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Abstract

Diversity in phosphorus (P) acquisition strategies was assessed among eight isolates of arbuscular
mycorrhizal fungi (AMF) belonging to three Glomus species, all obtained from the same field site. Maize
(Zea mays L. cv. Corso) was used as a test plant. Compartmented cultivation containers coupled with 33P
radioisotope labeling of soil P were employed to estimate (1) the distance from the roots that AMF were
able to acquire soil P from, (2) the rate of soil colonization, (3) the efficiency of uptake of soil P by AMF, (4)
benefits provided to maize in terms of P acquisition and growth. Glomus mosseae and G. intraradices took
up P 10 cm from roots, whereas G. claroideum only up to 6 cm from the roots. G. mosseae most rapidly
colonized the available soil volume and transported significant amounts of P to maize from a distance, but
provided no net P uptake benefit to the plants. On the other hand, both G. intraradices and three out of four
G. claroideum isolates significantly improved net P uptake by maize. These effects seem to be related to
variability between and to a limited extent also within AMF species, in mycelium development, efficiency of
hyphal P uptake and effects on plant P acquisition via the root pathway. In spite of absence of maize
growth responses to inoculation with any of the AMF isolates, this study indicates remarkable functional
diversity in the underground component of the studied field site.

Abbreviations: AMF – arbuscular mycorrhizal fungi; ANOVA – analysis of variance; G. – Glomus; HLD –
hyphal length density; LSD – least significant difference; MPR – mycorrhizal P uptake response; NM –
nonmycorrhizal; P – phosphorus; PAR – photosynthetically active radiation (400–700 nm); SPA – specific P
activity (kBq 33P/mg P)

Introduction

The association between terrestrial plants and ar-
buscular mycorrhizal fungi (AMF) is one of the
most widespread and most ancient symbioses on
Earth (Redecker et al., 2000; Simon et al., 1993;
Trappe, 1987). It involves majority of plant spe-
cies but only a small group of fungi consisting of
about 150 described species (Clapp et al., 2002;
Smith and Read, 1997). The specificity of AMF

association with plants is relatively low (Bever,
2002). This means that the same AMF species
can colonize different host plants and also that
one host plant can be colonized by different
AMF species. Several different AMF species can
simultaneously colonize a single plant root sys-
tem (Jansa et al., 2003a; McGonigle and Fitter,
1990; Merryweather and Fitter, 1998; van Tuinen
et al., 1998).

AMF are able to take up mineral nutrients with
limited mobility in the soil such as phosphorus (P)
from beyond the P depletion zone formed around* FAXNo:+41-52–3549119. E-mail jan.jansa@ipw.agrl.ethz.ch
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roots (Cooper and Tinker, 1978; Sanders and
Tinker, 1971; Smith et al., 2001). In exchange,
these fungi have direct access to reduced carbon
compounds derived from plant photosynthesis
(Shachar-Hill et al., 1995). Upon establishment of
AMF colonization, plants can absorb P both di-
rectly at the soil–root interface through root epider-
mis and root hairs (root uptake pathway) and
through AMF hyphae in soil (mycorrhizal uptake
pathway; Smith et al., 2003). Functional differ-
ences have been recognized among AMF species.
These include different rate of root colonization
(Graham and Abbott, 2000; Hart and Reader,
2002a), mycelium spreading capacity in the soil
(Jakobsen et al., 1992a,b; Smith et al., 2000),
fungal P metabolism and P transfer to plants
(Boddington and Dodd, 1999), and carbon require-
ments from the host plant (Hart and Reader,
2002b; Jakobsen et al., 2002; Smith and Smith,
1996). Most of this knowledge has been gathered
from studies with a few AMF isolates belonging
to different genera or species (,isolate� here refers
to progeny of one or several spores of an identi-
fied AMF that has been propagated in sterilized
cultivation medium under controlled conditions).
Previous studies reported that e.g. Glomus sp. and
Acaulospora laevis can take up P from greater
distances (up to 11.7 cm) from clover roots than
Scutellospora calospora (Jakobsen et al., 1992b;
Li et al., 1991; Smith et al., 2000) and that
G. intraradices is more efficient than G. mosseae in
uptake of soil P from a distance greater than 3 cm
from the roots (Drew et al., 2003). There is, how-
ever, very little other evidence about variability
among different Glomus species in P uptake from
the soil at different distances from roots. On the
other hand, studies of functional differences with-
in AMF species indicated important variation
among isolates of the same AMF species with re-
spect to plant growth response, mycelium growth
pattern, and spore production per unit of hyphal
length, while the P uptake per unit of hyphal
length seemed more conserved on AMF species
level (Koch et al., 2004; Munkvold et al., 2004;
Stahl et al., 1990; Stahl and Christensen, 1991).

Although plant roots are often simultaneously
colonized by several AMF species, functional
consequences of this phenomenon remain
largely unknown and speculative (Koide, 2000;
Merryweather and Fitter, 1998). Koide (2000)

has proposed that colonization of roots with
functionally complementary AMF may be more
beneficial to the plant than colonization with any
of the fungi separately. It is, however, inherently
difficult to support this theory quoting results of
previous studies that all involved AMF isolates
of different origins. The only exception we are
aware of is the study of Koch et al. (2004), using
isolates of G. intraradices from our laboratory,
obtained from the same field as referenced in this
paper.

To substantiate the theory of functional com-
plementarity within a real AMF community, we
first obtained about a hundred pure AMF iso-
lates from a single field experiment in Switzerland
(Jansa et al. 2002). This was one of the largest
efforts to collect AMF from a single field site.
Three Glomus species were selected for the func-
tional experiments described here, because these
species were dominating AMF spore community
in the soil as well as they were concomitantly col-
onizing roots of field-grown maize (Jansa et al.,
2002, 2003a). These AMF were previously identi-
fied by using spore morphology, isoenzyme profil-
ing and DNA sequencing (Jansa et al., 2002).
Although different isolates to be used here were
originally obtained from differently tilled plots of
the field experiment, we and others have previ-
ously shown that all of the AMF species exam-
ined here were present in all tillage treatments
and that tillage did not affect physiology of G. in-
traradices (Jansa et al., 2002, 2003a, Koch et al.,
2004). In this study we aimed to assess the vari-
ability in P acquisition strategies among those
Glomus spp. isolates and to estimate their effects
on P uptake and growth of maize. In particular,
we studied how far from the roots were the AMF
able to take up soil P, how fast were they able to
spread in the soil, how efficient they were in soil P
uptake, and what consequences the root coloniza-
tion had for plant P uptake and growth. Maize
was studied because this crop was commonly
grown at the field site. We employed compart-
mented cultivation containers coupled with 33P
radioisotope tracing. The distance aspect (i.e.
how far from the root surface do the AMF hy-
phae acquire P) has been included because this
was the mechanism proposed by Koide (2000) as
an example for complementarity of functions
within AMF community.
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Material and methods

Experimental design

Two experiments were carried out, each with five
inoculation treatments. They were carried out
sequentially, because of spatial limitation in the
glasshouse. Experiment 1 included the following
inoculation treatments: nonmycorrhizal control
(NM), Glomus intraradices isolates Int1 and
Int2 and Glomus mosseae isolates Mos1 and
Mos2 (Table 1). Experiment 2 included: NM,
and Glomus claroideum isolates ClA1, ClA2,
ClB1, ClB2 (Table 1).

For each inoculation treatment, five different
containers were used, one for each length of the
intermediate compartment (2, 4, 6, 8, and 10 cm).
There was thus a single container for each inocula-
tion treatment and five distances between the plant
and the labeled compartments. For some analyses,
the length of intermediate compartment was disre-
garded, resulting in five replicate values for each
inoculation treatment. For regression analysis,
values for each compartment length were consid-
ered separately.

Biological materials

Eight monosporic AMF isolates (progenies of sin-
gle AMF spores) were used in this study (Table 1),
belonging to three species of Glomus (G. intrara-
dices, G. mosseae, and G. claroideum). They were
all isolated in 1999 from a single agricultural field
site, namely the tillage experiment in Tänikon,

Switzerland (Jansa et al., 2002). Inoculum for the
pot experiments described here was produced in
800 mL pots filled with mixture of sterilized soil –
quartz sand (1:4; v:v) and planted with wheat
(Triticum aestivum L. cv. Albis). Wheat was grown
in a growth chamber for 4 months under 16 h
photoperiod, 350 lmol PAR m–2 s–1 and 25/20 �C
(day/night). This allowed for spore production be-
tween 32 and 98 spores g)1 potting mixture,
depending on AMF isolate. The inoculum was
prepared by chopping the roots to 1 cm pieces and
mixing them homogeneously with the potting mix-
ture containing AMF spores. Nonmycorrhizal
inoculum was prepared from nonmycorrhizal
wheat grown under the same condition as the
mycorrhizal wheat plants. Inoculum was stored at
4 �C for maximum of 8 weeks.

Maize (Zea mays L. cv. Corso) seeds were sur-
face-sterilized in 5% calcium hypochlorite for
15 min and germinated on moist sand at 25 �C in
darkness for 2 days. Germinated maize seeds
were planted into 50 mL pots containing the inoc-
ulum mixed with expanded clay (Oil Dry Chem-
Sorb WR24/18, Brenntag, Vitrolles, France) in a
ratio 1:1 (v:v). Per plant, 25 mL (23.5 g dry
weight) of fresh, moist inoculum was used. Maize
seedlings were grown in the 50 mL pots for
2 weeks in a growth chamber under following con-
ditions: 16 h photoperiod, 350 lmol PAR
m)2 s)1, 26/22 �C (day/night), and 50/80% relative
air humidity (day/night), before being transferred
into compartmented containers (see below). Plants
were watered once a day during this period, main-
taining humidity in the pots between 60 and 80%

Table 1. AMF isolates from a single field site in Tänikon (Switzerland), used in this study. Isolate identification numbers in the
AMF collection in Eschikon are quoted

Abbreviation Species Eschikon collection number BEG accession

Int1 Glomus intraradices Schenck & Smith 291 BEG158

Int2 141 BEG157

Mos1 Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe 964 BEG161

Mos2 243 BEG160

ClA1 Glomus claroideum Schenck & Smith (morphotype A) 360 BEG155

ClA2 133 n.a.

ClB1 Glomus claroideum Schenck & Smith (morphotype B)* 610 BEG156

ClB2 132 n.a.

*Previously considered as Glomus clarum-like (Jansa et al. 2002); n.a. isolate not registered in BEG.
Accession numbers in the International Bank for the Glomeromycota (BEG) are shown for the isolates that were registered there.

165



of maximum water holding capacity of the inocu-
lum-clay mixture.

Cultivation media

Two kinds of cultivation media were used in this
study -- either undiluted, sterilized field soil (here
called �soil�), or substrate mixture (here called
�substrate�) consisting of the soil, quartz sand
(grain size 0.7--1.2 mm), and expanded clay,
mixed in a ratio of 1:2:2 (v:v:v). Soil, sand and
expanded clay were all separately autoclaved
(20 min, 121 �C), and the soil was then treated
with an aqueous solution (20 mL kg–1 soil) ex-
tracted from the original unsterile soil (100 g soil
in 1 l water) and filtered three times through
Whatman No 1 paper filter. This was done in or-
der to re-introduce soil bacteria into the soil. The
soil was incubated for 6 weeks under glasshouse
conditions before preparing the substrate. The soil
was a loamy Eutrochrept with a P content of 745
(±76.2) mg kg–1 (modified extraction protocol of
Saunders and Williams, 1955; briefly, the soil was
incinerated at 550 �C for 6 h, extracted with boil-
ing 5.6 M HCl for 10 min and filtered through
Whatman No 40 filter paper). The amount of soil
P isotopically exchangeable within 1 min (E1min,
corresponding to the P pool readily available for
plant uptake, Fardeau, 1996) was 15.4 (±0.54)
mg kg–1 (estimated according to Frossard and
Sinaj, 1997). P content of the substrate was 196
(±11.4) mg kg–1, and the readily available P pool
(E1min) in the substrate was 2.49 (±0.24) mg kg–1.
This was below the critical level of 5 mg kg–1, at
which P availability becomes limiting for maize
growth (Gallet et al., 2003).

Experimental setup and labeling

Compartmented containers described as cuvettes
by Jansa et al. (2003b) were used in this study.
A cuvette container consisted of three compart-
ments: a plant compartment, where inoculated
plants were grown, an intermediate compartment
of variable length, and 33P labeled compartment.
Spatial separation of the different compartments
was ensured by a nylon mesh with opening of
20 lm. The contact area between the compart-
ments was 14 · 13 cm. The plant compartment
was four cm long, and its volume was 728 mL.

The length of the intermediate compartment was
2, 4, 6, 8, or 10 cm. The length of the labeled
compartment was 4 cm.

The plant and the intermediate compartments
were filled with the substrate. Each plant com-
partment was planted with three 2-weeks-old
maize seedling from growth chamber. These were
grown for total of 40 days in the glasshouse under
the following conditions: 16 h photoperiod, 26/
22 �C (day/night), and 50% relative air humidity.
The minimum light intensity (combined of solar
and artificial light, 400W Eye Clean-Ace lamps,
Iwasaki, Tokyo, Japan) was set at 400 lmol PAR
m–2 s–1. Plants were watered by automatic tensi-
ometer-controlled units (Blumat, Telfs, Austria)
maintaining humidity of cultivation media at
60–70% of its maximum water holding capacity.
Plants were fertilized with 25 mL plant–1 week)1

of modified Hoagland nutrient solution (Hoagland
and Arnon, 1950) containing no P throughout
the duration of the experiment.

A wooden block was inserted into the labeled
compartment at the beginning of the experiment
but was removed at 19 days before harvest. Soil
portions to be inserted into the labeled compart-
ments (400 mL, 330 g dry weight each, 50% of
maximum water holding capacity) were labeled
with 33P. Homogeneous labeling was achieved by
thorough mixing of 1 mL (2.47 MBq) of aqueous
33PO4

3– solution (carrier-free orthophosphate,
Amersham Pharmacia Biotech, Piscataway NJ,
USA) with each soil portion for 5 min. The la-
beled compartments were then filled in three lay-
ers. The bottom layer consisting of 160 mL of the
substrate was covered with 400 mL of the labeled
soil. The top layer consisted of 160 mL of the
substrate. This setup was chosen to prevent sur-
face drying of the labeled soil as well as to avoid
leaching of radioactive P from the containers.

Available P contents of compartments (E1min;
mg compartment–1) were as follows: plant com-
partment, 1.76; labeled compartment, 5.90; inter-
mediate compartments 2, 4, 6, 8, and 10 cm long,
0.88, 1.76, 2.64, 3.52, and 4.40, respectively.

Harvest and analyses

The third leaf of maize was harvested 9 days
after labeling, dried at 105 �C for 48 h, and incin-
erated at 550 �C for 8 h. The ash was dissolved
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in 2 mL boiling 5.6 M HCl, made to 50 mL vol-
ume with distilled water and filtered (Whatman
No 40). The concentrations of P and 33P were
determined according to Ohno and Zibilske
(1991) and by scintillation counting, respectively.
The extracts were neutralized with 1 M NaOH
and counted on Packard 2500 TR counter
(Packard BioScience, Meriden CT, USA) using
a Packard Ultima Gold� (Perkin Elmer, Boston
MA, USA) scintillation cocktail mixed with the
samples in a ratio of 5:1 (v:v). At final harvest
shoot and root biomass was determined after
drying plant materials at 105 �C for 48 h. The
concentrations of P and 33P in both shoots and
roots were measured as described above.

Mycorrhizal colonization structures in the
roots were stained by modified procedure of
Philips and Hayman (1970). Briefly, roots were
cleared in 1.8 M KOH at 90 �C for 1 h, rinsed
with water and neutralized in 0.5 M HCl for
30 min. Then the roots were transferred (with no
further rinsing) into a mixture of Trypan- and
Methylene-Blue (0.05% each in lactic acid: glyc-
erol: water, 1:1:1, v:v:v), stained for 2 h and de-
stained in water overnight. The percentage of
root length colonized by AMF hyphae, arbus-
cules, and vesicles was estimated by magnified
intersection method (McGonigle et al., 1990),
scoring 100 root intersects per sample under
compound microscope (400·). Soil cores (1 cm
diameter) were taken from the intermediate com-
partment region adjacent to the labeled soil (i.e.
at a distance of zero to 1 cm from the labeled
soil) and hyphal length density (HLD) of the
AMF mycelium was determined there by the
filtration-gridline method (Sylvia, 1992) with
Millipore RAWG02500 membranes (Millipore,
Bedford MA, USA).

Calculations and statistical analysis

Plant materials (shoots and roots) from each
container were pooled and the values were di-
vided by three to obtain data on a single plant
basis. P uptake of plant was calculated by sub-
tracting average seed P content (0.96 mg) from P
content of plants (shoot and roots combined).
Mycorrhizal P uptake responses (MPR) were cal-
culated according to Cavagnaro et al. (2003),

using individual P uptake values of inoculated
plants (Mp) and mean P uptake value of nonmy-
corrhizal plant (NMp, a mean of five replicates):

MPR ¼Mp�NMp

NMp
� 100: ð1Þ

Specific P activity (SPA) was calculated by divid-
ing the 33P activity (corrected for isotope decay,
kBq) by P content of the plant (mg). The MPR,
SPA, 33P transport via AMF as well as HLD at
a distance from the roots in experiments 1 and 2
were combined for a common analysis. This was
possible because both of the experiments were
performed in the same type of containers, using
identical cultivation media, plant cultivar, water-
ing and fertilization regimes, as well as glass-
house settings (temperature, light intensity,
photoperiod, and humidity). AMF inoculum for
both of the experiments was produced under
identical conditions. Both of the experiments
were carried out for exactly the same period of
time and both included NM treatment. This al-
lowed correction for differences in plant P uptake
between experiments 1 and 2 caused by factors
beyond our control, by comparing relative P up-
take with respect to NM control (MPR, Eq 1).
Inherently, we could not correct for possible sys-
tematic differences in HLD and 33P transport via
AMF between experiments 1 and 2 because the
NM controls only provided background readings
of these variables (close to zero) and because dif-
ferent AMF isolates were used in experiments 1
and 2. Therefore, we only combined data for 33P
transport relative to plant P content (SPA) or 33P
transport on whole plant basis. The latter were
solely used for regression analysis, examining the
relationship between HLD and 33P uptake from
soil. All other analyses were performed sepa-
rately for experiments 1 and 2.

Data were subjected to analysis of variance
(ANOVA) and regression analysis, using Stat-
graphics� software version 3.1. Following signifi-
cant ANOVA (P < 0.05), differences between
treatment means were examined by multiple
range LSD-based F-test considering 95% confi-
dence intervals. Data for hyphal, arbuscular and
vesicular colonization of roots were arcsin –
square root transformed (Linder and Berchtold,
1976) so as not to violate the assumption of nor-
mality of residual distribution in ANOVA.
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In order to compare the effect of inoculation
with different AMF isolates on total P and 33P
uptake by maize with increasing length of the
intermediate compartment, we used comparison
of regression lines. Linear regression model was
used with untransformed data since this model
provided maximum explanatory value. With this
approach, we were able to compare percentage of
the variability in our data explained by the dif-
ferent models: 1. Considering all data pooled
over all inoculation treatments, i.e. how the dis-
tance as the only explanatory factor affected the
P uptake by mycorrhizal maize; 2. Considering
the data split according to the AMF species iden-
tity (3 levels, G. intraradices, G. mosseae, and G.
claroideum), i.e. estimating how the identification
of the inoculum down to the species level con-
tributed to further explanation of the variability
in our data; 3. Considering the data split accord-
ing to the AMF isolate identity (eight levels), i.e.
estimating how much of the variability in the en-
tire dataset was due to variation among both
AMF species and isolates. A rigorous statistical
testing of the differences between the different
regression models with increasing number of
explanatory factors was not possible simply be-
cause we did not have available at least three dif-
ferent isolates of each AMF species in this study.
We used instead a very conservative estimate to
compare the different regression models here: if
the R2-value adjusted for the number of degrees
of freedom (=measure of explained variability in

the dataset) did not increase by at least 1% with
increasing number of explanatory factors, we
considered that introduction of those explanatory
factors did not contribute significantly to model
improvement and hence had no significant influ-
ence on the studied parameter.

Results

Plant biomass

Biomass production upon final harvest was high-
er in experiment 1 than in experiment 2, with
mean values for NM plants of 7.27 g and 5.04 g,
respectively (P<0.001). Biomass was not affected
by inoculation with any of the eight Glomus iso-
lates compared to appropriate NM controls
(data not shown).

Root colonization

All of the AMF isolates used in this study were
infective, with at least 45% of the root length
colonized by AMF hyphae at harvest 2 (Ta-
ble 2). No colonization was detected in roots of
NM plants (data not shown). We observed a
number of significant differences in the extent of
root colonization by AMF hyphae, arbuscules,
and vesicles between both the AMF species and
AMF isolates (Table 2). In general, AMF hyphal
colonization of roots was higher in experiment 1

Table 2. Extent of root colonization by 8 AMF (see Table 1) in experiments 1 and 2 at harvest 2

Inoculation treatment H A V

Experiment 1

Int1 80.4 b 34.8- 16.8 b

Int2 94.4 a 44.4- 30.4 a

Mos1 85.2 b 44.4- 0.0 c

Mos2 78.4 b 48.4- 0.4 c

Experiment 2

ClA1 76.0 a 64.8 a 3.2 b

ClA2 56.4 bc 26.4 b 2.8 b

ClB1 44.8 c 22.4 b 5.6 ab

ClB2 60.4 b 32.0 b 12.8 a

NM treatments were removed from this analysis and the size of the intermediate compartment was disregarded
here. Means (five replicates) of percentage of root length colonized by AMF hyphae (H), arbuscules (A) and
vesicles (V) are shown. Different letters denote significant differences between treatment means (LSD, P < 0.05).
Hyphen (-) indicates absence of significant differences between treatment means.
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than experiment 2 (P<0.001), whereas no differ-
ence between experiments was observed with re-
spect to arbuscular colonization (P=0.19).
Hyphal colonization of roots was higher for Int2
isolate than for Int1 and both G. mosseae iso-
lates. Both of the G. mosseae isolates produced
no or very few vesicles, much less than G. intra-
radices (Table 2). The extent of root colonization
by both AMF hyphae and arbuscules was higher
for the ClA1 isolate than for any other G. clar-
oideum isolate. The extent of root colonization
by vesicles was more variable among the G. clar-
oideum isolates and no clear trends could be
identified (Table 2).

Plant P uptake

Maize P uptake was significantly higher for
plants inoculated with any of the two G. intrara-
dices or with three out of four G. claroideum iso-
lates compared to the NM control (Table 3).

No significant effect of the size of the inter-
mediate compartment on MPR was detected
when the data for all AMF inoculation treat-
ments were pooled (Figure 1a). Splitting the data
according to AMF species resulted in the regres-
sion model being highly significant, with slopes
of the regression lines significantly different
among different AMF species (Figure 1b). This
means that maize P uptake was differentially af-
fected by the AMF species depending on the size
of intermediate compartment.

Further increase in explained variability (R2

value) of the MPR was observed upon introduc-
ing AMF isolate identity into the regression
model (Figure 1c). In particular, MPR of maize
significantly increased with size of the intermedi-
ate compartment for both of the G. intraradices
isolates (P<0.05 in both cases), while there was
no significant correlation between the MPR and
the size of the intermediate compartment for any
other inoculation treatment (Figure 1c, analyses
not shown). Based on the net increase of ex-
plained variability between the models consider-
ing AMF species and AMF isolate identities, we
can not rule out the possibility that there is,
apart from the variability among the species, also
a significant variability among AMF isolates
belonging to the same species with respect to
maize P uptake.

33P transport, SPA

Significant amounts of 33P were transported by
G. mosseae and G. intraradices from distances up
to 10 cm from the roots. G. claroideum only
transported labeled P from distances up to 6 cm
from the roots (Figure 1e, h). No 33P activity
was detected in the NM plants. Maize inoculated
with either G. mosseae isolates had higher SPA
than any other AMF isolate nine days after
labeling (Figure 2a). At 19 days after labeling,
maize inoculated with any of the two G. mosseae
isolates only had higher SPA than one of the
G. intraradices isolates (Int2) and all four of the
G. claroideum isolates (Figure 2b).

The SPA at both harvests was significantly
(P<0.05) and negatively correlated with the size
of the intermediate compartment when the data
was pooled over all inoculation treatments
(Figures 1d, g). Splitting the data according to
the identity of AMF species caused substantial
increase in explained variability of the SPA data-
sets for both the first and second harvests (Fig-
ures 1e, h). At the first harvest, highly significant
differences were detected among the slopes of
regression lines representing different AMF spe-
cies (Figure 1e), but these were absent at second
harvest (Figure 1h).

Table 3. Phosphorus uptake by maize colonized by 8 AMF
(see Table 1) in experiments 1 and 2 at harvest 2 (P content –
seed P), disregarding the size of the intermediate compart-
ment

Inoculation treatment P uptake (mg) MPR

Experiment 1

NM* 8.24 b –

Int1 12.9 a 56.9 a

Int2 13.1 a 58.7 a

Mos1 7.99 b –2.98 b

Mos2 7.71 b –6.34 b

Experiment 2

NM* 3.93 d –

ClA1 6.31 a 60.7 a

ClA2 5.18 bc 31.8 bc

ClB1 4.78 cd 21.6 cd

ClB2 5.69 ab 44.9 ab

Nonmycorrhizal treatment.
Means (five replicates) of absolute values and MPR are shown.
Different letters denote significant differences between treat-
ment means (LSD, P < 0.05).
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Introduction of AMF isolate identity into the
regression model caused a net increase in ex-
plained variability only for SPA at the second
harvest (Figure 1i). At both harvests, significant
differences were detected among AMF isolates
with respect to changes in SPA with increasing
distance between the plant and labeled compart-
ments (Figures 1f, i). Statistically significant dif-
ferences were detected among both intercepts

(P=0.01) and slopes (P=0.04) of regression lines
representing maize SPA colonized by the four
G. claroideum isolates at second harvest. These
results mean that at first harvest the identity of
AMF species was sufficient to explain all
observed differences in SPA among the inocula-
tion treatments. At second harvest, the variabil-
ity between the isolates of the same AMF species
became important.
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Figure 1. Regression models showing dependency on distance between plant and 33P labeled compartments of MPR (at harvest 2)
and SPA in maize (at both harvests 1 and 2). Whole plant P uptake values (P content – seed P) at harvest 2 were used for determi-
nation of P uptake response. P concentration and 33P activity in aboveground biomass were used for determination of SPA. Three
models are compared here: First, the distance between plant and labeled compartments is considered as the only explanatory factor
of studied variable (a, d, g). Second, AMF species identity is considered in addition to the distance between plant and labeled com-
partments (b, e, h). Third, AMF isolate identity is considered as further explanatory factor in addition to the distance between
plant and labeled compartments (c, f, i). R2 values have been adjusted for the number of degrees of freedom. Statistical significance
of the entire regression model as well as P value is given for test of null hypothesis that there are no differences between the slopes
of the regression lines in the model. In the panels b, c, e, f, h, and i, squares indicate Glomus intraradices, circles G. mosseae, and
triangles G. claroideum, solid regression lines in the same panels refer to G. mosseae, dotted lines to G. intraradices, and both da-
shed and dash-dotted lines to G. claroideum.
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AMF hyphae

Highly significant correlation (P<0.001) was
found between the HLD (disregarding the AMF
species identities) in the immediate vicinity of the
labeled compartment, and the 33P activity in
maize plants (R2=0.85) at the second harvest
(Figure 3). At the same time, significant correla-
tion was found between HLD and 33P activity in
maize colonized by G. claroideum (R2=93.5,
P<0.001) and marginally significant correlation
was also found for G. intraradices (R2=34.1,
P=0.051), while there was no correlation for G.
mosseae (P=0.78). The slopes of regression lines
for G. claroideum and G. intraradices proved to
be significantly different (P<0.001).

Discussion

Plant biomass

We did not observe any significant response of
maize biomass production to AMF inoculation
even if the total P uptake by the plants in-
creased. This is consistent with previous observa-
tions by Boucher et al. (1999), who also reported
no significant effects on maize shoot biomass in
response to inoculation with four AMF species.
Some other plant species such as tomato (Lycop-
ersicon esculentum Mill.), cucumber (Cucumis sat-
ivus L.), or barley (Hordeum vulgare L.) are
also notoriously known for either absence of or

negative growth responses to AMF colonization
(Pearson and Jakobsen, 1993; Smith et al., 2003;
Zhu et al., 2003), the reasons still not being well
known. However, Cardoso et al. (2004) recently
showed that maize growth did positively respond
to AMF inoculation if plants were grown in
tropical Oxisol. The apparent discrepancy of
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Figure 3. Relationship between HLD next to the labeled
compartment and 33P uptake by maize from labeled compart-
ment at harvest 2 (19 days after labeling). Results of the
experiments are shown using eight AMF isolates, considering
five distances between plant and labeled compartments.
Regression curve for data pooled over all eight AMF inocula-
tion treatments (solid line): y=)3.3+15.1x0.5, for G. claroide-
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(dotted line): y=76+0.52x. NM treatment was not included
into the regression analysis. Open circles indicate NM, open
triangles G. claroideum, open squares G. intraradices, and
closed circles G. mosseae.
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results is probably due to different properties of
soil and maize cultivars used in different studies.

The difference in maize growth between
experiments 1 and 2 was most likely due to vari-
ation in light intensity and temperature in the
glasshouse. These two factors were impossible to
fully control because they partially depended on
environmental conditions outside of the glass-
house.

Root colonization

All AMF isolates used in this study well colo-
nized maize roots, though the isolates colonized
roots to different extent. This may be due to
inherent differences in capacity of the AMF
isolates to colonize maize or due to different
infectivity of the inoculum. We did not estimate
infectivity of the inoculation materials here,
because we were unsure about methods for doing
so: the sum of spores and vesicles (Liu and Luo,
1994) ignores infectious potential of mycelium
fragments, and most probable number assay
(Adelman and Morton, 1986) may be misleading
when comparing inocula with different levels of
dormancy or colonization rate. The latter also re-
quires storage of the inocula during testing,
which may in turn unpredictably affect AMF
infectivity. We recognize that different AMF in
this study could also have followed different tra-
jectories of root colonization (Hart and Reader,
2002a; J. Jansa, unpublished observation) and
that this might have contributed to the apparent
functional differences reported here. Further
experiments with sequential harvests will be nee-
ded to elucidate this story.

Obvious absence of vesicles in maize roots
colonized by G. mosseae in this study was in con-
tradiction to some previous studies (using differ-
ent isolates of G. mosseae), reporting vesicles in
the roots colonized by G. mosseae (Liu and Luo,
1994; McGonigle et al., 2003).

Plant P uptake

Improvement of P uptake of mycorrhizal vs. NM
plants growing in containers with large root-free
compartments (such as cuvettes in this study) is
not surprising and has previously been reported
(Jansa et al. 2003b; Li et al., 1991). The design of

such containers has been criticized for overesti-
mation of mycorrhizal contribution to plant P
uptake (Smith et al., 2004). In this context, the
absence of P uptake benefits from colonization
with G. mosseae is surprising (in another experi-
ments one of our G. mosseae isolates significantly
lowered P uptake in comparison to NM control;
J. Jansa, unpublished observation). Glomus mos-
seae was transferring P from labeled soil in
amounts comparable to G. intraradices, yet did
not cause any increase in total P uptake of
maize. This means that the contribution of
G. mosseae to P uptake of plants via mycorrhizal
pathway must have been offset by lower uptake
through the root pathway than in the NM plants
(Smith et al., 2003). This could be accomplished
in two ways: either the root surface available for
P uptake was lower than in NM plants, or the
density and/or activity of P transporters respon-
sible for P uptake via the root pathway was low-
er (=down-regulation of root uptake pathway).
Previously, a different isolate of G. mosseae than
used in this study suppressed the expression of P
transporter MtPT2 and P-starvation inducible
gene Mt4 in Medicago truncatula to the greatest
extent among seven different AMF species (Bur-
leigh et al., 2002). But, in contrast to our results,
colonization of Medicago truncatula with G. mos-
seae significantly increased P uptake and also the
growth of plants in that latter study. This indi-
cates existence of compatible (and incompatible)
pairs of AMF and plant species, as discussed
elsewhere (Helgason et al., 2002; Ravnskov and
Jakobsen, 1995).

P uptake via AMF

Important variation in P uptake strategies among
and within three Glomus species is shown here.
This is to our knowledge the first direct evidence
showing different species of Glomus having access
to P located at different distance from roots. Pre-
viously, we demonstrated that G. intraradices
took up P from distances over 10 cm from maize
roots (Jansa et al., 2003b). Li et al. (1991) also
showed that G. mosseae depleted soil P at a dis-
tance of 11.7 cm from clover roots. This is con-
sistent with our results presented here, showing
isolates of both above mentioned species to take
up P from distances up to 10 cm from maize
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roots. The information about more limited exten-
sion G. claroideum into the soil (up to 6 cm from
roots) is unique as this AMF species has not
been studied yet with respect to its P transport
capacity over defined distances. In spite of the
fact that the isolates of both G. intraradices and
G mosseae transfer comparable amounts of P
from remote distances to the plants, the two spe-
cies seem to achieve this by different mecha-
nisms. While the high SPA in maize colonized by
G. mosseae at harvest 1 indicated high rate of hy-
phal extension by this AMF species into a newly
available soil volume, G. intraradices appeared to
extract soil P more efficiently, but its expansion
into labeled soil was slower than for G. mosseae.
This is supported by greater MPR of plants inoc-
ulated with G. intraradices compared to G. mos-
seae and by significant increase in MPR with
increasing length of the intermediate compart-
ment (indicating efficient exploitation of the
intermediate compartment). Additionally, greater
efficiency in P uptake by G. intraradices is also
supported by results of another study where 33P
was injected into a compartment pre-colonized
by the AMF, and where G. intraradices appeared
to transport more 33P than G. mosseae (J. Jansa,
unpublished observation). Similarly, Drew et al.
(2003) observed more efficient uptake of 33P by
G. intraradices than by G. mosseae from a fixed
distance from roots whereas the HLD was simi-
lar for both of the AMF species.

Although we provide evidence here that (at
least) some of the functional diversity can be
attributed to differences between species, we also
detected significant differences within AMF spe-
cies (e.g. uptake of 33P from different distances
by G. claroideum isolates). Similarly, high levels
of functional diversity with respect to hyphal
growth within AMF species have recently been
reported by others (Koch et al., 2004; Munkvold
et al., 2004). Thus the challenge for the future
will be to look more closely at the variation in P
acquisition strategies among and within AMF
species, using a large number of isolates (10+)
for each AMF species.

Role of AMF hyphae in P uptake

The values of HLD in the intermediate compart-
ment (especially those of G. intraradices and

G. mosseae) were quite high, compared to previ-
ous glasshouse studies, where values over 25 mg–1

were rarely reported (Jakobsen et al. 1992a,
2002; Smith et al. 2004). Hyphal densities in our
experiments reached those encountered in field
soil (Miller et al., 1995). This may be related to
the fact that the labeled compartment was filled
with undiluted, sterilized field soil.

Although we did not measure AMF hyphal
development in the labeled compartment here
(but only in the intermediate compartment very
close to the labeled one), HLD was very strong-
ly correlated with transfer of 33P to the plants.
Similar correlations between HLD in and P
uptake from root-free compartments are com-
monly reported (Jakobsen et al., 2001; Schweiger
et al., 1999) and indicate a simple and causal
relationship between HLD and P uptake via
mycorrhizal pathway (George et al., 1995). It
appears that the curve reported in Figure 3 may
reach a plateau, after which further increase in
HLD would not result in any further increase in
mycorrhizal 33P uptake from the labeled com-
partment. This may indicate the situation when
the P depletion zones of mycorrhizal hyphae
overlap and virtually all available P in the la-
beled compartment being taken up. In this
study we also provide an interesting evidence
for the relationship between HLD and 33P up-
take being different for G. claroideum and G. in-
traradices, but being rather constant among the
isolates belonging to each species. Constant P
uptake per unit hyphal length on AMF species
level with only little variation among isolates of
the same species was recently reported for
G. mosseae and G. caledonium by Munkvold
et al. (2004).

Interestingly, although we observed high vari-
ation in HLD of G. intraradices here (higher
HLD closer to plants, data not shown), amounts
of 33P transported to plants from any distance
were quite similar. Possibly, the mycelium bran-
ched in the labeled compartment (where the P
availability was higher than otherwise) in order
to maximize P uptake from it, regardless of the
distance from the plants. This indicates some
plasticity of mycelium development of G. intrara-
dices in response to local nutrient availability,
similar to our previous observation (Jansa et al.,
2003b).
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Conclusion

We provide here an evidence for diversity in P
uptake strategies among several Glomus isolates
from a single field site. Both differences among
and within AMF species are demonstrated. These
results mean that plants colonized simultaneously
by two or more of these different fungi can
potentially benefit from functional complemen-
tarity in associated AMF community, as pro-
posed by Koide (2000). This evidence is directly
ecologically relevant because the isolates for this
study were obtained from a single ecosystem and
we have previously shown that Glomus spp. used
here concomitantly colonized maize roots in the
field (Jansa et al., 2003a). Research in two areas
is urgently needed now to bring further under-
standing of the functional diversity and comple-
mentarity within AMF community. First, we
have to perform experiments with AMF commu-
nities consisting of more than one AMF isolate,
and the choice of the isolates should be ecologi-
cally relevant (e.g. originating from the same eco-
system if we want to gain insight into that
ecosystem). Second, we have to establish tools to
quantify development in roots and in soil of each
AMF isolate within a mixed community.
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Boucher A, Dalpé Y and Charest C 1999 Effect of arbuscular
mycorrhizal colonization of four species of Glomus on
physiological responses of maize. J. Plant Nutr. 22, 783�797.

Burleigh S H, Cavagnaro T and Jakobsen I 2002 Functional
diversity of arbuscular mycorrhizas extends to the expression
of plant genes involved in P nutrition. J. Exp. Bot. 53,
1593�1601.

Cardoso I M, Boddington C L, Janssen B H, Oenema O and
Kuyper T W 2004 Double pot and double compartment:
Integrating two approaches to study nutrient uptake by
arbuscular mycorrhizal fungi. Plant Soil 260, 301�310.

Cavagnaro T R, Smith F A, Ayling S M and Smith S E 2003
Growth and phosphorus nutrition of a Paris-type arbuscular
mycorrhizal symbiosis. New Phytol. 157, 127�134.

Clapp J P, Helgason T, Daniell T J and Young J P W 2002
Genetic studies of the structure and diversity of arbuscular
mycorrhizal fungal communities. in Mycorrhizal Ecology
Ed. M A G van der Heijden and Sanders I R pp 201–224.
Springer, Heidelberg.

Cooper K M and Tinker P B 1978 Translocation and transfer
of nutrients in vesicular-arbuscular mycorrhizas. II. Uptake
and translocation of phosphorus, zinc and sulphur. New
Phytol. 81, 43�52.

Drew E A, Murray R S, Smith S E and Jakobsen I 2003 Beyond
the rhizosphere: growth and function of arbuscular mycor-
rhizal external hyphae in sands of varying pore sizes. Plant
Soil 251, 105�114.

Fardeau J C 1996 Dynamics of phosphate in soils. An isotopic
outlook. Fert. Res. 45, 91�100.

Frossard E and Sinaj S 1997 The isotope exchange kinetic
technique: A method to describe the availability of inorganic
nutrients. Applications to K, P, S and Zn. Isot. Environ.
Healt. Stud. 33, 61�77.

Gallet A, Flisch R, Ryser J P, Frossard E and Sinaj S 2003
Effect of phosphate fertilization on crop yield and soil
phosphorus status. J. Plant Nutr. Soil Sc. 166, 568�578.

George E, Marschner H and Jakobsen I 1995 Role of
arbuscular mycorrhizal fungi in uptake of phosphorus and
nitrogen from soil. Crit. Rev. Biotechnol. 15, 257�270.

Graham J H and Abbott L K 2000 Wheat responses to
aggressive and non-aggressive arbuscular mycorrhizal fungi.
Plant Soil 220, 207�218.

Hart MM and Reader R J 2002a Taxonomic basis for variation
in the colonization strategy of arbuscular mycorrhizal fungi.
New Phytol. 153, 335�344.

Hart M M and Reader R J 2002b Host plant benefit from
association with arbuscular mycorrhizal fungi: Variation due
to differences in size of mycelium. Biol. Fert. Soils 36,
357�366.

Helgason T,Merryweather JW, Denison J,Wilson P, Young J P
W and Fitter A H 2002 Selectivity and functional diversity in
arbuscularmycorrhizas of co-occurring fungi and plants from
a temperate deciduous woodland. J. Ecol. 90, 371�384.

Hoagland D R and Arnon D I 1950 The Water-Culture
Method for Growing Plants without Soil. Circular 347,
California Agricultural Experiment Station, Berkeley, CA.
32 pp.

Jakobsen I, Abbott L K and Robson A D 1992a Exter-
nal hyphae of vesicular-arbuscular mycorrhizal fungi

174



associated with Trifolium subterraneum L.1. Spread of
hyphae and phosphorus inflow into roots. New Phytol.
120, 371�380.

Jakobsen I, Abbott L K and Robson A D 1992b External
hyphae of vesicular arbuscular mycorrhizal fungi associated
with Trifolium subterraneum L. 2. Hyphal transport of 32P
over defined distances. New Phytol. 120, 509�516.

Jakobsen I, Gazey C and Abbott L K 2001 Phosphate transport
by communities of arbuscular mycorrhizal fungi in intact soil
cores. New Phytol. 149, 95�103.

Jakobsen I, Smith S E and Smith F A 2002 Function and
diversity of arbuscular mycorrhizae in carbon and mineral
nutrition. in Mycorrhizal Ecology Eds. M A G van der
Heijden and I R Sanders pp. 75–92. Springer, Heidelberg.

Jansa J, Mozafar A, Anken T, Ruh R, Sanders I R and
Frossard E 2002 Diversity and structure of AMF commu-
nities as affected by tillage in a temperate soil. Mycorrhiza
12, 225�234.

Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders I R
and Frossard E 2003a Soil tillage affects the community
structure of mycorrhizal fungi in maize roots. Ecol. Appl. 13,
1164�1176.

Jansa J, Mozafar A and Frossard E 2003b Long-distance
transport of P and Zn through the hyphae of an arbuscular
mycorrhizal fungus in symbiosis with maize. Agronomie 23,
481�488.

Koch A M, Kuhn G, Fontanillas P, Fumagalli L, Goudet I and
Sanders I R 2004 High genetic variability and low local
diversity in a population of arbuscular mycorrhizal fungi. P.
Natl. Acad. Sci. USA 101, 2369�2374.

Koide R T 2000 Functional complementarity in the arbuscular
mycorrhizal symbiosis. New Phytol. 147, 233�235.

Li X L, George E and Marschner H 1991 Extension of the
phosphorus depletion zone in VA-mycorrhizal white clover
in a calcareous soil. Plant Soil 136, 41�48.

Linder A and Berchtold W 1976 Statistische Auswertung von
Prozentzahlen: Probit- und Logitanalyse mit EDV. Birkhä-
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