
𝑖 = 

1

𝑐
𝒆𝑖
 T
Δ𝑡 (𝑿̇𝑖  − 𝑿̇LEO) (25) 

where 𝑿̇𝑖  is the velocity of the GNSS satellite 𝑖 and 𝑿̈𝑖  is its acceleration. Compared to (22), 

an additional term 𝛿𝜏 appears in order to account for the change in signal travel time, which 

is due to the change in range. 𝛿𝜏 is approximated by a first order development, as in (25). A 

first order development is completely sufficient, as the acceleration of a GPS satellite is 

approximately 0.6 m/s2. Neglecting this term leads to errors smaller than a micrometer within 

a microsecond. Thus, the second order term in (24) is solely relevant for tests with simulated, 

noise free data. From (25) it is obvious that the change in light travel time 𝛿 cannot exceed 

4 ⋅ 10−8 s in a microsecond, as a GPS satellite travels with approximately 4 km/s and a 

spacecraft in LEO with approximately 8 km/s. 

 In the case of GPS, the velocity of the satellites is obtained by taking the time derivative 

of the user algorithm for the ephemeris computation (Remondi 2004). The acceleration of the 

satellites is computed with (23). Substitution of (22) and (24) into (21) leads to the final 

expression for the extrapolation term: 

 𝐸𝐴𝐵
𝑖 = 𝒆𝑖

T
[(Δ𝑡𝐴 − 𝛿𝜏𝐴

𝑖 − (Δ𝑡𝐵 − 𝛿𝜏𝐵
𝑖 )) 𝑿̇𝑖 +

1

2
((Δ𝑡𝐴 − 𝛿𝜏𝐴

𝑖 )
2
− (Δ𝑡𝐵 − 𝛿𝜏𝐵

𝑖 )
2
) 𝑿̈𝑖 −

(Δ𝑡𝐴 − Δ𝑡𝐵) 𝑿̇LEO −
1

2
 (Δ𝑡𝐴

2 − Δ𝑡𝐵
2) 𝑿̈LEO]  (26) 

Literature indicates that estimation procedures based on single-differences lead to better 

results than procedures based on double-differences (Um and Lightsey 2001). This might be 

the case, if the clock error has well predictable dynamics. The unstable oscillator of the u-blox 

receiver, however, cannot be properly modeled. Therefore, no benefit is expected from using 
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single-differences, whereas the number of parameters is reduced in the case of double-

difference observations: 

 𝑃𝐴𝐵
𝑖𝑗
= 𝑃𝐴𝐵

𝑖 − 𝑃𝐴𝐵
𝑗
= (𝒆𝑖 − 𝒆𝑗)

T
𝑹(𝒙) 𝒃𝐴𝐵 + 𝐸𝐴𝐵

𝑖𝑗
+ 𝜆 𝑁𝐴𝐵

𝑖𝑗
+Φ𝐴𝐵

𝑖𝑗
+ 𝑣𝐴𝐵

𝑖𝑗
= ℎ(𝒙) +

 𝑣𝐴𝐵
𝑖𝑗

  (27) 

 𝑹(𝒙) =  (

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2𝑞1𝑞2 + 2𝑞0𝑞3 2𝑞1𝑞3 − 2𝑞0𝑞2
2𝑞1𝑞2 − 2𝑞0𝑞3 𝑞0

2 − 𝑞1
2 + 𝑞2

2 − 𝑞3
2 2𝑞2𝑞3 + 2𝑞0𝑞1

2𝑞1𝑞3 + 2𝑞0𝑞2 2𝑞2𝑞3 − 2𝑞0𝑞1 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

) (28) 

where 𝑃𝐴𝐵
𝑖𝑗

 is a double-difference phase observation, 𝐸𝐴𝐵
𝑖𝑗
= 𝐸𝐴𝐵

𝑖 − 𝐸𝐴𝐵
𝑗

 is the double-

difference extrapolation term, 𝑁𝐴𝐵
𝑖𝑗

 is the double-difference phase ambiguity, Φ𝐴𝐵
𝑖𝑗

 is the 

double-difference PCV correction, and 𝑣𝐴𝐵
𝑖𝑗

 is the normally distributed, zero mean, double-

difference measurement error. ℎ(𝒙) was introduced to emphasize the connection to (4). 

𝑹(𝒙) is quaternion rotation matrix (Diebel 2006) and allows to express the attitude as 

function of the state 𝒙. 

 

 

 

 

 

Fig. 4 Histogram of the correction terms 𝐸𝐴𝐵
𝑖  for data set 2 (see next section) with u-blox 

receivers. The values range from −6 m to +6 m. Without the correction term, no proper 

solution can be obtained. 
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          The linearization of (27) and (28) around the linearization point 𝒙0 leads to the final form 

of the observation equation: 

𝒛 = 𝒉(𝒙0) + 2 (𝒆
𝑖 − 𝒆𝑗)

T
(

𝑛1 𝑛3 −𝑛4 𝑛2
𝑛2 𝑛4 𝑛3 −𝑛1
𝑛4 −𝑛2 𝑛1 𝑛3

) (𝒙 − 𝒙0) + 𝒗 = 𝑯 (𝒙 − 𝒙0) + 𝒗 

𝑛1 = 𝑏𝑥𝑞0 + 𝑏𝑦𝑞3 − 𝑏𝑧𝑞2 

𝑛2 = 𝑏𝑦𝑞0 − 𝑏𝑥𝑞3 + 𝑏𝑧𝑞1 

𝑛3 = 𝑏𝑥𝑞1 + 𝑏𝑦𝑞2 + 𝑏𝑧𝑞3 

 𝑛4 = 𝑏𝑥𝑞2 − 𝑏𝑦𝑞1 + 𝑏𝑧𝑞0 (29) 

where 𝑏𝑥, 𝑏𝑦 and 𝑏𝑧 are the components of the baseline vector 𝒃. 𝑯 is the Jacobian matrix of 

𝒉 and emphasizes the relation to (7), (8) and (9). 

 

Stochastic model 

The stochastic behavior of the propagation is theoretically given by (3). However, the process 

noise variance-covariance matrix 𝑼 is unknown. Assuming that the noise enters the system 

only through the rotation rates, the state-space equation of the system reads as: 

 𝒙̇(𝑡) =  ( 
𝒒̇(𝑡)

𝝎̇(𝑡)
 ) = 𝒈(𝒙(𝑡)) + 𝑮 𝒘(𝑡) =  ( 𝒒̇(𝒒

(𝑡),𝝎(𝑡))

𝟎
 ) + (

𝟎4 x 3
𝑰3

)(

𝑤1(𝑡)

𝑤2(𝑡)

𝑤3(𝑡)
) (30) 

where 𝒙̇ is the time derivate of the state and 𝒘 the white noise affecting the rotation rates. 

This equation can be written compactly in its linearized form: 

 𝒙̇ = 𝒈(𝒙0) +
𝜕𝒈

𝜕𝒙
|
𝒙0
(𝒙 − 𝒙0) + 𝑮 𝒘 (31) 

where 𝒙0 is the linearization point. Introducing 𝛿𝒙 = 𝒙 − 𝒙0, 𝛿𝒙̇ = 𝒙̇ − 𝒈(𝒙0) and renaming 

the Jacobian matrix to 𝑭 leads to following expression: 

 𝛿𝒙̇ = 𝑭 𝛿𝒙 + 𝑮 𝒘 (32) 

The solution to this differential equation reads: 

 𝛿𝒙(𝑡) = 𝑒(𝑡−𝑡0)𝑭 𝛿𝒙(𝑡0) + ∫ 𝑒(𝑡′−𝑡0)𝑭
𝑡

𝑡0
𝑮 𝒘(𝑡′) 𝑑𝑡′ = 𝑨 𝛿𝒙 + 𝒖 (33) 

Assuming that 𝑤1, 𝑤2 and 𝑤3 all have the same variance 𝜎𝑤
2 , variance propagation leads to 

an expression for the variance-covariance of 𝒖, which is the process noise variance-

covariance: 

 𝑼 = ∫ 𝑒(𝑡′−𝑡0)𝑭
𝑡

𝑡0
𝑮 𝑰3 𝜎𝑤

2  𝑰3 𝑮
T (𝑒(𝑡′−𝑡0)𝑭)

T
𝑑𝑡′ (34) 
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After integration and setting Δ𝑡 = 𝑡 − 𝑡0, this expression leads to an analytical expression for 

𝑼: 

𝑼 = 𝜎𝑤
2 (
𝚯 𝛀
𝛀T Δ𝑡 𝑰3

) 

𝚯 =
Δ𝑡3

12

(

 
 

𝑞1
2 + 𝑞2

2 + 𝑞3
2 −𝑞0𝑞1 −𝑞0𝑞2 −𝑞0𝑞3

−𝑞0𝑞1 𝑞0
2 + 𝑞2

2 + 𝑞3
2 −𝑞1𝑞2 −𝑞1𝑞3

−𝑞0𝑞2 −𝑞1𝑞2 𝑞0
2 + 𝑞1

2 + 𝑞3
2 −𝑞2𝑞3

−𝑞0𝑞3 −𝑞1𝑞3 −𝑞2𝑞3 𝑞0
2 + 𝑞1

2 + 𝑞2
2
)

 
 

 

 𝛀 = 
Δ𝑡2

4
(

−𝑞1 −𝑞2 −𝑞3
𝑞0 𝑞3 −𝑞2
−𝑞3 𝑞0 𝑞1
𝑞2 −𝑞1 𝑞0

) (35) 

The stochastic model of the double-difference observations is obtained after variance 

propagation. Let 𝑫 be a differencing operator which forms double-difference measurements 

out of 𝑛 undifferenced measurements. The measurement variance-covariance matrix 𝑽 

reads: 

 𝑽 = 𝑫 𝑰𝑛 𝜎𝑝
2 𝑰𝑛 𝑫

T (36) 

where 𝜎𝑝
2 is the variance of a undifferenced phase observation. 

 

Initialization 

The initialization process is based on a baseline-wise search. Instead of introducing the 

attitude into the observation equation, the baseline coordinates in the world frame are solved 

for (see also equation 27): 

 𝑃𝐴𝐵
𝑖𝑗
= (𝒆𝑖 − 𝒆𝑗)

T
𝑩𝐴𝐵 + 𝐸𝐴𝐵

𝑖𝑗
+ 𝜆 𝑁𝐴𝐵

𝑖𝑗
+Φ𝐴𝐵

𝑖𝑗
+ 𝑣𝐴𝐵

𝑖𝑗
 (37) 

where 𝑩 is the baseline-vector in the world frame. A first approximation 𝑁̃𝐴𝐵
𝑖𝑗

 for the phase 

ambiguity 𝑁𝐴𝐵
𝑖𝑗

 is obtained by setting the baseline coordinates to zero (𝑩𝐴𝐵 = 𝟎). This method 

is only valid for baselines shorter than 𝜆/2. After omitting the error term, the equation reads 

as: 

  𝑁̃𝐴𝐵
𝑖𝑗
= 𝜆−1 (𝑃𝐴𝐵

𝑖𝑗
− 𝐸𝐴𝐵

𝑖𝑗
) (38) 

This value is rounded and used as initial guess for the unknown integer phase ambiguity. The 

correct phase ambiguity is searched for in a search space consisting of the guess plus minus 

one cycle. As the baseline is shorter than one wavelength, the true ambiguity must lie in the 

interval [-1, 1] (Graas and Braasch 1991). A baseline solution is computed for each set in this 

search space. The ambiguity set with the lowest root mean square error is selected, and the 

ratio between the best and the second-best set serves as validation criterion. 
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 The chosen ambiguity resolution approach is suitable for baselines up to 1 m length if 

the search space is widened accordingly (Graas and Braasch 1991). Depending on the 

processing power and the real-time requirements, an alternative ambiguity resolution 

process will be needed for longer baselines. The LAMBDA method (Teunissen 1995) is widely 

used, very efficient and leads to high ambiguity resolution success rates. The LAMBDA method 

can be extended to take advantage of the known baseline length (Teunissen 2007, 2009). As 

demonstrated by Teunissen et al. (2011), this method leads to very high ambiguity resolution 

rates, even in situations with high dynamics and baselines of several meters. 

 

Validation 

The following section presents preliminary results obtained with the new algorithm. Two data 

sets with moving baselines on a LEO spacecraft were processed with a prototype of the 

attitude determination filter: (i) synthetic data generated with the Bernese GNSS Software 

Version 5.2 and (ii) GNSS signal simulator data. In both cases, orbital conditions were 

simulated, leading to a high velocity of the receiver and allowing to test the main feature of 

the algorithm, the extrapolation of the measurements within the filter. The effect of noise on 

the initialization is also investigated. 

It is visible from (27) that, besides the extrapolation term and the phase ambiguity, 

the PCV have the largest effect on the accuracy of a GNSS attitude determination system. 

Calibrated antennas are therefore required to obtain valid results. In the simulation, no PCV 

were introduced. The interested reader is referred to Rothacher et al. (1995) for further 

information regarding the determination of PCV. Using the algorithm with real data but 

omitting to correct the PCV will lead to a degradation in accuracy. 

 

Data set 1 – synthetic data 

Synthetic GNSS data was simulated using the Bernese GNSS Software V5.2 (Dach et al. 2015). 

Table 1 summarizes the main simulation parameters. A conservative value of 5 mm was 

chosen for the standard deviation of a phase observation. A realistic baseline configuration, 

corresponding to the CubETH set-up, was simulated. The three baselines form a "Z", therefore 

the first and the last baseline have the same relative coordinates. The spacecraft attitude is 

conservative as well, since the yaw rate is higher than the expected rotation speed. Since 

emphasis was on the investigation of the synchronization, unusually high receiver clock errors 

of up to 0.01 second were introduced. Satellite clock corrections were not applied, as this 

effect is expected to be negligible on the double-difference level. Similarly, no ionosphere 

was modeled, as its effect is also negligible on very short baselines. 
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Table 1 Main simulation parameters for data set 1 - synthetic data. 

Data type Synthetic GPS L1 carrier phase data 

Simulator Bernese GNSS Software V5.2 

Orbit Type Near circular LEO 

 Height 450 km 

 Inclination 89° 

GPS constellation True constellation of year 2012 day 359 

Spacecraft attitude Roll -5° 

 Pitch +5° 

 Yaw +1°/sec rate 

Receiver clock error Receiver 1 0.01 sec 

 Receiver 2 0.01 sec 

 Receiver 3 -0.01 sec 

 Receiver 4 0.005 sec 

Ionosphere No ionospheric path delay modelled 

Antenna coordinates Antenna 

coordinates in the 

body frame [cm] 

(
2.85
3.25
−5

) , (
−2.85
3.25
−5

) , (
2.85
−3.25
−5

) , (
−2.85
−3.25
−5

) 

Baseline coordinates* Baseline 

coordinates in the 

body frame [cm] 

(
−5.7
0
0
) , (

5.7
−6.5
0
) , (

−5.7
0
0
) 

Sampling rate 1 Hz 

Length of the data set 57 min 50 sec 

* Due to changes in the design, the baseline lengths differ by 1 mm from the values given in the introduction. The 

values in the introduction correspond to the current CubETH mission state. 

 

Results obtained with synthetic data 

The following results were obtained using broadcast ephemeris for the GPS satellites and a 

SP3 file (Hilla 2010) for the LEO satellite positions and velocities. The initialization part was 

removed from the results. The filter reaches initialization after one epoch and converges after 

five epochs. Figure 5 displays all four quaternions of the estimated state. The estimation is 

bias-free. The 2𝜎 (95% error quantile) formal error, displayed in red, fits the actual error and 

therefore indicates a good agreement between the stochastic model and the data. The 

periodic change in the formal error is due to the changing attitude, as each quaternion 

element has a different weight in the adjustment. The jumps are explained by changes in the 

observation geometry, when GPS satellites appear or disappear. The measurement noise and 

process noise parameters are summarized in Table 2. The value of 6 mm for 𝜎𝑝 was 

determined empirically from the data and is in good accordance with the actual standard 

deviation of the synthetic data (compare with Table 1). 
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Fig. 5 Result of the attitude determination with data set 1. The plots show the four quaternion 

elements 𝑞0 to 𝑞3. The upper plot of each element is the filter estimation; the second plot 

displays the true value while the last plot is the difference. The red lines are the ±2𝜎 or 95% 

quantile and indicate that the formal errors are in good agreement with the actual errors. The 

quaternion elements as well as the formal errors change as a function of attitude. 

 

Table 2 Summary of the stochastic filter parameters for data set 1 

𝜎𝑝
2 36 mm2 

𝜎𝑤
2  10-6 s-3 
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Figure 6 offers a better picture for interpretation. It shows the difference between the 

true attitude and the estimated attitude in Euler angles. The Euler sequence (1,2,3) was 

chosen, which corresponds to roll, pitch and yaw (Diebel 2006). All three components are 

centered and free of systematic errors. The uncertainty in height, typically two to three times 

larger than the uncertainty in position, affects roll and pitch. Therefore, the estimation of the 

yaw angle is about two to three times more precise than the estimation of roll and pitch. A 

summary is given in Table 3. 

 

 

Table 3 Mean and Root Mean Square (RMS) values of roll, pitch and yaw, and absolute error 

for data set 1 

 Mean [deg] RMS [deg] 

Roll 0.28 2.20 

Pitch -0.20 2.11 

Yaw -0.04 0.88 

Absolute error 2.85 3.17 

 

 

 

 

Fig. 6 Difference between the true attitude and the estimated attitude for data set 1 

(synthetic data). The rotation is expressed in roll, pitch and yaw angles. The yaw component 

is about 2.5 times more accurate, because the geometric weakness typically affecting the 

height enters the roll and pitch angles. 
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Impact of noise on the attitude estimation 

In order to study the impact of noise on the estimation of the attitude, data sets with the 

same configuration as data set 1 but with different noise levels were produced. These 

additional data sets have a length of 24 min and 40 sec, all other parameters are identical to 

those in Table 1. The ambiguity resolution and the filter convergence process were 

investigated separately (see next section). Therefore, the filter was initialized with the true 

attitude and the true phase ambiguities were introduced. 

The results are shown in Figure 7 and summarized in Table 4. The experiment with 

5 mm measurement noise confirms the results of the previous section. The small difference 

is explained by the data set length, which is different in the two cases. Unsurprisingly, the 

absolute error increases with increasing noise. However, the increase is not linear. This is 

expected because of the filter process and the associated dynamical model. A second order 

polynomial model is well-suited to represent this relation. The coefficients of the second 

order polynomials and their accuracies are shown in Table 5. An accuracy of 1 degree or 

better would require a measurement noise smaller than 1 mm on a Cube satellite. Even with 

an unrealistically high noise level of 30 mm, the algorithm delivers reliable attitude 

information. 

 

 

Fig. 7 Relation between the measurement noise and the absolute error of the attitude 

determination. The mean error is indicated by crosses, the RMS error by circles. The dashed 

lines show the second order polynomial fit. 
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Table 4 Mean and RMS of the absolute error (great-circle distance) for data set 1, but with 

different noise levels. 

Measurement noise (𝜎) Absolute error (great-circle distance) 

 Mean [deg] RMS [deg] 

1 mm 0.88 0.98 

3 mm 1.80 1.99 

5 mm 2.60 2.87 

10 mm 4.29 4.76 

15 mm 5.75 6.41 

20 mm 7.10 7.92 

25 mm 8.44 9.44 

30 mm 9.61 10.73 

 

Table 5 Relationship between the measurement noise and absolute error of the attitude 

determination. Results of the second order polynomial fit 𝑦 = 𝑎 𝜎2 + 𝑏 𝜎 + 𝑐. 

 Mean RMS 

a (±1σ) -0.0031 ± 0.0004 deg/mm2  -0.0034 ± 0.0004 deg/mm2 

b (±1σ) 0.3901 ± 0.0137 deg/mm  0.4347 ± 0.0138 deg/mm 

c (±1σ) 0.6202 ± 0.0797 deg 0.6760 ± 0.0801 deg 

 

Impact of noise on the ambiguity resolution 

Figure 8 shows the baseline-wise ambiguity resolution success rate for the data sets with 

variable noise level used in the previous section. The distance between the antennas was 

introduced as pseudo-observation in the adjustment to enhance the estimation process. The 

ambiguity resolution success rate is over 95% even with 15 mm measurement noise on the 

phase observations. This is easily explained by the short baseline length. Only unrealistically 

high noise levels of over 20 mm affect the ambiguity resolution.  

A more sophisticated ambiguity resolution strategy seems unnecessary under these 

circumstances. This hypothesis needs to be verified with real data, which can potentially be 

affected by outliers. The main advantage of instantaneous ambiguity resolution is the fact 

that it is not affected by undetected cycle slips. 
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Fig. 8 Success rate of baseline-wise ambiguity resolution. The data set has the same 

configuration as data set 1, but other noise levels (noise standard deviation of 1 mm, 3 mm, 

5 mm, 10 mm, 15 mm, 20 mm, 25 mm and 30 mm). Ambiguity resolution is considered 

successful, if the ambiguity set candidate with the smallest RMS residuals corresponds to the 

reference ambiguity set. Up to a noise level of 15 mm, the success rate lies over 95%. 

 

Data set 2 – signal simulator data 

Table 6 summarizes the main parameters of the signal simulator data set. The Spirent 

simulator consists of a signal generator and its associated software (Simgen Software User 

Manual 2012). The signal generator has two radio-frequency (RF) outputs, allowing to 

simulate differential positioning over baselines. Each of the two RF outputs was connected to 

a u-blox NEO-M8 receiver, receiver A and B (Figure 9). Speed and height limits, included in 

the receiver to avoid military usage, were removed from the receiver firmware to enable 

operability in space. Three successive simulator runs were undertaken, resulting in three 

independent and uncorrelated baselines, as shown in Table 7. These baselines were 

combined in the Kalman filter to obtain one attitude estimation. This set-up is identical to the 

case where six receivers are located on the spacecraft. The results are similar to those 

obtained with only four receivers, since all correlations, respectively the absence of 

correlation, are properly taken into account (see equation 36). 
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Fig. 9 Signal simulator set-up. Each radio-frequency (RF) output is connected to the 

corresponding receiver by a coaxial cable. 

 

Table 6 Main simulation parameters for data set 2 – signal simulator data 

Data type Signal simulator data 

Simulator Spirent GSS7700 GNSS Signal Simulator 

Receiver u-blox NEO-M8 (u-blox M8 Receiver 

Description 2016), single-frequency, low-

cost, multi-GNSS receiver with custom, 

space-enabled firmware  

Orbit Type Near circular LEO 

 Height 450 km 

 Inclination 98.7° 

GPS constellation YUMA almanac of GPS week 1669 (YUMA 

almanac 2016) 

Spacecraft attitude Roll 0° 

 Pitch 0° 

 Yaw 0° 

Ionosphere No ionospheric path delay simulated 

Measurement noise Actual receiver measurement noise 

Length of the data set 1 h 36 min 40 sec 
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Table 7 Summary of the three simulator runs. For each run, receiver (A) and (B) were 

connected to the simulator. Each of the three runs generated an independent (uncorrelated) 

baseline. 

Simulator 

run 

Baseline 

number 

Simulator radio 

frequency (RF) 

output 

Receiver 

connected to 

corresponding 

RF output 

Antenna coordinates in the 

body frame [cm] 

Run 1 Baseline 1 RF output 1 u-blox NEO 

M8 (A) 

0,0,0 

  RF output 2 u-blox NEO 

M8 (B) 

0,0,10 

Run 2 Baseline 2 RF output 1 u-blox NEO 

M8 (A) 

0,0,0 

  RF output 2 u-blox NEO 

M8 (B) 

10,0,0 

Run 3 Baseline 3 RF output 1 u-blox NEO 

M8 (A) 

0,0,0 

  RF output 2 u-blox NEO 

M8 (B) 

0,10,0 

 

Results obtained with signal simulator data 

The following results were obtained using the same almanac which was fed into the signal 

simulator. Receiver positions and velocities were obtained directly from the u-blox PVT 

estimate. The initialization part was removed from the results. The filter reaches initialization 

within one epoch and converges within five seconds after the initialization. Figure 10 shows 

the difference between the true attitude and the estimated attitude in Euler angles. Table 8 

gives a summary of the results. In contrast to the results in data set 1, all three components 

show a similar precision. This is due to the improved observation geometry, with three 

orthogonal baselines. Again, the data is free of any systematic error. The precision is much 

higher than in data set 1 because the observation noise is smaller (approximately by a factor 

3) and the geometry is improved (approximatley 1.5 times longer baselines). Therefore, a RMS 

ratio of about 4.5 between data set 1 and data set 2 is expected. The actual ratio is 4.46 and 

fits the theoretical value. The stochastic filter parameters are displayed in Table 9. 𝜎𝑤 is 

identical for both data sets. This is expected, since in both cases the spacecraft has constant 

rotation rates in the orbital system but not in the inertial frame. The process noise has to be 

sufficiently large to allow for changing rotation rates in the inertial frame, which is the case 

with the empirically selected value. 
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Figure 11 shows the absolute error of the estimated attitude. The absolute error is the 

great-circle distance between the true attitude and the estimated attitude. Therefore, it has 

no sign. The absolute error is smaller than the sum of the errors on the three Euler angles. 

The filter is well performing and delivers an attitude with an average error below one degree 

(see also Table 8), compared to an accuracy around 3 degrees for data set 1 (see Table 3). The 

maximal error in the data set is 2.5 degrees. 

 

 

Fig. 10 Difference between the true attitude and the estimated attitude for data set 2 (signal 

simulator data). The rotation is expressed in roll, pitch and yaw angles. All three components 

have a similar accuracy, which is expected with three orthogonal baselines. 

 

Table 8 Mean and Root Mean Square (RMS) values of roll, pitch and yaw, and absolute error 

for data set 2 

 Mean [deg] RMS [deg] 

Roll 0.01 0.41 

Pitch 0.03 0.47 

Yaw -0.02 0.34 

Absolute error 0.62 0.71 

 

Table 9 Summary of the stochastic filter parameters for data set 2 

𝜎𝑝
2 4 mm2 

𝜎𝑤
2  10-6 s-3 

 

 

129



 

Fig. 11 Overall accuracy of the attitude determination with data set 2. The mean deviation 

lies below 1 degree. The maximal error is around 2.5 degrees. 

Conclusions and outlook 

A new algorithm for attitude determination with non-synchronized receivers was presented 

in great detail. It was shown that the extrapolation is crucial to obtain an attitude solution. 

The algorithm was tested with synthetic data as well as with signal simulator data. Due to the 

predictable dynamics of the spacecraft, the filter performs very well. The overall accuracy lies 

well below five degrees for data set 1 and below one degree for data set 2. Additional 

inquiries showed that the algorithm is able to deliver a robust attitude estimation, even if the 

observations are affected by high noise levels. 

All results show the expected pattern: with the original CubETH antenna configuration 

of data set 1, the yaw component is about 2.5 times more accurate than the roll and pitch 

components. This roll and pitch degradation vanishes, if the observation geometry is 

improved, as in data set 2. The attitude estimation shows no systematic errors. Therefore, the 

algorithm and especially the extrapolation of the measurements based on the receiver PVT 

solution is proven to work very well. As no ground data is used to run the filter, it fulfills the 

requirement of an autonomous onboard filter for real-time processing, for instance onboard 

a Cube satellite. 

PCV have a considerable impact on the accuracy of a GNSS attitude determination with 

short baselines. The quality and the stability of the PCV calibrations for small patch antennas, 

as on CubETH, is only insufficiently known. PCV are currently under investigation at the 

Institute of Geodesy and Photogrammetry. Up to now, the application of the presented 

algorithm is limited to applications with well-calibrated antennas. As soon as flight data is 

available, in-flight calibration of the antennas can be attempted.  

The presented algorithm is potentially of high interest, since it provides a very efficient 

method for attitude determination onboard a spacecraft. Typical star trackers for small 

satellites have a mass of several hundreds of grams, a power consumption of about 1 W and 
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an accuracy better than half an arc minute (Gebre-Egziabher et al. 2016). U-blox receivers 

require only 63 mW and have a mass of 1.6 g (u-blox M8 Product Summary 2016). Therefore, 

they present an excellent mean of attitude determination, if no high accuracy is needed, e.g. 

as back-up sensor or as primary sensor in energy-save-mode. Since no synchronization 

between the receivers is needed, the set-up of an attitude determination system is 

theoretically as simple as putting receivers and corresponding antennas at every corner of 

the spacecraft. The method can easily be adapted to different baseline geometries and to 

longer baselines, if the ambiguity resolution process is adapted accordingly. The presented 

approach is suitable for baselines up to 1 meter. 

 

Acknowledgment 

We would like to thank Dr. Oliver Montenbruck and Markus Markgraf at DLR for providing 

access to the GNSS Signal Simulator and for the great support during the data acquisition. This 

work was supported by ETH Research Grant ETH-43 14-2. 

 

Bibliography 

Aghili F, Salerno A (2013) Driftless 3-D Attitude Determination and Positioning of Mobile 

Robots By Integration of IMU With Two RTK GPSs. IEEE/ASME Transactions on Mechatronics 

18(1)21–31 

Arbinger C, Enderle W (2000) Spacecraft attitude determination using a combination of GPS 

attitude sensor and star sensor measurements. Proc. ION GPS 2000, Institute of Navigation, 

Salt Lake City, Utah, USA, September 19 – 22, 2634 – 2642. 

Birmingham WP, Miller BL, Stein WL (1983) Experimental results of using the GPS for 

Landsat 4 onboard navigation. Navigation 30(3):244–251. 

Cannon ME, Sun H (1996) Experimental assessment of a non-dedicated GPS receiver system 

for airborne attitude determination. ISPRS journal of photogrammetry and remote sensing 

51(2):99–108 

Chen W, Qin H (2012) New method for single epoch, single frequency land vehicle attitude 

determination using low-end GPS receiver. GPS Solutions 16(3):329–338 

Cohen CE (1992) Attitude determination using GPS. Dissertation, Department of Aeronautics 

and Astronautics, Stanford University. 

Cohen CE, Lightsey EG, Parkinson BW, Feess WA (1994) Space flight tests of attitude 

determination using GPS. International Journal of Satellite Communications 12:427-433 

Crassidis JL, Markley FL (1997) New algorithm for attitude determination using Global 

Positioning System signals. Journal of Guidance, Control, and Dynamics 20:891–896 

131



CubeSat Design Specification (2015) Revision 13 – Updated 4-6-2015. 

http://www.cubesat.org/resources/. 

Dach R, Lutz S, Walser P, Fridez P (eds.) (2015) Bernese GNSS Software Version 5.2. Software 

user manual, Astronomical Institute, University of Bern. 

Diebel J (2006) Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors. 

Technical Report, Stanford University. 

https://www.astro.rug.nl/software/kapteyn/_downloads/attitude.pdf. 

Farrell JL, Stuelpnagel JC, Wessner RH, Velman JR, Brook JE (1966) A least squares estimate 

of satellite attitude (Grace Wahba). Siam Review, 8:384–386 

Gebre-Egziabher D, Hisamoto CS, Sheikh SI (2016) Small Satellite Attitude Determination. In: 

Fourati H, Belkhiat DEC, Iniewski K (eds) Multisensor Attitude Estimation: Fundamental 

Concepts and Applications, CRC Press, pp. 427–444. 

Giorgi G, Teunissen PJG, Gourlay TP (2012) Instantaneous Global Navigation Satellite System 

(GNSS)-Based Attitude Determination for Maritime Applications. IEEE Journal of Oceanic 

Engineering 37(3): 348–362 

Graas F, Braasch M (1991) GPS interferometric attitude and heading determination: Initial 

flight test results. Navigation 38(4):297–316 

Hilla S (2010) The Extended Standard Product 3 Orbit Format (SP3-c). 

ftp://igs.org/pub/data/format/sp3c.txt. 

Hollenstein Ch, Männel B, Serantoni E, Scherer L, Rothacher M, Kehl P, Ivanov A (2014) 

Concepts and Testing of Low-cost GNSS Receivers for CubeSat Orbit and Attitude 

Determination. In Proceedings of NAVITEC, Noordwijk, Netherlands. 

Ivanov AB,  et al. (2015) CubETH: Nano-Satellite Mission for Orbit and Attitude 

Determination Using Low-Cost GNSS Receivers. IAC-15,B4.4.5. In 66th International 

Astronautical Congress, Jerusalem, Israel. 

Montenbruck O, Markgraf M, Garcia-Fernandez M, Helm A (2008) GPS for microsatellites – 

status and perspectives. In: Sandau R, Röser HP, Valenzuela A (eds) Small Satellites for Earth 

Observation. Springer, Berlin, pp. 165-174 

Remondi BW (2004) Computing satellite velocity using the broadcast ephemeris. GPS 

Solutions 8(3):181-183. doi:10.1007/s10291-004-0094-6 

Rothacher M, Schaer S, Mervart L, Beutler G (1995) Determination of antenna phase center 

variations using GPS data. In Gendt G, Dick G (eds) Special Topics and New Directions, 1995 

IGS Workshop. Potsdam, pp. 205-220. 

Sabatini R, Rodriguez L, Kaharkar A, Bartel C, Shaid T (2012) Carrier-phase GNSS attitude 

determination and control system for unmanned aerial vehicle applications. ARPN Journal of 

Systems and Software 2(11):297–322 

132



Simgen Software User Manual (2012) Spirent Communication plc, Devon, United Kingdom. 

Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for 

fast GPS integer ambiguity estimation. Journal of Geodesy, 70(1):65–82 

Teunissen PJG (2007) The LAMBDA method for the GNSS compass. Art Satellites 41:89–103 

Teunissen PJG (2009) Integer least squares theory for the GNSS Compass. J Geod 84(7):433-

447. doi: 10.1007/s00190-010-0380-8 

Teunissen PJG, Giorgi G, Buist PJ (2011) Testing of a new single-frequency GNSS carrier 

phase attitude determination method: land, ship and aircraft experiments. GPS Solutions 

15(1):15-28. doi:10.1007/s10291-010-0164-x 

Um J, Lightsey EG (2001) GPS attitude determination for the SOAR experiment. Navigation 

48(3):181-194 

u-blox M8 Product Summary (2016) R04. u-blox, Thalwil, Switzerland. https://www.u-

blox.com/en/product/neo-m8-series.  

u-blox M8 Receiver Description (2016) v15.00-19.00, 22.00, R11. u-blox, Thalwil, 

Switzerland. 

Ward LM, Axelrad P (1997) A Combined Filter for GPS-Based Attitude and Baseline 

Estimation. Navigation 44(2):195–214 

Welch G, Bishop G (2006) An Introduction to the Kalman Filter. University of North Carolina. 

https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf.  

YUMA almanac (2016) United States Coast Guard, GPS NANUs, Almanac & OPS Advisories. 

http://www.navcen.uscg.gov/?pageName=gpsAlmanacs.  

133





Appendix B

Paper II

Title GNSS Antenna Phase Center Variation Calibration for Attitude
Determination on Short Baselines

Authors Daniel WILLI, Michael MEINDL, Hui XU, Markus ROTHACHER
Proceedings Proceedings of the 30th International Technical Meeting of The Satellite

Division of the Institute of Navigation (ION GNSS+ 2017), September
25 - 29, 2017, Oregon Convention Center, Portland, Oregon

Pages 3997 – 4010
Link www.ion.org/publications/abstract.cfm?articleID=15411

Peer review Yes

Upon recommendation of the session chair, this article was submitted to Navigation:

Journal Navigation
DOI 10.1002/navi.273
Received 23 November 2017
Accepted 30 August 2018
First Online 07 December 2018

The attached version is the first version submitted to Navigation, which has an identical content
than the final version of the ION GNSS+ version. The reprint of this document is in agreement
with the Copyright Transfer Agreement signed on 12 November 2018 with Wiley Periodicals.

135

www.ion.org/publications/abstract.cfm?articleID=15411




GNSS Antenna Phase Center Variation 

Calibration for Attitude Determination on 

Short Baselines 

 
Daniel Willi, Michael Meindl, Hui Xu, Markus Rothacher, Institute of Geodesy and Photogrammetry, ETH 

Zürich 

 

BIOGRAPHIES 

 

Daniel Willi is Ph.D. student at the Institute of Geodesy and Photogrammetry, ETH Zurich. He holds a Master 

degree in Geomatics Engineering from ETH Zurich. His research interests are GNSS attitude determination and 

precise orbit determination for low earth orbiters. 

 

Michael Meindl works as a senior scientist at the Institute of Geodesy and Photogrammetry at ETH Zurich. He 

was heavily involved in the development of the scientific Bernese GNSS Software becoming an expert on GNSS 

modelling and algorithms. His research interests cover modelling the atmosphere, ambiguity resolution, orbit 

determination, reference frames, and the consistent combination of different satellite systems. In his current 

position he is responsible for the scientific payload of the small satellite mission CubETH. 

 

Hui Xu is Academic Guest of Mathematical and Physical Geodesy at ETH Zurich in 2016. She works in Beijing 

satellite control center for 16 years. She was heavily involved in the operations of Sinosat-1, Sinosat-2, Sinosat-3 

and Sinosat-6. Her expertise is comprised of satellite communications, communications satellite payload and 

user management, satellite operations, ground station calibrations, etc. For many years she was deputy chief of 

Beijing satellite control center. She presently serves in technology application center of Beijing satellite 

communication and control center. 

 

Markus Rothacher is Professor of Mathematical and Physical Geodesy at ETH Zurich. His research interests 

comprise high-precision GNSS applications, space geodesy, satellite missions, orbit determination, and earth 

rotation. For many years he was Chair of the Global Geodetic Observing System (GGOS) and Analysis Coordinator 

of the IERS. He presently serves on the Galileo Science Advisory Committee (GSAC) of ESA. 

 
ABSTRACT  

 
Relative antenna field calibrations were carried out for two attitude determination setups with antennas located 

within a wavelength of each other. Four Amotech ceramic patch antennas  and three Trimble Bullet III antennas 

were used. The obtained phase patterns are highly heterogeneous and asymmetrical. 

These patterns were applied to a simulation of attitude determination onboard a spacecraft in low Earth orbit, 

using synthetic GNSS data. The analysis revealed the importance of the proper correction of phase center 

variations. 

Finally, a field data validation was carried out. The root mean square error of the estimated attitude for a 

platform with three antennas located within 15 cm of each other, could be reduced from over 6 degrees to 

4.5 degrees. 

A step towards more precise attitude determination on very short baselines was done, but additional efforts are 

required. Especially the temporal stability of the phase patterns of low-cost antennas remains questionable. 
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INTRODUCTION  

 

Precise knowledge of the orbit and the attitude of a spacecraft is crucial to many applications, such as 

broadcasting, weather forecasting or Earth observation. With the development of the Global Positioning System 

(GPS), a new technology became available for orbit and attitude determination. In 1982, the first spacecraft 

equipped with a GPS receiver, Landsat-4, was launched (Birmingham et al. 1983). Since then, Global Navigation 

Satellite Systems (GNSS) became a standard technique for orbit determination of satellites in low Earth orbits 

(LEO). If several antennas are mounted on a spacecraft, attitude determination is possible. This technique was 

employed, e.g., on the spacecraft RADCAL in 1993 (Cohen et al. 1994) or onboard the Space Shuttle Atlantis (Um 

and Lightsey 2001). 

The cube satellite mission CubETH (Ivanov et al. 2015) is a good illustration for two recent trends in modern 

spaceflight: miniaturization and usage of commercial off-the-shelf (COTS) components. The project aims at using 

low-cost COTS receivers on a 10 x 10 x 10 cm3 spacecraft for orbit and attitude determination. To this end, the 

satellite is equipped with four GNSS antennas on its zenith looking face forming three baselines shorter than 10 

cm. An additional experimental antenna is located on the side. Each antenna is connected to two low-cost 

receivers manufactured by u-blox. The main challenges arise from the fact that (i) the receivers do not run on a 

common oscillator and that (ii) extremely small patch antennas on a common ground plane are used. The first 

issue was addressed in a previous publication (Willi and Rothacher 2017) whereas the second issue will be 

discussed hereafter. Small patch antennas are especially challenging, as they are expected to have large phase 

center variations (PCV) which bias the estimation of the position and the attitude from GNSS phase observations.  

PCV calibration has been studied extensively in the past. Antenna calibrations have been carried out since the 

very beginning of GPS, for instance by Sims (1985). Nowadays, antenna calibrations are routinely performed and 

calibrated antennas are widely used (Schmitz et al. 2002). However, a lack of knowledge exists regarding the 

behavior of low-cost antennas in general and in particular regarding systems of low-cost antennas placed within 

a wavelength of each other. These aspects will be studied in this paper and applied to attitude determination on 

very short baselines. 

After a brief theoretical introduction to GNSS attitude determination and PCV estimation, an approach for the 

relative field calibration of antenna systems will be presented. Calibration-results for both, a model of the 

CubETH satellite and an experimental platform are shown in the second part. The calibration of the experimental 

platform was repeated after permutation of the antennas, in order to investigate the main contributors to PCV 

in antenna systems. In the last section, the effect of PCV on attitude determination on-board a spacecraft is 

studied with synthetic data and validated with a real data test case. 

 

GOVERNING EQUATIONS 

 

GNSS attitude determination is based on the interferometric model as depicted in Figure 1: 

 

 Δ𝑟 = 𝒆world
T 𝑹world←body 𝒃body + 𝑣  (1) 

 

Δ𝑟 is the range difference and therefore the actual observable, 𝒆 is the length line-of-sight (LOS) unit vector from 

the receiver to the GNSS satellite in the world frame, 𝑹 is the unknown orthogonal attitude matrix, 𝒃 is the 

baseline vector known in the body frame, and 𝑣 is the measurement noise. In the following developments, the 

subscript indicating the reference frame is omitted for the sake of readability. Usually, the attitude matrix is 

obtained after an optimization procedure, combining all available GNSS measurements. The objective function 

𝐿 is: 

 

 𝐿(𝑹) = ∑ ∑
1

𝜎𝑘𝑖
2 (Δ𝑟𝑘𝑖 − (𝒆𝑖)T𝑹 𝒃𝑘)2

𝑖𝑘  (2) 

 

where 𝑘 is an index running over all baselines, 𝑖 is an index indicating the GNSS satellite, and 𝜎𝑘𝑖
2  is the variance 

of the range difference observation Δ𝑟𝑘𝑖 . 
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Typically, very precise carrier phase measurements 𝑃𝐴
𝑖  are used for attitude determination: 

 

 𝑃𝐴
𝑖 =  𝒆𝐴

𝑖 T
(𝑿𝑖 − 𝑿 − 𝑹 𝒙𝐴) + 𝑐 𝛿𝑡𝐴 − 𝑐 𝛿𝑡𝑖 + 𝜆 𝑁𝐴

𝑖 + Φ𝐴
𝑖 + 𝐼𝐴

𝑖 + 𝑣𝐴
𝑖  (3) 

 

𝑃𝐴
𝑖  is a phase measurement from antenna 𝐴 to the GNSS satellite 𝑖, 𝑿𝑖  is the position, at signal emission time, of 

the emitting antenna located on the GNSS spacecraft, 𝑿 is the position of a reference point, for instance the 

position of the center of mass of the LEO spacecraft, at signal reception time, 𝒙𝐴 is the position (in the body 

frame) of the mean phase center of the receiving antenna with respect to the reference point, 𝑐 is the speed of 

light, 𝛿𝑡𝐴 is the receiver clock error, 𝛿𝑡𝑖  is the GNSS satellite clock error, 𝜆 is the carrier phase wavelength, 𝑁𝐴
𝑖  is 

the integer phase ambiguity, Φ𝐴
𝑖  is the PCV correction, 𝐼A

𝑖  is the ionospheric signal delay, and 𝑣𝐴
𝑖  is the observation 

noise. The position of the mean phase center can be split into two parts: 

 

 𝒙𝐴 = 𝒙𝐴𝑅𝑃,𝐴 + 𝑷𝑪𝑶𝐴 (4) 

 

Where 𝒙𝐴𝑅𝑃,𝐴 is the position of the antenna reference point (ARP) in the body frame and 𝑷𝑪𝑶𝐴 is the phase 

center offset (PCO). As the baselines are short compared to the distance between the GNSS satellite and the LEO 

spacecraft, 𝒆𝐴
𝑖 = 𝒆𝐵

𝑖  is a valid assumption. Moreover, the differential ionospheric signal delay vanishes. 

Introducing 𝒃𝐴𝐵 = 𝒙𝐵 − 𝒙𝐴, a single-difference between two phase observations reads as: 

 

 𝑃𝐴𝐵
𝑖 = 𝑃𝐴

𝑖 − 𝑃𝐵
𝑖 =  𝒆𝑖T

𝑹 𝒃𝐴𝐵 + 𝐸𝐴𝐵
𝑖 +  𝑐 𝛿𝑡𝐴𝐵 + 𝜆 𝑁𝐴𝐵

𝑖 + Φ𝐴𝐵
𝑖 + 𝑣𝐴𝐵

𝑖  (5) 

 

𝑃𝐴𝐵
𝑖  is a single-difference carrier phase measurement between antennas 𝐴 and 𝐵, 𝐸𝐴𝐵

𝑖  is a synchronisation term 

which arises from the unsynchronised receivers (Willi and Rothacher 2017), 𝛿𝑡𝐴𝐵  is the differential clock error, 

𝑁𝐴𝐵
𝑖  is the single-difference integer phase ambiguity, Φ𝐴𝐵

𝑖  is the differential PCV correction and 𝑣𝐴𝐵
𝑖  is the single-

difference noise. Note that the two PCO are now implicitly contained in 𝒃𝐴𝐵 . 

The PCV correction term is a function of the azimuth angle 𝛼 and zenith angle 𝑧 of the incoming signal. Two 

parametrizations are possible with respect to 𝛼 and 𝑧, either a piecewise-linear approach or spherical harmonics 

functions: 

 

 Φ𝐴
𝑖 =  Φ𝐴

𝑖 (𝛼, 𝑧) =  ∑ ∑ 𝑃̃𝑛𝑚(cos 𝑧)𝑛
𝑚=0

𝑛𝑚𝑎𝑥 
𝑛=1 (𝑎𝑛𝑚 cos 𝑚𝛼 + 𝑏𝑛𝑚 sin 𝑚𝛼) (6) 

 

where 𝛼 is the azimuth angle of the incoming signal (in the antenna system), 𝑧 is the angle between the antenna 

normal vector and the LOS of the incoming signal, 𝑃̃𝑛𝑚 is the normalized associated Legendre polynomial of 

degree n and order m, and 𝑎𝑛𝑚 and 𝑏𝑛𝑚 are the coefficients to be estimated. The coefficient 𝑎00 correlates with 

the clock and the ambiguity term and is therefore not estimated. 

 

 

Fig. 1 Principle of interferometric attitude determination. Δ𝑟 is a range difference between antenna A and B 

and 𝒃 is the baseline between those two antennas. For very short baselines, the two line-of-sight vectors to 

one GNSS satellite can be assumed to be parallel. 

  

139



PCO AND PCV ESTIMATION 

 

Three main classes of GNSS antenna calibration have been developed in the past: (i) absolute calibrations 

obtained with anechoic chamber measurements, (ii) absolute field measurements and (iii) relative field 

measurements.  

In the case of absolute chamber measurements (i), the antenna is placed within an anechoic chamber and fed 

with a signal, either from a signal generator or from a GNSS repeater (Sims 1985, Tranquilla and Colpitts 1989, 

Schupler et al. 1994). Then, either the antenna is rotated or the source is moved, in order to measure phase 

variations for various elevations and azimuths. 

In absolute field calibrations (ii), time-differences with a change in the antenna orientation between the two 

measurements involved in the time-difference are used. The main challenge is the elimination of multipath. In 

order to do so, either differences between subsequent sidereal days are taken (Wübbena et al. 1997), expecting 

the multipath to be identical when the GPS constellation repeats, or differences over a very short time-span are 

used (Wübbena et al. 2000), expecting the multipath to be highly correlated in time. In the latter case, a robot is 

used to perform fast and precise rotations of the antenna. 

In relative field calibrations (iii), a very short baseline is setup and a differential processing is carried out. All 

baseline-length dependent errors, as atmospheric delays, ionospheric delays, and orbital errors are practically 

eliminated in the differencing process. The PCV model is fit to the data in order to minimize the observation 

residuals in a least squares sense. This calibration method provides a pattern which is relative to the second 

antenna involved in the baseline. (Rothacher et al. 1995) 

Rothacher (2001) compared calibration values obtained with these three methods. In general, all three methods 

deliver comparable and reliable results, if carried out properly. Both absolute methods have the advantage to be 

practically free of multipath. Moreover, they deliver reliable calibration values for low elevations (in principle 

also for negative elevations). Field calibrations might be preferred, as real data is tracked with real equipment, 

but the need for a precise and fast robot is a considerable burden. On the other hand, the relative field calibration 

has the advantage that it is carried out more easily, but suffers from multipath. 

 

Calibration procedure 

 

A relative field calibration procedure for attitude systems was developed. The presented approach does not need 

any particular hardware except for a GNSS reference antenna and receiver. The impact of multipath on the 

results will be discussed later in this section. 

For every antenna within the system, two to four sessions of 24 h of GNSS data were recorded. Between the 

sessions, the antennas were rotated by 90 degrees to cover the azimuths 0 degrees, 90 degrees, 180 degrees 

and 270 degrees, or by 180 degrees to cover two azimuths. Rotation of the antennas serves two goals: (i) without 

rotation, a part of the antenna phase pattern will never be probed by any satellite, due to north and south holes 

caused by the 55° inclination of the GPS orbits (Zurich is located at latitude 47.4° north), and (ii) the rotation 

decorrelates the PCO in north and east from the coordinates of the center of rotation of the antenna setup. 

Furthermore, rotation of the antenna mitigates the effect of multipath. 

The data was post-processed with the Bernese GNSS Software V5.2 (Dach et al. 2015). A GNSS station of the 

Swiss GNSS Permanent Network AGNES (Automated GNSS Network for Switzerland 2017) served as reference 

station. The slant distance to the reference was 23.5 m. An absolute field calibration obtained by a robot was 

available for this antenna and used in the processing. 

For every antenna of the attitude determination system, the processing based on double-differences included 

following steps: 

 Preprocessing of the data (outlier elimination, cycle slip detection), 

 Computation of a session-wise, static, ambiguity float solution using the reference station, 

 Quality check and outlier detection based on the float solution, 

 Ambiguity resolution and computation of a session-wise, static solution using the reference station, 
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 Writing of normal equations, introducing the previously resolved ambiguities and including PCO as 

unknown parameters. 

This process resulted in two to 16 normal equation systems, depending on the number of antennas and the 

number of sessions processed together. In the example depicted in Figure 2, 16 normal equations are the result, 

as four antennas and four sessions (with four different azimuths) are processed together. The normal equations 

are then combined to estimate one set of coordinates (corresponding to the center of rotation) and PCO in north, 

east and up directions for every antenna. Within this process, the height of the center of rotation has been 

constrained to the mean value obtained from the baseline-wise solutions. This is necessary, as the PCO estimates 

in up direction and the station height cannot be separated. As a consequence, the PCO and PCV of the calibrated 

antennas are consistent to each other, but a common height offset to the reference antenna remains unknown. 

External height information would be needed to determine this height offset to the reference antenna. 

Once the coordinates of the center of rotation and the PCO are estimated, this information is introduced into 

the adjustment and PCV corrections are estimated. The spherical harmonics approach was preferred, as the 

number of unknowns is reduced for a similar resolution. 

 

Calibration Setup 

 

A calibration was undertaken with two different setups: (i) a model of the satellite (see Figure 2a) equipped with 

four passive L1 Amotech A18-4135920-AMT04 ceramic patch antennas (Amotech datasheet 2017) measuring 18 

x 18 mm2 and (ii) the experimental platform with three active L1 Trimble Bullet III antennas (Trimble Bullet III 

Datasheet 2015) shown in Figure 2b. The latter has the advantage of being modular: the antennas can be 

swapped to other positions or removed from the setup. In both cases, the length of all baselines is shorter than 

one GPS L1 wavelength. On the satellite model (i), the orthogonal baselines have a length of 6.5 cm and 5.7 cm 

and on the experimental platform (ii) all three baselines measure 15 cm. 

 
 

 

Fig. 2 a) A model of CubETH during measurements for the PCV calibration. Four antennas are located on a 

common ground plane on the upper face. The side antenna (not used) is visible on the right side. Each antenna 

is connected to a u-blox GNSS receiver. b) Experimental setup for antenna attitude system calibration. The 

aluminum plate can be oriented with the help of the telescope. The three antennas of the type Trimble Bullet 

III can be freely turned and swapped to another location. 
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In both cases, u-blox receivers were used. As the Amotech antenna is passive, the cable length between the 

antenna and the receiver should not exceed 10 cm. Therefore, customized loggers, as visible at the bottom of 

Figure 2a, were used. These loggers are equipped with u-blox NEO 7 receivers (u-blox 7 Data Sheet 2014). The 

receiver's firmware was modified by u-blox in order to enable the output of raw GNSS data. In the case of the 

platform (ii), u-blox M8T evaluation kits were employed (u-blox EVK-M8T User Guide 2016). The latter output 

raw data per default. 

 

Calibration Results 

 

The first result obtained with the satellite model is the shrinking of the baselines. The mean PCO derived from 

the calibration procedure form baselines of 4.8 cm, 5.6 cm and 4.3 cm in length instead of 5.7 cm, 6.5 cm and 

5.7 cm between the ARP. In this example, the baselines have been formed sequentially (antenna 2 minus antenna 

1, and so on). 

The PCV patterns obtained after calibration of the satellite model are shown in Figure 3. A spherical harmonics 

model of degree and order 8 was estimated. The overall observation noise (reduced to an L1 phase observation 

at zenith) is 5 mm. This value is surprisingly high but reflects the performance of the ceramic patch antennas on 

the satellite. Most terms of the spherical harmonics expansion are significant to ±2𝜎. The PCV corrections range 

from -8 mm to 26 mm. The standard deviation of the pattern lies below 1 millimeter in average and linearly 

increases from zenith to horizon. It reaches 3 mm at maximum. This standard deviation was obtained based on 

a full variance-covariance propagation. Therefore, all major structures seen in the patterns are significantly 

present in the data. Visual inspection of the patterns show large differences between each antenna and the 

absence of symmetry around the axis of the spacecraft (which is the point in between all for antennas). When 

looking at each individual antenna, again, no symmetry is apparent. A typical geodetic-grade antenna, for 

comparison, is expected to show PCV in the millimeter range and in the lower centimeter range for low elevations 

(Rothacher 2001). 

The lower part of Figure 3 shows the estimated multipath for each individual antenna. Every session, with 

azimuth 0, 90, 180 and 270 degree, was processed separately and PCV corrections were estimated. 

Subsequently, the patterns were rotated back to make the north holes coincide and the mean value of the four 

patterns was formed. The result is a measure of the multipath, as the pattern will be averaged due to the four 

different rotations of the antenna. As the north hole is not sensed by any data, this region does not show 

meaningful results. Visual inspection shows that the magnitude of the multipath is lower than the magnitude of 

the PCV for antennas 1, 3 and 4. This information gives us confidence in the fact, that the patterns are only 

marginally influenced by multipath. The multipath pattern of antenna 2 shows magnitudes similar to the PCV 

corrections. The multipath pattern, after a rotation of 180 degrees, partly coincides with the PCV. The PCV 

corrections at low elevations might therefore be affected by multipath. 

From these results, the hypothesis arose that the pattern is mainly dependent on the position of the antenna 

within the ground plane and not on the antenna itself. In order to verify this hypothesis, a calibration was 

conducted with the second setup (as seen in Figure 2b). The result of the calibration is displayed in Figure 4. 

Compared to the first setup, the quality of the measurements is improved. The overall observation noise is 

2.6 mm. The PCV values range from -20 mm to 15 mm, which is a slightly smaller range than in the previous case. 

Visual inspection leads to the same conclusion as before; there is neither overall symmetry nor any symmetry 

for each individual antenna. In a second step, the same setup was calibrated again, but the antennas were 

permuted counterclockwise. The obtained patterns are depicted in Figure 5. They look surprisingly similar to the 

patterns before permutation of the antennas. For instance, the pattern of Antenna 3 in Figure 4 is very similar to 

the pattern of Antenna 2 in Figure 5.  Table 1 shows the RMS of the differences between the PCV with and 

without permutation. When considering the permutation, the RMS is divided by two, making obvious that the 

pattern is more strongly dependent on its position on the ground plane than on the individual antenna. 
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Again, these results have to be interpreted with care due to possible pollution by multipath. The lower part of 

Figure 4 shows the multipath patterns. In this case, the multipath has magnitudes similar to the PCV. This is 

presumably due to the fact, that only data for two azimuths (0 and 180 degrees) is available for this setup. 

Keeping in mind that the rotation of the antennas during the determination of the PCV mitigates multipath, the 

results remain valid, but additional measurements would be necessary to definitively answer the question if the 

pattern is due to the close field (the influence of the other antennas) or the far field (classical multipath). In any 

case, the antenna exemplar plays little role, which is the main conclusion of this experiment. 

 
 

Table 1 RMS of the differences in the PCV corrections with and without permutation. 
 

Figure 4 Figure 5 RMS [mm] 

Antenna 1 2 2.54 

Antenna 2 3 3.01 

Antenna 3 1 2.23 
    

Antenna 1 1 4.79 

Antenna 2 2 5.54 

Antenna 3 3 6.12 

 

 

 

 
 

Fig. 3 Estimated PCV patterns for the satellite model shown in Figure 2a. The grid has a spacing of 15 degrees 

and the center of each Figure is the antenna normal vector. The PCV patterns are shown in the same manner as 

they are located on the model of the spacecraft. The lower row shows the multipath patterns for the four 

antennas. 
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Fig. 4 Estimated PCV patterns for the experimental platform shown in Figure 2b. The grid has a spacing of 15 

degrees and the center of each Figure is the antenna normal vector. The PCV patterns are shown in the same 

manner as they are located on the platform. The lower triangle shows the multipath patterns for the three 

antennas. 

 

 

 

Fig. 5 Estimated PCV patterns for the experimental platform shown in Figure 2b, after permuting the antennas 

counterclockwise (1 -> 2, 2 -> 3, 3 -> 1). The grid has a spacing of 15 degrees and the center of each Figure is 

the antenna normal vector. 
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SIMULATION STUDY 
 

In order to investigate the impact of the PCO and the PCV on the attitude estimation, a simulation with synthetic 

data was conducted. Data was generated with the Bernese GNSS Software V5.2 for four receivers on a spacecraft 

in a near circular, near polar LEO. Table 2 summarizes the main simulation parameters. During this process, four 

individual PCV and their PCO were introduced and applied to the simulated measurements. The PCV and the PCO 

were obtained in a field calibration (see previous section) with a model of the CubETH satellite (see Figure 2a). 

This data was then processed in a Kalman filter (Willi and Rothacher 2017). In run 0, a zero test was performed: 

the PCV which were used in the simulation were introduced in the filter and corrected for. In run 1, only the 

corrections of the ARP by the PCO were applied, but no PCV corrections. In run 2, neither the PCO nor the PCV 

were applied. Solely the ARP were used. 

 

Results 

 

A summary of the errors for run 0, which is the zero-test, is given in Table 3. The mean and the root mean square 

errors lie below 3 degrees. This value is comparable to results previously obtained (Willi and Rothacher 2017). 

The absolute error is the great circle distance between the ground truth and the estimation. This value can easily 

be computed, as the attitude can be represented as a point on a unit sphere.  

The roll, pitch and yaw components are centered around zero. Roll and pitch have a similar precision of about 

1.9 degrees. The yaw component is about twice as accurate. An uncertainty in height, as present in GNSS for 

geometrical reasons, does not affect the estimate of the yaw component. For this reason, the yaw component is 

more precise than the other two. Figure 6 shows the time series for roll, pitch and yaw and illustrates this 

statements. 

As the PCV corrections are omitted, the accuracy of the attitude determination is degraded (Table 3). This is a 

typical case, as often only PCO are known, but no PCV. The increase in error is expected, as the PCV corrections 

show very large values, of up to 2.5 cm. The absolute error lies above 10 degrees. The roll, pitch and yaw 

components show RMS errors of about 9 degrees, 8 degrees and 4 degrees. Interestingly, the yaw component is 

not centered around zero anymore. This indicates an asymmetry in the PCV. The time series for roll, pitch and 

yaw are shown in Figure 7. Comparison with Figure 6 reveals that the time series are now time correlated. 

Unsurprisingly, the accuracy is further deteriorated when omitting the correction of the PCO (Table 3). In this last 

scenario, the ARP are introduced in the filter. The absolute error increases to 30 degrees and the RMS error of 

roll, pitch and yaw now lies between 15 and 20 degrees. The yaw is clearly affected by an offset. This can be 

explained by the difference between the ARP and the ARP corrected for the PCO. A 2D Helmert transformation 

(Welsch et al. 2000) between the ARP alone, as used in run 2, and the ARP corrected for the PCO, reveals a 

rotation of 11 degrees +/- 4.5 degrees. This explains the bias in yaw. 

 

Impact on the ambiguity resolution 

 

The impact of neglecting the PCO and PCV corrections on the ambiguity resolution success rate was investigated 

as well. The results are summarized in Table 4. Single epoch ambiguity resolution was attempted for each of the 

first 1000 epochs in every run. An ambiguity resolution success rate of 100% was obtained in all three cases. The 

ambiguity validation ratio, which is the ratio between the RMS of the residuals of the second best and the RMS 

of the residuals of the best ambiguity candidate set, decreased from run 0 to run 1 and from run 1 to run 2. This 

decrease is expected, since a degradation in the float solution produces a degradation of ambiguity resolution 

(Odijk and Teunissen 2008). This results shows that the initialization procedure of the filter can be carried out 

without PCV corrections, as the ambiguity resolution is robust with respect to missing PCV corrections. This is 

crucial, as at the time of initialization, no a priori information on the attitude is available. 
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Table 2 Main simulation parameters for data set 1 - synthetic data. 

Data type Synthetic GPS L1 carrier phase data 

Simulator Bernese GNSS Software V5.2 

Orbit Near circular LEO, 450 km height, 89 degree inclined 

GPS constellation True constellation of year 2012 day 359 

Spacecraft attitude Roll of-5 degrees, pitch of +5 degrees and yaw rate of +1 degree per sec 

PCV Four individually estimated PCV for the four Amotech A18-4135920-AMT04 

Baselines Mean phase  

centers* in the  

body frame [cm] 
(

1.50
−2.56
−0.14

) , (
−3.25
−2.14
0.14

) , (
−1.20
3.35

−0.56
) , (

2.91
3.45
0.48

) 

 Baselines Antenna 1 – Antenna 2 

Antenna 2 – Antenna 3 

Antenna 3 – Antenna 4 

 Length of baselines*  4.8 cm, 5.9 cm, 4.2 cm 

Observations 5 mm standard deviation, 1 Hz data rate, 57 min and 50 sec length 

*the values are slightly different from those given in the previous chapter, as the calibration procedure was refined. The study was 

conducted with the old values, the previous section shows the final results. 

 

 

 

Table 3 Mean and RMS errors in attitude determination for run 0, run 1 and run 2 

 Run 0 (PCO and 

PCV applied) 

Run 1 (PCO applied, 

PCV not applied) 

Run 2 (PCO and 

PCV not applied) 

[degrees] Mean RMS Mean RMS Mean RMS 

Absolute error 2.45 2.81 11.53 12.98 29.77 31.44 

Roll -0.04 1.87 0.59 9.04 0.61 19.89 

Pitch 0.08 1.94 -0.17 8.32 -3.94 20.00 

Yaw 0.06 0.83 3.36 4.55 14.37 15.11 

 

 

 

 

Fig. 6 Roll, pitch and yaw error for run 0 (PCO and PCV correction applied). 
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VALIDATION WITH REAL DATA 

 

The importance of PCV corrections has been demonstrated in the last section through a simulation study. In the 

present section, a real data experiment is undertaken, in order to validate the presented approach in a realistic 

environment. The test was carried out with a subset of the data which was collected to carry out the calibration. 

Although the validation uses data which has entered the calibration process, this approach is valid; the calibration 

was carried out using a static processing strategy with more than 24 h of data and thus eliminating all short 

periodic effects, whereas for the validation, a 1 Hz kinematic processing is performed. The dataset was acquired 

on April 10, 2017, from 08:54:40 (GPS time) to 23:59:59, with the platform shown in Figure 2b and three u-blox 

NEO M8T receivers. 

 

Results 

 

Again, three runs were performed. In run 0, PCO as well as PCV corrections were applied. This run is expected to 

deliver the best results. In run 1, only PCO were applied, but no PCV corrections. Run 2 was performed introducing 

solely the theoretical (mechanical) phase centers into the filter prototype. In order not to bias the results, the 

same process noise and measurement noise settings were applied to all three runs. L1 carrier phase 

measurements were the only observables used in the filter. No outlier detection was performed. Phase 

ambiguities were solved for beforehand and introduced as fixed values. 

The results of this comparative study are displayed in Table 5. Unsurprisingly, the accuracy of the attitude 

determination worsens with decreasing modelling accuracy. The mean error and the RMS lie below 5 degrees 

for run 0 and increase to over 6 degrees for run 2. The roll, pitch and yaw angle series for run 0 and run 2 are 

shown in Figure 8. 

The decrease in accuracy is less spectacular than in the simulation study. This is easily explained by the smaller 

magnitude of the patterns of the ensemble of the three Trimble Bullet III antennas compared to the patch 

antennas on the satellite model. The PCO are much smaller; a 2D Helmert transformation between the ARP and 

the ARP corrected by the PCO reveals a shift in x of 1.4 mm, a shift in y of -6.5 mm, a rotation of -1.7 degrees and 

a scale of 1.018. Furthermore, the experimental platform has significantly longer baselines than the satellite 

model, making it less sensitive to neglecting PCV corrections. 

 

 

 

Fig. 7 Roll, pitch and yaw error for run 1 (PCO applied, PCV not applied). 
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Table 4 Ambiguity resolution success rate and ambiguity validation ratio for the three runs. 

 
Ambiguity resolution 

success rate 

Ambiguity validation ratio 

Mean 
Quantiles 

25% 75% 

Run 0 (PCO and PCV applied) 100% 6.87 5.50 7.78 

Run 1 (PCO applied, PCV not applied) 100% 4.84 3.68 5.61 

Run 2 (PCO and PCV not applied) 100% 4.57 3.53 5.23 

 

 

 

 

 

Table 5 Mean and RMS errors for run 0, run 1 and run 2 

 Run 0 (PCO and 

PCV applied) 

Run 1 (PCO applied, 

PCV not applied) 

Run 2 (PCO and 

PCV not applied) 

[degrees] Mean RMS Mean RMS Mean RMS 

Absolute error 4.04 4.53 5.09 5.87 5.50 6.33 

Roll 0.37 2.92 1.13 3.65 1.23 3.98 

Pitch -0.96 3.30 -0.89 4.42 -1.08 4.61 

Yaw 0.21 1.08 0.08 1.29 1.14 1.76 

 

 

 

 

 

 

 
 

Fig. 8 Time series of roll, pitch and yaw errors for run 0 (on the left) and run 2 (on the right). The maximal errors 

are 15, 15 and 4 degrees for run 0 and 21, 30 and 4 degrees for run 2. 
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CONCLUSIONS AND OUTLOOK 

 

Relative antenna field calibrations for attitude determination systems with very short baselines were successfully 

obtained. The calibration of the satellite model showed unexpected large PCV. Permutation of the antennas on 

the experimental platform revealed that the antenna pattern is not only driven by the antenna itself, but mainly 

by its location on the ground plane. The chosen field calibration suffers from multipath and additional 

investigations are required to assess its impact on PCV. 

A simulation study showed the importance of proper calibration values in the attitude estimation process on a 

small spacecraft. In the case of CubETH, the mean error decreased from around 30 degrees to below 3 degrees 

when the phase center offset and the phase center variations were correctly calibrated and applied. The 

ambiguity resolution process however is robust; ambiguities can be fixed without the need to apply antenna 

corrections. 

Finally, a real data validation was performed. It demonstrated the feasibility of attitude determination with very 

short baselines and showed the importance of antenna calibration in a realistic scenario. The root mean square 

error could be reduced from 6.33 degrees to 4.53 degrees on a platform with three baselines of 15 cm. 

These preliminary results are very encouraging, but many questions remain open. A step towards a more precise 

attitude determination system was made, but the accuracy inherent to the system has probably not been 

reached yet. It would be extremely valuable to compare the relative calibrations either to robot or to anechoic 

chamber measurements. This would also allow to definitively quantify the effect of multipath on the current 

procedure. 

Moreover, additional investigations are necessary to better characterize phase patterns of antenna systems and 

especially low-cost antennas. The present work showed that ceramic patch antennas have extremely variable 

patterns. It is questionable, whether classical phase center variation models are well suited to reflect this 

behavior and whether the calibrations are stable in time. The final question is whether these calibrations are 

applicable to a spacecraft actually orbiting the Earth. Flight data which is expected for beginning of 2018 might 

give the answer. 
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ABSTRACT
We show that the scatter of the coordinates of the tool of an uncalibrated KUKA Agilus KR 6

R900 sixx lies between 0.5 to 0.7mm if the same point is approached several times, but with different
tool orientations. In order to use the robot for GNSS antenna calibration, the standard deviation
of the coordinates must lie below 0.1 mm. We developed a calibration procedure based on the
optical micro-triangulation system QDaedalus and a kinematic model of the robot. The proposed
calibration is easy to carry out and highly automatic. Several measurement campaigns including
a validation demonstrated that the calibration reduces the standard deviation of the coordinates to
below 0.1 mm, making the robot suitable to use for GNSS antenna calibrations.

INTRODUCTION
The Institute for Geodesy and Photogrammetry (IGP) at ETH Zurich acquired a six-axis in-

dustrial robot of type KUKA Agilus KR 6 R900 sixx (Kuka 2018, see Figure 1), with the goal to
perform calibrations of Global Satellite Navigation System (GNSS) antennas. The robot is used to
position the antenna in various orientations, while an arbitrary point of the antenna is kept fixed in
space. The purpose of the rotation of the antenna is to cover the entire antenna hemisphere with
observations and to decorrelate the antenna dependent effects from the site dependent effects, for
instance multipath (Willi et al., 2018). Therefore, at least two rotations axes are required. Calibra-
tions have been performed with two-axis robots in the past (Bilich and Mader, 2010), but five- or
six-axis robots are theoretically superior. They allow to keep an arbitrary point of the antenna fixed
in space, in opposition to two-axis robots. The advantage is that the nominal coordinates of the
GNSS antenna to be calibrate remain unchanged during the GNSS antenna calibration, ensuring a
constant nominal observation geometry.

The de facto standard for GNSS antenna calibrations is the German company Geo++ (Wübbena
et al., 2000; Schmitz et al., 2002). Geo++ uses a 5-axes robot. Their system was developed in col-
laboration by the Institut für Erdmessung (IfE) at the Leibniz University Hanover, which still uses
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the system (Menge, 2003; Kersten, 2014). The Geo++/IfE system is in use in the State Surveying
Agency ofBerlin inGermany (Landeskalibriereinrichtung, https://www.stadtentwicklung.berlin.de/
geoinformation/landesvermessung/landeskalibriereinrichtung/index.shtml) and in Australia (Rid-
dell et al., 2015). The National Geodetic Survey (NGS) recently acquired a six-axes robot KUKA
KR60 HA (Bilich et al., 2018). Wuhan University develops a system for antenna calibration as
well (Hu et al., 2015), apparently using a robot with 5 or 6 axes.
Accuracy requirement

According to the manufacturer, the repeatability of the KUKA robot is 0.03 mm (Kuka, 2018),
but no indications about the accuracy or the precision is provided. The term robot postures
designates the configuration in which the robot is, for instance elbow up or elbow down. Serial
manipulators with ortho-parallel basis and a spherical wrist, as the KUKA Agilus KR 6 R900 sixx,
have eight different postures to reach the same point with the same tool orientation (Brandstötter
et al., 2014). Throughout this paper, we will use the term repeatability for the quantity which
measures the ability of the robot to reach the same coordinates, with the same orientation and
the same posture; precision will be used to quantify the ability of the robot to reach the same
coordinates with the same posture, but with different orientations (this is the ability needed for
antenna calibration); and finally, accuracy will be employed to quantify the ability of the robot to
reach any point in any orientation and any of the eight posture.

In order to be suitable for GNSS antenna calibration, the precision of the positioning of the
robot should be 0.1 mm (standard deviation). The accuracy does not matter, since the GNSS
observations will be time-differentiated. Therefore, only the ability of the robot to reach the same
coordinates but with various orientations is of interest, best represented by the standard deviation
of the positions. Since a millimeter-level accuracy is targeted for the GNSS antenna calibration, the
standard deviation of the robot positioning should be an order ofmagnitude smaller, namely 0.1mm.
The requirement of an accuracy of 1 mm or better for antenna calibration is motivated by the phase
noise of GNSSmeasurements, which is typically around 1 mm (Teunissen andMontenbruck, 2017,
p. 579). Accordingly, antenna calibrations are exchanged using the ANTEX format (Rothacher
and Schmid, 2010), which provides a resolution of 0.1 mm.
State of the art in robot calibration

The Geo++ robot is calibrated using a micro-triangulation measurement system (Menge, 2003).
The calibrated robot reaches an accuracy of 0.2 to 0.3 mm and includes joint elasticity coefficients.
The NGS robot was individually calibrated at the factory, which should result in an accuracy of
0.2 mm. The on-site accuracy was not verified yet (Bilich et al., 2018).

Calibration of industrial robot is a standard procedure in industry (Schröer, 1999; Siciliano
and Khatib, 2008). The fit of a kinematic model into reference measurements is common to
nearly all calibrations. Schröer et al. (1997) presents a good overview on various kinematic
models. Examples of measurement techniques include laser tracker (Allman et al., 2018) or vision
based systems (Motta et al., 2001). Some authors do also model the elasticity of some joints of
the robot and backlash effects, e.g. Nubiola and Bonev (2013). Most of the authors make use
of the so called Denavit-Hartenberg convention (which will be introduced in the next section).
The quality improvement depends on how close the robot corresponds to the nominal geometry.
After calibration, most publications mention an accuracy around 0.1 mm, which represents an
improvement by up to one order of magnitude.
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Outline
A robot calibration achieving the targeted precision of 0.1 mm in the whole robot operation

space would be very cumbersome and unnecessary in the context of antenna calibration with a
robot. Therefore, we propose a novel method specifically designed for the calibration of a robotic
arm used for GNSS antenna calibration. The principle is to use the exact same sequence for the
calibration of the KUKA robot as will be used later to calibrate GNSS antennas. This approach
requires some adaptations in the mathematical model, which are presented in the next section. In
the second section, the robot calibration procedure is presented, follow by an introduction to the
optical micro-triangulation system used within this study. The results section is preceded by the
description of the calibration and validation campaigns.

Fig. 1. Industrial robot KUKA Agilus KR 6 R900 sixx, mounted on an aluminum plate allowing
to mount it on the roof of the Institute and to handle the robotic arm more easily. Handles can
be attached to both side of the plate. The coordinate system at the base of the robot is the robot
coordinate system. It is centered at the intersection of the first axis and the bottom of the robot
base. The coordinate system at the robot flange is the tool coordinate system. It is centered at
the robot flange. The origin and the orientation of the tool coordinate system is a function of the
angular position of the six axes of the robot.
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KINEMATIC MODEL OF THE ROBOT
In the following section, three different coordinate systems will be refered to: world coordinates

(or world frame), robot coordinates (or robot frame) and tool coordinates (or tool frame). The world
coordinate system can be any global or local coordinate system. World coordinates are independent
of the robot. Examples for world coordinates can be WGS84 or the local level frame. In the present
case, it was chosen to work in a local level frame. Robot coordinates refer to a coordinate system
which is attached to the base of the robot (see Figure 1). The robot coordinate system is centered
at the intersection of the first robot axis and the bottom of the robot base. The tool coordinate
system is attached to the flange of robot and centered at the intersection of axis six and the surface
of the flange (see Figure 1). The coordinate transformation from the world coordinate system to the
robot coordinate system will describe where and with which orientation the robot is mounted. The
coordinate transformation between the robot coordinate system and the tool coordinate system is a
useful parameter when trying to control the robot, because it is a function of the angular positions
of the six robot axes.

Forward kinematics is the task of computing the coordinate transformation between the robot
coordinate system and the tool coordinate system from the angles of each axis. This transformation
can be represented as homogeneous transformation, as it comprises three rotations and three
translations. Every individual link and joint pair can be modeled as a homogeneous coordinate
transformation as well. The transformation from the robot base system to the tool system is then
simply the product of the individual transformations.

In principle, three translation parameters and three rotation parameters would be required for
every link and joint pair, but by attaching the successive coordinate frames in a certain manner, this
can be broken down to two rotations and two translations, the so called Denavit-Hartenberg (DH)
parameters (Corke, 2017). Figure 2 shows the position of all six coordinate system of the KUKA:
The Z axis is always parallel to the rotation axis of the join, θ is the rotation around the Z axis
and α is the rotation around X. The non-zero length parameters a and d and the angle conventions
are shown in Figure 3. The full DH parameter set for the KUKA Agilus KR 6 R900 sixx, derived
from this previous illustrations, is summarized in Table 1. If these parameters are used to compute
the position of the tool out of the angular readings output by the KUKA controller, the obtained
coordinates are identical to the coordinates output by the KUKA controller. This indicates that the
KUKA controller uses the nominal geometry for internal computations.

More detailed information about how to derive the parameters for this kind of robot can be
found in various online resources (P. Corke, “Denavit-Hartenberg notation for common robots”,
http://www.petercorke.com/doc/rtb_dh.pdf, 2014; F. Abelbeck, “Koordinatentransformation nach
Denavit-Hartenberg am Beispiel eines KUKA KR16”, https://abelbeck.files.wordpress.com/2015/
11/uebung_dh-trafo_300dpi.pdf, 2008).

The steering variable Θ is the angular reading of the robot. The signs were adapted in order
to fit the KUKA convention. The angle offsets read δΘ. Again, there are needed for conventional
reasons. The angle between two successive axes is α. This angle equals 0 if the two axes are
parallel. The length of a link is represented by a and the link offset is represented by d. With this
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model, the coordinates and the attitude of the flange read:

T =
6∏

i=0
Ti =

©­­­«
Rw← f uw

0 0 0 1

ª®®®¬
(1)

Where T is the homogeneous transformation matrix, Ti is the homogeneous transformation asso-
ciated to link and joint i, Rw← f is the rotation matrix from the coordinate system attached to the
flange (denoted with f ) to the world frame (denoted with w) and uw is the coordinates of the center
of the flange, expressed in world coordinates. For i ∈ [1, 2, 3, 4, 5, 6], Ti reads:

Ti =

©­­­«

cos(Θi + δΘi) − sin(Θi + δΘi) cosαi sin(Θi + δΘi) sinαi ai cos(Θi + δΘi)
sin(Θi + δΘi) cos(Θi + δΘi) cosαi − cos(Θi + δΘi) sinαi ai sin(Θi + δΘi)

0 sinαi cosαi di
0 0 0 1

ª®®®¬
(2)

The parameters in this equation are the DH parameters. The values of the DH parameters can be
found in Table 1. The transformation matrix from robot centered coordinates to world coordinates
is T0. If it is set to the identity matrix, the coordinates obtained from Eq. 1 lie in the coordinate
system attached to the origin of the robot. To obtain coordinates in the world frame, T0 is set to:

T0 =
©­­­«

Rw←r

t′x
t′y
t′z

0 0 0 1

ª®®®¬
(3)

Where Rw←r is the rotation matrix rotating from the robot coordinate frame to the world coordinate
frame and t′x , t′y and t′z are the position of the robot in the world coordinate frame. The rotation
matrix can be obtained from an Euler angle sequence:

Rw←r = R1(γ′)R2(β′)R3(α′) (4)

With α′, β′ and γ′ being the Euler angles of the robot in the world frame. Typically, a tool is
mounted on the robot flange. The coordinates of the tool are obtained after an additional step:

t = uw + Rw←t
©­«
tx
ty
tz

ª®¬
(5)

Where tx , ty and tz are the tool offsets in the tool frame and Rw←t is the tool orientation. Again,
the tool orientation matrix could be obtained from an Euler sequence as in Eq. 4.
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Fig. 2. Position of the six link coordinate systems in the DH convention applied to the KUKA
Agilus KR 6 R900 sixx. The Z axis is always parallel to the rotation axis of the joint. The rotation
around the X axis between the coordinate system 0 and 1 is represented by α1, the rotation around
the Z axis between the coordinate system 1 and 2 is represented by θ2 + δθ2. The term δθ2 is
present for conventional reasons. The coordinate transformation between coordinate system 0 and
coordinate 6 is the result of the direct kinematics. Inverse kinematics consists of finding θ1 to θ6 if
the coordinate transformation is given.
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Table 1. Nominal DH parameters for the KUKA Agilus KR 6 R900 sixx. The parameters are
derived from the geometry of the robot, which can be found in Kuka (2018)

Θ [rad] δΘ [rad] α [rad] a [mm] d [mm]

1 −θ1 0 π/2 25 400

2 −θ2 0 0 455 0

3 −θ3 π/2 −π/2 35 0

4 θ4 0 π/2 0 -420

5 −θ5 0 −π/2 0 0

6 θ6 π π 0 -80

Fig. 3. Angle conventions (left) and non-zero DH length parameters (right) of the KUKA robot.
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Fig. 4. Four of the eight possible postures to reach the same point with the same tool orientation.
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ROBOT CALIBRATION PROCEDURE
A robot calibration procedure was developed specifically for the present application. The

robot calibration is based on the estimation of geometrical parameters of the KUKA robot. The
values given in Table 1 represent the nominal values that can be derived from the data sheet of the
KUKA (Kuka, 2018). As the geometry of the robot does not perfectly correspond to the nominal
geometry, these parameters are subject to errors. The actual value of these parameters must be
estimated in the robot calibration procedure, additionally to the position and orientation of the
robot in the world coordinate frame. Therefore, an adjustment was performed to estimate these 36
parameters. The list of estimated parameters is given in Table 3.
Main robot calibration sequence

The robot calibration sequence consists of 1440 different orientations and results from a grid
with 7.5 degree steps in azimuth and 5 degree steps in zenith angle from 0 degrees (the antenna is
horizontal) to 70 degrees. During the sequence, the coordinates of the tool are kept constant at the
nominal value of (−364.9mm, 163.9mm, 1120mm) in the robot coordinate system. The coordinates
of this point fixed in space could be arbitrary, but they are chosen in order to reduce the overall
movement every axis has to perform to run through the whole sequence. The tool offset in z of
83 mm serves as approximation and was measured with a ruler. This sequence is identical to the
sequence which is used during the calibration of GNSS antennas. The order of the orientations is
randomized in order to avoid any effects correlated in time. During the robot calibration, the angle
readings of the KUKA are recorded by the robot control system and the coordinates of the tool
are measured with the image-based micro-triangulation system QDaedalus, described in the next
section. The use of the same sequence as for the calibration of GNSS antennas makes the robot
calibration very efficient. However, a full decorrelation of all DH parameters will not be reached.
Therefore, the robot calibration obtained in that way is valid only to correct a rotation sequence
consisting of the exact same points (same coordinate, same posture, but various orientations).
Robot position and orientation

In addition to the main sequence, eight positions distributed in all four quadrants are measured.
Otherwise, the orientation of the robot in the world frame would be singular and could not be
estimated. In principle, three points would be sufficient to estimate the orientation of the robot,
but eight points are preferred because they are well distributed in the operation space of the robot.
The coordinates of the eight positions are given in Table 4. These eight points are used to estimate
parameters 31 to 36. From now on, α′, β′ and γ′ are taken over from this first estimation and
constrained to the estimated values in every consecutive step. This is necessary, as the eight
additional points are not introduced in the next processing steps anymore. The term δΘ1 was
constrained to zero as well, as it correlates with the orientation of the robot in the world frame and
therefore with α′. The parameters t′x , t′y and t′z are still present however, and will absorb any offset
between the actual calibration sequence consisting of 1440 points and the eight additional points.

The separation of the main robot calibration sequence from the estimation of the robot position
and orientation leads to much more flexibility. If the robot is installed permanently at a location,
the estimation of the position and the orientation needs to be performed only sporadically, whereas
the estimation of the DH parameters with the main sequence should be performed more often. Our
calibration strategy offers the flexibility to do so.
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Temperature effects and robot elasticity
Temperature variations are expected to have an impact on the robot. A simulationwas conducted

assuming a thermal expansion coefficient of 20·10−6 K−1 and a temperature difference of 20 degrees
for all links of the robot. The results are displayed in Table 2. The simulation reveals the presence
of a systematic bias of nearly 0.5 mm in Z but no significant increase of the standard deviation.
Therefore, the thermal dilatation can safely be neglected, keeping in mind that an important
temperature change during the sequence would still have an effect. The general insensitivity is
explained by the small dimensions of the robot and the limited variety of movements executed
during the main robot calibration sequence.

Drift in the offset (or the zero reading) of the angular readings is a well known phenomenon
from total stations. However, there is no obvious relation between the temperature and the offset.
The design of this study does not allow to investigate such effects. Therefore, no temperature
dependent offset drift was assumed. Only a study in a climate chamber would allow to study this
effect in more detail.

Some authors includedmodels for the elasticity of the robot joints in their parametrizations (Nu-
biola and Bonev, 2013). The impact of joint elasticity in the context of GNSS antenna calibration
is expected to be very small, because the robot is used to execute always the same position, with a
change in orientation only. The second axis, for instance, is only operated in a range from -78 deg
to -114 deg during the chosen main calibration sequence. Furthermore, changes in the mass of
the robot payload (the mass of the GNSS antenna during GNSS antenna calibration) are expected
to have an impact mainly on the accuracy, but not on the precision. Therefore, the hypothesis is
emitted that the robot joint elasticity can be neglected.
Constraining and regularization

Several robot calibration parameters correlate with each other. As the goal of the whole
procedure is to obtain a small variance of the positions, parameters correlating with the absolute
position of the robot are not of direct interest. The tool offsets tx , ty and tz strongly correlate
with a6, α6 and d6 respectively. Singularities were avoided by constraining these three tool offsets
to fixed values. The procedure for offset estimation is presented in the next section. The tool
orientation (α, β and γ) is never observed, as the tool consists of a single point. Therefore, the
tool orientation was constrained to zero as well. In summary, the parameters 7, 25 to 30 and 34 to
36 (see Table 3) are constrained and 26 parameters are estimated. With the chosen geometry, it is
not possible to fully decorrelate all remaining parameters from each other, as the robot is kept in
the same pose all the time. A posture is a way to reach a certain position with a given orientation.
Six-axis robots have eight possible postures to reach a the same point, as is illustrated in Figure4.
Changing posture during the GNSS antenna calibration is not desired because of the antenna cable
(our experience shows that changes of twist of the cable) and in order to keep the travel time
between two orientations as succinct as possible. Keeping in mind that a full decorrelation is not
of interest, as the goal of the procedure is to reduce the variance of the positions and not to obtain
robot parameters, this method provides a very efficient way to reach this goal. Being unable to
fully decorrelate the parameters, a regularization was added by introducing the nominal parameters
as pseudo-observations with the weights shown in Table 5. The weights were chosen to reflect
the expected mechanical uncertainty, for instance 0.1 mm for length parameters. Empirical tests
confirmed this choice.
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Table 2. Standard deviation (STD) and Root Mean Square (RMS) error of the robot positions
acquired on 18.4.2018 without and with a simulated dilatation of all links assuming a thermal
expansion coefficient of 20 · 10−6 K−1 and a temperature difference of 20 degrees. Temperature
change leads to a bias but does not significantly increase the scatter of the measurements.

X [mm] Y [mm] Z [mm]

STD Reference 0.095 0.096 0.064

STD Reference + 20 deg 0.095 0.096 0.064

RMS Reference 0.095 0.096 0.064

RMS Reference + 20 deg 0.130 0.153 0.428

Table 3. KUKA robot calibration model parameters.

1 to 6 δΘ1 to δΘ6 Axis angle offsets

7 to 12 α1 to α6 DH parameters α

13 to 18 a1 to a6 DH parameters a

19 to 24 d1 to d6 DH parameters d

25 to 27 tx , ty, tz Tool offsets in x, y and z

28 to 30 α, β, γ Tool orientation as Euler sequence

31 to 33 t′x , t′y, t′z Robot coordinates in the world frame

34 to 36 α′, β′, γ′ Robot orientation in the world frame as Euler sequence

Table 4. List of the 8 additional points measured to estimate the orientation and the coordinates of
the robot in the world frame.

x [mm] y [mm] z [mm]

1 (5) 400 400 900 (1100)

2 (6) -400 400 900 (1100)

3 (7) 400 -400 900 (1100)

4 (8) -400 -400 900 (1100)
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Table 5. Weights for the regularization.

parameter weight unit

δΘ 10−2 rad

α 10−3 rad

a 10−1 mm

d 10−1 mm

t′x , t′y, t′z 1 mm

MEASUREMENT SET-UP
The image-based micro-triangulation system QDaedalus (Guillaume et al., 2012; Bürki et al.,

2010) was used for the determination of precise 3D coordinates (see Figure 5). It consists of
two total stations of the type Leica TCRP 1201 placed approximately at two meters distance from
the robot. Two stations are sufficient, but in principle every additional station would enhance the
observation geometry. The total stations have an angular accuracy of 0.3 mgon. The eyepiece
of the total stations was removed and replaced by a CCD-sensor. The target, which is mounted
on the robot, consists of a 5 mm sphere (see Figure 6). The sphere is illuminated by an LED
from its inside. On both stations, coaxial images are acquired with a rate of 20 Hz. A sphere
matching algorithm extracts the center of the spheres (see Figure 7) with an accuracy better than
a tenth of a pixel (Guillaume et al., 2012). A pixel on the CCD-sensor corresponds to four arc-
seconds, which corresponds to 0.1 mm at five meters. Through an affine transformation, these
image coordinates are related to horizontal and zenith angles. Both stations are synchronized with
GPS time and connected to a local network. On the master computer, the 3D line intersection is
performed in real-time in order to compute the 3D coordinates of the center of the sphere. The
real-time processing drastically reduces the amount of data that has to be stored. The result is a
time-series of the sphere coordinates. Before the measurements, the instruments are calibrated with
the on-board calibration program, in order to determine the instrumental errors (compensator error,
vertical index error and collimation error). After calibration of the instruments, measurements in
only one face (one telescope position) are automatically corrected for the instrumental errors. The
set-up is finalized by estimating the coordinates and the orientation of both stations. In the present
case, the high accuracy geodetic reference network (local accuracy of 0.1 mm) of the roof of the
Institute has been used. This network is our realization of the world frame. The optical targets of
the high precision network are marked in red in Figure 5. Because of the small size of the network
(2 to 3 m and one point further away for orientation), a standard model for atmospheric refraction
(coefficient of refraction of 0.13) is fully sufficient. The observations are processed in a geodetic
adjustment software. Because both stations measured the same reference points for the estimation
of their coordinates and orientation, and because these parameters were estimated within the same
adjustment, the relative position of the two theodolites with respect to each other is very well
defined (better than 0.1 mm).
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Interaction with the robot
Once the robot and the QDaedalus system are set-up, the robot calibration is fully autonomous

and needs no interaction. Because the target sphere shows only very small movements, it stays
always in the field of view of the theodolites (1 deg, 3.5 cm at 2 m distance) and no theodolite
telescope motion is required. During the robot movements, the sphere might briefly be lost, but
the measurement continue as soon as the sphere is visible again by the two total stations. The
computer controlling the robot is synchronized over an internet time-server (accuracy better than
1 ms) and writes out the start and the end time of every static position. This information is used
in postprocesing to align the QDaedalus measurements and the angular readings of the robot. As
every static position is maintained for 1 second, the whole robot calibration lasts less than 1 hour.
Offset estimation

The offset of the tool needs to be determined beforehand, as mentioned in the previous section.
In order to do so, the tool is brought in line with a QDaedalus station, as in Figure 8. Both, the
horizontal and the vertical angles are measured with the QDaedalus, before the tool is dismount
from the robot and rotated by 180 degrees. The angles are measured again, and half the angle
difference multiplied by the distance leads to the offset of the tool. The offset in Z was measured
with a slide gauge.
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Fig. 5. Optical micro-triangulation system QDaedalus. The pictures shows the two theodolites (T1
and T2), the housing of the CCD sensor installed instead of the theodolite’s eyepiece, the converging
lens, the black screen for enhanced contrast in the images which leads to better matching in sunny
conditions, the controller and three of the reference points (B1 to B3) of the high precision network.
Other reference points are located all over the Institute’s roof. The picture was taking during the
robot calibration sequence and the robot is in one of the 1440 orientations.
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Fig. 6. Illuminated spherical target mounted on the robot. The picture was taken during the offset
calibration.

Fig. 7. Sub-pixel accurate extraction of the sphere in the gray-scale image which was acquired by
the CCD camera through the telescope of the theodolite.
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Fig. 8. Tool offset measurement: the QDaedalus station and the robot tool are aligned with respect
to each other along the line of sight (LOS) in order to calibrate the tool offsets in X and Y. With
help of the theodolite, a very precise alignment can be achieved. The vertical and horizontal angles
are measured with QDaedalus. The operator is dismounting the tool in order to rotate it by 180
deg before the horizontal and vertical angles are measured again. The distance is measured with a
yardstick.

MEASUREMENT CAMPAIGNS
A total of four datasets were acquired in three campaigns. Table 6 summarizes these campaigns.

In the first campaign, two datasets A and B are acquired. The first goal is to verify that a set of DH
calibration parameters estimated out of the data A can be applied to reduce the standard deviation
of the positions calculated from dataset B. A second dataset was acquired seven days later. In
between, the robot was disconnected from power supply, dismounted from the roof and transported
to an office located nearby (20 m walking distance, the robot is manually lifted and transported
by 3 people). The goal of this robot calibration campaign 2 is to verify that the obtained DH
calibration parameters can be applied even after the robot was dismounted. This is very important,
as it corresponds to the current robot operation mode for GNSS antenna calibrations with the robot.

In the first three campaigns 1A, 1B and 2, no corrections are applied to the motion of the robot
(corresponding to an uncalibrated robot). The corrections are applied in post-processing and the
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Table 6. Information on the three campaigns conducted. The times are given in Central European
Summer Time (UTC+2), which is the local time. The temperatures were observed at a nearby
meteo-station (150 m away) during the time of the measurements.
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Calibration 1A 11.4.2018 0 1114 14:16 15:12 17

Calibration 1B 11.4.2018 0 1129 15:32 16:21 18

Calibration 2 18.4.2018 7 1101 15:40 16:35 23

Validation V 4.5.2018 23 199 14:07 14:15 17

residuals are analyzed. Our hypothesis is that a set of DH parameters can not only be used to correct
positions in post-processing but also in real-time and that the standard deviation will be reduced
in the same manner as if applied in post-processing. This means that the estimated DH calibration
parameters are used by the custom software steering the robotic arm. In order to verify this last
hypothesis, a validation dataset V was acquired in the last campaign, using the calibrated robot.
This last step is very important as well, as for GNSS antenna calibration, always the calibrated robot
will be used and no further corrections will be applied in the GNSS antenna calibration procedure.
If the robot is used with the DH calibration parameters, always the most recent set of DH parameters
is used. The validation dataset V is shorter than the 3 other datasets, but the conclusions will not
be affected as the order of the rotations in the sequence is randomized.

RESULTS
The results from the offset calibration, which is performed prior to the measurements according

to the method presented above, are shown in Table 7. Between campaign 1 and 2, the target was
removed from its mount and put back. This explains the changes in offset. The offsets in campaign
2 and V are expected to be identical, as the tool was not modified. The small difference is in good
agreement with the measurement accuracy of one and three hundredths of millimeters.

Figure 9 shows the histogram of the residuals before and after the estimation of DH parameters.
The pre-fit residuals were obtained by subtracting the computed from the observed positions. The
observed positions are provided by QDaedalus measurement, while the computed values are the
positions obtained from forward kinematics using the nominal DH parameters of Table 1. The
distribution is unsymmetrical and shows a standard deviation of roughly half a millimeter. The
lower part of the diagram shows the post-fit residuals. The standard deviation dropped significantly
to below 0.1 mm. The standard deviation of every component can be found in Table 8.

In the estimation process, the tool offsets were constrained to the precisely measured values
presented in the previous section. The DH parameters that resulted from this calibration (cam-
paign 1A) are displayed in Table 9 and their formal errors in Table 10. The improvement on
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Table 7. Results of the offset estimation. The standard deviations are the empirical standard
deviations. The offset in Z was measured with a slide gauge. The standard deviation of the slide
gauge measurement was empirically estimated to 0.07 mm.

X [mm] Y [mm] Z [mm] Std. dev. X [mm] Std. dev. Y [mm]

1 0.549 -0.099 82.615 0.007 0.002

2 0.445 -0.047 82.550 0.034 0.011

V 0.424 -0.037 82.550 0.007 0.005

the angular parameter is up to one hundredth of a rad (δΘ4) and half a millimeter for the length
parameters (d6). The formal errors reveal that 7 parameters out of the 24 are significant to 1σ or
more.

As correlation is present in the parameters (see the correlation matrix in Figure 10), the
interpretation of this significance based solely on the variance of a parameter has to be interpreted
conservatively. Regarding the strong correlations nearly reaching 1 or -1, the reader has to keep in
mind that a decorrelation of the parameters is not targeted, but only the reduction of the variance
of the positioning with the robot.

More interestingly, DH parameters determined once are able to reduce the variance of the robot
positions during later campaigns. The DH parameter estimated from dataset 1A were applied to
the data from campaign 1B and 2. With uniquely determined parameters, the standard deviation of
the robot positions can be reduced to below a tenth of a millimeter, as shown in Table 11.

Finally, a validation was conducted. The DH parameters estimated with the dataset 2 were
introduced into the robot controller and the positions of the robot were measured. Theoretically,
a reduction of the standard deviation to similar levels as before (below 0.1 mm) is expected. This
goal was achieved, as Table 12 confirms. The standard deviation of the robot positions is nine, eight
and six hundredths of a millimeter in X, Y and Z respectively. The correction of the position by
the robot is successful; the newly estimated DH parameters can be applied in the robot controller to
pilot the robotic arm in an open loop manner with a precision of several hundredths of millimeters.
The precision is only marginally improved by fitting the model through the validation data, as can
be seen from the second line in Table 12. Note that the very small value of 0.04 mm for the post-fit
standard deviation is probably due to two effects: i) the precision of the micro-triangulation system
is increased with smaller movements of the target and ii) the sequence consists of only 200 points.
Although the sequence is randomized, the shorter sequence could have a small impact. In order
to assess this effect, subsets of datasets 1A, 1B and 2 were analyzed. The full sets were found to
have an 18% larger standard deviation in average. The last line in Table 12 was scaled accordingly.
The robot positions measured with QDaedalus did not show this behavior in the other datasets,
therefore, no scaling needs to be applied.

170



Table 8. Pre- and post-fit standard deviation for the robot positions measured in campaign 1. The
standard deviation is computed empirically from the coordinate series and is a measure of the
position scatter.

Std. dev. X [mm] Std. dev. Y [mm] Std. dev. Z [mm]

Pre-fit 0.53 0.58 0.71

Post-fit 0.08 0.07 0.06
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Fig. 9. Histogram of the residuals of the X, Y and Z coordinates, before and after fit of the DH
parameter model for the dataset 1A.
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Table 9. DH parameters estimated from campaign 1A. * means the parameter change with respect
to the nominal geometry is significant to 1σ, ** to 2σ and *** to 3σ.

δΘ [rad] α [rad] a [mm] d [mm]

1 0.0000 1.5709 24.8968 400.0069

2 **0.0005 *0.0003 ***455.4262 -0.0166

3 1.5674 -1.5706 34.8471 -0.0166

4 ***0.0097 1.5708 -0.0942 **-419.7903

5 -0.0005 -1.5718 0.0057 0.0503

6 3.1414 3.1413 ***0.0575 ***-79.4468

Table 10. Formal errors (1 sigma) of the DH parameters estimated from campaign 1A. The standard
deviation of constrained parameters is left blank.

δΘ [rad] α [rad] a [mm] d [mm]

1 0.0002 0.1154 0.1191

2 0.0002 0.0002 0.0893 0.0963

3 0.0001 0.0003 0.0464 0.0963

4 0.0003 0.0003 0.0245 0.0858

5 0.0007 0.0007 0.1190 0.1028

6 0.0119 0.0001 0.0038 0.0336
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Fig. 10. Correlation matrix of the parameters.
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Table 11. Standard deviation of datasets 1B and 2 before any correction and after applying the DH
parameters estimated with dataset 1A. The standard deviation is computed empirically from the
coordinate series and is a measure of the position scatter.

Std. dev. X [mm] Std. dev. Y [mm] Std. dev. Z [mm]

1B pre-fit 0.51 0.58 0.70

1B corrected 0.11 0.08 0.05

2 pre-fit 0.56 0.57 0.73

2 corrected 0.12 0.12 0.08

Table 12. Standard deviation of the robot positions acquired during the validation. The positions
were executed by the robot using DH parameters estimated with dataset 2. The first line shows the
standard deviation of the unprocessed positions. The second line shows the standard deviation after
fit of the DH parameters were estimated. In the datasets with more than 1000 points, the whole
series (with all points) hat, in average, a 18% higher standard deviation than the first 200 points.
To account for this effect, the line with an asterisk was scaled accordingly. No such effect could be
observed in the robot positions measured with QDaedalus. Here, the subset of the first 200 points
systematically had a slightly lower standard deviation (up to 10%).

Std. dev. X [mm] Std. dev. Y [mm] Std. dev. Z [mm]

Direct robot positions 0.09 0.08 0.06

Post-fit residuals 0.04 0.04 0.04

Corrected Post-fit residuals* 0.05 0.05 0.05

SUMMARY
We were able to show that the precision of the uncalibrated KUKA Agilus KR 6 R900 sixx lies

around 0.5 to 0.7 mm and is therefore not sufficient for GNSS antenna calibration, which requires a
precision of 0.1 mm. A robot calibration model and a robot calibration procedure were developed
for the specific task of positioning scatter reduction for GNSS antenna calibration. This task was
accomplished successfully, as the standard deviations of the positions are reduced to below 0.1 mm.
This means that the scatter of the coordinates is smaller than 0.1 mm in terms of standard deviation.
The model developed uses a Denavit-Hartenberg parametrization to model the geometry of the
robot. This precision was achieved without a model of the robot joint elasticity. The calibration
procedure is highly efficient, as the measurements can be automatically achieved in less than one
hour. We showed that the estimated DH calibration parameters remain useful and efficient to
reduce the scatter of the positions of the robot, even after the robot was disconnected from its power
supply, moved to its storage location and moved back to the Institute’s roof. A validation showed
that the parameters can as well be used to pilot the robot, reaching similar precision as if the model
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parameters were estimated in post-processing.
The final result is a calibrated robot, which is now ready to be deployed for GNSS antenna

calibration. As by-product, a method for the precise estimation of X and Y offsets of the robot tool
was developed. The method shows repeatabilities of about a hundredth of a millimeter.

The results obtained could be further consolidated with additional studies: the behavior of the
robot under different loads (payload masses) should be further examined. A model of the robot
joint elasticity might enhance the precision with different payloads. Large temperature changes
within a calibration sequence should be studied as well. Finally, recalibrations in regular intervals
will reveal the long-term behavior of the robot and its calibration.
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ABSTRACT 
 

GNSS antennas suffer from errors, dependent on the direction of the incoming GNSS signal. These errors can be 

calibrated. We present an absolute field calibration method based on a 6-axis industrial robot. The antenna to 

be calibrated is set-up on the robot at one end of a short baseline. The robot brings the antenna into 1440 

different orientations without changing its coordinates, every orientation lasting for 1 second. The data is 

analyzed in a triple-difference approach. The estimated GPS L1 phase center corrections show a repeatability 

better than a millimeter (0.6 mm RMS). We belief that this new method is of interest to the scientific community, 

as only a few independent field calibration systems exits. 

 

INTRODUCTION 

 
GNSS antennas commonly used in geodesy as well as in navigation suffer from direction dependent errors. In the 

case of carrier phase observations, these errors typically lie in the range of a few to several millimeters in high-

quality antennas (Rothacher 2001), but can reach centimeter level in low-cost antennas (Willi et al. 2017). As the 

accuracy of carrier phase measurements reach millimeter level, these direction dependent errors are significant. 

Since the very beginning of GPS, the calibration of so-called Phase Center Corrections (PCC) has been attempted, 

for instance by Sims (1985), but the topic is still being investigated nowadays (Kallio et al. 2018). Although from 

a physical point of view, no such thing as a phase center exists, this terminology is widely used within the antenna 

calibration community. The methods for PCC calibration can be divided into three groups (Rothacher 2001): 
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 Relative field calibrations 

 Anechoic chamber measurements 

 Absolute field calibrations 

 

The three methods are summarized in Table 1. In relative field calibrations, baseline measurements between a 

reference antenna and the antenna to be calibrated are carried out (Rothacher et al. 1995). The data is analyzed 

and the result is a calibration relative to the reference antenna. The reference antenna can either be chosen by 

convention or an absolutely calibrated antenna can be used as reference. Field methods are easy to carry out 

but typically suffer from multipath. Relative field calibrations require at least 24h of data. 

In anechoic chamber measurements, an artificial signal is generated and sent to the antenna (Sims 1985, 

Tranquilla and Colpitts 1989, Schupler et al. 1994). The interference of the received with the original signal allows 

to measure the phase delay. Then, either the emitter is moved or the antenna is rotated, in order to cover the 

whole antenna hemisphere. Anechoic chamber measurements provide absolute PCC. The experiment is 

demanding in infrastructure and difficult to carry out, as the synchronization of all signals has to be very accurate.  

In order to combine the advantages of the two previous methods, namely obtaining absolute calibrations with 

reduced multipath, absolute field calibrations using robots were developed (Wübbena et al. 1997). Nowadays, 

this kind of calibration is performed routinely, e.g., by Geo++, the University of Hannover and the US National 

Geodetic Survey (Bilich et al. 2012, Görres et al. 2006). Geo++ and the University of Hannover use the same 

software, based on processing of zero-differences (Wübbena et al. 1997), and a 6-axis robot, the National 

Geodetic Survey uses a 2-axis robots and has plans to upgrade to a 6-axis robot (Bilich 2017). A 6-axis robot has 

the advantage of keeping the coordinates of the antenna reference point fixed during rotation. Beside these two 

groups, Geoscience Australia is using a robot from Geo++ and, in parallel, develops its own system (Riddell et 

al. 2015). 

The group for Mathematical and Physical Geodesy at ETH Zurich recently acquired a 6-axis robot (see Figure 1). 

In previous studies (Willi et al. 2017), antenna calibrations with the relative field method showed promising 

results.  However, due to the limitations inherent to the relative field calibration method, no conclusion about 

the impact of multipath on the results is possible. For that reason, an absolute robot calibration was set up. 

Compared to others, we use a triple-difference approach. Theoretically, and particularly in combination with high 

rate GNSS receivers and a fast robot, this method is very efficient. The next section holds details on the processing 

strategy followed by the latest results. 

 

 

Table 1 Summary of the three classes of methods for GNSS antenna calibration. 

 

Relative field calibration 

Anechoic chamber 

measurements Absolute field calibrations 

Real GNSS signal Yes No, artificial signal Yes 

Fast movement of 

the antenna 

No, manual rotation every 

24h 

Yes, rotation by a robot or 

displacement of the signal 

source 

Yes, rotation by a robot 

Multipath Present in the result Eliminated through design 

(chamber) 

Eliminated through data 

analysis 

Antenna coverage Limited by the horizon Unlimited Unlimited 

Infrastructure Virtually none Very demanding Demanding 
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Fig. 1 KUKA Agilus KR 6 R900 sixx industrial robot for absolute antenna calibrations. 

 
GOVERNING EQUATIONS 

 

The Antenna Reference Point (ARP) is the mechanical reference mark of an antenna. The Mean Phase Center 

(MPC) is an arbitrary point, which usually represents a best-fit phase center.  The Phase Center Offset (PCO) links 

the coordinates of the ARP 𝑿𝐴𝑅𝑃 and the MPC 𝑿𝑴𝑷𝑪: 

 

 𝑿MPC = 𝑿ARP + 𝑷𝑪𝑶 (1) 

 

The PCO is meant to reduce the size of the direction-dependent corrections Φ𝐴: 

 

 Φ𝐴
𝑖 =  Φ𝐴(𝛼𝑖, 𝑧𝑖) (2) 

 

where Φ𝐴
𝑖  is the Phase Center Variation (PCV) correction function for the range measurement between satellite 

𝑖 and antenna 𝐴, 𝛼𝑖 is the azimuth of the received signal and 𝑧𝑖  its zenith angle, both with respect to an antenna 

reference frame. The observation equation for a phase measurement subsequently reads: 

 

𝑃𝐴
𝑖 =  𝒆𝐴

𝑖 T
(𝑿𝑖 − (𝑿ARP + 𝑷𝑪𝑶)) + 𝑐 𝛿𝑡𝐴 − 𝑐 𝛿𝑡𝑖 + 𝜆 𝑁𝐴

𝑖 + Φ𝐴
𝑖 + 𝑇𝐴

𝑖 − 𝐼𝐴
𝑖 + 𝑊𝐴

𝑖 + 𝑣𝐴
𝑖  

= 𝜌𝐴
𝑖 + 𝑐 𝛿𝑡𝐴 − 𝑐 𝛿𝑡𝑖 + 𝜆 𝑁𝐴

𝑖 + Φ𝐴
𝑖 + 𝑇𝐴

𝑖 − 𝐼𝐴
𝑖 + 𝑊𝐴

𝑖 + 𝑣𝐴
𝑖  

  (3) 

 

𝑃𝐴
𝑖  is a phase measurement from GNSS satellite 𝑖 to antenna 𝐴 and 𝜌𝐴

𝑖  is the corresponding geometrical distance. 

𝒆𝐴
𝑖  is the line-of-sight unit vector.  𝑿𝑖  is the position, at signal emission time, of the emitting GNSS satellite 

antenna. 𝑐 is the speed of light, 𝛿𝑡𝐴 is the receiver clock error, 𝛿𝑡𝑖  is the GNSS satellite clock error, 𝜆 is the carrier 

phase wavelength, 𝑁𝐴
𝑖  is the integer phase ambiguity, Φ𝐴

𝑖  is the PCV, 𝑇𝐴
𝑖  is the tropospheric signal delay, 𝐼A

𝑖  is the 

ionospheric signal delay, 𝑊𝐴
𝑖  is the phase wind-up, and 𝑣𝐴

𝑖  is the observation noise. This equation is in agreement 
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with the ANTEX sign convention (Rothacher and Schmid, 2006). From Eqs. 1 to 3 it is clear that the choice of the 

MPC is purely arbitrary, if a consistent PCV is applied. One could chose the MPC to coincide with the ARP, leading 

to a PCO of zero. In this case, the whole correction would be contained in Φ𝐴
𝑖 . Historically, this is not the case as 

often PCO were applied but Φ𝐴
𝑖  was not. Therefore, it made sense to have a PCO which approximates the MPC 

as good as possible. The combination of PCO and PCV is called PCC. A PCV and PCO pair can be transformed to 

another PCO with using following relationship: 

 

 Φ′(𝛼, 𝑧) = Φ(𝛼, 𝑧) + 𝒆T(𝑷𝑪𝑶′ − 𝑷𝑪𝑶) (4) 

 

where Φ′ is the PCV that belongs to 𝑷𝑪𝑶′ and Φ is the PCV that belongs to 𝑷𝑪𝑶. If used consistently, as in Eq. 3, 

both pairs lead to the same total correction; they are the same PCC. 

The PCV correction function can be modelled either as a grid or as a spherical harmonics expansion. In the case 

of a grid, the correction value for each range is obtained after two linear interpolations, one in azimuth and one 

in elevation, between the four closest cell corners. Figure 2 illustrates this process. In the estimation process, the 

huge number of parameters in his parametrization can be problematic. A typical resolution of 5 degrees results 

in 1296 parameters. Moreover, the observations are inhomogeneously distributed among the grid cells. The cells 

close to zenith cover a much smaller solid angle than the grid cells close to the horizon. Therefore, very often, 

the spherical harmonics approach is preferred: 

 

Φ𝐴(𝛼𝑖, 𝑧𝑖) =  ∑ ∑ 𝑃̃𝑚𝑛(cos 𝑧𝑖)

𝑚

𝑛=0

(𝑎𝑚𝑛 cos 𝑛𝛼𝑖 + 𝑏𝑚𝑛 sin 𝑛𝛼𝑖)

𝑚max

𝑚=0

 

  (5) 

 

𝑃̃𝑚𝑛 is the normalized associated Legendre polynomial of degree m and order n, 𝑎𝑚𝑛 and 𝑏𝑚𝑛 are the coefficients 

to be estimated. Typically, patterns are estimated with spherical harmonics up to degree and order 12. 

 

 

Fig. 2 Illustration of the grid interpolation process. The four red dots are the values at the grid cell corners. 

These values are the parameters of the estimation process. The interpolated value at 𝛼0 and 𝑧0 are obtained 

after linear interpolation in azimuth (leading to the green dots) and a linear interpolation along the zenith 

angle. The out-of-plane axis holds the values of Φ(𝛼, 𝑧) at each of the dots. 
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Degree of freedom 

 

Both parametrizations, the grid and the spherical harmonics, are fundamentally different and differ in their 

respective degree of freedom. For a gridded PCV, the number of parameters equals: 

 

 𝑘𝑔𝑟𝑖𝑑 = (
90

𝑟𝑒𝑠𝑧𝑒𝑛
+ 1)

360

𝑟𝑒𝑠𝑎𝑧
 (6) 

 

Where 𝑘𝑔𝑟𝑖𝑑  is the number of parameters, 𝑟𝑒𝑠𝑧𝑒𝑛  is the resolution in zenith (in degrees) and 𝑟𝑒𝑠𝑎𝑧 is the 

resolution in azimuth (in degrees). This result is obtained assuming that the values for 𝑎𝑧 = 360 deg equal the 

grid values for 𝑎𝑧 = 0 deg (explaining the absence of a +1 on the right hand side of Eq. 6). The absolute term of 

the pattern correlates with the receiver clock error, as can be seen from Eq. 3: any constant value added on Φ𝐴
𝑖  

would be fully absorbed by 𝑐 𝛿𝑡𝐴. In order to avoid any singularity, the zenith values of the pattern are therefore 

constrained to zero. This reduces the number of parameters, leading to: 

 

 𝑘𝑔𝑟𝑖𝑑 =
90

𝑟𝑒𝑠𝑧𝑒𝑛
⋅

360

𝑟𝑒𝑠𝑎𝑧
 (7) 

 

In summary, a 10 x 10 deg2 resolution grid has 324 parameters, a 5 x 5 deg2 grid 1296. A resolution below 

10 degrees is not suitable for PCV whereas a resolution higher than 5 degrees seems not practical because of the 

high number of parameters. It is not necessary to set up the PCO as explicit parameters, as the grid can absorb 

any offset (see Eq. 4). The whole PCC will then be contained in the PCV. 

In the most frequent case that the degree and order is equal (𝑚 = 𝑛), the number of parameters of a spherical 

harmonics expansion is: 

 

 𝑘𝑆𝐻 = (𝑚 + 1)(𝑛 + 1) (8) 

 

With 𝑚 being the degree and 𝑛 the order of the spherical harmonics expansion (see also Eq. 3). This count does 

not include the terms 𝑏𝑚𝑛, 𝑛 = 0, since sin 𝑛𝛼𝑖 = 0, if 𝑛 = 0. The term 𝑎00 is the absolute term and correlates 

with the clock; it has to be constrained to zero (see Figure 3).  The spherical harmonics are designed to represent 

a scalar field on a sphere and not only its upper hemisphere. As no observations are present in the lower 

hemisphere of the antenna, the odd terms of the spherical harmonics expansion must be constrained to zero. 

The odd terms are depicted in green in Figure 3. We end up with following number of parameters: 

 

 𝑘𝑆𝐻 =
(𝑚+2)(𝑛+1)

2
 (9) 

 

Typical resolutions for spherical harmonics developments of PCV are degree and order 8 or degree and order 12, 

resulting in 45 respectively 91 parameters. Table 2 summarizes the two parametrizations, grid and spherical 

harmonics. 
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Fig. 3 Spherical harmonics coefficient up to degree and order 5. The red term is the absolute term that 

correlates with the receiver clock error. The blue terms represent the PCO and the green terms represent anti-

symmetry. The terms 𝑏𝑚0 are not shown in this figure. 

 

 

 

Table 2 Summary of the two parametrizations for PCV. 

 Grid Spherical harmonics 

Number of parameters 90

𝑟𝑒𝑠𝑧𝑒𝑛

⋅
360

𝑟𝑒𝑠𝑎𝑧

 
(𝑚 + 2)(𝑚 + 1)

2
 

Typical resolution 1 10 x 10 deg2 Degree and order 8 

Number of parameters 324 45 

Typical resolution 2 5 x 5 deg2 Degree and order 12 

Number of parameters 1296 91 
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Triple-difference approach 

 

The antenna to be calibrated is mounted on the robot nearby to a reference station. Eight measurements from 

two antennas to two satellites at two different epochs are differenced against each other, leading to the triple-

difference formulation (see also Figure 4): 

 

𝑃𝐴𝐵,𝑡1𝑡2

𝑖𝑗
= (𝑃𝐵

𝑗
− 𝑃𝐴

𝑗
− 𝑃𝐵

𝑖 + 𝑃𝐴
𝑖)

𝑡2
− (𝑃𝐵

𝑗
− 𝑃𝐴

𝑗
− 𝑃𝐵

𝑖 + 𝑃𝐴
𝑖 )

𝑡1
 

  (10) 

 

Where 𝑃𝐴𝐵,𝑡1𝑡2

𝑖𝑗
 is a carrier phase triple-difference observation, 𝑃𝐴

𝑖  is a zero-difference phase observation (see 

Eq. 3), 𝑡1 and 𝑡2 are the two measurement epochs, 𝑖 and 𝑗 stand for the two GNSS satellites, 𝐴 stands for the 

antenna to be calibrated and 𝐵 for the reference antenna. Under the assumption that the baseline is short and 

that therefore the ionosphere and the troposphere effects are eliminated, substitution of Eq. 3 into Eq. 10 leads 

to the following expression: 

 

𝑃𝐴𝐵,𝑡1𝑡2

𝑖𝑗
= (𝜌𝐵,𝑡2

𝑗
− 𝜌𝐴,𝑡2

𝑗
− 𝜌𝐵,𝑡2

𝑖 + 𝜌𝐴,𝑡2
𝑖 ) − (𝜌𝐵,𝑡1

𝑗
− 𝜌𝐴,𝑡1

𝑗
− 𝜌𝐵,𝑡1

𝑖 + 𝜌𝐴,𝑡1
𝑖 )

+ (Φ𝐵(𝛼𝐵,𝑡2

𝑗
, 𝑧𝐵,𝑡2

𝑗
) − Φ𝐴(𝛼𝐴,𝑡2

𝑗
, 𝑧𝐴,𝑡2

𝑗
) − Φ𝐵(𝛼𝐵,𝑡2

𝑖 , 𝑧𝐵,𝑡2
𝑖 ) + Φ𝐴(𝛼𝐴,𝑡2

𝑖 , 𝑧𝐴,𝑡2
𝑖 ))

− (Φ𝐵(𝛼𝐵,𝑡1

𝑗
, 𝑧𝐵,𝑡1

𝑗
) − Φ𝐴(𝛼𝐴,𝑡1

𝑗
, 𝑧𝐴,𝑡1

𝑗
) − Φ𝐵(𝛼𝐵,𝑡1

𝑖 , 𝑧𝐵,𝑡1
𝑖 ) + Φ𝐴(𝛼𝐴,𝑡1

𝑖 , 𝑧𝐴,𝑡1
𝑖 ))

+  (𝑊𝐵,𝑡2

𝑗
− 𝑊𝐴,𝑡2

𝑗
− 𝑊𝐵,𝑡2

𝑖 + 𝑊𝐴,𝑡2
𝑖  ) − (𝑊𝐵,𝑡1

𝑗
− 𝑊𝐴,𝑡1

𝑗
− 𝑊𝐵,𝑡1

𝑖 + 𝑊𝐴,𝑡1
𝑖  ) + 𝑣𝐴𝐵,𝑡1𝑡2

𝑖𝑗
 

  (11) 

 

where 𝑣𝐴𝐵,𝑡1𝑡2

𝑖𝑗
 is the triple-difference noise which is 2√2 times higher than the zero-difference observation noise. 

The phase ambiguities, provided no cycle slips occurred between the two epochs, have vanished. Cycle slips will 

appear as outliers in the triple-difference residuals. As the reference antenna 𝐵 is not rotated and because the 

time between 𝑡1 and 𝑡2 is only a few seconds, 𝛼𝐵,𝑡1
≈ 𝛼𝐵,𝑡2

, 𝑧𝐵,𝑡1
≈ 𝑧𝐵,𝑡2

 and 𝑊𝐵,𝑡1
≈ 𝑊𝐵,𝑡2

. Introducing these 

simplifications into Eq. 11 and merging the geometric terms into a single expression leads to: 

 

𝑃𝐴𝐵,𝑡1𝑡2

𝑖𝑗
= 𝜌𝐴𝐵,𝑡1𝑡2

𝑖𝑗
− Φ𝐴(𝛼𝐴,𝑡2

𝑗
, 𝑧𝐴,𝑡2

𝑗
) + Φ𝐴(𝛼𝐴,𝑡2

𝑖 , 𝑧𝐴,𝑡2
𝑖 ) + Φ𝐴(𝛼𝐴,𝑡1

𝑗
, 𝑧𝐴,𝑡1

𝑗
) − Φ𝐴(𝛼𝐴,𝑡1

𝑖 , 𝑧𝐴,𝑡1
𝑖 ) − 𝑊𝐴,𝑡2

𝑗
+ 𝑊𝐴,𝑡2

𝑖

+ 𝑊𝐴,𝑡1

𝑗
− 𝑊𝐴,𝑡1

𝑖 + 𝑣𝐴𝐵,𝑡1𝑡2

𝑖𝑗
 

  (12) 

 

At this stage, it is obvious that the triple-differences mainly reflect the difference in pattern of the antenna to be 

calibrated. As the phase wind-up terms do not vanish for the antenna to be calibrated, they are modelled. Further 

information on phase wind-up can be found in Wu et al. (1993). Eq. 12 supposes that the whole PCC is contained 

in the PCV. Otherwise, the PCO would explicitly appear in this equation (in 𝜌𝐴𝐵,𝑡1𝑡2

𝑖𝑗
). 

Another way of thinking about triple-differences is in term of rates. Triple-differences are time-differences of 

double-differences. As nearly all effects vanish in double-differences taken over very short baselines (for example 

the troposphere and the ionosphere), these effects do not show up in triple-differences. Only the PCV rate of the 

antenna to be calibrated (i), the change in geometry (ii) and the phase wind-up (iii) are present in the triple-

differences. The PCV rate (i) is artificially increased by rotating the antenna 𝐴 between the two epochs 𝑡1 and 𝑡2, 

leading to 𝛼𝐴,𝑡1
≠ 𝛼𝐴,𝑡2

and 𝑧𝐴,𝑡1
≠ 𝑧𝐴,𝑡2

. The change in geometry (ii) is due solely to the motion of the GNSS 

satellites in the time interval between 𝑡1 and 𝑡2. The coordinates of the nominal MPC of the antenna to be 

calibrated is kept fixed in space during the calibration. In consequence, the relative position between the 

reference antenna and the antenna to be calibrated remains unchanged during the whole calibration and the 

relative coordinates between the two antennas vanish to the first order. The red line in Figure 4 illustrates this 

constant baseline.  

The PCV of the reference antenna vanishes to first order as well: Φ𝐵  is absent from Eq. 12. This proves that the 

triple-difference approach leads to an absolute calibration. This is in opposition to calibrations obtained with a 
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double-difference approach: the PCV of the reference antenna does not vanish and therefore, the calibrations 

are not absolute but relative to the reference antenna. Note that Eq. 12 is very well suited to get an intuitive 

understanding of the estimation procedure. In practice, however, Eq. 11 is used to compute the observation 

equation, in order to include the mentioned second order effects.  

 

 

 

 

 

 

 

Fig. 4 Schematic representation of triple-differences used for GNSS antenna calibration. The upper part shows 

the antenna to be calibrated (𝐴) and the reference antenna (𝐵) during epoch T1. The lower part shows the 

second epoch. The orientation of antenna 𝐴 changes between the epochs, its coordinates however remain 

unchanged. Therefore, the baseline show in red is unchanged as well. 
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EXPERIMENTAL SET-UP 

 

The KUKA Agilus KR 6 R900 sixx robot holding the antenna to be calibrated is set up at one end of a 5 m 

baseline, the reference antenna on the other end (see Figure 5). The reference antenna is a reference station 

grade Septentrio PolaNt Choke Ring B3/E6 antenna with dome, mounted on a geodetic pillar. Each of the 

antennas is connected to a Septentrio PolaRx5 geodetic multi-GNSS receiver. 

 

Calibration sequence 

 

The software QKuka, developed at the Chair of Mathematical and Physical Geodesy at ETH Zurich, controls the 

motion of the KUKA robot. The robot itself was calibrated before the measurements by means of an optical 

micro-triangulation system. This ensures that the coordinates of the nominal MPC are kept fixed in space with 

an accuracy of 0.1 mm (Willi and Guillaume, 2018). The robot calibration parameters obtained from the micro-

triangulation, including the orientation and the position of the robot in the WGS84 frame, are used by the QKuka 

software and applied during the GNSS antenna calibration sequence. The GNSS antenna calibration sequence 

consists of 1440 different orientations. The base position of the antenna is horizontal and north pointing. Firstly, 

rotations around the antenna vertical axis are applied in 7.5 degrees steps (leading to 48 different orientations). 

Secondly, the antenna is tilted in 5 degrees steps up to 70 degrees of tilt (leading to 15 different orientations). 

The robot tilts the antenna around the y-axis, in order to make the north marker point towards the ground. The 

resulting 720 orientations are put in a randomized order. Finally, two random rotations between 0 and 

360 degree around the antenna vertical axis are applied, leading to the final 1440 orientations. The 

randomization ensures a good distribution of the satellites over the antenna hemisphere. Furthermore, the 

randomization ensures that time correlated effects do not have a systematic effect on the final estimation of the 

PCV. Examples for such effects are residual errors in the robot motion, multipath that is not eliminated by triple-

differencing or second order errors due to errors in the PCV of the reference antenna. 

 

 

 

Fig. 5 GNSS antenna calibration set-up. The KUKA robot with a JAVAD GrAnt-G3T antenna (to calibrate) is 

visible in the foreground on the left. On the right, on the white pillar, the reference antenna of type Septentrio 

PolaNt Choke Ring B3/E6. The length of the baseline is approximatively 5 m. 
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Processing 

 

The robot stays stationary for one second at every of the 1440 orientations, while the average time needed to 

drive from one orientation to the next is approximately one second as well. The QKuka software logs the start 

and the end of the robot motion. QKuka is synchronized by a NTP time server, guaranteeing an accuracy better 

than one millisecond. This information is used to align the 20 Hz GNSS measurements with the robot 

orientations. One second per orientation and 20 Hz measurements is a good tradeoff between the number of 

measurements and the total duration of the calibration sequence. On the one hand, the calibration sequence 

lasts less than one hour. On the other hand, approximatively 20 measurements per satellite are available for 

every orientation, allowing for reasonable outlier detection and rejection and a meaningful statistical analysis. 

The triple-differences are formed sequentially in time, as displayed in Figure 6. Every observation is used only 

once. Because every observation is used only once, the triple-differences for orientation 𝑘 and 𝑘 + 1 are 

independent from the triple-differences for orientation 𝑘 + 1 and 𝑘 + 2 and the adjustment can be processed 

sequentially. Unity weighing is applied to the zero-difference observations and the variance-covariance of the 

triple-differences is obtained after error propagation. The traditional way of weighting observations is a 

decreased weight with decreasing satellite elevation. This is a consequence of the combination of (i) the longer 

travel path of signals through the atmosphere and (ii) a smaller GNSS antenna gain for low elevation. The longer 

travel distance through the atmosphere (i) leads to higher variance of the observations. Furthermore, the signal 

received at low elevations experience less signal gain because of the gain pattern of the GNSS antenna (ii), which 

decreases their signal to noise ratio and increases the measurement noise. Decreasing weight with decreasing 

satellite elevation is meaningful for static antennas because these two effects combine. This is not the case for a 

rotating antenna, which is potentially tilted in every direction; a low elevation satellite might be received with 

the maximal antenna gain since the signal enters the antenna at its top. Rather than applying a weighting scale 

without theoretical evidence, we decided to apply unit weighting. 

 

 

 

 

 

 

Fig. 6 Illustration of the sequential differencing process. Every stripe is a GNSS measurement epoch. The last 𝑛 

epochs of orientation 𝑘 are subtracted from the 𝑛 first epochs of orientation 𝑘 + 1. Every observation is used 

only once. Supernumerary observations are discarded (for example the 5th observation, shown in black). In case 

of 20 Hz measurements and 1 second lasting orientations, 𝑛 ≈ 10. 
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CALIBRATION CAMPAIGN RESULTS 

 

A JAVAD GrAnt-G3T geodetic grade GNSS antenna underwent a measurement campaign on 31.1.2018. Three 

independent calibrations were performed. Table 3 shows the start and the end time of the three calibration 

sessions. The same calibration sequence was used for the three session. The first 25 minutes of calibration 1 

could not be processed, because the measurements are of too poor quality: a very high number of outliers is 

present in this section of the data. The reason is unknown and the problem could not be reproduced. Possible 

hypothesis are connection problems between the antenna and the receiver or interferences (unintentional 

jamming). The data was processed according to the theory and the methodology presented in the previous 

sections. GPS L1 PCV based on four different parametrizations were generated. Table 4 summarizes the four 

chosen parametrizations. 

 

Repeatability 

 

Figure 7 illustrates three PCV maps based on a SH12 parametrization. The three PCV were estimated with three 

different datasets (campaign 1, campaign 2 and campaign 3), using a 20 degree elevation cut-off. At first sight, 

the pattern look very similar. The main structures are present in all three patterns, namely a plateau at small 

zenith angles, a hole around azimuth 100 degrees and 60 degrees zenith angle and four main peaks at 90 degrees 

zenith angle. Calibration 1 differs more, which is due to the fewer data, as mentioned above.  

In order to compare two PCV maps, four transformation parameters between the two PCV maps are estimated 

in a least-squares adjustment and the residuals are analyzed. The spherical harmonics PCC were evaluated at the 

grid points of a 5 x 5 deg2 grid beforehand. The four parameters are the PCO components 𝛿𝑋, 𝛿𝑌 and 𝛿𝑍 (see 

Eq. 4) and a constant term. Because spherical harmonics are periodic signals, comparisons have to be interpreted 

with care; a phase shift between the two PCV maps for example would lead to significant differences. The PCO 

components 𝛿𝑋, 𝛿𝑌 and 𝛿𝑍 must be interpreted conservatively as well, as equally weighted grid points are used 

to estimate the four parameters. Keeping these aspects in mind, the split into PCO difference and PCV difference 

serves the ease of interpretation. 

Another way of comparing PCC would be to analyze coordinate differences between two sets of PCC, as done by 

Kallio et al. (2018) in a real data experiment. This approach however raises other questions, as the dependency 

of coordinate repeatability to the satellite geometry or sensitivity to the elevations cut-off angle. 

Figure 8 displays the difference between the PCV from campaign 2 and the PCV from campaign 3. The graphical 

difference shows a better agreement for elevations mid-range than for very high zenith angles. The numerical 

comparison in Table 5 confirms the very good agreement between the PCV patterns from the three campaigns. 

Keeping in mind that campaign 1 is weaker, the differences between campaign 2 and campaign 3 are more 

representative: the difference in horizontal offset is in the range of 0.2 to 0.3 mm, in vertical offset in the range 

of half a millimeter. The root mean square differences (RMS) is of about 0.6 mm, which indicates a very good 

agreement between the three maps. The maximum and minimum errors are between approximatively -3 mm to 

3 mm. They occur close to 90 degrees zenith angle, where the magnitude range of the PCV maps is approximately 

-3 mm to 6 mm. Overall, these numbers indicate a sub-millimeter repeatability of the PCV estimation. 

The difference in vertical offset of 0.59 mm however is higher than expected. Visual inspection of the PCV values 

for small zenith angles in Figure 7 reveals the origin of these differences. The slope of this very first part of the 

three patterns is different. However, the questionable part of the pattern covers only a tiny part of the antenna 

if projected onto a hemisphere and the differences in vertical offsets are clearly overestimated. This is well 

illustrated by the increase of RMS of only 0.02 mm from 0.62 mm to 0.64 mm when 𝑑𝑍 is constrained to zero 

(see second line of Table 5). 
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Table 3 Start and end time of the three calibrations performed on 31.1.2018 with the JAVAD GrAnt-G3T 

geodetic grade antenna and the PRN numbers of the visible GPS satellite. *The first 25 minutes in calibration 1 

were discarded because of poor quality. The reason therefor is unknown. 

 Start time (GPS time) End time (GPS time) GPS PRN #'s 

Calibration 1 10 h 26 min 53 sec*  11 h 6 min 27 sec 2, 12, 14, 24, 25, 29, 31, 32 

Calibration 2 12 h 21 min 32 sec  13 h 0 min 44 sec 21, 25, 26, 29, 31 

Calibration 3 14 h 27 min 31 sec  15 h 6 min 43 sec 16, 20, 21, 26, 27, 29, 31 

 

 

 

 

Table 4 The four chosen parametrizations. 

SH8 Spherical harmonics Order and degree 8 

SH12 Spherical harmonics Order and degree 12 

Grid10 Grid 10 x 10 deg2 

Grid5 Grid 5 x 5 deg2 

 

 

 

Table 5 Quantitative comparison between the PCV of campaign 1, 2 and 3 (SH12 parametrization). 𝛿𝑋, 𝛿𝑌 and 

𝛿𝑍 are the difference in offset (see Eq. 4), RMS is the root mean square of the residuals and Min and Max are 

the minimum and maximum residuals. * indicates that 𝛿𝑍 was constrained to zero. 

campaigns 
𝛿𝑋 

[mm] 

𝛿𝑌 

[mm] 

𝛿𝑍 

[mm] 

RMS 

[mm] 

Min 

[mm] 

Max 

[mm] 

31 – 32  -0.03 0.31 1.25 0.64 -2.93 3.45 

31 – 33  0.16 0.35 1.84 0.60 -2.49 2.24 

32 – 33  0.19 0.04 0.59 0.62 -1.95 2.57 

*32 – 33  0.18 0.04 *0 0.64 -1.77 2.90 
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Fig. 7 PCV of campaign 1 (top left), campaign 2 (top right) and campaign 3 (bottom). The parametrization is 

SH12. The three patterns show the same major structures. Differences arise for low elevations. 

 

 

 

Fig. 8 Residuals between the PCV of campaign 2 and campaign 3 (SH12 parametrization). 
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Formal errors 

 

Error propagation leads to formal errors between 0.8 mm and 0.9 mm for the PCV map (not shown). These values 

are in good agreement with the empirical repeatability. Figure 9 shows the ratio between the absolute value of 

a parameter and its standard deviation: 77 out of the 91 unconstrained parameters are significant to 1𝜎 or more. 

This indicated that the estimated pattern is significantly present in the data. The standard deviation of an 

observation a posteriori is 1.55 mm, 1.19 mm and 1.70 mm for campaign 1, 2 and 3 respectively.  

 

Sensitivity to elevation cut-off 

 

The sensitivity of the results to a change in elevation cut-off angle is an indicator for the impact of multipath. The 

repeatability over different sessions, as presented in the previous section, provides an indication about multipath 

as well, as multipath is time varying. However, the repeatability is potentially also affected by changes in the 

satellite constellation geometry. Table 6 holds the results: campaign 2 was processed with an elevation angle of 

20 degrees, 25 degrees and 30 degrees. The RMS of the differences does not exceed 0.2 mm. The maximal errors 

are below 1.5 mm. This indicates that the PCV maps are well decorrelated from multipath, as satellites in low 

elevations are typically more likely subject to multipath, as low elevation signals have more opportunities to 

interact with reflectors on ground (Braasch 2017). 

 

Parametrization 

 

Figure 10 presents the two grids, Grid10 and Grid5, estimated with the data from campaign 2. Due to the high 

number of parameters, the estimations are extremely noisy. The main features visible within the spherical 

harmonics expansions (see Figure 7) are visible as well (for instance the hole at 100 degrees azimuth and 

60 degrees zenith angle). The four peaks at low elevations are present as well, at least in the Grid10 variant. Note 

that a 10 degree elevation cut-off angle was used to estimate the grids. A cut-off angle of more than 20 degree 

led to singularities, because not all parameters are observed anymore.  

Figure 11 presents the SH8 and the SH12 parametrizations, applied on the same dataset (campaign 2). 

Expectedly, the resolution increases with a higher degree and order of the spherical harmonics expansion. The 

main features, however, are preserved even if the resolution is decreased to order and degree 8. In general, both 

patterns look very similar. Table 7 holds a quantitative comparison. The RMS of the difference is below 0.3 mm 

and the maximal and minimal errors do not exceed 1.5 mm. As both parametrization, SH8 and SH12, converge 

to a similar result, we are confident that a SH12 parametrization is a reasonable choice: A further increase in 

degree and order would reveal more details, but not fundamentally change the PCV map. 
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Fig. 9 Ratio between the magnitude of a parameter and its standard deviation for campaign 2 and the SH12 

parametrization. Parameters significant to 3𝜎 are shown in red (55 parameters), to 𝜎 in green (22 parameters) 

and not significant parameters (14 parameters) are shown in blue. The parameters shown in black 

(91 parameters) were constraint to zero during the adjustment (see previous section). The parameters appear 

in following order: 𝑎00, 𝑎10, 𝑎11, 𝑎20, … , 𝑎87, 𝑎88, dashed line, 𝑏00, 𝑏10, 𝑏11, 𝑏20, … , 𝑏87, 𝑏88. Please observe that 

the coefficients 𝑏𝑛0 are present in this plot, which is not the case in Figure 3. 

 

 

Table 6 Quantitative comparison between the PCV of campaign 2 (SH12 parametrization) with 20 degrees, 

25 degrees and 30 degrees elevation cut-off. 𝛿𝑋, 𝛿𝑌 and 𝛿𝑍 are the difference in offset (see Eq. 4), RMS is the 

root mean square of the residuals and Min and Max are the minimum and maximum residuals. 

elevation masks 
𝛿𝑋 

[mm] 

𝛿𝑌 

[mm] 

𝛿𝑍 

[mm] 

RMS 

[mm] 

Min 

[mm] 

Max 

[mm] 

20 deg – 25 deg  -0.02 0.00 0.04 0.06 -0.26 0.26 

20 deg – 30 deg  0.00 -0.02 -0.16 0.18 -1.43 0.78 

25 deg – 30 deg 0.01 -0.02 -0.20 0.16 -1.26 0.61 

 

 

 

Table 7 Quantitative comparison between the SH8 and the SH12 PCV (campaign 2). 

elevation masks 
𝛿X 

[mm] 

𝛿Y 

[mm] 

𝛿Z 

[mm] 

RMS 

[mm] 

Min 

[mm] 

Max 

[mm] 

SH12 - SH8 -0.03 -0.01 0.04 0.28 -1.36 1.42 
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Fig. 10 Grid10 (left) and Grid5 (right) parametrizations (estimated with data from campaign 2). The 5 degrees 

zenith angle cells were combined to only 4 values, the 10 degree zenith angle cells were combined to only 

8 values in order to avoid singularity. For that reason, the right images looks "pixelated" for the values with low 

zenith angles. Both grids were estimated using a 10 degrees elevation cut-off angle. 

 

 

 

 

Fig. 11 SH8 (left) and SH12 (right) parametrizations (estimated with data from campaign 2). 
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CONCLUSIONS 

 

We successfully set up a calibration procedure for GNSS antennas using a KUKA industrial robot. The estimated 

patterns are plausible. A close look at the formal errors revealed that the PCC are significant. In the case of 

spherical harmonics, 77 out of the 91 parameters were significant to 1𝜎 or more. We investigated the 

repeatability of the pattern over three session distributed among a quarter of a day. The repeatability is better 

than a millimeter (RMS of about 0.6 mm), indicating a very good consistency. Another test showed that the PCC 

are mostly insensitive to a change in the elevation cut-off angle, giving evidence for a good decorrelation from 

multipath. The RMS difference was always smaller than 0.2 mm. All results were generated with a calibration of 

only about 40 minutes length. We belief that our calibration system is of interest to the scientific community, as 

it is already able to provide a fully independent PCV estimation for GPS L1 using real signal. 

 

Outlook 

 

At the time of writing, two Trimble Zephyr antennas, previously individually calibrated by Geo++, are being 

calibrated with the new system. The goal is a comparison of the Geo++ PCC with our fully independent PCC. If 

the comparison is successful, PCC for other GNSS and other signals will be estimated. The employed GNSS 

receivers as well as the processing software is ready for all new signals, including Galileo E5. 

Additional investigations will contribute to bring the system to more maturity. We see two main fields of 

improvements: The length of the calibration sequence (i) has to be optimized. The current calibration sequence 

is rather short. We expect that longer calibration sequences further increase the results. The weighting of the 

observations (ii) is currently unitary. A signal to noise ratio dependent weighting could enhance the results. A 

zero-baseline test will show whether such a weighting scheme suits the observations or not. 
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