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METHODOLOGY ARTICLE Open Access

Discriminating between rival biochemical
network models: three approaches to optimal
experiment design
Bence Mélykúti1,2,3,4, Elias August3,4, Antonis Papachristodoulou3,4*, Hana El-Samad5

Abstract

Background: The success of molecular systems biology hinges on the ability to use computational models to
design predictive experiments, and ultimately unravel underlying biological mechanisms. A problem commonly
encountered in the computational modelling of biological networks is that alternative, structurally different models
of similar complexity fit a set of experimental data equally well. In this case, more than one molecular mechanism
can explain available data. In order to rule out the incorrect mechanisms, one needs to invalidate incorrect models.
At this point, new experiments maximizing the difference between the measured values of alternative models
should be proposed and conducted. Such experiments should be optimally designed to produce data that are
most likely to invalidate incorrect model structures.

Results: In this paper we develop methodologies for the optimal design of experiments with the aim of
discriminating between different mathematical models of the same biological system. The first approach
determines the ‘best’ initial condition that maximizes the L2 (energy) distance between the outputs of the rival
models. In the second approach, we maximize the L2-distance of the outputs by designing the optimal external
stimulus (input) profile of unit L2-norm. Our third method uses optimized structural changes (corresponding, for
example, to parameter value changes reflecting gene knock-outs) to achieve the same goal. The numerical
implementation of each method is considered in an example, signal processing in starving Dictyostelium amœbæ.

Conclusions: Model-based design of experiments improves both the reliability and the efficiency of biochemical
network model discrimination. This opens the way to model invalidation, which can be used to perfect our
understanding of biochemical networks. Our general problem formulation together with the three proposed
experiment design methods give the practitioner new tools for a systems biology approach to experiment design.

Background
Mathematical modelling has become an indispensable
tool for modern systems biology [1,2]. Simple qualitative
descriptions are proving increasingly insufficient for
understanding the intricate dynamical complexity of bio-
logical phenomena. As a result, quantitative mathemati-
cal models are now routinely used in order to describe
and analyze the complex dynamics generated by protein
interactions [3], metabolic pathways [4,5], regulation of
gene expression [6], and other biochemical processes.
A successful modelling effort is necessarily an iteration

between model analysis and experiments. Testing the

appropriateness of a mathematical description of any
physical process should be done against experimental
data, but at the same time, models should inform the
design of new experiments. Traditionally, experiments
have been designed using heuristic approaches: experi-
ence, intuition, or simple causal analyses. Evidently,
such heuristically designed experiments are not always
maximally informative, a great impediment given the
cost and effort involved in the development of new mea-
surement techniques and the implementation of stan-
dard experiments. As a result, it is becoming
increasingly necessary to systematically design more rig-
orous and predictive experiments, in order for the itera-
tive process involving computational modelling to result
in reliable models.
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To date, the majority of studies addressing experiment
design for biological networks has adopted a system
identification approach. In this context, experiments are
designed such that the resulting data are most informa-
tive about model structure or parameter values - see, for
example, [7] and [8-10], respectively. Several groups
considered statistically-orientated frameworks for opti-
mal structure identification [11] or for parameter identi-
fication [11,12]. These approaches aim to find the
weighted least squares of differences between data and
model prediction and make use of the Fisher Informa-
tion Matrix and the associated notions of A-, D-, and E-
optimality. In this framework, Yue et al. [13] examine
optimally designed parameter estimation methods that
are robust to model uncertainties (robust experiment
design).
In numerous practical situations, accumulated biologi-

cal knowledge about a system of interest can constrain
the set of plausible model structures. In this case, one
can enumerate a finite set of network topologies, closely
corresponding to concrete biological hypotheses. Experi-
ment design in this context would aim for the efficient
discrimination between these well-defined alternative
models; in more concrete terms, several mathematical
models, corresponding to the different network topolo-
gies, can describe the behaviour of this system, within
error bounds reflecting uncertainty in the data due to
the experimental environment and inaccuracies of mea-
surements [14]. Discriminatory experiment design and
model invalidation can then be used to differentiate
between them.
This is because mathematically, one can never validate

a model [15]. At best, a model will be capable of
explaining all the available data and can be tested
against some of its predictions. Therefore narrowing
down on the correct model can only be done from the
other direction through invalidation, in order to system-
atically ‘cross out’ incorrect models. This results in an
iterative cycle of system modelling, experiment design
and subsequent model performance analysis that sys-
tematically proposes and then invalidates models that
cannot represent the behaviour of the system. In order
to optimally discriminate between candidate models, the
experiments need to be carefully designed and imple-
mented to produce new data that can be used to invali-
date a seemingly good but incorrect model.
Various aspects of model discriminatory experiment

design have been addressed in the literature. Bardsley et
al. [16] investigated the problem of how measurements
should be spaced in time to perform an optimally discri-
minating experiment between two models, and how
many of them are required. More specifically, they com-
pared different patterns of measurement spacings (geo-
metric versus uniform spacing). Chen and Asprey [17]

developed statistical approaches to parameter estima-
tion, the assessment of model fit, and model discrimina-
tion, assuming that the response variables are uncertain.
In this framework, model discrimination is based on a
Bayesian approach, which assigns prior ‘goodness’ prob-
abilities to each model, updates these after each experi-
ment and chooses the model with the likelihood that
has become sufficiently large compared to others. An
alternative frequentist method uses repeated hypothesis
tests to reject models one by one. Donckels et al. [18]
separated the uncertainty of the model predictions and
the uncertainty of the measurements and used these to
design the next experiment such that it is most informa-
tive. As opposed to the traditional approach, here the
expected information content of the newly designed
experiment is also taken into account (anticipatory
design) in order to assess the uncertainties more accu-
rately. Kreutz and Timmer [19] gave a review of
approaches to parameter estimation and model discrimi-
nation (discussing the Akaike Information Criterion, the
likelihood ratio test, and alternative forms of the sum of
squared differences between two models’ outputs). They
also discussed relevant classical statistical aspects of
experiment design, such as randomization, replication,
and confounding. Tidor and co-workers [20] developed
dynamic model-based controllers that drive the output
along a prescribed target trajectory (usually a constant
output). If such a control input signal achieves the
required output trajectory in an experiment, then the
model is more accurate than another model which gives
a different output trajectory for this particular input. In
[21], Kremling et al. presented three methods for opti-
mal pairwise discriminating experiment design, and
compared them on a test example. Their first method
compares combinations of certain initial input levels
and subsequent changes in input in order to determine
which combination will lead to the largest difference in
the outputs. Their second method replaces models with
their linearized counterparts in order to find a sinusoi-
dal input with a frequency that maximizes the difference
between phase shifts of the two models. Their third
method follows the work in [17], and aims to find an
input profile that brings the output responses of the two
models as far apart as possible. The distance is mea-
sured by a weighted objective function. The weighting is
set up such that if the measurement error of an output
variable is large, then the difference of these outputs
contributes less to the weighted objective function. The
authors concluded that the most appropriate method
strongly depends on the possible ways to stimulate the
system and the quality of the measurements.
In our approach to data-supported computational

modelling of biological networks, we take the view that
one should follow an iterative procedure that includes
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model identification (model fitting), model discrimina-
tion (in which a new experiment is designed) and model
invalidation (using the new experimental data). All three
tasks present serious challenges, and remain important
areas of research and investigation. In this paper we
address the problem of model discrimination. Specifi-
cally, we present a framework for defining and designing
optimally discriminating experiments, that is, experi-
ments that are the best (in some mathematically defined
but practically meaningful way) at discriminating
between rival models. There are cases when it is difficult
or even impossible to distinguish between rival models
due to the incomplete observability of their internal
states. Tests exist to identify such cases [22]. Even when
model discrimination is possible, it can be expected to
be difficult as the starting assumption is that the rival
models both describe all available data well.
Our key principle is to maximize the difference

between the outputs of two different models, in particu-
lar, the L2-norm of the output difference. Although
similar in principle, our investigation follows a direction
distinctly different and more practical from the work in
[17]: we use deterministic models that do not take
account of measurement noise directly. Instead, we try
to make the outputs of the two models as distant as
possible to ensure that even a noisy measurement has a
good chance of discriminating between them.
We propose three approaches to achieve this goal. In

the first approach, the Initial condition design for model
discrimination, we find the initial state of the system
which results in the most discriminating output between
the two examined models [23]. The second method,
Input design for model discrimination, assumes the pos-
sibility for external stimulation during the experiment
and searches for the best such stimulus from a set of
allowable stimuli. This approach is reminiscent of but
different from the second method in [21] - there, the
difference between phase shifts is maximized, whereas
in our method the difference between amplitudes is
maximized. The third method, Design of structural
changes for model discrimination, combines optimal
initial condition choice with optimal systemic modifica-
tions. The latter reflects the assumption that in the
experiment it is possible, for example, to up-or down-
regulate the expression of certain genes, either through
genetic manipulations or other techniques such as RNAi
technology. The gene product may be an enzyme whose
concentration is not explicitly modelled but is reflected
in a chemical rate constant, or some protein which
exists in (possibly various) phosphorylated and depho-
sphorylated forms such that the sum of their concentra-
tions is constant. In our mathematical model this means
a free choice in some parameter values within given
intervals. In all three approaches, we cast the problem

in an optimization framework and use the sum of
squares (SOS) technique [24] for the experiment design,
allowing us to treat the nonlinear system descriptions
directly. The theoretical results are demonstrated by the
application of each method to a discrimination problem
for two models of signal processing for chemotaxis in
Dictyostelium amœbæ.

Results and Discussion
Problem formulation
In this work, we consider different models describing
the same biological system by a set of ordinary differen-
tial equations using, for example, mass action, general-
ized mass action, or Michaelis-Menten kinetics. In
general, the ith model takes the form

x
dxi
dt

f x g x u

y h x

i i i i i

i i i

: ( ) ( ) ,

( ),

  


(1)

where u is a q-dimensional vector denoting the input,
xi is an ni-dimensional vector denoting the state, yi is an
ℓ-dimensional vector denoting the output (which is of
the same dimension for each model) and gi is matrix-
valued, with size ni × q. The structure of the functions
fi, gi and hi will depend on the modelling framework in
use to describe the biological system, but we assume
that all of them are smooth. Here, the output function
represents measurements an experimenter obtains from
the system, and the input function represents the stimuli
or perturbations the experimenter could introduce to
the system during the experiment. For mathematical
simplicity we assume that the input does not affect the
output directly.
In this paper our aim is to discriminate between two

models of the form (1), which have n1 and n2 state vari-
ables, respectively. As these two models represent the
same underlying biological system, we require that they
both generate the same steady states and fit already
available experimental data: our aim is to design the
next experiment that will allow their discrimination. A
natural way to formulate the discrimination problem is
to concatenate the two models and generate the differ-
ence between their outputs:
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We call an experiment optimal if the difference
between the outputs of the two models (y1 - y2) is
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maximal over a set of experimental perturbations of
bounded ‘size’. In technical terms, we aim to pick the
best point in a set of allowable perturbations of the
initial state conditions (Initial condition design for
model discrimination), the set of inputs u (Input
design for model discrimination), or the set of some
admissible parameter changes and the set of common
initial conditions (Design of structural changes for
model discrimination) in order to maximize the so-
called L2-distance between the outputs of the two
rival models:

y y y y t y t dti i

i
2 1 2 2 1 2

2

1
0

1
2

   
















 ( ( ) ( ))


To facilitate interpretation, we implement a change of
coordinates that places the investigated steady state at
zero in both models. We assume that the outputs are
identical in this common steady state, now the origin: h1
(0) = h2(0). Throughout this paper it is also assumed
that the examined steady state is asymptotically stable in
both models in (2).
Since experiments must be implemented in finite time,

we require that the designed input u be zero after some
future time. For convenience, we sometimes relax this
requirement and only assume that u is ‘very small’ after
a certain time. Clearly, since there is only one experi-
mental setup in reality, the input u must be identical for
the two models.
In the case of linear systems, the description of the

concatenated system (2) becomes
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where the above matrices are of appropriate dimen-
sions. We assume that all eigenvalues of both A1 and A2

have negative real parts (we call these matrices Hurwitz),
hence they define asymptotically stable systems. This
makes A Hurwitz too.

Initial condition design for model discrimination
Many biological experiments drive a cellular system
into an informative out-of-equilibrium state (e.g. heat

shock, osmotic shock, chemical stimulus), and then
glean information from the patterns of return to equi-
librium in the absence of an input. In an optimization
formulation, this amounts to searching for normalized
initial conditions x1(0) = x2(0) for the two models one
wishes to discriminate between, that maximize the out-
put difference ||y||2 - where y is defined in (2) - for
the unforced system (u = 0). Here, we assume that the
two alternative model representations of the system
are written in terms of the same chemical species, thus
n1 = n2 = n.
Linear case
If x1(0) is not required to be equal to x2(0), then the
solution can be borrowed from standard results in linear
systems theory. In particular, the optimal direction for
the initial value of (3) can be found by the following
procedure.

1. Find a positive semidefinite matrix, P ≥ 0, that
solves the so-called observability Lyapunov equation

A P PA C CT T   0.

The solution P is called the observability gramian
[25].
2. Find the normalized eigenvector x corresponding
to the largest eigenvalue  of P, that is, for  find
x such that

Px x  .

Indeed, the direction x(0) = x gives the maximum
output energy, since the output energy is given by

y x PxT
2
2

0 0 ( ) ( ). (4)

However, this computation is not satisfactory since an
experimentally meaningful initial condition should
satisfy x1(0) = x2(0) = x . To enforce this condition, we
can partition P into blocks of size n × n,

P
P P

P PT













11 12

12 22

.

With this decomposition, the optimal initial state is
the unit norm eigenvector x corresponding to the lar-
gest eigenvalue of the matrix

R P P P P T   11 22 12 12.

To see this, substitute x(0) = ˆ ˆx xT T T





in (4) to
get:
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y x RxT
2
2  ˆ ˆ.

Hence y
2
2 is maximized exactly when x is the

eigenvector corresponding to the largest eigenvalue of
Nonlinear case
The ideas behind model discrimination in the linear
case can be generalized for application to nonlinear sys-
tems. However, we cannot explicitly compute the exact
difference in the outputs of the two rival models ||y||2.
Our approach avoids simulations and concentrates on
finding an upper bound on ||y||2 using so-called storage
functions [26,27] and sum of squares algorithmic relaxa-
tions of the resulting optimization problem.
To determine an upper bound on ||y||2 for system (2),

suppose there exists a continuously differentiable func-
tion S: R2n ® R satisfying

S S 0 0 0, ( ) , and (5)

for all x D
S x
x

f x h x h xT  


 ,
( )

( ) ( ) ( ) ,0 (6)

where D is a neighbourhood of the steady state
defined by:

D x x xn    2
1 2 2 2

| , .  (7)

Here we assume that D does not include states which
are not physically meaningful, and the value of a will
ensure this. This implies that the system is dissipative
with supply rate -h(x)Th(x). Suppose that the system is
released from an initial state x(0) inside the largest level
set of S that fits into D, so that ||x1(0)||2 = ||x2(0)||2 = b
≤ a. In this case, integrating condition (6) and using

 S
x

dS
dtf x( ) , we get

h x t h x t dt S x S x T
T

T( ( )) ( ( )) ( ( )) ( ( )).
0

0  

If we let T ® ∞, then

y h x t h x t dt

S x S x T S x

T

T

2
2

0

0 0



  





 ( ( )) ( ( ))

( ( )) lim ( ( )) ( ( )),
(8)

by the nonnegativity of S. This implies that y
2
2 ≤ S

(x(0)), since condition (6) is valid within the whole
region D and level sets of S are invariant. Hence we
have found a way to bound y

2
2 , which involves con-

structing the function S.
It is worth noting that the result from the linear and

nonlinear cases have a similar purpose. Whereas in the

linear case the result is rooted in a Lyapunov equality
and provides optimal solution, in the general nonlinear
case one has to be content with an estimate given by
inequality (8).
A condition missing from the above construction is

that the two system models should be released from the
same initial state. Hence, following our discussion from
the linear case, one has to construct an appropriately
modified S, ˘( ˘) : (( )) ( ˘ )˘

˘S x S xx
x n  . In the linear case,

the desired initial conditions correspond to those that
maximize the quadratic form ˆ ˆx RxT . That is, the optimal
direction was that of the eigenvector corresponding to
the largest eigenvalue of matrix R. This is also exactly
the direction corresponding to the smallest semi-axis of
the ellipsoid ˆ ˆx RxT = r for some r > 0. In other words,
we were looking for the infimum of g > 0 for which the
set

ˆ | ˆ , ˆ ˆ .x x x Rxn T     
2

 

Similarly to the linear case, we will use a geometric
argument to achieve initial condition design in the non-
linear case. Here, Ŝ ( x ) plays the role of the quadratic
form ˆ ˆx RxT , and one can now decrease g > 0 from infi-
nity until the shrinking level set ( ) | ( )x

x n S x  2 
touches D’ = {x Î R2n| ||x1||2 ≤ b, ||x2||2 ≤ b}. There-
fore, we need to solve the following optimization pro-
blem:

Minimise

such that for all 

for which







,

,

( ) .

x

x

S x

n


 


2

0

(9)

The sequence of results presented so far asserts that
the presence of a function S with the properties deli-
neated above provides an upper bound on the energy of
the difference of the outputs of two rival models.
This information can be exploited to generate experi-

mental initial conditions that drive the system towards
this bound. These methods, however, do not prescribe
how one would go about finding such a function. Con-
structing a nonnegative function is in general a difficult
problem. However, recent advances in the theory of sum
of squares provide a computationally tractable way to
relax this problem [24]. In a nutshell, instead of search-
ing for a general nonnegative function, we can constrain
our search to functions that can be parameterized as
sums of squares of polynomials. Within this class, the
problem can be solved through semidefinite program-
ming, with worst-case polynomial-time algorithms (see
Methods, sections A and B).
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Therefore, our strategy to find a near optimal initial
state for the nonlinear model discrimination is a two-
step process. First, we construct an SOS function S that
satisfies (5-6). In the second step, we search for the
direction in which Ŝ is maximal, that is, we solve the
optimization problem (9) (see Methods, B).

Input design for model discrimination
A powerful approach to discriminate between two plau-
sible models of a biological process is to design an
experimental input that maximally differentiates
between the dynamical behaviours of their outputs. If
this input generates qualitatively different patterns in
the model outputs, then one can subject the actual phy-
sical system to this designed input and then eliminate
the model which differs from this pattern. The most
general form of this optimally discriminating input pro-
blem is the following:

Given
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( ) ( ) ,

, ,find the input 

s.t. iss maximal.

Here we assume that we are designing one input and
measuring one output. We also assume that the input is
of unit-energy. This can be done without a loss of gen-
erality as one can scale the equations accordingly,
depending on the amount of input (ligand) available and
the properties of the system under study. Our goal is to
maximize the difference between the two model outputs
over a transient period after application of the new
input. Recall that the two models describe currently
available data equally well, so that for the same (basal)
input they have the same pre-stimulus steady states and
the same outputs.
Solving the general optimization problem in order to

generate the maximally informative input is computa-
tionally challenging. In fact, even the first order condi-
tion of optimality is a 2(n1 + n2)-variable differential
equation with boundary conditions at both ends of the
time interval [28]. For that reason, our strategy will be
based on approximating a maximally-discriminating
input using a linearization of the system in (2), and then
assessing its suitability for the nonlinear system by com-
paring the value it achieves to the supremum of the out-
put difference L2-norm over the set of possible inputs.
This supremum will again be computed using an SOS
decomposition approach. The benefits of this strategy
reside in the fact that we can use established, simple

methods to find an input that gives the maximal L2-
norm output for the linearized system. This (possibly
suboptimal) input can then be applied to the nonlinear
system, and an assessment (see below) made about how
the realized output L2-norm compares to the optimal,
maximally discriminating L2-gain.
Designing an input profile using linearization
Designing an input profile for optimal discrimination
using linearization is more appropriately addressed in the
frequency domain. A standard result in the theory of lin-
ear systems states that in order to find the input that
maximizes the output difference ||y||2 given unit input ||
u||2 (so-called induced L2-norm gain), we need to find
where the Bode magnitude plot, i.e., the plot of |G(jω)|
versus frequency ω, peaks. Here, G(jω) = C(jωI - A)-1B,
where the matrices A, B and C are defined in (3) and j
denotes the imaginary unit: j2 = -1. See [29] for more
details. When the frequency at which |G(jω)| peaks is ω0,
the corresponding input signal takes the form

u t A t
t

t
( ) cos( )

sin( ) 


0 (10)

for an appropriately small ε, with A being a normaliz-
ing constant to ensure that the energy of u(t) is unit. A
straightforward generalization of this concept to multi-
ple-input multiple-output systems exists [30], which we
will also use in this work.
Obtaining an upper bound on the L2-gain of the system
and comparing performance
To assess the near-optimal input designed using lineari-
zation, we can compare its performance in driving the
difference in the output of the two rival nonlinear mod-
els to its upper bound. This is the L2-gain of the system,
for which we can again obtain an upper bound by con-
structing an appropriate storage function S. To do so,
given the appropriately normalized system (2) and ε > 0,
we assume that the trajectories with input u with ||u||2
= ε and initial condition 0 remain in a region D around
the steady state (the origin) for all time. If there exists a
g > 0, and a continuously differentiable function S:

 n n1 2  satisfying

S S 0 0 0, ( ) , and (11)

for all x D
S
x
f x y y u uT T  


  , ( ) , 0 (12)

then

y

u

2
2

2
2
  .
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In other terms, g is the desired upper bound on the
maximum difference in the output of the nonlinear rival
models. To see this, integrating condition (12) from 0 to
T leads to

( ) ( ( )) ( ( ))

( ( )) .

   

 
 y y u u dt S x T S x

S x T

T T
T

 0

0
0

Therefore, for T ® ∞, if x Î D for the whole time, we
obtain

 



yTydt

uTudt
0

0

.

Here again, obtaining such a function S that provides
the upper bound is difficult. The task of finding this
bound can be relaxed to solving an SOS programme
and its subsequent solution using semidefinite program-
ming (see Methods, C).

Design of structural changes for model discrimination
A class of experiments is based on the introduction of
internal changes, such as genetic and biochemical
manipulations, to the system. To mirror such experi-
ments, we develop a methodology to pinpoint numerical
changes of parameters in a system that maximize the
difference between the outputs of two rival models of its
internal structure. Since two such models are different,
they do not necessarily have the same number of para-
meters. Therefore the design concentrates on the para-
meters that the models have in common, which we
denote by pi, i = 1, ..., m. We assume that their values
can be chosen within closed intervals [ai, bi] (where bi ≥
ai ≥ 0 for all i), that is, p Î Π, where
 : ,    a bi ii

m m
1

 . We rewrite (2) to underline
the dependence of the model on those parameters as:
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h x

h x

2 2( ),

: ( )
  

and again assume that n1 = n2 = n, u = 0, f1(0, p) = f2
(0, p) = 0 (for every p Î Π), h1(0) = h2(0) and let

D x x xn    2
1 2 2 2

| , . 

The steady state of either model may change with
changing parameter p. Therefore the assumption f1(0, p)
= f2(0, p) = 0 should be interpreted as a change of

coordinates that shifts the steady state of each model to
the origin individually for each p. We are not interested
in how far the two equilibria shift per se, which is an
algebraic problem, instead we are interested in the dif-
ference in their dynamic responses. This would reflect a
situation in which a change in parameters would not be
reflected in a significant change in the steady-state but
which could result in a substantial difference in the
dynamics of the system.
As with the previous two methods, our methodology

will rely on the construction of an appropriate function
S that sets an upper bound on the difference between
the outputs of the two models, followed by a computa-
tionally efficient formulation for the construction of this
function using SOS.
For the above system, suppose that there exists a func-

tion S: R2n × Π ® R which is sufficiently smooth and
satisfies

S S p p x p D

S x p

x
f x p

    

 


0 0 0, ( , ) , ( , ) ,

( , )
( , )

for all and for  

 h x h xT( ) ( ) .0
(13)

Then

y h x t h x t dt

S x p S x T p S x

T

T

2
2

0

0 0



  





 ( ( )) ( ( ))

( ( ), ) lim ( ( ), ) ( ( ), pp)
(14)

if the system is released from an initial state (x(0), p)
Î D × Π where x(0) is in a level set of S entirely con-
tained in D, ||x1(0)|| = ||x2(0)|| = b ≤ a. The last
inequality in (14) holds since S(x, p) ≥ 0. The computa-
tional relaxation and implementation of the search for
the function S is presented in the Methods section (sec-
tion D). Once this function has been constructed, one
can extract the optimal point x and parameter point p̂
that maximizes the difference between the measured
outputs of the two models.

A case study: signal sensing in Dictyostelium discoideum
Perfect adaptation is a critical feature of many cellular sig-
nalling networks - it allows a cell to respond to a stimulus,
but to re-sensitize itself so that further increases in stimu-
lus can be detected. Adaptation is commonly used in sen-
sory and other signalling networks to expand the input
range that a circuit is able to sense, to more accurately
detect changes in the input, and to maintain homeostasis
in the presence of perturbations. One of the earliest exam-
ples of cellular networks exhibiting perfect adaptation is
chemotaxis, which we use as a test case to illustrate our
algorithms. Specifically, we use the chemotactic response
in the social amœba Dictyostelium discoideum. Under
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starvation, Dictyostelium secretes cyclic AMP (cAMP) thus
attracting other Dictyostelium amœbæ to aggregate and
form a multicellular slug and then a fruiting body, which
produces spores. Experiments indicate that a step input of
chemoattractant triggers a transient response, after which
the chemosensory mechanism returns to its pre-stimulus
values (to its steady state), indicating perfect adaptation
[31].
At least two different simple models can describe the

adaptation mechanism observed when an amœba
encounters the chemoattractant cAMP [32] (Figure 1). In
both models, a chemotaxis response regulator R becomes
active (R*) through the action of an activator enzyme A
when a cAMP ligand S appears. However, the deactivat-
ing mechanism determined through the interaction of an
inhibiting molecule I in the two models can be different.
Since the sum of the concentrations of the active and

inactive response regulators in the two models is con-
stant, we can write RT = R*(t) + R(t). Consequently, R

can be derived assuming mass action kinetics as:

R k IR k AR

k I k A R k AR
r r

r r r T

* *

( ) * ,

  
   





with activation and deactivation rate constants kr and
k-r.
In Model 1 both molecules, A and I, are regulated by

the external signal, which is proportional to cAMP con-
centration S. With rate constants ka, k-a, k-i and ki1 ,
the dynamics of A and I are given by:





A k A k S

I k I k S
a a

i i

  

  




,

.
1

In Model 2 the inhibitory molecule I is activated
through the indirect action of activator A instead of
direct activation by sensing of ligand binding, giving:





A k A k S

I k I k A
a a

i i

  

  




,

,
2

binding
ligand

binding
ligand

R R

I A

R R* *

I A

S S

Model 1 Model 2

Figure 1 Two models of the signal sensing system of the Dictyostelium amœba.
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where ki2 is a rate constant. The equations for A are
obviously identical in both models. The parameter values
used are given in Table 1. Simple manipulations show
that the steady-state value for R* in Model 1 is given by

R
k

k
k

R

k
k
k

k
k

k

r
a

a
T

r
a

a
r

i

i

* ,









1

while the steady-state value for R* in Model 2 is given
by

R
k R

k k
k

k

r T

r r
i

i

* .
 



2

Both are independent of the stimulus, explaining per-
fect adaptation. The two models share the same unique
steady state if k k k ki i a a2 1

  / , a condition we impose.
Note also that a value of a = 0.1 needs to be used in
(7), as the equilibrium value for R* is at 0.1.
Initial condition design for model discrimination
For the initial condition discriminating design, we set the
input to a basal level of S = S0, and assume that all three
concentrations, A, I, and R*, can be measured. The most
discriminating initial state (A, I, R*) can be found based
on the linearization of the system around its steady state
using the main linear case result. The common unit
length initial state which provides the direction of the
perturbation from equilibrium to maximize ||y1 -y2||2 is
then given by x1(0) = x2(0) = (1, 0, 0), where xi (i = 1, 2)
are the state vectors of Model 1 and 2, respectively.
By applying the analogous results from the nonlinear

case, the unit norm direction that maximizes the above
function is also found to be x1(0) = x2(0) = (1, 0, 0),
which illustrates that at least in this example, lineariza-
tion can be capable of providing the correct information
at a lower computational cost. Figure 2 compares the
evolution of the states in Models 1 and 2 from a common
arbitrary initial state (a) and the common initial state
generated by the nonlinear method (b) by taking the dif-
ferences between the states in the two rival models.
Input design for model discrimination
To discriminate between the two models based on an
optimally chosen input profile, we first obtained an upper
bound on the L2-gain of the difference system from input

S to output (A, I, R*) using the algorithm in section C of
Methods. This bound was about 0.477, a value also close
to that determined through the linearization of the sys-
tem (see the Bode plot shown in Figure 3).
In order to evaluate the performance of our algorithm,

we simulated the original, nonlinear system subjected to
different inputs between 0 and 60 time units including a
constant, sine, cosine, sine with an exponentially
increasing then decreasing multiplier, sinc, the function
given by (10), or a square wave function (see Figure 4).
As described earlier, for periodic inputs, the period of
the input was determined by finding the frequency cor-
responding to the maximum amplification in the Bode
magnitude plot of the linearized system (Figure 3).
Table 2 summarizes the results for different input per-

turbation functions, input perturbation energies (||u||2),
and output variables using simulations of the nonlinear
system. As a cosine input and the input function given
by (10) (u(t) = A t t

tcos sin( ) 
0  ) gave indistinguish-

able results (because themselves are indistinguishable),
we merged their rows into one. The top and bottom
parts of the table show values for different input pertur-
bation energies, the various columns for different output
variables. The applied frequency, where relevant, was
always the critical frequency corresponding to the parti-
cular output function. Figure 5 is a graphical representa-
tion of the same data.
Figure 6 compares the differences in state variables

between the two models for three typical input pertur-
bations. Interestingly, our results indicate that for all
inputs used, discrimination between the two models
should be accomplished by measuring output I rather
than output R* (also seen in Table 2). In the first plot,
the basal input S0 is perturbed by a step function
between 0 and 60 time units (Figure 4a). In the second
plot, the system is injected with a sine function (Figure
4b). In the third plot, the input is a square wave func-
tion (Figure 4c), a caricature of the sine function with
preserved period that can be realized in practice more
easily. The sine input yields a visibly larger difference
than the step function between the R* values of the two
models. The square wave function produces a similarly
good result. One has to note that one measurement
may not be enough for the discrimination, but a series
of measurements may be needed.
Perhaps the most notable outcome of the input design

is that sinusoidal input perturbations generate the best
L2-gains and are therefore superior to a step function
for discriminating between rival chemotaxis models.
Square wave stimulation is achievable in the reality of a
laboratory. This is important since step inputs are
usually used in experiments, often at the exclusion of
other input signals. Our studies demonstrate how more
dynamic inputs, in this case an oscillating input (on a

Table 1 Parameter values of the two models in the Initial
condition design for model discrimination and Input
design for model discrimination cases.

Parameter kr k-r ka k-a ki1
ki2 k-i S0 RT

Value 1 1 3 2 1 2/3 0.1 0.2 23/30
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Figure 2 Difference between state variables of the two rival models (states of Model 1 minus states of Model 2) in the Initial
condition design for model discrimination and Design of structural changes for model discrimination cases. Simulation results for the
difference between Models 1 and 2 when started from an arbitrarily perturbed initial condition (0.5774, 0.5774, 0.5774) (a), from the ‘best’ unit-
norm perturbation of the initial condition (1, 0, 0) (b), and with the optimal parameter changes from the corresponding optimally perturbed
initial state (1, 0, 0) (c). The corresponding ||y1 - y2||2 values are 0.420, 0.729, and 0.747, respectively.
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Figure 3 Bode magnitude plots of the linearized difference system of the two models with output (A, I, R*), I, and R*. The difference
between the two models’ R* values is marginal compared to the I values. The L2-gains for outputs (A, I, R*), I, and R* are 0.4766, 0.4762, and
0.02038, respectively. At this resolution one cannot see a difference between the cases when the output is the full state (A, I, R*) or I only. The
shape of the Bode magnitude plot for single outputs I and R* is similar, with only slightly different critical frequencies (0.4472 and 0.3853,
respectively). The critical frequency corresponding to completely observed state is 0.4470.
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finite time interval), might be necessary to delineate
subtle features of underlying network topologies.
Design of structural changes for model discrimination
For the design of most informative structural and para-
meter perturbations, the equilibrium is dependent on
the particular choice of parameters. Therefore, we illus-
trate in detail how to change coordinates in order to
translate the equilibrium to zero. Let the state variables
for Model 1 be x11 = A, x12 = I, and x13 = R* and those
for Model 2 be x21 = A, x22 = I, and x23 = R*. Assume
that in both models the parameters that can be modified
before the experiment are RT, the total chemotaxis
response regulator concentration and p = kr, the
response regulator activation rate constant. Parameter
values and the intervals of values that can be achieved
are given in Table 3. The dynamics of the two models
are given by
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In order to discriminate between Models 1 and 2, we
first solve the optimization programmes given in section
D of Methods, as explained in the section on Design of
structural changes for model discrimination. We allow
parameters RT and kr to vary. We obtain that x1 (0) =
x2 (0) = (1, 0, 0) for the initial conditions, and RT = 3
and kr = p = 1.5 for the values of the parameters that
have maximal discriminating power between the two
models. (See Figure 2c.). This means that we need to
over-express the total number of chemotaxis response
regulators and increase their rate of activation in order
to see a large difference between the two models.
The optimization problems in all three cases were

solved on a desktop computer. The most challenging
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Figure 4 Three distinctive input profiles S = S0 + u. Basal input S0 perturbed until time 60 by a step function (a), a sine function (b), or a
square wave function (c). ||u||2 = 1 in all cases. In (b) and (c) the frequency is 0.3853, the critical frequency corresponding to the single output R*.
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was the first SOS programme for the last case with eight
variables (three state variables for each model and two
parameters). Numerical methods will need to be
improved in order to deal with SOS programmes result-
ing from the analysis of more complex systems biologi-
cal models.

Conclusions
In this paper we have developed methods for designing
experiments to effectively discriminate between different
models of a biological system. These methods are tailored
to generate maximally informative data that can be used
to invalidate models of gene regulatory pathways by rul-
ing out certain connectivities in their underlying bio-
chemical reaction networks [15]. We approached the
problem in a unified framework, developing methodolo-
gies for initial conditions design (see also [23]), for the
design of dynamic stimulus profiles, and for parameter
modifications. These types of manipulations cover a large
spectrum of what is experimentally feasible, and this has
largely informed our formulation of the problem and the
approach to its investigation.
If the field of systems biology is to accelerate the pace

of biological discovery, rigorous mathematical methods
should be developed to link computational models of
biological networks to experimental data in tight rounds
of analysis and synthesis. Any informative model should
be analyzed in light of existing data, but it should also
be able to synthesize new experiments that further
delineate the features of the underlying biological sys-
tem. Despite many notable examples demonstrating the
success of this iterative procedure, progress has been
slow due to the ad hoc nature of its implementation: the
iterations between the development of models and the
production of data is still mostly guided by the intuition
of the modellers, and no rigorous algorithms exist to
render this process more systematic and less biased. We
believe that the work presented in this paper constitutes

an important step in this direction. By design, our for-
mulation of the problem is of sufficient generality to
accommodate many experiment design procedures, and
is cast in a natural optimization framework. Acknowled-
ging that optimality of experiment designs must always
be balanced with biological and other practical con-
straints, our formalisms allow for the incorporation of
limitation and constraints as dictated by the specific bio-
logical context. For example, if demanding a sinusoidal
input may be unrealistic in a laboratory setting, and an
optimal input in a smaller input function space is practi-
cally required, such constraints can be added to the
nonlinear optimization criteria.
We illustrated the applicability of our algorithms using

two possible and widely accepted simplified models of
the adaptation mechanism in Dictyostelium discoideum

Table 2 Achievable output differences for different input
profiles.

||u||2 = 1 (A, I, R*) I R*

Sine 0.472 0.472 0.0195

Sine w. exp. mult. 0.475 0.474 0.0209

Cosine or (10) 0.473 0.472 0.0200

Square wave 0.451 0.450 0.0182

Sinc 0.412 0.412 0.0153

Constant 0.198 0.197 0.0070

||u||2 = 0.01 (A, I, R*) I R*

Sine 0.476 0.481 0.0203

Sine w. exp. mult. 0.467 0.467 0.0195

Cosine or (10) 0.457 0.456 0.0191

Square wave 0.441 0.441 0.0184

Sinc 0.396 0.396 0.0173

Constant 0.198 0.198 0.0085

Numerical estimates of maxu ||y1 - y2||2/||u||2 with different inputs for the
Dictyostelium models by simulating the nonlinear system. Here maximization
is over different frequencies for inputs where frequency makes sense. Output
is either all states or I or R*.
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Figure 5 Bar chart of data in Table 2: achievable output differences for different input profiles.
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chemotaxis. Evidently, these models do not capture the
full complexity of the biological circuit responsible for
chemotactic behaviour. The models, however, illustrate
the core circuit topologies that are sufficient to imple-
ment perfect adaptation in the system. Recent work
investigating perfect adaptation demonstrated that
despite the diversity of biochemical enzymatic networks,
only a finite set of core circuits with defined topological
features can execute a desired function [33]. These find-
ings highlight the possibility of distinguishing between
mechanisms that implement a given biological function
using simple models, empowered by model-discrimina-
tion methods such as those presented in this work. We
also applied the optimal experiment design methods
described in this paper to invalidate models of the che-
motaxis pathway in Rhodobacter sphaeroides [34].
There, the combination of a square wave profile stimu-
lation and protein over-expression was necessary in the
most challenging model discrimination problem. This
demonstrates the practical demand for sophisticated
experiment design techniques.
The recipe for model discrimination that we propose

involves collecting mostly time series data. Every new
time point at which measurements are made increases
the cost of experiments, and thus one must carefully
balance the number of time points collected against the
cost, and consider where along a time series to

concentrate observations. Our methods naturally present
a window into this question by providing the timescales
at which data collection needs to be done to be maxi-
mally informative. Furthermore, if the optimal experi-
ment is such that a differentiating dynamical phenotype
only emerges several hours after a perturbation, our
methods can be easily modified to balance optimality
with practically measurable dynamics.
Finally, many commonly used perturbations (genetic

or environmental) lead to either extreme stress
responses that put a cell in a modified physiological
state, cell death, or quiescent states that do not have
much measurable information about the underlying reg-
ulatory network. Experiments that generate less cata-
strophic failures of cellular networks under study, while
being maximally informative, hold great promise for the
study of biological networks. Finding this region in per-
turbation space, however, is a nontrivial task.
Model-based design of experiments will undeniably be
instrumental for that, ultimately leading to many impor-
tant biological discoveries.

Methods
A - Sum of squares (SOS) decompositions
Here we present the sum of squares formalism which is
used to relax and solve the optimization problems posed
by the various approaches for model discrimination con-
sidered in this paper.
A polynomial p(y) in y = (y1, ..., yn) with real coeffi-

cients is nonnegative if p(y) ≥ 0 for all y. It is a sum of
squares (SOS) if there exist other polynomials pi(y), i =
1, ..., M such that p y p yii

M     2
1

. Obviously, such
a polynomial is nonnegative, but the converse is not
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Figure 6 Difference between state variables of the two rival models (states of Model 1 minus states of Model 2) in the Input design
for model discrimination case. Simulation results for Models 1 and 2 with a constant (a), sine (b), or square wave (c) perturbation of the basal
input S0 until time 60 (the inputs in Figure 4). The output variable (on which the choice of the optimal frequency depends) is R* and ||u||2 = 1.
The corresponding ||y1 - y2||2 values are 0.0070, 0.0195, and 0.0182, respectively. Note that the input signal S0 + u is not included in the figure.

Table 3 Parameter ranges of the two models in the
Design of structural changes for model discrimination
case.

Parameter kr k-r ka k-a ki1
ki2 k-i S0 RT

Range or value [0.5, 1.5] 1 3 2 1 2/3 0.1 0.2 [0.5, 3.0]
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always true [24]. In fact, testing if p(y) ≥ 0 is NP-hard
[35], but testing if p(y) is a sum of squares is equivalent
to a so-called semidefinite programme (SDP) [24], a
convex optimization problem for which there are algo-
rithms that can solve it with a worst-case polynomial-
time complexity. SOSTOOLS [36] can be used to for-
mulate this SDP which can be solved using SDP solvers
such as SeDuMi [37] or SDPT3 [38].

B - SOS programme for initial condition design
The strategy outlined in the section on Initial condition
design for model discrimination relies on the construc-
tion of a function S satisfying the nonnegativity condi-
tions given by (5-6). For reasons pointed out in section
A, constructing a nonnegative S is difficult. We there-
fore relax nonnegativity to the existence of an SOS
decomposition and solve the problem through semidefi-
nite programming. An SOS programme that can be
used to generate S is

given and the set description ,

find

f f D

S x x x
1 2

1 1 2 2
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The last constraint ensures that  

S
x
f(x) -hTh ≥ 0

when x Î D, since the multipliers s1(x1) and s2(x2) are
SOS. The solution S is not unique, but a heuristic to
find the ‘best’ S is to optimize over the decision vari-
ables in the SOS description for S (by minimizing the
trace of the Jacobian of S at the origin), so that the
resulting S has sub-level sets that have maximal area.
In the second step we solve the SOS relaxation of the

optimization problem (9) to get the initial state x1(0) =
x2(0) = x :

given

minimise , and

find  polynomial,

s.t.

ˆ,

ˆ

ˆ ˆ

S

p x

S x p





 
     ˆ̂ ˆ .x x   2

2 2  is SOS

The point x can be obtained from the dual solution
of this semidefinite programme, using SOSTOOLS.

C - SOS programme for optimal input design
In the Input design for model discrimination, we
should first note that it may occasionally be the case
that the set of inputs considered will lead to a system
trajectory outside the region where S is constructed.
This case can be ruled out by solving a related reach-
ability problem [39]. Here, we assume that the contain-
ment of the trajectory in D has been ensured, and
describe how to obtain an estimate of the L2-gain of
the system.
To construct a function S which satisfies the condi-

tions shown in the section on Input design for model
discrimination, we use the SOS framework as follows.
Condition (12) can be satisfied by searching for SOS
multipliers s1(x) and s2(x) such that

 


        
    
S
x
f x y y u u x x

x x

T T  

 

1 1 2
2 2

2 2 2
2 2  is SOS,

where a > 0 is used to define the region D by

D x x x xn n      
1 2 1 2 2 2

1 2, | , .  

This condition guarantees that  

S
x
f(x) - yTy + guTu

≥ 0 for x Î D. The rest of the conditions can also be

easily enforced in an SOS programming framework.
Consequently, the overall SOS programme for con-

structing S takes the form:

given , and the set description 

minimise , and

find

f f D1 2, , ,

SS x x x

S

S
x
f x y y uT

     
  

 


   

, , , 



1 2

0 0

 all SOS

s.t. ,  and

TTu

x x

x x

    
    
 

 

1 1 2
2 2

2 2 2
2 2  is SOS.

D - SOS programme for optimal structural design
The search for a function S(x, p) ≥ 0 such that (13)
holds in D × Π can be formulated as:
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find
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S x p x p x p v
i i1 2

1 2 1

0 1, , , , , ,
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T
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1 1 2
2 2

2 2 2
2 2

,

,

,   

 p bi i

i

m

 is SOS.
1

As in the initial state and input design cases, we
would like to maximize the difference given by y.
Although we cannot achieve this goal directly, we can

maximize the approximation of y
2
2 given by S(x(0), p)

(see (14)), where we require that x1(0) = x2(0) = x and
|| x ||2 = b. We introduce the modified S,
ˆ( ˆ, ) : (( ), )( ˆ )ˆ

ˆS x p S p xx
x n  . Similarly,

ˆ( ˆ, ) : (( ), )ˆ
ˆf x p f px
x . The problem is then the following.

Given

minimise and

find  polynomial, and

ˆ,

,

ˆ,

ˆ, , .

S

r x p

w x p



 
 1 ..., ˆ,

ˆ ˆ, ˆ ˆ

ˆ,

w x p

S x p r x x

w x p

m

i

 
        


 all SOS,

s.t.  
2

2 2

     

 p a p bi i i i

i

m

 is SOS.
1

Exactly as in the initial state design case, the point x
can be obtained from the dual solution, using
SOSTOOLS.

List of abbreviations
cAMP: cyclic adenosine monophosphate; SDP: semidefi-
nite programme; SOS: sum of squares; s.t.: subject to.
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