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Abstract

Turbulent combustion has been for a long time and is until nowadays a very active and
interesting field of research. It can be subdivided into three major parts, the discovery and
investigation of physical combustion and turbulent flow phenomena and their interactions,
the search for mathematical descriptions of those effects and finally, the development of
computer algorithms to simulate turbulent reactive flows. Discovering and understanding
of new physical combustion phenomena is mainly achieved by experiments, but also more
and more by direct numerical simulation (DNS). Since such real and numerical experiments
are expensive and time consuming, it is crucial to derive physical models, which then are
applied in so called lower closure level computer codes in order to compute real world
configurations. There exist different modeling approaches based on the Reynolds averaged
Navier Stokes (RANS) equation. Common representatives of such approaches are two
equation turbulent viscosity models, e.g. k-ε- or k-ω-models, or Reynolds stress models.
Most of them are based on second moment evolution equations and therefore only limited
flow information is available. A more sophisticated approach are the joint probability
density function (PDF) methods, where a transport equation for the joint PDF of different
flow and thermodynamic quantities is solved; consequently the whole statistical information
of those quantities is available. Furthermore, turbulent convection and chemical source
terms appear in closed form in the joint PDF framework.

In a first part of this work algorithmic issues of a so called hybrid finite volume-particle
PDF solution method are addressed. A second part introduces and explains a new modeling
approach for partially premixed combustion. In the hybrid approach, different consistency
conditions between the finite volume and the particle part of the overall algorithm must
be fulfilled. Here, a modified solution algorithm is presented, which ensures energy consis-
tency by solving the energy equation only once.
The time integration of stochastic differential equations (SDE) is a central topic when solv-
ing PDF transport equations numerically with particle Monte Carlo methods. Therefore
an adapted numerical integration scheme is presented based on Itô calculus, which honors
the exact single and joint statistics of the particle position and velocities for arbitrary large
time steps.
The newly developed model for partially premixed combustion is a combination and an
extension of the flamelet approach, a molecular mixing model and a progress variable ap-
proach. The flamelet idea and a mixing model are combined to become a reactive mixing
model, where particles evolve in mixture fraction-enthalpy space on representative, phys-
ically motivated profiles. The shape of the profiles is determined by the thermodynamic
state of the particles and their environment. This thermodynamic state is triggered by
a progress variable, similar to the Bray, Moss and Libby (BML) approach for premixed
combustion.
Such a modeling framework can only be constructed in the context of PDF methods, since
joint statistical information of mixture fraction, scalar dissipation rate and progress vari-
able is required.
The model performance is analyzed by means of flames E and F of the Sandia National
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Laboratory. These flames exhibit all the important features found in partially premixed
combustion and therefore are challenging test cases.
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Zusammenfassung

Die turbulente Verbrennung ist seit langer Zeit und bis heute ein sehr aktives und in-
teressantes Forschungsgebiet. Es kann in drei Hauptgebiete unterteilt werden, der Ent-
deckung und Untersuchung von physikalischen Verbrennungs und turbulenten Strömungs-
phänomenen und deren Wechselwirkungen untereinander, das mathematische Beschreiben
dieser Effekte und letztlich der Entwicklung von Computeralgorithmen um turbulente reak-
tive Strömungen zu simulieren. Das Endtecken und Verstehen von neuen physikalischen
Vorgängen wird hauptsächlich durch Experimente aber auch mehr und mehr durch Di-
rekte Numerische Simulation (DNS) erreicht. Diese realen und numerischen Experimente
sind teuer und zeitintensiv, daher ist es wichtig für gewisse physikalische Effekte math-
ematisch Modelle herzuleiten, die dann in Computercodes mit sogenanntem niedrigeren
Schliessungsgrad eingesetzt werden können. Es existieren verschiedene Modellansätze
die auf einer statistischen Beschreibung des Strömungsfeldes durch die Reynolds gemit-
telten Navier Stokes (RANS) Gleichungen basieren. Solche allgemein benutzte Ansätze
sind Zweigleichungsmodelle wie zum Beispiel k-ε- oder k-ω-Modelle oder Reynoldsspan-
nungsmodelle. Die Meisten von ihnen basieren auf Entwicklungsgleichungen für die zweiten
statischen Momente von Strömungsgrössen und deshalb ist nur eine limitierte Menge von
Strömungsinformationen verfügbar. Eine raffinierterer Ansatz ist die Verbundswahrschein-
lichkeitsdichtefunktion (Verbunds-WDF, engl. PDF) Methode bei der eine Transportgle-
ichung für die Verbundswahrscheinlichkeit von verschiedenen strömungs- und thermody-
namischen Grössen gelöst wird und somit die ganze statistische Information zur Verfügung
steht. Ausserdem erscheinen im Rahmen der WDF Formulierung die turbulente Konvek-
tion und der chemische Quellterm in geschlossener Form.

In dieser Arbeit wird in einem ersten Teil auf algorithmische Probleme eines sogenannten
hybriden Finite Volumen - Partikel Lösungsverfahren eingegangen und in einem zweiten
Teil wird ein neuer Modellansatz für partiell vorgemischte Verbrennung präsentiert.
In dem hybriden Lösungsverfahren müssen verschiedene Konsistenzbedingungen zwischen
dem Finite Volumen- und dem Partikelteil des Codes erfüllt sein. Hier wird ein alterna-
tiver Lösungsalgorithmus entwickelt und beschrieben, der die Energiekonsistenz durch das
Lösen nur einer Energiegleichung sicherstellt.
Die zeitliche Integration von stochastischen Differentialgleichungen (SDG) ist ein zentrales
Thema beim numerischen Lösen von WDF Transportgleichungen mit Monte Carlo Partikel
Methoden. Ein adaptiertes numerisches Integrationsschema basierend auf der Integralrech-
nung von Itô wird hergeleitet, welches die exakte Einzel- und Verbundsstatistik von Partikel
Position und Geschwindigkeit für beliebig grosse Zeitschritte wiedergibt.
Das neue Modell für partiell vorgemischte Verbrennung ist eine Kombination und Er-
weiterung des Flamelet Ansatzes, eines molekularen Mischungsmodells und eines Fortschrittsvari-
ablen Ansatzes. Die Flamelet Idee und ein Mischungsmodell werden zu einem reaktiven
Mischungsmodell kombiniert, bei dem sich Partikel auf repräsentativen, physikalisch mo-
tivierten Profilen im Mischungsbruch - Enthalpy Raum entwickeln. Die Form der Profile
wird durch den thermodynamischen Zustand der Partikel und ihrer Umgebung bestimmt.
Getriggert wird dieser thermodynamische Zustand durch eine Fortschrittsvariable, ähnlich



IV

dem Ansatz von Bray, Moss und Libby (BML) für vorgemischte Verbrennung.
Ein solches Verbrennungsmodell ist nur möglich im Kontext von WDF Methoden weil die
Verbundsstatistik von Mischungsbruch, skalarer Dissipationsrate und der Fortschrittsvari-
ablen vorfügbar sein muss.
Das Verhalten des Modells wird anhand von denn Flammen E und F des Sandia National
Laboratory analysiert. Diese Flammen weisen alle wichtigen Eigenschaften von partiell
vorgemischter Verbrennung auf und sind daher anspruchsvolle Testfälle.
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Nomenclature

Generally, Reynolds averaged quantities are denoted by angle brackets 〈·〉 and Favre aver-
ages by a tilde ·̃. For repeated indices the Einstein summation rule applies, if not mentioned
otherwise. Bold printed variables are vector valued.

Roman

A drift vector in the Fokker-Planck equation (Eq. (4.4))
ai drift coefficients in the SDE’s (Eq. (4.11))
B diffusion matrix in the Fokker-Planck equation (Eq. (4.4))
bij diffusion coefficients in the SDE’s (Eq. (4.11))
Cµ turbulent viscosity constant in the k-ε model (Eq. (3.7))
C0 model constant in the SLM (Eq. (4.35))
C3 model constant in the Jayesh-Pope model (Eq. (4.38))
Cω1 model constant in the Jayesh-Pope model
Cω2 model constant in the Jayesh-Pope model
CΩ model constant (conditional turb. frequency Eq. (4.36))
Cφ model constant in the IEM mixing model (Eq. (4.37))
Cχ scalar dissipation rate model constant
Cu velocity CFL no. local particle time step alg. (app. B)
Cω frequency CFL no. local particle time step alg. (app. B)
c reaction progress variable
c′′ Favre fluctuation of reaction progress variable
c∗ reaction progress variable of a particle
ĉ speed of sound modified Euler system
cp specific heat at constant pressure
c̄p,α integrated spec. heat (const. press., species α, Eq. (2.10))
c̄p specific heat at const. pressure of a mixture (Eq. (2.12))
cv specific heat at constant volume
c̄v,α integrated spec. heat (const. vol., species α, Eq. (2.11))
c̄v specific heat at const. vol. of a mixture (Eq. (2.12))
Da Damköhler number (τt/τc) (Eq. (7.1))
DP pilot burner diameter
Dj jet diameter
Es total sensible energy (Eq. (2.14))
es sensible energy (Eq. (2.13))
F vector of arbitrary volume force (Eq. (2.3))
Fx(w) x-flux vector (Eq. (5.4))
Fy(w) y-flux vector (Eq. (5.5))

F̂x(ŵ) x-flux vector modified Euler system (Eq. (5.11))

F̂y(ŵ) y-flux vector modified Euler system (Eq. (5.11))
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F(V ,Ψ,x; t) mass density function (MDF) (Eq. (4.29))
F∗(V ,Ψ,x; t) MDF of modeled random variables U ∗, Φ∗ and X∗

f(x; t) position joint PDF
f(x2; t2|x0) joint PDF of x2 conditioned on X0 = x0 (Eq. (4.1))
f(V ; t) PDF of U(t)
f(V ,Ψ|x0, t0) conditional velocity-composition joint PDF (Eq. (4.25))
f(V ,Ψ;x, t) Eulerian velocity-compositions joint PDF
fL(V ,Ψ,x; t|V0,Ψ0,x0) Lagrangian joint PDF of U , Φ and X
f ∗L(V ,Ψ,x; t|V0,Ψ0,x0) modeled Lagr. joint PDF of U ∗, Φ∗ and X∗

f ∗(V ,Ψ;x, t) modeled Eulerian joint PDF of U ∗ and Φ∗

f ′(V ,Ψ;x, t) fine grained joint PDF of vel. and comp. (Eq. (4.23))
f(V ,Ψ, θ;x, t) Eulerian joint PDF of U , Φ and ω
f̄(Ψ;x, t) composition joint FDF (Eq. (3.20))
G(t) function of a stochastic process (appendix A)
G(x, t) level set function (G-equation)
G(r,x) low pass filter function in LES
ˆ̂gl,k(x) top hat basis function for data extraction
ĝl,k(x) bi- or tri-linear basis function for data extraction
hs sensible enthalpy (Eq. (2.13))
h′′s Favre fluctuating enthalpy
h∗s modeled sensible particle enthalpy
h0
f,α formation enthalpy of species α

ĥ(Z, χ) mixing line function (Fig. 16)
hf (Z, χ) enthalpy function of the steady flamelet solution (Fig. 16)
hf1(χ) enthalpy on the left edge of the flame zone (Fig. 16)
hf2(χ) enthalpy on the right edge of the flame zone (Fig. 16)
Jαi diffusive flux of scalar α in ith-direction
Ka Karlovitz number (τc/τK) (Eq. (7.2))
Kn Knudsen number (λ/l)
k turbulent kinetic energy (1/2ũiui)
Le Lewis number (Γh/Γα)
Lr normalization length (Urτ)
Lx length of computational domain
Ly width of computational domain
l length scale
M total mass in a domain
Ma Mach number
m absolute mass
mα absolute mass of species α
Np number of particles in a computational cell
Ns number of species

P turbulence production term (−ũiuj∂Ũi/∂xj)
P ignition probability of a particle (Eq. (8.5))
p pressure (Eq. (2.13))
pref reference or ambient pressure
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p̄ filtered pressure
p′ fluctuating pressure
q∗ arbitrary particle property
R specific gas constant (Eq. (2.8))
Ru universal gas constant (8.314472 J/(K mol))
R right hand side of Euler equation (Eq. (5.2))
S entropy

S̃c Favre averaged progress var. source term (Eq. (8.6))
SEs chemical reaction energy source term (Eq. (2.15))
Sh chemical reaction enthalpy source term
Sφ, Sα chemical reaction scalar source term (Eq. (2.16))
Sω turbulence frequency source term (Eq. (4.39))

S̃ij Favre averaged rate of strain tensor (Eq. (3.11))
sL laminar flame speed
T temperature
T time scale of a random process
T deviatoric stress tensor
Tij residual stress tensor (Eq. (3.19))
Tst flame temperature at the stoichiometric point
t time coordinate
t0 initial time
4t time interval, time step
U(t) stochastic process
U(t) stochastic process for particle velocity (Eq. (6.5))
Ud inlet velocity (2D flame tables)
U(X, t) Eulerian fluid velocity
U ∗(t) modeled fluid particle velocity
U ∗(X, t) modeled Eulerian fluid velocity
U+(X0, t) velocity of a real Lagrangian fluid particle (Eq. (4.17))
Ū filtered velocity vector (Eq. (3.16))
U ′′ Favre fluctuation of filtered velocity (Eq. (3.17))

Ur normalization velocity (
√

2k0/3)
u Favre fluctuating velocity vector (Eq. (3.3))
u′ residual velocity vector (Eq. (3.15))
V spatial volume
V sample space variable of the velocity vector U
v sample space variable of Favre fluctuating velocity u
W(x|z, t) jump probability (sec. 4.1.1)
Wα molecular weight of species α
W (t) Wiener process
W (t) vector-valued Wiener process (Eq. (4.14))
w vector of conserved variables (Eq. (5.3))
ŵ conserved variables modified Euler eq. (Eq. (5.11))
X(t) random variable evolving in time
X(t) vector-valued random variable
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X(t) evolution of particle position (Eq. (6.4))
X∗(t) modeled particle position
X+(X0, t) position of a Lagrangian fluid particle
X0 random initial position at t = t0
x spatial coordinate vector
x sample space var. of vector valued random process X(t)
x0 initial spatial coordinates
Y vector of species mass fractions
Yα species mass fraction of species α (Eq. (2.9))
Z(x, t) mixture fraction
Zf1 left bound of the flammable range (Fig. 16)
Zf2 right bound of the flammable range (Fig. 16)
Zj jet mixture fraction
Zco coflow mixture fraction
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Greek

α model parameter ignition probability (Eq. (8.5))
ΓT heat diffusion coefficient
Γh heat diffusion coefficient
Γ general diffusion coefficient
γ′ ratio of specific heat capacities (Eq. (2.12))
δ(X − x) Dirac delta function
δij Kronecker delta
ε very small number
ε dissipation of turbulent kinetic energy
η(x, t) field of local particle time steps (appendix B)
η∗ local particle time step (appendix B)
θ sample space variable of turbulence frequency ω
λ mean free path length

λ̂ Eigenvalues of modified Euler system (Eq. (5.16))
µ dynamic viscosity
ν kinematic viscosity
νt turbulent or eddy viscosity
ξ random number (normal Gaussian distributed)
ξ(t) general random term
ρ fluid density
ρ+(X0, t) density of a real Lagrangian fluid particle (Eq. (4.17))
σ variance parameter Ornstein-Uhlenbeck proc. (Eq. (4.8))
τ flow time scale
τb burning time
τc chemical time scale
τK Kolmogorov time scale
τt integral turbulent flow time scale
Φ composition vector
Φ∗(t) modeled particle composition
Φ+(X0, t) comp. of a real Lagrangian fluid particle (Eq. (4.17))
φ scalar components
φ′′α Favre fluctuation of scalar component α
χ scalar dissipation rate (Eq. (7.5))
Ψ sample space vector of compositions Ψ
Ω conditioned turbulence frequency
Ω computational domain
ω turbulence frequency (ε/k)
ω∗(t) modeled particle turbulence frequency

Subscripts



XX

Yα species or scalar α in a mixture
Ub boundary value
qref some reference value
q0 initial value

Superscripts

qFV from finite volume algorithm calculated quantity
qP from particle algorithm calculated quantity
qn, qn+1 time stamp, old and new time level
X∗ modeled particle quantity
X+ real fluid particle quantity

Symbols

D/Dt substantial or material derivative (∂/∂t+U · ∇)

D̃/D̃t change along mean fluid particle paths (∂/∂t+ Ũ · ∇)
U ⊗U outer (dyadic) vector or tensor product
U ·U inner vector or tensor product
∇ gradient operator
max(m,n) the greater out of m and n
min(m,n) the smaller out of m and n
∀i for all i

Abbreviations

DNS direct numerical simulation
FDF filtered density function
FV finite volume
IEM interaction by exchange with the mean mixing model
ISAT in situ adaptive tabulation
LES large eddy simulation
MC mapping closure
MDF mass density function
PDF probability density function
OU Ornstein-Uhlenbeck process
PSP parametrized scalar profile
RANS reynolds averaged Navier Stokes
REDIM reduced intrinsic manifold
rms root mean square
SDE stochastic differential equation
SLM simplified Langevin model



1 Preface

It is a fact that the knowledge of the physics in turbulent reactive flows is far from being
complete. Since more than a century scientists try to understand and control combustion
events in order to develop better and particularly more efficient combustion devices. After
the availability of appropriate mathematical tools, engineers and scientists started to de-
scribe and calculate simple reactive flows. A lot of basic theoretical findings and modeling
ideas had been developed during this early times, but only later, when computers became
available, more complicated flames could be simulated.
There may be distinguished between three stages which are responsible for good simula-
tion results. First, one has to know and understand the underlying physical and chemical
processes of the considered scenario. That can be obtained for instant by experimental
investigations. Examples of such processes in turbulent combustion are general mutual in-
teractions of turbulent flow structures with chemical processes, flow laminarization, flame
front propagation, mixing dynamics of chemical components or extinction and re-ignition
events. Afterwards, the correct mathematical formulation (governing equations), which
accurately describe the involved physics and the chemistry, must be developed. In the
case here, the governing equations for the flow are mass conservation, the Navier Stokes
equation, the energy equation, the equation of state and the reaction balance equations for
the chemistry. Usually, it is not feasible to solve the governing equations for a practical
problem directly (so called ”direct numerical simulation” (DNS)). Instead, the fastest and
smallest processes, which impose the most severe time step and grid resolution restrictions
on the numerical scheme, are omitted. The effect of these neglected processes must then
be modeled appropriately. A common way of achieving this is by splitting the dependent
variables (i.e. velocity, pressure, energy, scalars) into a mean and a fluctuating part and
then deriving moment equations. In simple methods one solves for mean and variance
quantities and models the influence of the higher moments. More general are the joint
probability density function (PDF) methods. From stochastic theory a general joint PDF
transport equation can be derived. This equation becomes the governing equation for tur-
bulent reactive flows by including the physical conservation laws. Pope [63] developed the
foundations of this approach.
Next, two algorithmic issues are shortly outlined, which are presented in detail in part I of
this work.

The governing joint PDF transport equation has to be advanced in a high dimensional
space, since it contains at least three velocity and Ns + 1 scalar components (i.e. Ns
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species mass fractions and enthalpy) plus time. Hence typically a particle Monte Carlo
solution algorithm is employed, where the PDF at each location is represented by stochastic
particles. A problem of Monte Carlo methods is that a large number of particles must be
applied to keep the statistical and the deterministic bias errors small. Therefore, Jenny
et al. [36] and Muradoglu et al. [49] successfully developed a more efficient algorithm,
called hybrid finite volume-particle method. The idea behind this approach is to compute
mean fields with a common finite volume method and to obtain all the unclosed terms
(”fluctuating” quantities) by a particle method. This has the major advantage that mean
quantities used in the particle evolution equations must not be extracted from the particle
field itself and instead, are calculated by the finite volume scheme. A drawback of the
hybrid approach is that some fields are computed twice, i.e. in the finite volume and
in the particle part of the algorithm, which gives rise to consistency requirements. The
consistency is fulfilled by the governing equations, but due to computational imprecisions
it is not automatically achieved on the algorithmic level. Hence, correction schemes have
to be applied to enforce a consistent overall algorithm. The focus in this lies on the energy
consistency. An alternative way, other than a correction scheme, is presented to achieve
energy consistency by determining the mean energy field from the particles alone and using
it directly in the finite volume scheme for computing the mean velocity and pressure fields.
This approach is related to the method of Muradoglu [51], but here, it is rather a change
of concept than a correction scheme.

From stochastic theory it is known that a PDF f(x; t), which evolves in time according
to a Fokker-Planck or more general a Kolmogorov-Chapman equation can consistently be
represented by a process in x-space governed by a stochastic differential equation (SDE).
Here, the modeled PDF transport equation for turbulent reactive flows is a Fokker-Planck
equation and the model fluid particles used in the Monte Carlo solution algorithm follow
laws, which are typically in the form of Langevin equations. This class of SDE’s has
a deterministic drift and a stochastic diffusion term, usually represented by a Brownian
motion or a Wiener process. Such Langevin equations can involve very small timescales
and hence impose severe time step restrictions on the time integration schemes. Here,
a integration scheme based on the approach by Minier et al. [47] for the position and
the velocity of a particle is developed, which is exact in time for arbitrary large time
steps and also honors the single and joint statistics of the involved quantities. This is
achieved through the analytical integration of the stochastic terms in the particle evolution
equations by means of Itô calculus and splitting up the stochastic term of the integrated
velocity equation. The fact that the Wiener increments are all independent and Gaussian
distributed is used to obtain the final scheme. A homogeneous, isotropic turbulent flow
test case proves the accuracy of the new scheme compared to an ordinary second order
finite differencing integration scheme.

In part II of the thesis, the focus lies on the modeling of turbulent partially premixed
combustion. As the name implies, such flames feature properties of both diffusion and
premixed combustion. Usually the basic physical setup is the one of a non-premixed flame,
but due to high scalar dissipation rates in some regions, local extinction occurs and the
mixture becomes partially premixed. Farther downstream the mixture can re-ignite and
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processes as for instance flame propagation occur, similar as in premixed flames.
Hence, existing model approaches in the context of RANS turbulence modeling are often
a combination of the flamelet approach [56] and a level set (e.g. G-equation [80]) or a
progress variable approach. Numerous researchers followed this track with some success;
e.g.: Bradley et al. [10], [7], [8] and [9], Sanders and Lamers [69], Müller et al. [48],
Kronenburg [38], Vervisch [75], Ihme [33].

Two main advantages of transported PDF methods and the Monte Carlo solution algorithm
are that the modeling can be done in quite a natural manner by considering the evolution
of Lagrangian model fluid particles and the availability of joint statistics of different quan-
tities. The combustion model presented in this work combines a flamelet with a progress
variable approach. Based on the joint statistics of mixture fraction, scalar dissipation rate
and progress variable, physically motivated particle paths in mixture fraction-enthalpy
space are constructed, on which the model fluid particles advance in time. A conventional
molecular mixing model is applied to evolve the mixture fraction, whereas a so called
reactive mixing model describes the evolution of reactive scalars (here the enthalpy). Ad-
ditionally, an ignition probability for the progress variable of a model fluid particle has to
be modeled.

A short outline of the thesis structure is given in the following. In chapter 2, the governing
equations of fluid motion and thermo-chemistry are presented, followed in chapter 3 by an
overview of broadly used numerical solution and modeling strategies. Chapter 4 explains
the basic foundation of transported PDF methods and some aspects of their numerical
solution. The energy consistency issue is addressed in chapter 5 and in chapter 6 a time
accurate scheme to integrate stochastic differential equation is explained.
The first chapter of the modeling part (chapter 7) reviews and explains the various physical
processes in different combustion regimes and their modeling approaches. The development
of a new model for partially premixed combustion and its validation is the topic of chapter
8. Finally, in chapter 9 the work is shortly summarized, conclusions are drawn and an
outlook is given.





Part I

PDF Algorithm





2 Governing Equations of Fluid Motion and Thermo-

Chemistry

In this chapter the physical and mathematical basics for the understanding of turbulent
reactive flows are introduced. The governing equations for the fluid flows considered in this
work are the Navier Stokes equation, which include mass-, momentum- and energy con-
servation laws. The thermodynamical state of the fluid is governed by chemical reactions,
heat diffusion, convection and an equation of state. At low Mach numbers, the influence
of the chemical reactions on the hydrodynamics is only through the fluid density.

2.1 Fluid Motion Equations

The mathematical and physical description of the fluid flow is based on the continuum
hypotheses. This means that the scales we are interested in are much larger than the scales
of molecular motions. Usually, the Knudsen number is used to determine the validity of
this assumption. It is specified as

Kn ≡ λ/l , (2.1)

where λ is the mean free path length of molecules in the gas and l denotes a representative
physical length scale. If Kn � 1 the continuum assumption is valid. In typical flows
considered in this work the Knudsen number is of the order 10−3 or even smaller. After
accepting the continuum hypotheses, macroscopic fluid properties at different locations in
space and in time can be defined. Most important are the fluid density ρ(x, t), the velocity
U(x, t) and the pressure p(x, t). The three components of the physical space coordinate
x are [x1, x2, x3]T and t is the time.

First we introduce the mass conservation equation, which states that the rate of change of
fluid mass in a fixed control volume equals the sum of the fluxes over the control volume
boundaries (if the control volume is free of a sink or source). The continuity equation in
differential form reads

∂ρ

∂t
+∇ · (ρU) = 0 . (2.2)

The second fundamental law is the momentum balance or more specific in fluid dynamics
the vectorial Navier-Stokes equation. It describes the momentum balance (Newton’s second
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law) of a fluid control volume and relates the change of momentum to the body and surface
forces. In the general case of a compressible and viscous fluid the Navier-Stokes equation
takes the form

∂ρU

∂t
+∇ · (ρU ⊗U) = −∇p+∇ · T + F . (2.3)

On the left side of the equal sign are the momentum accumulation and the convective
transport terms and on the right side are the influences of the pressure gradient, the
divergence of the deviatoric stress tensor and arbitrary external volume forces. Since
no external forces are considered here (for instance gravity is neglected in our case) the
simplified equation reads

∂ρU

∂t
+∇ · (ρU ⊗U) = −∇p+∇ · T . (2.4)

Eqs. (2.2) and (2.4) provide four relations (note that Eq. (2.4) is a vector equation) for
five unknowns. These unknowns are the three velocity components U = [U1, U2, U3]T ,
the density ρ and the pressure p. So we do need a fifth equation to fully determine the
system and for our purpose the following energy equation for the total sensible energy is
an appropriate choice

∂ρEs
∂t

+∇ · (U (ρEs + p)) = SEs +∇ · (ΓT∇T )−∇ ·
(
ρ

Ns∑
k=1

hs,kYkVk

)
. (2.5)

SEs is the energy source term, e.g. due to chemical reactions and the last two terms are
heat fluxes. The heat fluxes consist of two contributions, heat diffusion described by the
Fourier’s law (second last term) with the heat diffusion coefficient ΓT and heat flux due
to relative species motion of species with different sensible enthalpies. This term includes
the sensible enthalpy hs,k of species k, the species mass fraction Yk, the species diffusion
velocity Vk and Ns is the number of species. In this work we will disregard the heat flux
due to species motion since it is much smaller than the chemical source term. Furthermore,
viscous heating of the fluid and effects arising from volume forces are neglected in Eq. (2.5).
The exact definition of Es and its relation to the pressure p is given in the next section.

Additionally, the evolution equation of a scalar φ(X, t) in a reactive, turbulent flow field
is given by

∂ρφ

∂t
+∇ · (ρUφ) = ∇ · (Γ∇φ) + ρSφ , (2.6)

where Γ is the species diffusion coefficient and Sφ is the change of the scalar due to chemical
reactions.

2.2 Thermo-Chemistry

Since this work is about reactive flows, an overview of the thermodynamic fluid properties
and their relations is given here.
The fluid is treated as ideal gas mixture with Ns species and the ideal gas law reads

p = ρRT , (2.7)
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where

R = Ru

Ns∑
α=1

Yα
Wα

(2.8)

is the specific gas constant (for the mixture), p the thermodynamic pressure, T the temper-
ature and Y = [Y1, Y2, ..., YNs ]

T are the species mass fractions. The molecular weight of
species α is denoted by Wα andRu is the universal gas constant. In Eq. (2.7) all parameters
are bulk properties of the mixture. The mass fractions Yα are defined by

Yα =
mα

m
, (2.9)

where mα is the mass of species α in a fluid volume and m is the total mass in this volume.
Using the specific heats at constant pressure and constant volume for each species α, cp,α
and cv,α, respectively, the quantities

c̄p,α(T ) =
1

T

∫ T

T0

cp,α(T ′)dT ′ and (2.10)

c̄v,α(T ) =
1

T

∫ T

T0

cv,α(T ′)dT ′ , (2.11)

are introduced. Together with the definitions

c̄p =
Ns∑
α=1

Yα c̄p,α , c̄v =
Ns∑
α=1

Yα c̄v,α , γ′ =
c̄p
c̄v
, and c̄p − c̄v = R, (2.12)

the sensible energy, the sensible enthalpy and the pressure can be expressed as

es = c̄vT, hs = c̄pT and p = ρes (γ′ − 1) . (2.13)

Eq. (2.5) is the transport equation for the total sensible energy. The definition of Es is
given by

Es(Y , T ) = es(Y , T ) +
1

2
U 2 . (2.14)

The source term of Es, SEs , is the net energy gain or loss due to chemical reactions of the
mixture and reads

SEs = −
Ns∑
α=1

Sα(Y , p, T )h0
f,α , (2.15)

where h0
f,α is the formation enthalpy of species α at a reference temperature T0. A species

α in a homogeneous mixture evolves due to chemical reactions by

dYα
dt

= Sα(Y , p, T ) . (2.16)

The transport equation for species mass fraction Yα is defined by Eq. (2.6), if we set φ = Yα
and Sφ = Sα. In this case Γ is the diffusion coefficient of species α in the mixture. Though,
one has to be careful in applying Fick’s law for multi species reacting flows. See chapter
1.1.4 in the textbook of Poinsot and Veynante [60] for a more detailed discussion.
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Eqs. (2.2), (2.4), (2.5) and (2.6) of section 2.1 form a complete set of rules for the de-
scription of compressible, low Mach number, turbulent and reactive flows. This section
here gives an overview of simulation approaches for solving the set of governing equations
numerically. The most common approaches are based on a statistical description of the
flow and Reynolds averaging of the basic equations (RANS modeling). More high fidelity
methods like large eddy simulation (LES) and direct numerical simulations (DNS) involve
less or no modeling, but require an enormous amount of computational power.

3.1 Reynolds Averaged Navier Stokes Equation

The basic idea of the RANS approaches is to derive transport equations for statistical
moments of the flow properties. Reynolds (1894) applied this method the first time to
the flow field velocity U(x, t). He split up the velocity in its mean and fluctuating parts,
inserted the decomposed velocity into the Navier-Stokes equation and took subsequently
the average of the resulting equation. In reactive flow formulations it is usual to apply
Favre instead of the Reynolds decomposition to avoid terms containing the fluctuating
density. The Favre decomposition of the velocity is performed in the following way,

U(x, t) = Ũ(x, t) + u(x, t) , (3.1)

where .̃ denotes a Favre averaged quantity. Favre averages are density weighted averages:

Ũ =
〈ρU〉
〈ρ〉 and (3.2)

〈ρu〉 = 〈ρ〉ũ = 0 . (3.3)

If the Favre decomposed velocity (3.1) is substituted into the continuity equation (2.2) and
subsequently the Reynolds average of the whole equation is taken, the Reynolds averaged
continuity equation becomes

∂〈ρ〉
∂t

+
∂〈ρ〉Ũi
∂xi

= 0. (3.4)
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Note that Einstein index summation convention for repeated indexes is applied if not
mentioned otherwise. Doing the same thing with the Navier-Stokes equation (2.4), the
RANS equation is recovered and reads

∂〈ρ〉Ũj
∂t

+
∂〈ρ〉ŨjŨi
∂xi

=
∂

∂xi

[
µ

(
∂Ũj
∂xi

+
∂Ũi
∂xj

+
∂〈uj〉
∂xi

+
∂〈ui〉
∂xj

)]

− ∂〈ρ〉ũiuj
∂xi

− ∂〈p〉
∂xj

. (3.5)

Note that the bulk viscosity is not considered in our case. In the first term on the right
hand side quantities as ∂〈uj〉/∂xi can be neglected since in virtually all flows ∂Ũj/∂xi �
∂〈uj〉/∂xi applies. The crucial difference between the Navier-Stokes equation (2.4) and
the RANS equation (3.5) is the second term on the right hand side, which stems from
the nonlinear convection. Terms like ũiuj are called Reynolds stresses. The denotation
as stresses arises from the fact that they have a similar effect on the flow as the viscous
stresses. It is a momentum transfer caused by the fluctuating velocity components. The
specification of the Reynolds stresses constitutes the closure problem in RANS modeling.
One approach is to lump the effect of the Reynolds stresses into one variable, the so called
eddy viscosity νt. This approach is called the turbulent-viscosity hypotheses (Boussinesq,
1877) and states that the deviatoric Reynolds stress tensor is proportional to the mean
rate of strain tensor, i.e.

−ũiuj +
2

3
k̃δij = νt

(
∂Ũi
∂xj

+
∂Ũj
∂xi

)
− νt

2

3

∂Ũk
∂xk

δij . (3.6)

To determine the eddy viscosity, a length and a time scale of the turbulent flow is required.
The most common approaches are two equation models, where modeled transport equations
for the averaged kinetic energy k̃ and the dissipation ε̃ (Jones and Launder [37]) or the
turbulence frequency ω̃ [78] are solved. With these quantities, the eddy viscosity can be
evaluated as

νt = Cµ
k̃2

ε̃
or νt = Cµ

k̃

ω̃
, (3.7)

where Cµ is a model constant. The definitions of k̃, ε̃ and ω̃ are

k̃ ≡ 1

2
ũiui, (3.8)

ε̃ ≡ 2νS̃ijS̃ij and (3.9)

ω̃ ≡ ε̃

k̃
, (3.10)

respectively, with the Favre averaged rate of strain tensor

S̃ij ≡
1

2

(
∂Ũi
∂xj

+
∂Ũj
∂xi

)
. (3.11)
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The class of two equation models together with the conservation laws form a closed set
of equations and no other flow dependent information is needed (unlike zero or most one
equation models). See for instance Pope’s book [66] for usability and limitations of such
models.

A higher closure level is attained by the class of Reynolds stress models. In this approach,
transport equations for the different Reynolds stresses are solved and further models are
needed to describe the effects of the emerging unclosed terms, e.g. triple correlations. The
most important and also most difficult term to be modeled is the pressure rate of strain
tensor, which is responsible for the redistribution of kinetic energy among the different
coordinate directions. For more insight it is referred to some original works Rotta [68],
Launder et al. [40], Lumley and Newman [43], Sarkar and Speziale [70], Chung and Kim
[17].

The Reynolds averaged scalar conservation equation

∂〈ρ〉φ̃α
∂t

+
∂〈ρ〉Ũjφ̃α
∂xj

=
∂

∂xj

[
Γα
∂φ̃α
∂xj

]
− ∂〈ρ〉ũjφ′′α

∂xj
+ S̃φ(φ) (3.12)

has a similar structure as the RANS equation. Note that quantities like φ′′α are Favre
fluctuations. In the context of two-equation models, the scalar flux term (second term
on the right hand side) is usually modeled by a gradient-diffusion assumption, which is
known to be problematic in combustion modeling due to counter gradient diffusion effects
(see Peters [58] sec. 2.4). The mean chemical source term S̃φ depends on the scalar
distribution and the assumption that S̃φ(φ) = Sφ(φ̃) is a very bad approximation due to
the non-linearity of the source term.

In the next subsection a method which overcomes some major drawbacks of two equation
RANS models is presented, and which is very attractive especially for turbulent reactive
flows.

3.2 PDF Methods

In PDF methods, different levels of closure can be achieved. The simplest approaches
are the presumed PDF methods, where the statistical distribution of a certain quantity is
parameterized (e.g. as a function of its mean and variance). This requires a good a priori
knowledge of the quantity’s behavior in the turbulent flow. Usually one assumes the PDF
of the scalars (or compositions) in order to close the chemical source term. If for example
a Beta-PDF is assumed for the scalar distribution, only the two transport equations for
the scalar mean and variance have to be solved in order to determine the whole PDF. This
approach has to be combined with closure models for the turbulent quantities, e.g. two
equation models as described in the previous subsection.



3.2 PDF Methods 13

More involved approaches are transported PDF methods, where an evolution equation for
a one-time, one-point Eulerian PDF is solved. This approach can be further subdivided
into different levels of completeness by the amount of information that is packed into the
PDF. Initially, only the scalar joint PDF was considered, then also the velocity and later
the turbulence frequency were included in the probability density function. Note that in
all these approaches the chemical source term S̃φ(φ) appears in closed form. Incorporating
all turbulent and scalar quantities in the PDF is the most rigorous approach in the PDF
modeling framework and was developed by Pope [63].

Here the Eulerian joint PDF f(V ,Ψ, θ;x, t) at time t and at location x of velocity U(x, t),
compositions Φ(x, t) and turbulence frequency ω(x, t) is considered. The sample space
variables corresponding to U , Φ and ω are V , Ψ and θ, respectively. Here and from now
on it is assumed that the density is always a function of Φ only, i.e. independent of pressure
(given a constant reference pressure). Thus, with standard techniques (see textbooks e.g.
Fox [27] or Pope [66]), the following exact transport equation for f(V ,Ψ, θ;x, t) can be
derived

ρ(Ψ)
∂f

∂t
+ ρ(Ψ)Vj

∂f

∂xj
= − ∂

∂Vj

[
ρ(Ψ)

〈
DUj
Dt
|V ,Ψ, θ

〉
f

]
− ∂

∂Ψα

[
ρ(Ψ)

〈
DΦα

Dt
|V ,Ψ, θ

〉
f

]
− ∂

∂θ

[
ρ(Ψ)

〈
Dω

Dt
|V ,Ψ, θ

〉
f

]
. (3.13)

This equation is exact, since no physical assumptions are made yet. The three conditional
expectation terms on the right hand side describe the evolution of the PDF in velocity,
composition and frequency space, respectively. If we insert the known physical relations
for the substantial derivatives DUj/Dt (Navier-Stokes equation) and Dφα/Dt (scalar con-
servation), then Eq. (3.13) reads

ρ(Ψ)
∂f

∂t
+ ρ(Ψ)Vj

∂f

∂xj
− ∂〈p〉

∂xj

∂f

∂Vj
+
∂〈τij〉
∂xi

∂f

∂Vj

− ∂〈Jαi 〉
∂xi

∂f

∂Ψα

+
∂

∂Ψα

[ρ(Ψ)Sα(Ψ)f ] =

− ∂

∂Vj

[〈(
∂τ ′ij
∂xi
− ∂p′

∂xj

)
|V ,Ψ, θ

〉
f

]
− ∂

∂Ψα

[〈
−∂J

′α
i

∂xi
|V ,Ψ, θ

〉
f

]
− ∂

∂θ

[
ρ(Ψ)

〈
Dω

Dt
|V ,Ψ, θ

〉
f

]
. (3.14)

Effects of the mean pressure and the chemical source term are closed (third and sixth
terms on the left hand side, respectively) and all the conditional expectations on the right
hand side have to be modeled. Note that the fourth and fifth left hand side terms are
very small at high Reynolds numbers and therefore are ignored from now on. The first
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conditional moment in Eq. (3.14) describes the influence of the gradients of the fluctuating
viscous stresses τ ′ij and the fluctuating pressure p′. The influence of the molecular diffusion

is contained in the second term, where J
′α
i is the molecular diffusion flux of scalar α in

the ith-direction. Finally, the third term accounts for the evolution in frequency space.
Note that a physical model for the conditional mean of the substantial derivative of the
turbulence frequency is considered later in this work. The modeling of all those terms is
closely connected to the numerical solution strategy of the PDF transport equation and is
covered in more detail in secs. 4.2.2 and 4.3.

3.3 Large Eddy Simulation

Large-eddy simulation (LES) is an approach to overcome the high computational cost of
the direct numerical simulation (DNS, see next subsection) and to eliminate some of the
limitations in RANS modeling. The main idea is to resolve the large, energy containing
scales and to model the effect of the small unresolved or subgrid scales. A major shortcom-
ing of RANS methods is the problem in calculating flows with dominant unsteady effects
like for example vortex shedding or separation and also the model parameter dependency
on the flow geometry. In the LES approach these large scale motions are resolved and
should be calculated accurately. On the other hand, the smallest scales are more universal
(Kolmogorov hypotheses) and it should be easier to model their effect in a general way.

Mathematically, a low pass filter G(r,x) is applied to the governing equations to cut off
the high frequency part of the energy spectrum. The velocity field is split up in a filtered
U and a residual velocity u′, i.e.

U(x, t) = U(x, t) + u′(x, t) . (3.15)

The filtered velocity is obtained as

U(x, t) =

∫
R3

G(r,x)U(x− r, t)dr , (3.16)

which invokes the integration over the whole computational domain. There are various
options for the filtering function; common examples are box-, Gaussian-, sharp spectral-
or Cauchy filters. Similar as in the RANS context, it is common in compressible flow
formulations to work with Favre decomposed quantities. Here, Favre averages and Favre
fluctuations, e.g.

Ũ =
ρU

ρ
and U ′′ = U − Ũ , (3.17)

are employed. The Favre filtered momentum equation reads

∂ρŨj
∂t

+
∂ρŨiŨj
∂xi

= − ∂p

∂xj
+
∂τij
∂xi

+
∂Tij
∂xi

, (3.18)
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where

τij = µ

(
∂Ũi
∂xj

+
∂Ũj
∂xi
− 2

3

∂Ũk
∂xk

δij

)
and Tij = ρŨiŨj − ρŨ ′′i U ′′j (3.19)

are the viscous stress and the residual stress tensors, respectively. An approach to tackle
combustion problems are filtered density function (FDF) methods. There, a transport
equation of the composition joint FDF defined by

f̄(Ψ;x, t) =

∫
R3

G(r)δ(φ(x− r, t)−Ψ)dr , (3.20)

is solved. For reactive flow calculations, the advantage is that the filtered chemical source
term can be closed with the information provided by the composition FDF. Molecular
mixing is taking place at the subgrid level and must be modeled anyway.

3.4 Direct Numerical Simulation

Solving the governing equations numerically with all scales resolved is called direct numer-
ical simulation (DNS). No modeling assumptions have to be made and the accuracy of the
solution is determined by the numerical scheme. The limitation is the high computational
cost of this method. It scales with Re11/3. Nevertheless, nowadays DNS simulations pro-
vide very valuable insight to different flow phenomena, since data can be extracted from
the DNS results, which were or are still not accessible to experimentalists.
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4 Transported Joint PDF Methods

From now on we focus on transported joint PDF methods for solving the governing equa-
tions of turbulent reactive flows. A first introduction and the basic transport equation were
already given in section 3.2. There is a close connection between the theoretical solution
strategy, the numerical algorithm and the modeling approaches in PDF methods. There-
fore, in the first section of this chapter, the strategy to solve PDF transport equations is
outlined, in a second step, some important theoretical background is given, which involves
the relation between Eulerian and Lagrangian PDF’s and the connection of PDF transport
equations to stochastic differential equations. Algorithmic approaches like particle stand
alone and hybrid methods for solving the governing system are described and the latter
approach is elaborated in section 4.3.

4.1 Theory of Stochastic Processes

The early initiation of stochastic processes goes back to the discovery of the random motion
of suspended particles by R. Brown in 1827, known as Brownian motion. Only at the
beginning of the 20th century, Einstein came up with a mathematical description of this
phenomenon. From then on, numerous scientists contributed to the development of the
stochastic theory. Some of the most famous were Langevin, Chapman, Kolmogorov, Fokker
and Planck.

4.1.1 Markov Processes

We start with the consideration of a particle which undergoes a stochastic motion. It is
located at xi (i = 0, 1, . . .) at time ti. If we consider a Markov type process, meaning
that xi depends only on the previous position xi−1 at time ti−1 and is independent of all
former time steps ti−k with k > 2, then the probability of a particle being at position x2

conditioned on its position x0 at time t0 is

f(x2; t2|x0, t0) =

∫
f(x2; t2|x1, t1)f(x1; t1|x0, t0)dx1. (4.1)

This equation goes back to Chapman and Kolmogorov and is therefore named Chap-
man - Kolmogorov equation. Gardiner (see [29], sec. 3.4.1) derived a differential form of
Eq. (4.1), which is a time evolution equation for conditional PDFs. Different assumptions
on the quality of the underlying stochastic process have to be made in order to obtain that
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differential equation. They have mainly to do with continuity considerations of the sample
paths. This leads to the following conditions, which must hold for any ε > 0:

a) lim
4t→0

f(x; t+4t|z, t)
4t

∣∣∣
|x−z|≥ε

=W(x|z, t) ,

b) lim
4t→0

1

4t

∫
|x−z|<ε

(xi − zi)f(x; t+4t|z, t)dx = Ai(z, t) +O(ε) ,

c) lim
4t→0

1

4t

∫
|x−z|<ε

(xi − zi)(xj − zj)f(x; t+4t|z, t)dx

= Bij(z, t) +O(ε) ,

d) all higher order terms similar as in b) and c) must vanish

(see Gardiner [29] sec. 3.4).

In a), b) and c), the conditions for the jump probability W , the drift coefficients Ai and
the diffusion coefficients Bij are given, respectively. Whereas condition d) is implied by the
assumption of continuous sample paths. The time evolution equation for the conditional
PDF f(x; t | x0, t0) is then obtained as

∂f(x; t|x0, t0)

∂t
= − ∂

∂xi
[Ai(x, t)f(x; t|x0, t0)]

+
1

2

∂2

∂xi∂xj
[Bij(x, t)f(x; t|x0, t0)]

+

∫
[W(x|z, t)f(z; t|x0, t0)

− W(z|x, t)f(x; t|x0, t0)] dz. (4.2)

Two fundamentally different processes can be identified in this equation. The first and
second term on the right hand side describe diffusion processes, whereas the third term is
a jump process.
First some words about the jump process, which is less import in our case. W(x|z, t) dt
is the transition (or jump) probability of changing the position from z to x within an
infinitesimal time interval dt. If one would consider a pure jump process then Ai and Bij

of Eq. (4.2) would be equal to zero and the resulting simplified equation is then called
Master equation. Clearly, the sample paths of such a process are not continuous and
generally nowhere differentiable.
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In the other case of a pure diffusion processes, the following condition must hold

lim
4t→0

f(x; t+4t|z, t)
4t

∣∣∣
|x−z|>ε

= 0. (4.3)

Comparing with condition a) (see above), one realizes that all jump probabilities W must
be zero. The resulting differential equation is the Fokker-Planck or forward Kolmogorov
equation

∂f(x; t|x0, t0)

∂t
= − ∂

∂xi
[Ai(x, t)f(x; t|x0, t0)]

+
1

2

∂2

∂xi∂xj
[Bij(x, t)f(x; t|x0, t0)] , (4.4)

where A denotes the drift vector and B the diffusion matrix. In the case of a single valued
process, these are just scalar valued coefficients. Note that a continuous sample path X(t)
does not imply that it is everywhere differentiable. Furthermore, if the diffusion matrix (or
coefficient) is zero, the Fokker-Planck equation reduces to the so called Liouville equation
and describes a deterministic process with a well defined time derivative.

Remark: Another insightful derivation of the Fokker-Planck equation is given by Heinz
[32]. He starts with a Taylor expansion of the Dirac function representation of the PDF,
which results in the Kramers-Moyal equation and finally leads to the Fokker-Planck equa-
tion by continuity assumptions.

4.1.2 Diffusion Processes

The most fundamental diffusion process is the Wiener process W (t), where the drift coef-
ficient is zero and the diffusion coefficient is unity. In this case the Fokker-Planck equation
for a single valued process X(t) becomes

∂f(x; t|x0, t0)

∂t
=

1

2

∂2f(x; t|x0, t0)

∂x2
. (4.5)

It is interesting to look at the stationary distribution, which is found by setting ∂f/∂t = 0
and solving the remaining homogeneous ordinary differential equation for f . It results in
a Gaussian distribution with mean x0 and variance (t− t0):

f(x; t|x0, t0) = − 1√
2π(t− t0)

exp

(
−1/2(x− x0)

t− t0

)
. (4.6)

There are several other interesting properties of the Wiener process, particularly about its
increment dW (t), which we will meet later in this work.

Until now we investigated stochastic processes in terms of the evolution of their PDFs.
Another way is to look at individual realizations of the respective stochastic process. This
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is usually done by describing sample paths with the help of stochastic differential equations
(SDE). The general form of an SDE is

dX(t) = a(X, t)dt+ b(X, t)ξ(t)dt (4.7)

with a(X, t) and b(X, t) being given deterministic functions and ξ(t) a random term, e.g.
a white noise. Such an equation describes the change of a random variable X(t) in time
with a deterministic drift term (first right hand side term in Eq. (4.7)) and a stochastic
diffusion term (second term on the right hand side).
In a turbulent flow we are interested in describing the random movement of fluid particles,
which intuitively means that the fluid particle paths are continuous. Therefore, as we
have seen above, the underlying process must be a diffusion process. A basic and simple
diffusion process is the Ornstein-Uhlenbeck (OU) process and is described by the so called
Langevin equation

dX(t) = − 1

T
X(t)dt+

(
2σ2

T

)1/2

dW (t). (4.8)

The OU process consists of a linear drift coefficient a(X, t) = −X/T and a constant diffu-
sion coefficient b(X, t) = 2σ2/T , where T and σ are a timescale and a variance parameter,
respectively.

This equation has been developed by Langevin as a model for Brownian motion and was
one of the first SDEs. Later, it was found that it can also be applied for modeling other
physical phenomena as for instance turbulent motions.
Since the OU process is a diffusion process, there must exist a corresponding Fokker-Planck
equation. Indeed, the OU increment (Eq. (4.8)) can be inserted in conditions b) and c)
(see above) to determine drift and diffusion coefficients A(x, t) and B(x, t), which are just
scalars for a single valued process and one obtains

∂

∂t
f(x; t|x0, t0) =

1

T

∂

∂x
(xf(x; t|x0, t0)) +

σ2

T

∂2

∂x2
f(x; t|x0, t0). (4.9)

Comparing the Langevin Eq. (4.8) and the Fokker-Planck Eq. (4.9), it can be noticed that
the drift coefficient is the same, whereas the diffusion coefficient in the Langevin equation
appears squared in the Fokker-Planck equation. This observation is generally valid and
one has

A(x, t) = a(x, t) and B(x, t) =
b2(x, t)

2
. (4.10)

Analogous, for a generic vector valued diffusion process with the SDE

dXi(t) = ai(x, t)dt+ bij(x, t)dWj(t), (4.11)

the corresponding Fokker-Planck equation for the conditional PDF f(x; t|x0, t0) reads

∂f

∂t
= − ∂

∂xi
(Ai(x, t)f) +

1

2

∂2

∂xi∂xj
[Bij(x, t)f ] , (4.12)
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with
Ai(x, t) = ai(x, t) and Bij(x, t) = bik(x, t)bjk(x, t). (4.13)

Note that here W (t) is a vector valued Wiener process defined as

W (t) = [W1(t), W2(t), . . . , Wn(t)]T . (4.14)

A special field in calculus is the treatment of stochastic differential equations. Due to the
non-differentiability of the stochastic noise term (e.g. the Wiener process has inherently
non-differentiable sample paths), terms like dW (t)/dt are not defined in normal calculus.
Itô and Stratonovich developed two different theories for stochastic calculus. In section 6
we will learn in more detail how SDEs can be treated.

4.2 Solution Strategy for PDF Transport Equations

After the short excursion into the basics of stochastic processes, we return to the scenario
of turbulent flows. As already introduced in section 3.2, the goal is to find a solution
method for the governing Navier-Stokes equations with a fully statistical approach. In
such methods, the real flow field is represented in a statistical way, meaning, if the Eulerian
one-point velocity-composition joint PDF of the real flow is denoted as f(V ,Ψ;x, t) and
the calculated one as f ∗(V ,Ψ;x, t), one requires that

f ∗(V ,Ψ;x, t) = f(V ,Ψ;x, t). (4.15)

Note that this is a much weaker requirement than to demand for instance that the simulated
velocity must be equal to the real velocity at each point in time and space, i.e.

U ∗(X, t) = U(X, t). (4.16)

Thus, in other words, the calculated fluid system must be statistically equivalent to the
real flow (see Pope [63] section 4.1).

The basic idea of the approach here is to derive a transport equation for a joint PDF (e.g.
Eq. (3.13)), introducing the physics by replacing the corresponding terms with conservation
laws and finding appropriate models for the unclosed terms.

Solving the PDF transport equation numerically with standard methods as for instance
finite volume or finite element schemes is infeasible in real world problems due to the high
dimensionality of the joint PDF. For instance the velocity-composition joint PDF has a
dimensionality of (7 + Ns); three spatial, three velocity and Ns composition coordinates
plus time. The computational cost of the classical methods increases approximately with
the power of the number of dimensions. Instead, particle Monte Carlo methods can be
applied, where the computational effort increases only linearly with the number of sample
space dimensions.
Using such a method means that we have to construct a model particle system which is
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stochastically equivalent to the real fluid system. There are different approaches how such a
modeled particle system can be devised. One way is to derive a PDF transport equation for
the desired joint PDF by standard methods, starting from conservation laws as described
by Pope [63] and [66] or Fox [27]. Subsequently, stochastic differential equations for model
particles can be obtained, which consistently emulate the real fluid system (references same
as above).
Another approach is to start from the stochastic process theory by first stating the modeled
stochastic particle evolution equations, from which one can derive the corresponding PDF
transport equation, and then making the SDEs consistent with the modeled governing
conservation laws.
Note that in subsection 4.2.2 we will follow the latter approach. An important topic in this
context is the relation between Eulerian and Lagrangian reference systems. That is because
often an Eulerian viewpoint is adopted to describe the flow field but here Lagrangian
particles are used to solve the governing equation.

Therefore these two viewpoints are presented and explained in the next subsection, first
by means of flow parameters then by means of PDFs.

4.2.1 Eulerian and Lagrangian Systems

As mentioned first the Eulerian and Lagrangian flow variables and their respective rep-
resentation by PDFs are introduced. Then the basic relationship between Eulerian and
Lagrangian PDFs is given and it is explained how the Eulerian PDF can be interpreted
as a conditional PDF. Furthermore, the definition of the mass density function (MDF) is
derived.

Eulerian and Lagrangian Flow Field Description
In the common Eulerian view the density, the velocity and the composition values at a
certain point in space and time in the flow field are denoted by ρ(X, t), U(X, t) and
Φ(X, t), respectively. Their Lagrangian counterparts are defined by

ρ+(X0, t) ≡ ρ(X+(X0, t), t) ,

U+(X0, t) ≡ U(X+(X0, t), t), and

Φ+(X0, t) ≡ Φ(X+(X0, t), t) , (4.17)

where X0 is the particle position at time t0 and X+(X0, t) is the particle position at time
t of a particle, which initially was at position X0. Note that the superscript + denotes a
Lagrangian quantity of the real flow field. Furthermore, it can be shown that the material
derivatives of the Eulerian quantities describe the rate of change following a fluid particle:

∂

∂t
ρ+(X0, t) =

D

Dt
ρ(X, t) |X=X+(X0,t)

, (4.18)

∂

∂t
U+(X0, t) =

D

Dt
U(X, t) |X=X+(X0,t)

, and (4.19)

∂

∂t
Φ+(X0, t) =

D

Dt
Φ(X, t) |X=X+(X0,t)

. (4.20)
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In the same way, an Eulerian and a Lagrangian one-point joint PDF of the flow variables
can be defined. The PDF f(V ,Ψ;x, t) is the statistical representation of the Eulerian field
at location x and time t (here x denotes the sample space variable of the position X).
The Lagrangian counterpart is the conditional PDF fL(V ,Ψ,x; t|V0,Ψ0,x0) and can be
understood as the PDF of fluid particles at time t, which originate from the initial state V0,
Ψ0 and x0 at t0. Another interpretation of a Lagrangian PDF is as a so called transition
PDF, which describes the transition probability from a certain state (here the state at time
t0) to another state later in time.
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Relations between Eulerian and Lagrangian PDFs
The Eulerian PDF f(V ,Ψ;x, t), which is a function of space and time, can also be inter-
preted as a conditional PDF f(V ,Ψ|x, t). Intuitively explained, the conditional PDF is
the PDF of V and Ψ generated by all particles which are at (x, t), where a particle can be
also understood as one realization of the stochastic process with PDF f(V ,Ψ). That the
consistency between the Lagrangian particle system and the Eulerian system is ensured,
this PDF must coincide with the Eulerian PDF at the same location and time (see also
Fox [27], section 6.7.4), i.e.

f(V ,Ψ;x, t) ≡ f(V ,Ψ|x, t). (4.21)

This condition gives the starting point to relate a Lagrangian with an Eulerian PDF, which
is shown in the following derivation

f(V ,Ψ;x, t) =
f(V ,Ψ,x; t)

f(x; t)

=
1

f(x; t)

∫∫∫
f(V ,Ψ,x,V0,Ψ0,x0; t)dV0dΨ0dx0

=
1

f(x; t)

∫∫∫
fL(V ,Ψ,x; t|V0,Ψ0,x0)×

f(V0,Ψ0,x0; t0)dV0dΨ0dx0. (4.22)

In the first manipulation step, Eq. (4.21) and Bayes theorem for conditional PDFs is
applied. The joint PDF f(V ,Ψ,x; t) is in a second step expanded by its initial state and
for consistency reasons, integrated over the initial state. Finally, again Bayes theorem is
used to obtain the last expression. Thus, the Eulerian PDF at any location x and time t
can be calculated by integrating the product of the initial state PDF and the Lagrangian
PDF over the initial sample space and dividing by the particle distribution PDF. Note that
in this equation the interpretation of fL as a transition probability becomes obvious, since
with its help one can calculate the PDF of a particle at time t from the PDF of the initial
particle state at t0.

Next, the conditional PDF is analyzed and this is done best with the help of the so called
fine grained PDF (Pope [66], appendix H). The fine grained PDF f ′(V ,Ψ;x, t) is defined
by

f ′(V ,Ψ;x, t) ≡ δ(U(x, t)− V )δ(Φ(x, t)−Ψ)

=

(∏
i

δ(Ui(x, t)− Vi)
)(∏

α

δ(φα(x, t)−Ψα)

)
(4.23)

and an important property is that the mean of a fine grained PDF is equal to the continuous
PDF, i.e.

f(V ,Ψ;x, t) = 〈δ(U(x, t)− V )δ(Φ(x, t)−Ψ)〉. (4.24)
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Fine grained PDFs can also be understood as discrete realizations of the flow and conse-
quently, the mean of many single realizations results in the continuous PDF. Using Bayes
theorem, we can write the conditional PDF as

f(V ,Ψ|x, t) =
f(V ,Ψ,x; t)

f(x, t)

=
〈δ(U(x, t)− V )δ(Φ(x, t)−Ψ)δ(X(t)− x)〉

〈δ(X(t)− x)〉 (4.25)

and expanding the right hand side term on the second line with the total mass M contained
in the flow domain results in

f(V ,Ψ|x, t) =
〈δ(U(x, t)− V )δ(Φ(x, t)−Ψ)M δ(X(t)− x)〉

〈M δ(X(t)− x)〉 . (4.26)

The expression M δ(X(t) − x) can be identified as the instantaneous mass density at
location x and consequently the conditional PDF is a density weighted or Favre averaged
quantity. The ensemble mean 〈M δ(X(t)−x)〉 is then the mean fluid density 〈ρ(φ(x, t))〉
(see Heinz [32], section 4.1.1 and 4.1.2).

The considerations above can be used to derive the definition of the MDF
F(V ,Ψ,x; t). Let us start with the joint PDF f(V ,Ψ,x; t) and apply Bayes theorem

f(V ,Ψ,x; t) = f(V ,Ψ|x, t)f(x; t). (4.27)

Multiplying this equation with the total mass M , the expression Mf(x, t) appears, which
may be written as

Mf(x, t) = M〈δ(X(t)− x)〉
= 〈Mδ(X(t)− x)〉
= 〈ρ(φ)〉. (4.28)

First the definition of fine grained PDFs is used, then the fact that M is a constant and
the last equality is explained in the paragraph above. Now, we are in the position to define
the mass density function as follows

F(V ,Ψ,x; t) ≡ 〈ρ(φ)〉f(V ,Ψ|x, t). (4.29)

It now can easily be verified that the integration of F(V ,Ψ,x; t) over the sample spaces
of U and Φ results in the mean fluid density, i.e.∫∫

F(V ,Ψ,x; t)dV dΨ = 〈ρ(φ)〉. (4.30)

To work with MDFs instead of PDFs is beneficial for variable density flows because of
property (4.30). In the following chapter, we will see that the originally derived PDF
transport equation can be manipulated to become an MDF transport equation.

Further considerations and insight into the topic treated in this section can be found in
Pope’s seminal work of 1985 [63] and also in the books of Fox [27] and Heinz [32].



4.2 Solution Strategy for PDF Transport Equations 25

4.2.2 From Modeled SDEs to PDF Transport Equations

To obtain the modeled particle system we start from a general stochastic particle system
and derive the corresponding Fokker-Planck equation and show the consistency with the
PDF transport equation obtained from the conservation laws. For clarity reason, we first
consider simple particle equations and give a physical interpretation of the terms in the
Fokker-Planck equation. Then, in a second part, the modeled particle equations and the
MDF transport equation are presented.

Example Particle System
We consider the particle properties position X∗(t), velocity U ∗(t) and composition Φ∗(t).
Note that the superscript ∗ indicates a modeled Lagrangian particle quantity. The following
assumed system of SDEs describes a possible and reasonable evolution of these particle
properties:

dX∗j (t) = U∗j (t)dt , (4.31)

dU∗j (t) = − 1

T
U∗j (t)dt+

(
2σ2

T

)1/2

dWj(t) and (4.32)

dΦ∗α(t) = C(φ∗, 〈φ∗〉, t)dt+ Sα(φ∗)dt. (4.33)

The rate of change of the particle position is simply the particle velocity (Eq. (4.31)) and
the randomness enters only indirectly through the velocity. An Ornstein-Uhlenbeck process
(see also section 4.1 on page 19) describes the velocity evolution with the general drift and
diffusion coefficients 1/T and 2σ2/T , respectively. We restrict ourself to an isotropic model,
hence the coefficients do not depend on the physical direction, but they are functions of
time. Note that the model equation for the velocity evolution is in the form of a Langevin
equation. Since the composition evolution equation (4.33) has the form of a Louiville
equation, a deterministic micro-mixing model is assumed here. The influence of mixing
on the compositions is expressed by the general drift term C(φ∗, 〈φ∗〉, t) and Sα(φ∗) is a
source term due to chemical reactions.

Now conditions b) and c) (see section 4.1 on page 17) are employed to determine the drift
vector and the diffusion matrix and to finally obtain the Fokker-Planck equation for the
modeled conditional Lagrangian joint PDF f ∗L(V ,Ψ,x; t|V0,Ψ0,x0):

∂f ∗L
∂t

=− ∂

∂xi
[〈U∗i (t)|V ,Ψ,x〉 f ∗L]

+
1

T

∂

∂Vi
[〈U∗i (t)|V ,Ψ,x〉 f ∗L]

− ∂

∂Ψα

[(〈Sα(φ∗)|V ,Ψ,x〉+ 〈C(φ∗, 〈φ∗〉, t)|V ,Ψ,x〉) f ∗L]

+
1

2

∂2

∂Vi∂Vi

[
2σ2

T
f ∗L

]
.

(4.34)
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The transport equation for the modeled Eulerian PDF f ∗(V ,Ψ;x, t) can be derived by
multiplying Eq. (4.34) with the PDF of the initial state f ∗(V0,Ψ0,x0; t0) and subsequent in-
tegration over all initial states. Note that the resulting equation contains the position PDF
f ∗(x; t). Furthermore, the MDF transport equation is obtained by multiplying the equa-
tion for f ∗(V ,Ψ;x, t) with M and using Eq. (4.28) and the MDF definition Eq. (4.29). It
turns out that the equation is similar to Eq. (4.34), only with f ∗L replaced by F∗(V ,Ψ,x; t).

In a next step, the models for the particle behavior have to be refined and appropriate ex-
pressions in the PDF or MDF transport equation must be found. At the end of the process,
the PDF transport equation derived from the modeled stochastic particle equations must
be consistent with the PDF transport equation obtained directly from the conservation
laws (see section 3.2). Therefore we take a more detailed look at the different terms in
Eq. (4.34) and compare them with the corresponding physical terms in Eq. (3.14). The
first term on the right hand side describes the evolution of the PDF in physical space, i.e.
the convective transport. The second and the last terms evolve the PDF in velocity space,
which includes the effect of the mean and fluctuating pressure and the viscous stress tensor
τij. Responsible for the change in composition space are the terms on the third line of
Eq. (4.34). The reaction source term Sα evolves the PDF due to chemical reactions and
the yet unknown function C(φ∗, 〈φ〉, t) accounts for the molecular diffusion fluxes Jα, also
called micro-mixing.

Finding consistent and appropriate modeled particle equations is not an easy task and
requires more detailed analysis, which is beyond the scope of this work. For further reading
it is referred to the textbooks of Pope [66] chapters 12.3 and 12.7.4, Heinz [32] chapter 5
and Fox [27] chapter 6.7.

Modeled Particle and PDF Equations
One of the simplest velocity model is the Simplified Langevin Model (SLM) (see Pope [66],
section 12.3), i.e.

dU∗j (t) = − 1

〈ρ〉
∂〈p〉
∂xj

dt−
(

1

2
+

3

4
C0

)
ε̃

k̃

(
U∗j − Ũj

)
dt+ (C0ε)

1/2 dWj(t). (4.35)

The terms from left to right on the right hand side are responsible for the influence of
the mean pressure gradient ∂〈p〉/∂xi, the drift of the particle velocity towards the mean
fluid velocity at the particle location with the characteristic frequency ε̃/k̃ and diffusion in
velocity space. The factor 3/4C0 in the coefficient (1/2+3/4C0) together with the random
term (last right hand side term) is responsible for the effect of the fluctuating pressure
(velocity redistribution; return to isotropy) and C0 is a model constant with standard
value 2.1 (see Pope [66] pages 487, 504 and 505 for more details). The factor 1/2 ensures
the correct decay of turbulent kinetic energy in homogeneous isotropic turbulence. Here,
instead of the frequency ε̃/k̃, the conditional turbulence frequency

Ω ≡ CΩ〈ρ∗ω∗|ω∗ ≥ 〈ω〉〉
〈ρ〉 (4.36)
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with the model constant CΩ is employed. The conditional turbulence frequency was intro-
duced by Jayesh et al. [35] for the turbulence frequency model (see further down Eq. (4.38))
to account for intermittency effects in turbulent flows. Note that Eq. (4.35) has the same
structure than the diffusion process, i.e. Eq. (4.32).

The evolution equation for the particle composition reads

dφ∗α(t) = −1

2
Cφ

ε̃

k̃

(
φ∗α − φ̃α

)
dt+ Sα (φ) dt, (4.37)

where the Interaction by Exchange with the Mean (IEM) mixing model by Villermaux
and Devillon [76] is applied to mimic the scalar diffusion. The IEM model consists of a
linear drift of the scalar value towards its mean at the particle location with the frequency
ε̃/k̃. The model constant Cφ describes the ratio of the mechanical to scalar timescale
and its standard value is 2.0. However, Cφ is not a universal parameter and must be
adjusted to each particular application. Finally, the reaction source term Sφ usually is a
highly nonlinear function of the scalar distribution. Since this distribution is a part of the
solution in PDF methods the chemical source term poses no closure problem.

So far, we considered only the particle properties velocity and compositions, now we ad-
ditionally introduce the turbulence frequency. In the introductory section 3.2 for PDF
methods, it is mentioned that a complete model must also include a time scale information
in the PDF. Jayesh et al. [35] developed a stochastic process for the turbulence frequency
ω∗ in the form of the Langevin equation

dω∗(t) = −(ω∗ − ω̃)C3Ωdt− Ωω∗Sωdt+
(
2C3σ

2ω̃Ωω∗
)1/2

dW, (4.38)

where C3 and σ2 are a model constant and the variance of ω∗, respectively. The source
term Sω of the turbulence frequency is

Sω = Cω2 − Cω1
P
kΩ

, (4.39)

where Cω1 and Cω2 are further model constants and the turbulence production term P is
equal to −ũiuj ∂Ũi/∂xj. From experiments it is known that in a generic turbulent flows
the frequency is approximately Gamma distributed, therefore the stochastic process of
Eq. (4.38) ensures a stationary Gamma shaped PDF.

Eqs. (4.31), (4.35), (4.37) and (4.38) form a stochastic system for particle position, velocity,
composition and turbulence frequency, which is used to model the behavior of real turbulent
reactive flows. Finally, With the same procedure as above, the MDF transport equation
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for F(V , θ,Ψ,x; t) can be obtained and reads

∂F
∂t

+
∂ ViF
∂xi

− 1

〈ρ〉
∂〈p〉
∂xi

∂F
∂Vi

+
∂

∂Ψα

[Sα(Ψ)F ] =

∂

∂Vi

[(
1

2
+

3

4
C0

)
Ω
(
Vi − Ũi

)
F
]

+
∂

∂θ
[((θ − ω̃)C3Ω + ΩθSω)F ]

+
∂

∂Ψα

[
1

2
Cφ

ε

k

(
Ψα − Φ̃α

)
F
]

+
1

2
C0ε

∂2F
∂Vi∂Vi

+ C3σ
2ω̃Ω

∂2θF
∂θ∂θ

. (4.40)

All terms on the left hand side (first line) are exact, whereas the right hand side terms are
modeled.

4.3 Numerical Solution Methods

As explained at the beginning of section 4.2, the appropriate numerical solution approach
is a particle based Monte Carlo method. There are different strategies to implement such
a method in practice. In a first approach by Pope [62], the particles can only reside at
discrete points in physical space and are moved each time step through the whole state
space according to the Lagrangian particle equations.
Later, Pope [63] showed that a continuous particle movement in physical space is advan-
tageous and leads to faster convergence. Many calculations were performed with such so
called particle stand-alone codes for non-reacting and reacting flow cases by different re-
searchers, as for instance Anand and Pope [2], Delarue and Pope [20], Dreeben and Pope
[24], Saxena and Pope [71], van Slooten and Pope [74]. The major drawback of such stand-
alone methods is, however, that statistical and deterministic bias errors remain significant,
unless a huge number of particles is employed, which makes such PDF simulations very
expensive. This difficulty was the motivation for the development of various hybrid algo-
rithms. There, the basic idea consists in reducing statistical and bias errors by treating
some averaged flow quantities with a continuum method. In [18], [15], [67], [52], for ex-
ample, a finite volume scheme is applied to compute the mean velocity, mean pressure,
turbulent kinetic energy and dissipation, while a particle method is employed to obtain the
composition joint PDF, i.e. the joint distribution of species mass fractions and enthalpy.
Note that these hybrid methods depend on classical two equation or Reynolds stress turbu-
lence models for the velocity statistics. Later, hybrid methods for the velocity-composition
joint PDF were developed. Fully consistent hybrid algorithms were devised by Jenny et al.
[36] and Muradoglu et al. [49], where additionally a time scale information is contained in
the PDF and therefore no additional model equations are needed. In this thesis we follow
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those consistent hybrid approaches to solve for the velocity-frequency-composition joint
MDF F(V , θ,Ψ,x; t).

The next subsection first explains the hybrid approach and then describes the two main
parts of such an algorithm, i.e. on one hand the finite volume (FV) scheme and on the other
hand the particle method. Certain consistency conditions between the FV and particle part
are essential and have to be fulfilled in order to obtain reliable results.

4.3.1 Hybrid Algorithm

As mentioned in the introduction of this chapter, the hybrid methods were developed
to reduce statistical and bias errors. In Monte Carlo methods these two errors must be
controlled and kept small in order to obtain reliable results. The statistical error can be
reduced by time averaging techniques, if statistically stationary scenarios are considered.
The main source of the bias error arises from the estimation of means, which are used in
the SDEs for the particle evolution. Similarly as the statistical error, it can be diminished
by employing time averaged mean quantities in the particle evolution equations, for in-
stance using the time averages of the Favre means Ũj, φ̃α, ω̃ and Ω in Eqs. (4.35), (4.37),
(4.38), respectively. However, in order to reduce these two errors to an acceptable level, a
calculation must continue for a long time in the statistically stationary state. For a more
detailed analysis about error estimation in PDF algorithms see Xu et al. [81].

The idea of the hybrid approach is to circumvent the calculation of means from particle
properties and instead solving the RANS equation with a finite volume scheme. Unclosed
terms like the Reynolds stresses, mean energy source term and other turbulence statistics
are obtained from a particle method. Vice versa, the particle method, which is used to
solve the joint PDF of fluctuating velocity, turbulence frequency and compositions, requires
the Favre averaged velocity field from the finite volume scheme. See Fig. 1 for a simplified
schematic of a hybrid algorithm. The two main parts of the hybrid code, the finite volume
and the particle Monte Carlo part are briefly explained next, and some algorithmic issues
and their solutions are addressed.

Finite Volume Scheme
A finite volume scheme is applied for solving the RANS equation and the mean energy
equation. In reactive flows the mean energy equation is used instead of a Poisson equation
for the mean pressure. The mean equations can consistently be derived from the PDF
or MDF transport equation, for instance by integrating Eq. (4.40) over the whole sample
space, i.e. velocity-frequency-composition space, the mean mass continuity equation is
recovered:

∂〈ρ〉
∂t

+
∂〈ρ〉Ũi
∂xi

= 0. (4.41)
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Finite Volume

Scheme

Ũ , 〈ρ〉

ũiuj, ũih′′s ,

S̃hs , γ
′ = h̃s

ẽs

Particle

Algorithm

Figure 1: Data exchange in a hybrid finite volume - particle Monte Carlo algorithm for
solving the PDF transport equation.

Multiplying Eq. (4.40) with the velocity sample space variable Vj and subsequently inte-
grating over the state space results in the mean momentum equation, which reads

∂〈ρ〉Ũj
∂t

+
∂〈ρ〉ŨjŨi
∂xi

= −∂〈p〉
∂xj
− ∂〈ρ〉ũjui

∂xi
. (4.42)

Similarly, the mean energy equation for the total energy Es (see Eq. (2.14)) is obtained
by multiplying Eq. (4.40) with the sensible enthalpy hs (note that the enthalpy is an
element of the composition vector) and consecutively integrating over the state space.
Different assumptions and simplifications can be made during this derivation since only
statistical stationary, high Reynolds-, low Mach number flows are considered. Therefore,
the arising term D〈p〉/Dt is negligible due to the fact that it scales with Ma2. Furthermore,
dimensional analysis shows that the turbulent energy production is much smaller than the
chemical source term and also the turbulent kinetic energy can be neglected, i.e.

ũiui � ŨiŨi. (4.43)

Considering these assumptions, the energy equation reads

∂〈ρ〉Ẽs
∂t

+
∂

∂xi

[
Ũi

(
〈ρ〉Ẽs + 〈p〉

)]
= 〈ρ〉S̃hs −

∂〈ρ〉ũih′′s
∂xi

− ∂

∂xi

[〈ρ〉
2
ũiujuj

]
. (4.44)
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One additional equation is needed to relate the thermodynamic pressure to the density
and the energy. For that we use the ideal gas law, i.e.

〈p〉 = (γ′ − 1)(〈ρ〉Ẽs −
1

2
〈ρ〉ŨiŨi). (4.45)

Note that this assumptions, as it will be explained later, allows only for open flame or so
called deflagration calculations. Eqs. (4.41), (4.42), (4.44) and (4.45) form the system of
mean equations solved by the finite volume scheme. The unclosed turbulent quantities and
the chemical source term are provided by the particle Monte Carlo part of the solution
algorithm.

Monte Carlo Particle System
Since the mean hydrodynamic equations are solved by the finite volume scheme, only the
fluctuating part of the velocity has to be considered in the particle part. Hence, instead of
solving the MDF transport equation of velocity, turbulence frequency and compositions,
we employ the MDF F(u, θ,Ψ,x; t) of fluctuating velocity, turbulence frequency and com-
positions, where v = V − Ṽ is the sample space variable of the Favre fluctuating velocity
u. If this modified MDF is used, the modeled particle equation for the velocity evolution
has to be modified as well. Therefore, Eq. (4.35) is manipulated to obtain the Simplified
Langevin equation for the fluctuating velocity as

du∗j(t) = − 1

〈ρ〉
∂〈ρ〉ũiuj
∂xj

dt− u∗i
∂Ũj
∂xi

dt −
(

1

2
+

3

4
C0

)
Ωu∗j(t)dt

+ (C0kΩ)1/2 dWj(t). (4.46)

The particle evolution equations for position X∗, composition φ∗ (including enthalpy h∗s)
and turbulence frequency ω∗ are specified in section 4.2.2 by Eqs. (4.31), (4.37) and (4.38),
respectively.
A further important particle property is the particle mass m∗. It is assigned at the in-
flow boundary and remains constant (except if particle number control algorithms are
employed). A particle represents a certain amount of fluid mass and therefore the par-
ticle number density (PND) or as we have seen earlier the particle position PDF f(x, t)
determines the so called fluid particle density.

Various statistical moments have to be extracted from the particle ensemble. On one hand
to close the RANS and particle evolution equations and on the other hand to compare flow
or thermodynamic properties with experiments or other calculations. Reynolds stresses
ũiuj, enthalpy fluxes ũih′′s and the mean chemical energy source term S̃hs are required in
the RANS equations. For the particle equations the Reynolds stresses ũiuj, the conditional
mean turbulence frequency Ω, the mean turbulent kinetic energy k̃ and the mean composi-
tion vector φ̃ are used (see Eqs. (4.37), (4.38) and (4.46)). For the extraction of statistical
data, the computational domain is divided into bins in order to sample the particle prop-
erties. For that it is natural to use the grid of the finite volume solver. The data can be
extracted either cell centered or node based. For a cell center value, a top hat function
ˆ̂gl,k(x) is applied, which is 1 for x in cell (l, k) and 0 otherwise. A bi-linear basis function
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ĝl,k(x) (in the 2-dimensional case; tri-linear in 3D) is applied for the node based extrac-
tion. This function is 1 at the node location and drops down to zero at the edge of the four
surrounding cells. Further, the particle mass is used as a weight factor for the statistics.
This is intuitively evident, since a heavier particle represents a larger amount of fluid than
a lighter one and therefore contributes more to the extracted statistics. The cell centered
and node based Favre average of a fictive particle property q∗ is then approximated by

q̃∗l,k ≈

Np∑
n=1

(gl,k(X
∗)m∗q∗)n

Np∑
n=1

(gl,k(X∗)m∗)n

with

{
gl,k(X

∗) = ˆ̂gl,k(X
∗) cell centered

gl,k(X
∗) = ĝl,k(X

∗) node based,
(4.47)

where Np is the total number of particles in cell (l, k). Note that the sum of all the basis

functions ĝ or ˆ̂g must be one at each location. In Pope [66] section 12.6.1 one can find more
information about the correspondence between flow quantities of the real and the particle
system. Furthermore, gradients of the mean velocity field as used in the particle velocity
Eq. (4.46) can be calculated directly from the output of the finite volume scheme.

Consistency Conditions
On the level of the governing equations, the hybrid algorithm is completely consistent
since all equations can be derived from one PDF transport equation. However, due to
numerical inaccuracies during computations and the redundant evaluation of certain flow
quantities, this consistency may not be fulfilled anymore. Muradoglu et al. [51] showed
that three independent conditions have to be satisfied for achieving overall consistency on
the numerical level. If the calculated finite volume quantities are denoted by superscript
FV, extracted particle data by superscript P and a value in cell (l, k) by the subscripts l, k,
then the three consistency conditions are

〈ρ〉FV
l,k = 〈ρ〉Pl,k =

MP
l,k

Vl,k
, (4.48)

(ẽs)
FV
l,k = (ẽs)

P
l,k and (4.49)

(ũ)P
l,k = 0. (4.50)

The first condition requires that the mean finite volume density is equal to the particle
density, whereas MP

l,k is the total amount of particle mass in cell (l, k) and Vl,k the cell
volume. Condition (4.49) states the energy consistency between the energy calculated by
Eq. (4.44) and the extracted particle energy field ẽP

s . Finally, the last constraint demands
that the mean of the fluctuating velocity in each cell becomes zero. The first two conditions
concern the consistency between the two basic parts of the algorithm, while the last condi-
tion solely is an issue on the particle side. To ensure these consistencies, correction schemes
have to be applied. For the density consistency a so called position correction algorithm is
normally used, where the particle distribution in physical space is adjusted such that the
particle density 〈ρ〉P matches the FV density 〈ρ〉FV (see for instance Muradoglu et al. [51]
section 4.2). A simple particle velocity correction scheme is suggested by Jenny et al. [36]
in order to fulfill Eq. (4.50).
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A complete, comprehensive and recent review work which overlooks the subject of chapter
4 with much more details and references to original works can be found in the paper by
Haworth [30].

After this explanations on the theory of joint PDF methods and numerical solution al-
gorithm we are going to address some algorithmic issues of hybrid finite volume-particle
Monte Carlo methods.
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5 Efficient Energy Consistency Scheme

As introduced at the end of the previous chapter, the consistency issues arise due to cal-
culation errors and due to the fact that some flow and fluid properties fields are computed
redundant in the finite volume and the particle Monte Carlo part of the hybrid algorithm.
In the context of turbulent reactive flow calculations the energy consistency issue (condi-
tion (4.49)) is obviously very crucial.
The dominating phenomenon altering the sensible energy of the fluid are chemical reac-
tions. In the algorithm, the influence of the chemical reactions acts directly on each particle
(as it is apparent in Eq. (4.37)) and updates their energy and compositions. Then, the
mean energy source term S̃hs is extracted from the particles and is used for the finite
volume solution of the mean energy equation (4.44). Therefore, it is a natural choice to
identify the particle energy ẽP

s as the primary energy field.
In order to make the finite volume field consistent with the particle field, Muradoglu et
al. [51] proposed a correction scheme, which relaxes the finite volume energy towards the
particle energy field by introducing correction terms in the mean energy equation. Here, a
new approach is presented, where under certain assumptions the energy consistency issue
can be eliminated by neglecting the mean energy equation of the finite volume scheme
completely.

5.1 Idea, Assumptions and Constraints

The new idea is to use the mean particle energy field, which can be extracted from the
particles, directly as the energy information in the finite volume code. Hence, instead of
solving the mean energy equation by a finite volume method, the energy equation is solved
only by the particle Monte Carlo algorithm. In section 4.3.1 the mean energy equation for
the total energy Ẽs was derived from the MDF transport equation (4.40). During these
manipulations the simplified transport equation for the mean sensible enthalpy h̃s

∂〈ρ〉h̃s
∂t

+
∂〈ρ〉Ũih̃s
∂xi

= 〈ρ〉S̃h −
∂〈ρ〉ũih′′s
∂xi

(5.1)

was obtained as an intermediate result (not shown). Thus, Eq. (5.1) and Eq. (4.44) are
consistent under certain constraints. Therefore a modified Euler system is defined, where
Eq. (4.44) can be replaced by Eq. (5.1). The characteristic behavior of this modified system
is somewhat different and has to be analyzed in order to show its validity.

The following assumptions and constraints are made in order to obtain a consistent scheme:

• Low Mach number flow (Ma < 0.3)

• High Reynolds number flow
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• Statistical stationary solutions

• Open flames

• Deflagrations, i.e. sF � cfresh

The first two constraints are flow related. Only low Mach number flows where neither
strong shocks nor compressibility effects play a role are considered. The high Reynolds
number assumption was already made earlier (viscous effects neglected in the Navier-
Stokes equation, which then become the Euler equation). This helps us later to omit some
pressure effects. The third constraint is implied by the solution algorithm, where a time
averaging technique is employed to reduce the statistical and bias error with a justifiable
computational effort. Again, as we will see below, this constraint helps in neglecting
certain pressure effects. Open flames (point 4) have the property that the ambient pressure
is imposed and therefore the thermodynamic pressure is uniform throughout the flame.
Finally, only so called deflagrations are considered. This are combustions where the flame
propagation speed is much smaller than the sound speed in the fresh gas.

A very basic and important implication of the above constraints and assumptions can
already be drawn; that is that relative pressure changes in our calculations are very small
and therefore negligible.

5.2 Modified Euler System

First we start with the Euler system, which describes the evolution of a compressible
inviscid fluid. The Favre averaged Euler system formed by Eqs. (4.41), (4.42) and (4.44)
reads as

∂w

∂t
+
∂Fx(w)

∂x
+
∂Fy(w)

∂y
= R, (5.2)

where w is the vector of conserved variables

w =


w1

w2

w3

w4

 =


〈ρ〉
〈ρ〉Ũ1

〈ρ〉Ũ2

〈ρ〉Ẽs

 (5.3)

and

Fx(w) =


w2

w2
2

w1
+ 〈p〉
w2w3
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w2w4
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w1
〈p〉
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〈ρ〉Ũ1

〈ρ〉Ũ2
1 + 〈p〉

〈ρ〉Ũ1Ũ2

〈ρ〉Ũ1Ẽs + Ũ1〈p〉

 (5.4)
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and

Fy(w) =


w3
w2w3

w1
w2

3

w1
+ 〈p〉

w3w4

w1
+ w3

w1
〈p〉

 =


〈ρ〉Ũ2

〈ρ〉Ũ1Ũ2

〈ρ〉Ũ2
2 + 〈p〉

〈ρ〉Ũ2Ẽs + Ũ2〈p〉

 (5.5)

are the flux vectors in x- and y-direction, respectively. Vector R contains the right hand
side terms of the Euler system and is treated as a source term and reads

R =


0

−∂〈ρ〉ũ1u1
∂x1

− ∂〈ρ〉ũ1u2
∂x2

−∂〈ρ〉ũ2u1
∂x1

− ∂〈ρ〉ũ2u2
∂x2

〈ρ〉S̃h − ∂〈ρ〉ũ1h′′s
∂x1

− ∂〈ρ〉ũ2h′′s
∂x2

 . (5.6)

Additionally a relation between the pressure, density and energy is needed to close the
system. Here the ideal gas law (Eq. (4.45)) is employed.

The energy equation of the Euler system is now manipulated to obtain the following con-
servation equation for the mean sensible enthalpy h̃s:

∂〈ρ〉h̃s
∂t

+
∂〈ρ〉Ũih̃s
∂xi

− D̃〈p〉
D̃t
− 〈ρ〉S̃h +

∂〈ρ〉ũjh′′s
∂xj

=

− 1

2

(
∂〈ρ〉ũiui

∂t
+
∂〈ρ〉Ũjũiui

∂xj

)
− 〈ρ〉ũiuj

∂Ũi
∂xj
− 1

2

∂〈ρ〉ũjuiui
∂xj

(5.7)

A dimensional analysis of the term D̃〈p〉/D̃t (Poinsot and Veynant [60] section 1.2.1) reveals
that in statistically stationary high Reynolds number flows it scales with Ma2, where Ma is
the local Mach number in the fresh fluid. The restriction to steady low Mach number flow
was made in the previous section 5.1 and therefore the scaling of the substantial pressure
derivative allows us to drop this term. Another interpretation is that the mean pressure
along mean fluid particle paths does vary only very slightly in deflagrations.
Considering the evolution equation of the turbulent kinetic energy, i.e.

1

2

(
∂〈ρ〉ũiui

∂t
+
∂〈ρ〉Ũjũiui

∂xj

)
+ 〈ρ〉ũiuj

∂Ũi
∂xj

+
1

2

∂〈ρ〉ũjuiui
∂xj

=〈
p′
∂ui
∂xi

〉
− ∂〈uip′〉

∂xi
− 〈ui〉

∂〈p〉
∂xi

, (5.8)

we can observe that the right hand side of Eq. (5.7) is equal to the left hand side of this
equation. Thus, we can replace these terms by the right hand side of Eq. (5.8), which are
from left to right; pressure dilatation, pressure diffusion and pressure work, respectively.
All these pressure terms can be omitted in our case, since their influence on the sensible
enthalpy evolution is very small in low Mach number and constant pressure flows.



5.2 Modified Euler System 37

Thus the enthalpy conservation equation in the simplified version reads

∂〈ρ〉h̃s
∂t

+
∂〈ρ〉Ũih̃s
∂xi

= 〈ρ〉S̃h −
∂〈ρ〉ũjh′′s
∂xj

. (5.9)

This derivation shows the consistency between the averaged energy equations for the total
energy and the enthalpy under the assumptions made in the previous subsection. Hence,
it is verified that the Lagrangian particle solution algorithm solves the same approximated
and simplified energy equation as the finite volume scheme (in the original system).

The modified Euler system is then written as

∂ŵ

∂t
+
∂F̂x(ŵ)

∂x
+
∂F̂y(ŵ)

∂y
= R (5.10)

with the new vector of conserved variables ŵ and the flux vectors F̂x and F̂y:

ŵ =


〈ρ〉
〈ρ〉Ũ1

〈ρ〉Ũ2

〈ρ〉h̃s

 , F̂x(ŵ) =


〈ρ〉Ũ1

〈ρ〉Ũ2
1 + 〈p〉

〈ρ〉Ũ1Ũ2

〈ρ〉Ũ1h̃s

 and F̂y(ŵ) =


〈ρ〉Ũ2

〈ρ〉Ũ1Ũ2

〈ρ〉Ũ2
2 + 〈p〉

〈ρ〉Ũ2h̃s

 . (5.11)

Note that the right hand side R remains unchanged and is as in Eq. (5.6).

The practical implementation of the new scheme gives rise to the question how the mean
energy information of the particles is transferred to the finite volume scheme. Common
approaches as e.g. in Muradoglu et al. [49] or Jenny et al. [36] pass over the extracted mean
energy source term S̃h. This is not possible in the new algorithm since the energy equation
is not solved anymore in the finite volume scheme. We have seen that pressure variations in
low Mach number deflagrations can be neglected and therefore the thermodynamic pressure
can be assumed constant. Thus, the pressure used in the mean momentum equation (see
Eq. (5.11)) is obtained by the ideal gas law

〈p〉 = 〈ρ〉FV h̃P
s (γ′ − 1) /γ′, (5.12)

where 〈ρ〉FV is the mean density of the finite volume scheme and h̃P
s the extracted particle

enthalpy. In the pseudo transient state of the simulation, which means that the averaged
particle energy field has not yet converged, 〈p〉 is not constant or in other words 〈ρ〉FV and
h̃P
s are not in equilibrium. In the statistically stationary state the mass and momentum

equations will adjust 〈ρ〉FV such that

〈ρ〉FV h̃P
s (γ′ − 1) /γ′ = 〈pref〉 = const., (5.13)

where 〈pref〉 is the mean ambient pressure imposed by the boundary conditions.
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5.3 Boundary Conditions

The modified Euler equation, as the original one, is a system of hyperbolic differential
equations, where flow and thermodynamic informations are transported along characteris-
tic curves with characteristic velocities. Depending on the flow velocity and the thermo-
dynamical properties of the flow, the absolute characteristic velocities of the system can
be negative or positive, which means that information can travel either upstream or down-
stream. This implies that depending on the flow state some information at the boundaries
must be prescribed and some other information is given by the flow state in the computa-
tional domain. Of course this also depends on the nature of the boundary, i.e. if it is an
inflow or an outflow boundary. A characteristic analysis has to be performed in order to
specify the correct boundary quantities.
The fundamental theory of hyperbolic equations and system of equations and their char-
acteristic analysis can be found in the textbook of LeVeque [41].

Usually any two dimensional effects at the boundaries are neglected and the velocity is
split up into a parallel and a perpendicular component. Obviously, only the perpendicular
velocity component determines the in- or outflow behavior of the boundary characteristics.
In the following analysis a boundary in y-direction is considered and accordingly the per-
pendicular flux points in x-direction.
The convection term of the modified Euler system (5.10) can be written using the Jacobian
of the flux vector, i.e.

∂ŵ

∂t
+
∂F̂x (ŵ)

∂ŵ

∂ŵ

∂x
= Rx. (5.14)

The eigenvalues of the flux Jacobian specify the characteristic velocities of the system
and small disturbance waves are traveling with these velocities across the flow. The flux
Jacobian has the following form

∂F̂x (ŵ)

∂ŵ
=


0 1 0 0

−Ũ2
1 2Ũ1 0 (γ′ − 1)/γ′

−Ũ1Ũ2 Ũ2 Ũ1 0

−Ũ1h̃s h̃s 0 Ũ1

 (5.15)

and the eigenvalues arranged from the lowest to the highest value are

λ̂ =


Ũ1 − ĉ
Ũ1

Ũ1

Ũ1 + ĉ

 , (5.16)

where ĉ =
√
〈p〉/〈ρ〉 is the speed of sound of the modified system. Thus, the characteristic

velocities are qualitatively identical to the ones of the classical Euler system, only that the
absolute value of the sound speed ĉ differs. We will see later in the discussion section 5.4
that the two systems are quite distinct from a thermodynamical viewpoint.
In practical applications it is easier to work with primitive variables instead of the conserved
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quantities. In the case here these are the density 〈ρ〉, the velocities in x- and y-direction
Ũ1 and Ũ2, respectively, and either enthalpy h̃s or pressure 〈p〉, since density, enthalpy and
pressure are related by the ideal gas law and only two of them are independent. The infor-
mation about these quantities are transported along the characteristics with the respective
characteristic speeds.
The informations associated to the velocities λ̂p > 0 are coming from the upstream side
or equivalently, the corresponding characteristics point downstream in flow direction. Vice
versa, negative characteristic speeds λ̂p < 0 are associated with upstream pointing charac-
teristics and the informations come from the downstream direction (traveling against the
flow). Note that here the subscript p denotes the p-characteristic with p ∈ {1, 2, 3, 4}.
Since we restricted ourself to subsonic flows, i.e. |Ũ1| < ĉ, the p1-characteristic with veloc-
ity Ũ1− ĉ always travels upstream while the p4-characteristic always travels downstream. If
the flux Jacobian is assumed to be constant for a small time period (linearized equations)
the characteristic curves become straight lines. Figs. 2(a) and 2(b) illustrate the situation
in space-time coordinates for both, inflow and outflow boundaries (here Ũ1 > 0). Hence, at

Ũ 1
+
ĉ

Ũ
1

Ũ
1 −

ĉ

t

xxb

INFLOW
-

Ω

(a)

Ũ 1
+
ĉ

Ũ
1

Ũ
1 −

ĉ

t

xxb

OUTFLOW
-

Ω

(b)

Figure 2: Characteristic inflow (a) and outflow (b) boundary conditions for the modified
Euler system with the respective characteristic velocities and for Ũ1 > 0. The gray shaded
area Ω indicates the computational domain and xb is the boundary location.

the inflow one boundary information is determined from inside the computational domain
and the three other ones must be prescribed. The situation is reversed at the outflow
boundary, where one piece of information has to be fixed and the three other ones are
taken from the inside.
The question arises which information of the four independent quantities travels in up-
stream direction. From the theory of hyperbolic conservation laws it is known that the
characteristics with velocities Ũ1± c̃ are acoustic waves, which are small pressure and den-
sity disturbances in the flow. For practical applications it is reasonable to prescribe the
pressure at the outflow boundaries and enthalpy and velocities at inflow boundaries. In our
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case of constant pressure flames, the outflow pressure equals the ambient pressure pref and
imposes the pressure level in the whole computational domain. The density of the inflowing
fluid is calculated from the ideal gas law using the prescribed enthalpy and the pressure
taken from inside the computational domain. Fig. 3 gives an overview of quantities, which

(
Ũ1

)
ref(

Ũ2

)
ref(

h̃s

)
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(p)Ω

xxb

INFLOW
-

Ω

(a)

(
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)
Ω(

ρŨ2

)
Ω(

h̃s

)
Ω

(p)ref

xxb

OUTFLOW
-

Ω

(b)

Figure 3: Characteristic boundary condition specification at (a) the inflow and (b) the
outflow boundaries. Prescribed reference values are denoted by subscript ’ref’ and values
taken from inside the computational flow domain by subscript Ω. The gray shaded area
indicates the computational domain and xb the boundary location.

are either prescribed (subscript ”ref”) or taken from the flow domain (subscript Ω) for
both inflow and outflow boundaries. The conservative inflow boundary values, denoted by
subscript b, are then calculated as

(ρ)b =
pΩ

h̃s,ref

(
γ′

γ′ − 1

)
(5.17)(

ρŨj

)
b

=
pΩ

h̃s,ref

(
γ′

γ′ − 1

)
Ũj,ref for j ∈ {1, 2} (5.18)(

ρh̃s

)
b

= pΩ

(
γ′

γ′ − 1

)
(5.19)

and the corresponding outflow quantities as

(ρ)b =
pref(
h̃s

)
Ω

(
γ′

γ′ − 1

)
(5.20)

(
ρŨj

)
b

=
(
ρŨj

)
Ω

for j ∈ {1, 2} (5.21)(
ρh̃s

)
b

= pref

(
γ′

γ′ − 1

)
. (5.22)
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It is easy to check that if the pressure in the domain converges towards the reference
pressure pref then the inflow density and therefore also the mass and energy fluxes become
consistent.

5.4 Discussion

The characteristic velocities of the modified system (Eq. (5.16)) are similar to the ones in
the common Euler system except for the value of the sound speed. This difference can be
explained by an analysis of the two energy equations. If the entropy S is introduced, the
energy equation of the normal Euler system can be manipulated to obtain the following
entropy evolution equation (in x-direction)

D̃S

D̃t
=
∂S

∂t
+ Ũ1

∂S

∂x
= 0. (5.23)

Note that for this analysis we assume a vanishing energy source term. Evidently the entropy
is conserved along a Lagrangian fluid particle path. This is also true if a particle crosses
a smooth disturbance or even a weak shock. If there are strong shocks (discontinuities),
the differential form is no longer valid and one has to work with the integral formulation
of the conservation laws. However, here we excluded (see section 5.1) such scenarios. On
the other hand, the energy equation in the modified Euler system (see Eq. (5.9)) implies a
constant enthalpy (or at least a constant product of density and enthalpy) along particle
paths and therefore the resulting speed of sound is the one obtained by a isothermal state
change across a pressure disturbance. In reality the state change across a weak shock is
isentropic and not isothermal and therefore the modified Euler system involves a ”wrong”
speed of sound. Pressure and density informations or disturbances are transported with
the sound speed. To obtain time accurate results or correct acoustic effects, the speed of
sound is of crucial importance but for steady state solutions the propagation velocity with
which the disturbances spread has no influence.

A drawback, which has to be mentioned, is of course that a bias error in the averaged
enthalpy field is introduced with the new scheme. Originally, the hybrid approach was
introduced to avoid such bias errors stemming from particle field extractions. But here the
practical experience showed that the tradeoff seems to be worth.

Shortly summarized, a new algorithm circumventing the energy consistency issue in hybrid
PDF codes is presented in this chapter. Instead of solving an energy equation redundantly
in both the finite volume and the particle Monte Carlo part only the leading energy field
of the particle algorithm is used. Through a pseudo-pressure the energy information is
transferred from the particle to the finite volume part. With this approach the system of
equations solved by the finite volume scheme is modified and instead of the full Euler system
we end up with a isothermal system. Calulations of deflagrations under the assumption
of statistical stationary, high Reynolds number and low Mach number flow with the new
algorithm converge theoretically to the correct physical solution.
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6 Accurate Time Integration Scheme of SDEs for Joint

Statistics

Stochastic differential equations (SDE) are used for modeling various processes in the
physical world. Examples are stock market evolution, molecular dynamics or turbulent
modeling. SDE’s were first introduced by Einstein for the description of Brownian motion
in a fluid [26]. Following up, Itô [34] and Stratonovich [72] developed the basic mathe-
matical methods for the treatment of SDEs. Their names stand for the two versions of
the stochastic calculus used until nowadays. The integration of SDEs is much more in-
volved than that of ordinary differential equations because of the non-differentiability of
the stochastic terms (e.g. Wiener process).

Here we concentrate on a special class of SDEs, i.e. the Langevin equations. The general
Langevin equation was already introduced in section 4.1.2 Eq. (4.7). First a short recapitu-
lation why such Langevin equations play a major role in the context of PDF methods. PDF
transport equations are defined in a high dimensional space and this makes it inappropriate
to solve them with a continuum method as for instance a finite volume scheme; instead
particle Monte Carlo methods are employed. In these methods, the notional particles are
treated such that the particle ensemble represents the joint PDF of flow and thermody-
namical quantities at any point in space and time. Typically the modeled PDF transport
equation (see for instance the modeled MDF transport Eq. (4.40)) is a Fokker-Planck equa-
tion, which is made consistent with stochastic rules for single fluid particles. These rules
have the form of Langevin equations. Examples of such modeled particle equations are the
SLM Eq. (4.35) or the Gamma distribution model for the turbulence frequency Eq. (4.38).

The general form of the Langevin equation for the evolution of a vector of stochastic
variables X(t) is

dX(t) = a(X(t), t)dt+ b(X(t), t)dW (t), (6.1)

with the given coefficients a(X(t), t) and b(X(t), t) and the vector valued Wiener process
dW (t). It is important to note that very small timescales can be involved in Eq. (6.1),
leading to severe time step restrictions if a common finite differencing scheme [31] is em-
ployed for the numerical integration. The goal of this chapter is to develop an integration
scheme for such stochastic equations which accurately evolves the joint statistics of the
stochastic variables without any time step restriction. This can be achieved by an appro-
priate construction of the stochastic terms in the evolution equations. The derivation is
based on the analytical Itô integration of the equations and on the fact that the Wiener
process is Gaussian and the Wiener increments are all independent.

The derivations and ideas follow closely the approach presented by Minier et al. [47].
They developed a first and second order accurate time integration scheme for SDEs used
in polydispersed turbulent two - phase flows. This scheme is adapted for our case and the
derivation is explained more specifically and more detailed.
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Another related approach was presented by Pope [65]. There the Langevin equations for
frequency and velocity are transformed and decomposed, such that the stochastic terms
become linear. Then the equations are integrated analytically to obtain the numerical
scheme. The main difference compared with the approach presented in this work is the
consideration of the joint statistics of the different stochastic variables.

6.1 Numerical Integration Scheme

In the context of PDF methods for turbulent flows we are especially concerned about the
accurate evolution of the particle positions and velocities. Therefore we developed a new
integration scheme for the Langevin equations for these two quantities. First, an important
result from the Itô calculus is given, which is used later during the derivation of the new
approach.

6.1.1 Itô Calculus: Important Result

Consider a single valued stochastic process U(t) described by the Langevin equation

dU(t) = −aU(t)dt+ b dW (t), (6.2)

where the coefficients a and b are constant during the time interval from t = t0 to t = t0+4t
(they are evaluated at the beginning of a time step in the sense of Itô). Note that a and b are
different coefficients from those in Eq. (6.1). The increment of the Wiener process dW (t)
is an independent Gaussian random variable with 〈dW (t)〉 ≡ 0 (mean) and 〈dW (t)2〉 ≡ dt
(variance). The aim is now to find an analytical expression for U(t) by integrating Eq. (6.2)
from t0 to t0 +4t. The integration yields

U(t) = U(t0)e−a4t +

∫ t0+4t

t0

b ea(s−4t)dW (s). (6.3)

Additionally, for 4t→ 0 there are the following important, albeit unusual, scaling laws in
the context of Itô calculus:

• dt2 → 0

• dt dWj(t)→ 0

• dWj(t)
2 = O(dt) .

More detailed explanations can be found in Appendix A and for instance in the textbooks
of Oksendal [53], Gardiner [29] or Gard [28].
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6.1.2 Derivations

As mentioned in the introduction of this section we consider a particle system, where each
particle has a position X(t) and a velocity U (t). Note that in this section the superscript ∗
for denoting modeled fluid particle properties is omitted for better lucidity. The evolution
of these particle properties is described by the following rules:

dXi(t)

dt
= Ui(t) and (6.4)

dUi(t)

dt
= Fi +

1

τ

(
Ũi − Ui

)
+
√

Γ
dWi

dt
, (6.5)

where F , Ũ , τ and Γ are a forcing term, mean velocity, a flow time scale and the diffusion
coefficient, respectively. For the following derivations, the forcing term F and the mean
fluid velocity Ũ are set to zero for simplicity, but it is straightforward to include these
terms. Eq. (6.5) is a simplified Langevin equation for the fluid velocity and the particle
position is the time integrated particle velocity. Note, that the randomness of the particle
position is caused only by the random term in the velocity equation. Fig. 4 depicts three
realizations of the process described by Eq. (6.5) with F = Ũ = 0.

U
i(
t)

1
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1
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t/τ
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Figure 4: Three sample paths generated by the Langevin Eq. (6.5)

First, the Langevin equation for the velocity U(t) is integrated from t = t0 to t = t0 +4t
with the result of section 6.1.1 and one obtains

Ui(t0 +4t) = Ui(t0) e−
4t
τ +

∫ t0+4t

t0

√
Γ e

1
τ

(s−4t) dWi(s). (6.6)
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The question is now how to treat the integral of the stochastic term. Let us consider a
general Riemann-Stieltjes integral of the function f(t)∫ t0+4t

t0

f(s)dg(s) = lim
N→∞

N−1∑
k=0

f(τk) (g(tk+1)− g(tk)) , (6.7)

with τk taken in the interval [tk, tk+1] with tk = t0 +k/N4t. For a smooth function g(t) the
sum on the right side convergences to the correct value for any τk. Since here the function
g(t) is the non-continuous Wiener process W (t), the choice of τk determines the value of
the integral. We made the decision to work with the rules of Itô, therefore we have to take
τk = tk. Now the integral in Eq. (6.6) can be written as follows∫ t0+4t

t0

√
Γ e

1
τ

(s−4t) dWi(s) = lim
N→∞

N−1∑
k=0

√
Γ e−

4t
τ (1− k

N )4Wi,k . (6.8)

From the properties of the Wiener process it is known that its increments 4Wi,k are
Gaussian distributed with zero mean and a variance of 4t/N . Therefore the increments
can be substituted by

4Wi,k =

(4t
N

)1/2

ξi,k, (6.9)

where ξi,k are independent normalized Gaussian random variables. Using Eqs. (6.8) and
(6.9) in Eq. (6.6) leads to

Ui(t0 +4t) = Ui(t0) e−
4t
τ + lim

N→∞

N−1∑
k=0

√
Γ
4t
N

ξi,ke
−4t

τ (1− k
N ) . (6.10)

The same procedure is applied for the position Eq. (6.4) after inserting the result for Ui(t)
to obtain

Xi(t0 +4t) =Xi(t0) + τU(t0)
(

1− e−4t
τ

)
+ lim

N→∞

N−1∑
k=0

√
Γ
4t
N

ξi,kτ
(

1− e−4t
τ (1− k

N )
)
. (6.11)

ξi,k are the same Gaussian random variables as in Eq. (6.10).

To construct a time step independent and accurate integration scheme, we have to evolve
position and velocity statistics accurately. Therefore, the following solution scheme is
proposed:

Ui(t0 +4t) = Ui(t0) e−
4t
τ +
√
A ξ̂i,1 +

√
B ξ̂i,2/quadand (6.12)

Xi(t0 +4t) = Xi(t0) + τUi(t0)
(

1− e−4t
τ

)
+
√
C ξ̂i,1. (6.13)

The split-up of the stochastic term in the velocity equation is necessary to gain an additional
degree of freedom for adjusting the joint moment. So the task is to determine A, B and C
such that the following is fulfilled:



46 6 Accurate Time Integration Scheme of SDEs for Joint Statistics

1) The kinetic energy is preserved.

2) The correct velocity autocorrelation e−t/τ is recovered.

3) The correct first conditional moments 〈Ui(t0 +4t) |U(t0)〉 and
〈Xi(t0 +4t) |X(t0),U(t0)〉 are recovered.

4) The correct second conditional moments 〈Ui(t0 +4t)Uj(t0 +4t) |U(t0)〉 and
〈Xi(t0 +4t)Xj(t0 +4t) |X(t0),U(t0)〉 are recovered.

5) The correct joint moments 〈Xi(t0 +4t)Uj(t0 +4t) |X(t0),U(t0)〉 are recovered.

To achieve this, we derive these moments from the exact equations (6.10) and (6.11) as
well as from the proposed scheme (Eqs. (6.12) and (6.13)). Then, by comparison, the
three coefficients A, B and C are identified. Note, from now on we denote U (t0) by Un

and U(t0 +4t) by Un+1. First, we multiply Eq. (6.10) by Un+1
j and take the conditional

average. This leads to

〈
Un+1
i Un+1

j |Un
〉

=

〈[(
Un+1
i e−

4t
τ + lim

N→∞

N−1∑
k=0

√
Γ
4t
N

ξi,ke
−4t

τ (1− k
N )

)
×(

Un+1
j e−

4t
τ + lim

N→∞

N−1∑
k=0

√
Γ
4t
N

ξj,ke
−4t

τ (1− k
N )

)]∣∣∣∣∣Un

〉
. (6.14)

If the brackets are expanded and the averaging operator is applied to each term then cross
correlations of velocity and random numbers and between random numbers appear. The
following rules apply to these moments due to the independence of the random numbers

〈Ui ξj,k〉 = 0 and (6.15)

〈ξi,k ξj,h〉 = δijδkh. (6.16)

Evaluating all terms in Eq. (6.14) results in

〈
Un+1
i Un+1

j |Un
〉

=
〈
Un
i U

n
j

〉
e−

24t
τ + δij lim

N→∞

N−1∑
k=0

Γ
4t
N

e−
24t
τ (1− k

N ). (6.17)

We observe that the last term in Eq. (6.17) contains no random number anymore and can
be evaluated as 〈

Un+1
i Un+1

j |Un
〉

=
〈
Un
i U

n
j

〉
e−

24t
τ + δij

∫ 4t
0

Γ e−
2t
τ dt

=
〈
Un
i U

n
j

〉
e−

24t
τ + δij

1

2
τΓ
(

1− e− 24t
τ

)
. (6.18)

From this analytical expression for the evolution of the velocity variance follows that the
correct evolution of the velocity U can be described by the integration scheme

Un+1
i = Un

i e
−4t

τ +

Mi,U︷ ︸︸ ︷√
1

2
τΓ
(

1− e− 24t
τ

)
ξi,U , (6.19)
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where ξi,U is a further independent, normalized Gaussian random variable and the expres-
sion Mi,U is used later. Note that with this integration scheme the correct evolution of the

mean velocity (i.e. 〈Un+1
i |Un〉 = 〈Un

i 〉e−
4t
τ ) is of course ensured as well.

Similarly from Eq. (6.11) one obtains the evolution equation〈
Xn+1
i Xn+1

j |Xn,Un
〉

=
〈
Xn
i X

n
j

〉
+ τ

(
1− e−4t

τ

) (〈
Xn
i U

n
j

〉
+
〈
Xn
j U

n
i

〉)
+ τ 2

〈
Un
i U

n
j

〉 (
1− e−4t

τ

)2

+ δijΓτ
2

(
4t− 3

2
τ + 2τe−

4t
τ − 1

2
τe−

24t
τ

)
(6.20)

for the particle position variance and subsequent the corresponding evolution for the par-
ticle position itself

Xn+1
i =Xn

i + τUn
i

(
1− e−4t

τ

)

+

Mi,X︷ ︸︸ ︷√
Γτ 2

(
4t− 3

2
τ + 2τe−

4t
τ − 1

2
τe−

24t
τ

)
ξi,X . (6.21)

To account for the correct correlation between position and velocity, the analytical ex-
pression for the covariance is derived by multiplying Eq. (6.10) with Eq. (6.11) and by
subsequently taking the conditional average which leads to〈

Xn+1
i Un+1

j |Xn,Un
〉

=
〈
Xn
i U

n
j

〉
e−

4t
τ + τ

〈
Un
i U

n
j

〉 (
e−

4t
τ − e− 24t

τ

)
+ δij

1

2
Γ τ 2

(
1− e−4t

τ

)2

. (6.22)

The same moments are now calculated from the proposed particle evolution equations
(6.12) and (6.13). They read as〈

Un+1
i Un+1

j |Un
〉

=
〈
Un
i U

n
j

〉
e−

24t
τ + δij (A+B) , (6.23)〈

Xn+1
i Xn+1

j |Xn,Un
〉

=
〈
Xn
i X

n
j

〉
+ τ

(
1− e−4t

τ

) (〈
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i U

n
j

〉
+
〈
Xn
j U

n
i

〉)
+τ 2

〈
Un
i U

n
j

〉 (
1− e−4t

τ

)2

+ δij C and (6.24)〈
Xn+1
i Un+1

j |Xn,Un
〉

=
〈
Xn
i U

n
j

〉
e−

4t
τ + τ

〈
Un
i U

n
j

〉 (
e−

4t
τ − e− 24t

τ

)
+δij
√
AC. (6.25)

Comparing the above moment equations with Eqs. (6.18), (6.20) and (6.22) results in the
system

A+B =
1

2
Γ τ
(

1− e− 24t
τ

)
= Q (6.26)

C = Γτ 2

(
4t− 3

2
τ + 2τe−

4t
τ − 1

2
τe−

24t
τ

)
= T (6.27)

√
AC =

1

2
Γ τ 2

(
1− e−4t

τ

)2

= P (6.28)
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for the unkown coefficients A, B and C. Solving this system and inserting the result into
the proposed scheme (Eqs. (6.12) and (6.13)) leads us to the final integration scheme

Un+1
i = Un

i e
−4t

τ +

M
′
i,U︷ ︸︸ ︷√

P 2

T
ξ̂i,1 +

√
Q− P 2

T
ξ̂i,2 (6.29)

Xn+1
i = Xn

i + τUn
i

(
1− e−4t

τ

)
+
√
T ξ̂i,1︸ ︷︷ ︸
M

′
i,X

, (6.30)

for the statistically correct particle evolution. Note that the following consistencies are
fulfilled 〈

M
′

i,UM
′

j,U

〉
=
〈
Mi,UMj,U

〉
= δij Q , (6.31)〈

M
′

i,XM
′

j,X

〉
=
〈
Mi,XMj,X

〉
= δij T and (6.32)〈

M
′

i,UM
′

j,X

〉
= P . (6.33)

Further, it can be shown that the terms P 2/T , Q− P 2/T and T are all non-negative.

6.2 Results

Validation of the new particle integration scheme is done for non-decaying (forced) homo-
geneous turbulence. First we proof analytically that the new integration scheme recovers
the theoretically correct velocity variance (or kinetic energy) evolution and the correct
autocorrelation function. The time scale τ and the diffusion coefficient Γ are substituted
with the corresponding expressions of the SLM (see for instance Eq. (4.46)), which are

τ =

(
3

4
C0Ω

)−1

and Γ = C0kΩ, (6.34)

where C0, k and Ω are a model constant, turbulent kinetic energy and a turbulence fre-
quency, respectively. Inserting theses quantities into Eq. (6.29) and subsequently multi-
plying with Un+1

i and taking the average leads to

〈
Un+1
i Un+1

i

〉
= 〈Un

i U
n
i 〉 e−

24t
τ +

2

3
kn
(

1− e− 24t
τ

)
. (6.35)

Taking the sum i = 1 to i = 3 gives

2kn+1 = 2kne−
24t
τ + 2kn

(
1− e− 24t

τ

)
= 2kn (6.36)

independent of the time step size 4t.
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The velocity autocorrelation function can be derived by multiplying Eq. (6.29) with Un
j

and subsequent averaging. The result

〈Un+1
i Un

j 〉
〈Un

i U
n
j 〉

= e−
4t
τ (6.37)

proofs the correct behavior.

Further validation is now done by conducting numerical experiments. To illustrate the
improvements of the new scheme, calculations are performed with both the new scheme
and a standard second order finite differencing method [31], i.e. with the schemes

Un+1
i = Un

i +

(
−4t
τ
Un
i +

√
Γ4t ξi

)(
1− 4t

2τ

)
and (6.38)

Xn+1
i = Xn

i +
Un
i + Un+1

i

2
4t . (6.39)

To simulate the forced turbulence, the diffusion coefficient Γ was adjusted such that the
turbulent kinetic energy k = 0.5〈UiUi〉 is conserved and was set to

Γ =

√
4

3

k

τ
. (6.40)

To keep the statistical error small, in all simulations an ensemble of 106 particles was
employed, which were released at the initial position X(t0) = 0. The simulation time was
10 × τ in all cases and the time resolutions 4t/τ ∈ {0.05, 0.1, 0.5, 1.0, 1.5} were used. In
a first experiment the effect of the time scale resolution on the kinetic energy evolution
was investigated. A Gaussian initial particle velocity distribution with 〈Ui〉 = 0 and
〈UiUi〉 = 2k0 was employed. In this study, k was evaluated from the evolving particle
ensemble after every time step. The progress in time of k is depicted in Fig. 5 for both
the new and the common second order particle integration scheme. Clearly, in forced
homogeneous turbulence the kinetic energy should be preserved. One can observe that the
common scheme does not preserve k for reasonable time step sizes; even for 4t = 0.1τ the
decrease of k after a simulation time of 10τ is significant. With the new scheme, on the
other hand, the kinetic energy is preserved up to a very small statistical error for 4t as
large as 1.5τ .

The goal of the second numerical experiment was to investigate the accuracy of the pre-
dicted conditional moments. This time, k = k0 was kept constant throughout the whole
simulation and U1 at t = 0 was 0.945

√
2k0/3 for all computational particles, which were

launched at X1 = 0. Figs. 6, 7, 8, 9 and 10 show the evolutions of the normalized
conditional moments 〈X1|X(t0)U(t0)〉, 〈X1X1|X(t0)U(t0)〉, 〈U1|U(t0)〉 〈U1U1|U(t0)〉 and
〈X1U1|X(t0)U(t0)〉, respectively. In particular for 〈X1|X(t0)U (t0)〉, 〈X1X1|X(t0)U(t0)〉
and 〈U1U1|U(t0)〉 huge errors can be observed for the common scheme, even for time steps
as small as 4t = τ/2. Contrariwise, the solutions with the new scheme are exact, inde-
pendent of the time step size. A similar statement can be made about the autocorrelation
function of U1, which is depicted in Fig. 11. Note that for the normalization of the plots
(Figs. 6-10) the reference quantities Ur =

√
2k0/3 and Lr = Urτ are employed.
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Figure 5: Time evolution of the normalized kinetic energy for (left) the finite differencing
scheme and (right) the new integration scheme for different time steps

〈X
1
|X

(t
0
)U

(t
0
)〉

L
r

t/τ t/τ

Figure 6: Mean particle position conditioned on the initial particle velocity for (left) the
finite differencing scheme and (right) the new integration scheme.



6.2 Results 51

〈X
1
X

1
|X

(t
0
)U

(t
0
)〉

L
r
L
r

t/τ t/τ

Figure 7: Conditioned particle position variance for (left) the finite differencing scheme
and (right) the new integration scheme.
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Figure 8: Mean particle velocity conditioned on the initial velocity for (left) the finite
differencing scheme and (right) the new integration scheme.
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Figure 9: Conditioned particle velocity variance for (left) the finite differencing scheme
and (right) the new integration scheme.
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Figure 10: Conditioned particle position-velocity covariance for (left) the finite differencing
scheme and (right) the new integration scheme.
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Figure 11: Conditioned velocity autocorrelation function for (left) the finite differencing
scheme and (right) the new integration scheme.

6.3 Discussion and Conclusion

Chapter 6 deals with the accurate integration of particle position and velocity in a Monte
Carlo PDF method, where a Langevin equation is employed to model the fluctuating
velocity. Of course the developed method could be applied for other statistical properties
as long as the evolution equation is in the form of a Langevin equation.
Besides spatially resolving the statistical moments, which appear in the particle evolution
equations (see for instance Eq. (4.35)), it is crucial to honor the involved time scales
appropriately with the time stepping scheme. If for example a local time stepping scheme
is employed (see Appendix B and Muradoglu et al. [50], τ may be much smaller than the
time step size.

As mentioned at the beginning the development here follows closely and is an adaption
of the work by Minier and coworkers [47]. Based on Itô calculus and the interpretation
of the stochastic integral as Riemann sums, a statistically exact integration scheme is
devised. The exact integration of each of the considered stochastic differential equation
alone, would lead to exact statistical results for the single quantities. Here we devised
a scheme, which also takes care of the joint moments between the stochastic variables.
For that the stochastic term in one of the equations is split up into two terms and one
of the appearing random numbers is used in the stochastic term of the second equation.
Furthermore, the coefficients of the stochastic terms are determined by comparing the exact
moment evolution equations with the proposed general moment equations.

Numerical studies of forced homogeneous turbulence demonstrate the superiority of the
developed scheme compared with a standard second order scheme of finite difference type.
The results also confirm that the solutions for the first and second moments are statistically
exact, independent of the time step size. Moreover, the computational costs of the two
schemes are in the same order.





Part II

Modeling of Partially Premixed
Turbulent Combustion





7 Review of Combustion Regimes and Modeling Ap-

proaches

In this chapter a short introduction to the wide field of turbulent combustion is given.
Usually one divides it into premixed, non-premixed and partially premixed combustion
regimes. The basic distinction between non-premixed and premixed combustion is due
to the state of reactants when they enter the combustion chamber. Partially premixed
flames exhibit features from both of the basic regimes and are especially challenging to
model. In the next two subsections an introduction to premixed (subsection 7.1), non-
premixed and partially premixed combustion (subsection 7.2) phenomena is given and a
short review of existing modeling approaches. In the latter subsection the basic concept of
a new modeling approach for partially premixed combustion is outlined, which is presented
in detail in chapter 8.

7.1 Premixed Combustion

7.1.1 Phenomenological Observations

In premixed combustion the fuel and oxidizer streams are completely mixed before they
approach the combustion zone. Typical examples of practical devices with premixed flames
are stationary gas turbines, spark-ignition engines or household burners.

The most characteristic physical phenomenon of a premixed flame is its ability to propagate
through the mixture and normally we can clearly distinguish unburnt and burnt regions.
The two regions are divided by the reaction zone, which propagates towards the unburnt
mixture. In a laminar premixed flame the flame front is a smooth line (2D) or plane
(3D), which moves with the so called laminar flame speed sL. The structure of a laminar
premixed flame is depicted in Fig. 12. The zone where the temperature increases can
be divided into a reaction zone and a preheated zone. The preheating of the unburnt gas
through heat diffusion is in laminar flames the main reason for the flame propagation.

If the mixture field is turbulent, the flame front interacts with the turbulent eddies and the
flame zone becomes wrinkled. Two dimensionless parameters are important for the char-
acterization of premixed flames in turbulent flows, i.e. the Damköhler and the Karlovitz
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Figure 12: Sketch of a laminar premixed methane-air flame. The flame propagates with
the laminar flame speed sL and the main reactions are taking place in the so called inner-
or reaction layer.

numbers. The Damköhler number is the ratio of the integral turbulent time scale τt to a
chemical time scale τc, i.e.

Da =
τt
τc
, (7.1)

whereas the Karlovitz number relates the chemical time scale τc to the Kolmogorov time
scale τK , i.e.

Ka =
τc
τK
. (7.2)

There are different approaches for flame regime characterizations, for instance by Borghi
[6], Peters [57], Abdel-Gayed and Bradley [1] and Poinsot et al. [61]. There are some basic
distinctions which can generally be made. If Ka < 1 the chemical time scale is smaller
(faster) than the smallest turbulent time scales and the turbulent structures cannot entrain
the flame zone. This is usually called the wrinkled and the corrugated flamelet regimes.
In the thin reaction zone regime the eddies disturb the preheated zone. This happens if
1 < Ka < 100. If Ka > 100 the reaction zone gets disrupted by the turbulence and is
correspondingly called the broken reaction zone regime. The Damk”ohler number can give
a further criterion for the flame characterization and is mostly used to decide if the overall
reaction rate is limited by mixing or by the chemical reaction itself.

Further physical phenomena concerning mainly the mutual influence of turbulence and
flame zone are listed below:

(i) Viscosity dependency on temperature can lead to relaminarization of the turbulent
flow downstream of the flame front.



7.1 Premixed Combustion 59

(ii) Gas expansion due to heat release leads to counter gradient diffusion (gradient dif-
fusion assumptions are wrong in this case).

(iii) Flame generated turbulence due to flow acceleration and heat release through the
flame front.

(iv) Flame modification through strain in the flow field.

More extensive information about the definitions of length and time scales and about the
characterization of premixed flames can be found for instance in the textbooks of Poinsot
and Veynante [60] and Peters [58].

7.1.2 Modeling Approaches

In the modeling approaches for premixed combustion one usually defines a quantity which
indicates the location of the flame front and solves a appropriate transport equation for
this indicator variable in order to track the evolution of the flame front. This transport
equation contains terms which describe the interaction of the flame with the turbulence
as well as source terms. The modeling of those terms is a major challenge. There are
two main approaches, one the one hand the so called Bray-Moss-Libby (BML) model [11]
and on the other hand the level set approaches, e.g. Osher and Sethian [54] or Williams
[80]. In the BML approach a transport equation for a progress variable c is solved, where
usually the progress variable is defined as a normalized temperature. In the thin reaction
zone regime one can assume a bimodal PDF of c, which means that the state of a fluid
particle is either fully unburnt or fully burnt. Finding a closure for the progress variable
source term is the main challenge in the BML approach.
The level set approach employs instead of a progress variable a so called G-equation. The
function G(x, t) is defined with G < G0 in regions of unburnt gases and G > G0 in burnt
gases, where G0 is an arbitrary but for a specific combustion event fixed level of G in
the flame front. From the G-equation it is possible to derive a flamelet equation similar
to the one in non-premixed combustion. This level set approach is mainly suited for the
corrugated premixed regime.

Remark: In the context of this work, premixed combustion is insofar of interest, since phys-
ical phenomena of both premixed and non-premixed combustion regimes are observed in
partially premixed flames. Here, the modeling will start from the non-premixed perception
but also includes elements of premixed approaches.
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7.2 Non-Premixed and Partially Premixed Combustion

7.2.1 Phenomenological Observations

The main characteristic of non-premixed combustion is that the fuel and oxidizer streams
are supplied separately into the combustion chamber. Typical representatives of non-
premixed combustion are found in furnaces, airplane gas turbines, diesel engines, but also
candle flames (laminar). The reaction rate in non-premixed combustion is mainly con-
trolled by the diffusion of fuel and oxidizer towards the reaction zone and therefore they
are also called diffusion flames. The most obvious difference of the flame behavior com-
pared to premixed flames is that they do not exhibit a propagation mechanism. From a
security point of view this is an advantage, since the flame cannot propagate into the com-
bustion chamber intake (flashback) and furthermore flammable mixture exists only in the
flame zone. In a turbulent flow field the fuel and oxidizer streams are mixed by turbulent
and molecular diffusion and in the region where a flammable mixture is formed chemical
reactions can take place, if enough initial heat is supplied. The turbulence-flame inter-
action is characterized by the same effects as presented for premixed combustion, which
are: relaminarization, gas expansion effects, flame stretching and flame induced vorticity.
The influence of the turbulence on the diffusion process makes the understanding of non-
premixed flames especially difficult. Turbulent structures interact with the diffusion layer
around the reaction zone and change the mass flow rate of the flammable mixture into the
reaction zone, which again influences the total heat release due to chemical reactions. In
many cases the mixing time scale (of both turbulent and diffusive mixing) is much larger
than the chemical time scales and therefore the assumption of infinitely fast chemistry can
be made. This assumption simplifies the problem significantly, since the mixing process is
decoupled from the chemical reaction part and can be treated isolated. Burke and Schu-
mann [14] were the first who introduced the infinitely fast chemistry assumption in 1928.
In this context the conserved scalar concept is important, where Bilger [5] was one of the
major contributor and still his definition of a conserved scalar is often used. A passive
scalar is constructed, for instance from elemental mass fractions, which are not affected by
chemical reactions and can be used to characterize the mixing problem. Typically, such a
scalar is normalized and called mixture fraction Z. The mixture fraction can then uniquely
be related to temperature, mass concentrations and the density of the mixture.

If the mixing time scale is in the same order of magnitude as the chemical time scale,
the assumption of infinitely fast chemistry is no more justified. This is the case when
the turbulence intensity increases and accelerates the mixing rate. From a certain level
of turbulence intensity the flame can even locally or globally extinguish due to too fast
heat diffusion away from the reaction zone. Considering for instance a jet diffusion flame,
this happens most probably locally after the fuel jet exits the nozzle, where the turbulent
production is maximal. In this region fuel and oxidizer can already mix without being
burnt and stratified mixing layer structures evolve. That is when the regime of partially
premixed combustion is entered. As the name implies, both premixed and non-premixed
combustion features occur in this regime. A canonical example are the lifted jet flames.
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In such a configuration if the jet velocity is small enough, the flame remains attached to
the burner nozzle, but if the fuel jet velocity exceeds a certain value, the flame detaches
from the burner rim and the main flame zone travels farther downstream. See Fig. 13 for
an illustration. The stabilization mechanisms of such lifted flames are still not definitely

attached flame

lifted flame

Figure 13: Temperature contour plot of a attached (upper part) and a lifted jet flame
(lower part). The contour plots are simulation results of Sandia flame D and F.

known, but different experimental and numerical (DNS) investigations show that so called
triple or edge flames play an important role. Some important DNS studies are: Domingo
and Vervisch [21], Echekki and Chen [25], Domingo et al. [23].
There are a few points which are generally accepted:

1) At the stagnation point of the flame the scalar dissipation rate is considerably below
the quenching limit.

2) A premixed flame propagation exists at the stagnation point.

3) The flame structure involves lean and rich premixed branches with trailing diffusion
flames attached. These structures are known as triple or edge flames.

4) The heat release is inversely proportional to the scalar dissipation rate. High scalar
dissipation rate means low heat release.

7.2.2 Modeling Approaches

The most successful modeling approach for non-premixed combustion is the laminar flamelet
model. The original idea stems from Williams in 1975 [79]. He considered a turbulent flame
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as an ensemble of embedded laminar flamelets, which is the basic assumption of this ap-
proach. Liew in 1981 [42] suggested to use calculated profiles of laminar diffusion flames
to obtain statistical information of the turbulent flame. Peters [55] and Kuznetsov [39] de-
rived flamelet equations based on the mixture fraction dependent on the scalar dissipation
rate. The classical flamelet equation is a diffusion - reaction balance equation and reads
(e.g. [58] sec. 3.11)

ρ
∂φα
∂t

=
ρ

Leα

χ

2

∂2φα
∂Z2

+ ωα, (7.3)

where φα, Leα, χ and ωα are species mass fraction of species α, Lewis number, scalar
dissipation rate and chemical source term, respectively. The Lewis number is the relation
of energy and mass diffusion rate

Leα =
Γh
Γα
. (7.4)

Γh is the heat diffusion coefficient and Γα the mass diffusion coefficient for species α. The
scalar dissipation rate is a measure for the mixture fraction variance decay and is defined
as

χ = 2Γ |∇Z|2 . (7.5)

Γ is the diffusion coefficient for the mixture fraction. More about the definition of the
mixture fraction, the scalar dissipation rate and the choice of Γ can be found in Peters [58]
secs. 1.8, 3.2 and 3.7.

The flamelet approach is valid as long as the smallest eddies (Kolmogorov scale) are larger
than the reaction layer thickness, in that case the flamelets are embedded in laminar
fluid structures of the turbulent flow field. The advantage of this approach is that the
overall problem, i.e. the interaction between turbulence and reaction is split into a mixture
problem and a flame structure problem. The mixture problem consists of finding the
mixture fraction field Z(x, t), which is of course strongly influenced by the turbulence.
The relation between Z, the species mass fractions, temperature and the chemical source
terms states the flame structure problem. In numerical simulations this problem is treated
completely separate and precomputed flamelet tables parameterized by mixture fraction
and scalar dissipation rate are produced. During the flow calculations, the chemical source
terms for the scalar values are obtained by a lookup in the flamelet tables.

The classical flamelet approach fails in the case of partially premixed combustion, since the
model has no features accounting for extinction and reignition or premixed flame propaga-
tion. Some early modeling contributions are due to Bradley et al. [7] and [8], Sanders and
Lamers [69], Müller et al. [48] and Chen et al. [16]. Bradley et al. successfully applied a
premixed combustion model with imposed flammability limits and extended the model to
allow for premixed flame quenching due to strain. On the contrary, Sanders and Lamers
used diffusion flamelets and extinction is due to flame stretching by Kolmogorov eddies.
Both models predict the linear dependency of lift off height on the fuel jet velocity, whereas
the model of Bradley also correctly reproduces the blow off velocity as a function of the
nozzle diameter. Müller et al. calculate scalar fields of a level set function G and the mix-
ture fraction. In the G-equation the turbulent flame speed appears as an unclosed quantity.
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Three different terms contribute to the flame speed: a premixed flame propagation involv-
ing the laminar premixed flame speed as a function of the mixture fraction, a term for
partial premixing, which limits the flame propagation to region with high probability of
stoichiometric mixture, and a flame quenching term based on the scalar dissipation. This
model successfully predicts the correct lift off height of jet flames. More recent approaches
use a reaction progress variable together with a flamelet model. Such combustion models
are applied for instance in multiple mapping conditioning (MMC) methods by Kronenburg
[38] or in the context of subgrid combustion models in LES codes by Domingo et al. [22],
Pierce et al. [59], Vervisch et al. [75] or Ihme et al. [33]. The main task in these model-
ing approaches is to obtain accurate statistical information for different scalar quantities,
where also joint information is of crucial importance. Most of the above references use
presumed PDFs for the scalar distribution and the modeling is done at the level of first
and second moment equations.

A similar approach can be adapted for transported PDF methods and is the topic of the
following chapter 8. The difficulty thereby is to find appropriate models for the unclosed
terms in the PDF transport equation but if this can be achieved, the advantage is that the
PDF evolves in a physical way. An important effect which appears unclosed in transported
PDF methods is the molecular mixing. Note that also in LES/FDF approaches molecular
mixing is unclosed since it happens on the subgrid scale. Going from simple to more
complex mixing model approaches, there are the interaction by exchange with the mean
(IEM) mixing model by Villermaux and Devillon [76], the Curl model [19], the mapping
closure (MC) model by Pope [64], the Euclidean minimum spanning tree (EMST) model by
Subramaniam and Pope [73] and the parameterized scalar profile (PSP) model by Meyer
and Jenny [46] and [45]. Also many modifications and specializations of those models were
developed by different research groups.

In this work we are going to develop a combustion model based on the transported joint
PDF method presented in part I. The new model uses the flamelet and progress variable
approaches in combination with a phenomenologically motivated reactive mixing model.

Very insightful reviews about non-premixed and partially premixed combustion and their
modeling approaches can be found in the textbooks of Peters [58], Poinsont and Veynante
[60] and Warnatz et al. [77].
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Based on the turbulent combustion introduction of the previous chapter a physical moti-
vation for the new combustion model is given in the first subsection. Then, in subsection
8.2, the single ingredients, i.e. a reactive mixing model, a progress variable approach and
a scalar dissipation rate model are derived and explained. In subsection 8.3 the validation
test cases and the results are presented and the overall approach is summarized and some
concluding remarks are drawn in section 8.4. Finally, a future extension of the model is
outlined in subsection 8.5, which is the calculation of laminar triple flames and completes
the idea of the presented combustion model.

8.1 Motivation

The new modeling approach is based on the physical fine scale picture of a turbulent
partially premixed flame composed of laminar triple flames embedded in the turbulent
structures. The sketch in Fig. 14 illustrates this assumption, using a lifted jet flame setup
as a typical example. In the classical flamelet approach the thermo-chemical state of a
fluid particle is uniquely related to the mixture fraction and the scalar dissipation rate, i.e.

hs = f(Z, χ), (8.1)

where the scalar dissipation rate is defined according to Eq. (7.5). Here, Z can be seen
as a normalized fuel to oxidizer ratio of the mixture and if the diffusion coefficients of all
species are assumed to be equal and also the Lewis number Leα = Γh/Γα is unity, then
Γ = Γh = Γα.

The functional dependency in Eq. (8.1) implies that in mixture fraction-enthalpy space only
the gray shaded region (indicated in Fig. 15(a)) between the hottest and coldest burning
flamelets is accessed. This means that a mixture with Z not equal 0 (pure oxidizer) or
1 (pure fuel) has an increased enthalpy according to the flamelet relation Eq. (8.1). This
unique relation breaks down in the case of partially premixed combustion (see for instance
the example of a lifted jet flame in Fig. 14) and implies that the whole region in the Z-
h-space below the hottest flamelet can be accessed as depicted in Fig. 15(b) by the gray
shaded area.
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Figure 14: Sketch of a lifted jet flame. The upper box represents an enlarged extinguished
region of a partially premixed mixture field with lines on the stoichiometric manifolds. The
lower zoom shows a sketch of the flame base with triple or edge flames traveling along the
stoichiometric manifolds.
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Figure 15: Accessed region in Z-hs-space in a) the classical flamelet approach for non-
premixed combustion and b) in the case of partially premixed combustion.
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High turbulence levels and high strain rates in such flames lead to flame quenching and
therefore fuel and oxidizer are mixing without combustion taking place. Hence, in order
that a fluid particle can ignite or reignite, two basic requirements must be fulfilled: on one
hand, the strain or scalar dissipation rate must be below the extinction limit, and on the
other hand the flame front (edge flame) must have reached the particle.

To cope with this physical phenomenon, we propose a combustion model which is a com-
bination of a modified flamelet and a progress variable approach. The latter one is used
to decide, if a fluid particle has the ability to react or not. The flamelet idea is modified,
such that one can account for the different combustion regimes. A reactive mixing model
is developed to evolve particles in enthalpy - mixture fraction space based on the progress
variable condition (i.e. extinct or ignited) and on the state of the environment around the
particle.

In the context of transported joint PDF methods, we have the advantage that the joint
statistics of different quantities is available and can be used for model developments. Of
course, the single models themselves influence the evolution of the used joint statistics.
However, in PDF methods one has the possibility to improve the models such that the
joint statistics is represented more accurately, which then allows for potentially better
physical models. Here, the joint statistics of mixture fraction, progress variable and scalar
dissipation rate is considered. Since the numerical solution algorithm for the joint PDF
equation is based on a Lagrangian particle method, the modeling can be done by considering
the evolution of Lagrangian fluid particles. A further advantage is that in such a stochastic
Lagrangian formulation nonlinear turbulent convection appears in closed form; for instance
no gradient diffusion assumptions like for instance ũc′′ ≈ −Γc∇c̃ have to be made.

8.2 Model Development

8.2.1 Reactive IEM Mixing Model

The reactive mixing model is an approach to cope with local extinction and instead of
sequentially applying a mixing and a reaction time step, these two processes are treated
simultaneously by constructing physically motivated fluid particle paths in mixture fraction
- enthalpy space.

In the classical flamelet approach, a diffusion - reaction equation (see Eq. (7.3)) is solved
and the resulting flame tables are used in a flame calculation to obtain the reaction source
term. Here, however, these flame tables are applied differently to account for partially
premixed combustion. In the non-flammable regions of such a flame, fuel and oxidizer
evolve according to a modified mixing model. Moreover, the evolution of a fluid particle
depends on its reaction state (i.e. extinct or ignited) and on the environment around the
particle. Various new symbols are introduce at this point; see Fig. 16 for the notation.
First, we define the mixture fraction values Zf1 and Zf2, which mark the left and right
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Figure 16: Notations used during the explanations of the reactive mixing model, sketched
for a particular scalar dissipation rate. The gray shaded region between Zf1 and Zf2 is

the flammable zone in mixture fraction space, ĥ(Z, χ) denotes the mixing lines from the
flame zone edge to the oxidizer, respectively the fuel streams, hf (Z, χ) is the enthalpy of
the steady flamelet solution inside the flammable zone and hf1 and hf2 are the enthalpies
of the flamelet solution on the edge of the flame zone. Note that hf1 and hf2 depend on χ
as well.

locations of the flammable range (Zf1 < Zf2). The evolution of the particle’s mixture
fraction Z∗ is described by the IEM mixing model, i.e.

dZ∗

dt
= − 2ε̃

Cφk̃

(
Z∗ − Z̃

)
, (8.2)

where k̃, ε̃ and Z̃ are the Favre averages of the turbulent kinetic energy, the turbulent
dissipation rate and the mixture fraction, respectively, and Cφ a model constant, describing
the mechanical to scalar time scale ratio (here Cφ = 2.5).

To evolve the particle’s sensible enthalpy h∗s, one has to distinguish between different
scenarios. If a particle is not ignited (see Fig. 17(a)) (i.e. if its progress variable c∗ is zero)
then h∗s evolves according the IEM mixing model, i.e.

dh∗s
dt

= − 2ε̃

Cφk̃

(
h∗s − h̃s

)
. (8.3)

This means that no chemical reactions are considered in that case.

On the other hand, if a particle is ignited (i.e. if its c∗-value is 1), its sensible enthalpy is set
on a constructed curve in the Z-h-space while the new Z∗ is determined by the IEM mixing
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model. If both Z∗,n (the superscript n denotes values at the beginning of a time step) and
Z̃ are either larger than Zf2 (see Fig. 17(b)) or smaller than Zf1, the constructed curve

is the line from (Z∗,n, h∗,n) to (Z̃, ĥ(Z̃, χ)). The function ĥ(Z, χ) represents the mixing
lines from (0, hoxidizer) to (Zf1, hf1) and from (1, hfuel) to (Zf1, hf2). The values of hf1

and hf2 are those given by the corresponding steady flamelet solution at Zf1 and Zf2,
respectively, and also depend on the scalar dissipation rate χ (since the flamelet solution
depends on χ). If Z∗,n and Z̃ are separated either by Zf1 or Zf2, then the constructed
curve consists of three sections. If Z∗,n is smaller than Z̃ (see Fig. 17(c)), the first section
is the straight line from (Z∗,n, h∗,n) to (Zf1, hf1). The second section consists of the steady
flamelet solution from Zf1 to Zf2 and the third section is the straight line from (Zf2, hf2) to
(1, hfuel). Analogously, the three sections in the case if Z∗,n > Zf2 are the straight line from
(Z∗,n, h∗,n) to (Zf2, hf2), the flamelet solution between Zf1 and Zf2 and finally the straight
line from (Zf1, hf1) to (0, hoxidizer). If the particle lies in the flammable range (see Fig.
17(d)), i.e. if Zf1 ≥ Z∗,n ≥ Zf2, the first section of the curve is the vertical line (in the Z-
h-space) from (Z∗,n, h∗,n) to (Z∗,n, hf (Z

∗,n)), where hf (Z, χ) is the corresponding flamelet
solution. The second part is the flamelet solution between Z∗,n and Zf2 (if Z̃ ≥ Z∗,n) or
Zf1 (if Z̃ < Z∗,n). The third section in this case is either the line from (0, hoxidizer) to
(Zf1, hf1) (if Z̃ < Z∗,n) or the line from (Zf2, hf2) to (1, hfuel) (if Z̃ ≥ Z∗,n).

8.2.2 Progress Variable

In the previous section, the particle evolution in mixture fraction-enthalpy space depending
on the particle state is explained. Now we introduce the particle property c∗ ∈ {0, 1}, which
describes whether a flamelet associated with a particle is ignited. A transport equation for
the Favre mean of this progress variable can be derived by multiplying the model equation
for the joint PDF of velocity, mixture fraction, progress variable and turbulence frequency
with the sample space variable of c and subsequent integration over the whole sample space.
It reads

〈ρ〉∂c̃
∂t

+ 〈ρ〉Ũi
∂c̃

∂xi
= −∂〈ρ〉ũic

′′

∂xi
+ 〈ρ〉S̃c, (8.4)

where S̃c is the mean source term of c and is the only term which needs modeling. In our
context we have to specify the ignition probability P for a statistical particle during a time
step 4t and we propose the model

P = 1− exp (−αω∗〈c〉4t) , (8.5)

where α is a model parameter and ω∗ the particle’s turbulence frequency. It can be shown
that if a bimodal PDF for the progress variable and the previous ansatz for the ignition
probability is assumed, then the source term becomes

〈ρ〉S̃c = 〈ρ〉 (1− c̃)αω̃〈c〉. (8.6)

Note that Eq. (8.4) with source term (8.6) is equivalent to the transport equation used by
the BML model of Bray and Moss [13] and Bray, Moss and Libby [11], which was developed
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(a) (b)

(c) (d)

Figure 17: Different profiles of the reactive IEM mixing model; a) inert mixing, b) reactive
profile if Z∗,n and Z̃ are both on the right side of the flammable zone, c) reactive profile if
Z∗,n and Z̃ are on different sides of the flammable zone, and d) reactive profile if Z∗,n is
located in the flammable zone.
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for premixed combustion.
The dependency of the model parameter α can be estimated on the basis of the source
term closure in the BML approach. There, two kind of basic models exist: the flame
crossing frequency model and the flame surface density model (see Bray and Libby [12]
for considerations about the flame crossing frequency and general for both models the
textbooks of Poinsot and Veynante [60] secs. 5.3.5 and 5.3.6 and of Peters [58]).
In the first approach, the main driving phenomenon for the reaction rate is assumed to
be the crossing frequency of the flame front at a certain point. The mean reaction rate is
obtained as the product of the flame crossing frequency and the reaction rate per flame
crossing. In the latter approach, the flame surface area per unit fluid volume is considered
to be the key quantity and a transport equation for it is solved. In our case, if the ignition
probability (8.5) is considered, the resulting source term (8.6) in Eq. (8.4) is similar to
existing flame crossing frequency models, where the parameter α accounts for the reaction
rate per flame crossing. Note that for a general model, α should be a function of the
embedded triple flame propagation velocity and a flame stretch factor. For now, however,
α is set to a constant value, which implies that the ignition probability is assumed to be a
function only of the mean progress variable 〈c〉, the particle’s turbulence frequency ω∗ and
the time step size 4t. It will be shown that despite this simplification the main effects
occurring in the validation flames can be captured.

8.2.3 Scalar Dissipation Rate

To close the proposed combustion model, the scalar dissipation rate of a particle is modeled
as

χ∗ = CχZ̃ ′′Z ′′ω
∗, (8.7)

where Cχ is a constant as proposed by Poinsot and Veynante in [60], sec. 6.4.3. Note

that this model correctly predicts χ∗ = 0 for Z̃ ′′Z ′′ = 0. Moreover, since the individual
turbulence frequency ω∗ is used, the scalar dissipation rate is different for each particle. Of
course this model heavily depends on the performance of the mixing model, if the mixing
model provides a wrong scalar field, then also the statistics of the scalar dissipation rate
is inaccurate.

8.3 Validation and Results

Validation of the presented combustion model is performed with the Sandia flames E and
F [3]. These are partially premixed jet flames with jet bulk velocities of 74.4m/s and
99.2m/s, respectively, and are stabilized by a pilot burner around the cold fuel jet. Those
jet exit velocities lead to jet Reynolds numbers of 33600 for flame E and 44800 for flame
F. The jet diameter Dj is for both cases 7.2mm and the pilot diameter is DP = 18.2mm.
See Fig. 18 for a sketch of the flame setup. The jet is a mixture of 25% methane diluted
by 75% air. The mixture fraction is defined according to Bilger [4] and leads to Zj = 1
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Dj = 0.0072m

Dp = 0.0182m

Figure 18: Setup of Sandia flames E and F. 74.4m/s is the jet velocity of flame E and
99.2m/s of flame F. The pilot and coflow velocities are for both flames the same.

in the jet, a stoichiometric mixture fraction of about 0.35 in the pilot stream (resulting in
a pilot temperature of Tst = 1880K) and Zco = 0 in the coflow. Both flames experience
considerable amount of local extinction and reignition and are very challenging test cases
for partially premixed turbulent combustion models. While flame E is only slightly lifted,
flame F is close to global extinction.
The experimental setup is accurately described on the TNF workshop web site. The inlet
boundary conditions required for the numerical simulations are available from the same
web site together with detailed experimental data. The computational domain is chosen
quite large with a width of Ly = 0.15m and a length of Lx = 1.2m in order to minimize the
influence of the slip (at y = Ly) and outlet (at x = Lx) boundary conditions. To improve
the results, the model constants α, Cχ and Cω1 (Cω1 is used in the model for ω∗ in Pope
[66] sec. 15.5.3) were adjusted. While Cω1 was set to 0.74, tuning of the other two model
parameters was more difficult. Results confirm that the assumption of constant values for
α and Cχ is not general enough and therefore further investigations will be necessary.
For the PDF simulations presented here, a grid of Nx = 50 cells in downstream and Ny = 60
cells in radial direction was employed. The grid was refined towards the jet outer diameter
and towards the inlet, which results in approximately 20 cells located in the fuel jet region.
The grid is depicted in Fig. 19 on top of the contour plot of the absolute velocity field
magnitude. In average, approximately 25 particles per cell were employed and a particle
number control algorithm was applied. Furthermore, local particle time stepping was used
(see Muradoglu and Pope [50]). For more algorithmic details of the PDF method used here
see section 4.3.1 and also Jenny et al. [36].
First, simulation results of the Sandia flame E are presented. Model parameter studies
for α and Cχ were conducted at the beginning and revealed optimal values of 40 and 5,
respectively. Only results with these optimal values are shown here, since the goal of this
study is to demonstrate the concept of the new combustion modeling approach.
The hydrodynamic flow field comparison is shown in Figs. 20, 21 and 22. Note that
experimental data for the flow field of the Sandia flame E are only available at downstream
positions 15×Dj and 45×Dj. The jet spreading farther downstream and the Reynolds
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Figure 19: Employed grid for the simulations of Sandia flames E and F. The underlying
contour plot depicts the absolute magnitude of the velocity field of the Sandia flame F
simulation. The two red lines in the zoomed box are the boundaries of the fuel jet and the
pilot burner, respectively.

Figure 20: Sandia flame E: radial Favre averaged downstream velocity profiles at different
axial locations. Symbols represent the experimental data and the lines are numerical
solutions.

stresses at position 15×Dj are both underpredicted. The underestimation of the Reynolds
stresses close to the burner exit has been observed consistently in different jet calculations.
Figs. 23, 24, 25 and 26 show radial profiles of the mixture fraction and temperature mean
and root mean square (rms) values at different downstream positions. Mean mixture
fraction and mean temperature are captured quite well; only a slight overshoot of the peak
temperature at positions 30×Dj and 60×Dj is observed. A good match is obtained for
the rms of mixture fraction and the temperature. Note that this quantity is very important
for the calculation of minor species, e.g. NOx.
The scatter plots in Fig. 27 show the particle distributions in the Z-T -space at different
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Figure 21: Sandia flame E: radial Reynolds stress profiles in downstream direction at dif-
ferent axial locations. Symbols represent the experimental data and the lines are numerical
solutions.

Figure 22: Sandia flame E: radial u-v-Reynolds stress (axial-radial direction) profiles
at different axial locations. Symbols represent the experimental data and the lines are
numerical solutions.

Figure 23: Sandia flame E: radial Favre averaged mixture fraction profiles at different axial
locations. Symbols represent the experimental data and the lines are numerical solutions.
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Figure 24: Sandia flame E: radial root mean square (rms) mixture fraction profiles at dif-
ferent axial locations. Symbols represent the experimental data and the lines are numerical
solutions.

Figure 25: Sandia flame E: radial Favre averaged temperature profiles at different axial
locations. Symbols represent the experimental data and the lines are numerical solutions.

Figure 26: Sandia flame E: radial root mean square (rms) temperature profiles at different
axial locations. Symbols represent the experimental data and the lines are numerical
solutions.
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downstream locations. On the left side are the experimental data and on the right side the

Figure 27: Sandia flame E: scatter plots in Z-T -space at different axial locations; left are
the experimental data and right the simulation results.

simulations results. Some of the larger variance in the experimental scatter data might be
attributed to measurement inaccuracies. For example, mixture fraction values larger than
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one can be observed, which is not possible by definition. Apart from that, the mixture
fraction range is captured well and the overall agreement between calculated and measured
data is good.

The parameter study for the Sandia flame F yielded the optimal value 10 for both α and
Cχ.
First, in Figs. 28, 29 and 30 the flow field solution is shown in comparison with the exper-
imental measurements. The agreement is reasonable; only, as observed for flame E, the

Figure 28: Sandia flame F: radial Favre averaged downstream velocity profiles at different
axial locations. Symbols represent the experimental data and the lines are numerical
solutions.

Figure 29: Sandia flame F: radial Reynolds stress profiles in downstream direction at dif-
ferent axial locations. Symbols represent the experimental data and the lines are numerical
solutions.

Reynolds stresses closer to the burner exit are underpredicted.

The comparison of the mixture fraction and temperature statistics with the experimental
data is shown in Figs. 31, 32, 33 and 34. The higher degree of local extinction at
position 7.5×Dj is captured well in the calculation and can be observed by the lower mean
temperature at that position in Fig. 33. Also the second moments of mixture fraction and
temperature are reproduced well (see Figs. 32 and 34), only at position 30 × Dj a larger
deviation of the rms temperature from the experimental data occurs. The strong local
minimum in the simulation result at r/Dj ≈ 1.7 is only very weakly observable in the
experiment. The local minimum is created by the development of the gradient dT̃ /dr,
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Figure 30: Sandia flame F: radial u-v-Reynolds stress (axial-radial direction) profiles
at different axial locations. Symbols represent the experimental data and the lines are
numerical solutions.

Figure 31: Sandia flame F: radial Favre averaged mixture fraction profiles at different axial
locations. Symbols represent the experimental data and the lines are numerical solutions.

Figure 32: Sandia flame F: radial root mean square (rms) mixture fraction profiles at dif-
ferent axial locations. Symbols represent the experimental data and the lines are numerical
solutions.
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Figure 33: Sandia flame F: radial Favre averaged temperature profiles at different axial
locations. Symbols represent the experimental data and the lines are numerical solutions.

Figure 34: Sandia flame F: radial root mean square (rms) temperature profiles at different
axial locations. Symbols represent the experimental data and the lines are numerical
solutions.

which drives the production of temperature fluctuations. Left of r/Dj ≈ 1.7 (see Fig. 33)
the gradient is positive and becomes negative on the right side. Therefore, in between
a local minimum is expected. That it is too distinct could be that the radial turbulent
transport is underpredicted in the simulation. However, the same is not observed in the
Z̃ and Zrms profiles, which suggests that the Trms-minimum originates from an artifact of
the combustion model. More investigations are needed to further clarify this point.

Some artificial structures are visible in the scatter data (see Fig. 35), which originate very
likely from the construction of the particle paths in the Z-h-space as described in section
8.2.1 and from some unphysical behavior of the IEM mixing model. It would be quite easy
to obtain a better particle distribution in Z-T -space by increasing the model parameter
Cχ. This would lead to a higher level of the scalar dissipation rate and finally to more
extinct particles. However, tests revealed that a higher degree of local extinction results
in too low mean temperature peaks, especially at downstream positions x = 7.5Dj and
30Dj. Therefore, we think that the problem lies more in the very simple model for the
scalar dissipation rate (and at the end also of the mixing model of course). Here, we expect
major improvements by using more sophisticated mixing models, which supposably also
yield to a much better scalar dissipation rate statistics.

A further very rigorous validation for flame F was performed by comparing mixture fraction-
temperature joint PDFs and marginal mixture fraction and temperature PDFs at different
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Figure 35: Sandia flame F: scatter plots in Z-T -space at different axial locations; left are
the experimental data and right the simulation results.
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physical locations. Those locations in the flow domain are indicated in Fig. 36.

Figure 36: Temperature contour plot of Sandia flame F. The marked points are the
locations, where the joint Z-T -PDFs of experiment and calculation are extracted.

The extraction was done by dividing the accessed Z-T -space into 10× 10 even spaced bins
and both, the experimental and the computed scatter data were sampled. Note that for
the sampling of the simulation data a small range in physical space must be defined in
order to collect enough particles (realizations). Caution is advised here that effectively the
same PDFs are extracted from experimental and calculated data. The scatter data of the
experiment consist of consecutive measurements at the same location and it can be assumed
that each single measurement is an average over equally sized fluid volumes. Therefore
each value (or sample) contributes with the same weight to the PDF. In the calculations
we deal with notional particles, which have a certain statistical and physical weight m∗.
With the weight and the fluid density at the particle location, calculated via the particle
energy and the ideal gas law, the representative particle volume is determined. During
the sampling of the calculated data, each particle is weighted by its volume and finally, it
was ensured that all extracted PDFs fulfill the normalization condition. In Figs. 37, 38,
39 and 40, the extracted and normalized mixture fraction - temperature joint PDFs are
depicted. The general qualitative agreement between experiment and calculation is good
and justifies once more the basic model assumptions. Closer to the centerline, for instance
in Fig. 37 at r = 5mm and Fig. 38 at r = 6mm, the discrepancies are larger, whereas at
the other positions the match is much better. Some of the deviations close the centerline
can be partially attributed to algorithmic issues which often occur in a 2 dimensional axis
symmetric setup. Further downstream and further away from the centerline, where we are
mainly in the co-flow region (Fig. 38 at r = 18mm, Fig. 39 at r = 24mm and Fig. 40
at r = 30mm), the peak of the calculated PDF is very close to Z = 0 compared to the
experiment, where the PDF is more smeared out.
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Figure 37: Sandia flame F: joint PDF of mixture fraction and temperature at downstream
position x = 7.5×Dj and at three radial positions. On the left are the experimental and
on the right side the calculated data.

Finally, the marginal mixture fraction and temperature PDFs are shown in Figs. 41, 42, 43,
and 44 and in Figs. 45, 46, 47 and 48, respectively. The qualitative behavior in the mixture
fraction PDFs is reproduced quite satisfactorily. The discrepancies are highest in region
where the most action is going on in the flow and the flame at downstream positions 30
and 45Dj. The agreement is less good for the temperature PDFs, which can be expected
since here the uncertainties from the combustion model are directly seen. Nevertheless,
the trends are captured correctly for most of the shown locations, at some position there
is even a good quantitative match.
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Figure 38: Sandia flame F: joint PDF of mixture fraction and temperature at downstream
position x = 30 ×Dj and at three radial positions. On the left are the experimental and
on the right side the calculated data.
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Figure 39: Sandia flame F: joint PDF of mixture fraction and temperature at downstream
position x = 45 ×Dj and at three radial positions. On the left are the experimental and
on the right side the calculated data.
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Figure 40: Sandia flame F: joint PDF of mixture fraction and temperature at downstream
position x = 60 ×Dj and at three radial positions. On the left are the experimental and
on the right side the calculated data.
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Figure 41: Sandia flame F: marginal mixture fraction PDF f(Z) at downstream position
x = 7.5 × Dj and at three radial positions. On the left are the experimental and on the
right side the calculated data.
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Figure 42: Sandia flame F: marginal mixture fraction PDF f(Z) at downstream position
x = 30 × Dj and at three radial positions. On the left are the experimental and on the
right side the calculated data.
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Figure 43: Sandia flame F: marginal mixture fraction PDF f(Z) at downstream position
x = 45 × Dj and at three radial positions. On the left are the experimental and on the
right side the calculated data.
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Figure 44: Sandia flame F: marginal mixture fraction PDF f(Z) at downstream position
x = 60 × Dj and at three radial positions. On the left are the experimental and on the
right side the calculated data.
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Figure 45: Sandia flame F: marginal temperature PDF f(T ) at downstream position
x = 7.5 × Dj and at three radial positions. On the left are the experimental and on the
right side the calculated data.
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Figure 46: Sandia flame F: marginal temperature PDF f(T ) at downstream position
x = 30 × Dj and at three radial positions. On the left are the experimental and on the
right side the calculated data.
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Figure 47: Sandia flame F: marginal temperature PDF f(T ) at downstream position
x = 45 × Dj and at three radial positions. On the left are the experimental and on the
right side the calculated data.
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Figure 48: Sandia flame F: marginal temperature PDF f(T ) at downstream position
x = 60 × Dj and at three radial positions. On the left are the experimental and on the
right side the calculated data.
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8.4 Conclusions

In this chapter, a novel modeling framework for partially premixed combustion is presented.
It is based on a PDF algorithm combined with a reactive mixing model and a progress
variable. The reactive mixing model is an approach to describe appropriate particle paths
in mixture fraction-enthalpy space, which are fundamentally different in partially premixed
flames compared to diffusion flames without local extinction. An other ingredient of the
new approach is a model for the scalar dissipation rate.
The main model parameters are α and Cχ, which are used to model the ignition probability
and the scalar dissipation rate, respectively. Here, in a first approach constant values were
chosen for these two parameters but this proved not to be universal. Parameter studies
were performed in order to find the optimal values of the model constants for the two
investigated test cases. The results of this study confirm the a priori assumption that an
increase of α leads to faster ignition of the particles and thus the flame shifts towards
the inlet nozzle. In the limit of α → ∞, the steady flamelet approach is recovered. The
model constant Cχ directly determines the amount of extinction in regions with high scalar
dissipation rate. These regions are primarily located in the shear layer between the jet and
the pilot streams. Scatter plots confirm that there exist more extinct particles near a
mixture fraction of one, if Cχ is increased.

The model was applied to simulate two piloted jet flames, i.e. the Sandia flames E and F.
Both flames depict a considerable amount of local extinction, whereas flame F is close to
global extinction. The results give confidence that the PDF method together with the new
combustion model has the ability to account for the effects in partially premixed flames
and comparisons with experimental data shows good agreement for the first two statistical
moments of temperature and mixture fraction. However, the scatter plots reveal some
discrepancies in the higher statistical moments, showing the limitations of this model. We
believe these limitations can be overcome by using more elaborated ingredients for the
single model components. Questionable for instance is the IEM mixing model, which is
known to evolve a scalar PDF not really physically, since it is purely deterministic and does
not change the shape of the initial scalar PDF. The behavior of the mixture fraction PDF is
also crucial for the scalar dissipation rate statistics and is assumed not to be very accurate
in the case here. Using a more sophisticated mixing model as e.g. the parameterized scalar
profile (PSP) mixing model by Meyer and Jenny [46] and [45] may help to overcome these
shortcomings. Meyer showed with rigorous test cases that the PSP model very accurately
describes the evolution of the scalar, the scalar dissipation rate and their joint PDF.
Another desirable improvement concerns the constructed particle paths. As described in
the result section, there are artificial effects visible in the scatter data, which evidently
originate from the constructed particle paths. One approach could be to adopt the basic
assumption from the PSP model of a statistical representation of the mixture field by scalar
profiles. Here however, the profile shape of reactive scalars must be modified due to the
chemical reactions. Similarly as in the described reactive IEM mixing model, the particles
must evolve on curved paths in mixture fraction-enthalpy space.
Further potential improvement is concerned with the modeling of the progress variable
source term. If the physical picture of embedded laminar edge flames is considered, then
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this source term must take into account the propagation of turbulent flame fronts, which
consist of such laminar triple flames. DNS studies of laminar partially premixed triple
flames for different strain rates would be necessary to obtain the laminar flame speed. See
the next subsection 8.5 for a more detailed explanation about this topic.

Finally it can be concluded that the new combustion model contains the required mech-
anisms to deal with partially premixed flames, but further model improvements and fine
tuning are required to make it more general and reliable.

8.5 Extension: 2D Laminar Flame Tables

In subsection 8.1 we introduced the fine scale picture of laminar triple flames, which are
embedded in the partially premixed turbulent flow field. However, the presented simu-
lations were done using common stationary one dimensional flamelets. Here, the idea of
including the structure of laminar triple flames is explained in more detail.

The main assumption in the flamelet approach is that a turbulent diffusion flame consists
of an assembly of embedded laminar diffusion flame sheets. These laminar flame sheets are
computed by solving the reaction-diffusion equation in mixture fraction space [58]. The
underlying physical setup is a 1D physical domain with fixed boundary conditions; fuel
stream condition on one side and oxidizer stream condition on the other side. Between
the boundaries near the point of stoichiometric mixture, a diffusion flame gets established.
Oxidizer and fuel are transported by diffusion towards the reaction zone and the heat
produced in the flame is transported away from the reaction zone. The scalar dissipation
rate depends on the physical width of the domain, i.e. the narrower the domain the higher
the scalar dissipation rate. This situation is depicted in Fig. 49. Instead of this one-
dimensional fine scale picture, two-dimensional triple (edge) flames are considered for the
case of partially premixed combustion. The idea is motivated by DNS data of Domingo
and Vervisch [21] of an igniting laminar partially premixed mixture field, where such flame
structures are clearly observable. Fig. 50 shows a sketch of such triple flames, which are
able to propagate into the unburnt reactive mixture; similar as premixed flames. The
propagation ability is an important feature, since taking for instance the case of lifted jet
flames, this is considered as one of the flame stabilization mechanisms (see subsections
7.2.1 on page 60 and 7.2.2 on page 61). In our approach, the propagation mechanism is
modeled by the progress variable approach described in sec. 8.2.2 (page 68).

To account for such embedded laminar triple flames in numerical turbulent flame simula-
tions, they are computed in a preprocessing step and stored in so called flame tables. A
rectangular two dimensional domain in physical space is considered with Dirichlet bound-
ary conditions on both sides, i.e. fuel conditions (Z = 1) on one side and oxidizer conditions
(Z = 0) on the other side. Slip boundary conditions for the velocity are applied at both
sides (see Fig. 51). At the inflow boundary, a laminar uniform flow with a linear mixture
fraction distribution is imposed. The scalar dissipation rate is proportional to 1/L2

y, where
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Figure 49: Sketch of a one-dimensional laminar flame sheet. Dirichlet boundary conditions
are applied with pure oxidizer on the left and pure fuel on the right side. The gray shaded
region indicates the main reaction zone. Outside the reaction zone pure diffusive mixing
takes place. The mixture fraction is a passive scalar and hence, is not affected by the
reactions.

Ly is the width of the domain. Similar as for one dimensional flamelets, the scalar dissipa-
tion rate can be adjusted through the width of the domain. The inlet velocity Ud has to be
controled such that it equals the propagation speed of the triple flame to achieve a quasi
steady state situation. The computational domain must be long enough, such that a fully
developed diffusion flame sheet, similar to the one in the classical flamelet approach, can
establish. Such calculations are performed for different scalar dissipation rates and then
transformed into mixture fraction - burning time space. The burning time τb is defined
as the time elapsed since a particle crossed a virtual starting line. This line lies at the
base of the triple flame and in the context here it coincides with the location, where the
progress variable switches from zero to one. In a Lagrangian context this means as soon
as the progress variable of a particle changes its state from 0 to 1, the burning time starts
to run and is stored as a particle property. Note that the burning time is only used in the
turbulent flame calculation and not during the preprocessing simulation.
After transformation from the physical to the Z-τb-space, the triple flames are stored in
flame tables, which are parameterized by the mixture fraction Z, the scalar dissipation
rate χ and the burning time τb. These tables then can be employed for cheap look-up
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triple flames

diffusion flame sheets

Figure 50: Sketch of a laminar igniting mixture field with characteristic triple or edge
flame structures (inspired by DNS data of Domingo and Vervisch [21])

operations during subsequent PDF simulations.
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Figure 51: Setup for a laminar two dimensional triple flame calculation. The inlet flow
has a uniform velocity Ud and a linear mixture distribution with pure oxidizer (Z = 0) on
the left side (y = 0) and fuel (Z = 1) on the right side (y = Ly). For the tabulation the
downstream direction x is mapped to the burning time space τb and the y-direction into
mixture fraction space Z.



9 Conclusions and Outlook

There are many different ways to tackle the governing equations for turbulent reactive
flows. The methods can be classified by the level of closure or in other words by the extent
of modeling effort. On one hand, the computational cost of a certain strategy increases
with a higher closure level, but on the other hand there is a gain in accuracy.
In the case of reactive flows, one can distinguish between the closure of turbulence and the
closure of chemical reaction source terms in the energy and scalar conservation equations.
Often a good compromise are transported PDF methods, which lie in terms of compu-
tational cost and accuracy between the widely used RANS models with averaged scalar
transport equations and LES or even DNS.
Complete PDF methods, where a transport equation for the joint PDF of velocity, turbu-
lence frequency and compositions is solved, have the advantage that turbulent convection
and the chemical source terms appear closed. Moreover, the full one point, one time joint
statistics of all flow, scalar and thermodynamic properties is available and can be used to
develop appropriate models for the remaining unclosed terms. This is a major advantage
over RANS methods where, usually only for first and second moment statistics is solved.

The first two major contributions in the first part of this work are algorithmic and numerical
improvements of transported PDF solution methods.
The reason why transported PDF methods are not more often used is mainly because of
the nonstandard solution algorithms, numerical difficulties and the mathematical theory
behind it. The joint PDF transport equation is defined in a high dimensional space and
therefore is usually solved by particle Monte Carlo methods. The so called hybrid finite
volume-particle algorithms proved to be more efficient than pure particle methods, but they
introduce additional difficulties, as for instant consistency requirements between quantities
which are computed in different ways, i.e. by the particle and the finite volume methods. In
part I of this thesis the energy consistency issue is addressed and a new solution algorithm
proposed. In hybrid methods, usually, the averaged polytropic Euler equations are solved
by a finite volume scheme and the chemical reaction energy source term is extracted from
the particle field. In the new approach the finite volume energy equation is abandoned
completely and instead, the whole energy information is extracted from the particles and
passed as thermodynamic pressure on to the momentum equation of the new Euler system.
Certain requirements must be fulfilled to ensure that the new algorithm is valid; only
statistically stationary solutions can be obtained, the Mach number in the fresh gas must be
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small (. 0.3), the flame speed has to be much lower than the speed of sound (deflagrations)
and the Reynolds number of the flow must be high. The treatment of the finite volume
inflow- and outflow boundaries needs special attention, since the behavior of the modified
Euler scheme is different compared to the polytropic system.
The drawback of this new scheme is that the extracted particle energy field introduces a
bias error. However, for stationary solution, the bias can be diminished by an appropriate
time averaging method. Note that all combustion simulations, which are presented in part
II of this thesis, were performed with the new algorithm.

The general PDF transport equation has the form of a differential Chapman-Kolmogorov
equation and if it is solved with a particle method, the particles evolve consistently ac-
cording to stochastic differential equations; typically in the form of Langevin equations
(for continues processes). Examples of such SDEs are the Simplified Langevin equation
for modeling the turbulent velocity or the model equation for the turbulence frequency. In
these model equations may appear time scales, which impose severe time step restrictions
on conventional numerical integration schemes. Therefore, we developed a new time ac-
curate integration scheme for the particle movement in physical space. The new scheme
honors the single and joint statistics of the particle position and the velocity for arbitrarily
large time steps. The idea behind the approach is to integrate the particle position and ve-
locity evolution equations with the rules of Itô calculus, using the properties of the Wiener
increments and expanding a stochastic term in order to increase the degree of freedom
and finally adjusting the derived parameters such that the theoretically correct evolution
of the first and second statistical moments is ensured. The approach was validated for a
homogeneous test case and it was shown that huge errors are made with a common finite
differencing integration scheme, if the time step resolution is too coarse.

In part II, a novel model for partially premixed turbulent combustion is presented. In
this model we tried to combine the influences of molecular mixing and chemical reactions
on the fluid. The IEM mixing model together with a flamelet approach were modified,
such that they become a reactive IEM mixing model, which describes evolution paths of
fluid particles in mixture fraction - enthalpy space. The reactive mixing model is only
applied in a predefined flammable mixture fraction range, which is located around the
point of stoichiometric mixture fraction and additionally only if the fluid element is ignited.
Whether an extinct fluid element ignites depends on a progress variable, which in a Monte
Carlo context means that the ignition probability for single particles has to be determined
each time step. This ignition probability depends on the chemical and thermodynamic
state of the particle’s environment. Here, the progress variable describes the propagation
of laminar triple flames embedded in a turbulent flow field, which is an adaptation for
partially premixed combustion of the classical flamelet concept. It is important to note
that for the new model concept, the knowledge of the joint statistics of mixture fraction,
scalar dissipation rate and a progress variable is mandatory and can only be provided by
transported PDF methods. Of course the quality of the joint statistics depends on the
model performance itself.

It may be questioned why a combustion model is developed, despite the fact that the
chemical reaction source term appears closed in the governing equation. There are mainly
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two reasons: first, due to algorithmic efficiency reasons and second, even if all possible
reactions are taken into account, there are still unsolved modeling issues concerning the
interplay of mixing and chemical reactions.
In common methane - air combustion dozens of species and several hundreds of differ-
ent reactions are involved and the smallest chemical time scales are much smaller than
the Kolmogorov time scale. Direct integration of such a coupled system of equations
is computationally extremely expensive. There are approaches, as for instance in situ
adaptive tabulation (ISAT) of the chemical source term or pre-tabulation of the accessed
species manifold and its description by a suitable set of progress variables (e.g. ILDIM- or
REDIM-approaches). However, these approaches usually are computationally still much
more expensive than a combustion model as it is presented here.
The issue of the interplay between mixing and reaction as well as the one between reaction
and turbulence are among the most discussed topics in turbulent reactive flows and yet not
fully understood. By solving the chemistry exactly, one still has to apply a mixing model
for the unclosed molecular mixing term and in most solution methods the two processes
are treated separately. Our approach is an attempt to combine these two processes in one
model by taking physical knowledge of the interaction between mixing and reaction into
account.
The new model was successfully applied to demanding test cases of turbulent lifted jet
flames and proved the ability to deal with important phenomena occurring in partially
premixed flames. The agreement of first and second moment statistics with experimental
data is comparable to that of calculations with exact chemistry or with LES. However,
comparisons of scatter data, of the mixture fraction-temperature joint PDFs and their
marginal PDFs at different locations reveal that the model needs further refinements. Es-
pecially the particle paths in mixture fraction - enthalpy (temperature) space show some
artifacts, which can be attributed to the simple IEM mixing model and the way the particle
profiles were constructed.
Thus, using the same idea but applying a more sophisticated mixing model as for instant
the PSP mixing model and more physical particle profiles, which take the nonlinearity of
the chemical reactions into account, should lead to improved scalar statistics.
Furthermore, the closure of the progress variable source term, i.e. the ignition probability
for a fluid particle, needs to be refined. For that it would be helpful to study in isolation
the propagation of laminar and turbulent partially premixed flames and try to find corre-
lations between propagation speed, flow and thermodynamical properties of the fresh and
burnt mixtures.



Part III

Appendices





A Itô Calculus for Stochastic Differential Equations

Let us assume a stochastic process U(t) with a PDF f(V ; t) (V is the sample space variable
of U(t)) evolves according to the general stochastic differential equation (SDE)

dU(t)

dt
= a(U, t) + b(U, t)

dW (t)

dt
, (A.1)

where a(U, t) and b(U, t) are drift and diffusion coefficients, respectively and W (t) a Wiener
process. The increment of the Wiener process dW (t) is an independent Gaussian random
variable with mean equal 0 and variance equal dt, i.e. 〈dW (t)〉 ≡ 0 and 〈dW (t)2〉 ≡ dt. The
stochastic process, here W (t), is non-continuous in time and therefore not differentiable.
Strictly speaking, Eq. (A.1) is only valid in an integral form. For the integration of the
non-continuous stochastic term, standard rules of calculus do not apply and instead we
consider here the rules of Itô. The integral form of Eq. (A.1) reads∫ t1

t0

dU(t) = −a′
∫ t1

t0

U(t)dt+ b

∫ t1

t0

dW (t), (A.2)

where we assume linear drift and constant diffusion coefficients, a = a′U and b, respectively,
during a small time interval 4t = t1 − t0. For the general case a and b are estimated at t0
and assumed to remain constant during the time interval 4t. Eq. (A.2) is multiplied with
ea

′t to obtain ∫ t1

t0

ea
′tdU(t) = −a′

∫ t1

t0

U(t)ea
′tdt+ b

∫ t1

t0

ea
′tdW (t). (A.3)

Now, a new stochastic process
G(t) = ea

′tU(t) (A.4)

is defined, which is again an Itô process. The Itô formula is a sort of chain rule for Itô
integrals or processes. With this formula and the following scaling laws of Itô calculus

• dt2 → 0

• dt dW (t)→ 0

• dW (t)2 = O(dt) ,
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the evolution of G is governed by

dG =
∂G

∂t
dt+

∂G

∂U
dU +

1

2

∂2G

∂U2
dU2. (A.5)

After inserting the definition of G (Eq. (A.4)) into Eq. (A.5) we obtain

dG = d
(
e a

′ tU
)

= a′ e a
′ tU dt+ e a

′ tdU. (A.6)

Eqs. (A.3) and (A.6) are combined and manipulated, such that it results in the solution
for the stochastic process U(t)

U(t1) = U(t0)e−a
′(t1−t0) +

∫ t1

t0

be a
′(t1−t)dW (t) . (A.7)

A key point in the Itô calculus and at the same time also the major difference to the
ordinary calculus is that∫ t

0

W (s)dW (s) =
1

2

(
W (t)2 −W (0)2 − t

)
. (A.8)

This difference originates as mentioned above from the scaling dW (t)2 = O(dt) and there-
fore terms in dW (t)2 must be retained in e.g. a first order Taylor series expansion.



B Local Particle Time Stepping Algorithm

In general, the numerical solution algorithm for the PDF transport equation is based on
particle Monte Carlo methods (see also secs. 3 and 4.3 in this thesis). Usually the particle
time step is universal for all particles in the computational domain and is calculated based
on a Courant-Friedrich-Lewy (CFL) condition for the worst particle (meaning the particle
with the largest ratio of particle velocity and cell size, i.e. |U ∗|/Lcell). This leads to the
situation that fast particles in small cells travel in very few time steps through a cell and
slow particles in large cells remain in the same cell for a long time. This behavior results
in an uneven distributed level of statistical accuracy.
If the particles reside in a cell for many time steps, then the ensemble renewal rate is very
low and the extracted statistics becomes poor. Note that this is mainly the case if statis-
tically stationary solutions are considered, where a time averaging technique is applied to
reduce the statistical and bias errors (see moving time averaging by Jenny et al. [36]).
Another problem arises in the pseudo transient state of the simulation, which concerns
the particle distribution. The internal consistency requirements of a hybrid finite vol-
ume/particle algorithm (see section 4.3.1, last paragraph) demand that the weighted cloud
in cell particle number density matches the mean finite volume fluid density. On the algo-
rithmic level, this is enforced by a correction scheme, which adjusts the particle positions
such that the particle number density becomes consistent with the fluid density. However,
during the initial phase of the calculation, starting with possibly unphysical initial condi-
tions, it is extremely difficult to fulfill this consistency requirement, which influences the
convergence behavior of the algorithm.

Both of the issues described above can be improved by a local particle time stepping
scheme, where each particle is evolved with an individual time step size. Such a scheme
was developed by Muradoglu and Pope [50]. Here we give an overview of the scheme and
we additionally present some practical implementation details. It is important to note
that this asynchronous time stepping scheme is only applicable for statistical steady state
simulations.

If we denote global and individual particle time steps as 4t and 4t∗, respectively, the
particle property

η∗ =
4t∗
4t , (B.1)
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can be defined. It can be understood as a dimensionless time step and is calculated via the
above equation. In practice, we define a smooth η-field denoted by η (x, t). In the discrete
case η is determined at each grid node (i, j). First, the local time step sizes at each grid
point are computed by the following three CFL conditions

4txi,j =
Cu4xi,j
|U |i,j

, (B.2)

4tyi,j =
Cu4yi,j
|V |i,j

, and (B.3)

4tωi,j =
Cω
Ωi,j

. (B.4)

Here, xi,j and yi,j are the grid dimensions in x- and y-direction and are evaluated as

4xi,j = 0.5 (xi+1,j − xi−1,j) and 4yi,j = 0.5 (yi,j+1 − yi,j−1) . (B.5)

The coefficients Cu and Cω are CFL numbers in physical and frequency space, respectively,
and are chosen as Cu = 0.5 and Cω = 0.2. Further, Ωi,j is the mean conditional turbulence
frequency (see Eq. (4.36), on page 26) and |U |i,j and |V |i,j are representative absolute
particle velocities in the two spacial directions, which are specified by the mean fluid
velocity and an extracted fluctuating velocity measure, i.e.

|U |i,j = |Ũi,j|+ 2 (ũu)1/2
i,j and (B.6)

|V |i,j = |Ṽi,j|+ 2 (ṽv)1/2
i,j . (B.7)

Then the local particle time step 4ti,j at a grid node is determined as follows

4ti,j = min
[
4txi,j,4tyi,j,4tωi,j

]
, (B.8)

and the η-field can be calculated as

ηi,j =
4t

min
∀i,j

(4ti,j)
, (B.9)

where the denominator specifies the global time step 4t. Note that the choice of the
global time step is somewhat arbitrary, here, it is taken as the smallest occurring time
step. Moreover, an upper limit ηmax is defined and the whole field is linearly scaled

ηi,j =

max
∀i,j

(ηi,j)− 1

ηmax − 1

 (ηi,j − 1) + 1, (B.10)

such that all η-values lie in the interval [1, ηmax]. Finally, one obtains the local dimensionless
particle time step η∗ by linear interpolation of the node values ηi,j to the particle position
x∗. This value is then stored as a particle property.

As soon as statistical quantities are extracted from the particle ensemble the local time
step has to be taken into account. The statistical weight of a particle is modified by a
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factor, which corresponds to the value of η∗. As a consequence, to extract the mean of an
arbitrary particle quantity q∗ at grid node (i, j), the scheme

q̃i,j =

∑Np
k=1 ĝi,j

(
x(k)

)
m(k)η(k)q(k)∑Np

k=1 ĝi,j (x(k))m(k)η(k)
(B.11)

must be applied, where Np is the number of particles in the ensemble, m(k) the mass
(original weight) of particle k and ĝi,j(x) a kernel function around node (i, j). Note that
for η∗ = 1 expression (B.11) is identical to the one used to extract stochastic moments in
a synchronous particle time stepping scheme.

More care is required for a conservative formulation of the IEM mixing model, where

dφ∗α
dt

= −Cφ
2

Ω
(
φ∗α − φ̃IEM

α

)
(B.12)

describes the evolution of a scalar φ∗α due to molecular mixing. In the discrete case and
with the local particle time step considered, the change of the particle scalar value is

4φ∗α = −Cφ
2

Ω η∗4t
(
φ∗α − φ̃IEM

α

)
. (B.13)

For conservation reasons the mean change in one grid cell has to be zero, therefore it is
required that

4̃φ∗α =

∑Np
k=1 ĝ

(
x(k)

)
m(k)η(k)4φ(k)

α∑Np
k=1 ĝ (x(k))m(k)η(k)

!
= 0. (B.14)

Substituting Eq. (B.13) and setting ĝ(x) = 1 (cell averaged extraction), we can solve
Eq. (B.14) for the drift target to obtain

φ̃IEM
α =

∑Np
k=1m

(k)η(k)η(k)φ
(k)
α∑Np

k=1 m
(k)η(k)η(k)

. (B.15)

Note that the dimensionless particle time step η∗ enters quadratically into the above rela-
tion.

Further analysis of the local time stepping scheme, particularly the prove that the scheme
converges to the correct steady state solution, can be found in the original paper by Mu-
radoglu and Pope [50] and in appendix A of Merci et al. [44].
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