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Abstract

Background

Virtual reality-based training has found increasing use in neurorehabilitation to improve

upper limb training and facilitate motor recovery.

Objective

The aim of this study was to directly compare virtual reality-based training with conventional

therapy.

Methods

In a multi-center, parallel-group randomized controlled trial, patients at least 6 months after

stroke onset were allocated either to an experimental group (virtual reality-based training) or

a control group receiving conventional therapy (16x45 minutes within 4 weeks). The virtual

reality-based training system replicated patients´ upper limb movements in real-time to

manipulate virtual objects.

Blinded assessors tested patients twice before, once during, and twice after the interven-

tion up to 2-month follow-up for dexterity (primary outcome: Box and Block Test), bimanual

upper limb function (Chedoke-McMaster Arm and Hand Activity Inventory), and subjective

perceived changes (Stroke Impact Scale).

Results

54 eligible patients (70 screened) participated (15 females, mean age 61.3 years, range 20–

81 years, time since stroke 3.0±SD 3 years). 22 patients were allocated to the experimental
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group and 32 to the control group (3 drop-outs). Patients in the experimental and control

group improved: Box and Block Test mean 21.5±SD 16 baseline to mean 24.1±SD 17 fol-

low-up; Chedoke-McMaster Arm and Hand Activity Inventory mean 66.0±SD 21 baseline to

mean 70.2±SD 19 follow-up. An intention-to-treat analysis found no between-group

differences.

Conclusions

Patients in the experimental and control group showed similar effects, with most improve-

ments occurring in the first two weeks and persisting until the end of the two-month follow-

up period. The study population had moderate to severely impaired motor function at entry

(Box and Block Test mean 21.5±SD 16). Patients, who were less impaired (Box and Block

Test range 18 to 72) showed higher improvements in favor of the experimental group. This

result could suggest that virtual reality-based training might be more applicable for such

patients than for more severely impaired patients.

Trial registration

ClinicalTrials.gov NCT01774669.

Introduction

Virtual reality-based rehabilitation systems are gaining popularity because of their ease of use,

applicability to wide range of patients, and ability to provide patient-personalized training [1–

3]. Additional reported benefits of virtual reality systems for both patients and health providers

include increased therapy efficiency and a high level of attention in patients during training

[4].

One of the main struggles therapists encounter is keeping patients motivated throughout

conventional training sessions. The Yerkes-Dodson Law describes the relationship between

arousal or motivation and performance [5]. At first, an increase in arousal and motivation

leads to an increase in performance. But once a certain point is reached, this point can vary

based on many factors including the task, the participant, and the context, the relationship

becomes inverse and increases in arousal caused decreases in performance. In line with these

ideas, previous research has shown that increased performance leads to greater improvement

in patients after stroke up to a certain point. Virtual reality-based systems allow manipulation

of arousal through training settings to ensure that peak performance is maintained for as large

a portion of the therapy time as possible [6].

Laver et al. systematically evaluated the literature regarding the efficacy of virtual reality-

based training in stroke rehabilitation in 2011 and in its updates in 2015 and 2017 [3, 7, 8].

Their current meta-analysis of 22 trials including 1038 patients after stroke that focused on

upper limb function did not reveal a statistically significant difference between VR-based

training and conventional therapy (0.07 standard deviation higher in virtual reality-based

compared to conventional therapy. Furthermore, the authors rated the quality of evidence as

low, based on the GRADE system. However, for ADL function the experimental groups

showed a 0.25 higher standard deviation than the conventional therapy groups based on ten

studies, including 466 patients after a stroke with moderate quality of evidence.

Virtual reality-based training vs. conventional therapy
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Only 10% of the included studies included more than 50 participants, with mean ages

between 46 to 76 years. However, due to the different systems used no conclusion could be

drawn regarding grip strength, dosage, type or program of the virtual reality-based training.

Furthermore, the authors pointed out the low sample sizes and the low methodological quality

of the reported trials. In their recommendations for further research, the authors encouraged

researchers and clinicians again to conduct larger trials and to increase the detail in reporting

to enable more firm conclusions.

YouGrabber (now renamed Bi-Manu Trainer), a game-based virtual reality system

designed for upper-limb rehabilitation, has been shown to be effective in children with cere-

bral palsy. A 2-subject feasibility study indicated that the findings might extend to chronic

stroke patients [9, 10]. Both male subjects, who were trained three years after insult onset,

showed increases in scores for the bimanual activities of daily living focused Chedoke McMas-

ter Arm and Hand Activity Inventory (CAHAI) that persisted at the final follow-up, and corre-

sponding cortical changes measured with fMRI.

Based on these findings the present multicenter parallel group randomized single-blinded

trial aimed to investigate the efficacy of a virtual reality-based training with the YouGrabber

training device (now renamed Bi-Manu Trainer) compared to conventional therapy. The

study was designed to test the hypothesis that patients in the chronic stage after stroke in the

virtual reality-based training group will show no higher post-intervention performance in the

Box and Block Test (BBT) compared to patients receiving an equal training time of physiother-

apy or occupational therapy.

For comparison with published and ongoing international studies we selected the Box and

Block Test as the primary outcome measure and the CAHAI as the secondary outcome

measure.

Methods and materials

Study design

This prospective, multicenter, single-blinded, parallel-group randomized trial was conducted

in the outpatient departments of three rehabilitation hospitals in the German and French

speaking parts of Switzerland: University hospital Inselspital Bern, Buergerspital Solothurn,

and Reha Rheinfelden. In the study plan, each hospital was responsible for the recruitment,

assessment, and therapy of 20 patients: 10 patients for the experimental group (EG) and 10 for

the control group (CG), respectively.

More details regarding the study methodology can be found in the study flow chart in Fig 1

and the previously published study protocol strictly followed by each center (http://

trialsjournal.biomedcentral.com/articles/10.1186/1745-6215-15-350) [11]. Ethics approval was

warranted by the ethics committee of the Canton Aargau (2012/065) and the Canton Berne

(220/12). The study was registered with ClinicalTrials.gov: NCT01774669 before the start of

patient recruitment.

Participants

In order to meet the inclusion criteria, each patient had to be at least six months after his or

her first-ever stroke (ischemic or hemorrhagic) with a persistent motor deficit of the arm and

hand, indicated by a Chedoke-McMaster Stroke Assessment (CMSA) score of three or greater

on the arm subscale and two or greater on the hand subscale. If one of the CMSA subscales

scored seven, the difference to the other subscale had to be at least two. Patients had to be able

to sit in a normal chair without armrests or backrest support and to score at least one on the

Box and Block Test, which was the primary outcome measure. Patients were excluded from

Virtual reality-based training vs. conventional therapy
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the study if they had previous or current functional deficits of the arm and hand motor func-

tion not due to stroke, severe cognitive deficits indicated by a Mini-Mental State Examination

score of 20 or lower, severe visual disorders, or a history of epileptic seizures triggered by visual

stimuli within the past six months.

Patients were informed about the study in oral and written form and gave written informed

consent before data collection began.

Furthermore, for descriptive purposes patients were evaluated with the Extended Barthel

Index (EBI) [12], the Edinburgh Handedness Inventory (EHI) [13], the Mini Mental State

Examination (MMSE) [14], and with the Line Bisection Test (LBS) [15]. Table 1 provides an

overview of all outcome measures and measurement sessions.

Randomization and masking

If a patient met all eligibility criteria, he/she was randomly assigned to either the experimental

group (EG) or the control group (CG) after the second baseline measurement session.

Group allocation (1:1 ratio) was based on one computer-generated randomization list for

all centers. The randomization list was created on blocks of 10 and was generated by a

Fig 1. Patient flow chart. BS = Buergerspital Solothurn, IS = Inselspital Bern, Reha Rheinfelden Measurement sessions: twice

within one to two weeks before intervention start (BL, T0), once after eight (T1) and after 16 (T2) intervention sessions, and after

a two months follow-up period (FU).

https://doi.org/10.1371/journal.pone.0204455.g001

Virtual reality-based training vs. conventional therapy
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researcher not involved in the study (MATLAB release 2007b; MathWorks, Natick, MA,

USA).

The randomization list was stored at one clinic’s pharmacy only to avoid disclosing the

group allocation. The treating therapist of the respective clinic called the pharmacy before the

first therapy or training appointment of the respective patient to obtain the group allocation.

Only study therapists, who were specifically trained in the study methodology, were allowed to

call, which was verified by the pharmacist on duty. Group allocation was not recorded on any

assessment document. Group allocation was only noticeable based on the selected training or

therapy documentation sheets that were kept locked and separated from the assessment docu-

ments. A row of measures was implemented to keep group allocation concealed from the

blinded assessors until the last follow-up measurement session of the last patient. Two patients

disclosed their group allocation during the third out of five measurement sessions. In these

cases, the measurement sessions three to five were video recorded to ensure objective and

unbiased assessment scoring.

Procedures

Patients were assessed at five measurement sessions: twice within one to two weeks before

intervention start (BL, T0), once after eight (T1) and after 16 (T2) intervention sessions, and

after a two-month follow-up period (FU). For statistical analyses, average scores of BL and T0

were used as one pre-intervention score = (BL+T0)/2.

The intervention consisted of four 45-minute training sessions per week over a four-week

period for patients in both groups. The EG underwent a virtual reality-based training for all 16

sessions and the CG underwent conventional physiotherapy or occupational therapy. The

therapy and virtual reality-based training are described using the Template for Intervention

Description and Replication (TIDieR) in Table 2 [16].

If patients received any kind of additional therapy before trial participation, it was reduced

or suspended for the course of the study if the patient agreed. If the additional therapy had to

be continued or could not be reduced, it was ensured that its focus was on lower extremity

treatments.

Table 1. Outcome measures and measurement sessions.

Assessment Abbreviation Outcome Measurement sessions

BL T0 T1 T2 FU

Primary outcome

Box and Block Test BBT Hand dexterity X X X X X

Secondary outcomes

Chedoke McMaster Arm and Hand Activity

Inventory

CAHAI-13 Activity (ADL) X X X X X

Stroke Impact Scale SIS Impact of stroke on ADL, mobility, emotion, memory, strength,

communication

X X X X X

Outcomes for descriptive purposes

Extended Barthel Index EBI Independence in ADL X

Chedoke-McMaster Stroke Assessment CMSA Motor impairment X

Edinburgh Handedness Inventory EHI Handedness X

Mini Mental State Examination MMSE Cognitive screening X

Line Bisection Test LBT Neglect X

ADL = Activities of daily living; BL = Baseline, FU = Follow-up 2 months after study treatment finalization; T0 = Pre-intervention; T1 = after eight intervention

sessions; T2 = posttest after 16 intervention sessions.

https://doi.org/10.1371/journal.pone.0204455.t001
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Outcomes

Table 1 lists the primary outcome measure and all secondary outcome measures for each mea-

surement session. Adverse events were registered and transferred to the responsible ethics

committee if the applicable criteria for transfer were met. A detailed description of all outcome

measures can be found in the published study protocol (https://trialsjournal.biomedcentral.

com/articles/10.1186/1745-6215-15-350).

Table 2. Study intervention description based on the TIDieR checklist [16].

Item Experimental group Control group

1 Brief name Virtual reality-based training system Conventional therapy

2 Why Both interventions were compared directly in chronic stroke patients for two reasons:

1. One-to-one therapy sessions in an adequate amount are limited by health insurance company restrictions.

2. If virtual reality-based technology is used, and YG in particular, patients and therapists wanted to know if the treatment effect is the same.

If yes, YG could be used to increase the amount of training time with the technology, or it could be recommended as group- or home-based

virtual reality training, which would not be the case if YG performed worse.

3 What: materials EG patients were sitting or standing in front of the virtual reality

training system. They wore hand gloves with attached sensors to

measure finger movements of the thumb, index finger, middle

finger, wrist (bending, extending) and lower upper limb

(pronation, supination). Movements were displayed on the screen

in real time.

No restrictions were placed on the material used (for example, ADL

material, reaching and grasping material). Use of additional electrical or

mechanical therapy devices (for example, help arm systems, splints)

were avoided.

4 What:

procedures

The virtual reality-based system has a variety of training

applications for different movements and at different levels of

difficulty. Therapists could select one of three modes to control the

on-screen finger and arm movements: (1) use of the real arm and/

or hand movements, (2) mirroring of the real movements of one

arm and/or hand and (3) following the movements of one arm

and/or hand. The distribution and speed of the appearing objects

were attuned. Furthermore, patients’ movements could be

amplified or modulated in the virtual environment to force

decreases or increases in training difficulty [17]. After the second

virtual reality-based training session, patients had tested all

training applications and all three modes of finger and/or hand

movements. In the remaining 14 sessions, therapists selected at

least 3 training applications for each training session and 2

different movement modes with settings adapted to each patient’s

needs.

The therapy content focused on a task-related upper-limb treatment in a

sitting or standing position. Several manual techniques, therapy

materials and objects of ADL were performed [18, 19]. Three main

aspects were considered during therapy: (1) neuromuscular

interventions (NDT)–about 75% of the therapy content, (2) body

structural interventions (BSI)–about 20% of the therapy content, (3)

perceptual and sensory interventions (PSI)–about 5% of the therapy

content.

(1) NDT included neurodevelopmental/motor learning treatment

focusing on postural control (5%), fine and gross motor skills (65%),

and coordination (30%).

(2) BSI included stretching (5%), passive/assistive mobilization of body

structures and joints (45%), and training for specific muscles or muscles

groups in an assistive, active or resistance mode (50%).

(3) SI included proprioception (25%) and haptic perception (75%)

exercises.

5 Who provides Both study interventions were provided by experienced physiotherapists or occupational therapists, who had at least 2 years of professional

experience in the field of neurorehabilitation.

6 How Both study interventions were conducted individually in one-to-one sessions.

7 Where Both study interventions took place in the physiotherapy or occupational therapy department of each participating center.

8 When and how

much

During the 4-week intervention program, patients in both study groups (EG, CG) received the same amount of 16 sessions lasting 45 minutes

each. Therapist and patient contact time varied between 25 to 60minutes (average 45�3min) for both groups including greeting, organization

of next appointment, short clinical examination, changes since last appointment, training or therapy itself, and farewell. Patients in the EG

performed between 267 to 4283 grasps if the right paretic hand/arm and 102 to 5077 grasps if the left hand/arm was paretic over the 16

training sessions.

9 Tailoring Training and therapy content was tailored to each patient’s preferences, the agreed movement aims and the motor function level of each

patient.

10 Modifications No modification occurred during the course of the study.

11 How well All 22 patients (100%) in the virtual reality-based training group and 30 (93.8%) patients in the conventional therapy group completed the

training. That was evaluated by the training and therapy documentation forms for both groups that were filled in during each training

session.
12

ADL, Activities of daily living; CG, Control group; EG, Experimental group; TIDieR, Template for Intervention Description and Replication checklist and guide; VR,

Virtual reality; YG, YouGrabber (now renamed Bi-Manu Trainer).

https://doi.org/10.1371/journal.pone.0204455.t002
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Changes in hand dexterity between T0 and T2 were measured with the BBT, which was

described by Mathiowetz et al. in 1985 [20]. Patients were asked to grasp small wooden cubes

and move them from one side of the box to the other as fast as possible within 60 seconds. The

BBT provides normative data for healthy individuals in age groups ranging from 20 years to

older than 75. A change of five or six cubes before and after an intervention seems to be the

smallest real difference [21].

The CAHAI-13 was developed by Barreca et al. in 2004 [22–25]. It contains 13 bimanually

performed real-life items. Scores represent the patient’s relative ability to independently per-

form stabilisation or manipulation in ADL with the impaired upper limb. A score of one repre-

sents total dependence on another person, and a score of seven indicates patient independence

without time or safety concerns or necessary splints or devices.

The SIS is a questionnaire comprising questions regarding the impact of stroke on physical

function, emotion, memory, communication and social participation. The SIS was developed

by Duncan and colleagues and has been modified in recent years [26–28]. The current version,

3.0, consists of eight subscales (strength, hand function, mobility, ADL, emotion, memory,

communication and participation) administered in a one-to-one interview. Patients can rate

the level of their stroke’s impact on a 5-point Likert scale. The higher the score, the less affected

the patient perceives his or her current status to be.

The Extended Barthel Index was used for patient evaluation of independence in ADL [12].

The EBI comprises 16 items on mobility, ADL and cognitive function. Scoring ranges from

zero to four with four indicating the highest level of independence.

The CMSA was developed by Gowland et al. in 1995 for the evaluation of physical

impairment and activity level of stroke patients [29]. We used the impairment subscales for

hand and arm function that was scored on a seven-point scale (1 = hypoactive or absent mus-

cle reflexes, 7 = no functional impairment detectable anymore, prestroke status) according to

seven stages of motor recovery [30]. Additionally, the subscale of shoulder pain of the affected

body side was administered on the same seven-point scale.

The Edinburgh Handedness Inventory was used to assess hand laterality [13]. The ques-

tionnaire included 12 daily activities were participants had to determine their preferred hand

(right/left).

For cognitive screening the Mini-Mental State Examination (MMSE) was conducted. The

MMSE comprised 30 items and patients could achieve zero to 30 points (indicating the highest

scoring) [14].

The Line bisection test (LBT) is a paper-and-pencil test used to evaluate the presence of uni-

lateral spatial neglect [15]. Patients were asked to mark the centre of 18 drawn lines on paper

with a pencil.

Statistical analyses

The sample size was calculated based on the basis of an earlier efficacy study, in which the virtual

reality-based system was tested in children with cerebral palsy [9]. A power analysis and a sample

size calculation for the present study were performed using G�Power software version 3.1.5 [31]. In

the cited study of children, the BBT (primary outcome measure) showed an effect size of Cohen’ s

d = 0.98. Assuming a similar effect size for adult stroke patients, a total of 46 patients (23 per group)

had to be included: two-tailed test, power = 0.9, significance level α = 0.05. Assuming a dropout

rate of 20%, we thus planned to recruit a total of 60 patients across the participating centers.

All statistical analyses were conducted using the Statistical Package for Social Sciences

(SPSS) version 23.0 (IBM, 290 Armonk, New York, USA) with a two-sided significance level of

p�0.05 as an intention-to-treat analysis.

Virtual reality-based training vs. conventional therapy
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Variables were checked for normal distribution with the Shapiro-Wilk test.

1. Due to observable mean differences at baseline we checked for baseline significant differ-

ences for age, time since stroke, BBT, CAHAI, and SIS subscale hand function (subscale 7).

Due to non-normal distribution, we used the Mann-Whitney U-Test that did not reveal sig-

nificant differences between EG and CG at BL.

2. Due to non-normal distribution of primary and secondary outcome measures we calculated

the differences between each measurement session. Again, the differences were tested for

normal distribution, which was not the case. Subsequently, the differences were tested

using the Friedman test for repeated measures to determine changes over time for both

groups. The Mann-Whitney U-Test was used to test for group differences of the changes

for each measurement session.

3. All outcome analyses were intention-to-treat analyses with missing values replaced with

two methods: carrying the last observable value forward or backward and by adding or sub-

tracting the mean change of the group [32, 33]. This sensitivity analysis did not materially

change the results. For the primary outcome analysis, the differences of the BBT scores of

the paretic side for each measurement session were the dependent variables. For the sec-

ondary outcome analyses, dependent variables were the difference scores of the CAHAI,

the SIS subscales 1, 5, 6, 7, 9, the SIS mobility index, and the BBT scores of the non-paretic

side. To correct the p-value for multiple comparisons the Bonferroni adjustment (p = 0�05/

k) was used, where k represents the number of tests for significance (k = 3) [34].

4. No post-hoc power analysis was conducted due to the lack of a group interaction effect.

Nevertheless, we calculated the effect for the four-week training intervention for each

group separately and the standardized mean difference between groups with the following

formula: Kazis’ effect size = (pre-intervention score-post-intervention score)/standard devi-

ation of pre-intervention score [35].

Results

The study was conducted between December 1, 2012, and February 15, 2016 including the last

follow-up assessment. In total, with a recruitment rate of 1.3, 54 patients were included, of

whom 22 patients received virtual reality-based training (40.7%) and 32 (59.3%) patients

received conventional therapy. All 22 patients (100%) in the virtual reality-based training

group and 30 (93.8%) patients in the conventional therapy group completed the training.

Table 3 provides an overview of all patient baseline characteristics and Fig 1 shows the

study patient flow chart. There were no baseline characteristic differences except for the SIS

mobility index with p = 0.05 (please see Table 4).

Figs 2 and 3 illustrate the change scores for BBT of the paretic hand and the CAHAI. All

change scores of the primary and secondary outcomes are provided in Table 4. supporting

information S1–S4 Figs illustrate the change scores of further SIS subscales and BBT scores for

the non-paretic hand.

After the intervention period (T2), which included 16 training or therapy sessions lasting

45 minutes each, both groups showed highly significant mean differences from Pre to FU for

hand dexterity assessed with the primary outcome measure BBT (mean change from Pre to

FU for EG: 1.7 points, for CG: 3.5 points). A similar result was found for the secondary out-

come measure bilateral arm function assessed with the CAHAI-13 (mean change from Pre to

FU for EG: 5.4 points, CG: 3.1 points). Based on the findings from Chen et al. and Barreca

et al., a change of 5.5 points in the BBT and of 6.3 points in the CAHAI-13 would have been
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necessary for a clinical relevant change [21, 24]. However, for both outcomes no between-

group differences were detected.

In the study protocol no subgroup analyses were pre-specified. However, two non-signifi-

cant trends based on the median score of the BBT and the CAHAI became obvious and were

further investigated. In subgroup analyses based on (1) the median value for BBT (18 blocks)

and (2) the CAHAI (score of 72) no differences could be detected (p>0.121).

1. For patients, who scored higher or equal as the median value of 18 in the BBT at pre-inter-

vention (EG = 12, CG = 16) there was an improving trend to T2 (p = 0.08) in favor of the

experimental group. On average, patients in the experimental group improved from 10.9

(±5.0) to 13.7 (±5.8) at T2 (mean ± SD), whereas patients in the control group changed

from 7.4 (±6.1) to 9.0 (±8.0) at T2 (mean ± SD).

2. For patients, who scored less or equal as the median value 72 in the CAHAI at pre-interven-

tion (EG = 11, CG = 16) there was an improving trend to T2 (p = 0.07) in favor of the exper-

imental group. On average, patients in the experimental group progressed from CAHAI a

score of 51.6 (±12.2) to 63.3 (±14.3) at T2 (mean ± SD), whereas patients in the control

group changed from a CAHAI score of 44.5 (±16.2) to 47.7 (±16.8) at T2 (mean ± SD).

Table 3. Patients’ baseline characteristics for personal, diagnosis- and screening-related information.

Virtual reality-based training

(n = 22)

(mean ± SD, range)

Conventional therapy

(n = 32)

(mean ± SD, range)

Age (years) 61.3 ± 13.4

(22.9–81.0)

61.2 ± 11.2

(20.0–78.3)

Gender (female/male) 6 / 16 9 / 23

Marital status (married / living alone) 15 / 7 21 / 10�

Time since stroke (years) 2.4 ± 2.4 (0.4–9.5) 3.6 ± 3.7 (0.45–13.7)

Time of additional PT and/or OT (min/

week)

67.1 ± 44.5 (0–180) 83.3 ± 56.0 (0–210)

Extended Barthel Index (max. 64) 60.4 ± 5.6 (41–64) 59.5 ± 6.7 (30–64)

Mini-Mental State Examination (max. 30) 28.6 ± 1.0 (27–30) 28.4 ± 2.0 (23–30)

Chedoke-McMaster Stroke Assessment

Subscale: Shoulder pain (max. 7) 5.2 ± 1.1 (4–7) 5.4 ± 1.4 (2–7)

Subscale: Arm function (max. 7) 4.0 ± 1.0 (3–7) 4.0 ± 1.0 (3–6)

Subscale: Hand function (max. 7) 4.3 ± 0.9 (3–6) 4.2 ± 1.4 (2–7)

Stroke (ischemic/hemorraghic) 18 / 4 25 / 7

Dominant side paretic (n)

Right hand dom.+par. 13 14

Right hand dom.+left hand par. 8 15

Left hand dom.+par. 0 1

Left hand dom.+right hand par. 1 2

Experience with

Working with a PC (yes/no) 21�/0 25/6�

Virtual reality (yes/no) 21�/0 17/14�

PC games (yes/no) 21�/0 16/15�

The Mann-Whitney U-Test was used to determine significant differences between EG and CG at BL. However, there

were no baseline for the parameters displayed in Table 3.

� = data of one participant missing, ADL = Activities of daily living, PT = physiotherapy, OT = occupational therapy,

dom. = dominant, par. = paretic, VR = virtual reality. Numbers in brackets represent median and range (rounded).

https://doi.org/10.1371/journal.pone.0204455.t003
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Table 4. Details of primary and secondary outcomes.

Outcome measure YouGrabber Training n = 22

Mean changes over time compared to pre-

intervention score

Conventional therapy n = 32

Mean changes over time compared to pre-

intervention score

Between group differences for all

ME

Median (IQR) p-value� Median (IQR) p-value� Z-value p-value

Primary outcome

Box and Block Test paretic side
Pre-intervention (T0) 19.3 (11.9 to 36�0) — 17.8 (4.3 to 28�0) — -0.863 0.388

After 8 trainings (T1) 22.5 (13.8 to 37.8) 0.006� 21.0 (6.3 to 33.8) 0.002� -0.317 0.751

After 16 trainings (T2) 22.0 (15.3 to 35.8) 0.02 20.5 (5.5 to 34.5) 0.003� -0.203 0.839

After 2 months (FU) 19.5 (15.5 to 39.3) 0.069 21.5 (7.3 to 36.3) 0.001� -0.951 0.341

Secondary outcomes

Chedoke McMaster Arm and Hand Activity Inventory (13–91)
Pre-intervention (T0) 73.8 (47.0 to 83.6) — 72.0 (44.6 to 84.4) — -0.297 0.771

After 8 trainings (T1) 75.0 (59.8 to 86.8) 0.001� 77.5 (43.8 to 87.0) 0.002� -1.375 0.169

After 16 trainings (T2) 77.0 (61.2 to 85.0) 0.01� 72.0 (47.3 to 89.0) �0.001� -0.864 0.387

After 2 months (FU) 77.0 (60.0 to 89.0) 0.001� 77.0 (45.3 to 87.0) 0.002� -0.546 0.585

Stroke Impact Scale: subscale 1 strength (0–100)
Pre-intervention (T0) 60.9 (52.3 to 72.7) — 59.4 (43.8 to 68.8) — -0.371 0.711

After 8 trainings (T1) 68.8 (54.7 to 71.9) 0.037 62.5 (50.0 to 73.4) 0.713 -1.659 0.097

After 16 trainings (T2) 68.8 (50.0 to 78.1) 0.001� 62.5 (50.0 to 73.4) 0.159 -2.189 0.290

After 2 months (FU) 68.8 (56.3 to 75.0) 0.002� 65.6 (50.0 to 75.0) 0.48 -1.904 0.057

Stroke Impact Scale: subscale 5 activities of daily living (0–100)
Pre-intervention (T0) 83.6 (65.4 to 90.9) — 73.4 (65.4 to 83.3) — -1.294 0.196

After 8 trainings (T1) 86.5 (69.8 to 97.2) 0.001� 77.1 (70.8–86.5) 0.15 -1.55 0.121

After 16 trainings (T2) 89.6 (70.3 to 97.9) 0.001� 81.3 (68.8–87.0) 0.004 -1.340 0.180

After 2 months (FU) 90.2 (78.1 to 95.8) �0.001� 83.3 (64.6–87.5) 0.052 -1.532 0.125

Stroke Impact Scale: subscale 6 mobility (0–100)
Pre-intervention (T0) 90.0 (74.7 to 99.1) — 86.9 (76.6 to 94.4) — -1.235 0.217

After 8 trainings (T1) 93.8 (81.8 to 100.0) 0.015 77.1 (70.8 to 86.5) 0.191 -0.65 0.516

After 16 trainings (T2) 92.5 (83.8 to 100.0) 0.091 92.5 (78.1 to 96.9) 0.015 -0.265 0.791

After 2 months (FU) 95.0 (81.9 to 100.0) 0.243 91.3 (78.1 to 97.5) 0.302 -0.204 0.839

Stroke Impact Scale: subscale 7 hand function (0–100)
Pre-intervention (T0) 65.0 (37.5 to 81.3) — 43.8 (20.6 to 74.4) — -1.648 0.099

After 8 trainings (T1) 75.0 (45.0 to 86.3) 0.001� 62.5 (25.0 to 80.0) 0.004 -0.601 0.548

After 16 trainings (T2) 77.5 (55.0 to 86.3) 0.004� 62.5 (21.3 to 85.0) �0.001 -0.574 0.566

After 2 months (FU) 72.5 (62.5 to 90.0) 0.011� 72.5 (25.0 to 90.0) 0.001 -0.538 0.591

Stroke Impact Scale: subscale 9 stroke recovery (0–100)
Pre-intervention (T0) 54.5 (44.4 to 72.8) — 61.3 (47.0 to 70.0) — -0.890 0.374

After 8 trainings (T1) 60.0 (50.0 to 77.3) 0.003� 60.0 (55.0 to 73.8) 0.277 -1.107 0.268

After 16 trainings (T2) 64.0 (53.8 to 76.3) 0.001� 64.0 (50.0 to 77.3) 0.033 -1.603 0.109

After 2 months (FU) 69.0 (48.8 to 75.0) 0.012� 70.0 (50.0 to 78.0) 0.288 -0.411 0.681

Stroke Impact Scale: mobility index (0–5)
Pre-intervention (T0) 4.4 (3.7 to 4.5) — 3.8 (3.5 to 4.3) — -1.960 0.050

After 8 trainings (T1) 4.6 (4.0 to 5.0) 0.002� 4.0 (3.5 to 4.5) 0.006 -0.238 0.812

After 16 trainings (T2) 4.6 (4.0 to 5.0) 0.023 4.0 (3.5 to 4.5) 0.003 -0.106 0.916

After 2 months (FU) 4.6 (4.0 to 5.0) 0.006� 4.0 (3.5 to 4.5) �0.001 -0.108 0.914

BBT non-paretic side
Pre-intervention (T0) 54.0 (44.8 to 59.9) — 49.8 (43.5 to 56.6) — -1.057 0.291

After 8 trainings (T1) 58.0 (45.8 to 65.0) 0.001� 50.5 (45.0 to 59.5) 0.033 -1.216 0.224

(Continued)
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Scoring of both groups in the SIS changed significantly in subscales hand function, activities

of daily living, and mobility index, but not for subscale mobility. Interestingly, for subscale

strength both groups showed large self-perceived increases with a trend in favor of the experi-

mental group (p = 0.057), who improved their mean value from pre-intervention to FU by

about eight points. By comparison, the control group improved their mean value by almost

three points (see Table 3 and supporting information S1 to S4 Figs).

Table 4. (Continued)

Outcome measure YouGrabber Training n = 22

Mean changes over time compared to pre-

intervention score

Conventional therapy n = 32

Mean changes over time compared to pre-

intervention score

Between group differences for all

ME

Median (IQR) p-value� Median (IQR) p-value� Z-value p-value

After 16 trainings (T2) 57.5 (46.0 to 65.0) 0.008� 53.0 (46.3 to 59.8) 0.001 -0.273 0.785

After 2 months (FU) 59.0 (45.8 to 64.5) �0.001� 54.5 (46.3 to 63.8) 0.001 -0.273 0.785

The Friedman test for repeated measures was used to determine changes over time for both groups. The Mann-Whitney U-Test was used to test for group differences of

the changes for each measurement session. A significant difference was found for the SIS mobility index at pre-intervention. The p-value is marked in bold.

BBT = Box and Block Text, CAHAI = Chedoke McMaster Arm and Hand Activity Inventory, FU = Follow-up, SIS = Stroke Impact Scale, SS = subscale

� significant p-Level after Bonferroni adjustment (p = 0.05/k)

k represents number of tests for significance (k = 3).

https://doi.org/10.1371/journal.pone.0204455.t004

Fig 2. Change in Box und Block Test: paretic hand. Pre = Pre-intervention, T1 = after 8 training sessions, T2 = after 16 training sessions, FU = follow-up after two

months.

https://doi.org/10.1371/journal.pone.0204455.g002
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Effect sizes were reported in the supporting information S1 Table for each group separately.

They range between 0.13 and 0.52 for BBT, CAHAI, and SIS upper limb related subscales, e.g.

strength, ADL, and hand function, excluding subscale mobility.

For the whole course of both interventions no adverse events in relation to study participa-

tion were reported. Before randomization, three patients expected adverse events due to differ-

ent reasons not related to the study and were excluded—please see the patient flow chart for

details in Fig 1.

Discussion

The present multicenter parallel group randomized controlled trial aimed to investigate the

efficacy of a virtual reality-based training with YouGrabber compared to conventional therapy

as stand-alone therapy in patients in the chronic stage after stroke. As hypothesized, both

patient groups significantly improved their performance in primary and secondary outcomes

but did not show between-group differences after eight or 16 training sessions or after the two-

month follow-up. These results are in line with recent publications on VR-based training from

Brunner et al. and the systematic review update from Laver et al. [8, 36]. However, three non-

significant trends should be further discussed: (1) subjectively perceived improved strength

trend in the virtual reality-based training group compared to the CG, (2) the main scoring

increase over the first eight compared to the second eight training sessions, and (3) the

increased scoring in the BBT of the non-affected upper limb.

Fig 3. Change in Chedoke McMaster Arm and Hand Activity Inventory. Pre = Pre-intervention, T1 = after 8 training sessions, T2 = after 16 training sessions,

FU = follow-up after two months.

https://doi.org/10.1371/journal.pone.0204455.g003
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Comparison with other studies

Repetition of movement is one of the fundamental principles for motor re-learning and facili-

tating brain plasticity to improve motor function [37]. In our study, the differences in the sub-

jectively improved strength measured with the SIS could be explained by the very high

numbers of repetitions of arm and finger movements preformed during the YG games. The

training in EG was very much focused on active finger, hand and arm movements that could

lead up to 5000 grasp movements over 16 training sessions. However, only patients in the CG

performed a resistance training with heavy objects, e.g. weights but with a lesser amount of

repetitions.

The main scoring increase occurred within the first eight training sessions that were sched-

uled during the first two weeks of the intervention. During the second two intervention weeks,

scores further increased albeit to a lesser degree or they remained on the same level. The Yer-

kes-Dodson Law, first explained by Yerkes and Dodson in 1908, is a dose-response framework

that describes a relationship between arousal or motivation and performance and might help

to explain that phenomenon [5]. It indicates that a low level of task difficulties elicits linear

responses. Reaching a higher level of difficulty, the relationship becomes inverse and increases

in arousal could cause decreases in performance. From our patients, we know that they

enjoyed playing the virtual reality-based games and always reached for a higher score or a

faster performance [38]. The intensive training could have reached a point when a higher

intensity is necessary to push the functional improvements and patient motivation further, e.g.

longer than 45 minutes per day or more than four times per week.

It is worth mentioning that patients in both groups scored approximately 20 points below

the average score in the BBT with their non-paretic upper limb compared to healthy individu-

als of the same mean age. Mathiowetz et al. suggested a norm score above 70 for healthy

women and men for the left and right side [20]. Patients in both groups improved their BBT

scoring with 4.6 (EG) and 4.4 (CG) from baseline to follow-up. That distinct scoring change of

the non-paretic upper limb over the four measurement sessions is somewhat surprising. One

would assume that patients 2.5 to 3.5 years after stroke would use the non-paretic upper limb

more throughout the day to compensate for the reduced motor function of the paretic side

and would have developed even more hand and arm dexterity over time compared to healthy

individuals. However, it could be hypothesized that the non-paretic hand/arm compensated

for the non-use of the paretic hand/arm. Furthermore, the reduced overall activity and motor

function after stroke and intensive carer assistance could have led to a more sedentary lifestyle

and a learned non-use for the non-paretic side as well. A BBT performance difference of the

paretic and non-paretic arm depending on side of brain lesion as suggested by Steward et al.

could not be detected [39].

Overall, our results are in line with the previous publications comparing virtual reality-

based training using a commercial consumer virtual reality training systems, e.g. Nintendo

Wii, XBox, Playstation with conventional therapy including patients in a chronic stage after

stroke [40–42]. One difference in our study was that we used a system that was specifically

developed for patients with sensorimotor impairments. The system offers different display

modes of the arms (a) real left/right hands control their virtual counterparts, (b) virtual mirror

therapy, in which one real hand controls both virtual arms or the contralateral virtual hand in

a mirrored fashion, or (c) virtual following that is the same as for virtual mirror therapy, but

without mirroring [43].

Our results continue the work from Saposnik et al., who included 121 light to moderately

impaired inpatients in a subacute stage after stroke [44]. They used a commercial virtual real-

ity-based system for a two-week training program including ten 60-minute sessions as an

Virtual reality-based training vs. conventional therapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0204455 October 24, 2018 13 / 19

https://doi.org/10.1371/journal.pone.0204455


adjunct to the multidisciplinary program and found significant improvements over time for

both groups but no between-group differences.

Furthermore, our results are in line with findings from a recent systematic review on virtual

reality-based training in stroke rehabilitation from Aminov et al. [45]. Researchers reported

small to moderate effect sizes in favor of virtual reality-based training ideally performed with a

purposed-designed virtual reality design system similar to the system used in our multi-center

study. Supporting our study design the authors of the systematic review and meta-analysis

reported higher effects in favor of virtual reality-based training for patients three or more

months post stroke, with more than 15 training sessions in total including more than three

training sessions per week adding up to more than 100 minutes per week. We also included

outcome measures to evaluate all three main categories of the International Classification of

Function: body structure and function, activity, and participation.

Future research directions should consider the potential of virtual reality-based training system

to increase the efficiency of training in terms of human resources. Currently, the number of avail-

able therapists is not sufficient compared to the increasing number of patients. To supply the

required dose of therapy to the number of patients after stroke experiencing motor deficits, it

would be interesting if our results could be replicated with virtual reality-based group training ses-

sions compared to individually supervised trainings. With virtual reality, most of the time of the

therapy session could be automated and therefore could be completed without the constant super-

vision of a therapist. Furthermore, a system could even be installed in the patient’s home and the

setup instructions given remotely, removing the burden of clinic visits.

Limitations and strengths

One limitation of our study is the number of patients per group. Despite the well-prepared

randomization scheme the imbalances occurred by chance. Patients were randomized at study

entry but held confidential until they passed both baseline assessments (BL, T0). However, it

happened that patients did not pass the baseline assessments or had to be excluded for several

reasons, which led to an uneven number of patients per group and could have therefore led to

an under- or overestimation of the effect of the virtual reality-based training.

A common problem in RCTs investigating therapies or training procedures is in blinding

the patients regarding their group allocation. In our study, only one patient withdrew study

participation after being randomized into the control group. All other patients stated that they

were happy with their group allocation and showed high compliance. The study had a very low

dropout rate of 1.6%.

Our sample size calculation was based on a previous study that used the same VR-based

training system and included children with cerebral palsy. Their effect size was higher com-

pared to other VR-based training systems [8].

A remarkable strength of our study is the inclusion of moderate to severely impaired

patients in both groups, who were able to move at least one wooden cube in the BBT. The

adjustable virtual reality-based system was adaptable to amplify even very tiny movements and

therefore enabled the patient to play or train with his/her severely impaired hand or arm. That

could have led to an increased motivation and desire to move or use the paretic upper limb

during the day more often.

From Kwakkel et al. and Verheyden et al. we know that recovery occurs mainly in the first

six month [46, 47]. However, the majority of our patients started later than six months post

stroke. Their improvement could reflect some training effect on a functional level or the use of

behavioural adaptation strategies rather than by restitution of existing underlying impairments

themselves.
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In our study, it was an important aspect to open the black box of conventional therapy and

provide the clinician with specific information on the therapy content of the CG. Therefore,

we analyzed and summarized the content of the therapy down to a very detailed level based on

the classification system laid out by Pollock and colleagues in their Cochrane review on inter-

ventions for improving upper limb function after stroke [48].

Conclusions

In conclusion, with the YouGrabber (now renamed Bi-Manu-Trainer) we used a virtual real-

ity-based training system that was specifically developed for patients with sensorimotor

impairments with three different display modes of the hand and arms as a safe training option.

Virtual reality-based training and conventional physiotherapy and occupational therapy did

not show significant differences when applied as a supervised one-to-one training. Virtual

reality-based training and conventional therapy showed differently weighted therapy contents.

However, considering the increasing numbers of patients after stroke in the future and the lim-

ited personnel and financial resources, a virtual reality-based training could support the reha-

bilitation process by increasing training time for patients with virtual reality-based group

training sessions in inpatient or outpatient settings or at the patients’ home.
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support, Dr. Markus Stöcklin for statistical advice, and Dr. Frank Behrendt for the production

of all statistical figures.

Author Contributions

Conceptualization: Corina Schuster-Amft, Kynan Eng, Zorica Suica, Irene Thaler, Sandra

Signer, Isabelle Lehmann, Ludwig Schmid, Michael A. McCaskey, Miura Hawkins, Martin

L. Verra, Daniel Kiper.

Data curation: Corina Schuster-Amft, Irene Thaler, Sandra Signer, Isabelle Lehmann, Ludwig

Schmid, Miura Hawkins.

Formal analysis: Corina Schuster-Amft, Kynan Eng, Miura Hawkins.

Funding acquisition: Kynan Eng, Daniel Kiper.

Investigation: Corina Schuster-Amft, Kynan Eng, Zorica Suica, Irene Thaler, Sandra Signer,

Isabelle Lehmann, Ludwig Schmid, Michael A. McCaskey, Martin L. Verra, Daniel Kiper.

Methodology: Corina Schuster-Amft, Kynan Eng, Zorica Suica, Irene Thaler, Sandra Signer,

Isabelle Lehmann, Ludwig Schmid, Michael A. McCaskey, Miura Hawkins, Martin L.

Verra, Daniel Kiper.

Project administration: Corina Schuster-Amft, Kynan Eng, Zorica Suica, Irene Thaler, San-

dra Signer, Isabelle Lehmann, Ludwig Schmid, Michael A. McCaskey, Daniel Kiper.

Resources: Kynan Eng, Zorica Suica.

Software: Kynan Eng.

Supervision: Corina Schuster-Amft, Irene Thaler, Sandra Signer, Isabelle Lehmann, Ludwig

Schmid, Michael A. McCaskey, Martin L. Verra, Daniel Kiper.

Validation: Zorica Suica, Miura Hawkins.

Visualization: Kynan Eng.

Writing – original draft: Corina Schuster-Amft.

Writing – review & editing: Corina Schuster-Amft, Kynan Eng, Zorica Suica, Irene Thaler,

Sandra Signer, Isabelle Lehmann, Ludwig Schmid, Michael A. McCaskey, Miura Hawkins,

Martin L. Verra, Daniel Kiper.

References
1. Dimbwadyo-Terrer I, Trincado-Alonso F, de Los Reyes-Guzman A, Aznar MA, Alcubilla C, Perez-Nom-

bela S, et al. Upper limb rehabilitation after spinal cord injury: a treatment based on a data glove and an

immersive virtual reality environment. Disabil Rehabil Assist Technol. 2016; 11(6):462–7. https://doi.

org/10.3109/17483107.2015.1027293 PMID: 26181226.

2. Kalron A, Fonkatz I, Frid L, Baransi H, Achiron A. The effect of balance training on postural control in

people with multiple sclerosis using the CAREN virtual reality system: a pilot randomized controlled

trial. Journal of NeuroEngineering and Rehabilitation. 2016; 13(1):1–10. https://doi.org/10.1186/

s12984-016-0124-y PMID: 26925955

3. Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane

Database Syst Rev. 2015; 2:CD008349. https://doi.org/10.1002/14651858.CD008349.pub3 PMID:

25927099.

4. Saposnik G, Teasell R, Mamdani M, Hall J, McIlroy W, Cheung D, et al. Effectiveness of virtual reality

using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of princi-

ple. Stroke. 2010; 41(7):1477–84. Epub 2010/05/29. STROKEAHA.110.584979 [pii] https://doi.org/10.

1161/STROKEAHA.110.584979 PMID: 20508185.

Virtual reality-based training vs. conventional therapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0204455 October 24, 2018 16 / 19

https://doi.org/10.3109/17483107.2015.1027293
https://doi.org/10.3109/17483107.2015.1027293
http://www.ncbi.nlm.nih.gov/pubmed/26181226
https://doi.org/10.1186/s12984-016-0124-y
https://doi.org/10.1186/s12984-016-0124-y
http://www.ncbi.nlm.nih.gov/pubmed/26925955
https://doi.org/10.1002/14651858.CD008349.pub3
http://www.ncbi.nlm.nih.gov/pubmed/25927099
https://doi.org/10.1161/STROKEAHA.110.584979
https://doi.org/10.1161/STROKEAHA.110.584979
http://www.ncbi.nlm.nih.gov/pubmed/20508185
https://doi.org/10.1371/journal.pone.0204455


5. Schmidt RA. Motor control and learning: a behavioral emphasis. 2nd ed. Champaign, Illinois: Human

Kinetics Publishers, Inc.; 1988. XI, 578 S. p.

6. Feigenson JS, McDowell FH, Meese P, McCarthy ML, Greenberg SD. Factors influencing outcome and

length of stay in a stroke rehabilitation unit. Part 1. Analysis of 248 unscreened patients—medical and

functional prognostic indicators. Stroke. 1977; 8(6):651–6. PMID: 929650.

7. Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane

Database Syst Rev. 2011;(9):CD008349. Epub 2011/09/09. https://doi.org/10.1002/14651858.

CD008349.pub2 PMID: 21901720.

8. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation.

Cochrane Database Syst Rev. 2017; 11:CD008349. https://doi.org/10.1002/14651858.CD008349.

pub4 PMID: 29156493.

9. van Hedel HJA, Wick K, Eng K, Meyer-Heim A. Improving dexterity in children with cerebral palsy: Pre-

liminary results of a randomised trial evaluating a glove based VR-system. [Poster]. In press 2011.

10. Schuster-Amft C, Henneke A, Hartog-Keisker B, Holper L, Siekierka E, Chevrier E, et al. Intensive vir-

tual reality-based training for upper limb motor function in chronic stroke: a feasibility study using a sin-

gle case experimental design and fMRI. Disabil Rehabil: Assist Technol. 2014; 10(5):385–92. https://

doi.org/10.3109/17483107.2014.908963 PMID: 24730659.

11. Schuster-Amft C, Eng K, Lehmann I, Schmid L, Kobashi N, Thaler I, et al. Using mixed methods to eval-

uate efficacy and user expectations of a virtual reality-based training system for upper-limb recovery in

patients after stroke: a study protocol for a randomised controlled trial. Trials. 2014; 15(1):350. Epub

2014/09/10. 1745-6215-15-350 [pii] https://doi.org/10.1186/1745-6215-15-350 PMID: 25194928.

12. Jansa J, Pogacnik T, Gompertz P. An evaluation of the Extended Barthel Index with acute ischemic

stroke patients. Neurorehabil Neural Repair. 2004; 18(1):37–41. https://doi.org/10.1177/

0888439003262287 PMID: 15046015.

13. Oldfield RC. The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia.

1971; 9(1):97–113. Epub 1971/03/01. PMID: 5146491.

14. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive

state of patients for the clinician. J Psychiatr Res. 1975; 12(3):189–98. PMID: 1202204.

15. Plummer P, Morris ME, Dunai J. Assessment of unilateral neglect. Phys Ther. 2003; 83(8):732–40.

PMID: 12882614

16. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interven-

tions: template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014;

348. https://doi.org/10.1136/bmj.g1687 PMID: 24609605

17. Eng K, Siekierka E, Pyk P, Chevrier E, Hauser Y, Cameirao M, et al. Interactive visuo-motor therapy

system for stroke rehabilitation. Med Biol Eng Comput. 2007; 45(9):901–7. Epub 2007/08/10. https://

doi.org/10.1007/s11517-007-0239-1 PMID: 17687578.

18. Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke

survivors: a critical review. Neurorehabilitation and neural repair. 2003; 17(4):220–6. https://doi.org/10.

1177/0888439003259415 PMID: 14677218.

19. Luke C, Dodd K, Brock K. Outcomes of the Bobath concept on upper limb recovery following stroke.

Clinical rehabilitation. 2004; 18(8):888–98. https://doi.org/10.1191/0269215504cr793oa PMID:

15609844

20. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dex-

terity. Am J Occup Ther. 1985; 39. https://doi.org/10.5014/ajot.39.6.386

21. Chen HM, Chen CC, Hsueh IP, Huang SL, Hsieh CL. Test-retest reproducibility and smallest real differ-

ence of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair. 2009; 23. https://doi.

org/10.1177/1545968308331146 PMID: 19261767

22. Barreca S, Gowland CK, Stratford P, Huijbregts M, Griffiths J, Torresin W, et al. Development of the

Chedoke Arm and Hand Activity Inventory: theoretical constructs, item generation, and selection. Top

Stroke Rehabil. 2004; 11(4):31–42. Epub 2004/12/14. https://doi.org/10.1310/JU8P-UVK6-68VW-

CF3W PMID: 15592988.

23. Barreca S, Stratford P, Masters L, Lambert CL, Griffiths J, McBay C. Validation of Three Shortened Ver-

sions of the Chedoke Arm and Hand Activity Inventory. Physiother Can. 2006; 58:148–56. https://doi.

org/10.2310/6640.2006.00031

24. Barreca SR, Stratford PW, Lambert CL, Masters LM, Streiner DL. Test-retest reliability, validity, and

sensitivity of the Chedoke arm and hand activity inventory: a new measure of upper-limb function for

survivors of stroke. Arch Phys Med Rehabil. 2005; 86(8):1616–22. https://doi.org/10.1016/j.apmr.2005.

03.017 PMID: 16084816.

Virtual reality-based training vs. conventional therapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0204455 October 24, 2018 17 / 19

http://www.ncbi.nlm.nih.gov/pubmed/929650
https://doi.org/10.1002/14651858.CD008349.pub2
https://doi.org/10.1002/14651858.CD008349.pub2
http://www.ncbi.nlm.nih.gov/pubmed/21901720
https://doi.org/10.1002/14651858.CD008349.pub4
https://doi.org/10.1002/14651858.CD008349.pub4
http://www.ncbi.nlm.nih.gov/pubmed/29156493
https://doi.org/10.3109/17483107.2014.908963
https://doi.org/10.3109/17483107.2014.908963
http://www.ncbi.nlm.nih.gov/pubmed/24730659
https://doi.org/10.1186/1745-6215-15-350
http://www.ncbi.nlm.nih.gov/pubmed/25194928
https://doi.org/10.1177/0888439003262287
https://doi.org/10.1177/0888439003262287
http://www.ncbi.nlm.nih.gov/pubmed/15046015
http://www.ncbi.nlm.nih.gov/pubmed/5146491
http://www.ncbi.nlm.nih.gov/pubmed/1202204
http://www.ncbi.nlm.nih.gov/pubmed/12882614
https://doi.org/10.1136/bmj.g1687
http://www.ncbi.nlm.nih.gov/pubmed/24609605
https://doi.org/10.1007/s11517-007-0239-1
https://doi.org/10.1007/s11517-007-0239-1
http://www.ncbi.nlm.nih.gov/pubmed/17687578
https://doi.org/10.1177/0888439003259415
https://doi.org/10.1177/0888439003259415
http://www.ncbi.nlm.nih.gov/pubmed/14677218
https://doi.org/10.1191/0269215504cr793oa
http://www.ncbi.nlm.nih.gov/pubmed/15609844
https://doi.org/10.5014/ajot.39.6.386
https://doi.org/10.1177/1545968308331146
https://doi.org/10.1177/1545968308331146
http://www.ncbi.nlm.nih.gov/pubmed/19261767
https://doi.org/10.1310/JU8P-UVK6-68VW-CF3W
https://doi.org/10.1310/JU8P-UVK6-68VW-CF3W
http://www.ncbi.nlm.nih.gov/pubmed/15592988
https://doi.org/10.2310/6640.2006.00031
https://doi.org/10.2310/6640.2006.00031
https://doi.org/10.1016/j.apmr.2005.03.017
https://doi.org/10.1016/j.apmr.2005.03.017
http://www.ncbi.nlm.nih.gov/pubmed/16084816
https://doi.org/10.1371/journal.pone.0204455


25. Schuster C, Hahn S, Ettlin T. Objectively-assessed outcome measures: a translation and cross-cultural

adaptation procedure applied to the Chedoke McMaster Arm and Hand Activity Inventory (CAHAI).

BMC Med Res Methodol. 2010; 10:106. Epub 2010/12/01. 1471-2288-10-106 [pii] https://doi.org/10.

1186/1471-2288-10-106 PMID: 21114807; PubMed Central PMCID: PMC3004924.

26. Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ. The stroke impact scale version

2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke. 1999; 30(10):2131–40. PMID:

10512918.

27. Duncan PW, Wallace D, Studenski S, Lai SM, Johnson D. Conceptualization of a new stroke-specific

outcome measure: The Stroke Impact Scale. Top Stroke Rehabil. 2001; 8(2):19–33. https://doi.org/10.

1310/BRHX-PKTA-0TUJ-UYWT PMID: 14523743.

28. Lin K-c, Fu T, Wu C-y, Wang Y-h, Liu J-s, Hsieh C-j, et al. Minimal Detectable Change and Clinically

Important Difference of the Stroke Impact Scale in Stroke Patients. Neurorehabil Neural Repair. 2010;

24(5):486–92. https://doi.org/10.1177/1545968309356295 PMID: 20053950

29. Gowland C, VanHullenaar S, Torresin W, Moreland J, Vanspall B, Barreca S, et al. Chedoke-McMaster

Stroke Assessment: development, validation, and administration manual. Hamilton (ON): School of

Rehabilitation Science, McMaster University; 1995.

30. Gowland CA. Staging motor impairment after stroke. Stroke. 1990; 21(9 Suppl):II19–21. PMID:

2399544.

31. Faul F, Erdfelder E, Lang A-G, Buchner A. GPower. 3.0.8 ed. Düsseldorf: Heinrich Heine Universität;

2007.

32. Powney M, Williamson P, Kirkham J, Kolamunnage-Dona R. A review of the handling of missing longitu-

dinal outcome data in clinical trials. Trials. 2014; 15:237. https://doi.org/10.1186/1745-6215-15-237

PMID: 24947664; PubMed Central PMCID: PMC4087243.

33. Armijo-Olivo S, Warren S, Magee D. Intention to treat analysis, compliance, drop-outs and how to deal

with missing data in clinical research: a review. Phys Ther Rev. 2009; 14:36–49. https://doi.org/10.

1179/174328809X405928

34. Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt. 2014; 34(5):502–8.

https://doi.org/10.1111/opo.12131 PMID: 24697967.

35. Leonhart R. [Estimating effect sizes in clinical trials]. Rehabilitation. 2004; 43(4):241–6. https://doi.org/

10.1055/s-2004-828293 PMID: 15318292.

36. Brunner I, Skouen JS, Hofstad H, Assmus J, Becker F, Sanders AM, et al. Virtual Reality Training for

Upper Extremity in Subacute Stroke (VIRTUES): A multicenter RCT. Neurology. 2017; 89(24):2413–

21. https://doi.org/10.1212/WNL.0000000000004744 PMID: 29142090.

37. Winstein C, Lewthwaite R, Blanton SR, Wolf LB, Wishart L. Infusing motor learning research into neu-

rorehabilitation practice: a historical perspective with case exemplar from the accelerated skill acquisi-

tion program. J Neurol Phys Ther. 2014; 38(3):190–200. Epub 2014/05/16. https://doi.org/10.1097/

NPT.0000000000000046 PMID: 24828523.

38. Lehmann I, Baer G, Schuster-Amft C. Experience of an upper limb training program with a non-immer-

sive virtual reality system in patients after stroke: a qualitative study. Physiother. 2017:In press.

39. Stewart JC, Gordon J, Winstein CJ. Control of reach extent with the paretic and nonparetic arms after

unilateral sensorimotor stroke: kinematic differences based on side of brain damage. Experimental

Brain Research. 2014; 232(7):2407–19. https://doi.org/10.1007/s00221-014-3938-5 PMID: 24718494

40. da Silva Ribeiro NM, Ferraz DD, Pedreira E, Pinheiro I, da Silva Pinto AC, Neto MG, et al. Virtual reha-

bilitation via Nintendo Wii(R) and conventional physical therapy effectively treat post-stroke hemiparetic

patients. Top Stroke Rehabil. 2015; 22(4):299–305. https://doi.org/10.1179/1074935714Z.0000000017

PMID: 26258455.

41. Thielbar KO, Lord TJ, Fischer HC, Lazzaro EC, Barth KC, Stoykov ME, et al. Training finger individua-

tion with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J Neu-

roeng Rehabil. 2014; 11:171. https://doi.org/10.1186/1743-0003-11-171 PMID: 25542201; PubMed

Central PMCID: PMC4292811.

42. Rand D, Givon N, Weingarden H, Nota A, Zeilig G. Eliciting upper extremity purposeful movements

using video games: a comparison with traditional therapy for stroke rehabilitation. Neurorehabilitation

and neural repair. 2014; 28(8):733–9. https://doi.org/10.1177/1545968314521008 PMID: 24515927.

43. Siekierka EM, Eng K, Bassetti C, Blickenstorfer A, Cameirao MS, Dietz V, et al. New technologies and

concepts for rehabilitation in the acute phase of stroke: a collaborative matrix. Neurodegener Dis. 2007;

4(1):57–69. https://doi.org/10.1159/000100360 PMID: 17429220.

44. Saposnik G, Cohen LG, Mamdani M, Pooyania S, Ploughman M, Cheung D, et al. Efficacy and safety

of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre,

Virtual reality-based training vs. conventional therapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0204455 October 24, 2018 18 / 19

https://doi.org/10.1186/1471-2288-10-106
https://doi.org/10.1186/1471-2288-10-106
http://www.ncbi.nlm.nih.gov/pubmed/21114807
http://www.ncbi.nlm.nih.gov/pubmed/10512918
https://doi.org/10.1310/BRHX-PKTA-0TUJ-UYWT
https://doi.org/10.1310/BRHX-PKTA-0TUJ-UYWT
http://www.ncbi.nlm.nih.gov/pubmed/14523743
https://doi.org/10.1177/1545968309356295
http://www.ncbi.nlm.nih.gov/pubmed/20053950
http://www.ncbi.nlm.nih.gov/pubmed/2399544
https://doi.org/10.1186/1745-6215-15-237
http://www.ncbi.nlm.nih.gov/pubmed/24947664
https://doi.org/10.1179/174328809X405928
https://doi.org/10.1179/174328809X405928
https://doi.org/10.1111/opo.12131
http://www.ncbi.nlm.nih.gov/pubmed/24697967
https://doi.org/10.1055/s-2004-828293
https://doi.org/10.1055/s-2004-828293
http://www.ncbi.nlm.nih.gov/pubmed/15318292
https://doi.org/10.1212/WNL.0000000000004744
http://www.ncbi.nlm.nih.gov/pubmed/29142090
https://doi.org/10.1097/NPT.0000000000000046
https://doi.org/10.1097/NPT.0000000000000046
http://www.ncbi.nlm.nih.gov/pubmed/24828523
https://doi.org/10.1007/s00221-014-3938-5
http://www.ncbi.nlm.nih.gov/pubmed/24718494
https://doi.org/10.1179/1074935714Z.0000000017
http://www.ncbi.nlm.nih.gov/pubmed/26258455
https://doi.org/10.1186/1743-0003-11-171
http://www.ncbi.nlm.nih.gov/pubmed/25542201
https://doi.org/10.1177/1545968314521008
http://www.ncbi.nlm.nih.gov/pubmed/24515927
https://doi.org/10.1159/000100360
http://www.ncbi.nlm.nih.gov/pubmed/17429220
https://doi.org/10.1371/journal.pone.0204455


single-blind, controlled trial. The Lancet Neurology. 2016. https://doi.org/10.1016/S1474-4422(16)

30121-1 PMID: 27365261

45. Aminov A, Rogers JM, Middleton S, Caeyenberghs K, Wilson PH. What do randomized controlled trials

say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb

and cognitive outcomes. J NeuroEng Rehabil. 2018; 15(1):29. https://doi.org/10.1186/s12984-018-

0370-2 PMID: 29587853

46. Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts

and theories. Restor Neurol Neurosci. 2004; 22(3–5):281–99. PMID: 15502272.

47. Verheyden G, Nieuwboer A, De Wit L, Thijs V, Dobbelaere J, Devos H, et al. Time course of trunk, arm,

leg, and functional recovery after ischemic stroke. Neurorehabilitation and neural repair. 2008; 22

(2):173–9. https://doi.org/10.1177/1545968307305456 PMID: 17876069.

48. Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, et al. Interventions for improving

upper limb function after stroke. Cochrane Database Syst Rev. 2014; 11:CD010820. Epub 2014/11/12.

https://doi.org/10.1002/14651858.CD010820.pub2 PMID: 25387001.

Virtual reality-based training vs. conventional therapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0204455 October 24, 2018 19 / 19

https://doi.org/10.1016/S1474-4422(16)30121-1
https://doi.org/10.1016/S1474-4422(16)30121-1
http://www.ncbi.nlm.nih.gov/pubmed/27365261
https://doi.org/10.1186/s12984-018-0370-2
https://doi.org/10.1186/s12984-018-0370-2
http://www.ncbi.nlm.nih.gov/pubmed/29587853
http://www.ncbi.nlm.nih.gov/pubmed/15502272
https://doi.org/10.1177/1545968307305456
http://www.ncbi.nlm.nih.gov/pubmed/17876069
https://doi.org/10.1002/14651858.CD010820.pub2
http://www.ncbi.nlm.nih.gov/pubmed/25387001
https://doi.org/10.1371/journal.pone.0204455

