
ETH Library

Models of rotating coronae

Journal Article

Author(s):
Sormani, Mattia C.; Sobacchi, Emanuele; Pezzulli, Gabriele; Binney, James; Klessen, Ralf S.

Publication date:
2018-12

Permanent link:
https://doi.org/10.3929/ethz-b-000295728

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Monthly Notices of the Royal Astronomical Society 481(3), https://doi.org/10.1093/mnras/sty2500

Funding acknowledgement:
163824 - From Cosmic Web to Galaxies: Illuminating the Gaseous Link between the Dark and the Bright Universe (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000295728
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1093/mnras/sty2500
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


MNRAS 481, 3370–3381 (2018) doi:10.1093/mnras/sty2500
Advance Access publication 2018 September 14

Models of rotating coronae

Mattia C. Sormani ,1‹ Emanuele Sobacchi,2,3 Gabriele Pezzulli,4 James Binney 5 and
Ralf S. Klessen1,6

1Universität Heidelberg, Zentrum für Astronomie, Institut für theoretische Astrophysik, Albert-Ueberle-Str 2, D-69120 Heidelberg, Germany
2Physics Department, Ben-Gurion University, POB. 653, Beer-Sheva 84105, Israel
3Department of Natural Sciences, The Open University of Israel, 1 University Road, POB. 808, Raanana 4353701, Israel
4Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
5Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
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ABSTRACT
Fitting equilibrium dynamical models to observational data is an essential step in understanding
the structure of the gaseous hot haloes that surround our own and other galaxies. However,
the two main categories of models that are used in the literature are poorly suited for this
task: (i) simple barotropic models are analytic and can therefore be adjusted to match the
observations, but are clearly unrealistic because the rotational velocity vφ(R, z) does not
depend on the distance z from the galactic plane, while (ii) models obtained as a result
of cosmological galaxy formation simulations are more realistic, but are impractical to fit
to observations due to high computational cost. Here we bridge this gap by presenting a
general method to construct axisymmetric baroclinic equilibrium models of rotating galactic
coronae in arbitrary external potentials. We consider in particular a family of models whose
equipressure surfaces in the (R, z) plane are ellipses of varying axis ratio. These models are
defined by two one-dimensional functions, the axial ratio of pressure qaxis(z) and the value
of the pressure Paxis(z) along the galaxy’s symmetry axis. These models can have a rotation
speed vφ(R, z) that realistically decreases as one moves away from the galactic plane, and can
reproduce the angular momentum distribution found in cosmological simulations. The models
are computationally cheap to construct and can thus be used in fitting algorithms. We provide
a python code that given qaxis(z), Paxis(z), and �(R, z) returns ρ(R, z), T(R, z), P(R, z), vφ(R,
z). We show a few examples of these models using the Milky Way as a case study.

Key words: Galaxy: halo – galaxies: evolution – galaxies: haloes – intergalactic medium.

1 IN T RO D U C T I O N

Since the suggestion of Spitzer (1956), the existence of hot gaseous
haloes (or coronae) surrounding disc galaxies has been widely dis-
cussed (e.g. Putman, Peek & Joung 2012). In the early days their
existence was uncertain and usually conjectured on the basis of early
models of galaxy formation (Binney 1977; White & Rees 1978),
but there is now conclusive observational evidence for the existence
of such coronae.

The main and only direct observational evidence of galactic coro-
nae comes from X-ray studies of emission and absorption lines of
highly ionized species, both for the Galaxy (e.g. Yoshino et al. 2009;
Gupta et al. 2012; Miller & Bregman 2013, 2015; Hodges-Kluck,
Miller & Bregman 2016) and for external galaxies (e.g. O’Sullivan,

� E-mail: mattia.sormani@alumni.sns.it

Sanderson & Ponman 2007; Anderson & Bregman 2011; Bogdán
et al. 2013, 2015; Walker, Bagchi & Fabian 2015; Anderson, Chu-
razov & Bregman 2016). These observations have the potential to
constrain the dynamics of the coronae in addition to their tempera-
ture and density profiles; e.g., measuring the Doppler shifts of the
OVII absorption lines toward an ensemble of AGNs, Hodges-Kluck
et al. (2016) ruled out a stationary halo and suggested that the hot
gas contains an amount of angular momentum comparable to that
in the stellar disc of the Galaxy.

For the Galaxy, indirect evidence for the presence of a corona
also comes from: (i) a remarkable depletion of gas in all dwarf
galaxies within R � 270 kpc, which is naturally explained in terms
of gas ablation as the dwarfs move through a hot corona (Nichols
& Bland-Hawthorn 2011; Gatto et al. 2013; Emerick et al. 2016;
Tepper-Garcı́a & Bland-Hawthorn 2018); (ii) observed gas strip-
ping and tadpole morphologies in the Magellanic System, which
are similarly explained as caused by hydrodynamical interaction
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with the coronal gas (e.g. Salem et al. 2015). Note also that the fact
that the Magellanic Stream (MS) contains gas but not stars (e.g.
D’Onghia & Fox 2016) and the fact that the Stream is extremely
head–tail asymmetric suggest that the MS is not a purely gravi-
tational phenomenon (e.g. Putman, Saul & Mets 2011; For et al.
2014); (iii) the measured pressures of high-velocity clouds (HVC),
which are consistent with pressure equilibrium with a surround-
ing hot medium (Stanimirović et al. 2002; Fox et al. 2005). The
disc-corona interface is also probed by the dispersion measure of
pulsars with known reliable distances (Gaensler et al. 2008), which
measures the integrated free electron density out to the pulsar’s
distances, and by neutral-hydrogen 21cm emission data (Marasco
& Fraternali 2011; Marasco, Fraternali & Binney 2012), which is
present in significant amounts out to one or more kpc above the disc
(note that at those heights the gas cannot be pressure supported in
the vertical direction). However, due to the sparsity of observations,
the properties of galactic coronae such as their mass content and
extension remain largely uncertain.

Models of galactic coronae that are used in the literature for
comparison with observations fall into two main categories:1 (i)
simple analytic models, which are either spherical and non-rotating
(e.g. Fang, Bullock & Boylan-Kolchin 2013; Tepper-Garcı́a, Bland-
Hawthorn & Sutherland 2015; Qu & Bregman 2018) or rotating on
cylinders, so that the rotational velocity vφ does not depend on the
distance z from the Galactic plane (e.g. Hodges-Kluck et al. 2016;
Li & Bregman 2017; Pezzulli, Fraternali & Binney 2017), and (ii)
those obtained as a result of cosmological simulations (e.g. Crain
et al. 2010; Stinson et al. 2012; van de Voort & Schaye 2012; Ford
et al. 2013; Shen et al. 2013; Bogdán et al. 2015; Velliscig et al. 2015;
van de Voort et al. 2016; Correa et al. 2018; Oppenheimer 2018;
Van De Voort et al. 2018). Models of type (i) have the advantage
that their parameters can be adjusted to match observations, but
are clearly not realistic because we know that hot haloes rotate
and that their rotation velocity must decrease with height z above
the galactic plane, while models of type (ii) are more realistic but
cannot easily be fitted to observations, because a search in a large
parameter space using simulations would be too computationally
expensive. In the literature there is therefore a gap between realistic
models and models that can be fitted to observations.

It is therefore important to construct more realistic analytic mod-
els which allow for an arbitrary rotation vφ(R, z) (which can decrease
with height), and that are easy to construct and to compare with ob-
servations. In this paper, we develop a simple method that allows
to construct general axisymmetric equilibria in a given external po-
tential. The key advantage is that the method is computationally
cheap and makes it easy to obtain ρ(R, z), T(R, z), P(R, z), vφ(R, z),
and similar quantities, which can then be fed to fitting algorithms.
We discuss in particular a family of models whose equipressure
surfaces are ellipses, and provide an illustrative python script that
constructs these models and returns the above quantities.2

The paper is structured as follows. In Section 2, we write down
the basic equations. In Section 3 and 4, we describe a family of
models whose equipressure surfaces are ellipses, and show some
applications to the Milky Way. In Section 5, we sum up and indicate
directions for future work.

1A notable exception are the analytic baroclinic models of Barnabè et al.
(2006).
2The code is publicly available at the GitHub repository COROPY https:
//github.com/sormani/coropy

2 C H A R AC T E R I Z AT I O N O F ROTAT I N G
EQUI LI BRI A

We now prove that rotating axisymmetric baroclinic3 equilibria in
an external potential � with arbitrary entropy and angular momen-
tum distributions are completely characterized by their pressure
distribution P(R, z). In particular: (i) given P(R, z) a baroclinic
equilibrium is uniquely identified and it is possible to find it con-
structively, and viceversa (ii) given a baroclinic equilibrium, P(R,
z) is uniquely determined. Statement (ii) is trivial, so we only need
to prove (i).

The Euler equation for an axisymmetric rotating baroclinic equi-
librium in an external potential � reduces to

− v2
φ

R
êR = −∇P

ρ
− ∇�, (1)

where P(R, z) is the pressure, ρ(R, z) is the density, v = vφ êφ is the
velocity, and (R, z, φ) denote standard cylindrical coordinates. The
continuity equation is automatically satisfied, so the only require-
ment for an equilibrium to be valid is that it satisfies equation (1).

Let us assume that we are given the function P = P(R, z), i.e. we
are given the value of the pressure everywhere. We define the unit
vector normal to the surfaces of constant pressure as

êP = ∇P

|∇P | = cos(θP )êR + sin(θP )êz, (2)

and the unit vector perpendicular to it as

êν = êφ × êP = sin(θP )êR − cos(θP )êz . (3)

Let us write the gravitational potential as

∇� = g(R, z)ê�, (4)

where

ê� = cos(θ�)êR + sin(θ�)êz . (5)

Taking the dot product of equation (1) with êν we obtain

v2
φ = Rg cos(θ�)

[
1 − tan(θ�)

tan(θP )

]
= R

[
∂�

∂R
− ∂P/∂R

∂P/∂z

∂�

∂z

]
(6)

This quantity is easily calculated if we know �(R, z) and P(R, z).
Note that vφ only depends on the shape of the surfaces of constant
pressure, and not on the value that the pressure assumes on them.
Viceversa, if we know � and vφ everywhere then we can recover
the shape of the equipressure surfaces.

In order to have v2
φ > 0, the shape of the surfaces of constant

pressure needs to satisfy

tan(θ�)

tan(θP )
< 1 . (7)

This condition is that the surfaces of constant pressure must be
everywhere ‘flatter’ than the surfaces of constant potential; e.g. if
the potential is spherical then surfaces of constant pressure that are
ellipses elongated along R are allowed, while ellipses elongated
along z are not allowed. Finally, note that v2

φ vanishes if θ� = θP ,
namely if ∇P and ∇� are parallel.

3The word baroclinic is used here to indicate that P is a function of both T
and ρ, in contrast to barotropic which indicates that P depends only on ρ.
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Now taking the dot product of equation (1) with êz, or equivalently
taking the dot product with êP and then using (6), we obtain

ρ = −|∇P |
g

sin(θP )

sin(θ�)
= −∂P/∂z

∂�/∂z
. (8)

Thus we see that, given P(R, z), equations (6) and (8) allow to
calculate vφ(R, z) and ρ(R, z), respectively, so that the equilibrium
state is completely determined. This proves statement (i).

This provides an easy method to construct rotating baroclinic
equilibria: simply choose a function P(R, z) (with the topology of
surfaces of constant pressure that satisfies the constraint mentioned
above), and calculate the rest. Moreover, it proves that there is a one-
to-one correspondence between the ‘space of baroclinic equilibria’
and the space of the functions P(R, z) that satisfy the constraints
described above.

2.1 Calculation of the other quantities

As discussed above, once P(R, z) is given, one can calculate ρ(R, z)
and vφ(R, z) by using equations (6) and (8). One can then obtain all
the other quantities, and in this section we provide all the definitions
used in this paper for reference. The angular velocity is defined as

	(R, z) = vφ

R
, (9)

and the specific angular momentum as

l(R, z) = Rvφ. (10)

We assume that the gas is described by an ideal equation of state
(note that we did not have to assume an equation of state until now),

P = nkT , (11)

where T is the temperature, k is the Boltzmann constant, n =ρ/(μmp)
is the number density of particles, μ is the mean molecular weight
and mp is the proton mass. In this paper, we adopt μ = 0.58. The
entropy is defined as

σ = log(Pρ−γ ), (12)

where γ is the adiabatic index and log indicates the natural log-
arithm. We adopt γ = 5/3, the value for monoatomic ideal gases.
Note that σ is dimensionless and a change of units simply amounts
to the addition of an unimportant additive constant.4

3 MODELS WITH ELLIPTICAL
EQUIPRESSURE SURFAC ES

In Section 2, we have seen that the function P(R, z) completely
characterizes baroclinic equilibria, and thus by varying this func-
tion one can in principle obtain all possible baroclinic equilibrium
models. However, since vφ(R, z) only depends on the shape of the
surfaces of constant pressure and not on the value that the pressure
assumes on them, it is convenient to split the construction of an
equilibrium into two steps:

(i) Prescribe the shape of the surfaces of constant pressure.
(ii) Prescribe the value of P on the surfaces.

4The values displayed in the plots below are calculated assuming units of
M1−γ

� (100 km s−1)2 kpc3(γ−1).

During the first step one can adjust the surfaces to obtain the
desired vφ(R, z). Then the second step will determine the mass and
temperature distributions of the corona.

In the following, we consider models whose equipressure sur-
faces are ellipses in the plane (R, z). An ellipse is defined by

R2

a(μ)2
+ z2

b(μ)2
= 1, (13)

where μ is a parameter that labels the ellipses and q = b/a defines
their axis ratio.5 In this paper, we will use the subscript ‘axis’ to
denote quantities along the z-axis, i.e. for any given function f(R, z)
we define

faxis(z) ≡ f (R = 0, z). (14)

The distribution P(R, z) and hence the elliptical models are then
completely determined by the following two functions:

(i) qaxis(z): the value of the axial ratio of pressure along the axis
(R = 0, z);

(ii) Paxis(z): the value of the pressure along the axis (R = 0, z).

Once these two quantities are specified, one can calculate P(R,
z) and hence vφ(R, z), ρ(R, z), T(R, z), etc., using the equations of
Section 2. In the next section, we explore some explicit models by
using the Milky Way as a case study.

4 I LLUSTRATI VE A PPLI CATI ON TO THE
M I L K Y WAY

In this section, we explore some illustrative models which are tuned
to reproduce some basic properties of the Milky Way. We start
with an unrealistic model 1, and step by step we adjust it to make
more realistic as we go on with the numbering. Table 1 provides a
summary of the models.

4.1 Potential

In order to keep things simple and illustrative, we use in this paper
a spherical NFW potential (Navarro, Frenk & White 1996)

�(R, z) = −4πGρ0r
2
0

log (1 + r/r0)

r/r0
, (15)

where

r =
√

R2 + z2. (16)

We use the following values: r0 = 20 kpc and ρ0 = 0.01 M� pc−2.
These values are appropriate for the Milky Way and are similar
to the best-fitting values of McMillan (2017). The virial radius is
r200 = 237 kpc. This is defined as the radius of the sphere that has
an average density 200 times the critical density ρc = 3H 2

0 /(8πG),
where we have taken H0 = 73 km s−1 Mpc−1 (e.g. Freedman &
Madore 2010). The virial mass is M200 = 1.64 × 1012 M� and the
virial velocity is v200 = √

GM200/r200 = 173 km s−1.
There is in principle no difficulty in using flattened or more

complicated numerically integrated potentials to produce further

5Note that for a spherical potential with elliptical equipressure surfaces, as
we will consider in Section 4, we have tan(θ�)/ tan(θP ) = q2. Equation (6)
can be therefore rewritten as (vφ /vc)2 = 1 − q2, where v2

c = R∂�/dR =
Rg cos(θ�) is the local circular velocity of the potential. Hence in this case
the surfaces of constant vφ /vc and the surfaces of constant q, which are the
equipressure surfaces, coincide.

MNRAS 481, 3370–3381 (2018)
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Table 1. Models discussed in this paper. M200,cor and L200,cor are the total mass and total angular momentum of the corona contained in the virial sphere of
radius r200 = 237 kpc. L0 = 1014 M� km s−1 kpc represents the order of magnitude of the total angular momentum contained in the Milky Way stellar disc
(e.g. Peebles 1969). λ = j200,cor/(

√
2 r200v200) is the spin parameter according to the definition of Bullock et al. (2001), where j200,cor = L200,cor/M200,cor is

the averaged specific angular momentum of the corona.

Name qaxis Paxis Taxis M200,cor/ M� L200,cor/L0 λ

Model 1 1 (spherical) Equation (22) Isothermal 3.4 × 1010 0 0
Model 2 Equations (23)–(24) Equation (22) Isothermal 4.0 × 1010 0.91 0.038
Model 3 Equations (25)–(26) Equation (22) Isothermal 3.9 × 1010 0.45 0.019
Model 4 1 (spherical) Equation (27) Polytropic  = 5/3 2.8 × 1010 0 0
Model 5 Equations (23)–(24) Equation (27) Polytropic  = 5/3 3.1 × 1010 0.73 0.039
Model 6 Equations (25)–(26) Equation (27) Polytropic  = 5/3 3.1 × 1010 0.38 0.021

models. The only constraint is to ensure that v2
φ > 0, which requires

the isobaric surfaces to be ‘flatter’ than the equipotential surfaces
(see equation 7).

4.2 Normalization of the models

The data points in Fig. 1 show various estimates of density and pres-
sure of the Milky Way corona at various distances inferred from ob-
servations (see table 7 of the review by Bland-Hawthorn & Gerhard
2016). The density estimates come from the following methods: (i)
ram-pressure stripping arguments from satellite galaxies orbiting in
the Galactic corona (Blitz & Robishaw 2000; Grcevich & Putman
2009; Gatto et al. 2013; Salem et al. 2015); (ii) OVI and OVII
absorption (Sembach et al. 2003; Bregman & Lloyd-Davies 2007;
Miller & Bregman 2013); (iii) OVIII emission (Miller & Bregman
2015). The pressure estimates all essentially come from estimating
the pressure of warm (T � 104 K) gas in HVCs, and then assuming
that the hot corona is in pressure equilibrium with it (Stanimirović
et al. 2002; Fox et al. 2005; Hsu et al. 2011).

Based on these measurements, we choose to normalize all our
models so that naxis = 2 × 10−4 cm−3 at z = 50 kpc. This approach
is similar to that of Tepper-Garcı́a et al. (2015) and, as also reported
by them, it leads to a Galactic corona which broadly agrees with the
results of observations of density over a broad range in distances.
Interestingly, these models then all overestimate pressures. If instead
one constructs models that match the observed pressures, density
seem to be underestimated. Since measurements of pressure are
all derived under the assumption of pressure equilibrium between
the warm and hot medium, one possible interpretation is that the
warm medium is at a slightly lower pressure than the hot medium.
A similar conclusion was reached by Werk et al. (2014) that, by
analysing a sample of L ∼ L∗ galaxies at redshift z = 0.2, found
that the pressure of the warm medium was substantially lower than
needed to maintain pressure equilibrium with the hot medium.

These considerations do not take into account that, since the
spherical symmetry is broken in rotating coronae, one should also
consider the full three-dimensional geometry (i.e. the latitude and
longitude of the various data points) when comparing models to
observations. Huge uncertainties remain, and the challenge will be
to construct a model which is consistent with as many observational
constraints as possible simultaneously.

4.3 Dispersion measures of pulsars

The red diamonds in Fig. 2 show the observed dispersion measures
(DM) of pulsars with reliable distances. The DM is defined as

DM =
∫ d

0
ne(l) dl, (17)

where ne(l) is the free electron density along the line of sight and
d is the distance to the pulsar. Since the main contribution to the
observed DM is believed to come from the warm ionized medium
(WIM) in the disc (Gaensler et al. 2008),6 which is not included in
our models, one should not expect to fit these data with the coronal
models alone. Instead, the observed DM provides an upper limit for
the integrated free electron density in our coronal models.

To calculate the DM in the models, we have assumed that the gas
is completely ionized if T ≥ 104 K, while it does not contribute if
T < 104 K, and that it is composed only of hydrogen and helium
with proportions 75 per cent and 25 per cent in mass, respectively,
as suggested by big bang nucleosynthesis (e.g. Cyburt et al. 2016),
so that ne = 0.75 × ρ/mp + 0.25 × 2 × ρ/(4mp) if T ≥ 104 K. The
position of the Sun is assumed to be at (R�, z�) = (8 kpc, 0).

4.4 Stability of the models

Given an equilibrium, a natural question is whether it is dynamically
stable or not. A useful check comes from the Solberg–Høiland
criteria, which state that a baroclinic equilibrium is dynamically
stable with respect to isentropic axisymmetric motions if and only
if the following two conditions are satisfied (see e.g. Tassoul 2000,
in particular his equations 3.94 and 3.95):

1

R3

∂l2

∂R
+ 1

γ
geff · ∇σ > 0, (18)

geff,z

(
∂l2

∂R

∂σ

∂z
− ∂l2

∂z

∂σ

∂R

)
> 0, (19)

where

geff =
(

∂�

∂z

)
êz +

(
∂�

∂R
− l2

R3

)
êR. (20)

We have numerically checked that for all the models discussed in
the next subsection these criteria are satisfied.

4.5 Models

4.5.1 Model 1

We start with the simplest possible model, which will be useful for
comparison with more complicated models later: a non-rotating,

6Indeed, Howk, Sembach & Savage (2006) compared a variety of ISM
tracers, including the pulsar DM, in the foreground of the globular cluster
NGC 5272 (Messier 3), which has (l, b) = (42.2◦, 78.7◦) and is located
z = 10 kpc above the galactic plane. They found the warm (T ∼ 104 K) and
hot (T � 105 K) ionized phases to be present in roughly a 5: 1 ratio along
the line of sight.

MNRAS 481, 3370–3381 (2018)
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3374 M. C. Sormani et al.

Figure 1. Pressure, axis ratio, density, and temperature profiles for the models discussed Section 4. The scattered points represent estimates inferred from
observations.

isothermal model. To build this model using the framework de-
scribed in the previous sections, we need to find qaxis(z) and Paxis(z).

From equation (6), we see that a model is non-rotating if and
only if the equipressure and equipotential surfaces coincide. Since
our potential (15) is spherical, the model will be non-rotating ev-
erywhere if and only if the equipressure surfaces are spheres. So for
this model qaxis(z) = 1. To find Paxis, note that equation (1) along
the axis (R = 0, z) reduces to

ρaxis(z) = − P ′
axis

�′
axis

, (21)

where the superscript
′

denotes derivative with respect to z. If we
require the model to be isothermal along the z axis (and thus by
symmetry everywhere for this model), then Paxis = c2

s ρaxis where
c2

s = kT /(μmp) is a constant. Substituting this equation into (21)
and solving the differential equation we obtain

Paxis = P0 exp
(−�axis/c

2
s

)
, (22)

where P0 is a constant. We choose cs such that T = 2 × 106 K
and P0 such that the normalization of density is as described in
Section 4.2.

Fig. 1 shows the density and pressure profiles obtained for model
1. They are consistent with observations within the errors, although
the model seems to overestimate the pressures as discussed in Sec-
tion 4.2. Fig. 2 compares the observed DM of pulsars with known
reliable distances (red diamonds) and the same quantities calcu-
lated in our models. As discussed in Section 4.3, our models should
provide values well below the observed ones, because the main
contribution should not come from the corona but from the WIM in
the disc according to Gaensler et al. (2008). Model 1 is consistent
with this expectation, although not by a large margin. However, we

Figure 2. DM of pulsars with known reliable distances from observations
(red diamonds) and calculated from our models. Following Gaensler et al.
(2008), we show here all the pulsars that fall in one of the following three cat-
egories: (i) pulsars in the ATNF Pulsar Catalogue (Manchester et al. 2005,
available at www.atnf.csiro.au/research/pulsar/psrcat) which have known
parallaxes and DM; (ii) pulsars in globular clusters from the online com-
pilation maintained by Paulo Freire at http://www.naic.edu/∼pfreire/GCpsr
.html. For each globular cluster, we plot only one point corresponding to
the average DM of all the pulsars (which have all similar values for the
same globular cluster), and use for the distance that from globular cluster
read off the catalogue of globular clusters by Harris (1996) (2010 edi-
tion), https://heasarc.gsfc.nasa.gov/W3Browse/all/globclust.html; (iii) The
two pulsars in the Magellanic Clouds listed by Gaensler et al. (2008), with
distances assumed to be 50 and 61 kpc for the Large and Small Magellanic
Cloud, respectively.
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will see in the next section that when we make this model rotating
(model 2) it will fail in this regard.

The main problem of model 1 is that it is not rotating. Hence, the
next step is to make it rotate.

4.5.2 Model 2

We want to modify model 1 to make it rotating. The minimal modi-
fication is to keep it isothermal along the z axis, so we can take Paxis

exactly as in model 1 (this works because equation 21 is unaffected
by rotation). The rotation will make it not isothermal away from the
axis.

What we need to change is qaxis. We would like a model that
rotates ∼80 km s−1 slower than the disc close to the plane, according
to the findings of Marinacci et al. (2011) and Hodges-Kluck et al.
(2016), but reduces to the isothermal sphere of model 1 far away
from the plane. To construct such a model, we need equipressure
surfaces that are elongated close to the plane but become spherical
as we move away, i.e. qaxis < 1 close to the plane and qaxis → 1 as
r → ∞. A possible choice is

a(μ) = a0
sinh(μ)

[η+(1−η) tanh(μ)] , (23)

b(μ) = b0 sinh(μ). (24)

For η = 0, this parametrization reduces to confocal ellipses, i.e. the
surfaces of constant pressure coincide with one of the coordinates
in a oblate spheroidal coordinate system. However, one can show
from equation (6) that all models with η = 0 have the property
that the rotational velocity close to the disc at R < a0 tends to the
circular velocity in the plane z = 0, while we would like a corona that
rotates roughly ∼80 km s−1 slower than the disc (Marinacci et al.
2011). Moreover, the density and temperature become singular at the
common focal point in these models. Choosing a positive value of
η solves both problems. For model 2, we choose a0 = b0 = 20 kpc
and η = 0.2.

The top-right panel in Fig. 1 shows the resulting qaxis. The top
panel in Fig. 3 shows the rotational velocity at different heights
above the plane. The rotational velocity is higher close to the
plane and decreases going up. Figs 6 and 7 show various quan-
tities in the (R, z) plane. The contours of vφ in Fig. 7 roughly
follow the shapes obtained in cosmological simulations (e.g. Stin-
son et al. 2010, 2012, 2013). The temperature decreases close to
the plane, hinting at a transition with a colder disc. Linear stabil-
ity analysis usually conclude that coronae are stable to the thermal
instability (Binney, Nipoti & Fraternali 2009; Nipoti 2010), but as-
sume that the gas is hot (T � 106K). Binney et al. (2009) find that
thermal instability occurs if the coronal temperature falls through
3 × 105 K, so it may be interesting to re-examine this issue us-
ing the current models, which close to the plane approach this
temperature.

One problem of this model is that the DM of pulsars are too high.
Making model 1 rotating has increased the DM dramatically. The
reason is that the main contribution to the DM comes from regions
close to the disc, and making the model rotating has made the
density just above the Sun much higher (see bottom-right panel in
Fig. 7 and compare with the spherical model 1). This is because now
the disc is rotationally supported, and n decreases much slower as a
function of R in the disc. This problem will be cured by increasing
the temperature of the corona near the Galactic plane (models 4–6).

Another problem of this model is shown by Fig. 4, which shows
the angular momentum distribution (AMD) for our models. The

Figure 3. Rotational velocity at a different heights from the Galactic plane.
Top panel: model 2 and 5. Bottom panel: model 3 and 6.

Figure 4. Angular momentum distribution (AMD) for our models. The
AMD is defined as the amount of mass in the corona per given angular
momentum.

MNRAS 481, 3370–3381 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/481/3/3370/5097896 by ETH
 Zurich user on 25 Septem

ber 2023



3376 M. C. Sormani et al.

Figure 5. Mass enclosed within spherical radius r in our models. The black
vertical dashed line indicates the virial radius r200. The red horizontal line at
M200	b/	c = 3 × 1011 M� indicates the baryons that should be contained
within r200 according to the cosmological value of the ratio of baryons to dark
matter, where we have taken 	b/	c = 18.6 per cent (Planck Collaboration
VI et al. 2018).

AMD is defined as the distribution of mass per unit angular mo-
mentum. Cosmological simulations typically find the AMD to be
roughly exponential (e.g. van den Bosch et al. 2002; Sharma &
Steinmetz 2005; Sharma, Steinmetz & Bland-Hawthorn 2012), but
that of model 2 is clearly not.7 Since most of the mass is at outer radii
(Fig. 5), this indicates that there is an excess of rotation (angular
momentum) at large radii.

To cure this problem, we need to modify the function qaxis. This
motivates model 3.

4.5.3 Model 3

To cure the AMD problem encountered with model 2, we need to
choose qaxis so that the corona rotates slower at large radii, where
most of the mass is concentrated. Hence we consider the following
parametrization:

a(μ) = μ (25)

b(μ) = μ
[
1 − exp(−μ/L)

]
. (26)

The corresponding qaxis is shown in the top-right panel in Fig. 1.
We have used L = 20 kpc. We see that model 3 rotates faster than
model 2 for R � 15 kpc, but rotates slower for R � 15 kpc. The
difference is very subtle and is difficult to see by comparing the top
and bottom panels in 3 or by comparing 2D maps as in Figs 6–9.
Nevertheless, the difference in the AMD is quite large, and we see
in Fig. 4 that the resulting AMD of model 3 is roughly exponential,
as suggested by cosmological simulations.

This model retains the problem of model 2 that DM of pulsars
is too high. In order to cure this problem, we need to rise the
temperature of the corona close to the Galactic plane.

7Since X-ray observations mostly probe the innermost �50 kpc of the
corona, we have to rely on predictions from cosmological simulations to
construct the outer parts (R � 50 kpc) of our models.

4.5.4 Model 4

In order to cure the problem with pulsars DMs of model 4, we
need to find a model with higher temperature close to the Galactic
plane. We start again from a spherical model, and instead of taking
it isothermal, we take it polytropic, i.e. we assume that Paxis ∝ ρ

axis.
We assume  = 5/3. Substituting this into (21) and solving the
differential equation yields

Paxis = P0 [C − �axis]
/(−1) , (27)

where C is a constant that controls the temperature profile and
P0 is a constant that controls the mass scaling. We choose these
constants so that Taxis = 2 × 106 K at z = 50 kpc and the density
normalization is as described in Section 4.2.

From the bottom-left panel in Fig. 1, we see that the density
profile of this model at small radii is much shallower, hence the
densities are much lower at small radii. This brings down the value
of the DM, which was the problem of model 3. Now we need to
make this model rotating.

4.5.5 Model 5

First we try to make model 4 rotating by modifying it in the same
way we modified model 1 to obtain model 2. Thus for model 5 we
keep the same Paxis as model 4, but we take qaxis as in model 2. The
result is shown in Figs 10 and 11. We see from Fig. 2 that this model
solves the DM problem that plagued model 2 and 3, but we see from
Fig. 4 that it still has the AMD problem that plagued model 2. To
solve this, we can make the same modification to qaxis that we made
in going from model 2 to model 3.

4.5.6 Model 6

This model has Paxis as in model 5, thus it does not suffer from the
DM problem (Fig. 2), and has qaxis as model 3, thus it does not suffer
from the AMD problem (Fig. 4). The result is shown in Figs 12
and 13. This model is therefore consistent with (i) DM of pulsars
with known reliable distances; (ii) the densities estimates in Fig. 1;
(iii) estimates of the rotation velocity close to the plane which show
it rotates roughly 80 km s−1 slower than the disc (Marinacci et al.
2011; Hodges-Kluck et al. 2016); (iv) the roughly exponential AMD
profile found in cosmological simulations (Sharma & Steinmetz
2005).

An interesting feature of this model is that it has higher temper-
ature lobes centred on the z axis and close to the Galactic plane,
reminiscent of the Fermi bubbles (Bland-Hawthorn & Cohen 2003;
Su, Slatyer & Finkbeiner 2010). By looking at X-ray absorption
lines, Miller & Bregman (2013) find that while in most directions
their data show little or no OVIII absorption, in the direction of the
Fermi bubbles (l = 338.18◦, b = −26.71◦) there is an enhance-
ment of OVIII. Since OVIII is visible only at very high temperature
(T � 4 × 106 K, e.g. Sutherland & Dopita 1993), this suggests that
the temperature of the corona is significantly higher in the direc-
tion of the Fermi bubbles. Indeed, by analysing X-ray emission,
Kataoka et al. (2013, 2015) and Miller & Bregman (2016) find that
in the direction of the Fermi Bubbles the temperature rises from
T ∼ 2 × 106 to T ∼ 4 × 106 K. Our models would be consis-
tent with these expectations, and it would be interesting to explore
what dynamical effects these high-temperature lobes have once the
models are allowed to evolve in time under the presence of a slow
cooling and/or thermal conduction. We are not claiming that the
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Figure 6. Model 2. For P/k, T, and n, the white contours coincide with labels in the colourbars. The white dashed contours for σ are at { − 5, −4, −3}.

Figure 7. Model 2. Zoom in the innermost 30 kpc of Fig. 6.

Fermi bubbles are a consequence of our model, although we can-
not exclude that the corona plays a dynamical role in producing an
outflow (e.g. Waxman 1978). However, we note that a rotating halo
does favour an outflow compared to a spherical halo, because it has
lower density in the directions above and below the Galactic plane
than within the plane (see also the models of Pezzulli et al. 2017),
thus effectively clearing the way for an outflow.

This model is to a high degree isentropic (see Figs 12 and 13).
This is because we have chosen  = 5/3. However, we have chosen
this value mainly for simplicity. A model with qualitatively sim-
ilar characteristics but much farther from being isentropic can be

obtained taking for example  = 1.4. Thus, we are not ruling out
models with substantial entropy gradients.

The spin parameter of all the models in Table 1 are in the range
λ = 0.02–0.04. These are typical values for dark matter haloes
found in simulations (e.g. Bullock et al. 2001; Sharma & Steinmetz
2005). However, by analysing a range of simulated galaxies from
the EAGLE simulations, Oppenheimer (2018) recently found that
typical spin parameters of coronae are 2–3 times higher than dark
matter spin parameters (see also Danovich et al. 2015; Teklu et al.
2015). Thus it may be worth in the future to explore coronal models
with higher spin parameters. This is probably best done using a
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Figure 8. Model 3. For P/k, T, and n, the white contours coincide with labels in the colourbars. The white dashed contours for σ are at { − 5, −4, −3}.

Figure 9. Model 3. Zoom in the innermost 30 kpc of Fig. 8.

flattened external potential, which would better represent a rotating
dark matter halo than the spherical potential adopted in this paper.

To make progress and construct a more accurate model of the
MW, we need to fit parametric models to X-ray surface brightnesses
and spectra observations. This requires special care, e.g. in carefully
subtracting contributions due to the Local Bubble (Sanders et al.
1977; Cox & Reynolds 1987), to the interaction between the Solar
wind and interstellar neutrals (e.g. Cravens 2000; Liu et al. 2017),
and to other Galactic and extragalactic sources, which is out of the
scope of this paper.

5 C O N C L U S I O N S A N D O U T L O O K

We have presented a simple method to construct general ana-
lytic equilibrium baroclinic models of galactic coronae with re-
alistic rotations. We have considered the particular class of models
whose equipressure surfaces are ellipses. These models are com-
pletely determined by the two functions Paxis and qaxis which spec-
ify the pressure and axis ratio along the axis (R = 0, z). This
class of models is quite broad and can produce vastly differ-
ent rotational, density, and temperature profiles. Thus it is likely
that the sparse observations available can be fitted by a model
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Figure 10. Model 5. For P/k, T, and n, the white contours coincide with labels in the colourbars. The white dashed contours for σ are at { − 5, −4, −3}.

Figure 11. Model 5. Zoom in the innermost 30 kpc of Fig. 10.

of this type. Importantly, the models are computationally cheap
and suited to be used in fitting algorithms and/or large parameter
scans.

As an illustration of the models, we have taken the first step to-
wards fitting dynamical models to the corona of the Galaxy. By a
trial and error process, we have constructed models which are com-
patible with an increasing number of constraints. We have finally
presented a model (number 6) which is consistent with (i) DM of
pulsars with known reliable distances; (ii) the densities estimates
listed in Fig. 1; (iii) the estimates of rotation velocity close to the
plane being 80 km s−1 slower than those of the disc (Marinacci

et al. 2011; Hodges-Kluck et al. 2016); (iv) the roughly exponential
Angular Momentum Distribution (AMD) found in cosmological
simulation (e.g. Sharma & Steinmetz 2005).

The next steps are fitting increasingly complicate equilibrium
models in order to exploit all the observational data available,
in particular X-ray observations (Miller & Bregman 2013, 2015;
Hodges-Kluck et al. 2016). This will unveil the structure of the
corona in our own and other galaxies. The subsequent step will
be to understand how these models evolve under the presence of a
slow cooling and/or thermal conduction, and thus their connection
with the problem of accretion on to the Galaxy (Pezzulli & Frater-
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Figure 12. Model 6. For P/k, T, and n, the white contours coincide with labels in the colourbars. The white dashed contours for σ are at { − 5, −4, −3}.

Figure 13. Model 6. Zoom in the innermost 30 kpc of Fig. 12.

nali 2016) and of how the gas reservoir necessary to maintain star
formation is replenished (e.g. Klessen & Glover 2016).
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