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Abstract

For a detailed analysis of a chemical system, all relevant intermediates and elementary
reactions on the potential energy surface (PES) connecting them need to be known. An
in-depth understanding of all reaction pathways would allow one to study the evolution
of a system over time, given a set of initial conditions (e.g., reactants and their concen-
trations, temperature, and pressure) and propose derivatives of the original reactants
to avoid undesired side reactions. Manual explorations of complex reaction mechanisms
employing quantum-chemical methods are slow and error-prone. In addition, due to the
high dimensionality of PESs exhaustive exploration is generally unfeasible. However, to
rationalize, for instance, the formation of undesired side products or decomposition
reactions, unexpected reaction pathways need to be uncovered.

In this thesis, we present a computational protocol that constructs reaction networks,
consisting of intermediates and transition states, in a fully automated fashion. Start-
ing from a set of initial reagents new intermediates are explored through intra- and
intermolecular reactions of already explored ones. This is done by assembling reactive
complexes based on heuristic rules derived from conceptual electronic-structure theory
and exploring the corresponding approximate reaction path. A subsequent path re-
finement leads to a minimum-energy path which connects the new intermediate to the
existing ones to form a connected reaction network. Tree traversal algorithms are then
employed to detect reaction channels and catalytic cycles. We apply our protocol to
the formose reaction to study different pathways of sugar formation and to rationalize
its autocatalytic nature. Furthermore, we investigate the Schrock dinitrogen-fixation
catalyst and discover alternative pathways of catalytic ammonia production.

To be able to draw reliable conclusions from the generated reaction networks, accurate
relative energies between intermediates and transition states are required. To date,
density functional theory (DFT) is the only method that is computationally feasible for
the ab initio exploration in this detail. However, DFT often fails to provide sufficiently
accurate results, especially for systems containing transition metals. In this thesis,
we apply a framework based on Bayesian statistics that allows for error estimation of
properties calculated with DFT. Instead of considering only the best-fit parameters of
an approximate density functional, we assign a conditional probability distribution to
the continuous set of parameters from which a confidence interval can be calculated for
any observable. We assess our approach at two challenging chemical systems: catalytic
nitrogen fixation and the formose reaction.

v



Finally, to overcome the lack of systematic improvability of approximate quantum
chemical methods we apply Bayesian statistical learning. This new approach allows for
the systematic, problem-oriented, and rolling improvement of quantum chemical results
through the application of Gaussian processes. Due to its Bayesian nature, reliable error
estimates are provided for each prediction. A reference method of high accuracy will
be employed to provide a new data point if the uncertainty associated with a particular
calculation is above a given threshold. This data point is then added to a growing
data set in order to continuously improve the model, and as a result, all subsequent
predictions. Previous predictions are validated by the updated model to ensure that
uncertainties remain within the given confidence bound, which we call backtracking. We
demonstrate our approach with the example of a complex chemical reaction network.
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Zusammenfassung

Um die Reaktivität eines chemischen Systems detailliert verstehen zu können, ist eine
ausführliche Analyse der Potenzialhyperfläche unabdingbar. Für die vollständige Auf-
klärung eines chemischen Prozesses muss diese Analyse alle relevanten Intermediate und
Übergangszustände enthalten. Damit wäre es möglich (gegeben die Anfangskonzentra-
tion aller chemischen Spezies, die Temperatur und den Druck), den zeitlichen Verlauf
einer Reaktion vorherzusagen. Zudem wäre man in der Lage, alternative Reaktanden
und Reaktionsbedingungen vorzuschlagen, um unerwünschte Nebenreaktionen zu ver-
meiden. Die manuelle Untersuchung komplexer Reaktionsmechanismen mit Hilfe von
quantenchemischen Methoden ist fehleranfällig und sehr zeitaufwendig. Außerdem ist
eine vollständige Analyse in der Regel nicht möglich, da die zu untersuchenden Hyperflä-
chen meist hochdimensional sind. Um jedoch zum Beispiel Nebenreaktionen vorhersagen
zu können, müssen auch unerwartete Reaktionspfade untersucht werden.

In dieser Doktorarbeit erarbeiten wir ein Verfahren, das die vollautomatische Explo-
ration eines Reaktionsnetzwerks, bestehend aus Intermediaten und Übergangszustän-
den, erlaubt. Durch intra- und intermolekulare Reaktionen zwischen bereits entdeckten
Intermediaten werden neue Intermediate dem Netzwerk hinzugefügt. Mit Hilfe von heu-
ristischen Regeln, welche auf Konzepten der Elektronenstrukturtheorie basieren, werden
sogenannte reaktive Komplexe erstellt. Wird diesen Komplexen Energie (beispielsweise
in Form von kinetischer Energie) zugeführt, können genäherte Reaktionspfade erforscht
werden. Die Verfeinerung dieser Pfade führt zu Elementarreaktionen, welche neue In-
termediate mit bereits Abgebildeten verbinden, sodass sich ein zusammenhängendes
Reaktionsnetzwerk ergibt. Algorithmen zur Analyse von Netzwerken erlauben einem
dann, Reaktionskanäle und katalytische Zyklen zu entdecken. Am Beispiel einer präbio-
tischen Polymerisierungsreaktion, der Formosereaktion, zeigen wir, dass es mit unserem
Verfahren möglich ist, auf automatische Weise große Reaktionsnetzwerke zu erstellen.
Insbesondere werden auch autokatalytische Eigenschaften dieser Reaktion reproduziert.
Zudem untersuchen wir die Reaktivität eines Stickstoff fixierenden Katalysators, dem
Yandulov–Schrock-Katalysators, und finden dabei Nebenreaktionen, die seine niedrige
Wechselzahl erklären.

Genaue (freie) Energien sind nötig, um zuverlässige Schlüsse aus der Analyse von Re-
aktionsnetzwerken ziehen zu können. Momentan ist Dichtefunktionaltheorie (DFT) die
einzige Elektronenstrukturmethode, die eine Untersuchung solch detaillierter Netzwerke
erlaubt. Mittels DFT ist es jedoch nicht immer möglich, genaue thermodynamische Grö-

vii



ßen zu berechnen, insbesondere bei Systemen, die Übergangsmetalle enthalten. Deshalb
entwickeln wir in dieser Dissertation einen Ansatz, der auf bayesscher Statistik beruht
und für Observablen, die mit DFT berechnet wurden, eine Fehlerabschätzung ermöglicht.
Typischerweise werden für empirische Parameter in approximativen Dichtefunktionalen
lediglich vordefinierte optimierte Werte verwendet. Im Gegensatz dazu wird in unserem
statistischen Ansatz eine Wahrscheinlichkeitsverteilung für die Parameter bestimmt, mit
der Vertrauensintervalle für beliebige Observablen ermittelt werden können. Wir wen-
den die neu entwickelte Methode auf die Formosereaktion und den Katalysezyklus des
Yandulov–Schrock-Katalysators an.

Im letzten Kapitel dieser Dissertation nutzen wir bayessches statistisches Lernen, um
approximative quantenchemische Methoden systematisch zu verbessern. Mit Hilfe von
Gaussprozessen können nun zuverlässige Abschätzungen zu statistischen Unsicherheiten
von berechneten Resultaten gemacht werden. Ist diese Unsicherheit zu groß, wird eine
hochgenaue Referenzberechnung durchgeführt. Das Resultat dieser Berechnung wird ei-
nem wachsenden Referenzdatensatz hinzugefügt, um Vorhersagen des Gaussprozesses zu
verbessern. Anschließend werden bisherige Vorhersagen überprüft, um sicherzustellen,
dass die Unsicherheiten innerhalb des gegebenen Konfidenzintervalls liegen. Wir demon-
strieren die Nützlichkeit dieses Ansatzes zur Fehlerabschätzung an einem komplexen
Reaktionsnetzwerk.
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1
Introduction

Complex reaction mechanisms are ubiquitous in chemistry. They are, for instance, the
basis of transition-metal catalysis,1 polymerizations,2 cell metabolism,3 flames, and
environmental processes4 and are the objective of systems chemistry.5 Knowing all
chemical compounds and elementary reactions of a specific chemical process is essential
for its understanding in atomistic detail. Even though many chemical reactions result
in the selective formation of one main product,6 in general, multiple reaction paths
compete with each other leading to a variety of side products. In such cases, a reactive
species (such as a radical, a valence-unsaturated species, a charged particle, a strong acid,
or base) can be involved or high-energy states (e.g., vibrational states) are populated
(due to a high reaction temperature, for example).

For a detailed analysis of a chemical system, all relevant intermediates and elemen-
tary reactions connecting them need to be known. Given a set of initial conditions
(e.g., reactants and their concentrations, temperature, and pressure), a detailed under-
standing of all reaction pathways would allow one to study the evolution of a system
over time and propose derivatives of the original reactants to avoid undesired side reac-
tions. Manual searches for all components of complex reaction mechanisms employing
quantum chemical methods are slow, tedious, and error-prone. In addition, due to the
high dimensionality of PESs, exhaustive explorations are generally unfeasible. However,
to rationalize, for instance, the formation of undesired side products or decomposition
reactions, alternative reaction pathways need to be uncovered. Therefore, it is desirable
to develop a fully automated protocol for an efficient and accurate exploration of config-
uration spaces involving both minimum-energy structures and transition states (TSs).
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Chapter 1 Introduction

Clearly, it would be too much to demand from this protocol to be universally applicable
and, therefore, we focus on thermal reactions in the condensed and gas-phase.

Access to accurate thermodynamic properties (e.g., standard Gibbs free energy) of
all intermediates and elementary reactions is mandatory for a reliable description of a
chemical process. Quantum electrodynamics (QED) allows for the description of all elec-
tromagnetic processes occurring between the elementary particles of chemical systems
(e.g., molecules).7 It is the fundamental theory of chemistry (focusing on the dominant
electromagnetic interactions and ignoring the other fundamental forces). If we were able
to solve its equations for chemical systems with arbitrary accuracy, truly predictive re-
sults would be obtained. However, for all but the simplest systems, calculations based
on QED are unfeasible. As a result, quantum chemical methods employed to describe
chemical reactions rely on a number of approximations. However, the effect of such
approximations on observables derived from them is often unpredictable. Therefore, it
is challenging to quantify the uncertainty of a computational result, which, however,
is necessary to assess the suitability of a computational model. Moreover, in practice,
multiple approximations are made for the calculation of an observable of interest so
that they are available in reasonable time and with reasonable effort. Eventually, the
number and types of approximations necessary for a feasible description of molecular
systems are vast and diverse such that it is difficult to attribute errors to certain approx-
imations. In addition, the precise effect of such approximations (computational models)
on observables derived from them is generally unknown and difficult to estimate for
arbitrary molecules,8 let alone entire reaction networks consisting of a multitude of
intermediates and transition states.

While the procedure of uncertainty quantification for physical measurements is well
established,9 this is not the case for results of computational models (virtual measure-
ments10). By the very nature of a deterministic (or fully converged stochastic) calcula-
tion, the repetition of such a calculation does not lead to an oscillation around the true
result (if the calculation is fully reproducible, as it should be) and, therefore, there is
no obvious approach of reliably estimating prediction uncertainty of the computational
model employed. However, the result of a computational model is incomplete without
an accurate uncertainty associated with it.10 Given a reliable uncertainty measure for
a computational result, one could not only estimate the effects on observables derived
from that result (through uncertainty propagation) but also directly assess the quality
of approximations in the model development stage. Finally, availability of prediction un-
certainties would help select an appropriate computational model of sufficient accuracy
for a problem at hand.

The challenges mentioned above are elaborated on in this thesis which is organized
as follows: In Chapter 2, an overview is given over the plethora of existing approaches
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for the exploration of chemical reaction networks. In addition, the limitations of cur-
rent methods are discussed. These limitations are addressed in a new computational
protocol which we present in Chapter 3. In contrast to existing approaches, this pro-
tocol constructs complex chemical reaction networks in a fully automated fashion and
is applicable to any molecular system. Throughout this thesis, we demonstrate our
developments with two challenging chemical systems: the oligomerization reaction of
formaldehyde11–13 and catalytic nitrogen fixation under ambient conditions with the
Yandulov–Schrock catalyst.14,15 The former reaction results in a highly complex mix-
ture of linear and branched compounds, the latter features a plethora of possible in-
termediates leading to a very low turnover number. We employ our new approach
to study these chemical systems by constructing reaction networks of unprecedented
depth. In Chapter 4, we discuss problems and solutions for performance assessment of
computational models based on several examples from the quantum chemistry literature.
For this purpose, we elucidate the different sources of uncertainty, the elimination of
systematic errors, and the combination of individual uncertainty components to the un-
certainty of a prediction. To obtain reliable uncertainty predictions for the exploration
of chemical reaction networks, we introduce Bayesian statistics for system-focused DFT
in Chapter 5. Two case studies then demonstrate how important reliable error estimates
are for meaningful conclusions drawn from quantum chemical results. In Chapter 6, we
address the lack of systematic improvability of approximate density functionals and the
limitations of our previous approach by applying Gaussian process (GP) regression. We
present an algorithm that allows for the on-the-fly construction of a reference data set
adapted to the system to be explored and the required confidence level. The thesis
concludes with a summary of the advances that were achieved and an outlook on future
work.
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2
Exploration of Reaction Paths and
Chemical Transformation Networks

The construction of a reaction network containing all relevant intermediates and ele-
mentary reactions is necessary for the accurate description of chemical processes. In the
case of a complex chemical reaction (involving, for instance, many reactants or highly
reactive species), the size of such network may grow rapidly. Manual search for interme-
diates and TSs is not feasible in these cases. Therefore, there is a need for efficient and
reliable methods that require minimal human intervention or intuition. In this Chapter,
we review existing approaches for the effective exploration of complex PESs. In Sec-
tion 2.1, two classes of exploration strategies are introduced. Current implementations
of these strategies are discussed in Sections 2.2 and 2.3.

2.1 Strategies for the Exploration of Complex PESs

Some excellent reviews on the exploration of reaction paths exist (for recent one see
Ref. 16). This overview has a different focus that also extends the literature covered
in previous work. We group the plethora of strategies developed for the exploration of
PESs in two classes as illustrated in Fig. 2.1:

Strategy 1: Starting from a minimum energy or approximate TS structure (indi-
cated by the green region in Fig. 2.1, left) local curvature information is exploited to
climb up a PES towards TSs, and then, by following the minimum-energy path (MEP),
towards new intermediates (indicated by blue regions). This process is repeated for
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Chapter 2 Exploration of Reaction Paths and Chemical Transformation Networks

all minimum-energy structures (possibly in multiple directions) until all extrema of the
PES (below some energy cutoff) are explored.

Strategy 2: Starting from a minimum energy structure, new intermediates are ex-
plored through the application of heuristics (guided by chemical intuition, indicated
by dashed lines in the Fig. 2.1, right). This includes, for example, the formulation of
graph-based transformation rules or the application of an artificial force pushing reac-
tive moieties together. Once a new intermediate is found, the MEP connecting it to the
starting structure is searched for.

In practice, many modern exploration strategies lie in between these idealized classes
or employ a combination of the two. In the following, an overview of current implemen-
tations of these strategies is given.

For the accurate description of a chemical process, not only bond-breaking and bond-
forming transformations need to be considered but also the conformational space of
each intermediate needs to be explored. This is particularly critical for an accurate
description of thermodynamic properties (e.g., Gibbs free energy) and catalytic reac-
tions in which multiple MEPs connecting the same configurational isomers can exist.
In general, both exploration strategies mentioned above can be employed to locate con-
formational isomers. It should be noted, however, that in contrast to bond-breaking or
bond-forming transformations, in most practical applications, TSs between conformers
are not of interest as the timescale of a reaction can be assumed to be longer than
the time the conformers require for equilibration. For a recent review on conformer
generation see Ref. 17.

In the following, successful examples of the two strategies are detailed. Overall, the
approaches differ in the degree of automation possible (an aspect which is particularly
critical for large reaction networks), the amount of heuristics required, and the thor-
oughness of the exploration. Approaches involving little or no heuristics tend to explore
the PES in a more systematic fashion, however, they are often limited by computational
effort, and hence, are often applicable to only small chemical systems.

2.2 Exploration through Exploitation of PES Curvature

In many theoretical studies, approximate TS candidates (obtained, for example, through
manual construction) are refined by utilizing Hessian information – the second-order
derivatives of the potential energy with respect to the nuclear coordinates. The Hessian
of a TS guess structure is required to obtain the vibrational mode representing the
reaction coordinate to follow. Eigenvector following (EVF)18–24 is a prominent example
of such an approach, that will be extremely reliable if the TS guess structure is close to
the true TS. For large molecules, a full Hessian calculation will become computationally
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Exploration through Exploitation of PES Curvature 2.2
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reactant
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reactant
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Figure 2.1: Two general strategies for the exploration of PESs. Left: local curvature information of the PES is ex-

ploited to identify TSs and products. Right: through the application of heuristics new intermediates are identified.

Starting from two intermediates anMEP is searched for.

demanding or even unfeasible even if the Hessian is approximated. Therefore, several
algorithms have been developed to circumvent the calculation of the full Hessian. A
quasi-Newton–Raphson method was introduced by Broyden,25 in which an approximate
Hessian is built from gradients only and then updated by the gradients of intermediate
points obtained during the optimization. Other approaches include schemes proposed by
Munro and Wales26 that avoid the full diagonalization of the Hessian, Lanczos subspace
iteration methods,27 and Davidson subspace iteration algorithms.28–30

Nevertheless, the manual construction of approximate TS candidates is slow, cum-
bersome, and highly unsystematic. Recent developments focused on providing more
streamlined and systematic means for the location of TSs. Maeda and coworkers exploit
curvature information of the PES in a strategy called anharmonic downward distortion
following (ADDF).31–35 By distorting a minimum structure orthogonal to the potential
energy contours, MEPs can be found. As a result, a path explored through ADDF is
very close to the one obtained from an intrinsic reaction coordinate (IRC) calculation.
Repeated application of ADDF on newly explored intermediates yields all relevant re-
action paths. ADDF was successfully applied to small systems such as formaldehyde,
propyne, and formic acid reactions.

To address the limitations of ADDF, Maeda and coworkers developed the artificial
force-induced reaction (AFIR) method.36–41 AFIR overcomes intermolecular activation
energies by applying an artificial force pushing the reactants together, hence distorting
the original PES. When optimizing under this biasing force, the maximum energy point
lies close to the true TS. AFIR has been successfully applied to the Claisen rearrange-
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Chapter 2 Exploration of Reaction Paths and Chemical Transformation Networks

ment,38,39 Biginelli reactions,42 and cobalt-catalyzed hydroformylations.43 A downside
of AFIR is that many random initial orientations of the two reactants need to be sam-
pled before all relevant reactions paths are found. In addition, human input is often
required to select pairs of reacting molecules to circumvent a combinatorial explosion.

Martínez-Núñez and coworkers developed an approach termed TS search using chem-
ical dynamics simulations (TSSCDS),44–47 in which high-energy dynamics employing
semi-empirical quantum chemical methods are performed to induce reactions to occur
at high rates. Vibrational modes are populated to increase the rate at which TSs can be
overcome. For large systems, due to their large number of vibrational modes, manual
intervention is required to steer the simulation in directions of interest. The trajectory
generated through the simulation is subsequently post-processed, and bond-forming
and bond-breaking events are identified. TS guesses are extracted from the trajectory
and refined employing semi-empirical and density-functional methods. The TSSCDS
method was successfully applied to reactions involving formaldehyde, formic acid,45

vinyl cyanide,44 and cobalt catalysis.47

In reactive molecular dynamics (MD) simulations, the nuclear equations of motion
are solved to explore and sample the part of configuration space that is accessible under
the constraints imposed by a predefined thermodynamic ensemble. The capability of
reactive ab initio molecular dynamics for studying complex chemical reactions was shown
with the example of the prebiotic Urey–Miller experiment.48–50 As the configuration
space can become very large, comprising multiple copies of all chemical species involved
in the reaction, computational costs of carrying out first-principles calculations grow
rapidly. This issue can be overcome by the application of a reactive force-field.51,52

Unfortunately, next to the reduced accuracy, force-field parameters will, in general, not
be available for any type of system which limits their applicability. Therefore, hybrid
quantum-mechanical–molecular-mechanical approaches have been frequently applied to
explore different reaction paths of complex systems with many degrees of freedom such
as enzymatic reactions (for examples see Refs.53–58 and reviews by Senn and Thiel59–61).
However, to increase the possibility of a reaction to occur, the temperature and pressure
of the simulation need to be increased which in turn leads to the frequent occurrence of
unphysical transformations.

Naturally, MD simulations employing classical and ab initio force fields can be applied
to sample conformational degrees of freedom. Recent progress in this field has been
reviewed in Refs. 62 and 63. These approaches are among the most complex and time-
consuming for conformational sampling.64 Stochastic methods based on Monte Carlo-
simulated annealing (MC) are often faster than MD methods.65–67 By sampling low-
lying eigenmodes they require less computational effort than MD simulations. Both MD
and MC approaches are computationally too expensive for a high-throughput setting.

8



Locating Minimum-Energy Paths by Connecting Intermediates 2.3

Recently, Satoh et al.68 systematically explored conformational transitions of D-glucose
by employing ADDF to trace only low TS barriers.

2.3 Locating Minimum-Energy Paths by Connecting Intermediates

Despite being highly systematic, exploration strategies solely based on ab initio curva-
ture information of the PES are often unsuitable for large chemical systems with many
degrees of freedom. Starting from a minimum structure, it can be more effective to
apply heuristics to rapidly identify potential products, and subsequently, search for an
MEP connecting them. If both endpoints of an elementary reaction are known, inter-
polation methods (see e.g., Ref. 69) and string methods70–78 can be applied to locate
the MEP connecting them.

Conceptual knowledge of chemistry can be applied to rapidly identify potential can-
didates for intermediates connected to the starting structure through an elementary
reaction, in particular, if the types of reaction mechanisms relevant to the study at
hand are known. For example, from reaction databases or chemical heuristics, trans-
formation rules can be formulated and applied to graph representations of the reacting
molecules. These rules originate from concepts of bond order and valence and, therefore,
these approaches are popular in organic chemistry. In 1994, Broadbelt and coworkers
pioneered this approach with a method called Netgen.79 The three-dimensional arrange-
ment of atoms in molecules is transformed into a graph structure in which atoms and
bonds are represented by nodes and edges, respectively. This gives rise to adjacency
matrices which can be manipulated by matrix operations representing chemical transfor-
mations.80,81 With the derived adjacency matrices, new three-dimensional arrangements
of atoms are generated. Through repeated application of these transformation rules, new
molecules are added to the list of intermediates involved in the global mechanism. In
Broadbelt’s original work, elementary steps are not identified, and hence, activation
barriers are crudely estimated with the Evans–Polanyi principle.82 One shortcoming
of Netgen is that many intermediates are proposed that can only be reached through
high-energy paths.

In a similar spirit, Green and coworkers developed a software package called Reaction
Mechanism Generator (RMG).83,84 Multiple, significant steps were taken to overcome
challenges demonstrated by the approach of Broadbelt. In particular, kinetic parameters
were estimated employing quantum chemical calculations to discard products that are
likely to be reachable only by overcoming TSs featuring high activation barriers. RMG
was employed to automatically map the mechanisms of the pyrolysis of n-butanol85

and methane.83 The Green and West groups have shown that RMG can be applied
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Chapter 2 Exploration of Reaction Paths and Chemical Transformation Networks

to a variety of complex systems with good success.86–91 Similar to Netgen, RMG is
ultimately limited by the application of concepts of bond order and valence.

Aspuru-Guzik and coworkers developed a methodology based on formal bond or-
ders92,93 to model prebiotic reactions such as the formose reaction.11 Instead of specif-
ically encoding elementary reactions, transformation rules are based on a concept pop-
ular in organic chemistry, commonly denoted as “arrow pushing”.94 Similar to the ap-
proach above, activation barriers are estimated (in Ref. 92, employing Hammond’s
postulate). While the exhaustiveness of the exploration is encouraging, the resulting
reaction networks may contain intermediates that can be considered not viable (e.g.,
three-membered rings).

Recently, Kim and coworkers utilized chemical heuristics to rapidly search reaction
paths.95 Through the application of molecular graphs and reaction network analyses,
they explored a so-called minimal reaction network consisting of intermediates that can
be reached from the starting structures within a fixed number of bond dissociation and
formation reactions. The minimal network is subjected to quantum chemical calcula-
tions to determine kinetically the most favorable reaction path. They applied their
method to recover the accepted mechanisms of the Claisen ester condensation and of
cobalt-catalyzed hydroformylation reactions.95

The ZStruct approach developed by Zimmerman and coworkers utilizes connectivity
graphs to identify potential intermediates that could form when connections are formed
or broken.96,97 Intermediates are then subjected to a double-ended reaction path search
employing the growing string method.78,98–100 A limitation of ZStruct is the require-
ment that reactants are prealigned, which restricted this approach to intramolecular re-
actions. In addition, if two intermediates where connected by two elementary reactions,
many will struggle to find a TS. Despite its shortcomings, ZStruct uncovered an unex-
pected side-reaction that was hampering a Ni-based C–H functionalization catalyst.101

Furthermore, several other (catalytic) reactions have been studied with ZStruct.102–104

Recently, Zimmerman addressed the limitations of ZStruct in ZStruct2.105 In ZStruct2,
reactants are prealigned to sample so-called driving coordinates that describe the ex-
pected elementary reactions. ZStruct2 has been successfully applied to study transition
metal catalysts.106–109

Green and coworkers developed a graph-based approach to find reaction path-
ways.110,111 Very recently, they explored the reaction network of the simplest
γ-ketohydroperoxide, 3-hydroperoxypropanal, by applying the Berny algorithm112–114

coupled with the freezing string method,77 single- and double-ended growing string
methods, and the AFIR method.

In the approach of Habershon,115,116 connectivity graphs are employed to describe
intermediates. Reaction pathways are examined by dynamics simulations over a Hamil-
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Locating Minimum-Energy Paths by Connecting Intermediates 2.3

tonian that can be updated to suit a change in the connectivity graph. The trajectories
are processed and unique reaction pathways are refined. Compared to the approach
developed by Green and coworkers, Habershon’s method explores the potential energy
surface more extensively, at the cost of running dynamics simulations.

There exist several efficient approaches for the exploration of conformational inter-
mediates that are related to this class of exploration strategy. Distance geometry (DG)
methods stochastically generate sets of atomic coordinates which are refined against a
set of interatomic distance constraints. Generated conformers are usually optimized
employing a molecular mechanics force field or quantum-chemical methods to afford a
candidate conformer. Implementations of DG can be found in DG-AMMOS117 and
RDKit.118 To reduce the conformational space that needs to be explored, the so-called
rigid-rotor approximation is often introduced in which bond lengths and bond angles
are kept fixed so that only torsional degrees of freedom are sampled. Genetic algo-
rithms are a prominent class of methods for stochastic sampling of vast torsion space.
A popular implementation of this method is Balloon_GA.119 Aside from genetic al-
gorithms, Monte Carlo methods have been used for the stochastic sampling of torsional
angles.120,121 A general problem with stochastic methods is the possibility of missing
relevant (i.e., accessible) intermediates. As a result, the amount of sampling required
is a priori not known. Systematic conformer generation methods, which rely explicitly
on the rigid-rotor approximation, attempt to enumerate all possible torsional degrees of
freedom of a molecule. Systematic enumeration of all possible torsion angles based on
a starting conformation in a brute-force fashion will result in a combinatorial explosion
of candidate conformers. Rule-based conformation generators limit the conformational
space they explore. These rules are usually derived from analyses of torsional angles
in solid-state structures found in databases such as the Protein Database122 or the
Cambridge Structural Database.123,124
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3
Automated Exploration of Chemical

Reaction Networks*

The many different exploration strategies elucidated in Chapter 2 were successfully
applied to a plethora of chemical systems. However, they all suffer from limitations.
Approaches exploiting local curvature information of the PES are highly systematic but
limited by computational effort, and hence, applicable to only small chemical systems
(see Section 2.2). In contrast, current approaches making use of heuristics (described in
Section 2.3) employ graph-based transformation rules to discover potential intermedi-
ates. While being computationally efficient, they rely on the concept of valence which
may perform well for many organic molecules, and thus, will fail for systems containing
species with complex electronic structures such as transition-metal clusters. Further-
more, to ensure an exhaustive exploration with such an approach, completeness of the
set of transformation rules is required. However, for an arbitrary, unknown chemical
system this cannot be guaranteed if heuristics rules need to be formulated. One will
then be restricted to known chemical transformations, which may hamper the discovery
of new chemical processes. In this Chapter, we present a new computational protocol
that constructs complex chemical reaction networks in a fully automated fashion. It
addresses the limitations of the many approaches reviewed in Chapter 2 and is imple-
mented our protocol in a software called Chemoton (named after a theory for the
functioning of living systems proposed by Gánti125). In Sections 3.7 and 3.8, the func-

* This Chapter is reproduced in part with permission from M. Bergeler, G. N. Simm, J.
Proppe, M. Reiher, J. Chem. Theory Comput. 2015, 11, 5712–5722 and G. N. Simm, M. Reiher,
J. Chem. Theory Comput. 2017, 13, 6108–6119. Copyright 2017 American Chemical Society.
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Chapter 3 Automated Exploration of Chemical Reaction Networks

tionality of Chemoton is illustrated with the example of two challenging chemical
systems. To illustrate the functionality of our machinery, we apply Chemoton to two
chemical systems featuring a different set of challenges: the formose reaction, which is
an oligomerization reaction of formaldehyde,11–13 and the Yandulov–Schrock catalyst,
a nitrogen-fixating molybdenum complex developed by Schrock and co-workers.14,15

3.1 Exploration Strategy of Chemoton

Starting from a set of initial conditions, our exploration protocol is applied repeatedly to
expand a reaction network in a rolling fashion. These conditions comprise the reactants
and their concentrations, solvents, and standard thermodynamic ensemble parameters
such as temperature and pressure. In addition, the timescale of the reaction is relevant
as it allows one to define the slowest reaction which still affects the concentration of
all species in a significant manner (for details see Refs. 126 and 127). Reactions slower
than that one can be safely discarded, whereas reactions which are much faster can be
considered to be in quasi-equilibrium.127

Unlike reactive molecular-dynamics simulations, a concept-driven exploration does
not take place on a single PES but on multiple low-dimensional PESs consisting of
rather few nuclear coordinates that can represent specific elementary reactions as will
be discussed in Section 3.3. Exploring many low-dimensional PESs instead of one of
very high dimension bears several advantages. Calculations are, in general, faster due
to the reduced number of atoms. Geometry optimizations and TS searches converge
more quickly and the exploration can be more easily steered into regions of interest.

The exploration strategy in Chemoton belongs to the second class of exploration
strategies (see Section 2.3), but (in contrast to previous approaches) is designed to be
applicable to arbitrary molecular systems.

3.2 Generation of Conformers

A PES is explored starting from one minimum-energy structure which may be a molecule
or a cluster of molecules (such as a microsolvated solute). Usually, there exist many
minima which can be reached from this minimum through a series of elementary reac-
tions featuring a sufficiently low reaction barrier. Often, these minima will turn out
to be conformers of the same molecular configuration. With the introduction of some
electronic-structure measure for molecular bonds, these minima can be explored very effi-
ciently employing conformer generators.118–121,128 We determine the molecular bonding
by calculating Mayer bond orders from an electronic wave function.129 The geometries of
the generated conformers are subsequently optimized with quantum chemical methods
to obtain sufficiently reliable minimum structures.
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Assembly of Reactive Complexes and Induction of Reactions 3.3

If the timescale of a reaction can be assumed to be longer than the time the conformers
require for equilibration, TSs between the conformers do not need to be optimized, which
reduces the computational effort significantly. In this case, at a given temperature, only
a fraction of the conformers can be assumed to be significantly populated, and hence,
only this fraction needs to be considered in the subsequent steps of the exploration
protocol. Otherwise, TSs need to be located (see Section 3.5).

3.3 Assembly of Reactive Complexes and Induction of Reactions

Searching for minima that can only be reached by overcoming a non-negligible barrier is
not straightforward, as, in general, this requires a chemical transformation (i.e., break-
ing or forming bonds). In the following steps of our protocol, we distinguish between
intermolecular and intramolecular reactions.

To exhaustively explore the intermolecular reaction between two intermediates (i.e.,
all possible products and their reaction paths), the following steps are carried out.
Firstly, to explore the reaction between any pair of atoms from the intermediates they
need to be positioned relative to one another with the aim of obtaining a reactive com-
plex (see Fig. 3.1). Here, their relative orientation (three rotational degrees of freedom)
must be considered. This is particularly important for reactions in which non-covalent
bonding is important or where no single pair of reacting atoms can be defined (as, for
example, in a Diels-Alder reaction). Note also that our restriction to two intermediates
does not exclude reactions with a molecularity higher than two as an intermediate may
consist of more than one molecule, which is also important when considering microsol-
vated structures.

For an exhaustive exploration, reactive complexes must then be generated for every
pair of atoms. However, it is obvious that this is, in general, not feasible (see Section 3.4
for a viable solution to this problem). Finally, through a constrained optimization along
a shrinking distance between the reacting atoms, an approximate reaction path is con-
structed. A full geometry optimization is carried out afterward so that either new
species are formed or the reactants are recovered, which is automatically detected. For
an intramolecular reaction, the minimum structure acts as a starting point for the con-
strained optimization. The relative orientation of the reacting atoms in the intermediate
will determine the reaction path and product. For both, intra- and intermolecular reac-
tions, the conformational diversity of the intermediates needs to be taken into account
to ensure the exploration of all reaction paths and products.
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Figure 3.1: Assembly of reactive complexes between two intermediates colored blue and red. Three rotational de-

grees of freedom are indicated by curly arrows. For clarity, reactive complexes constructed from pairs containing

atoms E, G, H, and I are omitted. Reprinted with permission from G. N. Simm, M. Reiher, J. Chem. Theory Comput.
2017, 13, 6108–6119. Copyright 2017 American Chemical Society.

3.4 Identification of Reactive Atoms

Fig. 3.1 implies that it is, in general, unfeasible to consider the reaction between every
pair of atoms of two intermediates under full orientational freedom as the complete
pairing would lead to a myriad of reactions most of which potentially featuring high
reaction barriers. Due to the exponential growth of the number of possible reactions
highly systematic exploration algorithms such as ADDF35 reach their limits of feasibility.
Therefore, a descriptor is required that allows one to identify pairs of atomic centers
that, when brought together in close proximity, are likely to react. At the same time,
the choice of descriptor must not compromise the exhaustiveness of the exploration, that
is it must not confine the exploration to known, expected reaction paths. Hence, the
descriptor should be based on fundamental physical quantities evaluated in a quantum
mechanical framework such as the electron density.

When considering the reactivity of spatially extended reactants, descriptors are appro-
priate that are based on first principles such as the electron localization function (ELF)
by Becke and Edgecombe,130 the Laplacian of the electron density131 (see also Ref. 132),
Fukui functions,133 partial atomic charges,134–137 atomic polarizabilities,138–140 or dual
descriptors141–144 (see also Refs. 145–147 for reviews). However, all of them suffer from
the limitation that it is difficult to assess the height of reaction barriers from information
at the reactants’ minimum structures, for which they are evaluated. Nonetheless, it is
usually a very fruitful assumption in chemistry that the minimum structure holds some
information on the system’s reactivity, which is reflected in the considerable success of
chemical concepts and of expert systems applied to synthesis planning.148–157

In this work, we pursue an approach that combines basic chemical knowledge and
physical principles (such as attraction of oppositely charged residues) with information
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extracted from quantum mechanical quantities. When formulating such heuristic rules
one faces a trade-off between efficiency and transferability. Our descriptors then deter-
mine the location of reactive sites situated around atoms (depicted as discs in Fig. 3.2).
To restrict the exploration to reactions that are likely to feature surmountable reaction
barriers under the reaction conditions given, only pairs of atoms with reactive sites of
opposite reactivity are considered. In the case of an intermolecular reaction, reactants
are oriented so that reactive sites are facing each other (see Fig. 3.2). Clearly, these
restrictions can be easily lifted in our algorithm to guarantee a successively expanding
exploration. This is very much in the spirit of a rolling exploration of reaction networks
that also allows for changing reaction conditions.
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Figure 3.2: Assembly of reactive complexes after identification of reactive sites. Atoms A and F are arranged so

that reactive sites of opposite reactivity (discs colored blue and red) are facing each other. The rotational degrees

of freedom of the reactive complexes are indicated by curly arrows. Reprinted with permission from G. N. Simm,

M. Reiher, J. Chem. Theory Comput. 2017, 13, 6108–6119. Copyright 2017 American Chemical Society.

3.5 Exploration of Minimum-Energy Paths and Transition States

From the reactive complex and the reaction product, a minimum-energy path connect-
ing them is to be found. Double-ended TS search methods such as nudged elastic
band72,73,158 and string methods75,77,78,99,100,159 are efficient in suggesting an initial
guess for a TS. A single-ended search method, such as EVF,18,19,21–23,30,160 is then em-
ployed to optimize the TS candidate so that a stationary point with exactly one negative
eigenvalue of the Hessian matrix is found. The corresponding eigenvector is followed in
the forward and backward directions (by a steepest-descent method) to connect to two
local minima.

Employing the Mayer bond-order criterion, minimum-energy structures consisting
of more than one molecule are split into separate molecules. Here, the charge to be
assigned to each molecule is determined by calculating the atomic partial charges in the
minimum-energy structure. Finally, through the application of the bond-order criterion,
it is determined whether the molecules have been encountered before in the exploration
(Fig. 3.3 illustrates the entire protocol).

This protocol is applied repeatedly until no new structures are explored or the explo-
ration reaches some specified bound (e.g., determined by a maximum molar mass for an
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Chapter 3 Automated Exploration of Chemical Reaction Networks

intermediate). In an advanced setup, this bound is given by thermodynamic ensemble
parameters such as temperature and pressure. Then, a kinetic simulation would allow
one to identify intermediates which are not significantly populated and to exclude those
from subsequent steps of the exploration.

A

B

C

Figure 3.3: Illustration of the exploration protocol. Nodes (discs) represent molecular structures. Conformers

of the same configurational isomer (A, B, and C) are enclosed in a circle. Conformers are generated (dark blue)

from an initial conformer (green). When two conformers react a reactive complex (yellow) is formed. For both,

inter- and intramolecular reactions, an approximate reaction path (orange nodes, dashed line) is explored. The

last point of the approximate reaction path is optimized to yield a reaction product (light blue). If the product is

different from the reactants, a TS (red)will be searched for. An IRC calculation is performed to obtain the twoends

of the minimum-energy path (purple). Minimum energy structures are split into individual molecular structures

(gray). Finally, it is determined whether these gray structures are new (solid arrow) or whether they are part of

the existing network (dotted line). Reprinted with permission fromG. N. Simm,M. Reiher, J. Chem. Theory Comput.
2017, 13, 6108–6119. Copyright 2017 American Chemical Society.

3.6 Construction of Reaction Networks

From the explored intermediates and TSs a focused network consisting of nodes (repre-
senting molecular configurations) and edges (representing reaction channels) needs to be
constructed. This step is critical for the understanding of the underlying chemical pro-
cesses and for carrying out additional analyses such as molecular property calculations
and kinetic studies.

In Fig. 3.4, the compression of the raw network to a compact and accessible format
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Application to Formose Reaction 3.7

is illustrated. Of the raw network (shown in Fig. 3.3) the molecular configurations (la-
beled A, B, and C) including their conformers (blue nodes), the TSs (red nodes), the
minimum structures of the minimum-energy paths (purple nodes), and the molecular
structures they consist of (gray nodes) are of interest (see Fig. 3.4, top). There usu-
ally exist multiple reaction paths with different barrier heights for the same chemical
transformation (in Fig. 3.4, A+B ⇄ C). This multitude of reaction paths arises from
the consideration of conformational degrees of freedom of the reactants (see Section 3.2)
and the rotational degrees of freedom of the reactive complexes (see Section 3.3). This
situation is shown in Fig. 3.4 (top) by three reaction paths.

In Fig. 3.4 (bottom), a compact representation of the raw network is given. Molecular
configurations A and B are placed in a virtual flask (diamond, left in Fig. 3.4) and
react to form a different virtual flask (diamond, right in Fig. 3.4) which consists of
one molecular configuration C. The thickness of the arrow between two virtual flasks
is proportional to the effective rate constant of the reaction. The calculation of the
effective rate constant from multiple reaction paths is not straightforward and will be
discussed in detail in a forthcoming study (see also our recent work in Ref. 127). In
this study, the thickness of the arrow between two virtual flasks is determined from the
height of the lowest activation barrier of the reaction paths: high barriers are represented
by thin arrows, low barriers by thick arrows.

3.7 Application to Formose Reaction

The formose reaction is a well-studied prebiotic oligomerization reaction of formalde-
hyde resulting in a highly complex mixture of linear and branched compounds, includ-
ing monosaccharides.11–13 The identification of all products poses a major experimental
challenge and the exact composition has not been elucidated yet, although over 50 prod-
ucts have already been characterized.161,162 While some major reaction pathways are
known,163,164 many mechanistic details are not.165 Due to the formation of biologically
important monosaccharides, the formose reaction may constitute a plausible prebiotic
source of sugars. The first step in this reaction is the dimerization of formaldehyde to
glycolaldehyde which is extremely slow. It was shown that pure formaldehyde in water
is unreactive and that small amounts of some contamination are required to initiate
the reaction.166 For example, by addition of glycolaldehyde to the reaction mixture,
the formation of glycolaldehyde and higher sugars is greatly accelerated, suggesting an
autocatalytic mechanism.164

To explore the formose reaction, we applied our exploration protocol described in
Section 3.1 to an initial state consisting of formaldehyde, glycolaldehyde, and water.
Since the formose reaction results in an intractable polymeric mixture, we restricted the
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Figure 3.4: Construction of a reaction network by reduction of the raw exploration network. Top: molecular con-
figurations (circles) A and B react to formmolecular configuration C. Threeminimum-energy paths (dashed ovals)

are shown, each consisting of a TS (red node) and two minimum-energy structures (purple nodes). The minimum-

energy structures are split into their molecular structures (gray nodes) which correspond to conformers (blue

nodes) of the molecular configurations. Bottom: molecular configurations A and B are placed in a virtual flask

(diamond, left), react and form a different virtual flask (diamond, right) consisting of a molecular configuration C.

Reprinted with permission from G. N. Simm, M. Reiher, J. Chem. Theory Comput. 2017, 13, 6108–6119. Copyright
2017 American Chemical Society.

exploration to a volume in chemical space that does not exceed the chemical formula of
tetrose, i.e., C4H8O4.

Employing RDKit,118,167 conformers were generated for each molecular configuration
(see Section 3.2) according to the protocol described in Ref. 168. To reduce the number
of quantum chemical calculations, only the most stable conformer was considered in the
subsequent steps of the exploration.

From Mayer bond orders extracted from the electronic wave function129, we con-
structed a molecular graph consisting of atoms (vertices) connected by bonds (edges).
Based on arguments of electronegativity, we considered heteroatoms (i.e., oxygen in
this system) to be electron-rich. Hydrogen atoms were considered to have the oppo-
site reactivity if they were found next to a heteroatom within the distance of three
edges. Carbon atoms were considered to feature the reactivity of both unless they were
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a neighbor of a heteroatom in which case they were automatically labeled electron-poor.
We found that these simple rules work well for the system of organic reactions under
consideration here (see below). For future work, it will be interesting to compare a
multitude of descriptors (various concepts evaluated with the electronic wave function
such as partial charges, hardness and softness, electronegativity, the dual descriptor and
so forth) in order to assess their general reliability and transferability for other types of
reaction networks, involving also transition metals.

To form a reactive complex, two reactants were positioned so that atom i of one
reactant with a reactive site of i and atom j of the other reactant with a reactive site
of j formed one axis. Reactive sites of an atom i were located on a sphere centered on
i with a radius equal to the van der Waals radius of i by maximizing the distance to all
neighboring atoms. Two additional reactive complexes were generated by rotating one
reactant around this axis by 120° and 240° (see Fig. 3.2). In principle, the value and
number of angles as a means for orientational screening can, however, be chosen freely.

Two molecular configurations were compared by finding the maximum common sub-
graph (MCS) of their graph representations and stereochemical information was consid-
ered. The MCS was determined by RDKit.167

The exploration comprised 82990 geometry optimizations, 23690 constrained PES
scans, 7657 freezing-string, 13675 EVF, and 10458 IRC calculations. Details on the
computational methodology are provided in Appendix A.1.1. Note that the TS guess
obtained from the freezing-string calculation may contain more than one imaginary
frequency. As a result, the number of EVF calculations is larger than the number of
freezing-string calculations. In total, 934 unique molecular configurations were identified
and 6871 minimum-energy paths connecting them were explored. The reaction network
comprising all structures is given in the supporting information of Ref. 169.

3.7.1 Reaction Network

As described in Section 3.6, the raw exploration network was processed to generate a
reaction network. In Fig. 3.5, the resulting network is shown. In this network, reac-
tions with barriers above 50 kJ/mol are omitted. The nodes representing the starting
materials formaldehyde and glycolaldehyde are colored light blue. Water is not shown
explicitly, but virtual flasks (diamonds) containing at least one water molecule are col-
ored dark blue. If not stated otherwise the fill color of disc-shaped nodes indicates the
number of carbon atoms in the corresponding molecule.

It can be seen that starting from formaldehyde, glycolaldehyde, and water two trioses
(purple nodes) and three tetroses (orange nodes) can be formed through multiple cas-
cades of reactions. In addition, multiple three- to six-membered rings can be identified
and even a seven-membered ring is among the products. It can also be seen that most
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of the polymerization reactions are irreversible which is in accord with experimental
findings.11,163

formaldehyde, glycolaldehyde

triose

tetrose

1 - 4 carbon atoms

virtual flask containing water

virtual flask

Figure 3.5: Reaction network generated from formaldehyde, glycolaldehyde, andwater (the last not shown explic-

itly) consisting of reactions with activation barriers below 50 kJ/mol. Reprinted with permission fromG. N. Simm,

M. Reiher, J. Chem. Theory Comput. 2017, 13, 6108–6119. Copyright 2017 American Chemical Society.

Furthermore, one can observe that for some intermediates (e.g., (2R)-oxiran-2-ol) the
corresponding enantiomer is missing in the network. However, given achiral starting
materials, the product should be racemic. This bias can be explained by the selection of
only one conformer for each molecular configuration which was considered in intra- and
intermolecular reactions. This issue can be easily resolved by considering sufficiently
many conformers for each molecular configuration.

In Fig. 3.6, the reaction network was further expanded to reactions with barriers
between 50 and 85 kJ/mol. It can be clearly seen that the reaction network becomes
increasingly complex when considering higher activation barriers. It can also be seen
that there are multiple different pathways to form a species and it is not obvious from
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the barrier heights which of the pathways are the most dominant. Kinetic simulations
and additional data analysis are therefore necessary to reach a deeper understanding of
the underlying reaction process.

formaldehyde, glycolaldehyde

triose

tetrose

1 - 4 carbon atoms

virtual flask containing water

virtual flask

Figure 3.6: Reaction network generated from formaldehyde, glycolaldehyde, andwater (the last not shown explic-

itly) consisting of reactions with activation barriers below 85 kJ/mol. Reprinted with permission fromG. N. Simm,

M. Reiher, J. Chem. Theory Comput. 2017, 13, 6108–6119. Copyright 2017 American Chemical Society.

Finally, to assess the extensiveness of our protocol we compared our reaction network
with a much smaller one obtained from a manual exploration.170 Within the bounds
preset for the present exploration, each intermediate and reaction path identified in a
limited manual exploration by Kua et al.170 can be found in our reaction network.

3.7.2 Alternative Reaction Paths

Through the consideration of conformational diversity and orientational degrees of free-
dom in the assembly of reactive complexes, our exploration protocol aims to explore all
potential reaction paths between two intermediates. The multitude of reaction paths is
discovered through the assembly of multiple reactive complexes (as sketched in Fig. 3.2).
The following example shall demonstrate the importance of a thorough exploration of
reaction paths.
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In Fig. 3.7, a selection of minimum-energy paths (from the raw exploration
network) for the reaction between ethene-1,2-diol and formaldehyde forming 2-
(hydroxymethoxy)ethen-1-ol is shown. The barrier heights of the paths in the forward
direction range from 80.8 to 125.9 kJ/mol (neglecting solvation effects). In conventional
TS theory,171 a difference of ≈ 45 kJ/mol in the barrier height results in a reaction rate
that is different by a factor on the order of 108 at room temperature (assuming that the
difference in electronic energy solely determines the free energy difference). Therefore,
for kinetic analyses the exploration of all reaction paths is crucial. It can also be seen
that despite the small number of atoms involved in this reaction, the structures of the
TSs differ significantly. For example, in Fig. 3.7 a), the linear arrangement prevents
the stabilizing interactions present in the cyclic TS shown in Fig. 3.7 d). It is the
explicit consideration of rotational degrees of freedom when constructing the reactive
complexes that leads to the uncovering of these reaction paths.
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b)
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d)
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103.5
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HO OH
HO O
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Figure 3.7: Left: reaction profiles of four minimum-energy paths for the reaction between ethene-1,2-diol and
formaldehyde forming 2-(hydroxymethoxy)ethen-1-ol. Right: molecular structures of the TSs. Reprintedwith per-
mission from G. N. Simm, M. Reiher, J. Chem. Theory Comput. 2017, 13, 6108–6119. Copyright 2017 American
Chemical Society.

In the following, the effect of microsolvation on the exploration of reaction paths is
investigated. In Fig. 3.8, seven paths from the exploration network are shown. The
chemical transformation is the same as in the previous example but this time in the
presence of one water molecule.

It can be seen that compared to Fig. 3.7, both the number of different reaction
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Figure 3.8: Left: reaction profiles of seven minimum-energy paths for the reaction between ethene-1,2-diol and
formaldehyde forming 2-(hydroxymethoxy)ethen-1-ol catalyzed by awatermolecule. Right: molecular structures
of the TSs. Reprinted with permission from G. N. Simm, M. Reiher, J. Chem. Theory Comput. 2017, 13, 6108–6119.
Copyright 2017 American Chemical Society.

paths and the spread of barrier heights (ranging from 30.7 to 156.1 kJ/mol) increased.
Moreover, Fig. 3.7, e) shows that our exploration protocol is clearly capable of finding
reaction paths that involve more than two reacting atoms, although all reactive com-
plexes started from the pairing-of-atoms concept. The plethora of possible transition
paths due to the added degrees of freedom of the solvent molecules renders explorations
very challenging. While the application of a continuum model may suffice for unreactive,
apolar solvents such as hexane,172 for polar solvents exhibiting directional bonding such
as water which may actively participate in the reaction through hydrogen bonding and
transfer (as can be seen in Fig. 3.8, f) this is not a viable solution. A hybrid approach in
which microsolvated solutes are embedded into a continuum model is a convenient com-
promise as long as explicit sampling by molecular dynamics or Monte Carlo methods
can be avoided for certain parts of the network.
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3.7.3 Graph Analysis of Reaction Network

To study the process of sugar formation in the formose reaction we applied a tree traver-
sal algorithm to the reaction network to find all paths that start from glycolaldehyde
and lead to the naturally occurring tetrose d-erythrose. To take into account the low
concentration of all products at the beginning of the reaction, we took paths only into
consideration if in all elementary reactions there was not more than one reactant that
was not a starting material. In addition, edges representing reactions with barriers
above 250 kJ/mol were removed.

We were able to identify 40 distinct paths comprising up to five elementary reactions.
Fig. 3.9 shows a subnetwork in which each molecular configuration and reaction is
present in at least one of these paths. The elementary reactions of the path with the
lowest barrier heights are indicated by the numbers 1 to 5. With an activation barrier
of 190 kJ/mol, the third reaction of this path features the highest barrier.

1

2

3
4

5

formaldehyde, glycolaldehyde

triose

tetrose

1 - 4 carbon atoms

virtual flask containing water

virtual flask

Figure 3.9: Reaction pathways starting from glycolaldehyde (far left node) leading to the formation of d-erythrose

(far right node). Reprinted with permission from G. N. Simm, M. Reiher, J. Chem. Theory Comput. 2017, 13, 6108–
6119. Copyright 2017 American Chemical Society.

Employing tree traversal algorithms we also searched for autocatalytic processes in the
reaction network. Fig. 3.10 shows a subnetwork consisting of ten cycles (colored solid
lines) consisting of up to four elementary reactions with the lowest reaction barriers
starting from ethene-1,2-diol that lead to the formation of glycolaldehyde through the
consecutive addition of formaldehyde. Ethene-1,2-diol can readily be formed from the
starting material via an enolization reaction (see Fig. 3.5). For clarity, formaldehyde is
not shown in this network.

The cycle with the lowest reaction barriers (dark blue path) is depicted in Fig. 3.11
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glycolaldehyde

triose

tetrose

2 - 4 carbon atoms

virtual flask containing water

virtual flask

Figure 3.10: Autocatalytic cycles starting from ethene-1,2-diol (far left node) leading to the formation of glyco-

laldehyde (far right node). For clarity, formaldehyde is not shown. Reprinted with permission from G. N. Simm, M.

Reiher, J. Chem. Theory Comput. 2017, 13, 6108–6119. Copyright 2017 American Chemical Society.

and involves the formation of prop-1-ene-1,2,3-triol from ethene-1,2-diol and formalde-
hyde, followed by the formation of a compound consisting of four carbons (dark green
node). A subsequent enolization reaction yields a tetrose which undergoes a fragmenta-
tion reaction in which glycolaldehyde is produced and ethene-1,2-diol is recovered. It can
also be seen that both trioses and all four tetroses are formed in multiple autocatalytic
cycles.

3.8 Application to Yandulov–Schrock Catalyst

In this Section, we apply Chemoton to an important and still not sufficiently well-
understood problem in chemistry: catalytic nitrogen fixation under ambient conditions
in the homogeneous phase. Specifically, we investigate the chemical reactivity of the
molybdenum complex developed by Schrock and co-workers (shown in Fig. 3.12).14,15,173

This catalyst, like all others developed for this purpose,174–176 is plagued by a very low
turnover number. By applying our protocol to a simplified model system, we aim to
better understand the low efficiency of the catalyst. One of the main challenges of
this system is the adequate choice of a reactivity descriptor to effectively tackle the
combinatorial exploration of possible intermediates.
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Figure 3.11: Explored autocatalytic cycle with the lowest activation barriers. Reprinted with permission from G.

N. Simm,M. Reiher, J. Chem. Theory Comput. 2017, 13, 6108–6119. Copyright 2017 American Chemical Society.

The (generic) Chatt–Schrock cycle14,15 (Fig. 3.13) is the prominent example of
catalytic nitrogen fixation.174 Its intermediates (referred to as Schrock intermediates
hereafter) are formed by an alternating sequence of single protonation and single
electron-reduction steps of Schrock’s nitrogen-ligated molybdenum complex.14,15 The
sources of protons and electrons are 2,6-lutidinium (2,6-LutH) and decamethylchro-
mocene (CrCp∗2), respectively. This mechanism, however, does not explain the small
turnover number of the catalyst. To demonstrate our heuristic network-exploration
algorithm described above, we aim at identifying competing reaction paths of the Chatt–
Schrock cycle. For details on the computational methodology, see Appendix A.1.2.

3.8.1 Heuristic Guidance for Explorations of Transition-Metal
Catalyzed Reactions

Crucial for the construction of such heuristic rules is the choice of molecular descriptors.
While graph-based descriptors perform well for many organic molecules, they may fail
for transition-metal complexes, where the chemical bond is not always well defined.177

In contrast to the previously studied system, we aim at a less context-driven method
to be applied to an example of transition-metal catalysis. Such an approach should
be based on information directly extracted from the electronic wave function so that
no additional (ad hoc) assumptions on a particular class of molecules are required. A
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Figure 3.12: Schematical drawing of the [HIPTN3N]Mo complex ([Mo]) published by Yandulov and Schrock.

simple example of the first-principles identification of reactive sites is the localization
of Lewis-base centers in a molecule as attractors for Lewis acids. Lone pairs are an
example for such Lewis-base centers and can be detected by inspection of an electron
localization measure such as the ELF by Becke and Edgecombe130 or the Laplacian of
the electron density as a measure of charge concentration131 (see also Ref. 132). Other
quantum chemical reactivity indices can also be employed, such as Fukui functions,133

partial atomic charges,134,135,178 or atomic polarizabilities.138,139 With these descriptors,
reactive sites can be discriminated, i.e., not every reactive site may be a candidate for
every reactive species (indicated by the coloring in Fig. 3.2). For example, an electron-
poor site is more likely to react with a nucleophile rather than with an electrophile.
Moreover, reactive species consisting of more than one atom may have distinct reactive
sites. Naturally, the spatial orientation of a reactive species toward a reactive site is
important.

Even though our heuristics-guided approach aims at restricting the number of pos-
sible minimum-energy structures, the number of generated intermediates may still be
exhaustively large as the following example illustrates. For a protonation reaction, we
may assume that the number of different protonated intermediates can be determined
from the unprotonated target species by identifying all reactive sites (RS) which a
proton, the reactive species, can attack. This number is given by a sum of binomial
coefficients,

N =

nRS∑
p=1

(
nRS

p

)
= 2nRS − 1, (3.1)

where nRS is the number of reactive sites and p is the number of protons added to the
target species. Even for such a simple example, the number of possible intermediates
increases exponentially. For example, for a target species with ten reactive sites, N =

1023 intermediates will be generated. Obviously, the transfer of several protons to a
single target species is not very likely from a physical point of view as the charge will
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Theory Comput. 2015, 11, 5712–5722. Copyright 2015 American Chemical Society.

increase such that the acidity of the protonated species might not allow for further
protonation. In the presence of a reducing agent, however, these species can become
accessible in reduced form.

3.8.2 Heuristics-Guided Structure Search

For the first and second half of the catalytic cycle (Fig. 3.13) [Mo]–N2 and [Mo]–N
(see Fig. 3.15) are taken as zeroth-generation structures, respectively. Here, [Mo] refers
to the Yandulov–Schrock complex14,15 where the HIPT substituents are replaced by
methyl groups to reduce the computational cost. The bulky HIPT substituents can be
reintroduced once the network has been established.
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In this study, we only consider protons as reactive species since protonations of the
amide nitrogen atoms are likely to deactivate the catalyst.173,179 Additionally, we take
different charges of the protonated complexes into account (single electron-reduction
steps from y+ to neutral, with y being the number of protons added). However, for
a more extensive exploration, H2, N2, NH3, NxHy, and intermediates themselves must
also be considered as reactive species.

To determine the reactive sites of the substrates, we exploit knowledge about nega-
tive charge concentrations extracted from the electronic wave function. As an example
in Fig. 3.14, we present the isosurface of the ELF colored with the value of the elec-
trostatic potential for the two parent species, [Mo]-N2 and [Mo]-N, of the two halves
of the Chatt–Schrock cycle in Fig. 3.13. Whereas the ELF highlights regions in space
where the electron density is localized, the electrostatic potential allows us to pick those
regions that can function as a Lewis base (highlighted in blue in Fig. 3.14) by contrast
to the other regions that are electron deficient and feature hardly any Lewis basicity
(highlighted in orange in Fig. 3.14 and showing, e.g., C–H σ-bonds). The blue regions,
therefore, define spatial areas that function as reactive sites to which protons should be
added as reactive species.

[Mo]-N2 [Mo]-N

Figure3.14: Electron localization function (ELF) for [Mo]-N2 (left) and [Mo]-N (right) colored according to the elec-

trostatic potential (an isosurface value for ELFof 0.6 a.u.was chosen). Reprintedwithpermission fromM.Bergeler,

G. N. Simm, J. Proppe, M. Reiher, J. Chem. Theory Comput. 2015, 11, 5712–5722. Copyright 2015 American Chem-
ical Society.

Note that this procedure is solely based on the first principles of quantum mechanics,
but that it is also in line with conventional chemical wisdom that, for carbon and nitro-
gen atoms, the formation of a tetrahedral surrounding including both bonding neighbors
and reactive sites for incoming reactants (protons) represents a valence-saturated elec-
tronic situation. At the molybdenum center, three reactive sites are introduced in the
plane spanned by the three amide-nitrogen atoms. We refrain from adding protons to
the coordinating amine nitrogen atom in trans-position to the N2 ligand as this would
produce a decomposition pathway of the catalyst that is not likely to lead to an alterna-
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tive catalytic cycle. Clearly, these decomposition reactions are important to track for
a complete understanding of Schrock-type dinitrogen fixation catalysis, but we devote
this aspect to future work. Instead, we are less restrictive with respect to the possible
protonation sites at the metal center and at the terminal nitrogen atom of N2 in [Mo]-
N2 — density-functional-theory calculations are fast for the size of system under study
and can be carried out in parallel so that one should not limit the number of possible
reactive sites too much in order not to risk overlooking of important intermediates. All
reactive sites considered as proton-acceptor sites in this work are shown in Fig. 3.15.
Up to four protons are added to the zeroth-generation structures. This number may be
considered a chemically reasonable upper limit.

Mo

N

N
N

N
N

N

Mo

N

N
N

N
N

[Mo]-N2 [Mo]-N

H+

Figure 3.15: The reactive species (H+) attacking the reactive sites (proton-accepting red circles) of [Mo]-N2 and

[Mo]-N. Lines are drawn between an atom and its reactive sites to highlight their spatial arrangement. Each amide

nitrogen atomexposes twoprotonation sites, althoughweoccupy atmost one to produce an amine nitrogen atom.

Reprinted with permission from M. Bergeler, G. N. Simm, J. Proppe, M. Reiher, J. Chem. Theory Comput. 2015, 11,
5712–5722. Copyright 2015 American Chemical Society.

Since the Yandulov–Schrock catalyst operates in the presence of a strong reducing
agent (CrCp∗2), protonated species can be readily reduced. Therefore, for a p-fold pro-
tonated reactive complex, we consider the charges 0 ≤ c ≤ p. This results in a total
number of

N =

nRS∑
p=1

{(
nRS
p

)
(p+ 1)

}
(3.2)

structures. For [Mo]-N2 N=6762 and for [Mo]-N N=3577 structures are obtained. How-
ever, for subsequent structure optimizations, these numbers are slightly reduced as the
two protonation sites exposed by each amide nitrogen atom are occupied by at most one
proton to yield an amine nitrogen atom. Decomposed reactive complexes such as those
from which molecular hydrogen dissociated or in which the chelating ligand (partially)
dissociated from the metal center, are automatically removed from the network.

In this study, conformational degrees of freedom of intermediates were not explored.
In fact, the chelating ligand is designed to feature few degrees of freedom (apart from
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the bulky HIPT moieties which aim to prevent dimerization and were replaced with
methyl groups in this study). Therefore, we believe that this approximation does not
compromise the conclusions drawn from the reaction networks.

In this study, TS searches are performed only for intramolecular elementary reactions
for which the energy difference between the intermediates is below Ec = 25 kcal/mol.
Note that this threshold does not refer to a Gibbs free reaction energy but to an
electronic-energy difference. Nevertheless, since only reactions of the same type are
compared, one can expect only small deviations of electronic energies from Gibbs free
energies for intra-subnetwork reactions (proton shifts) and reduction steps. One can
assume that this simplification is also a good approximation for protonation reactions.
For intermolecular reactions (i.e., proton transfers from 2,6-LutH), no TSs were calcu-
lated, but a predefined root-mean-square deviation (RMSD) cutoff (0.5 Å for the first
half and 0.65 Å for the second half of the Chatt–Schrock cycle) was chosen to determine
the shared identity of two molecular structures (apart from an added proton in case of
a protonation reaction).

3.8.3 Network Superstructure

In Fig. 3.16, subnetworks are arranged according to the number of protons and electrons
added. Here, the subnetworks are denoted as (xH, c)i, where x is the number of hydrogen
atoms added to the substrate i (1 = [Mo]-N2, 2 = [Mo]-N) and c is the charge of the
subnetwork. An arrow pointing from subnetwork a to subnetwork b will be crossed
out if all intermediates of subnetwork b are at least by EC energetically higher than all
intermediates of subnetwork a.

Due to the energy cutoff Ec, entire subnetworks can be pruned and excluded from
further analysis. For instance, starting from (0H,0)1, (2H,2+)1 cannot be reached via
any other subnetwork without having to overcome a TS that is above EC. Therefore,
(2H,2+)1 can be removed from the network. In both halves of the Chatt–Schrock cycle,
all subnetworks with a total charge larger than one can be neglected. The pruning of
these networks largely reduces the complexity of the network since now every subnetwork
can only be reached from one other subnetwork.

The energy profiles of the first and second half of the catalytic cycle are shown in
Figs. 3.17 and 3.18, respectively. In both figures, energy levels of Schrock intermedi-
ates are connected by dashed lines. An additional energy level will be shown if an
intermediate lower in energy than the Schrock intermediate is part of that subnetwork.
Moreover, if intermediates from which H2 dissociated are observed, the intermediate
with the lowest energy will be shown in red.

It can be seen that most reactions of the first half of the Schrock cycle are exothermic.
Especially the reductions of the Schrock intermediates of (1H,1+)1 and (3H,1+)1 are
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Reprinted with permission from M. Bergeler, G. N. Simm, J. Proppe, M. Reiher, J. Chem. Theory Comput. 2015, 11,
5712–5722. Copyright 2015 American Chemical Society.

thermodynamically favorable. In addition, the dissociation of NH3 from (3H, 0)1 has a
highly negative reaction energy. Note, however, that this dissociation energy holds for
a specific choice of acid and reductant so that the assignment of this reaction energy
solely to the breaking of the N–N bond would be misleading as discussed in our earlier
work.180,181 There are also endothermic reactions. For example, the protonation of the
Schrock intermediate of (0H,0)1, was calculated to have a positive reaction energy of
+3.1 kcal/mol. A thermodynamically favorable alternative to the protonation of N2 is
the protonation of the amide of the chelate ligand. This intermediate is lower in energy
(∆E = −13.8 kcal/mol) than the Schrock intermediate.

In addition, most reactions in the second half are exothermic. The protonation of
the Schrock intermediate in (1H,0)2 is particularly exothermic with a reaction energy
of −32.2 kcal/mol. Nonetheless, there are subnetworks in which the Schrock interme-
diate is not the most stable species. In (3H,0)2, for instance, there is an intermediate
which is more stable (∆E = 4.7 kcal/mol) than the respective Schrock intermediate.
Furthermore, it can be seen that the dissociation of H2 is thermodynamically favorable
in several subnetworks. For example, in (2H,0)1 the dissociation of H2 even results in
the most stable intermediate.

However, we should emphasize that those structures which are very similar in terms
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of energy may be considered equally stable, especially when viewed in the light of the
quantum chemical methodology chosen here. Moreover, one must keep in mind that the
network exploration was carried out for a small model complex of the Schrock catalyst
with a double-zeta basis set.

While the dissociation of NH3 is energetically favorable in the first half, it is very
unfavorable in the second. Therefore, a four-coordinate [Mo] intermediate appears un-
likely, and an associative exchange mechanism might be favored over the dissociative
one as has already been discussed in the literature.179,181,182 Since further protonation
of (3H,0)2 results in low-energy intermediates, we can identify this subnetwork as a
possible starting point of degradation.

The results for the Schrock intermediates reported here are in qualitative agreement
with those reported earlier by the Reiher group179–183 and by Tuczek and cowork-
ers.184,185 Numerical deviations for the Schrock intermediates are mostly due to the
choice of a small model structure and the smaller basis set employed in this work.
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3.8.4 Reaction Network

To rationalize the low efficiency and stability of Schrock’s nitrogen fixation catalyst,
not only all possible intermediates but also the TSs connecting them need to be an-
alyzed. The reaction network of the Chatt–Schrock cycle automatically generated by
Chemoton is shown in Fig. 3.19. Each vertex represents an intermediate, whereby
the color encodes the energy difference with respect to the lowest intermediate of the
subnetwork. Vertices representing a Schrock intermediate are enlarged. A collection of
vertices belonging to the same subnetwork is enclosed by a solid black line. Two vertices
of the same subnetwork are connected by an undirected edge if a TS was found between
them. The gray scale of such an edge serves as a visual cue indicating the height of
the transition barrier with respect to the lower-energy intermediate. Light-gray edges
represent high-energy barriers, dark-gray edges represent low-energy barriers. It is im-
portant to note that according to our exclusion rule, many TSs in this network need
not be optimized and can, therefore, be omitted. However, to illustrate the complexity
of such reaction networks, TSs with an energy above EC were not removed. Vertices

36



Application to Yandulov–Schrock Catalyst 3.8

of different subnetworks are connected by undirected edges (dashed lines) for which no
TSs were calculated. In addition, the molecular structures of selected intermediates are
shown in Fig. 3.19 a) – g). It should be noted that due to the network’s structure its
visualization is different from the one described in Section 3.6.

Starting from the [Mo]-N2 complex in (0H, 0)1, a proton is added to reach (1H,1+)1.
As can be seen from the dashed lines, this reaction can result in four different interme-
diates. The Schrock intermediate, the [Mo]-N2 complex protonated at the molybdenum
atom (Fig. 3.19 a)), the [Mo]-N2 complex with a proton at one of the amido groups
(Fig. 3.19 b)), and the enantiomer of that intermediate (Fig. 3.19 c)). From there,
each intermediate can either undergo a reduction to form an intermediate in (1H,0)1
or—through an intramolecular reaction—transform into another intermediate of the
same subnetwork. The subsequent protonation of intermediates in (1H,0)1 leads to the
subnetwork (2H,1+)1.

The inspection of the first four subnetworks already suggests a feasible alternative
to the Chatt–Schrock mechanism: The [Mo]-N2 complex is protonated at the amido
group; this intermediate undergoes reduction, protonation (of the axial N2), and fi-
nally, a proton shift to reach the energetically most favorable intermediate, the Schrock
intermediate of (2H,1+)1.

The reduction of the intermediates in (2H,1+)1 leads to a subnetwork in which not
the Schrock intermediate but intermediate d) is the most stable intermediate. This in-
termediate can be reached through several different cascades of transformations, which
however all contain at least one that is comparatively high in energy. It can be seen in
Fig. 3.19 that once an intermediate of (2H,0)1 other than the Schrock intermediate is
protonated, no rearrangement reaction within (3H,1+)1 was found which leads to the
Schrock intermediate. This also suggests that the Schrock intermediate in (3H,1+)1,
which is relatively high in energy, does not easily transform into a more stable interme-
diate of the same subnetwork. Likewise, (3H,1+)1 and (3H,0)1 (not shown in Fig. 3.19)
can be considered relevant for the process of degradation of this catalyst.

After reduction of the Schrock intermediate of (3H,1+)1, NH3 dissociates and the
[Mo]-N complex is formed. Similar to the first half, the protonation of the [Mo]-N com-
plex can lead to two different intermediates: the Schrock intermediate and the [Mo]-N
complex with a proton at one of the amido groups. These two structures could give rise
to two different reaction paths. Furthermore, two other subnetworks appear to be par-
ticularly prone to initiating degradation: (3H,1+)2 and (3H,0)2. In both subnetworks,
there are intermediates that are more stable than the Schrock intermediate, which can
be reached via low-energy TSs. In (3H,1+)2, it is the shift of one of the three protons
from one of the axial nitrogen atoms to an amido group (see structures e) and f)). Either
of these structures can undergo an additional transformation where the proton bound
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to the amido group shifts to the molybdenum center. After reduction, this structure
forms intermediate g)—the most stable conformation of (3H,0)2. Likewise, the Schrock
intermediate of (3H,0)2 can undergo a proton shift to form intermediate g). As men-
tioned earlier, the dissociation of NH3 from [Mo]-NH3 is highly endothermic,179,181,182

and therefore, the exchange of NH3 and N2 via a six-coordinated complex is likely to
occur. Therefore, the intermediate g) in (3H,0)2 can be considered particularly relevant
to understanding the low turnover number of the catalyst.

It should be evident from the presentation above that our automated visualization
strategy generates a presentation of chemical reaction networks that directly unveils its
essence to the reader. Thereby, even complex reaction mechanisms involving many side
reactions become lucid and, hence, will be comprehensible.

3.8.5 Alternative Pathways to the Chatt–Schrock Cycle

By applying the energy cutoff EC = 25 kcal/mol, many intermediates in the reaction
network can be removed. The resulting reaction network allows for the identification
of reaction pathways, other than the Chatt–Schrock cycle, that are likely to occur at
ambient conditions. These pathways are shown in Fig. 3.20.

It can be seen that multiple pathways next to the Chatt–Schrock cycle are indeed
possible. For example, two pathways running parallel to the Chatt–Schrock cycle can
be identified. It is important to note that pathways which do not form a cycle and thus
lead to the degradation of the catalyst, are not shown, but will be investigated in future
studies.
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4
Error Assessment of Computational

Models in Chemistry*

In general, for the study of all but the smallest chemical systems, the application of
so-called “gold standard” quantum chemical methods (e.g., coupled cluster) is not com-
putationally feasible. In particular, when investigating large chemical systems approx-
imate quantum chemical methods are indispensable. However, the accuracy of such
approximate methods is often difficult to determine. In this Chapter, we discuss the is-
sue of performance assessment of computational models based on several examples from
the quantum chemistry literature. For this purpose, we elucidate the different sources
of uncertainty, the elimination of systematic errors, and the combination of individual
uncertainty components to the uncertainty of a prediction.

4.1 Role of Benchmark Studies in Uncertainty Quantification

It is generally assumed that performance statistics based on benchmark systems are
good estimates for the prediction uncertainty of a quantum chemical method. Due to
the availability of large amounts of experimental and computational reference data (for

*This Chapter is reproduced in part with permission from G. N. Simm, J. Proppe, M. Reiher,
CHIMIA 2017, 71, 202–208. Copyright 2017 Swiss Chemical Society.
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Chapter 4 Error Assessment of Computational Models in Chemistry

a recent review see Ref. 186), benchmark studies are carried out to provide statistical
quantities such as the mean absolute error (MAE),

MAEm =
1

N

N∑
s=1

|em,s|, (4.1)

and the largest absolute error (LAE),

LAEm = max{|em,1|, |em,2|, ..., |em,N |}, (4.2)

with em,s = cm,s − os and N being the size of the data set. Here, the error em,s of
model m with respect to system s (typically a molecule) is defined as the difference
between the calculated result cm,s and the experimental or computational reference os.
These summarizing statistics are then applied to estimate the prediction uncertainty of
a method of choice for a system of interest.

However, there is a major caveat associated with this approach: the assumption that
such statistics are transferable to a system not represented in the reference data set is
generally invalid. In Table 4.1 the MAE of common density functionals with respect to
ligand dissociation energies of transition metal complexes from three previous studies
are compared. The WCCR10 data set187 consists of 10 ligand dissociation energies of
large cationic transition metal complexes. The 3dBE70 database188 contains average
bond energies of 70 transition metal compounds. The data set by Furche and Perdew189

containing 18 dissociation energies of transition metal compounds is herein abbreviated
as FP06. The comparison of the different benchmark studies shows that the MAEs are

Table 4.1: Mean absolute error (MAEm) of ligand dissociation energies (in kJ/mol) calculated with a selection of

common density functionalsm taken from the literature.

Model m WCCR10187 3dBE70188 FP06189

B3LYP190–192 39.1 20.9 50.2
PBE193–195 31.8 25.5 45.2
TPSSh196 32.0 17.6 40.6

strongly data set dependent. For instance, the spread of MAEs ranges from 17.6 to
40.6 kJ/mol in the case of the TPSSh density functional.

Even for small systems such as metal dimers, the reported statistics can vary. For
example, for the dissociation energy of metal dimers the study by Furche and Perdew189

and Schultz et al.197 report MAEs of 50.6 and 69.9 kJ/mol, respectively. This finding is
in accordance with many studies demonstrating that the accuracy of density function-
als varies strongly with the chemical system,187,198–203 and therefore, undermining the
transferability of such performance statistics. In the case of density functional theory,
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Role of Benchmark Studies in Uncertainty Quantification 4.1

this lack of transferability is particularly critical to studies on transition metals since
most of the benchmark data sets include only small (unsaturated and therefore atypical)
compounds (e.g., transition metal hydrides such as FeH).

In addition, it can be seen from Table 4.1 that all MAEs are considerably large
(a result is said to be within chemical accuracy if the expected error is within ≈
4.2 kJ/mol). For the WCCR10 and FP06 data sets LAEs are reported as well (e.g.,
83.4 and 157.3 kJ/mol, respectively, for the B3LYP functional). MAE and LAE of this
size are unacceptable for studies in which accurate reaction energy are of high impor-
tance. In the framework of conventional transition state theory, an error of 30 kJ/mol
in the barrier height of an elementary reaction step results in a reaction rate that is off
by a factor of 105 at room temperature.

Lastly, it should be noted that the uncertainty within the (experimental and compu-
tational) reference data is generally not accounted for.204

In Fig. 4.1, we illustrate the system dependency of an arbitrary observable given an
adequate computational model (see Section 4.3.2 for a definition of model adequacy).
The transferability of statistical measures such as the MAE would only be valid in
the ideal case of homoscedasticity (Fig. 4.1, left), where the prediction uncertainty is
independent of the input, here, chemical space (the space of all chemical compounds,
e.g., molecules, where small distances indicate high structural similarity).

So far, there exists no strategy to develop approximate quantum chemical methods
with system-invariant uncertainty (homoscedasticity), which is not to be confused with
strategies to develop systematically improvable methods (such as the coupled cluster
expansion, which still reveals systematic errors due to the truncation of the degree
of excitation — even if the degree is taken to be rather high). Consequently, we are
generally faced with approximations yielding heteroscedastic results (Fig. 4.1, right),
where the prediction uncertainty somehow depends on the nature of the chemical system.

This dependency is generally unknown (not as indicated in the right frame of Fig. 4.1),
which also implies that estimation of prediction uncertainty for data lying in the same
region of the chemical space employed for model training can be unreliable. Noteworthy,
the Hohenberg–Kohn functional would, in principle, yield results with system-invariant
accuracy (for chemical systems in their electronic ground states), however, this is not
the case in practice due to the approximations of the exchange–correlation density func-
tional.

Due to the continuous advancement of accurate and efficient black-box methods (such
as explicitly correlated coupled cluster theory, for a review see Ref. 205) and the increase
of computational power, it is believed that gold standard methods will, eventually, be-
come the standard method of choice. In this case, uncertainty estimation will be less
important if chemical accuracy is reached and considered sufficient. For higher accuracy
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Figure 4.1: Illustration of homoscedasticity (left) and heteroscedasticity (right) for synthetic data. In the former

case (left), the uncertainty (blue 95% confidence band) associatedwith an observable of interest is independent of

the chemical system studied. In the latter case (right), which is the more general case, the uncertainty associated

with the observable of interest is a function of the chemical space. The distance between twodata points along the

abscissa is thought tobe inversely proportional to the similarity of the correspondingmolecular structures. Hence,

if a prediction method is trained on a small hypervolume of the chemical space, it will not be possible to transfer

the associated uncertainty to a larger hypervolume. Moreover, since the variance function is generally unknown,

also internal predictions (in the same hypervolumewhere themethod has been trained) are unreliable.

also standard coupled cluster models will require rigorous error estimation. Although
the system size for which these methods are feasible increases due to constant method-
development efforts, less accurate methods are usually chosen for feasibility reasons
when a large number of calculations must be carried out. This is the case for extensive
explorations of vast reaction networks,78,92,93,99 screening studies,206,207 and reactive
molecular dynamics simulations.48,51,52

4.2 Error Assignment for Approximate Models

The identification and separation of sources of uncertainty are difficult since multiple
approximations of unequal accuracy are made during method development. For example,
in density functional theory, the exact density functional is approximated in a rather
involved way. In standard coupled cluster theory, the wave function is based on a single
reference (Slater determinant). On the one hand, these and other sources of uncertainty
may combine in an arbitrary manner and even lead to counter-intuitive total errors.208

For example, coincidental error compensation can lead to overestimation of prediction
accuracy. This is an effect often encountered in density functional theory. For instance,
the success of the B3LYP190–192 functional together with the poor 6-31G* basis set209
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Uncertainty Classification 4.3

is often attributed to error cancellation.210 Error compensation was also reported for
coupled cluster methods, for instance, CCSD(T) was found to provide more accurate
results than CCSDT in combination with certain one-electron basis sets.211 On the other
hand, there are approximations (e.g., considering the atomic nucleus as a point charge
rather than as an extended charge distribution, ignoring certain relativistic effects) that
are local (atomic) and cancel out for reaction energies (or valence properties).

4.3 Uncertainty Classification

In general, one distinguishes between three main sources of uncertainty: parameter
uncertainty, numerical uncertainty, and systematic errors due to inconsistent data
and inadequate model approximations (here, to the fundamental theory of chemistry,
QED).212 Except for stochastic models (e.g., Monte Carlo simulations), numerical un-
certainty is expected to be negligible and will not be discussed in the following. The
remaining sources of uncertainty are elaborated on and approaches for their remedy are
elucidated.

4.3.1 Parameter Uncertainty

The uncertainty of a model’s parameters needs to be considered when making predictions
on chemical systems not included in the fitting (training) of the model. Solely consider-
ing the “optimal” values (e.g., obtained by minimizing the sum of squared residuals) is
not sufficient, as one would neglect a potentially essential component of the prediction
uncertainty of a model. Parameter uncertainty results from random and systematic
errors in both the reference data and the model under consideration (see Section 4.3.2),
in particular, if the number of reference data is small. Only for large data sets and small
domains of application, parameter uncertainty becomes negligible.

Parameter uncertainty can be estimated, for example, through Bayesian inference213

or through sampling methods such as bootstrapping.214 In the latter case, the reference
data set itself replaces the assumption of a parametric population distribution (e.g., a
Gaussian distribution) underlying the data. With bootstrapping, one draws multiple
samples from the data set with replacement. Every such bootstrap sample will yield
different parameter values compared to the original sample, the ensemble of which allows
estimation of parameter uncertainty.

Assuming that systematic errors in the computational model have been eliminated
(for instance, by a posteriori corrections of its results204), the effect of the reference set
employed on the parameter distributions remains to be examined. If the reference data
contain systematic errors, small changes in its composition (e.g., removal or addition of a
few data points) will have a large effect on the parameter distributions. The jackknife214
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Chapter 4 Error Assessment of Computational Models in Chemistry

is a well-established method for the detection of inconsistencies, In this method, a high
dependence of the parameter distributions on certain items in the data set is identified
by randomly removing data points. With a data set containing N data points, one
obtains N jackknife estimates of the parameter distributions, each of them derived from
a modified data set in which the s-th data point is removed (s = 1, ..., N).

4.3.2 Model Inadequacy

An inadequate computational model is not able to reproduce reference data within their
uncertainty range,212 i.e., the model under- or overestimates the uncertainty of the
reference data. Underestimating prediction uncertainty is a result of overfitting, where
the computational model is too flexible (features too many parameters) such that it
does not only fit the explainable part of the reference data (the underlying physics), but
also its unexplainable part (noise). By contrast, underfitting is caused by models which
are too rigid (possess too few parameters) to fit the explainable part of the reference
data, leading to overestimation of prediction uncertainty. Moreover, model inadequacy
can be divided into an explainable (systematic) and an unexplainable (random) part,
which is illustrated in Fig. 4.2.

For instance, most quantum chemical methods (with the exception of multi-
configurational methods) struggle to correctly describe two hydrogen atoms at large
distance. In fact, all density functionals fail to describe stretched H+

2 and H2.215 The
smoothness of the corresponding energy–distance plots (see, for instance, Figure 2 in
Ref. 215) reveals that random model inadequacy plays a negligible role in this “simple”
case of two nuclei. However, the fact that all of these energy–distance plots reveal
a non-constant deviation from those obtained with accurate multi-configurational
methods shows the large significance of systematic model inadequacy. While in this
special case, model inadequacy could be easily eliminated by fitting a reasonable
function linking data from benchmark and approximate calculations, the situation will
become much more complicated if a larger fraction of chemical space is considered. For
instance, due to their complex electronic structure, molecular structures containing
transition metals are challenging targets for current quantum chemical methods.
Despite containing adjustable empirical parameters, many density functionals fail to
achieve a statistically valid description of these systems.216 For example, Reiher and
coworkers showed that the parameters of a standard functional are flexible enough
to be chosen to exactly reproduce each coordination energies of a data set containing
large organometallic complexes.216 However, due to model inadequacy, there exists no
unique parameter set that is equally accurate for all coordination energies in this data
set at the same time.

Note that model inadequacy is difficult to distinguish from data inconsistency. If the
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Figure 4.2: Illustration of systematic and randommodel inadequacy for synthetic data. Data points of an adequate

model would scatter around the line going through the origin (dashed line). However, it can be seen that the (in-

adequate) model deviates from the benchmark results (black points). By fitting a linear function to the data set

(solid line), an a posteriori correction of the model can be achieved. The scattering of the data points around the
solid line appears to be random, however, for themost part, the residuals are significantly larger the uncertainty in

the benchmark results (indicated by error bars representing two standard deviations). This effect is referred to as

randommodel inadequacy and implies that the uncertainty of themodel (represented by the blue 95% prediction

band) exceeds the uncertainty of the benchmark.204

reference data contain systematic errors, even high-accuracy models would not be able
to reproduce the reference data. In that case, it would be the wrong decision to improve
on the computational model (high overfitting tendency). Given the reference data is
corrected for inconsistencies, there are several tools at hand to tackle model inadequacy:
one can improve the underlying model, reduce the domain of application, or correct
predictions through a statistical calibration approach.212,217

Model Improvement

If the computational model at hand is systematically improvable (as, for instance, in
the case of a coupled cluster expansion) reduction of model inadequacy is, in principle,
straightforward. However, such methods are currently limited to relatively small system
sizes and a few structures to be considered.

In density functional theory, model improvement is often referred to as climbing
up Jacob’s ladder.218 Higher rungs incorporate increasingly complex ingredients con-
structed from the density or the Kohn–Sham orbitals (e.g., gradient and Laplacian of
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Chapter 4 Error Assessment of Computational Models in Chemistry

the electron density, kinetic energy density). The original proposition of a ladder is that
each rung satisfies certain exact constraints (there exist 17 of them, see the Supplemen-
tary Material of Ref. 219) and the next higher rung should be based on the previous
rungs.215 Since the exact density functional is not known and the number of known
exact constraints is severely limited, systematic model improvement is not trivial.

In fact, a very recent study has shown that current developments steer away from sys-
tematic model improvement and towards functionals of empirical nature lacking physical
rigor.220 Most density functional development is focused on energies, implicitly assum-
ing that functionals producing better energies become better approximations of the
exact functional. The exact functional will produce the correct energy only if the input
electron density is exact as well. By contrast, Peverati and Truhlar186 argued that exact
constraints can be neglected for the sake of greater flexibility in the energy fitting. How-
ever, such flexibility comes at the cost of reduced transferability (due to overfitting) to
both other observables and chemical systems not included in the training of the compu-
tational model. To avoid loss of model transferability, Mardirossian and Head-Gordon
suggest a validation approach in which the performance of a certain density functional
is assessed for a data set not involved in the training of that density functional.221,222

This way, one can successively increase model flexibility until the validation indicates a
decrease of transferability (due to an increase in the performance statistics chosen).

Composite methods such as Gaussian-n (G-n),223–226 Weizmann (W-n),227–229 and
HEAT230 aim for high accuracy by combining the results of several calculations. They
build a hierarchy of computational thermochemistry methods which allows the calcu-
lation of molecular properties such as total atomization energies and heats of forma-
tion to a high accuracy. The W-4 method calculated atomization energies of a set of
small molecules with an MAE below 1 kJ/mol.229 Similarly, the HEAT protocol pre-
dicted enthalpies of formation with an accuracy below 1 kJ/mol for 31 atoms and small
molecules.230 These protocols rely on computationally expensive coupled cluster calcu-
lations including high excitations. The HEAT method applies additional calculations
(e.g., the diagonal Born–Oppenheimer correction) to be able to reproduce experimental
results to higher accuracy. While the results from such methods are promising, the
computational cost is far too high for large-scale applications mentioned above.

Errors in estimating prediction uncertainty due to model inadequacy can be elim-
inated not only by internal correction of a computational model (see the examples
above) but also through external correction of the results produced with a compu-
tational model.204 The simplest external corrections are linear functions, which are
applied in the prediction of, for example, vibrational frequencies231–233 or Mössbauer
isomer shifts.234–239 In such cases, parameter inference (calibration) can be much more
efficient than internal calibration of the result-generating model. A drawback is the loss
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of transferability to other observables since the external calibration model corrects an
expectation value of a certain observable and not its underlying wave function, which
is the unique common physical ground of all observables.

Reduction of Domain of Application

Another way of reducing model inadequacy is by training a computational model on
a smaller domain of chemical space,240 i.e., a small set of similar molecules such as
sugars or amino acids. For example, due to the strong approximations made during
method development (to gain efficiency), semi-empirical methods exhibit model inade-
quacy, which they attempt to remedy by introducing parameters which are then fitted
to a specific data set (for a recent review see Ref. 241). This data set comprises a
selection of molecules for which the resulting method is tailored. In fact, semi-empirical
methods have been reparameterized to improve their description of a single molecule.242

Similarly, density functionals were developed for specific applications, e.g., for kinetic
studies.127,243 In Fig. 4.3, the effect of the domain of application on model inadequacy
is illustrated with a toy model.

Increase of Parameter Uncertainty

One can attempt to compensate model inadequacy by a controlled increase in parameter
uncertainty. This way, one can build a statistical method with prediction uncertainty
representative of the model residuals (deviation of benchmark data from model predic-
tions).

In 2005, Nørskov, Sethna, Jacobsen, and co-workers implemented this approach for
error estimation of results from density functionals244 (see also Refs. 245–247). Instead
of considering only the best-fit parameters of a density functional, they assigned a condi-
tional probability distribution to them so that a mean and a variance can be assigned to
each computational result. While promising general-purpose non-hybrid density func-
tionals were designed within this framework (e.g., BEEF-vdW248 and mBEEF249,250),
the accuracy of uncertainty predictions remains unsatisfying.212 This limitation can
be attributed to model inadequacy and the heteroscedasticity of the large domain of
chemical space to which they applied the functionals.

Compared to improving the computational model itself, increasing parameter uncer-
tainty is straightforward as it only requires modification of the unknown part (param-
eter distributions) of an otherwise known model. Compared to external calibration (a
posteriori correction of results obtained from a computational model), increasing param-
eter uncertainty in the corresponding prediction model preserves its transferability to
other observables than the reference observable (for which model inadequacy has been
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Figure 4.3: Illustration of model inadequacy for synthetic data. The black solid curve is set to be the underlying

model. The distance between two data points along the abscissa is thought to be inversely proportional to the

similarity of the corresponding molecular structures. Here, the approximate model is a quadratic function. If the

(noisy) reference data (dots) are spread across the entire domain of chemical space shown, we will observe a sys-

tematic deviation of the observable from our approximate model (dashed line). However, if we choose a specific

domain of application (red shaded area), our approximate model (red curve) will be a good approximation to the

underlyingmodel. To avoidmodel inadequacy, in this case, we can either improve ourmodel by increasing its com-

plexity or reduce the domain of application (to the red region).

corrected). While increased parameter uncertainty seems to be clearly favorable over
model improvement when it comes to reliably estimating prediction uncertainty for any
observable obtained on the basis of a given computational model, it does not resolve
the issue of model inadequacy per se. For instance, in multiscale modeling where the
target observable is built on a hierarchy of other observables, all uncertainties inferred
at low levels will propagate to the final prediction uncertainty. Consequently, increasing
parameter uncertainty at low levels can lead to a prediction uncertainty so large that
no sensible conclusions can be drawn from it.

Uncertainty in the electronic energy propagates to all energy contributions based on
nuclear motion, to any kind of free energy, to rate constants, and to concentration fluxes
of chemical species (an incomplete but lucid list). The dependencies between these ob-
servables are partially exponential, which requires the minimization of systematic errors
in the low-level observables (instead of hiding them in increased parameter uncertainty).
In such cases, the only possible way to obtain reasonably small prediction uncertainties
is the systematic improvement of the models.
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5
Systematic Error Estimation for
Chemical Reaction Networks*

For the theoretical understanding of the reactivity of complex chemical systems, accu-
rate relative energies between intermediates and transition states are required. Despite
its popularity, DFT often fails to provide sufficiently accurate results, especially for
molecules containing transition metals. In Chapter 3, vast reaction networks were gen-
erated and a large number of intermediates needed to be studied. To date, DFT is
the only method that is computationally feasible for explorations of this depth. In this
Chapter, we introduce a Bayesian framework for DFT that allows for system-specific
error estimation of calculated properties. We demonstrate our approach with systems
already studied in this thesis: catalytic nitrogen fixation and the formose reaction.

5.1 Canonical Approach to Density Functional Assessment

Most approximate exchange–correlation (XC) density functionals are constructed
by fitting their parameters to benchmark data sets. While many extensive data
sets exist, such as the ones proposed by Pople,198,199,223,224 Truhlar,197,201,251–259

and Grimme,260–262 studies have shown that the accuracy of XC functionals can be
strongly system-dependent,187,198–203 which, naturally, will become more severe for

* This Chapter is reproduced in part with permission from G. N. Simm, M. Reiher, J. Chem.
Theory Comput. 2016, 12, 2762–2773 and J. Proppe, T. Husch, G. N. Simm, M. Reiher, Faraday
Discuss. 2016, 195, 497–520. Copyright 2016 American Chemical Society and Royal Society of
Chemistry.
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Chapter 5 Systematic Error Estimation for Chemical Reaction Networks

short-lived reactive intermediates. In Chapter 4, we elucidated how the accuracy
reported in benchmark studies is not necessarily transferable to a specific system under
consideration. It is common practice263 (see also benchmark studies such as the one in
Ref. 264) to investigate the spread of results from a selection of present-day density
functionals to estimate the sensitivity of the investigated property with respect to
functional form and choice of parameters. But as the selection of functionals is in
parts arbitrary, this approach is highly unsystematic and the spread has no statistical
significance. Therefore, a systematic framework for the assessment of the accuracy of
density functionals is required.

In 2005, Nørskov, Sethna, Jacobsen, and co-workers presented a scheme for system-
atic error estimation of DFT results244 based on Bayesian statistics (see also Refs. 245–
247).265,266 In their approach, an ensemble of XC functionals is generated by which a
mean and a variance can be assigned to each computational result. Two types of density
functionals were designed within this framework: BEEF-vdW248 and mBEEF.249,250

While both functionals were parameterized employing a wide range of data sets, transi-
tion metal complexes were not included and also transferability issues remain (especially
for such complexes). In addition, BEEF-vdW and mBEEF are both pure functionals,
whereas, it is well known that hybrid functionals tend to be more accurate than pure
functionals (see, e.g., Refs. 187,203). Along these lines, Zabaras and coworkers267 de-
veloped a new XC functional employing a Bayesian approach combined with machine
learning to predict bulk properties of transition metals and monovalent semiconductors.
Very recently, Vlachos and coworkers successfully applied Bayesian statistics to DFT
reaction rates on surfaces.268 However, so far the application of Bayesian statistics in
DFT has been limited to solid-state and surface chemistry.269

Here, we develop Bayesian error estimation for molecules. It is one goal of this study
to obtain a class of hybrid functionals that accurately describes the reaction energies
of a specific chemical system. We advocate for a system-focused re-parameterization of
our ensemble of density functionals to overcome the issue of transferability while pre-
serving standard design principles of density functionals. Through Bayesian statistics,
our class of functionals reports uncertainties for each calculated result which eliminates
the arbitrariness of a system-specific parameterization.

5.2 Bayesian Error Estimation in DFT

The parameters w of a density functional are usually determined by parameterization to
some data set D = {(xi,R(xi))}Ni=1 containing molecular structures xi and an observ-
able which is determined with an (experimental or computational) reference method
R (with the exception of those fixed by exact DFT conditions). This is accomplished
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by minimizing a cost function C(w) to obtain a best fit w0, which is then reported.
However, information on the neighborhood of C(w0) is thereby lost. For instance, it
cannot be determined if the reported minimum is shallow or steep (see Ref. 216) or how
perturbations in the parameter space (e.g., due to a new item in the data set) translate
into variations of some observable O.

Instead of considering only the best-fit parameters, one can assign a conditional
probability distribution to the continuous set of parameters

pw = p(w|O, D) ∝ exp
(
−C(w)

T

)
, (5.1)

where the observable O is obtained from a single linear parameter w, and C denotes
a cost function quadratic in w.265,266 It can be shown244 that the spread of this distri-
bution is determined by the ensemble temperature T = 2C(w0) (see Eq. (5.14) below).
A standard parameterization of density functionals can be considered a special case of
this distribution where T = 0, so that p(w|O, D) = δ(w − w0).244,246,247

In practice, this distribution needs to be sampled for which a set of parameters
{w1, w2, ..., wK} is generated. It can be shown that,247 with a cost function quadratic
in w, a Gaussian distribution N ,

pw = N (w0, σ
2), (5.2)

with mean w0 and variance σ2 = T/(∂2C(w)/∂w2|w0) must be sampled. From the
ensemble of parameters, a confidence interval can be calculated for any observable O.244

5.3 Short Derivation of Bayesian Error Estimation

Consider some observable Ow with parameters w to be calculated for some molecular
system xi. In this work, the observable will be the energy difference between a pair of
structural isomers. We now approximate a reference result R(xi) for system xi by Ow

and therefore define
∆w(xi) = Ow(xi)−R(xi). (5.3)

We aim to find a probability distribution pw so that, across the data set D, the deviation
of Ow from Ow0 ,

δw(xi) = Ow(xi)−Ow0(xi), (5.4)

is, on average, equal to the deviation of Ow from R, i.e.:

N∑
i=1

⟨
[δw(xi)]

2
⟩
w
=

N∑
i=1

[∆w0(xi)]
2, (5.5)
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where w0 is the parameter set that minimizes the cost function C(w),

C(w) =
N∑
i=1

[∆w(xi)]
2. (5.6)

Defining the quadratic deviation of a parameter set w from the optimal set w0 as F (w),

F (w) =

N∑
i=1

[δw(xi)]
2, (5.7)

we can write Eq. (5.5) in more compact form as

⟨F (w)⟩w = C(w0) (5.8)

To obtain the probability distribution with the highest information entropy, we max-
imize the Shannon entropy of the distribution under the condition in Eq. (5.8). In-
troducing a fixed number K of parameter sets {wk} and obeying that the sum over
all probabilities equals one as an additional constraint, we have for the variation of
the resulting Lagrangian function with respect to the probability pwj of one of these
parameter sets wj

∂

∂pwj

(
−

K∑
k=1

pwk
ln(pwk

)− λ

(
C(w0)−

K∑
k=1

pwk
F (wk)

)
− µ

(
1−

K∑
k=1

pwk

))
!
= 0,

(5.9)
where λ and µ are Lagrange multipliers. Solving Eq. (5.9) yields the well-known relation

pwj =
exp(−λF (wj))∑K
k=1 exp(−λF (wk))

. (5.10)

To determine the Lagrange multiplier λ, we consider an observable Ow with a single
linear parameter w,

Ow(xi) = wA(xi) +B(xi), (5.11)

where A(x) and B(x) are some functions of molecular system x. Then F (w) simplifies
to

F (w) =
N∑
i=1

((w − w0) ·A(xi))
2. (5.12)

The expectation value of F (w) for the K parameters {wk} can be written as

⟨F (w)⟩wk
=

∑K
k=1 F (wk) exp(−λF (wk))∑K

k=1 exp(−λF (wk))
. (5.13)
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According to the equipartition theorem, each harmonic degree of freedom contributes
T/2 to the cost (with the Boltzmann constant taken to be one), which implies for
Eq. (5.8) in our single-parameter model that

⟨F (w)⟩wk
= C(w0) =

1

2
T, (5.14)

so that an expression for λ which corresponds to the inverse ensemble temperature T ,
can be derived.244,246,247 Finally, the probability distribution pw needs to be sampled.
From the definition of C(w) we have for a single linear parameter

C(w) =

N∑
i=1

[Ow(xi)−R(xi)]
2 (5.15)

=
N∑
i=1

[(wA(xi) +B(xi))−R(xi)]
2 (5.16)

and may expand C(w) around C(w0)

C(w) = C(w0) +
1

2

∂2C(w)

∂w2

∣∣∣∣
w0

(w − w0)
2 + · · · . (5.17)

The second derivative of C(w) at the position w = w0 is easy to evaluate

∂2C(w)

∂w2

∣∣∣∣
w0

=

N∑
i=1

2A(xi)
2 (5.18)

so that with Eq. (5.12) and Eq. (5.17) we find

F (w) =
1

2

∂2C(w)

∂w2

∣∣∣∣
w0

(w − w0)
2. (5.19)

From Eqs. (5.10) and (5.19), it can be seen that the probability distribution of w is a
normal distribution:

pw = N

(
w0, T

/
∂2C(w)

∂w2

∣∣∣∣
w0

)
(5.20)

= N

(
w0,

C(w0)∑N
i=1A(xi)2

)
(5.21)

This distribution is then sampled by choosing the parameters {wk} of the K models
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(the samples) so that a standard deviation σ for the observable O of system xi can be
calculated

σ(O(xi)) =

√√√√ 1

K

K∑
k=1

(
Owk(xi)−Ow0(xi)

)2
. (5.22)

K must be chosen so that σ(O(xi)) is converged. The sets of linear parameters wk

(or wk in the case of a single linear parameter) are obtained from computer-generated
random numbers with the normal distribution in Eq. (5.21).

5.4 Exchange-Correlation Functional as Statistical Model

5.4.1 Range Separation in DFT

In this study, the parameters of the range-separated hybrid (RSH) version of the popu-
lar density functional PBE0193–195 are considered for Bayesian error estimation for the
following reasons: Firstly, exact exchange plays an important role in the description
of transition metals.187,200,203,270,271 Secondly, many issues of present-day density func-
tionals, such as the underestimation of barriers of chemical reactions, can be attributed
to the delocalization error.272 Baer et al. showed that long-range corrected (LC) func-
tionals appear to have resolved this issue.273 Finally, it was observed274–280 that the
parameters in the RSH scheme are in fact system-dependent and that their adjustment
can improve the functional’s accuracy.

In RSH functionals,281–286 the exchange functional is divided into short-range DFT
exchange and long-range Hartree–Fock (HF) exchange by splitting the electron-electron
interaction operator 1/r12:

1

r12
=

1− [α+ β · erf(γr12)]
r12︸ ︷︷ ︸

short-range

+
α+ β · erf(γr12)

r12︸ ︷︷ ︸
long-range

(5.23)

This ansatz introduces three adjustable parameters: α, β, and the range-separation
parameter γ. In the long-range corrected scheme, only two are independent since α+β =

1 if the two operators on the right-hand side of Eq. (5.23) are evaluated by different
energy expressions. LC-PBE0 is such a functional, where α = 0.25, β = 0.75, and
γ = 0.3 (if α = 0.25, β = 0.75, and γ = 0, PBE0194 is recovered). By contrast, in
the Coulomb-attenuating method by Yanai et al.,285 α = 0.19, β = 0.46, and γ = 0.33,
so that α + β = 0.65. However, only for α + β = 1 the potential shows the correct
asymptotic behavior of 1/r12.278
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5.4.2 Parameters in PBE Density Functional

In addition to the parameters in the LC scheme, we optimize parameters of the original
PBE functional195 to increase model flexibility. In Hartree atomic units, the correlation
part of the PBE functional can be written as

EPBE
c [ρ↑, ρ↓] =

∫
ρ
[
ϵunif
c (rs, ζ) +H(rs, ζ, t)

]
d3r, (5.24)

with
H(rs, ζ, t) = γcϕ

3 ln
(
1 +

βc
γc

t2 +At4

1 +At2 +A2t4

)
, (5.25)

where ρ = ρ↑ + ρ↓ is the electron density (obtained as a sum of spin-up and spin-down
densities), ϵunif

c (rs, ζ) the correlation energy per particle of the uniform electron gas,
rs = [(4π/3)ρ]1/3 the local Wigner-Seitz radius, t = |∇ρ|/(2ϕksρ) the correlation density
gradient, ζ = (ρ↑−ρ↓)/ρ the relative spin polarization, and ϕ = ((1+ζ)2/3+(1−ζ)2/3)/2
a spin scaling factor. The factor A is a function of ϕ and ϵunif

c .195 The parameter
βc = 0.066725 is the second-order gradient expansion coefficient of the correlation energy
in the high-density limit and the parameter γc = (1 − ln 2)/π2 is given by the uniform
scaling to the high-density limit of the spin-unpolarized correlation energy.

The exchange part of the PBE functional is given by

EPBE
x [ρ] =

∫
ρ ϵunif

x (ρ)FPBE
x (s) d3r, (5.26)

where FPBE
x (s) = 1 + κ − κ/(1 + µ

κs
2), κ = 0.804, and the reduced gradient s =

|∇ρ|/(2kFρ). The parameter κ is determined by the Lieb–Oxford bound287 for the
exchange energy, and the parameter µ is determined to satisfy the correct linear response
of the spin-unpolarized uniform electron gas (µ = βcπ

2/3) such that µ = 0.21951.
Since its introduction, many variations of the original PBE functional were presented,

such as revPBE,288 PBEsol,289,290 and APBE.291 In these functionals, the functional
form of PBE is kept, however, the parameters µ, βc, and κ are varied. A study by Della
Sala and coworkers292 showed that a property-specific optimization of these parameters
can lead to an increase in accuracy.

We adjust the parameters α, γ, µ, and κ to obtain a class of functionals LC⋆-PBE0(D)
that allows us to describe a particular system of interest represented by reference data D;
for this optimization, we choose the L-BFGS-B scheme.293 Although this system-specific
parameterization is generally viewed as an illicit departure from the first-principles char-
acter of DFT toward a semi-empirical approach,294 it is key to accurate error estimation
in this work. A small number of parameters comes with the advantage that a small
data set suffices for the parameterization. Being the only parameter that contributes
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linearly to the total electronic energy, α is then considered in the error estimation pro-
tocol, keeping the other parameters constant at their re-optimized value. We wish to
emphasize that the linearity of the energy with respect to α will only be guaranteed if
the energies are calculated non-selfconsistently, i.e., employing the same electron den-
sity. We calculate the electronic energy of the ensemble non-self-consistently employing
the electron density obtained from a self-consistent calculation with the best-fit param-
eters w0.248,249 Therefore, the error estimation scheme does not result in a significant
computational overhead.

5.5 Construction of Appropriate Reference Data Set

For an accurate re-parameterization, the reference data set needs to be representative
of the system of interest. Specifically, the data set should contain structures that are
intermediates and transition states of the chemical process under consideration. Of
course, one cannot expect to include every relevant structure, but the stochastic nature
of our approach takes this limitation into account. Moreover, knowledge-based Bayesian
statistics may even be considered in a rolling re-parameterization scheme, in which more
accurate reference data are constantly added when they become available.

The observable O is the energy difference ∆Ei,j between two structural isomers xi

and xj . Then, the cost function C employed in the parameterization reads

C(α, γ, κ, µ) =
N∑

i=1,i<j

(
∆Ei,j(α, γ, κ, µ)−∆Eref

i,j

)2
=

N∑
i=1,i<j

Ci,j(α, γ, κ, µ), (5.27)

where ∆Ei,j(α, γ, κ, µ) and ∆Eref
i,j are the relative energies obtained with the LC-PBE0

functional with parameters (α, γ, κ, µ) and the reference value, respectively, and xi and
xj are structures on the same PES.

5.6 Study of Chatt–Schrock Cycle with Error Assessment

In Section 3.8, the chemical reactivity of the catalyst synthesized by Yandulov and
Schrock14,15 is investigated. A proposed catalytic cycle for this catalyst is the Chatt–
Schrock cycle,14,15,295 in which intermediates are formed by a sequence of protonation
and reduction steps (see Fig. 3.13 in Section 3.8). The acid 2,6-lutidinium (LutH) and
reducing agent decamethylchromocene (CrCp∗2) are the sources of protons and elec-
trons, respectively. The energetics of this cycle were subjected to many theoretical
studies.30,179–185,296 Due to different computational setups (e.g., model catalyst, density
functional, and basis sets), the results of these studies varied. In the following Section,
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the LC⋆-PBE0(D) functional is applied to study reaction energies in the Chatt–Schrock
cycle.

If only little experimental reference data exists for a chosen system, highly accurate
post-HF methods, such as coupled-cluster theory, can be employed. Usually, their steep
scaling of computing time with system size require the restriction to rather small model
systems. For the construction of the reference data set, we chose the CCSD(T) method;
i.e., R is CCSD(T). Moreover, a model is constructed in which the HIPT substituents
are replaced by methyl groups or hydrogen atoms; in this way, the computational effort
is reduced, while the first coordination sphere remains intact (see Fig. 5.1). To probe
the transferability of our functional optimized on data for the (pruned) model system
to the original complex, an intermediate (1-armed) model is also investigated. The
resulting reference data sets, referred to as DP and DA, accordingly, contain energy
differences between structures on the same PES, i.e., structures with the same number
and type of atomic nuclei, the same number of electrons, and the same electronic spin
state (see Fig. 5.2 for an example of two reference values). Details on the computational
methodology can be found in Appendix A.2.1.

CH3

Yandulov-Schrock 1-Armed Pruned

Figure5.1:Model systems for theYandulov–Schrock catalyst. While keeping thefirst coordination sphere (dashed

circle) intact, carbon and hydrogen atoms are removed to reduce computational effort. Reprintedwith permission

from G. N. Simm, M. Reiher, J. Chem. Theory Comput. 2016, 12, 2762–2773. Copyright 2016 American Chemical
Society.

5.6.1 Parameter Selection and Optimization

Since the parameters κ and µ in the PBE functional were determined by fulfilling exact
boundary conditions,195 we first investigated whether the optimization of the parameters
in the range-separation scheme, i.e., α and γ, suffices to obtain an accurate functional.
Accordingly, Ci,j(α, γ, κ = κPBE, µ = µPBE) were calculated for structures in DP as a
function of α (β = 1 − α) and γ, where κ and µ were kept constant. As an example,
the results for two relative energies between three isomers of [Mo]-NH+

2 are shown in
Fig. 5.3. Results for additional structures are given in the supporting information of
Ref. 297. Even though the three structures are similar (differing in the position of only
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Figure 5.2: Example for relative energies∆E3,4 and∆E3,5 between three isomers (structures 3, 4, and 5 inDP)

of the pruned Yandulov–Schrock complex. Reprinted with permission fromG. N. Simm,M. Reiher, J. Chem. Theory
Comput. 2016, 12, 2762–2773. Copyright 2016 American Chemical Society.

one hydrogen atom), the optimal parameters deviate significantly (as can be seen from
Fig. 5.3). We note that the shape of the contour plot would not change significantly for
a shifted reference energy ∆Eref

i . A slightly different reference energy would only result
in a shift of the observed pattern. Hence, it is not decisive for this study whether or not
our coupled-cluster reference data is of ultimate accuracy.

Furthermore, we investigated whether incomplete LC, i.e., α + β < 1, can increase
model flexibility. In Fig. 5.4, the amount of LC, ζ = α+β, is varied for the cost function
C8,11. It can be seen that the form of the contour plot is hardly affected by ζ; only the
curvature of the contour lines increases. This can be understood when appreciating that
the effect of γ increases with ζ (see Eq. (5.23)). Therefore, we consider it unlikely that
changing the amount of LC leads to an increase in accuracy worth compromising the
correct asymptotic behavior. For the rest of this study, we therefore preserve complete
LC, i.e., α+ β = 1.

To investigate whether the adjustment of κ and µ, in addition to α and γ, results in a
significant increase in accuracy, the cost functions C23,24 and C23,25 depending on α, γ,
κ, and µ are given in Figs. 5.5 and 5.6 (results for additional structures are given in the
supporting information of Ref. 297). In each contour plot, the cost function depending
on κ and µ is given, whereby α and γ are varied between contour plots. Note that βc
in the PBE functional depends on µ, βc = 3µ/π2. By comparing Figs. 5.5 and 5.6, we
see that for α = 0.2 and γ = 0.0 the cost functions are similar. From this result, we
conclude that the optimization of the parameters κ and µ, in addition to α and γ, is
necessary to obtain a sufficiently flexible LC-PBE0 functional.
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Figure5.3: Twocost functions,C26,27 (left) andC26,28 (right), depending on theparametersα andγ (in (kJ/mol)
2).

The cost functions were calculated from the relative energies between three isomers of [Mo]-NH+
2 . The parame-

tersκ = κPBE andµ = µPBE were kept constant. Reprinted with permission fromG. N. Simm,M. Reiher, J. Chem.
Theory Comput. 2016, 12, 2762–2773. Copyright 2016 American Chemical Society.

The four parameters were optimized employing the DP reference set and the following
parameter values were obtained: α = 0.176 (σ = 0.080), γ = 0.111, κ = 1.48, and
µ = 0.471. The functional with these parameters we refer to as LC*-PBE0(DP), where
the star indicates that the original parameters were modified and ‘DP’ denotes that these
parameter changes were made for theDP reference data set. All parameters clearly differ
from the ones in LC-PBE0. While the parameters κ and µ were determined by fulfilling
exact boundary conditions,195 the behavior of the functional between those boundary
conditions may still be incorrect. Hence, deviations from the exact parameters can lead
to a functional that is more accurate for the chemical system of interest than LC-PBE0.
We emphasize that our LC⋆-PBE0 functional is system-dependent in such a way that
its optimum parameters will be different for different reference data sets. However, this
is not a drawback as the reliability of this class of functionals can be assessed according
to an error measure for each individual result in the error estimation procedure.

5.6.2 Assessment of Re-parameterization and Error Estimation

Before we consider the conceptually decisive error estimation step for our system-
dependent functionals, we first demonstrate that they, in fact, achieve a significant
improvement with respect to accuracy for the reference data set. While one might
expect that this is naturally the case, it is not guaranteed because the explicit analytical
form of the functional might not allow for such an improvement and the different
reference data points might not be represented equally well by a common parameter
set.
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Figure 5.4: Cost functionC8,11 depending on α and γ and on the amount of long-range correction ζ = α + β
(in (kJ/mol)2). The parametersκ andµwere kept constant at their original values in the PBE functional. Reprinted
with permission fromG.N. Simm,M. Reiher, J. Chem. Theory Comput.2016, 12, 2762–2773. Copyright 2016Amer-
ican Chemical Society.

In Table 5.1, the accuracy of LC⋆-PBE0(DP) is compared to that of common density
functionals (including D3 dispersion corrections). LC⋆-PBE0(DP) features the lowest
MAE, followed by B3LYP and PBE0. As expected, GGA and meta-GGA functionals are
less accurate than most hybrid functionals. Moreover, due to the small molecular size,
D3 corrections have no significant effect. In addition, the MAE of no functional is within
chemical accuracy and all functionals feature a high LAE of at least 25 kJ/mol. Consid-
ering LC⋆-PBE0(DP) was fitted to this data set and still shows an LAE of 25.7 kJ/mol,
underlines the fact that the electronic structure of transition metal complexes is difficult
to reproduce by density functionals because of their restrictive functional form.

While the results in Table 5.1 confirm the well-known fact298 that density functionals
applied to transition metal complexes rarely achieve chemical accuracy of about one
kcal/mol (≈ 4.2 kJ/mol), it is known that DFT can be very accurate for certain cases.264

Clearly, it is desirable to identify cases for which DFT fails and cases for which the results
are reliable.

As described in Section 5.2 and 5.3, our functional allows for error estimates to
be calculated. With the standard deviation σ and the best-fit parameters w0, the
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Figure 5.5: Cost functionC23,24 as a function ofα, γ ,κ, andµ (in (kJ/mol)
2). In each contour plot,C23,24 is given

as a functionofκ andµ, whereasα andγ are kept constant. Reprintedwith permission fromG.N. Simm,M.Reiher,

J. Chem. Theory Comput. 2016, 12, 2762–2773. Copyright 2016 American Chemical Society.

normal distribution given in Eq. (5.2) can be sampled and a set of parameters a⃗ =

{w1, w2, . . . , wK} can be generated (we introduce the vector notation to denote the
set of parameter sets, which is a set of parameters in this special case). Employing
the self-consistent electron density obtained from the functional with parameters w0,
the electronic energies for the parameters in w⃗ are calculated. The standard deviation
σ(O(i)) is then calculated according to Eq. (5.22). In Fig. 5.7, LC⋆-PBE0(DP) (with
error bars, calculated from an ensemble of K = 25 functionals given in Appendix A.2.1)
is compared to popular density functionals with respect to DP. It can be seen that
for many elements of the data set the error with respect to the reference is within one
standard deviation. For almost all reference data points the error is within two standard
deviations; only for P3 and P13, the error was underestimated by LC⋆-PBE0(DP).

Further, the standard deviation reported by LC⋆-PBE0(DP) not always coincides
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Figure 5.6: Cost functionC23,25 as a function ofα, γ ,κ, andµ (in (kJ/mol)
2). In each contour plot,C23,25 is given

as a functionofκ andµ, whereasα andγ are kept constant. Reprintedwith permission fromG.N. Simm,M.Reiher,

J. Chem. Theory Comput. 2016, 12, 2762–2773. Copyright 2016 American Chemical Society.

with the spread of results from other functionals. For example, the standard deviation
of P4 is comparatively small (5.2 kJ/mol), whereas the errors of the other functionals
are ranging from 2–34 kJ/mol. Therefore, taking the spread of results from a set of
functionals is not a stochastically meaningful indicator for the accuracy. In addition,
the errors of all functionals are highly unsystematic and the spread of errors is large.
This result is particularly striking when considering the fact that the structures in our
data set are homologous by construction.

5.6.3 Transferability of the Model System

For the reference data set DP we showed that the re-parameterization of the LC-PBE0
resulted in a significantly more accurate functional LC⋆-PBE0(DP) that also provides
reliable error estimates for each result. In this Section, we investigate the transferability
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Table 5.1: Largest absolute error (LAE), mean absolute error (MAE), andmean signed error (MSE) of a selection of

functionals, somewith D3 dispersion corrections, for theDP reference set (in kJ/mol).

LAE MAE MSE
B3LYP 31.2 13.4 -0.1
B3LYP-D3 30.2 13.8 -0.0
BP86 65.0 33.1 -8.6
BP86-D3 66.5 35.5 -8.6
LC-PBE0 68.9 20.8 -2.3
M06-2X 69.6 28.1 4.6
M06-2X-D3 69.6 28.1 4.7
M06-L 45.7 24.7 -1.6
M06-L-D3 45.8 24.6 -1.6
PBE 66.3 32.8 -8.1
PBE0 32.3 13.6 0.1
PBE0-D3 31.6 13.8 0.3
TPSS 60.8 31.3 -7.5
TPSS-D3 62.2 32.9 -7.4
TPSSh 45.1 20.7 -4.2
TPSSh-D3 46.4 22.5 -2.7
LC⋆-PBE0(DP) 25.7 10.0 -0.1

of the model system to the chemical system of interest. As shown in Fig. 5.1, the (1-
armed) model which more closely resembles the core structure of the Yandulov–Schrock
catalyst, probes the effect of the second coordination shell on the parameterization.

In Table 5.2, the accuracy of LC⋆-PBE0(DP) and popular density functionals (some
including D3 dispersion corrections) with respect to the data set DA is shown. With an
MAE of 8.7 kJ/mol, LC⋆-PBE0(DP) is more accurate than all other standard functionals.
Furthermore, due to increased system size, the contribution of the D3 corrections rose
compared to DP and has a slight positive effect on the MAE for most functionals.
Finally, the strikingly high LAE of density functionals with a reasonable MAE (e.g.,
B3LYP-D3), highlights the need for a method with error estimation.

To investigate the effect of the model system on the parameterization, the parameters
of LC⋆-PBE0 were optimized for DA to yield LC⋆-PBE0(DA). The obtained optimal
parameters are: α = 0.128 (σ = 0.081), γ = 0.080, κ = 1.49, and µ = 0.512. In
comparison to the parameters of LC⋆-PBE0(DP), only α and γ changed, whereas κ and
µ remained more or less the same. From Table 5.2, it can be seen that also the LAE
and MAE decreased only slightly compared to LC⋆-PBE0(DP). This suggests that it is
the flexibility of the functional and not the choice of the model system that limits its
accuracy.
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Figure 5.7: Errors of LC⋆-PBE0(DP) with error bars indicating a standard deviation and standard functionals for

the reference data setDP. All data points in the set are denoted as Pi. Reprintedwith permission fromG.N. Simm,

M. Reiher, J. Chem. Theory Comput. 2016, 12, 2762–2773. Copyright 2016 American Chemical Society.

In Fig. 5.8, the errors of LC⋆-PBE0(DP), LC⋆-PBE0(DA), and standard density
functionals with respect to DA are shown. It can be seen that the error bars reported
by both error estimation functionals give a reliable and consistent indication for the
accuracy of a result: in nearly all cases the actual error is within two standard deviations.
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standard functionals for data setDA. All data points in the set are denoted as Ai. Reprintedwith permission from
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5.6.4 Error Estimation Applied to the Chatt–Schrock Cycle

In Table 5.3, the calculated reaction energies for the complete Chatt–Schrock cycle in-
cluding standard deviations are given. While the majority of reactions features a small
standard deviation of below 6 kJ/mol, there are reactions for which the functional pre-
dicts an unacceptably large error. For example, with a standard deviation of 18.7 kJ/mol
the reaction energy of the first protonation is apparently difficult to determine, whereas
LC⋆-PBE0(DA) reports a low uncertainty for subsequent protonation reactions.
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Table 5.2: Largest absolute error (LAE), mean absolute error (MAE), andmean signed error (MSE) of a selection of

functionals, somewith D3 dispersion corrections, for theDA reference set (in kJ/mol).

LAE MAE MSE
B3LYP 32.3 11.1 0.8
B3LYP-D3 28.1 10.2 1.8
BP86 70.1 24.8 -8.1
BP86-D3 68.0 25.8 -7.0
LC-PBE0 72.1 22.7 2.4
M06-2X 71.1 25.9 6.1
M06-2X-D3 71.1 25.8 6.0
M06-L 50.2 17.5 -5.0
M06-L-D3 50.1 17.6 -5.0
PBE 71.5 24.5 -8.7
PBE0 31.9 12.7 -0.6
PBE0-D3 29.7 12.0 0.0
TPSS 58.7 24.4 -5.0
TPSS-D3 56.8 25.1 -4.2
TPSSh 45.9 15.2 -2.1
TPSSh-D3 42.8 15.6 -1.3
LC⋆-PBE0(DP) 23.3 8.7 0.0
LC⋆-PBE0(DA) 20.8 7.2 0.1

Since the parameters in LC⋆-PBE0(DA) were optimized for a data set which contains
neither the reducing agent CrCp∗2 nor the acid lutidinium, no error can be calculated
for either the oxidation of CrCp∗2 or for the abstraction of the proton from lutidinium.
A more extensive data set needs to be constructed to be able to assign an uncertainty
to these reactions. Therefore, we may anticipate that the errors reported here underes-
timate the actual errors. Since, however, the error of electron and proton abstraction
would result in a constant shift for the reduction and protonation reactions, respectively,
it does not affect our conclusions.

Due to the large HIPT substituents, calculations on the full Chatt–Schrock cata-
lyst require dispersion corrections to be considered. These cannot be well described
by LC⋆-PBE0(DA) because DA does not contain reference data on large model com-
plexes for which dispersion is increasingly important. However, since no heptane solvent
molecules are included in our Yandulov–Schrock structural models, dispersion correc-
tions are not considered here as they would artificially overestimate all intra-complex
dispersion. Clearly, in general, dispersion corrections must be considered. As empiri-
cal force-field-type dispersion corrections would require an extensive parameterization,
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Table5.3: LC⋆-PBE0(DA) reactionenergies (withstandarddeviations) for thefirstandsecondhalfof the fullChatt–

Schrock cycle (in kJ/mol). LutH+ and CrCp∗2 are abbreviated as AH
+ and R, respectively.

Reaction ∆E σ

[Mo]-N2 + AH+ → {[Mo]-N2H}+ + A 27.8 18.7
{[Mo]-N2H}+ + R → [Mo]-N2H + R+ -120.9 5.9
[Mo]-N2H + AH+ → {[Mo]-N2H2}+ + A -103.4 2.6
{[Mo]-N2H2}+ + R → [Mo]-N2H2 + R+ 21.8 10.6
[Mo]-N2H2 + AH+ → {[Mo]-N2H3}+ + A -40.0 6.1
{[Mo]-N2H3}+ + R → [Mo]-N2H3 + R+ -237.7 5.3
[Mo]-N + AH+ → {[Mo]-NH}+ + A -74.4 5.4
{[Mo]-NH}+ + R → [Mo]-NH + R+ 0.2 10.5
[Mo]-NH + AH+ → {[Mo]-NH2}+ + A -151.8 1.7
{[Mo]-NH2}+ + R → [Mo]-NH2 + R+ -22.7 15.1
[Mo]-NH2 + AH+ → {[Mo]-NH3}+ + A -146.7 1.1
{[Mo]-NH3}+ + R → [Mo]-NH3 + R+ 9.4 3.0
[Mo]-NH3 + N2 → [Mo]-N2 + NH3 -7.6 13.6

we recommend density-based techniques (see, e.g., Refs. 299,300) for a system-focused
density functional optimization.

In Fig. 5.9, the mean energy profile (red) together with the ensemble of LC⋆-
PBE0(DA) (gray) is depicted. The uncertainty associated with the energy of each
intermediate with respect to the first intermediate of the cycle can be seen from the
spread of the energy profiles. Similarly, a change in the spread of the energy profiles
resembles the error of each reaction energy. Fig. 5.9 highlights the importance of error
estimation when interpreting reaction profiles commonly found in the literature.

5.7 Error Estimation for Reaction Network of Formose Reaction

In Section 3.7, we explored the vast reaction network of the formose reaction. Fur-
thermore, we could identify multiple pathways in the reaction network that rationalize
the autocatalytic properties of this reaction. In addition, we showed that there can ex-
ist many minimum-energy paths with different reaction barriers for the same chemical
transformation. In the following Section, the LC⋆-PBE0 functional is applied to the
formose reaction to investigate how uncertainties in reaction barriers affect conclusions
drawn from kinetic models.

5.7.1 Assessment of Re-parameterization and Error Estimation

For an accurate reparameterization, the reference data set D needs to be representative
of the system to be studied. In this study, D contains structures of intermediates and
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Figure 5.9: Statistical representation of energy profile of Chatt-Schrock cycle. Red: mean of LC⋆-PBE0(DA); gray:

ensemble of LC⋆-PBE0(DA); Reprintedwith permission fromG. N. Simm,M. Reiher, J. Chem. Theory Comput. 2016,
12, 2762–2773. Copyright 2016 American Chemical Society.

transition states of the formose reaction. Electronic energies from the DF-LCCSD(T0)-
F12 method are chosen as reference R. To assess the transferability of the reparame-
terized functional, the data set D was arbitrarily split into a training test and a test
set with 25 and 17 entries, respectively. By minimizing C with respect to the training
set with the L-BFGS-B algorithm,301 a new set of parameter values for the LC*-PBE0
functional were obtained. Details on the computational methodology are provided in
Appendix A.2.2.

In Tables 5.4 and 5.5, the accuracy of LC*-PBE0 (in comparison to standard function-
als) with respect to the training and test sets is given. It can be seen that LC*-PBE0
is significantly more accurate than most standard functionals considered here. The opti-
mized parameters of LC*-PBE0 are close to those of PBE0 (see Appendix A.2.2), which
explains why the functionals are of similar accuracy. Due to its additional parameters
and, therefore, higher flexibility, LC-PBE0 was chosen over PBE0 for the reparameteri-
zation. Nonetheless, with a largest absolute error between 8–10 kJ/mol, it is clear that
error estimation is still necessary.

In Figs. 5.10 and 5.11, LC*-PBE0 is compared to contemporary density functionals
with respect to the training and test sets, respectively. For both data sets, we observe
that the error is at least within ±4.2 kJ/mol (≈ 1 kcal/mol), unless the error estimate
reported by the functional indicates otherwise (i.e., σ > 4.2 kJ/mol). It can be seen
that there are several relative energies for which the errors are underestimated (D2, D4,
and D25 in the training set and D30 and D38 in the test set). This indicates that the

69



Chapter 5 Systematic Error Estimation for Chemical Reaction Networks

Table 5.4: Largest absolute error (LAE), mean absolute error (MAE), andmean signed error (MSE) of a selection of

functionals, somewith D3 dispersion corrections, for the training set (in kJ/mol).

LAE MAE MSE
B3LYP 18.7 7.6 1.7
B3LYP-D3 22.2 7.0 1.6
BP86 28.5 7.3 1.8
BP86-D3 32.6 6.5 1.7
LC-PBE0 37.2 13.6 0.7
M06-2X 20.9 7.5 1.2
M06-2X-D3 20.8 7.4 1.2
M06-L 19.4 9.6 2.1
M06-L-D3 19.5 9.6 2.1
PBE 28.8 6.2 1.6
PBE0 13.5 5.7 1.2
PBE0-D3 16.3 5.2 1.2
TPSS 37.3 14.3 3.4
TPSS-D3 33.2 13.9 3.3
TPSSh 32.3 13.6 3.0
TPSSh-D3 29.2 13.1 2.9
LC*-PBE0 9.8 3.7 1.0

density functional severely suffers from model inadequacy (see Section 4.3.2). The poor
performance of standard functionals (see Tables 5.4 and 5.5) supports this hypothesis.
In addition, the domain of application is considerably larger than the one covered by
the catalytic cycle of the Yandulov–Schrock catalyst (see Section 5.6.3). The data set in
this study does not only contain a more diverse set of molecular structures (containing
different functional groups) but also both transition states and intermediates. As a
result, the error estimates provided here have to be interpreted as lower bounds on the
error.

5.7.2 Kinetic Modeling

A reaction network containing all relevant intermediates and TSs of a chemical reaction
allows one to study population trajectories through the network. In solution chem-
istry, trajectories of molar concentrations can be studied, but it remains a challenge to
rationalize why certain product distributions were found. A theoretical, time-resolved
model would allow one to identify elementary steps that are responsible for the observed
product distribution and to develop strategies to promote the selective formation of the
desired product and to suppress the formation of undesired side products. For the
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Table 5.5: Largest absolute error (LAE), mean absolute error (MAE), andmean signed error (MSE) of a selection of

functionals, somewith D3 dispersion corrections, for the test set (in kJ/mol).

LAE MAE MSE
B3LYP 14.7 6.0 -0.1
B3LYP-D3 20.0 6.4 0.8
BP86 19.6 6.7 0.4
BP86-D3 25.0 7.8 1.5
LC-PBE0 27.5 8.4 -1.1
M06-2X 12.0 4.7 -0.1
M06-2X-D3 12.0 4.7 -0.1
M06-L 20.0 7.5 1.5
M06-L-D3 20.3 7.6 1.5
PBE 19.9 6.4 0.7
PBE0 11.9 4.0 -0.1
PBE0-D3 14.7 4.0 0.5
TPSS 16.6 6.4 -1.0
TPSS-D3 17.6 7.4 -0.3
TPSSh 15.0 5.4 -1.2
TPSSh-D3 15.4 6.2 -0.4
LC*-PBE0 8.0 2.7 0.1

construction of a kinetic model, rate constants are necessary. Conventional TS theory
allows one to estimate the rate constant k of an isothermal process

k =
kBT

h
exp
(
−∆A‡

RT

)
, (5.28)

where kB is the Boltzmann constant, R the ideal gas constant, h the Planck constant,
∆A‡ the Helmholtz free energy difference between reactant and TS, and T the tempera-
ture. From the rate constants calculated in Eq. (5.28), differential equations describing
the time propagation of the concentrations of all chemical species can be constructed. By
integrating these differential equations, the underlying chemical process can be modeled.
Since these differential equations are generally coupled, analytical integration becomes
intractable. Therefore, numerical integration is a popular choice for solving them. How-
ever, numerical integration will become inefficient,302 if the underlying process spans
multiple timescales. For this purpose, a variety of approaches exists that simplify kinetic
models.303 Here, the kinetic simulation algorithm is based on Markov state models304,305

and computational singular perturbation.306,307 By separating fast from slow processes,
the issue of large span of timescales can be overcome. Details on the kinetic algorithm
can be found in Ref. 127.
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Figure 5.10: Errors of LC*-PBE0 (with error bars indicating±σ) and several standard functionals with respect to
the training set (D1–D25). The dashed lines indicate an error of±4.2 kJ/mol. Reprinted with permission from J.

Proppe, T. Husch, G. N. Simm, M. Reiher, Faraday Discuss. 2016, 195, 497–520. Copyright 2016 Royal Society of
Chemistry.
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Figure 5.11: Errors of LC*-PBE0 (with error bars indicating±σ) and several standard functionals with respect to
the test set (D26–D42). The dashed lines indicate an error of ±4.2 kJ/mol. Reprinted with permission from J.

Proppe, T. Husch, G. N. Simm, M. Reiher, Faraday Discuss. 2016, 195, 497–520. Copyright 2016 Royal Society of
Chemistry.

The formose reaction is an example of a process that spans multiple timescales. The
reaction network explored with Chemoton (see Section 3.7.1) would be outside the
scope of this study, only a subnetwork of the formose reaction is investigated here. The
structure coordinates of the intermediates and TSs are adapted from Ref. 170 (see
Appendix A.2.2). This subnetwork, which already features many conceptual challenges
of the entire formose reaction, is shown in Figure 5.12. This network contains the
first steps of the formose reaction as described by Kua et al.170 and comprises six
chemical species and five reaction pairs. Free energies were obtained as described in
Appendix A.2.2. In water, formaldehyde (1) is in equilibrium with its hydrated form (2).
1 dimerizes to glycolaldehyde (3), a high free energy of activation (see Table 5.6). The
exact mechanism of the dimerization is not well-understood.166,308–310 Experimental
studies showed that this process proceeds slowly. 3 reacts with water to form 1,1,2-
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Figure 5.12: Reaction subnetwork of the formose reaction.

ethanetriol (5). In addition, 3 can enolize to form 1,2-ethenediol (4). The addition
of 1 to 4 yields glyceraldehyde (6). This bimolecular reaction results in significant
entanglement in the model network. It should be noted that this model network does
not capture the autocatalytic nature of the formose reaction discussed in Section 3.7.3.

In Table 5.6, standard-state Helmholtz free activation energies, ∆A‡,∗, and the result-
ing rate constants k (together with error estimates calculated according to Eq. (5.22))
for the reactions in the model network are presented. For computational details see
Appendix A.2.2. It can be seen that ∆A‡,∗ is large (above 100 kJ/mol) for most reac-

Table 5.6: Helmholtz free energies of activation∆A‡,∗ (in kJ/mol, with error estimates) and rate constants k (in
1/s and 1/(s mol) for unimolecular and bimolecular reactions, respectively) for the reactions in the network.

Reactant(s) Product(s) ∆A‡,∗ σ∆A‡,∗ k

R1 1 2 95.4 4.8 6.7× 10−3

R2 2 1 124.9 13.2 8.1× 10−10

R3 1 + 1 3 215.4 14.2 1.2× 10−25

R4 3 1 + 1 311.1 23.0 1.9× 10−42

R5 3 4 157.3 11.6 1.7× 10−15

R6 4 3 130.8 10.2 7.5× 10−11

R7 3 5 100.3 3.2 9.2× 10−4

R8 5 3 119.2 12.3 8.0× 10−9

R9 1 + 4 6 112.5 13.4 1.2× 10−7

R10 6 1 + 4 185.4 23.1 2.0× 10−20

tions, and consequently, the reaction rates are small. In addition, most reactions have
estimated errors of above 10 kJ/mol, which reflects the large uncertainty of the respec-
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tive reaction rates. In Section 5.7.1, we showed that the LC*-PBE0 functional provides
reliable error estimates above 4.2 kJ/mol. The estimated error for reaction R7 is below
that and, therefore, most likely too small. For the simulation, we selected an absolute
temperature of 298.15 K and a 1 M solution of formaldehyde in water as initial feed.
For technical details of the kinetic modeling employed here, see Ref. 127.

From Fig. 5.13 it can be seen that even though the uncertainty in free activation
energies is large, it does not affect the qualitative flux of concentrations through the
network. This finding can be explained by the distinct separation of the magnitude of
the free activation energies. Furthermore, the free activation energies and their uncer-
tainties listed in Table 5.6 show that all free energies of activation are of different orders
of magnitude. This scenario does not allow for an alternative reaction mechanism. In
a reaction network featuring multiple reaction barriers of the same magnitude (found
in enantioselective organocatalysis, for example) large uncertainties would also lead to
qualitatively different results. The qualitative validity of the kinetic simulation is also
underlined by the fact that in all cases, 1,1,2-ethanetriol (5) is the main product at
chemical equilibrium. The population dominance of 5 over 3 was also found experi-
mentally by Kua et al.311 However, their calculated free energies of activation for the
corresponding reaction pair (R7, R8)170 (∆G‡,∗

3→5 − ∆G‡,∗
5→3 = 2.5 kJ mol−1) are very

similar to each other. Since volume changes can be neglected, their Gibbs free activation
energies can be directly compared to Helmholtz free activation energies calculated in
this study. Our free activation energies for the reaction pair (R7, R8) differ significantly
from each other (∆A‡,∗

3→5−∆A‡,∗
5→3 = −18.9 kJ mol−1). This difference can be explained

by the different choice of computational methods (i.e., different density functional and
solvation model). It might seem surprising that 5 is the main product in our simulation
even though glyceraldehyde (6) is a thermodynamic sink. However, one should keep in
mind that the concentration trajectory of 6 is temporally significantly populated and
that the model network considered here is only a small subnetwork of the whole reaction
network.

74



Error Estimation for Reaction Network of Formose Reaction 5.7

Figure5.13: Concentration trajectorieswith respect toreactionprogress forchemical species1–6according to the

reaction network shown in Fig. 5.12. Trajectories resulting from the free activation energies of activation listed in

Table5.6 are shown in red. Trajectories resulting from the free activation energies calculated from theensembleof

density functionals generatedby theBayesian error estimation schemeare shown in black. Reprintedwith permis-

sion from J. Proppe, T. Husch, G. N. Simm, M. Reiher, Faraday Discuss. 2016, 195, 497–520. Copyright 2016 Royal
Society of Chemistry.
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6
Error-Controlled Exploration of Chemical

Reaction Networks*

In the previous Chapter, we concluded that despite the plethora of benchmark studies
conducted, the accuracy of a quantum chemical method is often difficult to assess. At the
same time, uncertainty quantification is absolutely mandatory for drawing meaningful
conclusions from computational data. In addition, due to the limited flexibility of
common density functionals, a significant improvement of a method’s accuracy (e.g.,
through reparameterization or systematic model extension) is rarely possible. In this
Chapter, we address these issues by presenting a new Bayesian approach that allows for
the systematic, problem-oriented, and rolling improvement of quantum chemical results.
We demonstrate our approach with the example of a complex chemical reaction network.

6.1 Application of Machine Learning in Quantum Chemistry

Over the last years, many studies on the application of statistical learning to chemistry
have been published, with applications ranging from electronic structure predictions
(e.g., Refs. 312–325) to applications in force-field development (e.g., Refs. 326–333),
materials discovery (e.g., Refs. 334–338), and reaction prediction.156,339–346 For recent
reviews on the applications of machine learning in chemistry see Refs. 347 and 348.

De Vita, Csányi, and coworkers presented a scheme that combines ab initio calculation
and machine-learning for molecular dynamics simulations.349–352 Forces on atoms are
either predicted by Bayesian inference or, if necessary, computed by on-the-fly quantum-

*This Chapter is reproduced in part from G. N. Simm, M. Reiher, arXiv:1805.09886.

77



Chapter 6 Error-Controlled Exploration of Chemical Reaction Networks

mechanical calculations and added to a growing machine learning database.350 However,
this approach requires a considerable data set size to be accurate. So far, their approach
was applied to the simulation of metal solids but not to molecular systems.

In 2017, Nørskov, Bligaard, and coworkers employed Gaussian processes (GPs) to
construct a surrogate model on the fly to efficiently study surface reaction networks
involving hydrocarbons.353 The surrogate model is iteratively used to predict the rate-
limiting reaction step to be calculated explicitly with DFT. In their study, extended
connectivity fingerprints based on graph representations of molecules are applied to rep-
resent adsorbed species. However, if the uncertainties provided by the GP are high, then
reference calculations are not automatically performed to improve the model. Therefore,
the construction of the reference data set is not directly guided by the GP’s predictions.
Finally, their approach was applied to study surface chemistry, for which more accurate
ab initio approaches, typically coupled-cluster methods, are not applied on a routine
basis.

Despite continuous advances, most machine learning approaches are unsuitable for
the study of chemical reactivity. Training data sets, which are required for the learning
process of the statistical model, are commonly assembled by drawing from a predefined
pool of chemical species. This approach would only be applicable to the exploration
of a chemical system if the specific species had been known before (which cannot be
achieved as these species are the result of the exploration process). By contrast, struc-
ture discovery through exploration requires a system-focused uncertainty quantification
in order to be reliable.297 While some machine learning methods provide error estimates
for such system-focused, rolling approaches, in most studies applying statistical learn-
ing to investigate chemical systems, the focus is placed on the prediction accuracy (e.g.,
Refs. 312–325). In molecular applications,354,355 confidence intervals are not exploited
to define structures for which reference data should be calculated in a rolling fashion.

6.2 Gaussian Process Regression

GPs have been extensively studied by the machine learning community. They are rooted
in a sophisticated and consistent theory combined with computational feasibility.356 In
chemistry, however, GPs are fairly new and, therefore, a short overview is given here.
We refer the reader to Ref. 356 for a more detailed derivation.

Supervised learning is the problem of learning input to output mappings from a
training data set. We define the training data set containing N observations as D =

{(xi, yi)|i = 1, . . . , N}, where x is the input and y the output. From D we aim to learn
the underlying function f , to make predictions for an unseen input x∗, i.e., input that
is not in D. Because no function that reproduces the training data is equally valid, it
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is necessary to make assumptions about the characteristics of f . With a GP, which is
a stochastic process describing distributions over functions,356 one includes all possible
functions and assigns weights to these functions depending on how likely they are to
model the underlying function.

By defining a prior distribution we encode our prior belief on the function that
we are trying to model. The prior distribution over functions includes not only the
mean and point-wise variance over the functions at a certain point x but also how
smooth these functions are. The latter is encoded in the covariance function or kernel
which determines how rapidly the functions should change based on a change in the
input x. The task of learning is finding the optimal values for the parameters in the
model. The posterior distribution is the result of combining the prior and the knowledge
that we get from D. With a trained GP, one can make predictions on unseen input.
Due to its Bayesian nature, an error estimate, indicating the model’s confidence in the
prediction, is provided for each prediction. Finally, the GP is systematically improvable,
i.e., predictions and their error estimates improve with data set size.

6.2.1 Gaussian Process Regression – Brief Derivation

Let us consider a simple linear regression model with Gaussian noise

f(x) = ϕ(x)⊺w, y = f(x) + ε, (6.1)

where x is a D-dimensional input vector, w is a vector of parameters, and y is the
observed target value. The function ϕ(x) maps a D-dimensional input vector to a
D′-dimensional feature space. Moreover, we assume that the observed target value y
differs from f by some noise ε, which obeys an independent and identically distributed
Gaussian distribution N with a mean and variance σ2n

ε ∼ N (0, σ2n). (6.2)

Furthermore, as our prior, we place a zero-mean Gaussian with covariance matrix Σp

on the weights
w ∼ N (0,Σp). (6.3)

Following Bayes’ rule, the posterior distribution reads

p(w|X,y) = p(y|X,w) p(w|X)

p(y|X)
, (6.4)
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where X = {xi|i = 1, . . . , N} and y = [y1, . . . , yN ]⊺. In Eq. (6.4), the marginal likeli-
hood, p(y|X), is independent of the weights and can be calculated according to

p(y|X) =

∫
p(y|X,w)p(w) dw. (6.5)

For some unseen x∗, the probability distribution of f(x∗) is given by the following
expression:

p(f∗|x∗, X,y) =

∫
p(f∗|x∗,w)p(w|X,y) dw. (6.6)

This can be shown to be356

p(f∗|x∗, X,y) = N
(
ϕ⊺
∗ΣpΦ(Φ⊺ΣpΦ+ σ2nI)

−1y,

ϕ⊺
∗Σpϕ∗ − ϕ⊺

∗ΣpΦ(Φ⊺ΣpΦ+ σ2nI)
−1Φ⊺Σpϕ∗

)
,

(6.7)

where ϕ∗ = ϕ(x∗) and Φ = Φ(X) is the column-wise aggregation of ϕ(x) for all inputs
in D. In Eq. (6.7), the feature space always enters in the form of ϕ(x)⊺Σpϕ(x

′), where x
and x′ are in either the training or test set. It is useful to define the covariance function
or kernel k(x,x′) = ϕ(x)⊺Σpϕ(x

′) and the corresponding kernel matrix K(X,X ′) =

Φ(X)⊺ΣpΦ(X ′). Since the covariance matrix Σp is positive semidefinite, we can define
Σ1/2 so that

(
Σ
1/2
p

)2
= Σp. Therefore, we can write ϕ(x)⊺Σpϕ(x

′) as an inner product

⟨ψ(x), ψ(x′)⟩, where ψ(x) = Σ
1/2
p ϕ(x). This is also known as the kernel trick, which

allows one to circumvent the explicit representation of the function ϕ in Eq. (6.1).
Conveniently, on the basis of Mercer’s theorem,357 it suffices to verify that k(x,x′)

satisfies Mercer’s condition. For a more elaborate explanation see Section 4.3 in Ref.
356. Finally, the key predictive equations for a GP regression are:356

f∗|X,y, X∗ ∼ N
(
f∗, cov(f∗)

)
, (6.8)

where
f∗ ≜ E[f∗|X,y, X∗] = K(X∗, X)[K(X,X) + σ2nI]

−1y (6.9)

and
cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2nI]

−1K(X,X∗). (6.10)

A GP trained on D to make predictions on f can be employed to model functions
such as:

g(x,x′) = f(x)− f(x′). (6.11)
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The prediction mean can be readily obtained from the individual prediction means

g(x,x′) = f(x)− f(x′) (6.12)

and the prediction uncertainty can be estimated employing the individual variances and
covariance cov(f(x), f(x′)), which can be computed with Eq. (6.10):

cov(g(x,x′)) = cov(f(x)) + cov(f(x′))− 2 cov(f(x), f(x′)). (6.13)

6.3 Molecular Kernels – Distance in Chemical Space

From Eqs. (6.9) and (6.10) it can be seen that in order to be able to apply GPs to learn a
molecular target T (x) (e.g., an enthalpy of atomization), the kernel k(x,x′) needs to be
evaluated. Here, x may be some point in chemical space, i.e., the atomic configuration,
charge, and spin multiplicity. The kernel should measure the similarity between two
points in chemical space and satisfy invariance properties such as translations, rotations,
and permutation of atoms of the same element. The search for new kernels to encode
physical invariances is a subject of active research.

If the target T (x) can be approximately decomposed as a sum of local contributions
the formulation of the kernel can be simplified:

T (x) =
n∑

ℓ=1

t(x̃ℓ), (6.14)

where ℓ is an atomic index, n is the total number of atoms, and x̃ℓ is a local atomic
environment. This approximation can be appropriate for properties such as the energy
or molecular polarizability.358 Then, we can model t(x̃ℓ) as a linear combination of
abstract descriptors ϕ̃(x̃ℓ) (see Eq. (6.1)):

t̂(x̃ℓ) = ϕ̃(x̃ℓ)
⊺w. (6.15)

In analogy to equation (6.14), we obtain

T̂ (x) =
n∑

ℓ=1

ϕ̃(x̃ℓ)
⊺w = ϕ(x)⊺w, (6.16)

where ϕ(x) =
∑n

ℓ=1 ϕ̃(x̃ℓ) so that we recover Eq. (6.1). One can see that the kernel
k(x,x′) can be written as a sum of kernels acting on local atomic environments

k(x,x′) = ϕ(x)⊺Σpϕ(x
′) =

n∑
ℓ=1

n′∑
ℓ′=1

k̃(x̃ℓ, x̃
′
ℓ′), (6.17)
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where k̃(x̃ℓ, x̃′ℓ′) = ϕ̃(x̃ℓ)
∑

p ϕ̃(x̃
′
ℓ′). There are many kernels developed to act on atomic

environments k̃(x̃ℓ, x̃′ℓ′), such as the kernel developed by Behler and Parrinello,312 the
Smooth Overlap of Atomic Potentials (SOAP),359 or the Graph Approximated Energy
(GRAPE).360

6.4 Error-Controlled Exploration Algorithm

In the exploration of a chemical reaction network, the data set D is not known before-
hand and must be generated during the exploration for a system-focused uncertainty
quantification. Naturally, the size of this data set should be related to the desired level
of confidence with which the target T needs to be determined. Our protocol starts
with an initial training data set D of size m > 0 and the desired level of confidence
given by the variance σ2thresh. The initial data set consists of the first m structures
s1:m = {x1, ...,xm} encountered during the exploration and the corresponding targets.
This is necessary to allow for reliable predictions by the learning algorithm. However,
it is critical that the initial training data set does not result in the model being overly
confident. Therefore, the optimal choice of m depends on the chemical system and the
exploration method. For example, if D had consisted of m consecutive snapshots of a
molecular dynamics trajectory, m should be chosen to be larger than if it had contained
largely different configurational isomers. We also note that one could construct the
initial data set by sampling the configuration space employing an inexpensive method
and, subsequently, applying a clustering algorithm (e.g., k-means clustering) so that
the D consists of the centroids of the m clusters.

Subsequently, new structures sm+1:N (given by a list of structures here but con-
structed in a rolling fashion in practice) are encountered. Each structure xi is fed to
the GP and a prediction mean T̄ (xi) and a variance σ2i are obtained. If σ2i is less
than σ2thresh, the prediction confidence will be sufficiently high and the next structure
will be attained. If σ2i is larger than σ2thresh, the prediction will be discarded and
the target will be explicitly calculated (e.g., with an electronic structure reference
method) for that structure. The newly obtained data point is added to D and the
GP is retrained on the extended data set. Naturally, there is a trade-off between
confidence and computational effort. If σ2thresh is decreased, the prediction confidence
will be required to be higher throughout the exploration. This requires a larger data
set, and hence, more reference calculations. If, however, σ2thresh is increased, fewer
reference calculations are needed, but the overall prediction accuracy is lower. Next,
all predictions made before are repeated with the updated GP. Through this process,
which we refer to as backtracking, we ensure that predictions on previously encountered
structures are still within the given confidence interval after the GP was updated. Our
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error-controlled exploration protocol with backtracking can be summarized as:

Algorithm 1 Error-controlled exploration strategy.
Input: D = {(xi, T (xi))}mi=1, sm+1:N , σ2

thresh
for i← m+ 1, N do
T̄ (xi)← EGP [T (xi)|D,xi]
σ2
i ← VGP [T (xi)|D,xi]

if σ2
i > σ2

thresh then
add (xi, T (xi)) to D
update GP and backtrack (i.e., check xj<i)

return D

6.5 Application of Exploration Algorithm to Chemical Reaction
Network

6.5.1 Construction of Reaction Network

We demonstrate our error-controlled exploration strategy with the example of a subset
of the GDB-9 database361 consisting of three-dimensional molecular structures of 6095
constitutional isomers of the C7H10O2 stoichiometry. We chose this database in order to
adhere to a publicly available data set that promotes reproducibility and comparability
of new algorithms such as the one proposed in Section 6.4 above.

We constructed a graph in which nodes represent items in this data set. Edges are
placed between two nodes if their molecular graphs can be interconverted by at least one
rule from a set of transformation rules. These rules describe reactions commonly found
in organic chemistry including nucleophilic addition and substitution, isomerization, and
cycloaddition reactions (see Appendix A.3 for details). The application of these rules
divided this graph into multiple strongly connected subgraphs, the largest of which
contained 1494 nodes. This subgraph will serve as an artificial exploration network for
the rest of this study and is provided in the supporting information of Ref. 362. The
exploration network is shown in Fig. 6.1. The color of each node represents the graph
distance to some randomly chosen node in the network, i.e., the number of edges in the
shortest path connecting them.

We calculated the SOAP kernel359 k(x,x′) for every pair of structures in the data set.
This measure of molecular similarity is suitable for a special class of molecular structures
that we consider in this work: stable intermediates. In fact, many electronic structure
methods ranging from Kohn–Sham DFT to single-reference coupled cluster models have
been developed for this special type of stationary points on the Born–Oppenheimer
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Figure 6.1: Reaction network considered in this study. Nodes represent three-dimensional molecular structures

of constitutional isomers of the C7H10O2 stoichiometry. Edges are drawn between two nodes if there is a trans-

formation rule interconverting theirmolecular graphs. A node’s color represents its graph distance to a (randomly

chosen) node in the network.

potential energy hypersurface (PES). It is well-known that many of them will fail for
dissociation processes (examples are wrong asymptotes of coupled cluster calculations
and the Hartree–Fock dissociation error). Clearly, considering also structures away from
stable intermediates would require an extension of the descriptor chosen for this work.
However, such extensions are rather straightforward to define. Consider, for example,
a multi-dimensional descriptor that also considers electronic structure information such
as the gap between the highest occupied molecular orbital and the lowest unoccupied
molecular orbital; see also the work of Kulik and coworkers.355,363,364 Such an extension
of the kernel would also improve its ability to capture long-range effects.

A special and important class of stationary points on the PES next to that of stable
intermediates are transition-state structures, i.e., first-order saddle points on the PES.
We would need to consider these structures in order to transgress the thermodynamic
view of reaction networks and to approach kinetic modeling. Whereas this is beyond
the scope of the present work, we note in passing that apart from the option to ex-
plicitly include information on the electronic structure of a given molecular structure
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(which would also allow one to consider different charge and spin states), we may treat
transition-state structures as a new class of structures characterized by the fact that an
electronically excited state is generally closer in energy than in the case of the stable
intermediate. One may, therefore, keep intermediates and transition states (and species
of different charge or spin multiplicity) in separate data sets in order to best account
for these different types of electronic structures (e.g., closed-shell ground-state minima,
ground-state bond-activated structures with a tendency to multi-configurational nature,
neutral vs. excess-charge species, and so forth).

If a set of intermediates on different PESs (but with the same charge and spin mul-
tiplicity) are encountered during the exploration, the smallest collection of atoms, from
which every molecule in the set can be constructed, can be assembled. Then, upon
comparison of two structures x and x′ from this set with the kernel k(x,x′), the atoms
that are not needed to form either of the two would still be part of the comparison,
but in the form of idealized “isolated” species.321 In this way, all comparisons between
structures from this set are on equal footing.

6.5.2 Assessment of Learning and Prediction Accuracy

Calculating a thermodynamic property P ref(x) (e.g., the standard enthalpy of atomiza-
tion) with accurate methods, such as G4MP2,226 is computationally demanding. Statis-
tical learning can be employed to improve a result of computationally (comparatively)
inexpensive quantum chemical methods, P base(x), by predicting the error of a method
with respect to some accurate reference result:

∆P ref
base(x) = P ref(x)− P base(x). (6.18)

This strategy is often referred to as ∆-machine learning.365 It is based on the idea that
inexpensive quantum chemical methods are able to describe a significant portion of the
underlying physics (e.g., nuclear repulsion) but fail to capture more complex phenomena
such as electron correlation. It is these effects which are then learned in a ∆-machine
learning approach. By design, ∆-machine learning approaches require the evaluation of
the inexpensive P base to arrive at the desired property.

In this work, we apply the ∆-machine learning approach by learning the difference
in the calculated standard enthalpy of atomization between G4MP2 and the density-
functional approach with PBE193 (∆HG4MP2

PBE ) as well as G4MP2 and the semi-empirical
model PM7366 (∆HG4MP2

PM7 ). We emphasize that the choice of the inexpensive (here, PBE
and PM7) and reference (here, G4MP2) method are to a certain degree arbitrary and
other choices work as well for our protocol (provided that the reference method has
been demonstrated to be more accurate than the inexpensive models for the data set

85



Chapter 6 Error-Controlled Exploration of Chemical Reaction Networks

under consideration). The distributions of ∆HG4MP2
PBE and ∆HG4MP2

PM7 in the data set are
shown in Fig. 6.2 (for details on the computational methodology see Appendix A.3).
Due to the more approximate nature of the semi-empirical PM7 method compared to
the PBE density functional, the distribution of ∆HG4MP2

PM7 is much wider than the one
of ∆HG4MP2

PBE .
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Figure 6.2: Distributions of∆HG4MP2
PBE and∆HG4MP2

PM7 for the data set.

We calculate the SOAP kernel359 k(x,x′) for every pair of structures in the data set.
This kernel also provides a definition of the distance between two structures321

d(x,x′) =
√

2− 2k(x,x′). (6.19)

To illustrate the notion of distance in a reaction network, a subnetwork of the whole
reaction network is arranged according to d(x,x′) in Fig. 6.3, where x is some reactant
and x′ a possible product.

For both targets separately, we trained a GP on randomly selected subsets of different
size and employed the remaining structures as an out-of-sample validation set. The GP’s
hyperparameters are optimized by maximizing the marginal likelihood. For predictions
on the validation set we calculated the mean absolute error (MAE),

MAE =
1

N

N∑
i=1

|T̄ (xi)− T (xi)|, (6.20)

and root-mean-square error (RMSE),

RMSE =

√√√√ 1

N

N∑
i=1

(
T̄ (xi)− T (xi)

)2
, (6.21)
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Figure 6.3: Illustration of the distance metric in Eq. (6.19) introduced by the kernel with the example of a reac-
tion subnetwork. The contour lines represent the distance d(x,x′) between the reactant in the center (x) and
possible reaction products present in the data set (x′). Double arrows are drawn between structures if there is a

transformation rule interconverting their molecular graphs.

where N is the size of the out-of-sample validation set, T̄ (xi) the prediction mean and
T (xi) the target value. To better assess the behavior of the GP, we also calculated
the MAE (MAEref) and the RMSE (RMSEref) of a trivial statistical model that simply
predicts the mean of the training data set for every test input. In addition, to guarantee
the accuracy of the error estimates we calculate the percentage of predictions rcb for
which the target lies outside of the 95% confidence band given by T̄ (xi) ± 2σ(xi). We
repeated this process 25 times to ensure that the average of the above metrics converged.
The average properties are summarized in Table 6.1. It can be seen that the prediction
accuracy improves significantly with the size of the training data set. When comparing
the MAE and the RMSE to the MAEref and the RMSEref, respectively, the benefit of
employing a GP over simply predicting the average of the training data set is evident for
training data set sizes of 200 and larger. It can also be seen that the prediction error of
∆HG4MP2

PM7 is larger than that of ∆HG4MP2
PBE . This can be explained by the approximate

nature of the semi-empirical PM7 method (see Fig. 2). Nonetheless, the results suggest
that the prediction error estimates are reliable as rcb is close to 5% for all data set sizes
and targets.

For the study of chemical reactivity, not enthalpies of formation but (free) enthalpy
differences between intermediates are usually of interest. From a GP trained on a
molecular target, predictions on differences with respect to that target between molec-
ular structures are readily available through Eqs. (6.12) and (6.13). For both targets
separately, we trained a GP on randomly selected subsets of different size and then pre-
dicted relative energies between the remaining structures. This process was repeated 25
times to obtain converged means of the MAE, RMSE, and rcb. From the results shown
in Table 6.2 it can be seen that the MAE and the RMSE decrease rapidly with data set
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Table 6.1:Mean absolute error (MAE), referenceMAE (MAEref), root-mean-square error (RMSE), referenceRMSE

(RMSEref) (in kJ/mol), and rcb of GP predictions on∆H
G4MP2
PBE and∆HG4MP2

PM7 for different training data set sizes.

Size Target MAE MAEref RMSE RMSEref rcb

50 ∆HG4MP2
PBE 7.82 8.42 9.71 10.53 5.24

∆HG4MP2
PM7 21.61 26.24 27.86 33.13 6.40

100 ∆HG4MP2
PBE 7.30 8.42 9.03 10.53 4.53

∆HG4MP2
PM7 19.15 26.16 25.01 32.99 6.03

200 ∆HG4MP2
PBE 6.37 8.40 7.84 10.50 3.52

∆HG4MP2
PM7 15.71 26.12 21.06 32.97 6.48

500 ∆HG4MP2
PBE 4.42 8.39 5.45 10.48 3.83

∆HG4MP2
PM7 8.31 26.16 11.25 32.99 6.21

1000 ∆HG4MP2
PBE 2.90 8.37 3.64 10.45 4.26

∆HG4MP2
PM7 4.64 26.15 6.21 32.91 4.74

size, however, the accuracy is lower than that of predictions on the standard enthalpy
of atomization. Nonetheless, rcb indicates, that the error estimates remain reliable.

Table 6.2: Mean absolute error (MAE), root-mean-square error (RMSE) (in kJ/mol), and rcb of predictions on
differences in the standard enthalpy between molecular structures from GPs trained on targets∆HG4MP2

PBE and

∆HG4MP2
PM7 .

Size Target MAE RMSE rcb

50 ∆HG4MP2
PBE 10.96 13.67 5.35

∆HG4MP2
PM7 30.69 39.11 6.34

100 ∆HG4MP2
PBE 10.22 12.74 4.91

∆HG4MP2
PM7 27.54 35.26 5.56

200 ∆HG4MP2
PBE 8.88 11.07 4.22

∆HG4MP2
PM7 22.95 29.75 5.81

500 ∆HG4MP2
PBE 6.17 7.70 4.37

∆HG4MP2
PM7 12.13 15.88 5.96

1000 ∆HG4MP2
PBE 4.09 5.15 4.53

∆HG4MP2
PM7 6.72 8.78 5.36

Furthermore, for the targets ∆HG4MP2
PBE and ∆HG4MP2

PM7 separately, we trained a GP
on randomly selected subsets of different size and employed the remaining structures
as an out-of-sample validation set. The MSE and mean prediction variance (

⟨
σ2
⟩
) was

calculated for GP predictions on the out-of-sample validation set. We repeated this
process to ensure that the average MSE and

⟨
σ2
⟩
converged for each size of the training

data set. In Fig. 6.4, the average MSE and average
⟨
σ2
⟩
is shown as a function of the

size of the training data set. It can be seen that both the average prediction variance
and the prediction error decrease with the size of the training data set. In addition,
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it can be observed that the values of the MSE and
⟨
σ2
⟩
are close for a given training

data set size. This indicates that the prediction uncertainties provided by the GP are
strongly related to the actual prediction error.
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Figure 6.4: Mean squared error (MSE) and mean prediction variance (
⟨
σ2
⟩
) of GP predictions on out-of-sample

data sets for targets∆HG4MP2
PBE (left) and∆HG4MP2

PM7 (right).

Hence, we demonstrated that GPs are capable of learning molecular properties of
molecular structures with reliable error estimates. Furthermore, relative molecular prop-
erties can be predicted with sufficient accuracy employing a statistical model trained
on individual molecular properties.

6.5.3 Error-Controlled Exploration

For the consecutive discovery of intermediates in the exploration of a chemical system,
we generated sequences of nodes from our reaction network. Whereas all nodes are
already known in our example network, an actual exploration procedure would expand
the network in a continuous fashion (see Chapter 3). Starting from a random initial node
in the reaction network, the remaining nodes were visited in the order of their graph
distance to the initial node (see Fig. 6.1). Nodes with the same graph distance were
discovered in a random order. Next, the error-controlled exploration strategy outlined
in Section 6.4 was applied. Here, the initial data set consisted of the first m = 75

explored nodes. The explorations were separately performed for the targets ∆HG4MP2
PBE

and ∆HG4MP2
PM7 . For each target, three different runs with different variance thresholds

were carried out. Results for the exploration with targets ∆HG4MP2
PBE and ∆HG4MP2

PM7 (on
the same sequence) are shown in Figs. 6.5 and 6.6, respectively.

From Fig. 6.5 it can be seen that the size of the training data set initially increases.
This is due to the low prediction confidence at the beginning of the exploration. The
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Figure 6.5: Size of the training data set (left) and prediction variance on the enthalpy of atomization (right) for the

ith structure in an exploration employing the PBE functional and G4MP2 as the reference.

data set increases until the prediction uncertainty is below σ2thresh (shown as a horizontal
line in Fig. 6.5, right). This is the point at which the predictions made by the GP are
trusted for the first time. If, however, the exploration reaches regions of chemical space
that are distant to the previously explored ones, the confidence will drop and new
reference calculations will be required. This can be observed in Fig. 6.5, right, where
the variance exceeds σ2thresh. Naturally, the total number of reference calculations for
the entire exploration depends on the target and σ2thresh. Finally, it can be seen that the
backtracking mechanism described in Section 6.4 is indeed necessary. In Fig. 6.5, for
σthresh = 6 kJ/mol at i = 651, the GP is updated and some predictions which previously
were inside the confidence bound now lie outside of it. Consequently, data points are
added to the data set followed by an update of the GP until all predictions are within
the confidence bound.

Fig. 6.6 shows that a larger data set is required for the target ∆HG4MP2
PM7 to reach a

standard deviation of 15 kJ/mol, than that for the target ∆HG4MP2
PBE to reach a stan-

dard deviation of 8 kJ/mol. This finding is in accordance with the results presented
in Table 6.1. The calculation of the enthalpy of atomization is faster with PM7 than
that with PBE by about an order of magnitude (for the systems studied in this work).
However, since the exploration with PM7 as the base method requires far more compu-
tationally expensive G4MP2 reference calculations (which take more than three orders
of magnitude longer than PBE calculations for the systems studied in this work), the
overall exploration takes longer with PM7 than that with PBE as the base method. We
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Figure 6.6: Size of the training data set (left) and prediction variance on the enthalpy of atomization (right) for the

ith structure in an exploration employing PM7 andG4MP2 as the reference.

note that the time required for the evaluation of the kernel and GP predictions is negli-
gible for data sets of this size. This illustrates the philosophy of the ∆-machine learning
approach that should work more efficiently for the physically more reliable model (in
our case, this is PBE). As a result, given a required confidence level, a trade-off needs to
be found between the required number of reference calculations and the computational
effort of the base method.
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7
Conclusions and Outlook

In this thesis, a new, robust, and generally applicable protocol for the fully automated
exploration of complex chemical reactions is presented. This protocol is implemented
in a software package called Chemoton. Through a user-friendly graphical interface,
even non-experts are now able to routinely explore the reactivity of molecular systems
in an automated fashion. In addition, we devised strategies to attach error bars to
properties calculated with quantum chemical methods so that meaningful conclusions
can be drawn from the exploration data.

The following steps allowed us to achieve this goal: In Chapter 3, we devised a new
protocol that through the application of heuristics based on quantum chemical observ-
ables, effectively reduces the myriad of possible side reactions that need to be explored
for all but the simplest systems to a number that is computationally feasible. Based on
electronic-structure theory the approach is applicable to arbitrary reactions and is not
limited to any sort of molecule. Starting from a set of initial conditions (i.e., starting ma-
terial, solvent, and temperature), an exploration network is built and extended through
the repeated application of our protocol. New intermediates are explored through the
construction of reactive complexes between already explored ones, new reactants, and
intramolecular reactions. By applying heuristic rules based on conceptual electronic-
structure theory, bond orders, and graph theoretical considerations, we were able to
tame the combinatorial explosion of possible reactive complexes. Subsequently, a re-
action was induced in each reactive complex and an approximate reaction path was
explored. To ensure a thorough exploration of these paths, we considered rotational
degrees of freedom during the construction of reactive complexes. Through transition
state optimizations, the approximate paths were refined to minimum-energy paths. The
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exploration network was processed to afford a compressed reaction network consisting of
molecular configurations and reaction channels connecting them. The reaction network
was then visualized by an automatically generated graph structure.

We applied our protocol to the formose reaction, a prebiotic oligomerization reaction
resulting in a plethora of products, including monosaccharides. We explored a vast num-
ber of intermediates and minimum-energy paths to yield a reaction network featuring
complex network structure and product distribution. Through the application of tree
traversal algorithms, different pathways leading to the formation of the naturally occur-
ring tetrose d-erythrose were identified. Furthermore, we discovered multiple pathways
in the reaction network that rationalize the autocatalytic properties of the formose re-
action. In addition, we showed that there can exist many minimum-energy paths with
different reaction barriers for the same chemical transformation. Many of these reaction
paths would remain undiscovered in a tedious manual exploration attempt.

In addition, we applied Chemoton to the Chatt–Schrock nitrogen-fixation cycle. Its
competing reaction paths have not been studied in sufficient detail prior to this work.
We explored a vast number of possible elementary reactions that describe protonation,
proton-rearrangement, and reduction steps. The resulting network turned out to be
highly complex and alternative routes that still sustain the catalytic cycle emerged.
The application of an automated visualization strategy by which thermodynamic and
kinetic network properties was crucial to facilitate the interpretation of such complex
reaction mechanisms.

For an improved description of complex chemical processes, the following aspects
need to be addressed. First, an appropriate solvent model is mandatory for chemical
reactions studied in the liquid phase. Clearly, the application of a continuum model is
not adequate for every solvent and region of the reaction network. At the same time,
the addition of explicit solvent molecules to the reaction network not only increases the
computational demand but could also hamper the identification of intermediates and,
in particular, transition states due to the added degrees of freedom. Strategies have
to be developed that allow one to examine in which regions of the reaction network
the addition of explicit solvent molecules (in addition to a continuum model) is strictly
necessary and where an implicit description is sufficient.

Second, the full conformational complexity of all intermediates needs to be taken into
account. The current implementation in Chemoton can only explore conformational
degrees of freedom of organic molecules. In our laboratory, methods are developed to
extend the stochastic generation of conformers to molecules containing transition metal
centers. For some intermediates with many floppy degrees of freedom (e.g., polymers), ab
initio molecular dynamics simulations or Monte Carlo configurational sampling might be
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more suitable for a sufficiently rigorous exploration of local minima and may, therefore,
be employed in specific sections of the growing reaction network.

Third, bond dissociation reactions and accompanying kinetic analyses need to be in-
corporated in the exploration protocol. Similar to the reactivity descriptors, descriptors
will need to be developed indicating the propensity for a bond to break under certain
conditions (e.g., high temperature). With this one will be able to consider the possible
degradation reactions that may deactivate reactive species (e.g., a catalyst).

Currently, the chemical reaction network is pruned by defining an energy cutoff, which
allows for the exclusion of those intermediates which are inaccessible under a range of
reasonable physical reaction conditions and on the timescale of interest. While this
rather crude approach worked well for the study of the Yandulov–Schrock catalyst,
a full kinetic study considering the time-solved concentration of all intermediates will
allow one to reduce the complexity of the reaction network even further. As a result, less
computational time will be spent on the exploration of inaccessible reaction paths, so
that methods of increased accuracy with higher computational demand can be employed
to study the remaining, accessible structures. To achieve this, Chemoton needs to be
coupled to a software for kinetic modeling (e.g., KiNetX367), in a closed-loop fashion
to determine which intermediates and reaction paths are relevant to the overall process
under given conditions.

In Chapter 4, we then argued that a procedure for quantifying the uncertainty asso-
ciated with computational models, in particular with quantum chemical calculations, is
mandatory despite their first-principles character. Otherwise, it may be difficult to draw
meaningful conclusions in view of unknown uncertainties. Unfortunately, this procedure
is neither well established nor straightforward. The abundance of benchmark studies
reporting (potentially misleading) statistical measures such as the MAE and LAE, the
hope for accurate post-Hartree–Fock methods to become applicable in a targeted way,
and the difficulty of identifying the source of error largely prevented the development
of novel approaches for reliable error estimation.

We also illustrated the different sources of errors and how to tackle them. We stress
that a clear differentiation between the different sources of error is critical for the ef-
fective application of countermeasures. While numerical errors can often be controlled,
model inadequacy and parameter uncertainty remain a major issue in quantum chem-
istry. Reducing model inadequacy through model improvement is a popular approach,
although not straightforward for most methods. In these cases, statistical methods need
to be applied in a rigorous way. While in most cases this does not improve accuracy,
it allows for reliable uncertainty predictions which are critical, especially if the error is
propagated to subsequent investigations such as kinetic studies.

In Chapter 5, a new approach for the construction of reliable, system-specific density
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functionals with Bayesian error estimation is presented. By employing a system-focused
re-parameterization of the RSH functional LC-PBE0, we were able to obtain a functional
that allows for the accurate description of a particular system of interest. By choosing a
functional based on physical principles with few parameters we also overcame the issue
of transferability. Whereas a system-specific parameterization of density functionals
is in general not a recommended strategy, here it is viable and useful because our
functional provides confidence intervals for each result, and thus, allows one to assess
whether the reported result is reliable. Clearly, our approach requires the generation of
sufficiently accurate reference data for the class of molecules under consideration, but
this is becoming comparatively easy with modern quantum chemistry software (see, e.g.,
Refs. 368,369) — even for multi-configuration cases (see, e.g., Refs. 370–372).

We applied our approach to the Yandulov–Schrock catalyst and identified that pa-
rameters in both the long-range corrected scheme and the PBE functional need to be
optimized to obtain a sufficiently flexible functional. Furthermore, we were able to show
that the reported error estimates are indeed reliable. Finally, we calculated the reaction
energies of the Chatt–Schrock cycle. We showed that the confidence level of reaction
energies can vary significantly — even if the reactions are very similar — therefore,
highlighting the need for error estimation.

We applied our error estimation scheme to a simplified model network of the formose
reaction. Since the rate constants depend on free activation energies ∆A‡,∗ through an
exponential function, errors in ∆A‡,∗ strongly affect the kinetic simulation. Therefore,
error estimates for∆A‡,∗ are mandatory for meaningful conclusions drawn from a kinetic
analysis. Nevertheless, for the simplified network, we could observe that even though the
uncertainties in free activation energies were large, the qualitative flux of concentrations
through the network remained qualitatively the same. It should be noted that errors of
other contributions of ∆A‡,∗ were not accounted for in a systematic way, and thus, the
error bars reported can be considered a lower bound for the true error.

From the two case studies, we concluded that to further increase the functionals ac-
curacy and error estimation reliability, a functional form with greater flexibility would
be beneficial. Therefore, in Chapter 6, we developed a novel approach for the rolling
improvement of quantum chemical results through the application of Gaussian pro-
cesses. By learning the error of an efficient quantum chemical method with respect to
some reference method of higher accuracy, we obtained accurate standard enthalpies
of formation for configurational isomers of the C7H10O2 stoichiometry. Accurate dif-
ferences in standard enthalpy between isomers are accessible as well. Furthermore, we
showed that the uncertainty estimates provided by our predictive model for both the
standard enthalpies of formation for molecules and differences in this standard enthalpy
of different molecules are reliable. If the uncertainty associated with a particular cal-
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culation is above a given threshold, the chosen reference method will be employed to
produce additional reference data. In this way, reference calculations are performed
only when needed, i.e., if regions of chemical space unknown to our model are ap-
proached and explored. We emphasize that our approach is independent of the chosen
electronic structure models, ranging from semi-empirical and tight-binding models to
multi-configurational approaches with multi-reference perturbation theory. Through
backtracking, previous predictions are validated by the updated model to ensure that
uncertainties remain within the given confidence bound.

In future work, the error-controlled exploration algorithm needs to be coupled to
Chemoton to obtain error estimates during the exploration in an online fashion. In
combination with our KiNetX367 algorithm for, reliable first-principles explorations
of those portions of chemical reaction space that are relevant for a specific chemical
problem become accessible. Obviously, this requires the accessibility to accurate ref-
erence calculations on demand. Exploiting, for instance, our multi-configurational di-
agnostic373 allows one to decide on the single-reference vs. multi-reference nature of
the molecular structure subjected to a reference calculation. For single-reference cases,
explicitly correlated, local coupled-cluster calculations368,369 are the method of choice
as they can be easily launched in an automated manner and are known to be highly
accurate. For multi-configurational cases, automated complete-active-space type calcu-
lations can be launched with our fully automated procedure for the selection of active
orbital spaces.372,374,375
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A
Computational Methodology

A.1 Exploration of Reaction Networks

The explorations of the formose reaction and the Yandulov–Schrock catalyst were carried
out with our program package Chemoton in a fully automated fashion. The exploration
protocol was implemented in C++.

All calculations and the progress of the explorations were saved to a Mongo
database.376 Automated data analyses were performed with the Python libraries
pandas377 and matplotlib.378 The graphical representations of the reaction networks
were created by the Graphviz program.379

A.1.1 Formose Reaction

All quantum chemical calculations were performed with the Q-Chem program package
(version 4.3)380 employing the PBE exchange-correlation functional195 and a double-ζ
basis.381 We emphasize that our exploration protocol works with any electronic structure
method and we chose a density-functional model for the sake of convenience. Also, for
the raw-data generation other quantum chemistry packages can be easily interfaced.

For single point calculations, structure optimizations, and vibrational analyses default
settings were kept. The maximum number of self-consistent field calculations was set to
1200 for structure optimizations, potential energy scans, freezing-string calculations, TS
searches, and IRC calculations. For potential energy scans the convergence on energy
change of successive optimization cycles was set to 10−4 Hartree. In freezing-string
calculations the number of nodes was chosen to be 20 and the number of perpendicular
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gradient steps was six. For TS searches the maximum allowed step size was reduced to
0.05 .

Activation barriers were approximated by the difference in electronic energy of reac-
tant and TS, i.e., vibrational corrections were not included (this may be easily changed
in standard approximations valid for the gas phase, but will increase the computational
effort for the raw data generation). It is also easy to switch on a continuum solvation
model in the exploration. However, we were interested in the exploration of a generic
network first and therefore did not switch on dielectric continuum solvation. Solvation
can then be studied in a subsequent step, where the network is copied multiple times to
account for different solvation environments (also considering extensive microsolvation
and configuration-space sampling as an intermediary layer between the solute and the
continuum embedding) into which each isolated-structure node is then automatically
embedded. Further refinement of these networks within the solvation model may be
considered afterward.

A.1.2 Yandulov–Schrock Catalyst

Restricted and unrestricted density-functional-theory calculations were carried out de-
pending on the lowest spin multiplicity of a given intermediate. For this, BP86/def2-
SV(P)192,382,383 structure optimizations of reactive complexes were performed with the
program package Turbomole384 (version 6.4.0) including the resolution-of-the-identity
density-fitting technique. Single-point calculations were considered to be converged
when the total electronic-energy difference between two iteration steps was less then
10−7 Hartree. Structure optimizations were considered converged when the norm of the
electronic-energy gradient with respect to the nuclear coordinates dropped below 10−4

Hartree/Bohr. If a structure optimization failed because a self-consistent-field calcula-
tion did not converge, the damping parameters had been changed automatically and
the optimization was restarted. In those cases where a structure optimization did not
converge within 1200 iterations, the corresponding data was saved and the structure
was manually inspected to decide whether it should be part of the chemical reaction
network or not. 9607 structure optimizations were carried out in total.

Constrained BP86/def2-SV(P) optimizations were performed with Gaussian385 (ver-
sion 09, revision C.1) to obtain reasonable starting structures of TSs, which were refined
with Turbomole’s trust-radius-image-based EVF optimization choosing a trust-radius
of 0.2 Å. The eigenmode to follow was obtained from a Mode-Tracking calculation.29,30

From the converged TSs, intrinsic reaction paths were calculated with Gaussian to de-
termine whether a desired TS was found. We employed the default convergence criteria
for all Gaussian calculations. If the constrained optimization scan with a subsequent
EVF calculation did not converge to the desired TS, the freezing-string method as imple-

100



Bayesian Error Estimation A.2

mented in Q-Chem (version 4.0.1)380 was employed with subsequent EVF as described
above. We identified 2318 elementary reactions for which TSs were optimized.

To shed more light on the success rate of identifying TSs for these reactions by our
automated search and therefore of verifying the assumption that two intermediates are
truly connected by an elementary reaction, we may add some additional details. 1082
potential elementary reactions were automatically identified for the first and 1236 for the
second half of the Chatt–Schrock cycle. The TS search was then conducted with three
different strategies yielding a total of 6954 TS searches. This number, however, is only
an upper bound as a search was stopped once one of these strategies was successful. In
the first half of the cycle, our automated protocol identified 329 out of the 1082 potential
elementary reactions by optimizing the TS. In the second half, it identified 613 out of
the 1236 potential elementary reactions. For some steps, for which our implementation
was not able to find a TS, we verified by manual inspection that a TS is not likely to
exist or to be of sufficiently low energy. Hence, our algorithm produces more potential
pairs that could be connected by an elementary reaction than there are. Of course, this
number is determined by the structural similarity measure that we employ to relate the
two structures. Obviously, our RMSD criterion produces many false positive results.
However, this is actually desired as one cannot be certain to have found all relevant
vertices and edges of a reaction network so that all criteria and measures should be set
and selected in a conservative and therefore not too restrictive way.

The calculation of the ELF and of the electrostatic potential were performed with
Molden 5.4.386 In the color range of the electrostatic potential mapped onto the ELF
isosurface, the most positive charge was omitted as otherwise the color differences be-
tween all other atoms would have been very small. The presentation of the data in Fig.
3.14 was generated with Jmol 14.0.7387 from a cube file produced with Molden.

A.2 Bayesian Error Estimation

For both the study of the Yandulov-Schrock catalyst and the formose reaction network
data analysis and visualization were carried out with the software packages pandas377

and matplotlib.378

A.2.1 Yandulov–Schrock Catalyst

All BP86/RI/def2-TZVP192,382,383 model-catalyst structures in DP and DA were opti-
mized with the program package Turbomole.384 BP86/RI/TZVP+SV(P) optimized
structures of the full Yandulov–Schrock catalyst were taken from Ref. 179.

All CCSD(T) single-point calculations were carried out with the Molpro 2010.1
program package.388 For the elements hydrogen, carbon, and nitrogen the aug-cc-pVDZ
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basis set389 was chosen. For molybdenum a double-ζ basis set together with an effective
core potential (aug-cc-pVDZ-PP) was employed.390 Clearly, for truly accurate reference
data much larger one-electron basis sets or F12 basis sets are required. However, we
already stress at this point that all conclusions drawn in this work will remain unchanged
if the reference energies are corrected by a constant energy shift that may be different
for different pairs of structures.

All subsequent DFT single-point calculations were carried out with the NWChem
program package.391 The following density functionals were employed: BP86,192,382

B3LYP,190–192 PBE,195 PBE0,194 LC-PBE0, M06-2X,257 M06-L,392 TPSS,393 and
TPSSh.196 Furthermore, for BP86, B3LYP, PBE0, M06-2X, M06-L, TPSS, and TPSSh
we considered Grimme’s third generation dispersion correction,264,394 denoted as
BP86-D3, B3LYP-D3, PBE0-D3, M06-2X-D3, M06-L-D3, TPSS-D3, and TPSSh-D3,
respectively. For all DFT calculations on structures in DP and DA a triple-ζ basis
set (def2-TZVP) was chosen for all atoms.383 Calculations on the Yandulov–Schrock
catalyst were carried out with a triple-ζ basis set (def2-TZVP) on molybdenum
and nitrogen atoms, and a double-ζ basis set (def2-SV(P)) on carbon and hydrogen
atoms.383 In all DFT calculations, scalar-relativistic effects were taken into account
for the elements molybdenum and chromium by means of Stuttgart effective core
potentials.395

The set of parameters employed for α in the LC*-PBEO(DP) functional is: {0.2147,
0.1640, 0.2267, 0.2966, 0.1563, 0.1563, 0.3011, 0.2363, 0.1375, 0.2183, 0.1380, 0.1378,
0.1943, 0.0222, 0.0372, 0.1301, 0.0941, 0.2001, 0.1025, 0.0622, 0.2921, 0.1570, 0.1804,
0.0612, 0.1315}.

The set of parameters employed for α in the LC*-PBEO(DA) functional is: {0.001,
0.1255, 0.0775, 0.0088, 0.2429, 0.0892, 0.0645, 0.2151, 0.0236, 0.0199, 0.1383, 0.1982,
0.1847, 0.1008, 0.0468, 0.2582, 0.3978, 0.2084, 0.1381, 0.1885, 0.0959, 0.1401, 0.0944,
0.1149, 0.1394}.

A.2.2 Formose Reaction Network

The reference set consists of relative energies between structures taken from Refs. 170
and 311. These energies were determined from density fitting local coupled cluster
(DF-LCCSD(T0)-F12a/cc-pVTZ-F12)396,397 single-point calculations which were car-
ried out with Molpro (version 2015).388 The cc-pVTZ/JKFIT basis398 was employed
for Fock matrix fitting and the aug-cc-pVTZ/MP2FIT basis399 for the fitting of all
other integrals. All DFT single-point calculations were carried out with the NWChem
program package.391 The following density functionals were employed: BP86,192,382

B3LYP,190–192 PBE,193 PBE0,194 LC-PBE0, M06-2X,400 M06-L,392 TPSS,393 and
TPSSh.196 Furthermore, for BP86, B3LYP, PBE0, M06-2X, M06-L, TPSS, and TPSSh
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we considered Grimme’s third generation dispersion correction,262,394 denoted as
BP86-D3, B3LYP-D3, PBE0-D3, M06-2X-D3, M06-L-D3, TPSS-D3, and TPSSh-D3,
respectively. For all DFT calculations a triple-ζ basis set (def2-TZVP) was chosen for
all atoms.383

The set of parameters employed for α in the LC*-PBE0 functional is: {0.5590, 0.3943,
0.4642, 0.6166, 0.5715, 0.2280, 0.4607, 0.3277, 0.3335, 0.3956, 0.3634, 0.5216, 0.4379,
0.3607, 0.3996, 0.3863, 0.5264, 0.3212, 0.3838, 0.2429, 0.0377, 0.4249, 0.4504, 0.2564,
0.6201, 0.1704, 0.3515, 0.3234, 0.5311, 0.5235, 0.3647, 0.3917, 0.2388, 0.1068, 0.3040,
0.3649, 0.4946, 0.4912, 0.2992, 0.3095, 0.2194, 0.1745, 0.1399, 0.5816, 0.2845, 0.2931,
0.1947, 0.4399, 0.1511, 0.3203}.

A.3 Error-Controlled Exploration

The data set employed in this study is a subset of the GDB-17 data set.401 All G4
geometries were taken from Ref. 361. G4MP2 enthalpies of atomization were also taken
from Ref. 361. DFT enthalpies of atomization were based on electronic energies ob-
tained with the PBE exchange-correlation functional193 and a double-ζ basis.381 DFT
calculations were performed with the program packages Q-Chem (version 4.3).380 Vi-
brational frequencies and rotational constants were taken from Ref. 361. Accordingly,
∆HG4MP2

PBE is given by the difference in G4MP2 and PBE electronic energies of atomiza-
tion as the nuclear contributions cancel in this setup. By contrast, PM7 enthalpies of
atomization were calculated from enthalpies of formation obtained with the MOPAC
program (version 2016).402

For the construction of the reaction network, transformation rules were applied to
the graph representations of the constitutional isomers of the C7H10O2 stoichiometry.
These rules describe nucleophilic addition and substitution reactions, isomerizations of
double bonds, and [2+2] cycloaddition reactions. In this study, the hydroxyl group
and the α-carbon of an aldehyde or a ketone acted as nucleophiles. Double bonds and
ethers were considered electrophilic. We emphasize that some reactions in this reaction
network may feature high activation barriers.

The SOAP average kernel was evaluated with the glosim package.321 Following pre-
vious work,359,360 we chose an exponent of ζ = 4.0. In addition, we set the Gaussian
width parameter to be σ = 0.3Å and the cutoff radius to be Rcut = 4.0Å. Furthermore,
we chose the number of radial and angular functions to be 12 and 10, respectively. Our
model would likely benefit from an exhaustive search over hyperparameters, however,
consistent with previous findings,321 the performance of the kernel is not highly sensitive
to the chosen set of parameters.

GP predictions were carried out with the library GPy.403 Data analysis and visual-
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ization were performed with the Python libraries pandas377 and matplotlib,378 re-
spectively. The graphical representation of the reaction network was created by the
Graphviz program.379
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Abbreviations

ADDF anharmonic downward distortion following

AFIR artificial force-induced reaction

Cp∗ pentamethylcyclopentadienyl

DFT density functional theory

DG distance geometry

ELF electron localization function

EVF eigenvector following

HF Hartree–Fock

HIPT hexa-iso-propyl terphenyl

GP Gaussian process

IRC intrinsic reaction coordinate

LAE largest absolute error

LC long-range corrected

Lut lutidine

MAE mean absolute error

MC Monte Carlo

MCS maximum common subgraph

MD molecular dynamics

MEP minimum-energy path

MSE mean signed error

PES potential-energy surface

QED quantum electrodynamics

RMG reaction mechanism generator

RMSD root-mean-square deviation

RMSE root-mean-square error
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RSH range-separated hybrid

SOAP smooth overlap of atomic potentials

TS transition state

TSSCDS transition state search using chemical dynamics simulations

XC exchange–correlation
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