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Viewpoint-tolerant Place Recognition combining 2D and 3D information
for UAV navigation

Fabiola Maffra, Zetao Chen and Margarita Chli
Vision for Robotics Lab, ETH Zurich, Switzerland

Abstract— The booming interest in Unmanned Aerial Vehi-
cles (UAVs) is fed by their potentially great impact, however
progress is hindered by their limited perception capabilities.
While vision-based odometry was shown to run successfully
onboard UAVs, loop-closure detection to correct for drift or to
recover from tracking failures, has so far, proven particularly
challenging for UAVs. At the heart of this is the problem
of viewpoint-tolerant place recognition; in stark difference to
ground robots, UAVs can revisit a scene from very different
viewpoints. As a result, existing approaches struggle greatly as
the task at hand violates underlying assumptions in assessing
scene similarity. In this paper, we propose a place recognition
framework, which exploits both efficient binary features and
noisy estimates of the local 3D geometry, which are anyway
computed for visual-inertial odometry onboard the UAV. At-
taching both an appearance and a geometry signature to each
‘location’, the proposed approach demonstrates unprecedented
recall for perfect precision as well as high quality loop-
closing transformations on both flying and hand-held datasets
exhibiting large viewpoint and appearance changes as well as
perceptual aliasing.

Video–https://youtu.be/8VkR_nSbR34
Datasets–http://www.v4rl.ethz.ch/research/

datasets-code.html

I. INTRODUCTION

With small Unmanned Aerial Vehicles (UAVs) sparking
great interest for a plethora of potential applications ranging
from digitization of archaeological sites to search-and-rescue,
there has been an increasing body of research dedicated
in automating their navigation. As Spatial understanding
forms the basis of autonomous robot navigation, a variety
of techniques for robotic egomotion estimation and map
building that perform SLAM (Simultaneous Localization and
Mapping) have been proposed in the literature. In addition,
addressing place recognition by determining whether a robot
returns to a previously visited place is a key competence to
enable the creation of accurate maps, relocalization and even
collaboration between different robots performing SLAM,
essentially opening up the way towards long-term operation
of robotic platforms in real world scenarios. However, the
agility and portability of small aircraft comes at the cost
of small payload and as a result, limited computational
capabilities. Current solutions involve restricting the onboard
memory of past experiences by limiting the size of the SLAM
map (e.g. as in [1]). As small estimation errors are usually
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Fig. 1: A loop in the UAV dataset correctly detected by the
proposed approach, despite the large viewpoint change and
the mismatches caused by repetitive scene structure. This
challenging dataset was captured with the UAV in the inset
and it is being made publicly available.

accumulated over time, restricting the estimation process
to a limited window accentuates the problem of drift even
further, highlighting the need for suitable place recognition
techniques. Moreover, the agility and dynamicity of UAV
manoeuvres pose particular challenges in place recognition,
as the same place needs to be estimated from very different
viewpoints.

Inspired by the challenges of place recognition from aerial
imagery, in this paper, we present a scalable framework to
identify loop-closures in a robot’s trajectory using low cost,
binary features suitable for UAV navigation. As UAV navi-
gation is one of the hardest scenarios for place recognition,
the portability of the proposed method to other platforms
(e.g. a ground robot) with simpler motion and computational
constraints should be straightforward. Moreover, while the
vast majority of works in this domain restrict their operation
to a decision whether there has been a loop closure or
not, here, we go a step further to accurately estimate the
transformation between the matching robot poses, which can
be directly used in a subsequent optimization step. Designed
to be interfaced with a keyframe- and vision-based odometry
system, the proposed pipeline is shown to outperform the
state of the art on both indoor, aerial sequences evaluated
on ground-truth data from a highly accurate tracking system
(i.e. Vicon), as well as outdoor hand-held and aerial urban
sequences against GPS position information. To encourage
further research and benchmarking in viewpoint-tolerant
place recognition our challenging datasets are being made
publicly available. Figure 1 illustrates an example of a
successful loop detected by the proposed approach designed
to cope with large viewpoint changes and perceptual aliasing.
The main contributions of this work are:
• a new, carefully designed place recognition pipeline

especially developed for robot navigation, which avoids



false positive loop closures at all costs, exhibiting
robustness to viewpoint changes, and

• new datasets with visual-inertial information and
manually-annotated ground-truth capturing viewpoint,
illumination and situational changes, suitable to test
place recognition approaches.

II. RELATED WORK

Place recognition, also referred to as loop closure de-
tection, is usually addressed using appearance-based cues.
Typically, two main tasks must be accomplished to address
place recognition: (a) query a database of images to find
possible similar locations and then (b) determine which,
if any, of these images represents the same place as the
query. Identifying whether a robot is revisiting a place by
directly matching a query image to all images into a database
containing its previously visited locations is very inefficient.
For this reason, either a Bag of Words approach (BoW)
approach [2] with an inverted file index or a descriptor voting
scheme [3] are usually applied in the first task followed by
a geometric consistency check in the latter one. The widely
known BoW approach relies on discretizing the space of
feature descriptors generated using a set of training images
to build a dictionary of visual words and then representing
new images as a set of visual words it contains. Several
well-performing algorithms using a BoW representation were
proposed in the literature, with FABMAP [4] considered to
be one of the most successful pipeline for place recognition.

A less popular approach is to consider global image
representations, instead of traditional feature-based represen-
tations. In PTAM [5] for example, a smaller and blurred
version of the original keyframe image was used as a
descriptor of a place, which implies that for relocalization
(i.e. loop-closure detection) an exhaustive search across the
entire database of images is necessary to identify a potential
correlation match. SeqSLAM [6] has demonstrated very
impressive recall rates on scenes with dramatic changes in
lighting (day/night), however, the method still lacks invari-
ance (e.g. in viewpoint) and relies on using long sequences
of images to tackle perceptual aliasing of the query location.
Moreover, the scalability of such methods is more limiting
than with feature-based BOW approaches, where indexing
and searching for matches can be done more efficiently.

More recently, Convolutional Neural Networks (CNNs)
have been successfully applied to solve the place recognition
problem under extreme changes in appearance (e.g. time of
the day, weather, seasons as well as human activity and
occlusions). While [7] and [8] train a CNN to learn a
compact image representation suitable to place recognition,
another common strategy cast the place recognition problem
as a classification task [9], [10]. While impressive results
have been obtained by using deep learning techniques, this
approach still very computational expensive. While efforts
to reduce the computational complexity exist [11], place
recognition using deep learning remains unsuitable for real-
time estimation onboard a small UAV with small payload
and limited computational capabilities.

Place recognition onboard a small UAV is a particularly
challenging problem; the dynamicity and agility of a small
UAV means that it is very likely to approach the same scene
from a wide range of viewpoints, which is by definition
fatal for global image-representation techniques, while fea-
ture based BoW approaches also struggle greatly. This is
inherently a very different problem from the traditional place
recognition on a car in the streets of a city as addressed
in [4] and [6]. The need for unique and repeatably recog-
nizable features is all the more important in order to allow
viewpoint-invariant recognition. As a result, current methods
choose to work with the highest quality of feature detectors
and descriptors, such as SIFT [12] and SURF [13]. These
features, however, are typically far too expensive to employ
onboard a small UAV, which renders most of the existing
place recognition techniques unusable.

Interestingly, features with binary descriptors, such as
ORB [14], BRISK [15] and FREAK [16] promise similar
matching performance to SIFT or SURF at a dramatically
low computation, however, it becomes far more difficult to
cluster them into visual words in a BoW approach. The
work in [17] was the first in the literature to use binary
features for place recognition, however, the precision-recall
characteristics of this method still very sensitive to noise.

Another interesting line of research that has recently
appeared makes use of learning techniques to overcome the
large viewpoint differences from ground to aerial images.
While these wide baselines are not usually addressed in place
recognition systems, novel algorithms to air-ground matching
have been proposed in complementary areas [18], [19], [20].
Despite the impressive aforementioned algorithms, we still
lack a robust solution that overcomes the large viewpoint
differences between images captured from a UAV, while
keeping onboard computation affordable for a long-term
place recognition system.

Finally, while most of the place recognition systems ig-
nores the underlying structure and geometry between features
when comparing features sets, a handful of works have
investigated how to incorporate some geometric information
in their location models, such as in [21], where locations are
represented by both visual landmarks and a distribution of
the distances between them in 3D coming from range-finders
or stereo cameras. Instead of relying on additional sensors to
obtain 3D landmark positions, in [22] landmarks are tracked
between successive images using a single camera, recording
the binary covisibility between landmarks in a graph-based
map of the world. In the general case, the graph matching
problem in undirected graphs is an NP-hard problem. As a
result, there are still open questions on how such techniques
can be efficiently and sufficiently approximated to provide
the robustness necessary for place recognition for a UAV.

III. METHODOLOGY

The proposed framework is designed to be employed
within the loop of robot navigation, so we assume that
a vision-based SLAM/odometry system using a keyframes
paradigm runs on a separate thread. A hierarchical Bag of



Fig. 2: The proposed Place Recognition Pipeline, first queries the current keyframe Q for an appearance match consulting
the BoBW vocabulary, the database of visited keyframes (i.e. known ‘locations’) and the keyframes’ covisibility graph
maintained by the SLAM system. If Q appears similar enough to a database image, the candidate matching keyframes are
checked for similarity in their geometry of features both in 3D (local map space) and in 2D (image space).

Binary Words (BoBW) visual vocabulary is formed in binary
descriptors’ space with an inverted file index to efficiently
query at runtime, the database of keyframes captured during
the robot’s trajectory for loop-closures. The workflow com-
prises of two consecutive checks as illustrated in Figure 2; an
Appearance Check making use of the keyframe-covisibility
information captured by SLAM refines and removes er-
roneous loop-closure candidates suggested by the BoBW
descriptors, before a Geometric Check tests for matches
in the configuration of features (in 3D and in 2D) in the
candidate keyframe matches that survive the Appearance
Check. A successful Geometric Check denotes loop closure
detection; in this case the system does not only provide the
matched keyframes, but also the best rigid transformation
found between them.

A. Visual-Inertial Keyframe-based SLAM

With the ultimate goal of place recognition for a UAV, we
assume that a nominal monocular-inertial SLAM system is
running in the background, as this is a widely accepted sensor
setup for small aircraft with limited payload [1], permitting
absolute scale estimation. The proposed system, however, is
agnostic to the keyframe- and vision-based SLAM system
to be used (i.e. no inertial sensing is necessary). In this
work and throughout our experiments, we employ the open-
sourced OKVIS visual-inertial SLAM/odometry framework
of [23], [24], while we have developed a Covisibility Graph
data-structure similarly to [25], where any two keyframes
(nodes) share an edge if they share enough 3D landmarks.
This approach is more adaptive than choosing a fixed number
of consecutive images to represent a location. As SLAM
keyframes can provide both the detected features (in this
case BRISK [15]) in image space and the local 3D map,
a new entry is created in the Image Database for every
new SLAM keyframe. Each such entry comprises of an
appearance signature of the corresponding keyframe, namely
its BoBW descriptor and a geometry signature that is the
local, sparse 3D map of keypoints that this keyframe has

been associated with.

B. Building the BoBW Visual Vocabulary

Opting for a hierarchical visual vocabulary [17], the
proposed method describes an image as a collection of
words combined with an inverted file index allowing efficient
retrieval in a large database of images. While features,
such as SURF [13] and SIFT [12] are well-established and
known to provide stable detection and high quality descrip-
tion of corresponding image areas, their prohibitively high
computational cost has been driving research in robotic vi-
sual perception towards the computationally cheaper binary-
descriptor alternatives, such as BRISK, ORB [14] and BRIEF
[26]. Clustering binary instead of floating point descriptors,
however, to form visual words is still subject to research, as
a bit flip could potentially change a descriptor’s mapping to
the words space, resulting to low word repeatability and thus,
violating one of the basic assumptions of the bag-of-words
approach.

Following the approach suggested by Galvez and Tardos
[17], we create a visual vocabulary adapted to the binary
features used by OKVIS, namely BRISK [15], effectively
reusing any features extracted in the loop of SLAM. The aim
here is to exploit any scale and rotation invariance offered
by BRISK. It should be noted that the descriptor size used
within OKVIS consists of 48 bytes (instead of 64 as in
the original implementation) and the feature orientation is
aligned with the gravity since the inertial sensor provides
this. To compute the BoBW vocabulary we discretize the
48-byte BRISK descriptors’ space using about 3500 training
images in total. These depict indoor and outdoor environ-
ments and are different to the ones used at runtime. The
resulting vocabulary tree has 10 branches and 6 depth levels
resulting to a vocabulary of a million words.

C. Appearance Check

The first step to place recognition is to check the current
query keyframe Q against the Image Database for any entry



(a) Precision-Recall curves (b) Recall: Shopping Street 1 (c) Recall: Shopping Street 1 & 2

Fig. 3: Precision & Recall analysis. Testing in Shopping Street 1, in (a) the proposed method outperforms FAB-MAP 2.0
and DBoW2. Maintaining perfect precision, in (b) and (c), recall is monitored for variable reprojection error thresholds for
the proposed method in full (i.e. using all geometric checks) and using 3D checks only. Accepted inliers are varied from 10
(very restrictive) to 5 (most relaxed). Even in the more challenging dataset used in (c), the proposed method outperforms
the 3D only approach and DBoW2 by a large amount.

with similar appearance. To this end, the BoBW descriptor
of Q is scored based on its L1-distance to Database entries,
using a ‘term frequency–inverse document frequency’ (tf-
idf) weighting scheme [27] to suppress commonly occurring
words to form the set S of matching keyframe candidates.
Following the approach of [25], the set NQ of immediate
neighbours of Q in the Covisibility Graph (i.e. depicting
common scene structure) is formed, recording the mini-
mum similarity score smin between Q and any member
of NQ computed as the L1-distance between their BoBW
descriptors. Any candidate matching keyframes in S that
score lower similarity to Q than smin or already belong
to NQ are removed from S. All remaining members of S
undergo non-maximum suppression within their immediate
neighbourhood in the Covisibility Graph; all members of
such a covisibility group are scored for their similarity to Q
and the corresponding entry in S is replaced with the highest
scoring keyframe in each group. If the sum of the highest
N scores in one such group does not reach at least 75%
of the best score across all groups, the corresponding entry
in S is removed entirely. Finally, every surviving candidate
in S is checked for covisibility consistency with at least 3
candidate matches surviving the last Appearance Checks (i.e.
corresponding to the two previous query keyframes). Two
keyframes are defined to be covisibility-consistent if their
covisibility groups share at least one keyframe. This last step
aims to eliminate candidates in S that do not share similar
appearance with the previous query keyframes.

D. Geometric Check

The BoW approach discards all spatial information be-
tween visual words by definition, accepting as a match
two different images having the same words regardless
of their constellation. While in ground robot navigation
scenarios this might be enough [4], in UAV navigation,
where very different viewpoints are expected, geometric
verification of an appearance match is imperative. Moreover,
while traditionally, place recognition techniques stop short of

estimating a relative transformation between the matching
frames (e.g. this would be enough in image retrieval), in
robot navigation, this information constitutes very useful
input to a subsequent optimization step to enforce the loop
closure that is detected and avoid local minima. Realising
this, [25] implement a geometrical validation step employing
the Horn method [28], which given two sets of 3D map
points with known correspondences, estimates a 3D rigid
transformation between them if enough inliers are found.
However, for dynamic camera motion with large viewpoint
changes, SLAM systems struggle to find enough correct 3D
map points needed for a successful Horn test resulting to
much fewer loops detected than actually experienced.

The first priority in place recognition is to avoid false
positive loop detections, however, false negatives become of
particular interest in viewpoint-challenging cases as they oc-
cur far more commonly than in any other scenario, effectively
limiting our ability to correct for accumulated drift. In this
spirit, here we propose to first use the 3D-3D Horn’s geomet-
ric verification and if this proves unsuccessful, check for a
2D-3D geometric consistency using the method of [29]. This
provides a closed-form solution to the Perspective-Three-
Point (P3P) problem for the full transformation between two
camera poses in the world reference frame using at least
three 2D-3D point correspondences.

For every keyframe candidate C (member of S) to match
Q that reaches the Geometric Check we compute the BRISK
correspondences between them, limiting the correspondence
search only to the keypoints that have a 3D landmark as-
sociated with them. Erroneous correspondences are removed
using a second Nearest Neighbour (2nd NN) test [12], while
we also apply bidirectional matching to discard ambiguous
matches. If enough 3D-3D correspondences are found, we
attempt to verify the 3D-3D geometry between Q and C
by estimating their rigid transformation TQC using Horn
within a RANSAC scheme. However, if this approach fails
to estimate a transformation with at least N inliers the 2D-
3D geometry verification is attempted. In order to expand



the set of correspondences to consider, the 2D keypoints in
Q are tested for matches with the image projections of all
3D landmarks present in C, following the strict biderectional
and 2nd NN tests. If enough 3D-2D correspondences are
available we use the P3P method of [29] in a RANSAC
scheme to try to estimate TQC . If a transformation that
satisfies a minimum threshold on the average reprojection
error in pixels is found, C is accepted as a loop closure for Q.
After looping through all the candidates in S for a Geometric
Check, the proposed method returns the TQC with the highest
number of inliers (i.e. points with a reprojection error is
smaller than a pre-defined threshold) and the corresponding
C. For our tests we usually define this threshold to be smaller
than 2 pixels, the minimum number of matches as 12 and
the number of inliers to accept a loop as 8.

IV. DATASETS

While datasets containing outdoor visual and inertial
information, such as KITTI [30] exist, they are typically
unsuitable to evaluate place recognition methods on. In
KITTI for example, most sequences exhibit mainly forward
camera motion with a front-looking camera, rendering it very
difficult to correctly label the images for ground truth. For
this reason, the datasets used in this work were recorded
especially for place recognition applications using both flying
and hand-held setups in the city center of Zurich with a
side-looking camera, permitting clear decisions on ground
truth labelling. These manually labelled datasets are being
made publicly available, given that there are no other public
datasets suited to place recognition providing ground truth,
visual and inertial data as well as posing viewpoint and
situational challenges as described below.

While we use our recorded datasets to assess the quality
of the proposed pipeline in deciding whether the camera’s
trajectory experiences a loop closure, in order to test the
quality of the proposed transformation, we use the publicly
available EuRoC Micro Aerial Vehicle (MAV) dataset [31]
providing indoor visual and inertial data from a flying UAV,
which has its poses recorded by a Vicon external tracking
system, providing very accurate full pose information. All
the datasets in this work were recorded with a Visual-Inertial
(VI) sensor [32] providing grayscale global-shutter images at
20 Hz and synchronized inertial measurements. In our tests,
we perform monocular-inertial estimation by using only the
information provided by one of the cameras of the sensor.

A. Shopping Street 1 and 2

These two datasets were recorded in a busy shopping street
in the city center of Zurich using two different configurations.
Shopping street 1 uses a hand-held setup, while Shopping
Street 2 was recorded months later in the same area us-
ing a 4m-long rod held vertically in order to capture the
same scene from very different viewpoints. Shopping Street
1 consists of two traverses in the same street exhibiting
small viewpoint changes, perceptual aliasing and appearance
changes. We combine both sequences Shopping Street 1
and 2 obtaining a challenging dataset for place recognition,

(a) Shopping Street 1

(b) Shopping Street 1 & 2

Fig. 4: Example loop-closures from the Shopping Street
dataset tested with the proposed approach. The loop-closured
in (a) demonstrate robustness of the proposed approach to
viewpoint changes and small motion blur (bottom left). In
(b), the top image is an example of a loop detected across
the Shopping Street 1 and 2 sequences exhibiting big changes
in viewpoint and scene appearance, while the bottom image
depicts a false negative, where the viewpoint and illumination
changes proved too large for a loop-closure match.

with major changes in the scene appearance, challenging
lighting conditions and also strong viewpoint variations.
Examples are shown in Figure 4. These sequences were
already successfully applied in a place recognition scenario
in our previous work [33].

B. UAV dataset

This sequence was recorded along a residential street using
the VI sensor mounted on the bottom of an AscTec Neo
UAV (visible in the inset of Figure 1) in a front-looking
configuration, while performing lateral movements with the
UAV in both directions. This sequence exhibits perceptual
aliasing as well as large variance in viewpoints and difficult
lighting conditions as evident in Figure 7 and Figure 1.

V. RESULTS

We evaluate the proposed approach on datasets labelled
with ground truth as described in Section IV and compare
to the state of the art by analyzing their precision-recall
characteristics. Moreover, as the proposed pipeline does not
only provide a yes-or-no decision, but goes on to suggest a



Fig. 5: Left: Error in the translation estimates of the transformation TQC between two loop-closing keyframes (each pair
represented by one Loop ID) averaged over 10 runs. Right: the UAV poses obtained with OKVIS (blue dots) and the loop
closures with their corresponding ID annotated in green. Loop ID 5 is shown in the inset.

transformation between the matching keyframes to be used
in a subsequent optimization step to enforce loop closure,
we also evaluate the quality of these estimates. We present
quantitative and qualitative evaluations on both hand-held
and aerial scenarios.

A. Precision-Recall Characteristics

We record the precision-recall characteristics of the pro-
posed method against FAB-MAP 2.0 [4], which is consid-
ered as the most well-established place recognition pipeline
designed to combat perceptual aliasing. Moreover, as the
method proposed in this paper employs binary features and
draws inspiration from the DBoW2 approach of [17] we also
compare to its performance. These tests are conducted on the
Shopping Street 1 sequence. We test the proposed approach
using a vocabulary composed of outdoor images captured
in Zurich different to the ones used for testing. FAB-MAP
and DBoW2 are tested using their corresponding original
vocabularies. As evident in Figure 3 (a), the proposed ap-
proach achieves higher recall across all methods for perfect
precision (i.e. equal to 1). The robustness of the proposed
method is illustrated qualitatively in Figure 4. FAB-MAP
is particularly challenged as it employs appearance-only
checks in deciding for a loop-closure, while our approach
and DBoW2 incorporate also geometric checks. DBoW2
exhibits high recall for perfect precision in Shopping Street 1,
however, our improved geometric checks result to improved
recall, which becomes particularly evident when testing with
Shopping Street 1 & 2, where the viewpoint and other
challenges are far greater. FAB-MAP precision-recall rates
drop drastically (both to less than 0.1) in this case and
DBoW2 detects four loops only. Despite that all of them
are correct, they are far fewer than the total number of loop
closures. The yellow curve in Figure 3(c) illustrates the recall
reached by DBoW2 while varying the reprojection error.

As the proposed pipeline aims at greater robustness to
viewpoint changes as well as to clean up false appearance
matches, we employ both a 3D-3D geometric test similarly
to ORB-SLAM [25], as well as a 3D-2D geometric test. A

comparison on precision versus recall to ORB-SLAM would
not be fair, however, as it was designed to conduct loop-
closure tests that are well spaced in time instead of testing
at every keyframe as in the proposed method. The type and
quality of features used as well as the estimation processes
involved in ORB-SLAM in comparison to OKVIS have a
direct impact on the quality of the performance of place
recognition. So, here we isolate the effect of the 3D-3D and
the 3D-2D geometric tests of the proposed pipeline to analyse
the performance in both Shopping Street 1 alone and the
dataset comprised of both Shopping Street 1 and 2 as shown
in Figure 3 (b) and (c), respectively.

Retaining perfect precision, we monitor the recall obtained
for variable reprojection error dictating the number of inliers
agreeing with the transformation proposed using RANSAC.
While one might expect that introducing the 3D-2D geo-
metric checks as a second chance for a candidate loop-
closure following a failed 3D-3D geometric check would
have a negative impact on the precision-vs-recall trade-off,
Figure 3(b) shows that higher recall can be achieved for
the combined tests while retaining perfect precision. The
added challenges in the Shopping Street 1 & 2 setup (greater
changes in illumination, viewpoint and appearance as seen in
Figure 4), indeed causes lower overall recall in Figure 3(c),
but the combined 3D and 2D tests of the proposed approach
still outperform the 3D only checks without compromising
precision.

Traditionally, the answer to the question posed by place
recognition techniques on whether we are re-visiting an
already known place is binary (i.e. yes or no). Since our aim
is to employ viewpoint-tolerant place recognition to indicate
loop closures within SLAM, a first suggestion of the relative
transformation between the loop closing frames (defined as
TQC) is not only very useful to a subsequent optimization
step, but also an indication of the quality of the geometric
checks used to decide for a loop closure in the first place.
In the proposed scheme, the estimation of TQC comes as a
by-product of the Geometric Check step.

We use the EuRoC Vicon Room 2 03 sequence of the



EuRoC MAV dataset, which provides high-precision ground-
truth poses for the UAV throughout this sequence. Upon
the detection of a loop closure, we evaluate the quality of
TQC against ground-truth testing for both the full pipeline
described in Section III and when using the 3D-3D geometric
checks only. For both variants of our pipeline, we accumulate
the estimated translation error across 10 runs as illustrated
in Figure 5. It should be noted that due to the randomised
nature of RANSAC, some loops are not detected in all runs.
For completeness, we also analyse the translation error in
the loop-closing transformations estimated by ORB-SLAM
in the same scenario, seen on the right of Figure 5. Relocal-
ization was triggered many times due to ORB-SLAM losing
track, while different keyframes are selected in each run,
rendering it harder to detect the same loops across different
runs than with OKVIS. Even without considering the lower
recall of ORB-SLAM, Figure 6 illustrates that the translation
error in TQC is much larger than with the proposed approach.

As evident in Figure 5, the inclusion of the 3D-2D
geometric tests can sometimes result to bigger translation
error in the estimation of TQC , as expected. In fact, loops 15
and 16 result to considerable error given the size of the room,
where the dataset was recorded. However, out of the 17 loops
detected by the full pipeline, only 4 have been detected when
using the 3D checks only. It should be highlighted that many
of the loop-closing transformations estimated by the full
approach were still computed using Horn’s 3D-3D method,
since the covisibility consistency check did not fail (as in the
3D-only case); given that 3 consecutive consistent keyframe
matches are needed before accepting a loop closure, the
additional loop detections provided by the 3D-2D checks
lead to correct detection of more true-positives. The vast
majority of the additional detections exhibit error of the
same order as the more restrictive 3D only checks (i.e.
less than 50cm), in stark contrast to the much larger error
characteristics of ORB-SLAM in Figure 6.

In conclusion, while the addition of inertial sensing can
indeed result to better quality maps in OKVIS in comparison
to ORB-SLAM, even when isolating the 3D only checks
used in ORB-SLAM but using OKVIS maps, the proposed
approach is evidently boosting recall and achieves better
quality of loop-closing transformations TQC . While TQC is
only a suggestion subject to further optimization in a bundle
adjustment or pose-graph optimization step, the closer the
estimate is to reality, the better the chances of subsequent
convergence of the map to the global minimum. As a result,
while the proposed use of additional 3D-2D checks can
result to noisier transformations, these are still better than in
ORB-SLAM and the sometimes dramatic increase in recall
is evidently beneficial and can really make a difference in
viewpoint-challenging scenarios.

B. UAV Experiments

The proposed approach was tested using the UAV dataset,
exhibiting the biggest challenge for viewpoint-tolerant place
recognition as visible in Figure 7. Added challenges, such as
in illumination can cause false negatives as feature detection

Fig. 6: The translation error in TQC as estimated by ORB-
SLAM for the scenario of Figure 5 (note: the loops detected
here are different). Colors represent loops closed in each of
the 10 runs, as different loops are detected every time.

Fig. 7: Loop-closures in the UAV dataset tested with the
proposed approach. Large viewpoint changes are success-
fully handled (top two rows), while strong lighting can wipe
crucial features out resulting to false negatives (bottom).

is compromised. The loop-closures detected by our approach
are visible (in green) in Figure 8. ORB-SLAM was also
tested using this sequence, but no loops were detected.

C. Computational Cost

Feature extraction is usually the bottleneck in place recog-
nition systems. With this in mind, the proposed method is
re-using features extracted during the estimation of SLAM,
enabling loop-closure detection at frame rate (i.e. 20Hz) in
all the experiments presented in this paper. As the BRISK
descriptor used within OKVIS consists of 48 bytes only,
this restricts its descriptability posing bigger problems in
loop detection, but makes descriptor comparisons even more
efficient. Moreover, more relaxed conditions in the RANSAC
scheme can be created in order to improve even more the
performance, but the quality of transformations can also be
affected.

VI. CONCLUSIONS
This paper proposes a novel pipeline for viewpoint-tolerant

place recognition that makes use of promising leads from ex-
isting works, combining them in a way that enables unprece-
dented robustness to a wide range of common challenges



(i.e. tolerance to viewpoint, lighting changes, occlusions,
perceptual aliasing, etc). The proposed pipeline was carefully
designed to support low-burden computation and to take
advantage of any scale and rotation invariance offered by
BRISK using combined geometric checks that exploit not
only the 2D information inherent in images but also the 3D
information provided by a SLAM system.

Evaluation on newly recorded challenging outdoor datasets
with both hand-held and aerial footage demonstrates that
the proposed pipeline achieves better, or even drastically
increased at times, recall in comparison to the state of
the art, while maintaining perfect precision. Since no other
such dataset appears in the literature, we make our testbed
publicly available. Further evaluation on the quality of the
estimated loop-closure transformation on an existing, indoor
aerial dataset with pose ground truth reveals better quality of
estimation than state of the art. Future work will study more
extreme viewpoint changes and their impact on both simi-
larity of appearance (e.g. consistency of word assignments)
as well as geometry estimated by SLAM.

Fig. 8: Trajectory followed by the UAV in the UAV dataset.
In blue/red are the UAV trajectories when travelling in op-
posite directions and in green are the loop-closures detected.
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