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Abstract 
 
Enhanced Geothermal Systems (EGS) intend to extract the heat stored in the earth’s crust by 
circulating a fluid like water between injection and production wells. The heat exchange 
between the fluid and high temperature (ideally higher than 150°C) host rocks permits 
producing energy from production fluid. Since the host formations of desirable temperatures 
are mostly found in crystalline low-porosity basement rocks, the fluid flow is developed through 
the fracture network. However, the natural production rate from these reservoirs are typically 
lower than economic thresholds. Thus, commercial developments of EGS reservoirs require 
permeability enhancement or creation through hydraulic stimulation, in which massive 
pressurized fluid is injected into the target reservoir. High pressure fluid injection increases the 
pore pressure and reduces the effective normal stress on fracture planes, and results in shearing 
of rough surfaces or creating new fractures that are expected to enhance the permeability of the 
rock mass. However, displacement on fracture surfaces induces microseismicity, which may 
include destructive events, too. This particular problem has led to suspension of two geothermal 
projects in Basel and Saint-Gallen, Switzerland. Hence, the main challenge in developing 
commercial geothermal developments is to enhance the permeability without inducing 
damaging events.  

Induced seismicity is a complex interaction between pre-existing fracture network, pore-
pressure propagation and in-situ stress conditions. Thus the preliminary step towards a reliable 
seismic risk and hazard assessment, is characterizing the fracture network in different scales. 
Nevertheless, fracture network characterization is a challenging task at early project stages, 
especially when a single borehole penetrates the target reservoir. The primary source of 
information on the natural fractures within the reservoir volume stems from the borehole data. 
In addition to that, induced seismicity reveals some information on the 3D structures within the 
reservoir volume, too. Furthermore, the local stress heterogeneities in borehole scale is largely 
controlled by the slip on fractures and geometrical characteristics of the network. Thus, the 
potential relations amongst the fracture network, stress heterogeneities and induced seismicity 
would result in practical implications such as constraining the 3D clustering and length 
distribution of fracture as well as maximum seismic magnitude forecast during the hydraulic 
stimulation.  

The preliminary step toward exploring these relations is to characterize the fracture network 
from borehole data. Borehole data may be characterized by scaling laws to study potential scale-
invariance and possibly relate it to the scaling of stress heterogeneity and induced seismicity. 
Before establishing such relations, the limitations of fracture network sampling and power-law 
scaling of borehole data should be clarified. Detailed analysis of synthetic and borehole data 
clarified that the correlation function delivers the true fractal dimension of fracture patterns. 
The analysis of natural fractures derived from borehole images of two geothermal reservoirs of 
Basel and Soultz-sous-Forêts confirmed the fractal spacing of fracture sets and the entire 
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datasets, in more than two order of magnitude. Further analysis on the synthetic 3D fractal 
fracture networks (a network in which the spatial distribution of fracture centers are scale-
invariant and the fracture length follows a power-law distribution) revealed the possible 
limitations and associated uncertainty of using available stereological relationships (the 
relationships among the 1D, 2D and 3D spatial distribution of fractures in a fractal network). 
Further analysis on the available borehole data showed no clear trend of correlation dimension 
with depth. 

Induced seismicity patterns also tend to exhibit scale-invariant characteristics. A detailed 
analysis on the seismicity in the Basel geothermal reservoir exhibited the potential scaling 
relationships in clustering and size distribution of induced events. Synthetic fracture networks 
as a representative of rupture planes interpreted the clustering and size distribution of induced 
events and clarified the effect of microseismic specific influential factors such as hypocentral 
location uncertainties, existence of a fractured zone and repeating events on the observed 
seismicity. The similarity between the scaling characteristics of induced seismicity and fractal 
fracture networks led to introduce a statistical seismicity model, which includes the spatial 
clustering and size distribution of potential rupture planes. This model could forecast the 
maximum seismic magnitude of induced events based on the scaling of early seismicity patterns 
in hydraulic stimulation with increasing injection time and stimulated volume.  

Adopting the hypothesis that stress heterogeneities are strongly controlled by natural fractures 
and their geometrical characteristics, a novel stress-based tomography was developed in a 
Bayesian framework. This inversion technique is capable to characterize the fracture network 
and its heterogeneity in deep geothermal resources. This technique used local variations of in-
situ principal stress components (at least one orientation and one magnitude) along boreholes 
and the prior information on the fracture network. The Markov sequence compared the 
simulated stress profile with the observed stress profiles on the borehole and accepted possible 
realizations using Metropolis-Hastings (MH) acceptance criteria. The Markov Chain Monte 
Carlo (MCMC) algorithm stored a large number of realizations in an ensemble. Then, a 
selection of accepted realizations visualized the possible fracture locations and corresponding 
lengths in a fracture probability map. This technique was successfully tested on simple synthetic 
and complex outcrop-based fracture networks. 

Finally, the stress heterogeneities in borehole scale shows scale-invariant characteristics in 
different wavelengths. Adopting the same hypothesis that the stress heterogeneities are 
controlled by slip on natural fractures, 2D fracture networks were generated to relate the scaling 
of stress heterogeneities and key network characteristics. Analysis on the synthetic data showed 
weak reverse correlation between the fracture length exponent and fractal dimension of stress 
heterogeneities. In addition, fracture density largely affected the stress profiles on boreholes. 
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Zusammenfassung 
 

Enhanced Geothermal Systems (EGS) sollen die in der Erdkruste gespeicherte Wärme durch 
die Zirkulation einer Flüssigkeit, wie zum Beispiel Wasser, zwischen Injektions- und 
Produktionsbrunnen fördern. Der Wärmeaustausch zwischen der Flüssigkeit und dem 
Hochtemperatur-Wirtsgestein (idealerweise höher als 150 ° C) erlaubt die Erzeugung von 
Energie aus der Produktionsflüssigkeit. Da die Wirtsformationen der gewünschten 
Temperaturen meist in niedrigporösen Kristallin-Gesteinen vorkommen, findet der Flüssigfluss 
in Bruchnetzwerken statt. Die natürliche Produktionsrate aus diesen Lagerstätten ist jedoch 
typischerweise niedriger als die erforderlichen Schwellenwerte für eine wirtschaftliche 
Produktion. Daher erfordern kommerzielle Entwicklungen von EGS-Reservoirs eine 
Verbesserung der Permeabilität durch hydraulische Stimulationen, bei der Fluide unter 
Hochdruck in das Ziel-Reservoir gepresst werden. Die Hochdruckinjektion von Fluiden erhöht 
den Porendruck, reduziert die effektive Normalspannung auf Bruchebenen und führt zum 
Scheren entlang rauher Oberflächen oder zur Erzeugung neuer Risse, von denen erwartet wird, 
dass sie die Durchlässigkeit der Gesteinsmasse erhöhen. Verschiebungen an Bruchflächen 
induzieren jedoch Mikroseismizität, was auch spürbare und zerstörerische Folgen beinhalten 
kann. Dieses spezielle Problem hat bereits dazu geführt, dass zwei EGS-Projekte in der Schweiz 
in den Geothermieanlagen Basel und St. Gallen eingestellt wurden. Daher besteht die größte 
Herausforderung bei der Entwicklung kommerzieller EGS-Entwicklungen darin, die 
Durchlässigkeit zu erhöhen, ohne schädliche Ereignisse hervorzurufen.  

Induzierte Seismizität ist eine komplexe Wechselwirkung zwischen bereits bestehendem 
Bruchnetzwerk, Porendruckausbreitung und in-situ Spannungsbedingungen. Der vorbereitende 
Schritt hin zu einer zuverlässigen seismischen Risiko- und Gefährdungsbeurteilung 
charakterisiert somit das Bruchnetzwerk in verschiedenen Maßstäben. Dennoch ist die 
Charakterisierung von Bruchnetzwerken eine Herausforderung in frühen Projektphasen, 
insbesondere, wenn lediglich ein einzelnes Bohrloch das Zielreservoir durchdringt. Die primäre 
Quelle für Informationen über die natürlichen Brüche innerhalb des Reservoirvolumens stammt 
aus diesen Bohrlochdaten. Zusätzlich zeigt die induzierte Seismizität auch Informationen über 
die 3D-Strukturen innerhalb des Reservoirvolumens. Darüber hinaus werden die lokalen 
Spannungsheterogenitäten im Bohrlochmaßstab weitgehend durch Scherversatz entlang 
existierender Brüche und die geometrischen Eigenschaften des Netzwerks gesteuert. Die 
potentiellen Beziehungen zwischen dem Bruchnetzwerk, den Spannungsheterogenitäten und 
der induzierten Seismizität würden somit zu praktischen Implikationen führen, wie zum 
Beispiel das Einschränken der 3D-Clusterbildung und der Längenverteilung der Brüche, sowie 
die Vorhersage des maximalen seismischen Magnitude während der hydraulischen Stimulation.  
Der vorläufige Schritt zur Erforschung dieser Beziehungen ist eine Charakterisierung des 
Bruchnetzwerks anhand von Bohrlochdaten. Bohrlochdaten können durch Skalierungsgesetze 
charakterisiert werden, um potentielle Skaleninvarianz zu untersuchen und möglicherweise mit 
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der Skalierung von Stressheterogenität und induzierter Seismizität in Beziehung zu setzen. 
Bevor solche Beziehungen hergestellt werden, sollten die Grenzen der Bruchnetz-Probenahme 
und der potenzgesetz Skalierung von Bohrlochdaten geklärt werden. Eine detaillierte Analyse 
von synthetischen Daten und Bohrlochdaten verdeutlichte, dass die Korrelationsfunktion die 
wahre fraktale Dimension von Bruchmustern liefert. Die Analyse von natürlichen Brüchen aus 
Bohrbildern von zwei geothermischen Reservoiren (Basel und Soultz-sous-Forêts) bestätigte 
das fraktale Verhalten von Brüchen und der gesamten Datensätze in mehr als zwei 
Größenordnungen. Eine weitere Analyse der synthetischen fraktalen 3D-Bruchnetzwerke (ein 
Netzwerk, in dem die räumliche Verteilung der Bruchzentren skaleninvariant ist und die 
Bruchlänge einer Potenzgesetzverteilung folgt) hat die möglichen Einschränkungen und die 
damit verbundene Unsicherheit der Verwendung verfügbarer stereologischer Beziehungen (der 
Beziehungen aufgezeigt unter der 1D, 2D und 3D räumlichen Verteilung von Brüchen in einem 
fraktalen Netzwerk). Eine weitere Analyse der verfügbaren Bohrlochdaten zeigte keinen 
eindeutigen Trend der Korrelationsdimension mit der Tiefe. 

Induzierte Seismizitätsmuster neigen auch dazu, skaleninvariante Eigenschaften aufzuweisen. 
Eine detaillierte Analyse der Seismizität im geothermischen Reservoir in Basel zeigte die 
potenziellen Skalierungsbeziehungen in der Clusterbildung und Größenverteilung von 
induzierten Ereignissen. Synthetische Bruchnetzwerke als Vertreter von Bruchflächen 
interpretierten die Clusterbildung und Größenverteilung von induzierten Ereignissen und 
klärten den Einfluss von mikroseismischen spezifischen Einflussfaktoren wie hypozentralen 
Standortunsicherheiten, Existenz einer fragmentierten Zone und wiederholten Ereignissen auf 
die beobachtete Seismizität auf. Die Ähnlichkeit zwischen den Skalierungseigenschaften von 
induzierten Seismizität und fraktalen Bruchnetzwerken führte zur Einführung eines 
statistischen Seismizitätsmodells, das die räumliche Clusterbildung und Größenverteilung 
potentieller Bruchflächen in Beziehung setzt. Dieses Modell könnte die maximale Magnitude 
induzierter seismischer Ereignisse vorhersagen, basierend auf der Skalierung früher 
Seismizitätsmuster in der hydraulischen Stimulation mit zunehmender Injektionszeit und 
stimuliertem Volumen. 

Ausgehend von der Hypothese, dass Stressheterogenitäten durch natürliche Brüche und ihren 
geometrischen Eigenschaften stark kontrolliert werden, wurde eine neuartige stressbasierte 
Tomographie in einer Bayesischen Umgebung entwickelt. Diese Inversionstechnik ist in der 
Lage, das Bruchnetzwerk und seine Heterogenität in tiefen geothermischen Ressourcen zu 
charakterisieren. Diese Inversionstechnik verwendete lokale Variationen von in-situ-
Hauptspannungskomponenten (mindestens eine Orientierung und eine Magnitude) entlang von 
Bohrlöchern und die vorherige Information über das Bruchnetzwerk. Die Markov-Sequenz 
verglich das simulierte Spannungsprofil mit den beobachteten Spannungsprofilen auf dem 
Bohrloch und akzeptierte mögliche Realisierungen unter Verwendung von Metropolis-Hastings 
(MH) Akzeptanzkriterien. Der Markov Chain Monte Carlo (MCMC) -Algorithmus speicherte 
eine große Anzahl von Realisierungen in einem Ensemble. Eine Auswahl akzeptierter 
Realisierungen visualisierte die möglichen Bruchstellen und entsprechenden Längen in einer 
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Bruchwahrscheinlichkeitskarte. Diese Technik wurde erfolgreich an einfachen synthetischen 
und komplexen Aufschluss-basierten Bruchnetzen getestet. 

Die Spannungsheterogenitäten im Bohrlochmaßstab zeigen schließlich skaleninvariante 
Eigenschaften in verschiedenen Wellenlängen. Mit der gleichen Hypothese, dass die 
Stressheterogenitäten durch Gleiten auf natürliche Brüchen kontrolliert werden, wurden 2D-
Bruchnetzwerke generiert, um die Skalierung von Stressheterogenitäten und wichtigen 
Netzwerkeigenschaften in Beziehung zu setzen. Die Analyse der synthetischen Daten zeigte 
eine schwache umgekehrte Korrelation zwischen dem Bruchlängenexponenten und der 
fraktalen Dimension der Stressheterogenitäten. Darüber hinaus beeinflusste die Bruchdichte die 
Spannungsprofile von Bohrlöchern stark. 
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1 Introduction 
 

1.1 General context 

The global tendency to produce CO2 emission-free energy, public aversion toward nuclear 

plants and irreversible influence of fossil fuels on human beings and global ecosystem has 

raised the interest to develop renewable energies (Intergovernmental Panel on Climate Change, 

IPCC, 2014). In particular, Switzerland has changed its energy policy to phase out the nuclear 

power plants until 2050 and replace the gap in energy supply with renewable resources. In this 

context, geothermal energy acts as a potential CO2-free energy resource to provide heat or 

generate electricity. Earth’s crust hosts a vast amount of energy in the form of heat that can 

substantially contribute to energy supply (Bertani 2012; Hirschberg et al. 2014; Tester et al. 

2006). In this regard, Swiss Federal Office of Energy (SFOE) has estimated a contribution of 

about 6-8 percent of annual electricity generation, which may be achieved by geothermal energy 

systems by 2050 (Hirschberg et al. 2014).  

Conventional geothermal (hydrothermal) systems, are t are found where sufficiently high 

temperatures and hydraulic conductivity is present in water bearing formations or structures. 

Thus, they are limited to specific geological contexts. When the hydrothermal resource is not 

present, circulation of fluids (e.g. water) between injection and production wells cannot be 

achieved economically unless engineering techniques are deployed to increase the rock mass 

permeability to facilitate the heat exchange with hot rock and  to extract the heat stored in the 

solid rock mass (Hirschberg et al. 2014). These systems are referred as Engineered or Enhanced 

Geothermal Systems (EGS). However, currently, only a limited number of geothermal power 

plants are operating in favorable geological conditions with economical flow rates and 

sufficient heat exchange. 

Desirable temperatures (ideally higher than 120°C) for EGS developments in regions with 

standard geothermal gradient (i.e. 30 °C/km), are typically located between 4-6 km depth. The 

corresponding host rocks are mostly low-porosity and low-permeability crystalline basements, 

in which the fluid flow is mainly occurred through the fractures and faults (Davatzes and 

Hickman 2010; Dezayes et al. 2010; Genter et al. 2010). However, reservoir creation (i.e. 

engineering of an artificial reservoir with sufficient permeability) is one of the main challenges 

in developing geothermal energy. The development of the reservoir can be achieved by various 



24 

 

stimulation techniques, namely hydraulic stimulation, thermal stimulation and chemical 

stimulation. Hydraulic stimulation consists of massive fluid injection at high rate and pressure.  

The processes involved in permeability creation are complex and not fully understood, but they 

certainly involve hydro-mechanical coupled response of existing fracture and faults (Evans 

2005). Fluid pressure increase may lead to generation of new fractures or failure on pre-existing 

fractures/faults, because in most cases the in-situ stress state is such that a significant amount 

of shear stress is resolved on the optimally oriented fractures/structure. Hydraulic shearing may 

result in permeability enhancement for 2-3 orders of magnitude, which is particularly attractive 

for EGS developments (Evans et al. 2005a; Häring et al. 2008). When only a small amount of 

overpressure is required to fail existing fractures, the situation is referred as critically stressed. 

There is evidences showing that critically stressed conditions are the rule, not the exception 

(Townend and Zoback 2000).  

Failure of fractures in shear is likely a requirement for an efficient and permanent permeability 

creation, however typically part of stress relief associated with slip is emitted as seismic energy, 

referred as induced seismicity. The induced seismicity may be relatively large to be felt by 

public and cause the suspension of geothermal development projects, such as Basel and St. 

Gallen projects in Switzerland (Edwards et al. 2015; Häring et al. 2008). Hence, the main 

challenge in EGS developments is optimizing the circulation parameters to create (enhance) 

permeability without inducing excessive seismicity that may result in damaging events.  

1.2 Reservoir engineering simulation  

A prerequisite to handle the challenges of EGS technology is to be able to design reservoir 

engineering operations (e.g. hydraulic stimulation) in a way that the behavior of the reservoir 

in terms of permeability increase and seismic response can be anticipated. This requires design 

tools, typically numerical reservoir simulators that include the relevant physical processes 

involved in hydraulic stimulation. Thus, thermo-hydromechanically coupled numerical tools 

are being developed to model different aspects of reservoir behavior and evaluate stimulation 

strategies (e.g. Baisch et al. 2006; Rutqvist and Oldenburg 2008). In order to produce 

meaningful results, these models must be parametrized with appropriate initial and boundary 

conditions. This requires a geological model for the reservoir that includes quantitative 

information on the reservoir key characteristics such as natural fracture network and the in-situ 

stress state within the target rock mass. The characterization of the target rock mass is thus an 

important task to perform in order to produce robust design for geothermal reservoir 

engineering. 
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1.3 Characterization of geothermal reservoir 

A geological model should represent the whole reservoir with a realistic distribution of relevant 

geological features such as fractures and faults from small to large scales. Moreover, 

information on in-situ stress state in reservoir is also necessary to include mechanical aspects 

of the target reservoir to quantitatively assess the induced seismicity hazard and risk (Amann 

et al. 2017). 

1.3.1 Fracture network 

The characterization of fracture network in deep geothermal reservoirs is challenging because 

typically the host rock is not outcropping. Geophysical techniques from surface are limited in 

resolution when dealing with great depth and reflection seismic technology is difficult to 

interpret in crystalline basement rocks, because potential reflectors are inherently not well 

defined. More detailed information can be acquired when a deep well is drilled through the 

target rock mass with well logging techniques. The initial source of information about the 

natural fractures within EGS reservoirs stems from borehole images (e.g. acoustic televiewer 

logs). These logs permit to identify the position and orientation of fractures along the borehole. 

Valley and Evans (2015a) provide a summary of the state-of-the-art in reservoir 

characterization from borehole measurements and identify gaps and research needs.   

However, fracture network characterization is challenging at early project stages, especially 

when data from only a single exploration well penetrating the target reservoir may be available. 

Fracture network attributes such as length, aperture and spatial distribution control the 

hydromechanical behavior of fractured rocks. In particular, the fracture length distribution is a 

key parameter for assessing the connectivity of the fracture network and cannot be constrained 

with a single wellbore data. 

1.3.2 In-situ stress  

Information on the in-situ stress state is fundamental to any seismo-thermo-hydro-mechanical 

characterization of fractured reservoirs (Amann et al. 2017; Ghassemi 2012; Preisig et al. 2015; 

Zoback 2010). In-situ stress state characterization is also challenging because no technique 

exists that can reliably to estimate all stress components in a deep borehole. The knowledge on 

one hand of the fracture orientations within the reservoir and on the other hand on all the 

components of the in-situ stress tensor is essential to asses fracture stability and response to 

hydraulic injection. 
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In addition, there are evidences that stress is typically highly variable within the reservoir space 

(these variations are often referred as stress heterogeneities), although the control on this 

variability is not well understood. One potential explanation is that in-situ stress heterogeneities 

are largely affected by slip on natural fractures and faults (e.g. Barton and Zoback 1994; 

McNamara et al. 2015; Pierdominici et al. 2011; Rajabi et al. 2017; Sahara et al. 2014; Valley 

2007; Yale 2003). An alternate explanation for stress heterogeneities have been proposed with 

the potential link with elastic properties variability in the rock mass (e.g. Langenbruch and 

Shapiro 2014). However, the relation between the in-situ stress heterogeneities and 

characteristics of natural fractures is not fully understood (Rutqvist 2015; Tsang et al. 2018; 

Valley et al. 2014).  

1.3.3 Induced seismicity  

The interaction between the fracture network and fluid pressure induced changes results in 

induced seismicity (Evans et al. 2005b). The observed dominant double-couple mechanism of 

induced seismicity suggest that the seismic source is located on planar structures, i.e. fractures 

and faults, and thus induced seismicity characteristic is likely to carry some information on 

fractures and fault properties. The combination of focal solutions allow also to put some 

constraints on the in-situ stress (e.g. Dorbath et al. 2010). Thus, induced seismicity patterns also 

provide valuable information on some aspects of fracture network that may be applied to 

generate stochastic realizations of fracture network models known as discrete fracture networks 

(DFN). 

One major challenge in induced seismicity is to develop seismic hazard assessment tools 

including statistical, physics-based and hybrid forecasting approaches that predict the induced 

seismicity during hydraulic stimulation (Gaucher et al. 2015). Statistical approaches apply the 

observed seismicity patterns for real-time hazard assessment, such as traffic light system 

(Bommer et al. 2006). Physics-based approaches simulate the physical processes (i.e. thermo-

hydromechanical effects) during the hydraulic stimulation based on the reservoir characteristics 

(e.g. Baisch et al. 2006; McClure and Horne 2011; Rutqvist and Oldenburg 2008). The hybrid 

approaches use the physics-based reservoir description constrained with the observed 

seismicity patterns (e.g. Gischig and Wiemer 2013; Goertz-Allmann and Wiemer 2012; Shapiro 

et al. 2013). However, different approaches have their inherent advantages and drawbacks that 

are comprehensively discussed by Gaucher et al. (2015).     
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1.4 Fractal geometry and power-law scaling 

A common characteristic of the data sets discussed in this section – i.e. fracture network, stress 

variability at borehole scale, elastic properties and induced seismicity – is that the statistics of 

their parameters (e.g. magnitude, spacing, length,…) present scale invariant or more generally 

fractal characteristics. Scaling relationships of seismicity is known since the precursory work 

of Gutenberg and Richter (1954). Many studies have shown scale invariance in various 

properties of natural fracture networks (e.g. Bonnet et al. 2001; Kim and Sanderson 2005). 

Interpretation of sonic logs showed the fractal nature of elastic properties of rock masses (e.g. 

Goff and Holliger 1999). Analyses of borehole failure show that some components of the in-

situ stress follow fractal laws (Day-Lewis et al. 2010; Valley and Evans 2014a; Valley and 

Evans 2010). 

The origin of the prevalence of fractal characteristics in nature isn’t entirely clear, although the 

dominant hypothesis is that this is a facet of the behavior of complex self-organized critical 

dynamics (Allegre et al. 1982; Bak et al. 1988; Sornette 2006; Sornette et al. 1990). In other 

terms, this means that the evolution of damage in a rock mass due to long-term deformation 

imposed by the tectonic forces leads to the observed fractal characteristics. Davy et al. (2010) 

and Spyropoulos et al. (2002) have shown that the stress interactions between fractures in a 

growing fracture population can lead to power-law distributions. Fracture attributes such as 

length distribution is expected to control the seismogenic parameters such as b-value that relates 

the earthquake frequency and magnitude (Day-Lewis et al. 2010). In-situ stress displays local 

fluctuations on borehole scales (e.g Schoenball and Davatzes 2017; Shamir and Zoback 1992; 

Valley and Evans 2007b) that are also suggested to control the scaling of earthquake magnitude 

frequency of induced events (Day-Lewis et al. 2010). 

All these evidences suggest that these reservoir characteristics are intimately related because 

they result from the evolution of a common system driven by the same tectonic external forcing. 

This suggest then that for the very practical task of determining reservoir characteristics, 

additional value can be gained by treating all the parameters together instead of try to quantify 

them in isolation. However, this requires that the details of these relationships among the 

fracture network, stress heterogeneities an induced seismicity is better understood. Under these 

conditions, improved reservoir models could be developed that may be used to better forecast 

the reservoir response to stimulation operations and to develop real-time monitoring and 

seismic risk assessments of hydraulic stimulation. 
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1.5 Open scientific questions 

There has been a large amount of research on understanding the hydraulic stimulation 

experiments from laboratory scale to large-scale. However, there are many open questions 

regarding the processes involved in permeability creation and associated seismicity. For a 

detailed review on the current state-of-the-art in the seismo-hydromechanical response of deep 

geothermal reservoirs to hydraulic stimulations and current open research questions, refer to 

Amann et al. (2017). However, specific research questions (RQ) related to this PhD thesis are 

listed as following: 

RQ1) Is the spatial distribution of fracture patterns in deep boreholes following fractal 

statistics? If yes, is it possible to constrain the 3D spatial distribution of fracture network 

from 1D borehole data? 

RQ2) Is there any similarities between the scaling characteristics of induced seismicity 

patterns and fracture network?  

RQ4) Is there any methodology to constrain the fracture network geometry from stress 

perturbations at deep boreholes?  

RQ3) How are the key fracture network attributes related to the stress variability at borehole 

scale? 

1.6 Thesis objectives 

The starting hypothesis of the thesis is that key characteristic of the reservoir, namely the 

properties of the facture network, the variability of stress within the rock mass and the 

seismogenic characteristics of the reservoir are strongly interrelated because they are part of the 

same self-organized fractal system that evolves under long-term tectonic forcing (Figure 1-1). 

A set of processes activated during this evolution that include fracture nucleation and growth, 

fracture instability, stress drop and stress transfer condition the characteristics of the rock mass.  

Contrary to many studies that have been analyzing fracture network, stress characterization or 

microseismic analyses independently, this starting hypothesis strongly condition the approach 

adopted in this thesis, i.e. the characteristics of the reservoir are interrelated and must be studied 

together. In this context, the primary objective of this PhD thesis is to study the exact nature of 

the relations among fracture network, stress heterogeneities and induced seismicity in deep 

geothermal reservoirs. In the development of the work, some specific aspects had to be clarified 

and studied in details and this conditions the following themes that are developed in the thesis: 
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1. Characterization of natural fracture patterns in deep crystalline basement rocks with 

particular emphasis on the scaling of spatial distributions. This is achieved by analyzing the 

fractures obtained from borehole image logs from Basel and Soultz-sous-Foret and Basel 

geothermal sites. In addition, the aim is to constrain the spatial distribution of fractures in 

space using borehole data (response to RQ1).  

2. Relating the scaling of fracture network and induced seismicity. Here, the objective is 

to characterize the spatial patterns of induced microseismicity in the Basel geothermal site 

and relate them to the scaling of fracture patterns. The purpose is to propose a statistical 

model that includes the rupture size and spatial clustering of induced events using scaling 

laws. This model should forecast the maximum magnitude using scaling properties of early 

time stimulation seismicity patterns (response to RQ2).  

 

Figure 1-1. Schematic representation of PhD objectives. This PhD thesis aims to relate fracture 
network characteristics, stress heterogeneities and induced seismicity in the context of an 
interlinked, self-organized fractal system. 

  

3. Constrain the fracture network characteristics using the in-situ stress heterogeneities at 

boreholes. The main objective is to develop an inversion framework that can reconstruct 

the fracture network geometry. A novel concept of stress-based tomography Bayesian 

framework is expected to characterize the fracture network and its heterogeneity in deep 

geothermal resources (response to RQ3). 
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4. Relate the scaling of borehole scale in-situ stress fluctuations to the fracture network 

characteristics. The objective is to relate the scaling exponents of fracture network attributes 

such as length and spatial distribution to the scaling of stress heterogeneities at boreholes 

(response to RQ4).  

1.7 Thesis structure 

The thesis is structured around the four main objectives of this thesis. Chapters 2-5 are dedicated 

to these objectives, respectively. They are written in the form of paper manuscripts. These 

chapters are submission versions of four journal publications. With this paper compilation 

format, each chapter include its own introduction and literature review. This is why the current 

introduction is limited to some key messages that motivates the work while detailed reviews 

are not repeated here but included in each chapters. In addition, further details on these chapters 

that are not intended for publication are presented in the appendices. Appendices 1-2 provide 

additional information on chapters 2 and 3. Chapter 6 present a synthesis of the main 

achievement of the thesis and an outlook. 
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2 Fractal scaling of fracture patterns in 
deep boreholes and implications to 
constrain discrete fracture network 
models 

 

 

 

 

 

Reproduced from: Afshari Moein, M.J., Valley B., Evans K.F., Fractal scaling of fracture 

patterns in deep boreholes and implications to constrain discrete fracture network models, 

Rock Mechanics and Rock Engineering Journal (Under review). 
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Abstract 
We present a methodology for generating fractal fracture networks in 1D, 2D and 3D that 

respect the dual power law model in which the scaling characteristics are set by the two 

independent parameters of the correlation dimension that pertains to separation of fracture 

centers, and the length exponent, that governs the distribution of fracture lengths. Synthetic 

fracture distributions were generated to evaluate the stereological relationships between the 

scaling parameters of 2D and 3D networks, and the scaling of fracture intersection points along 

a scanline through the network. The results showed that it is not possible to estimate the 2D and 

3D fractal scaling parameters of correlation dimension or length exponent from the 1D 

correlation dimension of fracturing spacing from scanlines through the network, even if the 

length exponent is known a-priori. Synthetic 1D distributions of fracture spacing of known 

correlation dimension were used as a benchmark to test the consistency of estimates of fractal 

dimension derived from box-counting, two-point correlation, and power law fitting. The results 

showed that correlation dimension obtained from the two-point correlation method provided 

the most stable and reliable estimate of the fractal dimension of fractures on 1D scanlines or 

boreholes. Application of the two-point correlation function to the observed fracture 

distributions along three deep boreholes in crystalline rock at Basel and Soultz-sous-Forêts 

showed the distribution was fractal over more than two orders of magnitude in scale, and in all 

cases the fractal dimensions lay in the range 0.86-0.88. Similar results were obtained for 

fracture sets of common orientation within the wells, although the fractal dimension ranged 

between 0.65-0.75.  
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2.1 Introduction 

Enhanced Geothermal Systems (EGS) aim to extract the heat from the earth by circulating fluids 

(e.g. water) between injection and production wells drilled to sufficient depth to reach 

temperatures higher than 150°C. Outside of areas of recent volcanism, the target reservoirs tend 

to be found in low-porosity basement rocks, where natural flow occurs primarily through the 

fracture network (Genter et al. 2010). The natural fracture transmissivity is typically not 

sufficient for economical flow rates. In order to increase the flow rates, massive fluid injections 

into the reservoir are performed in order to increase the permeability of the fractured media, a 

process referred to as hydraulic stimulation. The mechanisms underlying the process are 

complex and not fully understood. However, massive fluid injection changes the effective stress 

conditions by increasing the pore pressure within rough-walled fractures, thereby promoting 

shear failure and attendant dilation, which serves to increase fracture permeability (Evans 2005; 

Evans et al. 2005). The elevated pore pressure can also generate new fractures. Hydraulic 

shearing/fracturing is commonly accompanied by microseismic emission that might be 

relatively large. The public fear of earthquakes has led to project curtailment in some case like 

in Basel and St. Gallen geothermal projects in Switzerland. Thus, the major challenge in 

developing geothermal resources is to enhance the permeability of the target reservoir 

adequately through hydraulic stimulation without inducing damaging seismicity. 

In order to design and assess EGS development strategies, a geological model of the target rock 

mass is required. This geological model should be representative of the whole reservoir with a 

realistic distribution of relevant geological attributes such as the fracture network geometry 

from small to large scales. The characterization of the fracture network is especially challenging 

at early project stages, when data from only a single exploration well penetrating the target 

reservoir may be available. In particular, the fracture length distribution, which is a key 

parameter for assessing the connectivity of the fracture network, cannot be constrained with a 

single wellbore data.  

Fracture network characteristics have been studied from outcrops and multi-well study sites 

where a more complete characterization of the fractures is possible (Cowie et al. 1996). In such 

situations, it has been observed that several attributes of fracture networks exhibit power-law 

patterns referred to as fractal organization (Barton 1995; Bonnet et al. 2001; Bour et al. 2002; 

Davy et al. 1990a; de Dreuzy et al. 2001; de Dreuzy et al. 2002; Lei et al. 2015; Odling et al. 

1999). Specifically, power-law scaling has been applied to characterize spatial distribution, 

trace length, spacing, RQD (Rock Quality Designation, Deere and Deere (1988)), aperture, 
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surface roughness etc. (Barton and Zoback 1992; Boadu and Long 1994; Bonnet et al. 2001; 

Power and Tullis 1991). The origin of the prevalence of power-law scaling in nature isn’t 

entirely clear, although several researchers have proposed the implied statistical scaling is a 

facet of the behavior of complex self-organized critical dynamics (Allegre et al. 1982; Bak et 

al. 1988; Sornette 2006; Sornette et al. 1990). Davy et al. (2010) and Spyropoulos et al. (2002) 

have shown that the stress interactions between fractures in a growing fracture population can 

lead to power-law distributions. This suggests that some relations exist between the 

characteristics of the fracture network and the stress variability within this fractured rock mass. 

Particularly when a single fracture is present, the size of the stress perturbation scales linearly 

to the size of the fracture inducing the perturbation (Eshelby 1957; Pollard and Segall 1987). In 

a fracture network, such relation becomes non-trivial (Valley et al. 2014). Nevertheless, stress 

fluctuations are also found to follow power-law scaling, as shown by the study of nearly 

continuous profiles of borehole failure (Day-Lewis 2007; Valley and Evans 2014). The relation 

between the power-law scaling of fracture networks and stress fluctuations are not well 

understood, which is one of the motivations of the current research. Clarification of the potential 

relation could have important practical implications such as allowing constraints to be placed 

on attributes of the fracture network like fracture length distribution that are hard to quantify 

otherwise by observation of stress fluctuations from borehole failure. Further applications could 

also be envisaged if a clear link could be established between power-law scaling of fracture 

attributes and the seismogenic parameter of b-value that relates the earthquake frequency and 

magnitude. Intuitively, one can hypothesize that the magnitude distribution of 

microearthquakes is partly controlled by the fracture size distribution and the stress state in the 

reservoir. If the details of these relationships were better understood, it could be possible to use 

observation at the borehole wall (location and orientation of natural fractures and stress-induced 

failure) to better anticipate reservoir response to stimulation operations. Thus, the ultimate 

objective is to relate scaling laws of key reservoir characteristics such as fracture network to 

stress fluctuations and microseismic magnitude distribution. A necessary step to establish the 

potential relationships, is to fully understand the characteristics and limitations of the scaling 

laws in each discipline. 

 In this paper, we use synthetic fracture networks to explore the limitations of fracture network 

sampling and power-law scaling of borehole data. We explore the possible extrapolation of 1D 

fracture patterns intersecting the borehole to a 3D structural model. Then, we outline the scaling 

characteristics of natural fractures derived from borehole images of two geothermal reservoirs 
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of Basel and Soultz-sous-Forêts and extract the potential trends of scaling exponent along deep 

boreholes. 

2.2 Synthetic fracture network model 

In order to analyze the limitations of line sampling and power-law scaling of borehole data and 

possible extrapolation to a 3D geological model, a discrete fracture network model with valid 

stereological relationships is required. Discrete fracture networks (DFN) are geometrical 

representations of fracture attributes derived using stochastic methods and computational tools. 

The only DFN model we are aware of that respects stereological relationships is a dual-power-

law model proposed by Davy et al. (1990b) that is based upon equation 2.1. Here, we begin by 

presenting a step-by-step methodology for generating a DFN that respects this equation. The 

DFN model is generated from the following equation that links the fractal spatial patterns of 

fractures to power-law distributions of fracture length and fracture centers given by:  

 𝑛𝑛(𝑙𝑙, 𝐿𝐿). 𝑑𝑑𝑑𝑑 =  𝛼𝛼. 𝐿𝐿𝐷𝐷𝑙𝑙−𝑎𝑎. 𝑑𝑑𝑑𝑑,    𝑙𝑙𝑙𝑙[𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚, 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚] (2.1) 

Here, n(l,,L)dl is the number of fractures whose length is in the range [l, l + dl] and whose 

center belongs to a cubic volume in three dimensions of side length L, α is a normalization 

constant related to the fracture intensity, D is the correlation dimension of fracture centers, and 

a is the length exponent. Many researchers have applied this model to study hydraulics and 

mechanics of fractal DFNs (Darcel et al. 2003c; Harthong et al. 2012; Kim 2007; Verscheure 

et al. 2012). As an example, when 𝑎𝑎 = 𝐷𝐷 + 1, the DFN generated is self-similar and the 

connectivity of the network is scale invariant (Darcel et al. 2003c). Bour et al. (2002) applied 

this statistical model to evaluate scaling inherent in the fracture network geometry of multiscale 

fracture maps taken from outcrops in Hornelen basin (Norway). The dual power-law model 

contains no direct relationship between first-order descriptors, such as D and a and hence it is 

referred to as a first-order model. (Bour and Davy 1999) present a second order relation in 

which the exponents, D and a are related by 𝑥𝑥 = 𝑎𝑎−1
𝐷𝐷 , where x is the exponent of a power-law 

including the average distance d from a fracture to the closest fractures having a larger length 

(i.e. 𝑑𝑑(𝑙𝑙) ~ 𝑙𝑙𝑥𝑥).  Darcel et al. (2003a) introduced another scaling law for the Hornelen basin 

dataset that relates the mean distance from a fracture center to its nearest neighbor to its length. 

They related this scaling law to the stress shadow which is present around large fractures. Davy 

et al. (2010) extended the theory to address the problem of fracture intersections and proposed 

some simple rules that are not present in first-order model. In this paper, we utilize the initial 

form of the dual power-law model without any modifications. Values of the two power-law 
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indices, D and a, will be bracketed to ranges suggested by extensive measurements in literature. 

Specifically, studies of 2D outcrops yield estimates for the correlation dimension D between 

1.3 and 2, and the length exponent a falls between 1.3 and 3.5 (Bonnet et al. 2001; Renshaw 

1999). Unfortunately, no estimates of D and a for 3D networks are reported in the literature as 

there is no direct method to image 3D size distribution of fractures at depth.   

Before presenting the DFN generation methodology, it is useful to clarify the technique to 

compute the fractal dimension (D) of fracture patterns. Fractal geometry has been widely 

utilized to quantify the scaling properties of fracture networks (Chilès 1988; Davy 1993). For a 

detailed analysis of the scaling in fractured media, we refer to Bonnet et al. (2001). The spatial 

organization of fractures can be quantified by a box-counting technique (Allegre et al. 1982; 

Berkowitz and Hadad 1997; La Pointe 1988; Odling 1992) or two-point correlation function 

(Hentschel and Procaccia 1983a). The traditional box-counting technique is strongly affected 

by finite size effects, whereas the two-point correlation function is less affected by finite size 

effects and seems a better method to derive the scaling exponent of the spatial distribution of 

fracture centers in 2D fracture outcrops (Bonnet et al. 2001; Bour et al. 2002). We illustrate this 

differences in Section 2.3. The two-point correlation function or correlation integral describes 

the spatial correlation of fracture centers, and is given by, 

 𝐶𝐶(𝑟𝑟) = 2
𝑁𝑁𝑡𝑡(𝑁𝑁𝑡𝑡 − 1)

𝑁𝑁𝑝𝑝(𝑟𝑟) ~ 𝑟𝑟𝐷𝐷 (2.2) 

where, Nt is the total number of fractures, and Np is the number of pairs of fractures whose 

center-to-center distance is less than r (Bonnet et al. 2001). The correlation dimension (D) can 

be determined by computing the local slope of the correlation function C(r). The correlation 

function has been widely used by Earth scientists to characterize the spatial distribution of 

micro-fractures in rock samples in granite and also earthquake hypocenters (Hirata et al. 1987). 

Here, we apply the concept of correlation function 1) to validate our synthetic DFN generator 

and 2) to analyze 1D fracture patterns in deep boreholes.  

2.2.1 DFN generation methodology 

Here, we briefly review and illustrate some DFN generation methodologies that can be found 

in the literature, and comment on and their possible implications. The conventional Poisson 

DFN model, also known as the Baecher model, is an early DFN model developed to study the 

hydraulic and mechanical behavior of fracture networks (Baecher and Lanney 1978; Baghbanan 

and Jing 2007; Bour and Davy 1997; Bour and Davy 1998; de Dreuzy et al. 2001; de Dreuzy et 

al. 2002). The concept behind the Poisson DFN model is to populate a medium with a random 
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(uniform) distribution of fracture centers (Dershowitz et al. 1993). However, this model is not 

able to represent the tendency of fracture populations to display clustering at different scales. 

An alternative that does not suffer from this deficiency is the fractal fracture network approach 

that generates networks that capture the scaling and clustering seen in real fracture networks.   

Two methods to generate fractal fracture networks are reported in the literature; 1) The Levy-

Lee flight model and 2) Imposing power-law length distribution to fractal spatial distribution 

of fracture centers generated by Multiplicative Cascade process. The Levy-Lee flight process 

is a random walk method that generates fractal fracture networks by imposing power-law steps 

in random directions between 0° and 360° (Clemo and Smith 1997). The distance between two 

consecutive fracture centers is selected randomly from a power-law distribution with an 

exponent of D, and the fracture length is taken as proportional to the distance from the previous 

fracture (This methodology is implemented in a commercial software package called Fracman). 

Since the generation domain of fracture networks is limited, the consecutive fractures might 

extend outside of the 2D and 3D domain. Therefore the fractal dimension (D) of the generated 

network does not necessarily correspond to the input fractal dimension (Darcel 2002). For this 

reason, we were unable to obtain a correspondence between output and input D when using 

Levy-Lee fractal DFN generator.  

The methodology based on the Multiplicative Cascade process has already been described in 

different papers (Darcel et al. 2003c; Harthong et al. 2012; Verscheure et al. 2012), although 

details of its implementation are lacking. Thus, here we give a step-by-step description of the 

implementation we have used. This process includes both the generation of a fractal density 

distribution in a recursive operation of fragmentation and the allocation of a power-law length 

distribution, as given in equation 2.1. We begin by describing the methodology used to generate 

2D fractal networks before progressing to cover 3D network generation.  

2.2.2 2D fractal DFN generation 

 Initial parameters 

The input parameters required to generate a 2D DFN are: domain length L, length exponent a 

(𝑎𝑎 > 1), correlation dimension of fracture centers D (1 < 𝐷𝐷 ≤ 2), density constant α, and the 

minimum length of the fractures lmin. The latter is necessary in order to limit the number of 

iterations in the fractal density distribution and the total number of fractures Nt. We expect to 

have a power-law correlation function (equation 2.2) extending from the minimum length 
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(e.g. 1 m) upwards over at least two orders of magnitude (100 m). The number of iterations n 

required to reach the degree of fragmentation set by the minimum length lmin is computed from: 

 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐿𝐿
2𝑛𝑛 (2.3) 

Since we are defining the domain length (L) as one of the inputs of the DFN model, there is no 

constraint on the maximum fracture length lmax and it can vary depending on the length exponent 

a.  The total number of fractures Nt can be calculated by integrating equation 2.2 over the 

fractures larger than the minimum length as in equation 2.4.  

 𝑁𝑁𝑡𝑡 = � 𝑛𝑛(𝑙𝑙, 𝐿𝐿). 𝑑𝑑𝑑𝑑 =  𝛼𝛼
𝑎𝑎 − 1

 𝐿𝐿𝐷𝐷𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚
−(𝑎𝑎−1)∞

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

 (2.4) 

 Fractal distribution of density (Multiplicative Cascade process) 

The fractal density distribution of fractures of given fractal dimension D is generated using a 

so-called Multiplicative Cascade process applied to a domain whose size is L (Darcel et al. 

2003c; Lovejoy and Schertzer 1986; Meakin 1991). We have implemented the methodology 

described by Darcel et al. (2003c) To summarize, in the first iteration, the domain of size L is 

subdivided into m equal-sized sub-domains. Thus, the ratio of sub-domain side length to domain 

side length is lratio = √𝑚𝑚. Then n initial probabilities, Pi, are chosen that satisfy equations 2.5 

and 2.6,  

 �
𝑃𝑃𝑖𝑖

2

( 1
𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

)𝐷𝐷

𝑚𝑚

𝑖𝑖=1
=  1 (2.5) 

 � 𝑃𝑃𝑖𝑖

𝑚𝑚

𝑖𝑖=1
= 1 (2.6) 

In our implementation, we follow Darcel et al. (2003c) and take lratio = 2 and m = 4. The four 

probabilities are randomly assigned to each of the sub-domains. In the second iteration, each 

sub-domain (parent) is itself subdivided into four equal parts (offspring). The same four 

probabilities used in the first iteration are then multiplied by the probability of the parent sub-

domain in question and the results randomly assigned to the four offspring sub-domains 

(Harthong et al. 2012; Verscheure et al. 2012). The process of division and assignment of 

permuted and multiplied probabilities is then repeated in subsequent iterations to produce a 

fractal probability map on the domain that has increasingly fine resolution. The map derived 

from equations 2.5 and 2.6 defines the second order fractal spectrum of the probability field. 

For a detailed description on the multi-fractal spectrum of a DFN we refer to Bonnet et al. 
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(2001) and Hentschel and Procaccia (1983a). For n iterations, the Multiplicative Cascade 

process generates 2𝑛𝑛𝑥𝑥2𝑛𝑛 probabilities assigned to sub-blocks whose size from equation 2.3 

is 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  =  𝐿𝐿
2𝑛𝑛 (assuming 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 2). The fractal probability field generated in this way is taken as 

a proxy for the fractal fracture density distribution. 

 Assigning random fracture centers according to probability maps  

Although the generation of fractal density distributions is well described in the literature (Darcel 

et al. 2003c; Harthong et al. 2012; Kim 2007), the further step of populating a given probability 

density map with a realization of a random fracture network has not been described in detail. 

Thus, we provide a step-by-step description of the procedure we implemented in our DFN 

generator, which uses the discrete inverse transform method to extract random distributions 

from the probability density map. We begin by writing the [𝑛𝑛𝑛𝑛𝑛𝑛] probability density map as a 

1𝑥𝑥𝑛𝑛2 probability density vector by concatenating successive columns, and then taking the 

cumulative sum of its elements to obtain the cumulative probability density vector CumP. The 

cumulative sum of the probability density vector is close but not necessarily equal to unity due 

to computational inaccuracy in the multiplicative cascade process. Thus, CumP is normalized 

by the cumulative sum, giving a monotonically increasing series whose last element is unity. 

 Now, a fracture assignment vector U containing 𝑁𝑁𝑡𝑡 uniform random numbers between 0 and 

1 is generated, where Nt is the total number of fractures to be used in populating the domain 

(equation 2.4). That is,  

 𝑈𝑈 = � 𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 …  𝑢𝑢𝑁𝑁𝑡𝑡
 �  . (2.7) 

The discrete inverse transform method is then used to map each element Ui of 𝑈𝑈  to the closest 

matching element of cumP according to the inequality,  

 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑗𝑗−1 ≤ 𝑈𝑈𝑖𝑖 < 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑗𝑗 (2.8) 

Thus, each element Ui of the fracture assignment vector U is associated with an element cumPj 

of cumP and hence the corresponding cell of the probability density map. In this way, fracture 

centers are uniquely assigned to cells of the probability density map, although elements in U 

that have the same value will be mapped to the same cell. The specific distribution realized 

depends upon the random number set used to form U. The exact position of the fracture center 

within a cell is attributed randomly using a uniform probability over the cell. 
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 Assigning a fracture length to fracture centers 

Since the location of every fracture center is known from the section 2.2.2.3, the next step is to 

assign a length to each fracture center, respecting equation 2.1. At this stage, U is the vector 

containing Nt random numbers and each random number represents a fracture that has been 

located inside the domain. We define a length vector 𝑙𝑙𝑓𝑓 , written as in equation 2.9, whose Nt 

elements represent the lengths of each fracture written in descending order (i.e. 

𝑙𝑙𝑓𝑓1
> 𝑙𝑙𝑓𝑓2

> 𝑙𝑙𝑓𝑓3
> ⋯ > 𝑙𝑙𝑓𝑓𝑁𝑁𝑡𝑡

) 

 𝑙𝑙𝑓𝑓 = � 𝑙𝑙𝑓𝑓1
  𝑙𝑙𝑓𝑓2

  𝑙𝑙𝑓𝑓3
…   𝑙𝑙𝑓𝑓𝑁𝑁𝑡𝑡� (2.9) 

The index fi for each element of the length vector maps to the corresponding index i of the 

fracture assignment vector, Ui, and thus to locations on the probability density map. The actual 

fracture length of the vectors lf are assigned as follows.  For a first-order model, the number of 

fractures having a length between 𝑙𝑙 and 𝑙𝑙 + 𝑑𝑑𝑑𝑑 is defined by equation 1. Therefore, the number 

of fractures whose length is greater or equal to a given length 𝑙𝑙′ is given by, 

 � 𝑛𝑛(𝑙𝑙, 𝐿𝐿). 𝑑𝑑𝑑𝑑
∞

𝑙𝑙′
= � 𝛼𝛼. 𝐿𝐿𝐷𝐷𝑙𝑙−𝑎𝑎. 𝑑𝑑𝑑𝑑

∞

𝑙𝑙′
= 𝛼𝛼

𝑎𝑎 − 1
 𝐿𝐿𝐷𝐷𝑙𝑙′−(𝑎𝑎−1) (2.10) 

Now, if we select the first fracture in the length vector whose length is 𝑙𝑙𝑓𝑓1
 (= lmax), the number 

of fractures greater than or equal to 𝑙𝑙𝑓𝑓1
 is equal to 1. Therefore, substituting 𝑙𝑙′ = 𝑙𝑙𝑓𝑓1

 into 

equation 2.10 and equating to unity gives:  

 
𝛼𝛼

𝑎𝑎 − 1
 𝐿𝐿𝐷𝐷𝑙𝑙𝑓𝑓1

−(𝑎𝑎−1)=1  (2.11) 

Similarly, for any index i of lf, the number of fractures whose length is greater than 𝑙𝑙𝑓𝑓𝑖𝑖
′  is i, and 

thus, 

 
𝛼𝛼

𝑎𝑎 − 1
 𝐿𝐿𝐷𝐷𝑙𝑙𝑓𝑓𝑖𝑖

−(𝑎𝑎−1)=i  (2.12) 

Rearranging equation 2.12 gives an expression for the length of each fracture, 𝑙𝑙𝑓𝑓𝑖𝑖
′ , in the length 

vector, 𝑙𝑙𝑓𝑓𝑖𝑖
, as. 

 𝑙𝑙𝑓𝑓𝑖𝑖
= �

𝛼𝛼
𝑎𝑎 − 1

 𝐿𝐿𝐷𝐷

𝑖𝑖 �

1
𝑎𝑎−1

 (2.13) 

The described methodology of random DFN generation was implemented in a MATLAB script. 

Figure 2-1 represents a schematic summary of fractal DFN generation using this methodology. 
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Figure 2-1. Illustration of the procedure for populating the probability distribution map 
generated using the Multiplicative Cascade process with fracture centers, and then assigning a 
power-law length distribution to the fractures that is consistent with equation 2.1. The vector U 
in the center is the fracture assignment vector. 

An example of a fractal probability field generated in a domain of size 𝐿𝐿 = 500 m for a fractal 

dimension of 𝐷𝐷 =1.5 is presented in Figure 2-2a. The number of iterations was set to 𝑛𝑛 = 6. 

Finer density maps can be obtained by higher number of iterations. 

The fractal nature of the distribution of centers and lengths of the resulting DFN was verified 

by calculating the correlation function and its local slope as well as the complementary 

cumulative frequency of the length distribution. As an example, the DFN generated with 

𝐷𝐷 =1.5 and 𝑎𝑎 = 2 is shown in Figure 2-2b. The domain size is 500 m, and 5 iterations were 

performed to give a 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 of 2 m. The two-point correlation function of fracture centers C(r) 

given by equation 2.2 was calculated for fracture separations, r, that were logarithmically 

uniformly spaced with 20 points for each order of magnitude up to the maximum separation of 

500 m. The resulting correlation function is shown in Figure 2-2c, together with the local slope. 

The slope has a constant value of 1.5 over two orders of magnitude between r = 1-100 m, as 

expected. Figure 2-2d shows the logarithm of the number of fractures having a length greater 

or equal to l versus the logarithm of l. The data define a power-law with a slope of –1, consistent 

with expectations that the slope should be 1−𝑎𝑎 [Bonnet et al., 2001]. 
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Figure 2-2. (a) Realization of a fracture density distribution in a domain of 500 m for a fractal 
dimension of 1.5 and an lmin of 2 m (b) A DFN realization generated from (a) using a length 
exponent 𝑎𝑎 = 2. The fracture density parameter, α, was taken as 0.3 so as to give approximately 
1677 fractures (c) Correlation function of fracture centers C(r) computed from the density 
distribution in (a), together with the local slope and the slope expected for 𝐷𝐷 = 1.5. (d) 
Verification that the cumulative frequency distribution of length computed from (b) is linear 
with a slope equal to 1−𝑎𝑎 on a log-log plot. 

2.2.3 Effect of geometric boundaries on 2D fractal DFNs 

Fractures in generated DFNs may extend outside the pre-defined domain (L). The application 

of such DFNs in any modeling scenarios requires a proper understanding of the possible effect 

of geometric boundaries. The specific geometric boundary implemented may alter the statistics 

of DFNs from the infinite domain case. In this section, we define two boundary treatment 

methods and apply them to various 2D DFNs. The first method completely removes those 

fractures that extend outside the domain length (L), and the second trims the fracture sections 

that protrude out of the domain and reposition the fracture center at the middle of the remaining 

section. The behavior of fractal DFNs is divided into two main regimes with a transition 

at 𝑎𝑎 = 2. We restrict our analysis to the two ranges that lie on either side of the transition and 

take the width of each range to be consistent with commonly reported natural fracture networks. 

That is, we take 1.3≤ 𝑎𝑎 ≤2 and 2< 𝑎𝑎 ≤3.5. Higher values of the length exponent a correspond 

to a higher ratio of smaller to larger fractures. Thus, values of a that lie in the first range generate 

a greater population of large fractures than values that lie in the second range, and hence would 
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be expected to have higher number of fractures extending outside the domain length and thus 

have a larger impact on the statistics of the bounded DFN. Figure 2-3 illustrates the results of 

applying two different boundary treatment methods to the generation of fractal DFNs with 

length exponents of a = 1.5 and a = 2.5 within a domain of length 𝐿𝐿 = 100 m.  The correlation 

dimension of fracture centers, D was taken as 1.5 in both cases. Now we explore the spatial 

distribution and length distribution of DFNs, before and after implementing geometric 

boundary treatments. 

 

Figure 2-3. (a) Realization of a random fractal DFN generated in a domain of length 100m 
(outlined in red) with exponents of a =1.5 and D =1.5, and no geometric boundary imposed (i.e. 
some longer fractures extend outside the frame boundary at ±100 m). (b) The same DFN 
generated in (a), but with all fractures that extend outside the domain removed. (c) The same 
DFN generated in (a), but with fractures that extend outside the domain truncated. (d) 
Realization of a random fractal DFN generated in a domain of length 100 m (outlined in red) 
with exponents of a =2.5 and D =1.5, and no boundary imposed. (e) The same DFN generated 
in (d) but with all fractures that extend outside the domain removed. (f) The same DFN 
generated in (d), but with fractures that extend outside the domain truncated. 

a = 1.5 

a = 2.5 
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2.2.3.1.1 Removal or trimming of fractures that extend outside the domain 

Figure 2-4a shows the correlation functions, C(r), and their log-log slope derived from the 

DFNs shown in Figures 2.3a-2.3c for the case a = 1.5 that differ in the way fractures that extend 

outside the domain are treated. The curves denoted ‘fractures remain’ are for the case where all 

fractures are counted with their true length, regardless of whether they extend outside the 

domain boundary shown in red in Figure 2-3a. This is presented as a reference. There are 69 

that extend outside the domain, which is 17 percent of the total number of fractures. The curve 

denoted ‘fractures removed’ correspond to the case where these 69 fractures are removed (i.e. 

Figure 2-3). Clearly, removing the fractures completely has a negligible impact on the 

correlation function, and the log-log slope, which do not differ significantly from the reference 

case where all fractures are included. The curve denoted ‘fractures trimmed’ corresponds to the 

case where fractures are truncated at the domain boundary. It should be noted that truncating 

the fractures does not change the total number of fractures. However, it does affect the 

coordinates of the trimmed fracture centers, and hence could affect the statistics of the distance 

between fracture centers. The log-log slope curve of the trimmed DFN in Figure 2-4a lies 

slightly above the reference curve defined for all fractures, although not greatly so. The 

cumulative length distributions for the three cases are shown in Figure 2-4b. Here, the effect of 

removing the fractures is to progressively deplete the distribution at all length scales, whereas 

trimming the fractures limits depletion to only the longer fractures. Figure 2-4c and Figure 2-4d 

show the corresponding correlation functions with their log-log slope functions, and the 

cumulative length distributions for a DFN generated with a = 2.5. Again, curves are shown for 

the cases where fractures that extend outside the domain are either retained with their full 

length, removed, or trimmed (i.e. Figure 2-3d-Figure 2-3f respectively). For the realization used 

in this example, 38 fractures extend outside the domain, which is 2% of the total number of 

fractures. Evidently, the effect of removing or trimming the fractures on the correlation 

functions and their associated log-log slope functions is negligible, and the cumulative length 

distributions differ significantly only at fracture lengths greater than 20 m.  
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Figure 2-4. Effect on correlation functions and length distributions of applying different 
approaches to the problem of fractures that extend beyond the domain boundary, namely to 
remove the fractures (blue), or to trim them so they do not extend beyond the domain boundary 
(green). The curves obtained by including such fractures with their true length are shown for 
comparison (brown), (a) Correlation functions and their log-log slope, and (b) length 
distributions derived from the DFNs in Figure 2.3a and 2.3b which correspond to the case 
𝑎𝑎 =1.5. The log-log slopes of the C(r) functions should be flat and equal to 1.5, the correlation 
dimension of 1.5 shown by the black dashed line. (c) Correlation functions and their log-log 
slopes and (d) length distributions derived from the DFNs in Figure 2.3d and 2.3e which 
correspond to the case 𝑎𝑎 =2.5. 

2.2.4 3D DFN generation and verification 

DFN generation in three dimensions is identical to two dimensions, except that the density 

distribution is slightly different.  A 3D probability map of a given fractal dimension is produced 

by generating eight initial probabilities (instead of four as in 2D fragmentation), subdividing 

each block into to eight sub-blocks, assigning a random permutation of the eight initial 

probabilities to the sub-blocks of each parent, and finally multiplying the permuted probabilities 
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by the parent probability. The rest of the generation methodology follows the 2D procedure. 

Figure 2-5a represents a 3D DFN generated in a 500 m domain using the dual power-law model 

with the parameters 𝐷𝐷 = 2.7, 𝑎𝑎 = 2.8, 𝛼𝛼 = 0.02 and 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 = 10 m. Figure 2-5b and Figure 2-5c 

demonstrate the fractal nature of the spatial and length distributions of the fracture network 

respectively (r and R represents the distance between fracture centers and the radius of a fracture 

plane). For this demonstration, fractures that extend outside the domain boundary were included 

with their full length. 

 

Figure 2-5. (a) A synthetic 3D network generated in a 500 m domain using dual power-law 
model with D =2.7,  a =2.8, lmin = 10 m and α=0.02 . b) Correlation function and its local slope 
of the generated network. c) Complementary cumulative length distribution of the generated 
network (N is the number of fractures larger than size of R).  

2.2.5 Stereological analysis 

Stereological relationships relate the geometrical properties of a DFN in different dimensions 

(e.g. a 2D trace plane intersecting 3D network or a 1D scanline intersecting a 2D trace plane). 

A detailed stereological analysis of fractal DFNs is presented by Darcel et al. (2003b). In this 

section, we focus on the relationships derived for relating 1D scanlines intersecting 2D and 3D 

synthetic networks. For the length distributions, there is a simple relationship between 𝑎𝑎2𝐷𝐷 and 

𝑎𝑎1𝐷𝐷 given by equation 2.14.  

 𝑎𝑎1𝐷𝐷 =  𝑎𝑎2𝐷𝐷 − 1 (2.14) 
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Since the lengths of fractures intersecting a borehole are essentially not observable, this 

relationship is not relevant here. The exponent of the spatial distribution of fracture centers 

(𝐷𝐷2𝐷𝐷) in a 2D L×L domain is related to the exponent of the spatial distribution of fracture 

intersections of a 1D scanline of length L (𝐷𝐷1𝐷𝐷) by a relation whose form depends on the length 

exponent of the DFN, as given in equations 2.15-2.17, and Darcel et al. (2003b): 

 𝐷𝐷1𝐷𝐷 = 1, 𝑎𝑎2𝐷𝐷 ≤ 2 𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎2𝐷𝐷 ≤ 𝐷𝐷2𝐷𝐷 (2.15) 

 𝐷𝐷1𝐷𝐷 =  𝐷𝐷2𝐷𝐷 − 𝑎𝑎2𝐷𝐷 + 1, 𝑎𝑎2𝐷𝐷 ≤ 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎2𝐷𝐷 ≥ 𝐷𝐷2𝐷𝐷 (2.16) 

 𝐷𝐷1𝐷𝐷 =  𝐷𝐷2𝐷𝐷 − 1,      𝑎𝑎2𝐷𝐷 ≥ 2 (2.17) 

Darcel et al. (2003b) performed numerical simulations attempt to verify the above stereological 

relationships in synthetic DFNs, but found that they were only partly valid. Here we use a 

different approach to stereological analysis to clarify the range of validity of equations 2.15-

2.17. 

For the 2D stereological analysis, we generate fractal fracture networks in a domain of 

512×512 m2 and trim the outliers. The length exponent is assumed to lie between 1.5-3.5 𝑎𝑎𝑎𝑎𝑎𝑎 

correlation dimensions of fracture centers vary between 1-2. The minimum length of the 

fractures in the each model is set to 1 m. Then, we place scanlines in every 1 m parallel to X 

and Y-axis (i.e. 1025 scanlines in total) and compute the location of the fracture intersections 

on each scanline. The correlation function of these intersections (fracture locations) provides 

an estimate of the D1D within the range of 1-100 m. Finally, we plot the values of D1D as a 

function of D2D.  

The analysis was performed on two sets of 2D fractal DFNs with different length exponents of 

𝑎𝑎2𝐷𝐷 = 1.5 and 𝑎𝑎2𝐷𝐷 = 2.5. For each length exponent, the correlation dimension 𝐷𝐷2𝐷𝐷 was varied 

from 1.1 to 1.9 in steps of 0.1 (i.e. 𝐷𝐷2𝐷𝐷 =1.1, 1.2,…, 1.9), and a single DFN with random 

fracture orientation generated for each step. For each value of length exponent 𝑎𝑎2𝐷𝐷, the constant 

α in equation 2.1 was adjusted for each step to produce a large and constant number of fractures 

centered in the domain, thereby eliminating the effects of the number of fractures on the analysis 

whilst ensuring a large number of intersections with 1D sampling lines. For 𝑎𝑎2𝐷𝐷 = 1.5, α was 

chosen so as to produce approximately 20,000 fractures (approximate P21 of 40), whilst a value 

that generated approximately 200,000 (approximate P21 of 4) was used for  𝑎𝑎2𝐷𝐷 = 2.5. The 

difference in the number of fractures compensates for the tendency for 𝑎𝑎2𝐷𝐷 = 2.5 to generate 

proportionally fewer larger fractures and hence fewer intersections. Scan lines were defined 

across the DFNs (1025 scanlines of size L placed in every 1 m parallel to x-axis and y-axis) and 
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the 1D correlation dimension, 𝐷𝐷1𝐷𝐷, computed.  Figure 2-6a shows the resulting values of 𝐷𝐷1𝐷𝐷 

obtained as a function of 𝐷𝐷2𝐷𝐷 for 𝑎𝑎2𝐷𝐷 = 1.5 together with the trends expected from equations 

2.15 and 2.16. Clearly, for 𝐷𝐷2𝐷𝐷 ≥ 𝑎𝑎2𝐷𝐷 = 1.5, the values of 𝐷𝐷1𝐷𝐷 scatter closely around 1, which 

is consistent with expectations from equation 2.15. However, for 𝐷𝐷2𝐷𝐷 ≤ 𝑎𝑎2𝐷𝐷, the analysis 

indicates a progressive discrepancy between the values of 𝐷𝐷1𝐷𝐷 obtained from the realizations 

and the stereological relationship of equation 2.16. Similar observations are reported by Darcel 

et al. (2003b)who referred to this range as a transition regime. 

The corresponding results for a length exponent of 2.5 are shown in Figure 2-6b together with 

the expected trend from equation 2.17. It is evident that the 𝐷𝐷1𝐷𝐷 values derived from the scan 

lines overestimate the values expected from equation 2.17 for all values of 𝐷𝐷2𝐷𝐷, the 

overestimate increasing for smaller values of 𝐷𝐷2𝐷𝐷. Similar results were found by Darcel et al 

(2003b) who plotted only the average values of the 𝐷𝐷1𝐷𝐷 values as a function of 𝐷𝐷2𝐷𝐷. 

The stereological analyses presented above consider DFNs that have a random orientation of 

fractures. However, fractures mapped in boreholes or outcrops commonly fall into one of 

several discrete orientation sets that reflect the fracture families present in the rock mass. As an 

example, Ziegler et al. (2015) used a fracture imaging log run in the Basel-1 borehole to 

characterize the natural fracture distribution in the rock mass penetrated by the well. They 

identified six potential fracture sets based on their orientation. To investigate the impact of 

preferred orientation of fractures on the stereological analysis, a 2D fractal DFNs were 

generated that contained only two fracture sets which subtended angles of 45° and 135° from 

x-axis. The procedure and parameter values used in the stereological analyses were the same as 

those applied for the random fracture orientation cases. The results, shown in Figure 2-6c and 

Figure 2-6d for 𝑎𝑎 = 1.5 and 𝑎𝑎 =2.5 respectively, are almost similar to the random orientation 

cases. Various fracture orientation configurations have been tested leading to the same 

conclusion.  

It is of practical interest to examine the stereological relationship between fractures sampled 

along 1D scan lines (i.e. boreholes) cutting through 3D fracture networks. Darcel et al. (2003b) 

have shown the equations defining the theoretical stereological relationships between 2D trace 

planes and 3D synthetic networks are given by equations 2.18-2.20. 

 𝐷𝐷2𝐷𝐷 = 2, 𝑎𝑎3𝐷𝐷 ≤ 2 𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎3𝐷𝐷 ≤ 𝐷𝐷3𝐷𝐷 − 1 (2.18) 

 𝐷𝐷2𝐷𝐷 =  𝐷𝐷3𝐷𝐷 − 𝑎𝑎3𝐷𝐷 + 1, 𝑎𝑎3𝐷𝐷 ≤ 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎3𝐷𝐷 ≥ 𝐷𝐷3𝐷𝐷-1 (2.19) 

 𝐷𝐷2𝐷𝐷 =  𝐷𝐷3𝐷𝐷 − 1, 𝑎𝑎3𝐷𝐷 ≥ 2 (2.20) 
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Combining the above 3D to 2D equations with the 2D to 1D relations of equations 2.15-2.17 

gives the required 3D to 1D equations as equations 2.21-2.22. 

 𝐷𝐷1𝐷𝐷 = 1, 𝑎𝑎3𝐷𝐷 ≤ 2 (2.21) 

 𝐷𝐷1𝐷𝐷 =  𝐷𝐷3𝐷𝐷 − 2, 𝑎𝑎3𝐷𝐷 ≥ 2 (2.22) 

We performed a similar stereological analysis to those done previously, this time using 3D 

DFNs generated with 𝑎𝑎 = 1.5 and 2.5, and D3D varied from 2.1 to 2.9 in steps of 0.1. Fracture 

orientations were random. For each DFN generated for each step, the 1D correlation dimension, 

D1D was measured along 512 boreholes aligned with the z-axis and spaced every meter in the 

x-axis direction. The resulting D1D values are shown as a function of D3D in Figure 2-7a and 

Figure 2-7b for 𝑎𝑎 = 1.5 and 2.5 respectively, together with the trends from equations 2.21-2.22. 

For all values of a3D, the computed D1D remains in average close to 1, which illustrate the 

impossibility to extract 3D fractal dimension from 1D samples. 

2.3 1D spatial distribution of fractures  

Fractal geometry has widely been applied to characterize 1D scanlines in natural fracturing 

systems (Boadu and Long 1994; Ledésert et al. 1993; Manning 1994; Merceron and Velde 

1991; Moein et al. 2016; Roy et al. 2014). Here, we review the available techniques to estimate 

the fractal dimension of fractures intersecting 1D scanlines. Then, we apply these techniques to 

estimate the fractal dimension of synthetic patterns of known fractal dimension to find out the 

best and most reliable methodology to characterize 1D fracture patterns. 

2.3.1 Synthetic fractures 

We applied the multiplicative cascade process to generate 1D fractal patterns with a given 

fractal dimension, which is described in section 2.2.2. The main differences are: 1) the 

generation domain that is reduced to a line of size 𝐿𝐿 𝑚𝑚 (instead of a square of L×L m2) and the 

number of initial probabilities that are reduced to 2 (instead of four). The fragmentation process 

is done with a division of domain size into two subdomains in each iteration (i.e. 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 2). 

The initial parameters required to generate fractal patterns of fractures on a single scanline are 

the number of iterations n, the number of fracture population 𝑁𝑁𝑡𝑡 and the scanline length of L. 

For our application, since we are interested in the spatial distribution of intersection only, we 

skip the steps that assigns fracture length to fracture locations on scanlines. Here, we set 𝐿𝐿 =

512 m, n = 16 and populate 1,000 random fracture locations with a fractal dimension of 𝐷𝐷1𝐷𝐷 =

0.75.  Figure 2-8a represents a schematic representation of fractures on a sample synthetic 

scanline with original length of 512 m. For the sake of visibility, only 64 m of the scanline is 
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presented in this figure. Then, we apply three different techniques to estimate the fractal 

dimension of this synthetic 1D scanline and evaluate the limitation and accuracy of each 

methodology. 

 

Figure 2-6. Stereology plot of 1D lines sampling a 2D fractal fracture network. (a) Values of 

D1D obtained from DFN realizations with random fracture orientations generated with a = 1.5 

as a function of D2D. For a given D2D value, the red line in the box denotes the median value of 

D1D taken over the realizations, and the lower and upper edges of the box denote the 25 and 75 

percentile values respectively whose difference denotes the inter quartile range (IQR). The 

horizontal short black lines lie 1.5IQRs from the upper and lower edges of the 25 and 75 

percentiles. Red crosses are realization falling outside this range. (b) Same as (a) but with 

a2D = 2.5 with random fracture orientations. (c) Same as (a) but with a2D = 1.5 and two 

perpendicular sets.  (d) Same as (a) but with a2D = 2.5 and two orthogonal sets. 
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Figure 2-7. Stereology plot of 1D lines sampling a 3D fractal fracture network. (a) Values of 
D1D obtained from DFN realizations with random fracture orientations generated with a length 
exponent a2D = 1.5 as a function of D3D with random orientations. (b) Same as (a) but for a 
length exponent a2D = 2.5 with random orientations. 

 Two-point correlation function 

Two-point correlation function computes the correlation dimension similar to 2D networks 

using equation 2. Figure 2-8b displays the application of two-point correlation function to 

compute the correlation dimension (D) of the synthetic fracture patterns of  Figure 2-8a. The 

computed correlation dimension is reasonably stable and close to the initial fractal dimension 

(𝐷𝐷 =  0.75) for almost two orders of magnitude.  

 Box-counting technique 

The box counting technique consists of dividing the data space (here the scanline) in rulers of 

equal sizes t and determining how many rulers contain data 𝑁𝑁𝑏𝑏(𝑡𝑡), i.e. the rulers covering the 

entire fracture dataset. This approach has been also referred as Cantor’s dust method for 1D 

fracture datasets (Velde et al. 1991). The division of the data space is repeated sequentially, 

generating smaller rulers at each iteration. If the distribution of fracture intersections follows a 

fractal behavior, then the following relation is valid 𝑁𝑁𝑏𝑏(𝑡𝑡)~𝑡𝑡−𝐷𝐷𝑏𝑏. The box-dimension is then 

evaluated by measuring the local slope of the 𝑁𝑁𝑏𝑏(𝑡𝑡) data vs. t in a log-log plot. This slope will 

not be constant over the entire range and different regimes develop. When there is a small 

number of large rulers, all rulers will contain data and the local slope will essentially be -1. On 

the other hand, when rulers have size smaller the minimum data spacing, the number of rulers 

containing data will become a constant equal to the number of data point and the slope on the 

log-log plot will tend to zero. In between these two extreme cases, a regime with a constant 

slope should develop if the data set is truly fractal, and this constant slope is an estimator of the 

fractal dimension of the data set. Figure 2-8c displays the application of box-counting 

techniques to compute the box dimension of the synthetic patterns on Figure 2-8a. The local 
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slope of 𝑁𝑁𝑏𝑏(𝑡𝑡) does not show fractal regime in which the local slope is constant for a 

considerable range. 

 Power-law distribution of spacing 

Power-law exponent of spacing distributions is extracted from the intersection of fractures with 

a borehole.  1D scanlines generate a dataset of fracture spacing that is defined as the depth 

difference between two consecutive intersections. An approach to estimate the fractal 

dimension of the intersection of factures with the borehole is to evaluate the cumulative spacing 

distributions Gillespie et al. (1993). The cumulative spacing distribution is the plot of the 

number of spacing 𝑁𝑁𝑠𝑠 greater or equal, to specific spacing (s). When displayed in a log-log 

space, one can estimate the fractal dimension by fitting a line in the linear section with a power-

law exponent (i.e. 𝑁𝑁𝑠𝑠(𝑡𝑡)~𝑠𝑠−𝐷𝐷𝑠𝑠) . Figure 2-8d displays cumulative distribution of fracture 

spacing applied to synthetic patterns on Figure 2-8a. Similar to box-counting technique, the 

local slope of 𝑁𝑁𝑠𝑠(𝑠𝑠) does not show any constant value for a considerable range. Here we tried 

to fit a constant slope for one order of magnitude and found out a 𝐷𝐷𝑠𝑠 = 0.75.  

The comparison of these three techniques to estimate a fractal dimension to the fracture spacing 

reveals that correlation function delivers a stable and reliable estimates. Although the statistical 

distribution of fracture spacings provides a similar fractal dimension, it has a smaller range of 

validity.  On the other hand, the estimates of fractal dimension from box-counting technique is 

biased and shows no constant slope for any ranges.  Bour et al. (2002) applied box-counting 

technique directly, to characterize the 2D outcrops from Hornelen basin and found almost no 

fractal dimension. However, they assigned a correlation dimension to the fracture centers, 

which appears to be the true fractal dimension.  
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Figure 2-8. (a) A schematic view of a synthetic fracture pattern on a 1D scanline, generated 
using 1D multiplicative cascade process with a D1D = 0.75, L = 512 m and n = 16. For the sake 
of visibility, only 64 m of the entire domain is plotted. The number of fractures in the entire 
domain is 1,000. (b) Two-point correlation function and its local slope of the synthetic 1D 
scanline generated in a. (c) Box-counting analysis and its corresponding local slope of the 
synthetic 1D scanline generated in a. (d) Complementary cumulative distribution of spacing 
and its local slope of the synthetic 1D scanline generated in (a). 

2.3.2 Natural fractures in deep boreholes 

The primary source of natural fracturing systems in deep wells stems from borehole wall image 

logs such as the acoustic televiewer. Fractures are identified and their orientation obtained by 

fitting sinusoids to their traces on unwrapped images. Although the resolution of acoustic 

televiewer logs does not permit the identification of very thin discontinuities (Genter et al., 

1997), the resulting fracturing dataset usually provides a reasonably complete sampling of the 

fracture families present in a rock mass. Our data-set involves the fracture data from a 5 km 

deep geothermal well, Basel-1, located near Basel in Switzerland, and two 5 km deep wells, 

GPK3 and GPK4, at the Soultz Geothermal Project at Soultz-sous-Forêts in France. The depth 

of fractures in the borehole logs has been converted from measured depth (MD) to true vertical 

depth (TVD) below ground.  

In earlier studies, the fractures in each borehole were picked and assigned to fracture sets based 

to their orientation. The sets and their mean orientations are listed in Tables 1 and 2, and are 

ranked in terms of the number of fractures they contain. Six fracture sets were recognized in 

Basel-1 (Ziegler et al., 2015) and seven sets in GPK3 and GPK4 (Valley and Genter 2007; 

Ziegler et al. 2015), although some fractures could not be assigned to any of the fracture sets. 
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Table 2-1. Number of fractures in sets and corresponding mean orientations in Basel-1(Ziegler 

et al., 2015) 

Fracture 
Set 

Number of 
fractures 

Mean dip  
direction ° 

Mean dip  
angle ° 

1 348 250 66 
2 297 68 62 
3 173 195 61 
4 152 307 68 
5 53 37 68 
6 12 133 76 

Total number of fractures = 1164 

Table 2-2. Number of fractures in recognized sets and corresponding mean orientations in 

boreholes GPK3 and GPK4 at the Soultz-sous-Forêts site 

Fracture 
Set 

Number of 
fractures Mean dip direction ° Mean dip angle ° 

GPK3 GPK4 GPK3 GPK4 GPK3 GPK4 

1 625 749 269 272 68 70 
2 584 708 85 85 66 64 
3 324 411 136 122 72 74 
4 297 231 280 271 74 77 
5 27 40 177 200 33 24 
6 63 55 185 203 76 80 
7 6 21 189 170 54 46 

Total number of fractures in GPK3 = 1926 
Total number of fractures in GPK4 = 2115 

 Application of different techniques to characterize 1D for natural fractures 

Here, we applied correlation function technique, box-counting method and statistical 

distribution of spacing to compute the fractal dimension of fracture patterns in Basel-1 well. 

For this analysis, the entire fracture dataset is selected regardless of the orientations. Figure 

2-9a shows that the fractal dimension computed from correlation dimension is reasonably 

constant for two orders of magnitude. On the other hand, box-counting technique does not show 

a plateau in the entire range (Figure 2-9b) and statistical analysis of spacing distribution shows 

a constant slope for less than one order of magnitude with a fractal dimension of 0.21 (Figure 

2-9c). According to the analysis of synthetic data, the correlation dimension seems to be the 

true fractal dimension of fracture patterns in deep boreholes. 
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Figure 2-9. Application of three different techniques to compute the fractal dimension of 
fracture patterns in Basel-1 borehole, a) two-point correlation function, b) box-counting 
technique and c) statistical distribution of spacing.  

 1D Spatial distribution of fracture sets 

In this study we included all fractures in the sets regardless of the uncertainty in their 

identification. We consider only first four sets (1–4) of the three boreholes which are the most 

populous. The number of fractures in other sets is too small to perform a fractal analysis. For 

each of the four sets, two-point correlation functions of fracture intersection depths (in TVD) 

along the boreholes were computed for 500 points logarithmically distributed uniformly in the 

range 0.1-10,000 m (i.e. 100 for every order of magnitude). The local slopes of the log-log plots 

of the C(r) function were calculated for 25-point wide windows that were progressively moved 

across the C(r) curves without overlap, thereby giving four slope values per decade.  

The C(r) and log-log slope functions obtained from the analysis of the Basel-1 fracture sets are 

shown as functions of r in Figure 2-10. In all cases, the log-log slope appears reasonably flat 

save for local fluctuations for a range of r-values that span at least 2 − 200 𝑚𝑚, demonstrating 

that the spacing of the fracture intersection points is fractal over scales of at least 2 − 200 𝑚𝑚. 

The best-fitting horizontal lines to the slope functions over this range gave the D1D estimates of 
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between 0.65 and 0.75, which are listed in Table 3 together with their standard deviations and 

corresponding ranges of validity.  

Table 2-3. 1D Fractal dimension of fracture patterns in three deep boreholes and the 
corresponding range. Correlation dimension obtained from the analyses of fracture intersection 
spacing in the three wells 

Fracture Set 𝑫𝑫𝟏𝟏𝟏𝟏  (Basel-1) 
range 

𝑫𝑫𝟏𝟏𝟏𝟏  (GPK3) 
Range 

𝑫𝑫𝟏𝟏𝟏𝟏  (GPK4) 
range 

1 0.75±0.08 
1.3-400 m 

0.74±0.05 
2-1000 m 

0.75±0.11 
1-2000 m 

2 0.69±0.07 
2-200 m 

0.72±0.05 
3-1000 m 

0.74±0.1 
2-2000 m 

3 0.65±0.16 
2-200 m 

0.71±0.08 
2-1000 m 

0.68±0.12 
1-1000 m 

4 0.67±0.08 
2-400 m 

0.72±0.09 
06-200 m 

0.66±0.09 
1-200 m 

Entire Dataset 0.86±0.03 
2-200 m 

0.88±0.02 
2-1000 m 

0.87±0.06 
2-1000 m 

  

Figure 2-10. Correlation and log-log slope functions of fracture sets in the Basel-1 well. The 
best-fit horizontal line to the log-log stope function over the r range of 2-200 m which gives the 
value of D1D is shown together with the standard deviation. The range of r over which fractal 
scaling is seen is indicated between the vertical lines drawn at the 1 sigma variation of D1D. (a) 
set 1, (b) set 2, (c) set 3, (d) set 4.  
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Identical analyses were performed on the natural fracture sets imaged in GPK3 and GPK4 of 

the Soultz-sous-Forêts geothermal reservoir, and the correlation and log-log slope functions are 

shown in Figure 2-11 and Figure 2-12, respectively. In all cases, the log-log slope has a 

reasonably constant value over two and in some cases, three orders of magnitude. The 

correlation dimension (D1D) estimates for GPK3, obtained from the best-fit horizontal line over 

range 1-200 m, varying between 0.71 and 0.75 (Table 3), whereas those for GPK4 range 

between 0.66 and 0.75.  

 

Figure 2-11. Same as Figure 2.10 but for the four fracture sets identified in the GPK3 well at 
the Soultz geothermal site: (a) set 1, (b) set 2, (c) set 3, (d) set 4. 
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Figure 2-12. Same as Figure 2.10 but for the four fracture sets identified in the GPK4 well at 
the Soultz geothermal site: (a) set 1, (b) set 2, (c) set 3, (d) set 4. 

    1D spatial distribution of the entire fracture dataset 

The correlation and slope functions of all fractures in the Basel-1, GPK3 and GPK4 datasets 

are shown in Figure 2-13a-c respectively. No consideration is given to the orientation of the 

fractures. For Basel-1, the log-log slope shows a constant value for two orders of magnitude, 

and for GPK3 and GPK4 for three orders of magnitude. The estimated fractal dimensions for 

the three holes are very close to each other, being 0.86, 0.88 and 0.87 for Basel-1, GPK3 and 

GPK4 respectively, and the associated errors (i.e. standard deviation of the local slope within 

the fractal range) over the fitting range 2-500 m is less than 0.06 in all cases. 
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Figure 2-13. Correlation and log-log slope functions derived from all fractures (grouped into 
one dataset regardless of their orientation) intersecting (a) the Basel-1 well, (b) the GPK3 well 
(c) the GPK4 well.  

2.4 Minimum number of fractures required for a robust estimation of D1D 

Before applying our methodology to derive the depth profile of the fractal dimension (𝐷𝐷1𝐷𝐷) of 

fracture distributions in deep boreholes, we need to clarify the conditions under which 𝐷𝐷1𝐷𝐷, 

can be estimated robustly. Pursuant to this, we perform a sensitivity study to clarify the effect 

of the number of fractures on the computation of the correlation dimension of 1D scanlines in 

synthetic networks. We consider here two aspects of the uncertainty in the estimation of the 

correlation dimension: 1) the stability of the local slope of the two point correlation function 

that we estimate with the standard deviation of the local slope within the fractal range and 2) 

the representativity of the mean local slope of the two point correlation function obtained from 

a sample with a limited number of fractures. To perform this sensitivity study, we first generated 

a 2D fracture network with the parameters 𝑎𝑎2𝐷𝐷 = 1.5 , 𝐷𝐷2𝐷𝐷 = 1.5,  𝐿𝐿 = 500 𝑚𝑚 and 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 = 1, 

and placed a scan line parallel to the y-axis at X = -178 m. We chose these parameters, because 

the relatively low fractal dimension generates clustered fractured data that are less favorable for 

the estimation of the correlation dimension. Using this “worst case”, we ensure that the results 
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of our sensitivity study are of general applicability. In addition, the application of the two-point 

correlation function of equation 2 to all pairs of fracture intersection points along the scanline 

(328 fracture in total intersect the scanline) gave a correlation dimension D1D of 0.87 ± 0.1, a 

value similar to the ones measured in Basel and Soultz and thus this example is representative 

of our specific application. The ± 0.1 is the standard deviation of the local slope within the 

fractal range and captures the stability of the local slope of the two point correlation function.  

Then, a variable-length window containing a prescribed number of fractures was progressively 

moved along the scanline with a 10-fracture offset, and the value of D1D computed for each 

window by performing linear regression to the log-log plot of the correlation function between 

5 and 50 m. The procedure was applied to windows containing upwards of 5 fractures until the 

total number of 328 fractures intersected was reached. The resulting values of D1D are plotted 

as a function of the number of fractures in each window in the scatter plot of Figure 2-14a. 

Evidently, the scatter in the values decreases at the number of fractures in the window increases. 

The red lines denote the median and upper and lower quartiles of the statistical distribution of 

D1D values obtained for each fracture number window size. Interquartile interval reasonably 

centered on the expected value of 0.87 is already well defined for a number of fracture as low 

as 30. However, the range is large (±0.09) for such low number of fractures. This range 

diminishes with increasing number of fractures and is down to ±0.03 for 200 fractures, but is 

not perfectly centered on the expected value of 0.87 which indicates a tendency to overestimate 

the correlation dimension. 

The stability of the local slope of the correlation function is evaluated by computing the 

standard deviation of the local slope over the fractal range for a subset of the test case with 

variable amount of fractures. This results are presented on Figure 2-14b.  The standard deviation 

is high for small fracture and reaches a slowly decreasing value of ±0.1 for 100 fractures or 

more. 

Although the minimum number of fractures required to obtain a robust estimate of the fractal 

dimension of fracture patterns varies on different scanlines, a reasonably stable estimate is 

obtained for 200 or more fractures. With this number of fractures, the uncertainty comes 

primarily from the variability of the local slope. Thus, we adopt 200 as the minimum number 

fractures needed to estimate 𝐷𝐷1𝐷𝐷 in the line sampling and we will use the standard deviation of 

the local slope over the fractal range as an indicator of the uncertainty of the estimate.  
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Figure 2-14. (a) Scatter plot of D1D values obtained by stepping (variable-length) windows that 
contain a given numbers of fractures with an offset of 10 fracture along a scanline at X = -178. 
The given number of fractures ranged from 5 to the total fracture number in steps of 1. The red 
lines denote the median and upper and lower quartiles of the statistical distribution of D1D values 
obtained for each fracture number. (b) Standard deviation of the local slope over the fractal 
range associated with the estimation of the D1D values for variable number of fracture included 
in the sample. 

2.5 Fractal profile of spatial distribution versus depth  

The geometrical characteristics of fracture networks influences the hydraulic response of the 

system (Bonneau et al. 2016; Darcel et al. 2003c). Knowledge of the spatial distribution of the 

fractures along deep boreholes helps us to understand the structure of discontinuities in the 

crust. Ledésert et al. (1993) analyzed the fracture profiles in core from EPS1 and logs from 

GPK1 for the shallow (i.e. 1400-2200 m) reservoir at the Soultz-sous-Forêts site. They applied 

Cantor’s Dust method (box-counting) to compute the fractal dimension of fracture spacing in 

windows taken along the boreholes and found evidence that fractal dimension increased with 

depth, which they proposed was related to the lithostatic pressure gradient. In contrast to 

Ledésert et al. (1993), here we apply the two-point correlation function method to successive 

depth intervals taken along the Basel and Soultz boreholes to assess whether any systematic 

variation in fractal dimension of fracture spacing is resolved. In each interval, two-point 

correlation functions were computed for 200 points uniformly spread logarithmically between 

0.1 and 1000 m (i.e. 50 points per decade). The local slopes of the correlation functions were 

calculated by performing a linear fit over a 10-point wide window moved along the data with 

75% overlap so as to give 20 slope values for every order of magnitude. Each log-log slope 

function was inspected to identify the range over which its value was reasonably constant, and 

a linear regression with a horizontal line performed to identify the correlation dimension and 
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the standard deviation. In all cases, the plateau was seen to span at least 1.5 orders of magnitude 

in r.  

Based upon the previous section, the intervals over which D1D was estimates were chosen to 

include at least 200 fractures. For the Basel-1 dataset, 300 fractures were included in each 

window, and the latter moved along the profile in steps of 100 fractures, giving a 200 fracture 

overlap on successive windows so as to increase the number of D1D determinations. A 

complication of the Basel-1 dataset is posed by the higher fracture density seen at the top of the 

profile between 2600 and 3100 m, as shown in Figure 2-15a, which contains 600 out of the 

total of 1164 fractures intersected by the well. This interval has been assumed to be the paleo-

weathered surface and be exhumed close to the Earth’s surface before the deposition of 

sedimentary rocks. Because of the large number of fractures with shorter spacing, the plateau 

of the log-log slope function that denotes fractal scaling began for r as small as 0.1m for 

intervals above 3100 𝑚𝑚, whereas the start point was ~1m for intervals below. The profile of D1D 

estimates are shown in Figure 2-15b together with the standard error from the linear regression. 

Evidently, no systematic change in D1D values is resolved, although the standard deviation 

estimates are large.  

Similar analyses were performed on the GPK3 and GPK4 fracture datasets from Soultz-sous-

Forêts using moving windows containing 500 fractures in steps of 100 fractures (i.e. 400 

overlaps), and the resulting profiles of D1D are shown in Figure 2-16b and Figure 2-16d 

respectively. The fracture density profiles of the wells shown in Figure 2-16a and Figure 2-16c, 

are more uniform than the Basel-1 case, and the plateau denoting the start of fractal scaling 

begins at a r value of ~1 𝑚𝑚. As in Basel-1, the lack of systematic depth variation in D1D is 

evident at the 1 sigma level, although the uncertainties are large. 

2.6 Discussion 

The generation of discrete fracture network models conditioned by available observations from 

boreholes or outcrop is required in practically all subsurface rock mass characterization 

programs (e.g. Watanabe and Takahashi 1993). The approach investigated here makes the 

assumption that fracture networks can be considered as fractal objects. Fractal fracture networks 

require the values of scaling parameters that control the position and length of the fractures that 

form the network to be specified. The dual power law mathematical model proposed by Davy 

et al. (1990a) is a convenient way of describing the fracture network. The model contains two 

scaling parameters: the correlation dimension D, which controls the position of fracture centers, 

and the length exponent a, which controls the fracture length distribution. One-dimensional, 
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two-dimensional and three-dimensional synthetic fracture dataset honoring this model can be 

generated using the multiplicative cascade process. This model forms the basis of our analyses. 

 

Figure 2-15. (a) Profile of the density of fractures in the Basel-1 well per 10m interval. (b) 
Variation of correlation dimension in moving windows containing 300 fractures with 200 
overlaps in Basel-1. The error bars represent the standard deviation of the local slope within the 
fractal range. 

The scaling inherent in fractal fracture networks is quantified by scaling of fractures in deep 

boreholes is largely dependent on the technique applied to obtain the scaling exponents (i.e. 

fractal dimensions). Many studies reported different values as the fractal dimension of fracture 

patterns on deep boreholes single scanlines without an agreement on the true fractal dimension 

value. For 2D and 3D fracture networks, the fractal dimensions obtained from applying 

different measurement methods represent the scaling properties of different attributes of the 

fracture networks. For example, box-dimension is a measure of the space filling characteristics 

of the fractures (which inherently accounts for the length and center-to-center separation of the 

fractures) and correlation dimension reveals the clustering of fracture centers. (Bour et al. 2002) 

applied the box-counting technique to an outcrop in Norway and fractal behavior over a limited 

range of scales, whereas the two-point correlation function method indicated fractal behavior 

over a much larger range of scales. The fractal dimensions obtained from the two methods were 

different. In contrast to 2D and 3D fracture networks, the distribution of fractures along 1D 
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scanlines or boreholes depends only on the separation of fracture intersection points. For this 

simple case of points along a line, it might be thought that if the distribution is indeed fractal, 

then the same fractal dimension would be obtained regardless of the technique used to estimate 

it. However, our experiments with synthetic 1D fracture-spacing data of known fractal 

dimension showed that the two-point correlation method was the only technique that yielded 

stable and correct estimates for the fractal dimension of the series, as given by the correlation 

dimension. The experiments showed that when including 200 or more fracture in an analysis, 

the correlation dimension can be evaluated accurately. The box-counting technique and power-

law distribution of spacing methods did not deliver reliable estimates of the fractal dimension. 

 

Figure 2-16. (a) Profile of the density of fracture in the GPK3 well per 10m interval. (b) 
Variation of correlation dimension in moving windows containing 500 fractures with 400 
overlaps in GPK3. (c) Profile of the density of fractures in the GPK4 well per 10m interval. (d) 
Variation of correlation dimension in moving windows containing 500 fractures with 400 
overlaps in GPK4. The error bars represent the standard deviation of the local slope within the 
fractal range. 

The computation of one dimensional correlation dimension for the fracture data set of one deep 

borehole in Basel-1 and two deep boreholes in Soultz-sous-Forêts (GPK3 and GPK4) leads to 

very similar correlation dimension from 0.86 to 0.88 when considering all fracture orientation 

together. This scaling parameter is valid over more than two order of magnitudes, i.e. typically 

in the range 2 to 1000 m. This covers the entire range that one can reasonably expect from 



66 

 

borehole data in the basement along length of 2.5 km (Basel) to 3.5km (Soultz) before finite 

size effects kicks in. This is a strong evidence that the fracture networks investigated follow a 

fractal organization. When sorting fractures in sets with similar orientations, the correlation 

dimension slightly diminishes to values ranging from 0.65 to 0.75 and the range of validity of 

the scaling relation span more than two orders of magnitude similarly with the analyses 

performed on all fractures. 

No clear trend with depth of correlation dimension are visible in our data. In that regard the 

data from the south boreholes GPK3 and GPK4 are of particular interest since in the upper 

kilometer of the granite section the distance between the boreholes is less than 30 m and they 

sample essentially the same rock mass. The inter-well distance increases up to 700 m toward 

the bottom of the holes. Thus, the constancy in correlation dimension in these borehole indicate 

not only a depth homogeneity of the fracturing fractal characteristics, but although a lateral 

homogeneity. 

The data from Basel-1 allow exploring a different aspect since a strong change of fracturing 

intensity is present in this data set above and below 3km. This change in fracturing intensity is 

interpreted as reflecting fracturing overprinting due to stress relaxation prior to Triassic times 

when the top of the crystalline basement was at the surface. The correlation dimension is higher 

than 0.9 above 3km and less than 0.9 below 3 km, although the one standard deviation 

confidence range overlaps over the entire depth range and this difference may not be significant. 

Thus, fracturing intensity has in this case, if any, a very limited impact on correlation 

dimension. 

The physical interpretation of the correlation dimension D1D in terms of the organization of the 

fracture network is not trivial (Davy et al. 2010). Uniformly spaced fracture or spacing 

following a uniform random distributions (Poisson's process) will have a correlation dimension 

of 1.0. Smaller values of D1D will imply some clustering of the fractures. Our values for D1D 

suggest some clustering of the fractures, but, not a very strong one. Power law fit of cumulative 

spacing distribution for various fracture sets in GPK3 and GPK4 indicate fractal dimensions of 

0.63 to 1.0 (Valley 2007). This is similar to our findings, but the stability of the local slope is 

not satisfying. The degree of clustering and the fractal dimension is also interpreted by some 

authors as an indication of the “saturation” of the fracture network, i.e. if fractures location is 

dense enough to force fracture interactions during the growth process (Davy et al. 2010; Scholz 

2002). More saturated system will develop more uniform fracturing leading to higher fractal 

dimensions. This would indicate that our fracture network in Soultz and Basel are close to be 
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saturated. This would also explain why adding fractures due to decompression in the upper 

400 m of the Basel data does not lead to significant increase in fractal dimension since the 

fracture network to start with is already saturated. 

An important question concerns the constraints that an observed distribution of fracture 

intersection points in a borehole places on the scaling of the fracture network within the rock 

mass penetrated by the borehole. Clearly, the 1D spacing distribution reflects to some degree 

the characteristics of the 3D network (i.e. the parameters controlling fracture location (D3D) and 

fracture length (a3D) in the dual power law model),  and commonly shows a 1D fractal nature 

characterized by a fractal dimension, D1D. Darcel et al. (2003b) derived stereological 

relationships for fractal DFNs which relate D1D for a scanline through the DFN to the scaling 

parameters of fracture patterns on 2D surfaces within the DFN (the correlation dimension of 

fracture centers, D2D, and the length exponent a2D), and also to the 3D scaling parameters (D3D 

and a3D). Applying the relations to synthetic data, they found that the 3D spatial distribution of 

fractures could not be constrained from the lower-dimension scaling parameters, except when 

the length exponent was known. However, our stereological analysis shows that even when the 

fracture length exponent is known, it is not possible to deduce 3D scaling parameters from 1D 

data. The problem is strongly underdetermined and leads to non-unique solutions. Additional 

information must be included in order to circumvent these limitations. This can be done in the 

case of geothermal reservoir development by integrating the spatial distribution of induced 

seismicity (Afshari Moein et al. 2018), although this information becomes available only after 

that reservoir stimulation has been performed. Another potential source of information stems 

from the scaling of stress orientation variations that are revealed by extensive wellbore failure 

that is commonly observed in deep boreholes (Moein et al., in prep.). 

2.7 Conclusions  

Fractal fracture networks that respected the dual power law model of Davy et al. (1990b) were 

generated using a multiplicative cascade process. Two independent scaling parameters inherent 

in the model relate to the distribution of distances between fracture centers (correlation 

dimension, D), and the distribution of fracture lengths (length exponent, a). Analyses of 1D 

synthetic fracture distributions along lines generated with the model show that correlation 

dimension obtained from the 2-point correlation method provides the most stable and reliable 

estimate of the fractal dimension of fractures on 1D scanlines or boreholes. The spatial 

distributions of fractures along three deep boreholes in crystalline rock at Basel and Soultz-

sous-Forêts was found to be fractal over more than two orders of magnitude in scale, and in all 
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cases the fractal dimensions lay in the range 0.86-0.88. Fracture sets of common orientation 

within the wells were also fractal over more than two orders of magnitude, although the fractal 

dimension ranged between 0.65-0.75. This constitutes strong evidence that fracturing in rock 

masses penetrated by the wells follows a fractal organization. No systematic variation of fractal 

dimension with depth was resolved in any of the boreholes at the one standard deviation level 

of uncertainty. 

Analyses performed on synthetic fractal fracture networks show that it is not possible to 

estimate the 2D and 3D fractal scaling parameters of correlation dimension or length exponent 

from the 1D correlation dimension of fracturing spacing from scanlines through the network. 

This was found to be true even if the length exponent of the fracture distribution was known a-

priori. The stereological problem of constraining scaling in 2D and 3D from 1D observations 

is too underdetermined and requires information in addition to the length exponent.  
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3 Maximum magnitude forecast in 
hydraulic stimulation based on 
clustering and size distribution of 
early microseismicity  

 
 

 

 

 

Reproduced from: Afshari Moein, M.J., Tormann T., Valley B., Wiemer S., Maximum 

magnitude forecast in hydraulic stimulation based on clustering and size distribution of early 

microseismicity, Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL077609. 
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Abstract 

We interpreted the spatial clustering and size distribution of induced microseismicity observed 

during the stimulation of an Enhanced Geothermal System beneath Basel by comparison with 

scale invariant synthetic data derived from discrete fracture network models. We evaluated 

microseimic specific influential factors including the effect of hypocentral location 

uncertainties, existence of a fractured zone and repeating events on the observed spatial 

organization. Using a dual power-law model originally developed in the context of discrete 

fracture network modeling, we developed theoretically the relationships amongst spatial 

clustering and magnitude distributions. We applied this model to the Basel data set and showed 

that the spatial clustering characteristics presented stationary properties during the hydraulic 

stimulation. Based on this observation, we proposed a statistical seismicity model calibrated on 

the scaling of early stimulation spatial patterns which is capable of forecasting the maximum 

magnitude of induced events with increasing injection time and stimulated volume.  

3.1  Introduction 

Developing Enhanced Geothermal Systems (EGS) requires massive fluid injections (hydraulic 

stimulation) to enhance the permeability in order to achieve higher flow rates and exploit the 

stored heat from elevated temperatures in the earth’s crust. Since the stress conditions of 

corresponding depths can be critical (Townend and Zoback 2000), the pressurized fluid 

injections induce microseismic activity. The associated microseismicity can be large enough to 

be felt by public and may lead to suspension of EGS developments such as Saint-Gallen and 

Basel geothermal projects in Switzerland (Edwards et al. 2015; Häring et al. 2008). The 

underlying mechanisms of permeability creation during a hydraulic stimulation experiment is 

not fully understood and still debated. Nevertheless, shearing on rough surfaces due to the 

increase of pore pressure is expected to enhance the hydraulic conductivity (Evans et al. 2005a). 

Induced microseismicity is a result of the interaction between pre-existing fracture network and 

fluid pressure induced changes (Evans et al. 2005b). To reliably assess the rock mass response 

to fluid injection, the permeability creation potential and the seismic hazard and risk of any 

development scenarios, the 3D structure of the underlying fracture network should be 

characterized. Borehole image logs provide the location and orientation of fractures on borehole 

wall, which are not sufficient to create a 3D structural model of a reservoir in a depth of 2-5 km 

(Valley and Evans 2015a). The major unknown parameter of the existing network is fracture 

length distribution, which has a large impact on the fracture network connectivity and hydraulic 

characteristics of rock mass. Induced microseismicity provides valuable information about the 
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possible failure planes in the reservoir volume and this information can be possibly used to 

guide the stochastic realizations known as discrete fracture networks (DFN).  

Induced microearthquakes reveal scale invariant spatial patterns (Sahimi et al. 1993; Tafti et al. 

2013) and the magnitude frequency exhibits power-law distributions (Bachmann et al. 2012; 

Gutenberg and Richter 1954). We adopt the working hypothesis that the scaling of induced 

events is reflecting some aspects of the geometry of underlying fracture network. On the other 

hand, the fracture networks also reveal scale invariant characteristics (Bour et al. 2002; Davy 

et al. 1990a; de Dreuzy et al. 2001; de Dreuzy et al. 2002; Lei et al. 2015; Odling et al. 1999). 

Self-similar fracture patterns may originate from complex self-organized critical dynamics, 

which relate the large scale statistics to smaller ones (Allegre et al. 1982; Bak et al. 1988; 

Sornette 2006; Sornette et al. 1990). Furthermore, the stress interactions in fractures growth 

process may also result in power-law length distributions (Davy et al. 2010; Spyropoulos et al. 

2002).  

The interaction between fluid pressure, in-situ stress conditions and fracture network results in 

microseismicity, which is not completely understood. Potential similarities between the scaling 

properties of fracture networks and induced microseismicity may improve the statistical 

seismicity models. Current statistical models, typically neglect the scaling properties of 

microseismic patterns and potential correlations between location and magnitude of induced 

events. Moreover, these statistical models are mostly unable to explain the effect of geological 

features such as damage zones and geophysical features such as location uncertainties and 

repeating events on the scaling properties of induced patterns. Proper understanding of the 

scaling characteristics of microseismicity patterns may introduce new features into the 

statistical models and improve the maximum magnitude forecast during hydraulic stimulation 

operations.  

We implement fractal geometry to characterize the spatial distribution of microseismicity in the 

Basel geothermal site and analyze the scaling properties by simulating the previously mentioned 

microseismic specific feature. Such analyses leads to propose a statistical model that presents 

the spatial clustering and rupture size distribution of induced events. The parameters of this 

model are calibrated by early time patterns (learning phase) and forecast the seismic risk during 

the continued injection and shut-in phase. We test this model in the Basel geothermal site and 

conclude with an outlook for future applications. 
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3.2 Microseismicity in Basel geothermal site 

Injecting water at high pressure into the open hole section below 4629m of Basel geothermal 

system induced 14,578 recorded seismic events between December 2, 2006 and March 31, 

2007, 3460 of them were located (Dyer et al. 2010; Häring et al. 2008). Kraft and Deichmann 

(2014) performed a waveform similarity analysis and relocated the initial catalogue to 1980 

events and reduced the uncertainty of hypocentral locations. We use this catalogue in this study. 

Figure 3-1a displays the spatial scattering of microearthquake hypocenters from top and side 

view and Figure 3-1b shows the corresponding cumulative frequency size distribution with the 

estimate of b-value using the maximum likelihood fit (Aki 1965).  

3.2.1 Spatial distribution 

Two-point correlation function has been widely used to characterize the spatial clustering of 

fractures and earthquake hypocenters (Bour et al. 2002; Hirata et al. 1987). A fractal dimension 

(𝐷𝐷) is computed by fitting a power-law to correlation function according to equation 3.1, 

 𝐶𝐶(𝑟𝑟) = 2
𝑁𝑁(𝑁𝑁 − 1)

𝑁𝑁𝑝𝑝(𝑟𝑟) ~ 𝑟𝑟𝐷𝐷 (3.1) 

where N is the total number of events and 𝑁𝑁𝑝𝑝 is the number of pairs of events whose hypocentral 

distance is less than r (Hentschel and Procaccia 1983b). Figure 3-1c represents the correlation 

function of the relocated induced events. The corresponding local slope is close to two between 

50–100m distance, then decreases between 2–50m and larger than 100m. Therefore, such a 

deviation from pure scaling law should be explained. 

3.2.2 Rupture radius distribution 

Most seismic events in hydraulic stimulation represent failures on existing fracture planes and 

the reported magnitude depends on the radius of the rupture plane and the stress drop. If we 

assume every event represents a rupture plane, a rupture radius can be assigned by equation 3.2. 

The radius of a circular failure plane (𝑅𝑅) in space is related to stress drop (∆𝜎𝜎) and seismic 

moment (𝑀𝑀0) through equation 3.2 (Eshelby 1957),  

 𝑅𝑅3 =
7𝑀𝑀0
16∆𝜎𝜎

 (3.2) 

Goertz-Allmann et al. (2011) determined the stress drops from P-wave signals of 1000 

microearthquakes in Basel and a large portion of the events showed a constant stress drop of 

2.26 MPa (the average value) with a variation between 0.1-10 MPa. If we simply assume a 
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constant stress drop on every seismic event, the rupture radius scaling exponent 𝑎𝑎𝑟𝑟 may be 

computed. Figure 3-1d shows the rupture size distribution of induced events for three different 

stress drop assumptions (0.1, 2.26 and 10 𝑀𝑀𝑀𝑀𝑀𝑀) follows a power-law, whose slope ar is 

independent from the average stress drop on each event and is related to b-value through 

equation 3.3 (Shapiro et al. 2013). 

 𝑎𝑎𝑟𝑟 = 2𝑏𝑏 + 1 (3.3) 

 

Figure 3-1. (a) Top and side view of the spatial scattering of microearthquake hypocenters 
relative to the casing shoe in Basel geothermal system (Kraft and Deichmann 2014). (b) 
Frequency size distribution of microearthquakes and estimates of b-value using maximum 
likelihood estimates. (c) Correlation function and its local slope. (d) Complementary 
cumulative rupture radius distribution (𝑅𝑅) for different stress drops.  
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3.3 Synthetic fracture network model 

The evidence on clustering and power-law size distribution of rupture patternsmotivates 

generating synthetic rupture patterns with the same statistical characteristics. Thus, we utilized 

the concepts developed in the framework of discrete fracture network modeling and adopted 

the following statistical model to generate fractal fracture patterns  from Davy et al. (1990a), 

 𝑛𝑛(𝑙𝑙, 𝐿𝐿)𝑑𝑑𝑑𝑑 =  𝛼𝛼𝐿𝐿𝐷𝐷𝑙𝑙−𝑎𝑎𝑓𝑓 𝑑𝑑𝑑𝑑   (3.4) 

where, 𝑛𝑛(𝑙𝑙, 𝐿𝐿)𝑑𝑑𝑑𝑑 is the number of fractures whose length is in the range [𝑙𝑙, 𝑙𝑙 +  𝑑𝑑𝑑𝑑] and whose 

center belongs to a volume in three dimensions of size L3 [m]3, α [m]a-D-1 is a normalization 

constant and affects the fracture density, D is the correlation dimension of fracture centers and 

𝑎𝑎𝑓𝑓  is the fracture length exponent. This model, also known as dual-power law model, has been 

widely used to study different aspects of fractured media (Darcel et al. 2003c; Harthong et al. 

2012; Kim 2007; Verscheure et al. 2012). Here, the size of a fracture plane is defined as the 

radius of a circular disk. The motivation to choose such a fracture model is that natural fractures 

exhibit self-similar spatial patterns in different scales (Chilès 1988; Davy 1993). In addition, 

power-law distribution is the only scale-invariant statistical distribution and has been used to 

describe the fracture attributes in different scales. Different fracture attributes such as trace 

length, spacing, RQD (Rock Quality Designation, Deere and Deere (1988)), aperture, surface 

roughness etc. show also self-similar patterns (Barton and Zoback 1992; Boadu and Long 1994; 

Bonnet et al. 2001; Power and Tullis 1991). Dual power-law model enables to generate fractal 

spatial organization as well as power-law length distribution of fractures in two and three 

dimensions. We developed this model to generate random network realizations in MATLAB 

and verified the power-law spatial and size distribution of fractal DFNs, which is presented in 

the Appendix B. In addition, the relation between position and size distribution of fractures is 

verified in synthetic fracture networks. The details of the generation methodology are available 

in the above-mentioned references. 

 The fractal analysis of microseismicity patterns do not present a clear scaling (Figure 3-1c) and 

requires further analysis. Here, we analyze the influence of three factors that complicate the 

extraction of geometrical characteristics of fracture network from seismicity data. The factors 

that we include in this analysis are: 1) uncertainty associated with location of microearthquake 

hypocenters, 2) existence of a fractured zone and 3) repeating events on same structures. For 

this analysis, we generated a 3D DFN with the following input parameters D=2.7, a=3.5, α=0.1, 
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lmin=10 m in a cubic domain with side length of L=500 m. We need to mention that no boundary 

treatment is done i.e. some fractures might extend outside of the generation domain.  

3.3.1 Uncertainty of hypocentral locations 

Earthquake locations are estimated by travel time inversion of the recorded P-wave and S-wave 

arrivals. The computed hypocenters are associated with uncertainties because of unknown 

velocity structure of the earth and arrival time observation errors. The confidence region of 

earthquake hypocenters are ellipsoidal and normally distributed (Husen 2010). The variance of 

the normally distributed earthquake hypocenters can be determined by a principal component 

analysis of the scatter clouds obtained from random realizations of hypocenters locations 

considering uncertainties on the seismic data and velocity model. The 68% confidence level of 

principal axes of ellipsoids in Basel geothermal system have a mean length of 74 m, 48 m and 

32 m which, are taken from a principal component analysis of the scatter clouds (Kraft and 

Deichmann 2014). 

To study the influence of such an uncertainty, we insert a random noise on fracture center 

coordinates (XYZ) from a normal distribution in the 3D fracture network of Figure 3-2a.  If the 

principal axes of ellipsoids are aligned with XYZ coordinates, the variance of the noise are 74 

m,  48 m and 32 m in the direction of each coordinate (the maximum uncertainty in 3D is 93m). 

Figure 3-2b shows the correlation function and its local slope of a random realization with 

predefined noise on fracture center locations compared to initial network. The correlation 

dimension tends to increase (approach to 3), if the hypocentral location uncertainty is included 

in the rupture models. A sensitivity analysis on the effect of uncertainty in 3D is presented in 

Appendix B.  

3.3.2 Existence of a fractured zone 

Borehole observations and induced microseismicity in deep crystalline rocks confirm the 

existence of fractured zones, which provide the main fluid path into the reservoir (Deichmann 

et al. 2014; Evans et al. 2005a). Fractured zones are intervals of very high-density fractures, 

where the spatial distribution of fractures can be assumed to be random in a limited width. From 

the geological perspective, fractured zones are equivalent to damage zones flanking a fault core 

with a very high permeability and introducing a preferential fluid flow path (Bense et al. 2013).  

To simulate a fractured zone, we generate a simple synthetic horizontal fractured zone by 

populating uniformly distributed fracture centers with a uniform radius between 0 and 50 m in 

a slice of 40 m width (Figure 3-2c). Since the focus is on the spatial distribution of fracture 
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centers, the radius distribution does not change the analysis. A fractured zone with 1000 fracture 

centers is generated in the domain similar to network of Figure 3-2a and the corresponding 

correlation function of the 3D spatial distribution is displayed in Figure 3-2d. The correlation 

dimension of such a fractured zone equals to 2.  

The fractured zones may be embedded in a 3D network. Therefore, if we add a fractured zone 

into the network of Figure 3-2a, the spatial distribution of the network may be altered. Figure 

3-2e shows the correlation function of the resulting network and its local slope, which is slightly 

less than 2.7. A sensitivity analysis on the width of fractured zone and its influence on the 

resulting spatial organization is presented in Appendix B.  

The fractured zones may be embedded in a 3D network. Therefore, if we add a fractured zone 

into the network of Figure 3-2a, the spatial distribution of the network may be altered. Figure 

3-2e shows the correlation function of the resulting network and its local slope, which is slightly 

less than 2.7. 

3.3.3 Repeating events 

The source of every recorded micro-seismic event might not be unique and the rupture might 

occur on different points of a discontinuity plane. Repeating events are characterized by almost 

identical waveforms, which reflect very similar re-ruptures of the same structure but may have 

different magnitudes. Here, we analyze the influence of repeating events on the spatial 

organization of a synthetic fracture network. Therefore, we add random fracture centers 

representing the repeating events to the network of Figure 3-2a. We choose 10 random fractures 

from the initial network and add 10 fracture centers very close to them (entirely 100 random 

fracture centers represent the repeaters). The repeaters are selected randomly from a sphere with 

a radius of 4.3m, perturbed the randomly chosen fractures (i.e. the maximum offset of repeater 

coordinates from the chosen fracture center is 2.5m). The correlation function of the initial 

network with repeaters is displayed in Figure 3-2f and a sensitivity analysis on the number of 

repeating events is presented Appwndix B). Introducing the repeaters into the rupture model 

results in a drop of the correlation dimension in distances between 2-100 m.  

Here, we analyzed the impact of three main factors that may substantially deviate the scaling 

of microearthquake patterns from a pure power-law. However, other factors may influence the 

scaling properties of induced patterns. For instance, the orientation of discontinuities relative to 

the in-situ stress conditions may affect the spatial organization of slipping patches. Analyzing 

the impact of this factor requires physical modeling of the induced seismicity using thermo-

hydromechanical simulations, which is beyond the scope of this paper.  
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Figure 3-2. (a) A 3D random DFN with D = 2.7, a = 3.5 and α = 0.1. (b) Effect of 93 m 
uncertainty in fracture center locations on the resulting spatial distribution of a random 
realization of the initial network. (c) 3D view of a 40 m width fractured zone. (d) Spatial 
organization of a fractured zone. (e) Spatial organization of the network merging two networks 
in a and c. (f) Effect of 100 repeaters in a maximum 5 m distance from 10 randomly selected 
fractures (10 repeaters belong to each fracture). 

3.4 Geometrical forecast approach 

In previous sections, we applied synthetic fracture networks to explain the spatial organization of 

induced events in Basel and described the impact of influential factors. In general, extracting the 

statistical properties of network geometry from induced microseismicity is difficult, because of 

the previously discussed factors. Nevertheless, similarities between the induced 

microseismicity and scale invariant fractal networks motivated us to propose a statistical model 

for geometry of rupture patterns. This model represents the clustering and size distribution of 
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induced seismicity by a dual power-law model, which is initially developed for fracture 

networks. This forecast approach is different from other statistical approaches such as the 

seismicity models presented by Shapiro et al. (2013) and McGarr (2014). The major progress 

in this model stems from the physical nature that originates from the scaling characteristics of 

fracture networks. These characteristics enable the model to clarify the effect of features that 

deviate the mircoseismicity patternss from pure scaling laws such as repeating events, 

hypocentral uncertainty and fractured zones. In a specific comparison to the model proposed 

by Shapiro et al. (2013), which deals with planar preferential path for the seismicity cloud, dual-

power law is a universal model that can include any fractal dimensions between 2 and 3 (2 is a 

planar structure and 3 is uniformly distributed in space). For instance, the Geyser field (Tafti et 

al. 2013), in which the  spatial distribution of induced events shows a fractal dimension of 2.57.  

3.4.1 Methodology 

This approach sets a dual-power law model for rupture patterns based on very early stimulation 

phase (learning period) and performs a predictive real-time seismic hazard analysis, so that 

future development of microseismicity can be anticipated. It computes the maximum rupture 

radius and the corresponding seismic magnitude (assuming a constant and conservative stress 

drop) with an increase in the perturbed reservoir volume. We define the perturbed reservoir 

volume as the smallest cubic volume which encompasses all the microearthquake hypocenters. 

This methodology is based on scale-invariant spatial distribution of seismic events and the 

power-law rupture radius distribution. In general, a simple dual power-law model can represent 

the rupture geometry patterns similar to equation 3.5; 

 𝑛𝑛(𝑅𝑅, 𝐿𝐿)𝑑𝑑𝑑𝑑 =  𝛼𝛼𝐿𝐿𝐷𝐷𝑟𝑟𝑅𝑅−𝑎𝑎𝑟𝑟𝑑𝑑𝑑𝑑 (3.5) 

where, the seismic patterns are located in a cube of side length 𝐿𝐿 with a correlation dimension 

of 𝐷𝐷𝑟𝑟 and rupture size exponent of 𝑎𝑎𝑟𝑟. The initial parameters (𝑎𝑎𝑟𝑟, 𝐷𝐷𝑟𝑟, 𝛼𝛼 and 𝐿𝐿) of this equation 

are estimated from the learning phase patterns. We take the maximum offset of seismic events 

from the casing shoe plus the corresponding location uncertainty as the initial side length of the 

perturbed volume (𝐿𝐿) and set the approximate minimum rupture radius (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) in the perturbed 

volume of the learning phase. Magnitude of completeness (𝑀𝑀𝑐𝑐) delivers 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 using equation 

3.2. For a detailed analysis on how to compute the magnitude of completeness (𝑀𝑀𝑐𝑐), we refer 

to Mignan and Woessner (2012). Finally, the parameter 𝛼𝛼 may be estimated from equation 3.6.  
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 𝑁𝑁 = � 𝑛𝑛(𝑅𝑅, 𝐿𝐿)𝑑𝑑𝑑𝑑 =  𝛼𝛼
𝑎𝑎𝑟𝑟 − 1

 𝐿𝐿𝐷𝐷𝑟𝑟𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
−(𝑎𝑎𝑟𝑟−1)∞

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

 (3.6) 

If the injection continues to sweep a larger volume and increase the perturbed volume with a 

side length of 𝐿𝐿′(L' > L), this model can compute the rupture radius distribution and the 

corresponding size magnitude by equation 3.7. 

 𝑛𝑛(𝑅𝑅, 𝐿𝐿)𝑑𝑑𝑑𝑑 =  𝛼𝛼(𝐿𝐿′)𝐷𝐷𝑟𝑟𝑅𝑅−𝑎𝑎𝑟𝑟𝑑𝑑𝑑𝑑 (3.7) 

The estimated rupture radius exponent (𝑎𝑎𝑟𝑟) is independent from the average stress drop on 

rupture planes, whereas the minimum and maximum rupture radius depends on the assumed 

stress drop (Figure 3-1d). The maximum expected (𝑀𝑀𝑤𝑤) should be computed based on the most 

conservative case, where the stress drop is the largest (e.g. 10MPa). 

3.4.2 Time dependency of clustering and size distribution of seismicity in Basel 

Before the application of this methodology to Basel data, we need to study the dependence of 

clustering and rupture radius distribution on the number of events (increasing time windows). 

The exponents of 𝐷𝐷𝑟𝑟 and 𝑎𝑎𝑟𝑟 are computed by a linear fit through the linear section of the 

resulting 𝐶𝐶(𝑟𝑟) and 𝑁𝑁 , staring from the estimated minimum radius. Figure 3-3a shows that 𝑎𝑎𝑟𝑟 

exhibits very little variation during the injection phase and slightly decreases in the post-

injection phase (𝑎𝑎𝑟𝑟 varies between 3.7 and 4.1 in whole seismic activity). This implies that the 

statistics of larger events (that mostly happen in later stages) may differ from smaller events 

(early stages). A sensitivity analysis is required to evaluate the applicability of early events to 

estimate the maximum magnitude as function of perturbed volume.  In addition, 𝐷𝐷𝑟𝑟 is very 

close to 2 with no clear deviations, reflecting a fractured zone (Figure 3-3b).  
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Figure 3-3. (a) Dependence of rupture radius exponent on the number of events in Basel 
geothermal site. (b) Dependence of rupture clustering on the number events in Basel. (c) 
Calibration of the seismicity model to the first 100 events (learning phase) during the injection 
phase and simulation of rupture radius distribution with increasing the encompassing volume 
in Basel geothermal reservoir. (d) Prediction of maximum moment magnitude Mw of Basel 
geothermal reservoir as a function of encompassing volume with an assumption of 
∆σ = 10 MPa.   

3.4.3 Application to Basel  

If we choose the first 100 events as the learning phase and compute the completeness magnitude 

of Mc =0.8, the corresponding minimum rupture radius for ∆σ = 10 MPa equals to Rmin= 9.5 m. 

If the events less than Mc are excluded, remaining events are encompassed by a cube, centred 

in the casing shoe with a side length of L=500 m. To ensure all the ruptures do not extend 

outside of the seismic volume, we compute 𝐿𝐿
2  by adding the maximum rupture radius and 

maximum location uncertainty to the maximum distance from the casing shoe. If the average 

stress drop on every event is 10 MPa, the rupture radius exponent is equal to ar=3.9.  If all the 

parameters of the rupture model is inserted in equation 3.5, the resulting α is 0.47 and the 

seismicity model corresponds to equation 3.8. 

 𝑛𝑛(𝑅𝑅, 𝐿𝐿)𝑑𝑑𝑑𝑑 =  0.47 𝐿𝐿2𝑅𝑅−3.9𝑑𝑑𝑑𝑑 (3.8) 
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Figure 3-3c represents the calibration of rupture model to the learning phase (blue line). If the 

injection continues to sweep a larger reservoir volume, the rupture size distribution continues 

to move upwards (Figure 3-3c). During the injection phase, the perturbed volume is a cube of 

side length L'=1310 m. If the new L' is replaced in the model and the resulting rupture radius 

distribution corresponds to Figure 3-3 (red line). Although the injection has stopped in this step, 

the fluid is still sweeping a larger reservoir volume, which is verified by the corresponding 

microseismicity patterns which are growing, and the corresponding perturbed volume of 

L'=2000 m (green line). 

For a seismic hazard assessment, the maximum expected magnitude can be estimated based on 

a conservative stress drop of 10 MPa. Figure 3-3d represents maximum Mw as a function of 

perturbed volume for three different rupture exponents of 3.7, 3.9 and 4.1. The sensitivity 

analysis shows that the maximum magnitude forecast based on the learning phase (green 

squares) is not significantly different from to magnitude corresponding to the exponent of 3.7 

(blue triangles) for a perturbed volume of approximately 1010 m3. We choose a random 

realization in which the large events do not extend outside of the seismic volume. However, 

this does not affect the maximum magnitude forecast.  

3.5 Discussions and conclusion 

Two-point correlation function of microearthquake hypocenters in the Basel EGS reservoir 

showed a complicated behavior, which is not completely linear in a logarithmic scale. 

Furthermore, the estimated rupture radius of every seismic event follows a power-law, whose 

slope is independent from the average stress drop on each event. When assuming a constant 

stress drop on all fracture planes, the resulting ruptures most probably exhibit the statistics of 

the fracture network. One explanation may be the power-law fracture nature of length 

distribution in geological formations. Although the scaling exponent does not vary with a 

change in the average stress drop, but the power-law range varies (particularly the minimum 

rupture radius). Higher stress drops correspond to smaller rupture sizes and vice versa. 

Furthermore, the spatial clustering and magnitude of events are correlated through a new scaling 

law, which relates rupture size exponent and correlation dimension through the exponent of a 

power-law including the average distance from a seismic event to the closest event of larger 

magnitude. These observation supported the hypothesis that scaling properties of fracture 

networks are similar to the scaling of microseismicity patterns.  

To interpret the clustering and size distribution of induced events, we generated synthetic 

fracture networks as a representative of rupture planes. We simulated the factors that complicate 
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the potential relations between the induced microseismicity and fracture network. Hypocentral 

locations are quantified by a principal component analysis of the scatter clouds. If the 

uncertainty of the earthquake hypocenter is included in a synthetic fractal DFN by imposing 

the statistical distribution of error estimates (normal distributed inside the uncertainty 

ellipsoids), the resulting correlation dimension increases and approaches to a randomly 

distributed pattern (D=3). However, the increase of randomness depends on the variance of 

hypocentral coordinates in each direction. In addition, a hydraulic stimulation in a fractured 

zone might change the 3D spatial distribution from the ideal pattern fracture network pattern. 

In this case, the correlation dimension of the microearthquakes is very close to 2 (similar to the 

relocated microseismicity patterns in Basel). Furthermore, adding a fractured zone into a 3D 

fractal pattern, results in decreasing the correlation dimensions. The third factor in our study 

was repeating events, which change the spatial distribution and create a sudden drop in the 

computed correlation dimension. Since the magnitude of repeating events are not necessarily 

the same, the effect of repeating events on the rupture radius distribution is not clear. To 

summarize, hypocentral uncertainty, presence of a fractured zone and repeating events 

complicate the interpretation of spatial patterns of induced seismicity and the correspondence 

to the underlying fracture network. 

Synthetic networks reveal the restrictions associated with extracting the fracture network 

geometry from microseismic data. Despite these complexities, the scaling properties of induced 

seismicity and synthetic fracture networks are very similar. A dual power-law model 

representing the rupture clustering and size distribution can be applied for modeling the induced 

microseismcity. This model adds physical representation to the rupture planes as pre-existing 

fractures, explains the effect of geological and geophysical factors on the scaling properties of 

induced patterns. Finally, it introduces a universal model that is capable to model clusters with 

fractal dimension between 2 and 3.  

The model parameters must be calibrated on the scaling properties of learning phase. We 

applied this model to forecast the induced seismicity in Basel geothermal reservoir to assess the 

seismic hazard of hydraulic stimulation. A reanalysis of Basel microseismicity patterns 

confirms the independence of clustering from the cumulative number of events. Thus, early 

stimulation events can exhibit the scaling characteristics of rupture patterns in perturbed 

reservoir volume. In this case, a learning phase of early first 100 events were applied to set up 

the model. The seismic hazard assessment is based on the highest reported stress drop in Basel 

(∆σ=10MPa). If the injection continues to sweep a larger volume, the associated rupture size 

distribution, the seismicity model could forecasts the highest rupture radius and the 
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corresponding seismic magnitude (Mw). This model could predict the statistics of seismicity 

during the co-injection phase as a function of the perturbed volume. The post-injection phase 

shows slightly different statistics, which may be due to the different stress conditions prevailing 

in the co-injection and post-injection phases (shut-in and bleed-off phase). Despite the 

differences, this model was able to reproduce a similar rupture distribution for the co and post-

injection phases.  Ultimately, the maximum expected magnitude showed a power-law relation 

with the perturbed reservoir volume in the Basel site. A sensitivity analysis on the rupture 

exponents revealed the maximum magnitude estimation is not significantly different from the 

upper bound, which confirms the applicability of this approach for the typical hydraulic 

stimulations. This difference increases if the perturbed volume is increasing.  However, the 

real-time update of rupture exponent during the hydraulic stimulations and expansion of the 

learning phase would improve the forecasts. 
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4 Fracture network characterization 
using stress-based tomography 

 
 
 

 

 

 
 

Reproduced from: Afshari Moein M.J., Somogyvari M., Valley B., Jalali M.R., Loew S., Bayer 

P., Fracture network characterization using stress-based tomography, Journal of geophysical 

research, Solid-earth, (Under Review). 
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Abstract 

Information on structural features of a fracture network at early stages of Enhanced Geothermal 

System (EGS) development is mostly restricted to borehole images and, if available, outcrop 

data. However, using this information to image discontinuities in deep reservoirs is difficult. 

Wellbore failure data provides only some information on components of the in-situ stress state 

and its heterogeneity. Our working hypothesis is that slip on natural fractures primarily controls 

these stress heterogeneities. Based on this, we introduce stress-based tomography in a Bayesian 

framework to characterize the fracture network and its heterogeneity in potential EGS 

reservoirs. In this procedure, first a random initial discrete fracture network (DFN) realization 

is generated based on prior information about the network. The observations needed to calibrate 

the DFN are based on local variations of the orientation and magnitude of at least one principal 

stress component along boreholes. A Markov Chain Monte Carlo (MCMC) sequence is 

employed to update the DFN iteratively by a fracture translation within the domain. The 

Markov sequence compares the simulated stress profile with the observed stress profiles in the 

borehole, evaluates each iteration with Metropolis-Hastings acceptance criteria and stores 

acceptable DFN realizations in an ensemble. Finally, this obtained ensemble is used to visualize 

the potential occurrence of fractures in a probability map, indicating possible fracture locations 

and lengths. We test this methodology to reconstruct simple synthetic and more complex 

outcrop-based fracture networks and successfully image the significant fractures in the domain. 

4.1 Introduction 

Although the amount of thermal energy in the earth’s crust is enormous and could substantially 

contribute to the world’s energy supply (Tester et al. 2006), the current geothermal energy 

production is limited to particular geological locations where water is circulated at sufficient 

flow rates through hot rock masses. In a standard geological setting, the minimum temperatures, 

(> 120°C) for producing electricity from geothermal fluids, are mostly found in crystalline 

basements between 4-6 km depth (Evans 2015), where the permeability is typically low 

(Achtziger‐Zupančič et al. 2017). These systems, usually known as Enhanced Geothermal 

Systems (EGS), require hydraulic stimulation (i.e. massive fluid injections) to increase the 

natural flow rates. Permeability creation is expected to improve the heat-exchange capacity and 

thus permit sustainable heat extraction. Flow in EGS systems develops primarily in the fracture 

network (Davatzes and Hickman 2010; Genter et al. 2010) and injecting high-pressure fluid 

reduces the effective stress on fracture planes, which results in rock mass deformation due to 

poroelastic interactions. Since these systems are for the most part critically stressed (i.e. close 
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to failure), fluid injections may induce slip on pre-existing discontinuity planes (Evans 2005). 

However, the mechanisms of permeability enhancement in hydraulic stimulation are not 

entirely understood (Amann et al. 2017; Evans et al. 2005a). Such failures are  mostly associated 

with seismic activity that represents a common problem in EGS developments (Davies et al. 

2013; Ellsworth 2013; Evans et al. 2012; Giardini 2009). For example, high level of seismic 

activity led to the suspension of Basel (2006) and Saint-Gallen (2013) geothermal projects in 

Switzerland (Edwards et al. 2015; Häring et al. 2008; Moeck et al. 2015).  Hydraulic stimulation 

scenarios should increase the permeability while keeping the seismicity on a safe and non-

damaging level (Evans 2015). Induced seismicity is a complex interaction between the natural 

fractures and in-situ stress change caused by fluid pressure (Evans et al. 2005d; Gaucher et al. 

2015).  

A geological model with a reliable representation of lithological domains and characterization 

of the fracture network is key to the design of reservoir creation strategies. Furthermore, it is 

fundamental to quantitatively analyze the possible relations among the spatial, temporal or 

magnitude distribution of induced seismicity and thermo-hydraulic-mechanical characteristics 

of a fractured rock mass, which is not yet fully understood (Amann et al. 2017). Such a 

geological model is also crucial for real-time monitoring and seismic risk assessments of a 

hydraulic stimulation. A geological model requires a complete reservoir characterization, with 

information on important fracture attributes like density, orientation, type, aperture and length 

distributions.  

The primary information on the natural fractures in deep reservoirs stems from borehole image 

logs (e.g. optical televiewer or ultrasonic logs). These images provide limited information on 

the location and orientation of fractures if they cut through the borehole. Statistical analysis of 

fractures on boreholes or analogs permits the definition of fracture sets (Ziegler et al. 2015) and 

also provides the spacing distribution within each fracture set (Moein et al. 2016). However, a 

deterministic reconstruction of three-dimensional (3-D) fracture networks from even a few 

boreholes is difficult. Borehole data captures local deterministic elements of a fracture network. 

However, other items in the surrounding network can only be approximated or described in a 

probabilistic way (e.g. Illman et al. 2009; Karra et al. 2018; Tezuka and Watanabe 2000). Thus, 

stochastic realizations often referred as discrete fracture networks (DFN), are generated based 

on a statistical characterization of fracture network attributes (e.g Berrone et al. 2017; Dreuzy 

et al. 2012).  
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One possible approach is to limit the 3-D spatial distribution of fractures using stereological 

relationships, as proposed by Darcel et al. (2003b). However, the application of these 

relationships to borehole data still includes a significant uncertainty, even if the fracture length 

distribution is known (Afshari Moein et al. 2018a). Induced microseismicity is another source 

of information that may reflect some geometrical aspects of fracture network (Afshari Moein 

et al. 2018b; Evans et al. 2005d; Moriya et al. 2003; Williams-Stroud et al. 2010). However, 

this information becomes available only after the execution of hydraulic stimulation and thus 

is not available in time for stimulation design purposes.  

A fundamental point for our work is that natural forces largely influence the in-situ stress state 

in geological settings (e.g. Barton and Zoback 1994; McNamara et al. 2015; Pierdominici et al. 

2011; Rajabi et al. 2017; Sahara et al. 2014; Valley 2007; Yale 2003). Stress fluctuations on 

boreholes often show strong heterogeneities (e.g Schoenball and Davatzes 2017; Shamir and 

Zoback 1992; Valley and Evans 2007b) that may also be characterized by scaling relationships 

(e.g. Blake and Davatzes 2011; Day-Lewis et al. 2010; Valley and Evans 2014a). These 

observations also suggest that the characteristics of the fracture network affect the stress 

variability within the rock mass. If only a single fracture is present in the rock mass, the size of 

stress perturbation depends primarily on the size of the fracture (Pollard and Segall 1987). 

Nevertheless, in the situation where multiple fractures interact, the relation between the in-situ 

stress fluctuations and critical characteristics of a fracture network is complex and not 

completely understood (Rutqvist 2015; Tsang et al. 2018; Valley et al. 2014).  

In the present study, we propose constraining the critical characteristics of the fracture network 

using in-situ stress heterogeneities inferred from borehole images. Valley et al. (2014) 

suggested an inversion approach to extract the geometrical characteristics of a fracture network 

by minimizing the difference between computed and observed horizontal stress orientation 

variability in a single borehole. This approach successfully reconstructed the geometry of a 

single fracture intersecting the borehole. On the other hand, the plan failed to determine the 

geometry of complex fracture networks, in which all of the fractures do not necessarily intersect 

the borehole. The inversion technique that we present, also referred to as stress-based 

tomography, reconstructs the fracture network geometry using the vertical stress profiles 

through a Bayesian approach. We apply a quasi-static geomechanical simulator to model the 

stress variability within a fracture network efficiently and to extract the associated borehole 

stress profiles. During the inversion process, we also use prior knowledge on mechanical 

properties of the rock mass and the statistical properties of fracture attributes (length, orientation 

and density). The inversion delivers a probability map that illuminates the probable fracture 
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locations and their lengths. We test this approach through the use of a simple synthetic DFN, 

and a more complex outcrop mapped DFN. Finally, we discuss the applications and limitations 

of the inversion technique for deep boreholes and present an outlook for future developments.  

4.2 In-situ stress characterization 

Information on the in-situ stress state is fundamental to any seismo-thermo-hydro-mechanical 

characterization of fractured reservoirs (Amann et al. 2017; Ghassemi 2012; Preisig et al. 2015; 

Zoback 2010). Complete characterization of a stress tensor requires six parameters at any point. 

The assumption that one principal stress, Sv, is vertical and equal to the weight of the 

overburden, reduces stress characterization to the determination of the magnitude and 

orientation of the maximum and minimum principal horizontal stresses, Shmax and Shmin, 

respectively (Amadei and Stephansson 1997), along with the determination of their trend with 

depth. Depending on the relative magnitudes of Shmin, Shmax and Sv, different faulting regimes 

may be present such as normal, strike-slip and thrust faulting (Anderson 1951).  

The vertical stress Sv is typically computed by integrating over the density log from the surface 

to a predetermined depth. The minimum horizontal stress, Shmin is estimated from pressure 

monitoring during hydraulic fracturing tests (if they propagate perpendicular to Shmin) 

performed in isolated intervals (Fairhurst 2003; Lin et al. 2008; Ljunggren et al. 2003; Schmitt 

et al. 2012). However, estimation of the maximum principal stress Shmax is somewhat 

challenging and associated with a significant amount of uncertainty. One approach is to assume 

that the rock is critically stressed and the rock strength behavior follows Mohr-Coulomb failure 

criteria with a friction coefficient between 0.6 − 1, and to compute the possible values for Shmax 

(Hickman and Davatzes 2010; Zoback et al. 2003). This approach estimates a wide range of 

possible values for Shmax. An alternative solution is to apply the width of borehole breakouts 

(Barton et al. 1988), which also relies on some assumptions and application of failure criteria. 

This approach results in Shmax estimates, which are primarily dependent on the used failure 

criterion (Valley and Evans 2015b). Typically, these estimates are applied to derive a first-order 

characterization by fitting a linear depth trend to the principal stress magnitudes (Cornet and 

Bérard 2003; Valley and Evans 2015b).  

Despite the magnitude estimations, the orientation of principal horizontal stresses may be 

estimated robustly from the borehole failures observed in image logs. In vertical boreholes, 

breakouts are aligned with the direction of minimum principal horizontal stress, Shmin, and 

drilling-induced tensile fractures are formed in the direction of maximum principal horizontal 

stress, Shmax (Zoback et al. 2003). Figure 4-1a represents an example of a 360° view of an image 
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log along the borehole GPK4 drilled at the Soultz-sous-Forêts EGS site in France, in which the 

natural fractures are regular sinusoids. Stress-induced features form as axial drilling-induced 

tension fractures (ADITFs) and en-echelon drilling-induced tension fractures (EDITFs). Figure 

4-1b and Figure 4-1c display the reflectivity image and borehole radius of a typical interval 

from the borehole drilled into Basel EGS, in which continuous borehole breakouts accompany 

a natural fracture. 

 

Figure 4-1. (a) A typical image log of GPK4 borehole drilled into Soultz-sous-Forêts EGS 
including the natural fractures and stress induced fractures (ADITFs and EDITFs). (b) and (c) 
depict an example of reflectivity and borehole radius from Basel-1 well, including borehole 
breakouts along with a natural fracture (Valley et al. 2014).  

Figure 4-2a. shows the estimated profiles of Shmin, Shmax and Sv based on hydraulic tests, borehole 

breakouts and density logs in the borehole drilled into Basel EGS. The detailed methodology 

to compute such profiles has been explained by Valley et al. (2014). Figure 4-2b displays the 

orientation of maximum horizontal principal stress orientation, Shmax, inferred from the azimuth 

of borehole failure over successive 0.4 m windows on Basel borehole images. The deviation 

from the average Shmax orientation along the entire well (N144°, Valley and Evans (2009)) is 

presented in Figure 4-2b. 
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Figure 4-2. (a) Estimates of principal stress magnitudes in Basel EGS (Valley and Evans 
2015b). (b) Orientation of minimum principal horizontal stress inferred from borehole 
breakouts in the borehole drilled into Basel EGS (Valley and Evans 2009).  

4.3 Methodology 

4.3.1 Forward simulation of stress variability in a fractured domain 

In this chapter, we present the assumptions, the numerical code and necessary information for 

simulating the geomechanical response and observed stress conditions in a fractured rock mass. 

For the sake of simplicity, we treat the problem as a 2-D plane strain case, i.e. we expect a 

vertical planar section for the model containing a vertical borehole and cut by fractures with an 

infinite out-of-plane dimension. The rock mass is assumed to be isotropic, homogenous, and 

fractures are elasto-plastic Mohr-Coulomb frictional interfaces that may slip in the applied far-

field stresses. 

The inversion process requires efficient and fast modeling of the stress variability induced by 

fractures within the rock mass. Conventional finite element codes are typically computationally 

demanding for modelling the mechanical response of a fractured rock mass under given stress 

conditions. Since the inversion process requires simulation of many realizations, we used a fast 

two-dimensional (2-D) simulator based on the displacement discontinuity method (DDM) 
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developed by Jalali (2013). The DDM is an indirect boundary element method, which was 

developed by Crouch et al. (1983) based on an analytical solution to solve the finite line segment 

in an infinite body presented by Salamon (1963). This method was initially developed to model 

the mechanical behavior of thin underground excavations and then expanded for geomechanical 

modeling of fracture networks. Later on, the geomechanical simulator was coupled with a finite 

difference hydraulic simulator for hydromechanical modeling of fluid injection into fractured 

reservoirs (Jalali 2013; Jalali and Valley 2015).  

In the model, a fracture is discretized into multiple fractures segments, and any segment has 

two degrees of freedom: 1) normal, and 2) shear displacement discontinuities. Induced 

displacement and stress at any point in the medium (including the fracture segments) can be 

estimated as a linear combination of all fracture segments’ discontinuities. One must know the 

values of the discontinuities before the estimation of displacement and stress in the medium. 

The stress and displacement at each fracture segment (combination of in-situ and induced) are 

written as a linear combination of all the fracture segment discontinuities. Fracture mechanics 

laws (here: Barton-Bandis model) are used then to derive the fracture segments’ stress and 

displacement as a function of displacement discontinuities. The peak shear stress is estimated 

using a Mohr-Coulomb (MC) criterion and pre-shear elastic behavior. Beyond the peak shear 

stress, the fracture shear stiffness is taken as zero (sliding-fracture). Dilation angle is considered 

as a constant that is dependent upon effective normal stress level during sliding and otherwise 

is zero. Further details about the implementation of the DDM approach in the mechanical 

modeling of fractured rocks is provided by Jalali (2013). 

Here, we apply far-field stresses on the fractured domains and allow the fractures to slip to 

redistribute the stress within the entire domain. The simulator also returns the normal and shear 

displacements on each fracture planes. Then, we extract the stress fluctuations on a borehole in 

the center of the domain, which will be applied for DFN inversion.  

Constraining far-field stresses from the current stress state inferred from borehole data is not 

straightforward. We assume the far-field stress can be approximated by averaging the stress 

variation observed along the borehole. The current stress field can result from the superposition 

of successive tectonic phases. However, to keep the problem tractable, we assume that the 

current stress field has developed under a single loading event. In this study, for illustrating the 

inversion procedure, we assume far-field stress of 20 MPa horizontal, 38 MPa vertical stress on 

the 2-D DFNs with zero shear stress. As a relatively short vertical extent is considered in the 

model, we neglect the gravity-driven stress magnitude increasing with depth. 
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The simulator requires the definition of rock and fracture properties based on available 

information from geophysical logging and laboratory tests on cores. The required information 

on these properties is assumed constant in the inversion process (listed in Table 1).  The fracture 

stiffness is difficult to constrain (both shear and normal). However, its impact is limited if 

plastic slip occurs.  Thus, stiffness is considered constant during the inversion.  

To ensure the slip-on fracture planes in every case, a low friction angle of  ϕ = 10° is selected. 

The geomechanical simulator delivers the stress redistribution within the network at every point 

(horizontal, vertical and shear stresses). Here, we define a parameter β, which indicates the 

orientation of maximum principal stresses from the vertical borehole (positive clockwise). This 

parameter is computed using the following equation:  

 tan(2𝛽𝛽) =  2𝜏𝜏
𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜎𝜎𝑥𝑥𝑥𝑥

 (4.1) 

where 𝜏𝜏 represents the shear stress, 𝜎𝜎𝑦𝑦𝑦𝑦 is vertical stress and 𝜎𝜎𝑥𝑥𝑥𝑥 denotes the horizontal stress 

at any point along the borehole. 

Table 4-1. List of input parameters for geomechanical modeling of fractured rocks using DDM 

simulator 

Far-field principal 

stresses  

minimum principal stress horizontal 

maximum principal stress vertical 

σ3= -20 MPa 

σ1= -38 MPa 

Rock properties Young’s Modulus 

Poisson’s ratio 

𝐸𝐸 = 60 GPa  

𝜈𝜈 = 0.25 MPa  

Fracture properties normal stiffness 

shear stiffness 

cohesion 

friction angle 

𝐾𝐾𝑛𝑛 = 1011 Pa/m  

𝐾𝐾𝑠𝑠 = 1010 Pa/m  

𝑐𝑐 = 0 MPa  

𝜙𝜙 = 10°  

4.3.2 Principles of Bayesian inversion 

A Bayesian inversion framework is used to fit the DFN models to the observed stress 

measurements. In general, Bayesian inference aims to provide a probabilistic model to a set of 

unknown parameters and deliver a probabilistic characterization of unknown model parameters. 

The posterior probability distribution is computed based on an available prior collection of 

information and the likelihood of observations (Gelman et al. 2014). Bayesian inversion has 

been applied to related geological problems such as for reconstruction of the stress field 

(Lecampion and Lei 2010) and characterization of flow and transport in heterogeneous media  
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(Lee and Kitanidis 2013; Mondal et al. 2010). The Markov Chain Monte Carlo (MCMC) 

method is one of the most common techniques of Bayesian inference in geosciences. MCMC 

has been applied to solve inverse problems using various sources of information such as seismic 

tomography (Bodin et al. 2012), tracer tomography (Jiménez et al. 2016) and fracture network 

intersections with boreholes (Mardia et al. 2007). The transdimensional reversible jump 

Markov Chain Monte Carlo (rjMCMC) is a unique variant of MCMC, in which the number of 

parameters can vary among subsequent iterations during the inversion process. Somogyvári et 

al. (2017) introduced this inversion approach for calibrating orientation, lengths and numbers 

of fractures in DFNs using cross-well tracer tomography experiments. That work is also the 

basis for the presented stress-based inversion procedure, but we keep the number of fractures 

during the inversion fixed. 

4.3.3 Inversion methodology 

The stress-based tomography requires at least two components of in-situ stress (one magnitude 

and one orientation). Preliminary analysis shows that one single stress orientation is not 

sufficient to reconstruct simple DFNs with a very small number of fractures (presented in 

supporting information, Appendix C). Two stress components, for example, the orientation of 

minimum principal stress (observation 1) and one magnitude amongst Shmin, Shmax and Sv 

(observation 2) is sufficient for solving the inverse problem. However, estimates of all three 

quantities are still required for defining the far-field stress in this analysis (as discussed in 

Chapter 3.1). 

 Prior information on fracture network 

The inversion procedure requires prior knowledge of the statistical distribution of fracture 

attributes within the study domain. The fundamental understanding of the fracture length 

distribution is a pre-requisite to populate the initial DFN in the inversion process (Figure 4-3). 

Fracture length (l) distribution in geological formations has been reported to follow power-law 

distributions on different scales like 𝑛𝑛(𝑙𝑙) 𝑑𝑑𝑑𝑑 = 𝑐𝑐  𝑙𝑙−𝑎𝑎 𝑑𝑑𝑑𝑑, where 𝑎𝑎 is the length exponent and 𝑐𝑐 is 

a constant of normalization. The power-law exponent of the fracture length distribution in 2-D 

outcrops is typically between 1.5 and 3.5 (Bonnet et al. 2001; Torabi and Berg 2011). Also, the 

fracture positions on the specified borehole may be inferred from image logs. The fractures 

cutting the borehole compute the minimum fracture spacing in each set. However, the location 

of fractures along the borehole is not fixed in this study. Moreover, the orientation of fractures 

in deep boreholes mostly belong to two dominant fracture sets (Valley and Genter 2007; Ziegler 
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et al. 2015), which may be considered as prior information and invariant in the inversion 

process..  

 Inversion procedure 

In Bayesian inference, data is handled as random variables with given probability density 

functions (PDF). Hence, the inverse problem can be expressed using Bayes’ theorem as  

 𝑃𝑃 (𝜃𝜃|𝜉𝜉) =
𝐿𝐿(𝜉𝜉|𝜃𝜃)𝑃𝑃 (𝜃𝜃)

𝑃𝑃 (𝜉𝜉)
 (4.2) 

where P(θ|ξ) denotes the posterior probability of the inverse problem (the target distribution, 

i.e. the probability of a model parameter θ given the observation data of  ξ).  L(ξ|θ) is the 

likelihood function (the probability of an observation vector ξ given the model parameter vector 

θ), P(ξ) is the observation probability, and P(θ) is the prior information.  

If we consider that stress observations (orientation and magnitude at a given borehole) follow 

a normal distribution, the likelihood function can be written as  

 𝐿𝐿(𝜉𝜉|𝜃𝜃) = 1
√4𝜋𝜋𝜎𝜎2

𝑒𝑒𝑒𝑒𝑒𝑒
�

− �𝜉𝜉 − 𝑓𝑓(𝜃𝜃)�
2

4𝜎𝜎2 �
 (4.3) 

where σ2 is the variance of the normal distribution, and ξ(θ) is the forward model for the 

simulation of the stresses. This function is equivalent to computing a root mean squared (RMS) 

misfit (Aster et al. 2011). In this work, we use multiple types of observations together, and thus 

the used likelihood function is the product of numerous normal distributions. The sensitivity of 

the inversion towards the different observations can be tuned by the variance values.  

In equation 4.2, P(θ) represents the prior, that is, the information known about the model 

parameters before the inversion. The prior information here is mainly used to generate the initial 

solution of the inversion. P(ξ) is the probability of observations, which could be written as the 

following marginal distribution over the complete model space: 

 𝑃𝑃 (𝜉𝜉) = ∫ 𝐿𝐿(𝜉𝜉|𝜃𝜃)𝑃𝑃 (𝜃𝜃)𝑑𝑑𝑑𝑑 (4.4) 

This marginal distribution is not a function of the models, and thus it can be considered constant 

throughout the inversion. The posterior probability function cannot be expressed in an 

analytical form, but it can be calculated for specific models. MCMC uses this property, as it 

calculates the target distribution as particular models. The main idea behind MCMC is to create 
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a Markov chain with a stationary distribution that matches the target distribution, the posterior. 

This is obtained by specifying a transition kernel, which is a set of rules to create the next chain 

element from the previous one (θi → θ′). A random update to propose a new model parameter 

vector (θ′) with the probability q(θi → θ′) is chosen here. We use the Metropolis-Hastings 

algorithm, where this update step has to be reversible, and thus the update q(θ′ → θi) must be 

realized by a probability value, too. Reversibility ensures the stationarity of the Markov chain. 

The workflow and implementation of the algorithm are presented in Figure 4-3.  

The initial fracture network is generated randomly using a known power-law length distribution 

with a given minimum fracture spacing (Somogyvári et al. 2017). This initial solution is then 

entered in the iterative MCMC algorithm. During each subsequent iteration, one fracture is 

randomly selected, then a new fracture center is drawn from a uniform distribution over the 

area of investigation. Subsequently, the forward model is simulated with the updated DFN 

realization. The acceptance probability of a proposed model realization is calculated as 

 𝛼𝛼(𝜃𝜃′, 𝜃𝜃𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐿𝐿(𝜉𝜉|𝜃𝜃′)
𝐿𝐿(𝜉𝜉|𝜃𝜃𝑖𝑖)

𝑝𝑝(𝜃𝜃′)
𝑝𝑝(𝜃𝜃𝑖𝑖)

𝑞𝑞(𝜃𝜃′ → 𝜃𝜃𝑖𝑖)
𝑞𝑞(𝜃𝜃𝑖𝑖 → 𝜃𝜃′)

, 1� (4.5) 

This expression is known as the Metropolis-Hastings acceptance criterion (Geyer 2011). It 

depends on the ratio of the likelihoods and the priors, as well as the ratio of the probability of 

the reverse and the forward proposal step. The calculation of this ratio is more straightforward 

than calculating the individual posteriors as there is no need to estimate the marginal 

distribution of the observations anymore. Because the fracture movement update uses the same 

uniform distribution, the probabilities q(θ′ → θi) and q(θi → θ′) are the same, and the 

acceptance criterion simplifies to 

 𝛼𝛼(𝜃𝜃′, 𝜃𝜃𝑖𝑖) = 𝑚𝑚𝑖𝑖𝑛𝑛 �
𝐿𝐿(𝜉𝜉|𝜃𝜃′)
𝐿𝐿(𝜉𝜉|𝜃𝜃𝑖𝑖)

𝑝𝑝(𝜃𝜃′)
𝑝𝑝(𝜃𝜃𝑖𝑖)

, 1� (4.6) 

This version of MCMC is known as the random-walk Metropolis-Hastings algorithm (Brooks 

et al. 2011). After the acceptance criterion is calculated, a random number from the interval 

[0,1] is drawn and compared to α. If the drawn number is smaller, the proposed realization gets 

accepted. This is equivalent to the update being accepted with a probability α. The accepted 

realization gets stored (otherwise the last accepted model is kept), and the next iteration starts 

with its random update. The stored set of model realizations is called the ensemble, which is 

the result of the MCMC simulation. The first half of the ensemble is discarded to remove the 
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bias of the initial model choice, t. The ensemble thus represents the investigated posterior 

probability distribution, and not only one calibrated model realization.  

4.4 Test cases 

We test the methodology by reconstructing two synthetic fracture networks with known 

geometry (i.e. given position, orientation and length distribution of the fractures). The first case 

is a simple synthetic fracture network built up by a few fractures, and the second case presents 

a more complex and realistic fracture network mapped from outcrop field data. Table 2 

represents the geometrical characteristics of both DFNs of the test cases. Both are described by 

two fracture sets. 

 

 

Figure 4-3. Overview of the MCMC algorithm: θ denotes the model vector, θi is the last 
accepted model, θ' is the proposed model, 𝜉𝜉 is the observation vector (the stress measurements), 
f(θ) is the forward model, α is the Metropolis-Hastings acceptance criteria, and L is the 
likelihood function. The initially generated DFN goes into the loop, and the DFN is updated by 
the movement of a randomly selected fracture. Each realization is evaluated using Metropolis-
Hastings criteria (SIM is the simulated stress perturbation; EXP is the observed or expected 
stress perturbation), and any accepted realization is stored in the ensemble. The ensemble is 
finally converted to a probability map using the methodology described in Chapter 5.1. 
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Table 4-2. Geometrical characteristics of test cases   

Cases 
Simple synthetic 

network 

Outcrop-based 

network 

Fracture set Set 1 Set 2 Set 1 Set 2 

Fracture orientation from vertical 

borehole (positive clockwise) 
45° -45° 30° -65° 

Minimum spacing 10 m 10 m 2.55 m 2.5 m 

Fracture length exponent (𝑎𝑎) 1.5 2.6 

Minimum fracture length 40 m 8 m 

Total fracture length 250 m 220 m 

Domain size 100 x 100 m2 50 x 40 m2 

 

4.4.1 Simple synthetic network 

This case contains four large fractures from two orthogonal orientations within a domain of 

100×100 m2. The minimum spacing between fractures of the same sets is 10 m, the minimum 

length of the fractures is 40 m, and the total length within the domain is 250 m. Before starting 

the inversion procedure, we need to simulate the stress variability within the domain and extract 

the stress profiles along the pre-defined borehole. Here, the borehole is placed in the center of 

the domain. 

Figure 4-4a and Figure 4-4b present the 𝜎𝜎1 and 𝛽𝛽 variations within the synthetic network domain 

[-50, 50] due to fracture slip loaded by the far-field stresses defined above. The simulation 

parameters are listed in Table 1. The borehole is situated in the center of the domain (𝑋𝑋 = 0) 

parallel to the Y-axis, and here the simulated stress profiles are extracted. These profiles, shown 

in Figure 4-4c and Figure 4-4d, are computed at 50 cm resolution along the borehole (i.e. based 

on 201 data points in the borehole). To summarize, we aim at reconstructing the DFN geometry 

in Figure 4-4a by using these two stress profiles and prior information listed in Tables 1 and 2. 

4.4.2 Outcrop-based network 

This case represents a more complex fracture network, which is based on outcrop field data. 

This fracture network is mapped from Tschingelmad crystalline outcrop in upper Aar valley in 

Grimsel region of Central Alps, Switzerland (Ferrari et al. 2017; Ziegler et al. 2014; Ziegler et 

al. 2013). For a detailed description of the geological settings in the given area, we refer to the 

previous references. Figure 4-5a represents a schematic view of the geological model of the 

mapped area, and Figure 4-5b shows the mapped fracture network. We selected an area of 50 ×
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40 m2 for this analysis and mapped the fractures with a minimum length of 8 m. The fractures 

in this area belong to two primary fracture sets. Their orientations are approximately 30° and -

65° from the vertical axis (positive clockwise). 

 

Figure 4-4. Forward simulation of stress variability within the simple synthetic network given 
the geometrical characteristics listed in Table 2, and using input parameters for the 
geomechanical model from Table 1. Figure (a) depicts the σ1-field and (b) the β-field. Stress 
magnitude and orientation profiles representing the stress fluctuations along the borehole 
(X = 0) are shown in (c) and (d). 
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Figure 4-5. (a) Surface geological model of the Tschingelmad outcrop in Alps. (b) Fracture 
network mapped from the geological model. The fractures larger than the pre-defined cut-off 
(8 m) are mapped.  (c) Histogram of fracture length distribution.  

The network of Figure 4-5b follows a power-law length distribution with an exponent of 2.6 

and a cut-off at a length of about 8 m. Since the large fractures are of highest importance to the 

hydro-mechanical response of fractured rocks  

(Baghbanan and Jing 2007; Darcel et al. 2003c; de Dreuzy et al. 2001), we ignore the fractures 

smaller than the cut-off length. A power-law length exponent is derived by fitting a power-law 

distribution to the histogram of fractures within the domain as illustrated in Figure 4-5c. The 

corresponding probability density function of the mapped network thus reads as 𝑝𝑝(𝑙𝑙)𝑑𝑑𝑑𝑑 =

0.16 𝑙𝑙−2.6𝑑𝑑𝑑𝑑. A power-law is fit to the whole fracture network (without any cut-off) so that 

robust estimates of the constants in this equation are created. This probability density function 

is required to define the initial DFN realization.  

Similar to the synthetic case, we first simulate the stress variability induced by fractures, when 

far-field stresses are applied. The simulation parameters are the same as for the simple synthetic 

case. Then, we place a borehole in the center of the domain at X=0 (parallel to Y-axis) and 

extract the stress heterogeneities along it. Figure 4-6a and Figure 4-6b represent the resulting 

magnitude 𝜎𝜎1 and orientation 𝛽𝛽 fields within the entire domain, respectively. Figure 4-6c and 
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Figure 4-6d show the 𝜎𝜎1and 𝛽𝛽 profiles computed at every 20 cm along the borehole (to have 

201 data points in the borehole similar to the hypothetic case). The inversion procedure aims at 

reconstructing the DFN geometry in Figure 4-5b using these stress profiles and prior knowledge 

on the rock mass and fracture network presented in Tables 1 and 2.  

 

Figure 4-6. Forward simulation of stress variability within the outcrop-based fracture network 
with the characteristics listed in Table 2 and input parameters of the geomechanical model from 
Table 1, a) σ1 field and b) β field. Profiles representing the variability are depicted in c) σ1, and 
d) β at X = 0. 

4.5 Results 

An essential question of MCMC methods is when to stop the sequential simulations or, in other 

words, when the sampling can be considered complete? Here, we followed the 

recommendations by Gelman et al. (2004) to check the convergence of individual parameters 

until they converge to a joint distribution. The inversion process provided a large number (more 

than 100 for the simple synthetic case and more than 1,000 for the outcrop-based case) of 

accepted DFN realizations. As a standard practice, the first half of the chain was considered as 

the burn-in period and discarded (Geyer 2011) to eliminate the effects of the initial model, and 

not considered for visualization of the ensemble.  

Straightforward ways of visualizing features of a final ensemble are plotting exemplary DFN 

realizations or taking the mean of all geometric parameters, but these would significantly reduce 
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the real information content of the ensemble. The resulting ensemble is more than just a 

collection of plausible solutions, but it is the representation of the posterior probability function. 

Another approach is to extract higher-order statistical properties of the individual DFN 

parameters, which however may obscure spatial correlation of results. Instead, a fracture 

probability map as presented by Somogyvári et al. (2017) was derived for each case. Such a 

map is created by rasterizing the individual DFN realizations and then stacking these together. 

The local probabilities are calculated pixel by pixel, based on the frequency of fracture 

occurrence. The full map depicts the probabilistic location and length of fractures within the 

study domain, it can easily be analyzed visually and may be used for further analyses. 

4.5.1 Simple synthetic case 

Here, we first explain the results for the synthetic case. First of all, a random DFN realization 

(known as initial DFN) with the geometrical properties listed in Table 1 was generated. The 

initial DFN for the inversion process of the simple synthetic case is presented in the supporting 

information (Appendix C). The MCMC algorithm applied the stress profiles in Figure 4-3c and 

Figure 4-3d as the observation profiles to reconstruct the initial fracture network geometry of 

Figure 4-4a. The Markov sequence kept moving the fractures inside the domain while 

respecting the minimum spacing of fractures in each set. It compared each realization-specific 

stress profile at X = 0 with the “true” one of Figure 4-4 to assess the misfit. When the updated 

DFN met the Metropolis-Hastings acceptance criteria, the DFN was stored in the ensemble. We 

let the MCMC algorithm run 24 hours on an office PC (single thread, Intel® Core i7TM-6700k 

4 x 4.0 GHz).  

Since the DFN is not complex, the MCMC algorithm converged to the initial DFN relatively 

fast. Figure 4-7a shows that there is a rapid misfit decrease after the first 50 accepted realizations 

and the computed misfit remains relatively constant after that. However, the ensemble size may 

be significant and include a large number of parameters. For the presentation of the posterior 

distribution, a subset of the converged range is selected as the final ensemble, and as outlined 

above the first half of realizations discarded.  

Figure 4-7b and Figure 4-7c compare the hypothetic case with the probability map derived from 

the visualization of the obtained ensemble. The light colors in Figure 4-7c denote the most 

probable locations of the fractures, while the black color indicates that no fracture is present. 

Figure 4-7c reveals that the inversion recognizes well the location and length of the fractures 

within the network, although they are not intersecting the borehole in the middle. However, the 

fractures that do not cross the borehole are recognized with a lower probability (larger 
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uncertainty). Since the longer fractures have the highest influence on the stress heterogeneity 

(Valley et al. 2014), they are most accurately located within the domain. Now, we choose a 

random DFN from the selected range and compute the stress profiles (𝜎𝜎1 and 𝛽𝛽) at the borehole 

along 𝑋𝑋 = 0. Figure 4-8a and Figure 4-8b compare the stress profiles of this DFN with that of 

the original DFN. The close match between the two stress profiles is similar also for the other 

realizations of the ensemble, and it demonstrates successful inversion. 

 

Figure 4-7. (a) Misfit evolution of all accepted realizations during the MCMC sampling. The 
converged range is chosen to be between the 175th and 350th iteration. (b) The initial simple 
synthetic network; (c) The fracture probability map of the 50 best fit realizations in the 
ensemble.   

b) c) 



105 

 

 

Figure 4-8. (a) Profiles of stress magnitude σ1 and (b) orientation β at the borehole for the simple 
synthetic case (Figure 4-4c, 4-4d) compared to profiles at the same location of a randomly 
chosen DFN from the selected range in Figure 4-7b.  

4.5.2 Out-crop based case 

The inversion of the outcrop-based network (Figure 4-5b) was initiated by sampling from a 

power-law length distribution in a domain of 50×40 m2. We applied a probability density 

function of 𝑝𝑝(𝑙𝑙) 𝑑𝑑𝑑𝑑 = 0.16 𝑙𝑙−2.6 𝑑𝑑𝑑𝑑 with a minimum length of 8 m. The initial DFN was 

generated using the key geometrical characteristics in Table 2. The locations of fractures were 

assumed to be distributed uniformly within the domain respecting the minimum spacing of each 

fracture set. The fractures belong to two main families with angles of -65° and 30° from vertical 

(Table 2). Equivalent to the procedure for the synthetic case, the MCMC inversion procedure 

continuously moved the fractures in DFNs for 24 hours. The same inversion methodology was 

employed to reconstruct the DFN with the two stress profiles (i.e. observations) of Figure 4-6c 

and Figure 4-6d. The initial DFN for the inversion process of the simple synthetic case is 

presented in the supporting information (Appendix C). 

Figure 4-9a depicts the evolution of misfit during the inversion process. The full MCMC 

sampling procedure accepted approximately 10,000 realizations. In comparison to the more 

straightforward synthetic case, the MCMC algorithm converged slower and required at least 

1,000 iterations to achieve a relatively constant misfit. If half of the initial iterations are 

discarded, the converged range is between the 5,000th - 10,000th iterations. As the target DFN 

and the associated inversion problem became more complicated, the mean misfit of the 

converged range (684) became more than double that of the simple hypothetical case (311). 

Since the converged range consisted of many similar realizations and to accelerate 

visualization, the final ensemble was thinned.  
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Figure 4-9. (a) MCMC convergence trend of accepted realizations for the outcrop-based 
fracture network; (b) original “true” network compared to (c) the corresponding fracture 
probability map obtained by inversion. 

Figure 4-9b and Figure 4-9c compare the original DFN with the probability map. The 

probability map shows that the inversion again is sensitive to the most extended fractures. This 

is expected, because long fractures have a substantial impact on stress heterogeneities, even if 

they do not cut the borehole. Even though the probability map shows that also some smaller 

features are adequately imaged, some fractures are not well reconstructed or appear blurred in 

the map.  

Figure 4-10a and Figure 4-10b compare the initial stress profiles of Figure 4-6c and Figure 4-6d 

with the profiles of an arbitrary realization of the final ensemble. There is a substantial similarity 

between the original and reproduced stress profile for both 𝜎𝜎1 and 𝛽𝛽. However, because of the 

higher complexity, the match is not as excellent as for the synthetic case. The most considerable 

discrepancy is associated with the stress heterogeneity induced by a fracture tip at Y = -1.8 m 

(black circle on the 𝜎𝜎1 profile, Figure 4-9a). This is mainly due to the fracture tip, which is very 

close to the borehole and which affects more the profile of 𝜎𝜎1 than of 𝛽𝛽. Although the location 

of this fracture has been identified in the probability map, its reconstructed length is not 

sufficient to generate a peak in the stress profile.   

b) c) 
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To reproduce stress variabilities comparable to the stress profiles in deep boreholes, we 

assumed a relatively low friction angle in both synthetic and outcrop-based fracture networks. 

Since the friction angle of crystalline rocks lies typically between 30-45°, we tested the 

inversion approach with a friction angle of 35° with the same inversion parameters (presented 

in Appendix C). The inversion results revealed that although the higher friction angles may 

result in less variability on the stress profiles, the corresponding stress variability still could 

reconstruct the significant features of the fracture network. 

 

Figure 4-10. Stress profiles of initial outcrop-based model compared to those a randomly 
sampled DFN of the final ensemble: (a) variation of 𝛽𝛽, (b) a) variation of σ1. The black circle 
indicate the part of the stress profile highly affected by a fracture tip and which is not well 
reproduced.  

4.6 Discussion and conclusions 

Fracture network characterization has been a challenge in many different engineering 

applications such as EGS developments. A robust recipe for extracting the fracture network 

geometry from available data including geological, geophysical and hydrogeological 

investigations is still lacking. However, stochastically generated fracture networks may be 

constrained by measured information. Borehole image logs provide valuable information on 

the fluctuations of in-situ stress components (e.g. maximum principal stress and its orientation) 

along the wellbore, if borehole breakouts or drilling induced tensile fractures are present. Since 

in-situ stress fluctuations are strongly influenced by the slip on natural fractures in the past, 

they also carry information on geometrical aspects of fracture networks. This is exploited in the 

presented example application based on a new Bayesian approach, also referred to as stress-

based tomography, which flexibly adjusts fracture networks to match single borehole stress 

profiles. 
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Comparing for the two examples the initial DFNs and the obtained probability maps reveals 

that significant features are accurately determined. Even if some fractures do not intersect the 

borehole, their impact may be significant on the observed stress heterogeneities. This effect is 

sufficient for imaging such relatively long “hidden” fractures in the vicinity of a borehole. This 

may not be enough for reconstructing smaller fractures if they are far from the borehole. 

Furthermore, in some instances, the probability map may not well resolve regions of higher 

local fracture intensity although roughly indicating the presence of such areas. Thus, this 

inversion methodology is more sensitive to longer fractures than to smaller ones. Note that, 

since larger fractures often represent the major pathways for fluid flow and yield higher seismic 

magnitudes, they are also more critical for case-specific performance, hazard and risk 

assessments.  

One limitation of this approach originates from the difficulty to constrain the fracture strength 

properties such as normal and shear stiffness. Therefore, it is suggested to test different strength 

parameters before the inversion process and choose a reliable estimate based on the observation 

profiles. Analyzing the effect of these parameters on the inversion will be subject to future 

development of this approach.  

One possible additional development of the presented stress-based tomography is to include 

further complementary field information such as tomographic information from geophysical 

measurements, tracer or hydraulic tomography (Brauchler et al. 2013; Dorn et al. 2011; Zha et 

al. 2015). Joint inversion of different data in the MCMC procedure could impose extra 

constraints on the generation of the probability maps. This could yield improved capabilities 

for reconstruction of more complex DFNs and of three-dimensional (3-D) features. In the 

presented approach, the prior knowledge of 2-D fracture length distribution is an input for the 

inversion process. However, this information may not be available. Since fracture length 

exponents in geological media are typically between 1.5 and 3.5, one option is to initialize (i.e. 

generate initial DFNs of) the MCMC algorithm with some length of exponents within this 

range. The length exponent associated with the lowest misfit would be most suitable for creating 

the probability map. Also, in the present implementation, the fracture intensity (i.e. fracture 

numbers) is assumed to be known a priori (by defining a constant c for the length distribution 

and a minimum length). Thus one further development of the presented approach is to 

implement a transdimensional inversion (Somogyvári et al. (2017)), in which the number of 

fractures is treated as a decision variable. 
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Abstract 

We analyzed the scaling characteristics of stress perturbations inferred from the image log runs 

in the borehole drilled into Basel geothermal reservoir, using Power spectral Density (PSD) 

methods and observed a linear PSD curve for wavelengths more than two orders of magnitude. 

Adopting the hypothesis that the stress perturbations are largely controlled by the slip on facture 

surfaces, we studied the effect of fracture network characteristics on the scaling of stress 

heterogeneities in deep boreholes. Synthetic fracture networks following power-law length 

distributions were embedded in a geomechanical simulator and the stress heterogeneities were 

extracted on a vertical borehole in the study domain.  Fracture network characteristics were 

calibrated to deliver fractal stress heterogeneities that are comparable to observations in deep 

boreholes such as Basel-1. Detailed analyses showed that if the fracture intensity is constant, 

the fractal dimension of stress profiles belong to a relatively large range between 1 and 2 with 

no significant correlation with fracture length exponent.  

5.1 Introduction 

An increased interest to exploit the geothermal resources has raised the importance of 

developing Enhance Geothermal Systems (EGS) as a CO2 emission-free source of energy. 

Circulation of a fluid (e.g. water) between the injection and production wells permit the heat 

exchange between the high temperature host rock and the fluid. Desirable temperatures of EGS 

developments (ideally higher than 150°) are typically found between 2 to 5 km depth below the 

ground level, where the permeability of the host rock is typically low. The major fraction of the 

permeability is provided by pre-existing natural fractures and faults (Davatzes and Hickman 

2010; Dezayes et al. 2010; Genter et al. 2010), which is mostly not sufficient for commercial 

EGS developments (Saar 2011). Hydraulic stimulation (massive fluid injections) is a common 

technique to enhance or create the permeability within the target reservoir. This operation 

increases the permeability by shear dilation of rough surfaces or generating new fractures as 

probable fluid paths. However, this operation is not risk-free as it can in some situation generate 

felt earthquakes. This major challenge has been the obstacle in the development of EGS projects 

such as Basel and Saint-Gallen sites in Switzerland. Hence, the main objective of research in 

EGS developments is to optimize the stimulation parameters to enhance the permeability 

without inducing excessive seismic events.  

In order to study the sensitivity of the different operational parameters on hydraulic stimulation, 

thermo-hydro-mechanical (THM) models are applied. The numerical models require a 

geological model (as an input), which include a realistic representation of geological features 
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such as fractures and faults. Although some deterministic elements of the fracture network may 

be defined by borehole data, there is not sufficient information on the entire 3D structures in 

the reservoir. Thus, stochastic representation of fracture networks known as Discrete Fracture 

Networks (DFN) are generated based on the statistical distribution of different fracture 

attributes. Power-law scaling has been widely applied to characterize different fracture 

properties such as spacing, clustering, length distribution, roughness (e.g. Moein et al. 2018; 

Barton and Zoback 1992; Bonnet et al. 2001; Bour et al. 2002; Power and Tullis 1991). Power-

law scaling allows definition of rock mass properties in different scales.  

In-situ stress heterogeneities observed from analyses of  borehole failure are often interpreted 

as due to slip on fracture and faults (e.g. Blake and Davatzes 2011; Davatzes and Hickman 

2010; Evans et al. 2005c; Hickman and Zoback 2004; McNamara et al. 2015; Shamir and 

Zoback 1992; Valley and Evans 2007a; Yale 2003). Adopting this hypothesis, Moein et al. (in 

prep.) introduced a probabilistic stress-based tomography to reconstruct the fracture network 

using the stress profiles along deep boreholes. However, these heterogeneities may result from 

other sources such as lithology changes (Wileveau et al. 2007), stiffness variation associated 

with fault damage zone (Lockner et al. 2000) and magmatic intrusions (Vigneresse et al. 1999). 

Stress heterogeneity largely impacts the earthquake dynamics (e.g. Hsu et al. 2010) and 

aftershock behavior (e.g. Hardebeck 2010). Stress variability along deep boreholes show self-

affine scaling, which also may be characterized by power-laws (Blake and Davatzes 2012; Day-

Lewis et al. 2010; Valley and Evans 2014b). Currently, the direct relations amongst power-law 

scaling of stress heterogeneities at borehole scale, fracture networks and potential links to the 

induced seismicity are not understood.  Clarification of these potential relations may apply to 

constrain the DFN realizations with the information on stress heterogeneities along the borehole 

and possibly forecast the seismogenic parameters of the reservoir.  

In the current research, we aim to gain a fundamental understanding of the stress heterogeneities 

within a complex DFN and relate the scaling of stress and earthquakes to key characteristics of 

the network. Adopting the hypothesis that simple slip on fractures controls the stress variability, 

we utilize a geomechanical code to model the stress heterogeneity in synthetic networks. We 

evaluate the self-affinity of the resulting stress and evaluate the characteristic fractal parameters 

of generated stress profile by computing power spectrum. We perform a sensitivity analyses on 

the scaling of stress with different DFN characteristics such as power-law length exponent, 

fracture intensity (i.e. the length of fractures per unit sampling area) and minimum fracture 

length. Finally, we propose a simple methodology to estimate the magnitude of the associated 
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earthquakes and study the effects of fracture network characteristics and scaling of stress 

heterogeneities on the estimates of b-value.  

5.2 Power-law scaling 

Power-law scaling is commonly observed in natural systems, including in the distribution of 

key characteristics of rock masses (e.g. Afshari Moein et al. 2018; Mittag 2003; Sahimi et al. 

1993; Scholz 1982). The reason of such a power-law nature is not completely understood, 

whereas the statistical scaling of complex self-organized critical dynamics has been proposed 

to be a possible explanation.  Fractal statistics has been widely applied to characterize fracture 

network attributes, stress variability and earthquakes. Here, we review the scaling phenomena 

in these three closely related geological disciplines. 

5.2.1 Fracture network  

Before reviewing the evidence of the scaling of fracture networks, we mention the possible 

sources of information on the fracture network in geological formations. For deep projects, the 

initial source of information stems from borehole data. Borehole image logs or cores provide 

information on the location and orientation of fractures that allow the definition of fracture sets 

(i.e. fractures belonging to same orientation families) as well as 1D spacing or spatial 

distribution of fractures (Moein et al. 2016; Ziegler et al. 2015). However, extracting the 3D 

statistical distribution of fracture attributes from these resources is not possible without 

additional and independent constraints and is commonly associated with large uncertainties. 

Particularly, fracture length distribution is one of the major sources of uncertainty, which has a 

relatively large impact on the connectivity of fractured rock (Darcel et al. 2003c) and possibly 

controls the frequency size distribution of induced events during hydraulic stimulations (Evans 

2005). Additional information can be gained if the target formations are outcropping. Indeed, 

in such situations, 2D fracture network maps (Bour et al. 2002), or even in some exceptional 

cases, 3D maps (Srivastava 2006) can be generated allowing for exploring the characteristics 

of the fracture networks. Even if practically not available in the cases of deep geothermal 

projects, such 2D or 3D fracture maps  have been central in the development of conceptual and 

mathematical models capturing the key characteristics of fracture networks. 

Power-laws as the only scale invariant statistical distribution have been largely applied to 

characterize fracture length distributions (Bour et al. 2002; Davy et al. 1990a; de Dreuzy et al. 

2002; Lei et al. 2015; Odling et al. 1999). In general, the fracture length of fractures from 

different observations follow a power-law length distribution such as equation 5.1, 
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 𝑛𝑛(𝑙𝑙) =  𝛼𝛼𝑙𝑙−𝑎𝑎𝑑𝑑𝑑𝑑 (5.1) 

where, 𝑛𝑛(𝑙𝑙) is the number of fracture lengths between 𝑙𝑙 and 𝑙𝑙 + 𝑑𝑑𝑑𝑑 with a length exponent of 𝑎𝑎 

and a normalization constant of density α (Bonnet et al. 2001). The values of fracture length 

exponent for 2D fracture outcrops typically vary between 1.5 and 3.5 (Bonnet et al. 2001).  

5.2.2 Stress heterogeneities  

Measuring stresses in deep borehole is challenging, and no single method exists to characterize 

all stress components from one set of data. Moreover, stress measurements are typically point 

measurements – or more precisely involve a limited rock mass volume over which an average 

stress state is estimated – and thus are not well suited to evaluate stress variability. However, if 

wellbore failure is sufficiently pervasive, it can provide almost continuous profiles of the 

principal stress orientation in the plane perpendicular to the wellbore. Such profiles allow 

characterizing the heterogeneities of stress orientation. These stress heterogeneities may follow 

self-affine scaling relationships (Turcotte and Huang 1995; Valley and Evans 2014a). 

Langenbruch and Shapiro (2014) has related this self-affinity to the elastic heterogeneity 

observed in Earth’s crust. However, power-law fracture length distribution may also be the 

origin of the fractal nature of stress heterogeneities.  

An evaluation of different techniques to estimate the scaling relationships of stress orientation 

variation series have been performed by Valley and Evans (2014a). They suggest that the most 

reliable estimate of the fractal dimension of such series is obtained by the computation of the 

power spectrum density (PSD) using Fast Fourier transform (FFT). If the series is fractal, the 

PSD represented in a log-log scale will be linear over multiple order of magnitudes and thus is 

proportional to  (1
𝑓𝑓)𝛽𝛽 , where f is the frequency, β is the power spectral slope that is related to the 

fractal dimension (D) through equation 5.2. In this chapter, D represents the scaling exponent 

of stress heterogeneities. 

 𝐷𝐷 =  
5 − 𝛽𝛽

2
 (5.2) 

For one-dimensional fractal signals, the slope β lies between 1 and 3 and the fractal dimension 

range from 1 to 2. We computed the PSD by first prefiltering the data with a Hamming window 

and then applying a matlab built-in standard Fast Fourier Transform (FFT). Gaps in the data 

series are simply filled by straight lines. Section averaging (also referred as Welch’s method) 

is used to smooth the spectrum.  



115 

 

An example of this methodology extracted from the work of Valley and Evans (2014b) and 

Valley et al. (2016) is presented in Figure 5-1. Figure 5-1a shows the deviation from the mean 

orientation of the maximum principal stress Shmax and its variability along the Basel borehole. 

A few gaps (less than 20%) are visible in this data and are filled by straight lines. The stress 

orientation sampled every 0.4 m. 

Figure 5-1b represents the corresponding PSD analysis of the Basel stress orientation data, 

which shows a slope β of -1.5 with a fractal dimension D of 1.75, which is valid for wavelengths 

between 1 m and slightly larger than 100 m (frequencies between 1 and 0.01 cycle/m).  

 

Figure 5-1. (a) Orientation of maximum principal horizontal stress Shmax derived from borehole 
breakouts and axial drilling induced tension fractures observed in Basel-1 well. The orientation 
of each breakout leg is averaged for each sampling point (every 40 cm) and then subtracted 
from the average orientation along the borehole. The logged interval is between 2600-5000 m. 
(b) PSD function using FFT with a pre-filtering with Hanning window derived for the data 
provided in a. This figure defines a slope of -1.5 between 1 and 0.01 cycle/m (wavelengths of 
1 and 100 m) implying a fractal dimension D = 1.75. 
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5.2.3 Microearthquakes 

Microearthquakes also exhibit power-law frequency size distribution, following the famous 

Gutenberg Richter (Gutenberg and Richter 1954) relation as in equation 5.3,  

 𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁 = 𝑎𝑎 − 𝑏𝑏𝑏𝑏 (5.3) 

where, N is the total number of earthquakes with magnitude higher that M, while a and b serving 

as two constants. The slope b, often referred to b-value, shows the relative size distribution of 

earthquakes.  

If the average displacement on a failure patch with an area of A is d and µ is the shear strength 

of failure plane, the corresponding seismic moment M0 is defined using equation 5.4 and related 

to the moment magnitudes (Mw) through equation 5.5 (Kanamori and Anderson 1975).   

 𝑀𝑀0 = µ. 𝐴𝐴. 𝑑𝑑 (5.4) 

 𝑀𝑀𝑤𝑤 = 2
3

 (𝑙𝑙𝑙𝑙𝑙𝑙(𝑀𝑀0) − 16.1) (5.5) 

5.3 Methodology 

The general methodology developed here is to use a geomechanical simulator to generate a 

heterogeneous 2D stress field induced by slip on pre-existing fractures. Then, the key 

characteristics of the fracture networks and the resulting stress field can be compared. In 

addition, the average displacement and stress drop computed on fracture can be used to evaluate 

potential seismic local magnitude Mw  associated with the slip on fractures (assuming that all 

slip are occurring in a seismic manner) using equations 5.4-5.5. This allow to compute the 

seismogenic parameters such as b-value and to compare it to scaling of stress and fracture 

network characteristics. However, the induced seismicity computation is not covered in this 

chapter. 

Developing this approach without any constraints is not tractable because it includes many 

degrees of freedom (far field stress, fracture network geometry, mechanical properties of the 

medium and fractures,…). In order to develop our case on realistic and practical parameters, 

we generate our reference scenario using conditions and properties similar to those encountered 

in the Basel geothermal project. 

Other constraints on our analyses are also imposed by the capabilities of available 

geomechanical simulators. One limitation is that robust and efficient modeling of 3D fracture 

networks is not available at the moment. This is a limitation that arises not only from 
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computational power requirements but also raises fundamental questions such as how to 

mechanically treat 3D fracture intersections. For these reasons, we develop our analyses using 

a 2D simulator ignoring the fracture intersection. Other constraints arise from the resolution of 

the model required to generate fractal signals that by definition must be valid over multiple 

order of magnitudes. We set ourselves the realistic objective of generating signals that hold 

fractal characteristics over two order of magnitudes going from 1 m to 100 m. Currently, 

computational restrictions hinder further extension to more than two orders of magnitude. With 

respect to these limitations, a study domain of 200×200 m2 is chosen to generate synthetic 

fracture networks. Further details on the implementation of this methodology comes in the 

following sections. 

5.3.1 Assumptions 

We treat the problem as a 2D plane strain case with an isotropic, homogeneous and elastic rock 

mass penetrated by a fracture network. The fractures are Mohr-Coulomb elasto-plastic 

intersecting perpendicularly the model plane. The 1D profile (borehole) along which stress is 

sampled is contained in the model plane. According to the working hypothesis, in-situ stress 

variations along the borehole is a result of successive slips and deformations on the fracture 

planes over geological history. To keep the problem tractable, the stress variability will be 

assumed to occur due to the application of a single far-field stress state.   

5.3.2 DFN generation 

The geomechanical simulator imposes constraints on the length and spacing of fractures in 

order to avoid discretization problems and numerical instabilities. For this reason, we did not 

use the multiplicative cascade method presented in Chapter 2, but focused only on the fracture 

length distribution. The 2D synthetic fracture network realizations are generated by selecting 

random locations for fracture centers in the domain (i.e. 200×200 m2). A length is attributed to 

each fracture center following a power-law length distribution as in equation 5.1. Fracture 

lengths are restricted to the range 10-50 m. Fracture orientations are chosen to reflect the 

conditions at the Basel geothermal project where there are two set of fractures forming a 

conjugate system. To generate mechanically consistent fracture networks, we also define a 

minimum spacing (s) and minimum persistency (p) for each fracture sets. When a fracture with 

a length of l is added, the DFN generator puts a rectangle as a stress shadow with the center 

corresponding to the fracture center, with side lengths of 𝑙𝑙 + 2𝑝𝑝 and 2𝑠𝑠. The DFN generator is 

not allowed to subsequently populate any fractures from the same set that intersect this rectangle 

(other sets are permitted). The generator keeps populating new fractures until the cumulative 
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fracture length hits the input total fracture length. Due to the current computational limitations, 

the total length of fractures inside the domain may not exceed 800 m.  

5.3.3 Modeling of stress variability  

Here, we utilize a 2D geomechanical simulator with a displacement discontinuity method 

(DDM) developed by Jalali (2013). DDM approach is an indirect boundary element method, 

which is based on an analytical solution for the stress at a field  point away from finite 

dislocation segment in an infinite body (Crouch et al. 1983; Salamon 1963). A detailed 

numerical implementation of this approach to mechanical modeling of fractured rocks has been 

presented by Jalali (2013).  

The far-field stress imposed on the boundaries of the model and the fracture strength properties 

are selected in order to favor slip of fractures and thus to induce stress perturbations. For this 

reason, fractures are treated as cohesionless interfaces (𝑐𝑐 =  0 MPa) with low friction angle of 

𝜙𝜙 = 10°. Other parameters used in our model are listed in Table 5-1 and are based on the data 

collected at the Basel geothermal project. 

5.3.4 Analyses of the generated stress field 

The stress field is extracted along a vertical profile representing the borehole trajectory. The 

components of the stress tensor σxx, σyy and τxy are determined every 0.1 m along the profile.  

In order to be comparable with analyses that could  be done on real data derived from borehole 

failure, we focus on the stress orientation variations. Here we are limited by our 2D plane strain 

configuration and can only analyze the deviation of the local principal stress direction from the 

far field principal stress direction. We define the parameter θ that indicates the orientation of 

maximum principal stress from vertical borehole (positive clockwise) using equation; 

 𝑡𝑡𝑡𝑡𝑡𝑡(2𝜃𝜃) =  
2𝜏𝜏𝑥𝑥𝑥𝑥

𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜎𝜎𝑥𝑥𝑥𝑥
 (5.6) 

where, 𝜎𝜎𝑦𝑦𝑦𝑦 represents the local vertical normal stress, 𝜏𝜏𝑥𝑥𝑥𝑥  denotes the shear stress, and 𝜎𝜎𝑥𝑥𝑥𝑥 is 

the horizontal normal stress along the borehole.  
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Table 5-1. Input parameters for modeling the stress variability using DDM approach. Tension 
positive convention is used for the stress magnitudes 

Far-field principal 

stresses  

minimum principal stress horizontal 

maximum principal stress vertical 

σ3 = -20 MPa 

σ1 = -38 MPa 

Rock properties 
Young’s Modulus 

Poisson’s ratio 

𝐸𝐸 = 60 GPa  

𝜈𝜈 = 0.25 MPa  

Fracture network geometry 

Fracture set orientation  

Minimum spacing 

Minimum persistency 

Minimum length  

Total fracture length 

30°,-30° 

5 m 

5 m 

10 m 

500 m 

Fracture properties 

normal stiffness 

shear stiffness 

cohesion 

friction angle 

𝐾𝐾𝑛𝑛 = 1011 Pa/m  

𝐾𝐾𝑠𝑠 = 1010 Pa/m  

𝑐𝑐 = 0 MPa  

𝜙𝜙 = 10°  

Figure 5-2a represents the stress redistribution (e.g. 𝜎𝜎𝑦𝑦𝑦𝑦) as a result of far-fieled stresses in a 

simple fracture network with a power-law length exponent of 𝑎𝑎 = 3. All of the required 

information on the   fracture network geometry, far-field stresses, rock and fracture physical 

properties are listed Table 5-1. 

Figure 5-2b shows the stress orientation heterogeneity (variations of θ) on the borehole located 

at 𝑋𝑋 = 0 parallel to Y-axis. To ensure unbiased scaling analyses, the profile of θ has been 

computed for approximately 2048 regularly spaced data points along this borehole. Due to 

computational limitations, the discretization of fractures is set to 2 m.  

Figure 5-2c presents the PSD curve of the profile in Figure 5-2b, using the FFT with a pre-

filtering of data using Hanning window. The resulting stress heterogeneity displays a linear 

PSD in wavelengths between 1-100 m with a local slope of β = 1.5, implying a fractal dimension 

of D = 1.75. The corresponding PSD curve is comparable to that of Basel-1 borehole presented 

in Figure 5-1b from which the model parameters where inspired for our reference scenario.  
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Figure 5-2. (a) Stress field as a result of applying far-field stresses and slip on fracture surfaces 
in the depicted fracture network with length exponent of a=3. (b) Stress orientation 
heterogeneity θ, on the borehole located at X = 0, deviation from the average. (c) Power Spectral 
Density (PSD) plot of the stress profile in (b) using the FFT with pre-filtering of data using 
Hanning window.  

5.4 Results of the parameter study 

5.4.1 Relation between scaling of stress and fracture length exponent 

Firstly, we explored the effect of fracture length exponent a on the resulting stress variability 

and its scaling exponent (D). Thus, synthetic networks (DFN realizations) with power-law 

exponents from 1.5-3.5 with steps of 0.25 were generated. To compare different realizations 

with different length exponents, the fracture intensity P21 was kept constant and equal to 0.02 

m-1 (i.e. the total fracture length inside the domain is 800 m) for all of the realizations. For each 

length exponent, 100 random realizations were generated. For each realization a vertical 

borehole was located at the center of the study domain and the corresponding stress orientation 

profile θ was computed with the methodology presented in section 3. Then, the resulting stress 

profiles were expressed in the frequency domain using FFT with Hanning window filtering. 

Figure 5-3a depicts the box-plot of D as a function of fracture length exponent a. It is obvious 
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that the large variability of D does not imply a direct relation between D and a. However, a 

significant relation between the D and a was not resolved. 

5.4.2 Relation between scaling of stress and fracture intensity (P21) 

Fracture intensity is an important parameter, which impacts the mechanical response of a 

fractured rock mass. Thus, it is expected to influence the stress heterogeneities and its scaling 

D. We generated DFN realizations with the same power-law exponent of 3 but with different 

P21 values that range from 0.005 m-1 to 0.02 m-1 in steps of 0.025 m-1.  Because of computational 

restrictions in the DDM code, the value of P21 may not exceed 0.02 m-1.  

A similar procedure to the previous section was implemented and 100 DFN realizations with 

different values of P21 were generated. A vertical borehole was located in the center of each 

realization and θ was computed along it. Then, profile of θ was characterized using FFT with 

Hanning pre-filtering.  Figure 5-3b displays the box-plot of the 100 realizations for each value 

of P21. The large fraction of realizations are fractal except for P21 = 0.005 and some outliers 

from other intensities.  

 

Figure 5-3. (a) Box-plot of D values of stress perturbations for each length exponent containing 
100 realizations with the same fracture intensity P21 of 0.02 m-1. DFN realizations are generated 
using the methodology described in section 5.3.2 with the simulation parameters listed in Table 
5-1. (b) Box-plot of D values of stress perturbations for each fracture intensity P21 containing 
100 realizations with the same length exponent a of 3. 

5.5 Discussion and conclusions 

The analyses of stress orientation variability along the Basel geothermal borehole BS-1 suggest 

that the variation follow a fractal behavior over slightly more than two orders of magnitude 

from about 1m to 150 m with a dimension of 1.75 over this range (Valley and Evans 2009; 
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Valley and Evans 2014a). Since the local stress variations are mostly associated with fractures 

and faults, the fracture network characteristics such as fracture density and length distribution 

potentially influence the scaling characteristics of these stress perturbations. Thus, we adopted 

the hypothesis that local stress variations in boreholes are mainly generated by the slip on 

fractures, to quantify the impact of fracture network attributes on the scaling of stress 

heterogeneities. 

We generated synthetic fracture networks following a power-law length distribution with 

uniformly distributed fracture centers. Fracture network characteristics (such as the area of the 

study domain, minimum and maximum fracture length) are calibrated to generate stress 

heterogeneities that are comparable to the data from Basel-1 borehole. In addition, the minimum 

fracture set spacing and persistency was defined to respect the fracture interactions during the 

nucleation process. An efficient and fast numerical code was employed to simulate the 

geomechanical response of the synthetic fracture networks to loading through application of 

far-field stresses at the model boundaries. The computation of the stress field and the probable 

failures with Mohr-Coulomb failure criterion resulted in slip on fractures. The stress 

redistribution permitted the extraction of stress heterogeneity on a single borehole in the study 

domain. Then, we applied the same methodology (i.e. FFT with a Hanning window pre-

filtering) to characterize the scaling characteristics of resulting stress profiles. Here, we list the 

main conclusions attained from the current analysis: 

1. The scaling characteristic of stress heterogeneity along a borehole is not necessarily 

similar to that of another borehole in a different location. This implies that the fractal 

dimension D of stress is dependent on the borehole location and is not a universal 

parameter of the fracture network. This observation was confirmed by observations 

made in two boreholes drilled Soultz-soue-Foret geothermal reservoir, where the fractal 

dimensions of stress heterogeneities were 1.68 and 1.75 for GPK3 and GPK4 (Valley 

and Evans 2014b), respectively.  

2. If the fracture intensity is kept constant and the length exponent varies between 1.5-3.5, 

we computed the fractal dimension along a borehole located in the center of 100 

realizations. The resulting fractal dimensions D for 99 percent of the realizations of any 

length exponent showed a relatively large possible range from 1 to 2.  

3. If the fracture length exponent is kept constant and fracture intensity varies between 

0.005-0.02 m-1, we computed the scaling exponent of 100 realizations along the 

borehole in the center. The fractal dimensions of stress profiles varied in a relatively 

large rang between 1 and 2. However, there were quite a few realizations, which the 
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corresponding scaling exponents of stress heterogeneities may not be fractal (i.e. D<1). 

At the moment, the research is going on to understand the reason of such D values less 

than 1. One possible explanation may be the discretization limitations ad associated 

computational problems.  

The conclusions are made with the resolution limitations and computational restrictions that 

were discussed. Thus, further analyses and developments require fast and efficient modeling of 

the stress heterogeneity in wavelengths more than two orders of magnitude. However, this 

chapter is presenting the preliminary results and will be further promoted in the following 

months. At this stage, we have not included the scaling of associated microearthquakes. Hence, 

one of the following steps would be to finalize the possible relations among the frequency size 

distribution of microearthquakes (b-value), fractal dimension of stress D, fracture intensity P21 

and fracture length exponent (a).   
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6 Conclusions and outlook 
 

6.1 Conclusions 

The primary objective of this thesis was to investigate the physical linkage between fracture 

network, stress variability and induced seismicity in the context of EGS technology. The initial 

working hypothesis of this work was that fracture network properties such as fracture length 

distribution control the stress variability and seismogenic response of rock mass to hydraulic 

stimulation. Evidence on scaling properties of these distinct concepts in self-organized critical 

systems supported this working hypothesis. This thesis has extensively explored these scaling 

relationships and opened opportunities for practical implications in geothermal reservoir 

characterization. However, not all of the chapters are developed based on the initial hypothesis.  

The starting point of this study was to clarify the limitations of fracture network sampling and 

characterization from borehole datasets with a focus on the power-law scaling characteristics 

(Chapter 2). The study was supported by synthetic fracture networks that were generated using 

dual power-law model. The investigation among different techniques presented in literature 

revealed that two-point correlation dimension is the best estimate of the fractal dimension of 

fracture patterns (i.e. fracture spacing) along deep boreholes drilled into Basel and Soultz-sous-

Forêts EGS sites. This constitutes strong evidence that fracturing in rock masses penetrated by 

the wells follows a fractal organization, while no systematic variation of fractal dimension with 

depth was resolved in any of the studied boreholes. However, the scaling characteristics of 1D 

borehole data is not sufficient to constrain the 3D spatial distribution of fracture network using 

stereological relationships. It is evident that 1D sampling cannot be used to infer the three-

dimensional properties of our target parameters such as spatial distribution of fracture centers 

and fracture length distribution. This limitation hinders the ability to verify the developed 

methodologies, even if more datasets from more sites were available. Neverthelsess, the 

fundamental limitation on the validity of the initial working hypothesis does not affect the 

applicability of the practical tools developed in this thesis. 

One can hope to overcome this limitation by working on synthetic datasets generated by 

stochastic models, known as discrete fracture networks (DFN). However, these DFNs must be 

constrained with other available sources of information such as induced microseismicity cloud 

and in-situ stress data derived from borehole image logs and well testing analysis.  
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One possible approach is to generate synthetic induced seismicity patterns that follow follow 

certain statistics. Detailed analysis of induced events in Basel EGS site showed the clustering 

and rupture size distribution of seismicity patterns were quite similar to that of the of fracture 

networks (Chapter 3). Thus, dual power-law model was applied to present a statistical 

seismicity model, which may be calibrated by early seismicity patterns. This development 

provided a practical implication to forecast maximum magnitude during hydraulic stimulation 

as a function of perturbed volume. This model was capable to interpret the effect of 

microseismic specific influential factors including the effect of hypocentral location 

uncertainties, existence of a fault zone and repeating events on the observed spatial 

organization. However, the initiation of such a seismicity model requires the data from early 

seismicity (learning phase).  

To overcome this restriction, one can generate synthetic catalogues using physical models 

developed in the context of thermo-hydromechanical (THM) modeling of fracture reservoirs. 

In such cases, a full control on all parameters at all dimension is principally possible. 

Nevertheless, the major limitation arises from the gap in the current state-of-the-art in 

geomechanical simulations. Indeed, in order to generate relevant datasets (i.e. earthquake 

catalogues) for fractal analyses, one should be able to run models that are valid over 3 to 4 order 

of length scale. This requires extremely fine resolutions that are demanding very long CPU 

times.  

Although induced seismicity data provide some information that may reflect some geometrical 

aspects of the fracture network, this information becomes available only after the execution of 

hydraulic stimulation and thus is not available in time for stimulation design purposes. One 

possible approach is to constrain the DFNs using the probabilistic methods. Thus, stress-based 

tomographical approach was introduced based on Bayesian statistics, to constrain the fracture 

network geometry from stress heterogeneities inferred from image logs along deep boreholes 

(Chapter 4). The main working hypothesis of this approach is that the stress variability is a 

result of slip on fracture planes. Final visualization of the inversion results provided a 

probability map, showing that major features are accurately determined (for both simple 

synthetic and out-crop based DFNs). Although some fractures do not intersect the borehole, 

their impact may be significant on the observed stress heterogeneities. However, this impact is 

sufficient for imaging larger fractures. This may not be true for smaller fractures, if they are far 

from the borehole. Thus, the proposed methodology was sensitive to larger fractures compared 

to smaller ones. Since larger fractures provide the major path for the fluid flow and result in 

higher seismic magnitudes, they are critical for case-specific hazard and risk assessments. It is 
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evident that, developed methodology in Chapter 4 does not depend on the scaling relationships 

and is independent of this initial working hypothesis. 

Another possible approach to constrain the DFN using stress data is to investigate analytical 

relations between the scaling exponents of stress variability (based on the initial hypothesis) 

along deep boreholes, scaling properties of 2D and 3D fracture network attributes (e.g. fracture 

length and location). The preliminary analyses (Chapter 5) showed that the scaling 

characteristics of stress heterogeneities along a 1D sampling line (borehole) cutting through a 

2D fracture network is not a constant value and varies from one borehole location to another. 

The observations of spatial variation of the stress scaling is consistent with field at Soultz-sous-

Forêt geothermal reservoir, where the fractal dimension obtained in closely located well GPK3 

and GPK4 differs (Valley and Evans 2014b). Currently, the control on these variations is not 

fully understood and may be explained by the similarity to the non-uniqueness observed in 

stereological fractal relationships for fracture networks (Chapter 2).  

furthemore, no well-established relations among the fractal dimension of stress perturbation, 

fracture length exponent, fractal dimension of fracture locations and fracture intensity is 

resolved. With the developed methodologies, we could generate models that were valid over 

about two order of magnitude, but only in a 2D plane strain configuration. Practical applications 

of this approach requires generating 3D mechanical models of the target rock mass with 

sufficient resolutions to generate fractal stress profiles in more than three orders of magnitude. 

However, this approach would largely benefit from 3D modeling capabilities as it has been 

currently tested only on 2D synthetic cases. A 3D geomechanical simulator would also enable 

verification of the approach with field data. However, robust and efficient geomechanical 

modeling tools are lacking and this objective is out of reach at the moment.  
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6.2 Outlook and perspective 

Within this thesis, dual power-law model has been applied to generate synthetic fracture 

networks with fractal statistics (Chapters 1 and 2). However, the application of this model to 

study the mechanical properties of fractured rocks is difficult. Thus, a simplified algorithm of 

DFN generation with respect to simple mechanical rules was applied in Chapters 3 and 4. This 

indicates the necessity to develop DFNs with respect to mechanical interactions between 

fractures. On possible development of the work in chapter 1 is to perform stereological analysis 

using novel DFN generation algorithms such as the model presented by Davy et al. (2010). 

The application of seismic forecast during injection presented in Chapter 3 also depends on the 

dual power-law model investigated in this thesis. The proposed approach may also be updated 

using novel DFN generation algorithms. Moreover, the proposed approach should be further 

tested on any injection induced seismic datasets. In this case, data stemming from underground 

laboratory experiment would be of value when available. Such dataset will be available from 

the ISC experiment at the Grimsel test site in the near future and will also be available from the 

new underground lab at Bedretto Tunnel. This gives excellent perspective to prolongate the 

work initiated in the thesis in the near future. 

The concept of stress-base tomography has been presented to image the fracture network using 

stress variability. However, practical applications of this approach requires the development of 

the current geomechanical simulator (DDM approach) to three dimensions. Data collected in 

deep underground laboratories with extensive characterization of the stress field and fracture 

network could be an excellent opportunity to further develop and test the approach. Stress-based 

tomography may also be compared with other tomographical approaches such as thermal or 

tracer tomography. The future research can also focus on coupling all the information from 

hydraulic, thermal and mechanical aspects toward a full thermo-hydromechanical inversion of 

the fractured rock mass.  
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Appendix A 
 

This appendix presents some analysis of the Chapter 2, which is not included in the final 

manuscripts.  

 

Figure A.1 Box counting analysis of different fracture sets from Basel-1 fracture sets.  
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Figure A.2. Box counting analysis of different fracture sets from GPK3 fracture sets. 

 

Figure A.3. Box counting analysis of different fracture sets from GPK3 fracture sets.  
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Figure A.4 Spacing distribution of different fracture sets from Basel-1 fracture sets. 

 

Figure A.5 Spacing distribution of different fracture sets from GPK3 fracture sets. 
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Figure A.6 Spacing distribution of different fracture sets from GPK4 fracture sets. 
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Appendix B 
 

Figure B.1a presents an example DFN generated using the dual power-law model. The initial 

parameters of this DFN are D=2.7 and a=2.8. To verify the validity of the developed fracture 

network generator, we computed the corresponding correlation function of fracture centers and 

its local slope. Figure B.1b shows that the local slope is very close to the input correlation 

dimension (2.7). Furthermore, the cumulative fracture size distribution (Figure B.1c) follows a 

linear curve with a slope of -1.8 in log-log space. Bour and Davy (1999) demonstrated 

theoretically and numerically the correlation between the position and size of fractures in fractal 

network. If the frequency length distribution of fractures follows a power-law distribution with 

an exponent of 𝑎𝑎𝑓𝑓  (i.e. 𝑛𝑛(𝑙𝑙) = 𝑐𝑐. 𝑙𝑙−𝑎𝑎𝑓𝑓 ) and the fracture centers are distributed with a correlation 

dimension of D, equation B.1 relates 𝑎𝑎𝑓𝑓  and D. In this equation, x is the exponent of a power-

law relating the average center to center distance (d) of a fracture to the closest fractures having 

a larger size in 𝑑𝑑(𝑙𝑙) ~ 𝑙𝑙𝑥𝑥. Figure B.1d confirms the correlation between clustering and size 

distribution through the distance function. The exponent of x from the fit is very close to the 

computed vale of x using equation 1 in the Supporting Information.  

 𝑥𝑥 =
𝑎𝑎𝑓𝑓 − 1

𝐷𝐷
 (B.1) 

Here, we perform a sensitivity analysis on the maximum uncertainty of hypocentral ellipsoids 

on the 3D spatial distribution of microseismic events. We applied the same methodology, to 

generate random realizations with a noise in the location of hypocentres, as described in the 

Chapter 2. Figure B.2 shows that the effect of 9.3 m uncertainty is almost negligible on the 

resulting correlation dimension, while 93 m and 186 m uncertainties increase the correlation 

dimension to almost 3. This suggest that, if the uncertainty of hypocentral locations are high, 

the spatial clustering shows a uniform distribution in 3D space.  
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Figure B.1. a) A synthetic network generated using dual power-law model (D=2.7 and a=2.8). 
b) Correlation function and its local slope of the generated network. c) Complementary 
cumulative length distribution of the generated network (N’ is the number of fractures larger 
than size of R). d) Correlation between size and spatial distribution through distance function.  

 

 

Figure B.2. A sensitivity analysis on the number of hypocentral uncertainty on the model 
presented in Figure 3-2a. 

Here, we present the sensitivity of the correlation function to the number of repeating events. 

Applying the same methodology as presented in the Chapter 3, we change the number of 

repeaters. Figure B.3 shows that the sudden drop of the local slope is considerable when 
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approximately 100 repeaters exist. This is specific to the rupture model presented in Figure 3-

2a. 

 

Figure B.3. A sensitivity analysis on the number of repeating events on the model presented in 
Figure 3-2a. 

Here, we analyze the existence of three fractured zones with the same number of fractures but 

varying width. The sensitivity analysis shows that the denser the fractured zoned, the higher 

impact on the correlation function as in Figure B.4. 

 
Figure B. 5. A sensitivity analysis on the width of the fractured zone on the model presented 
in Figure 3-2a. 
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Appendix C 
 

If the stress orientation profile from the synthetic case is selected as the only observation in the 

inversion process, the resulting probability map is not able to image the major features within 

the network. Figure C.1 (right) shows the resulting probability map compare to the initial DFN 

(left). The inversion is performed using the profile of Figure 4-3d and the initial information 

from Tables 4-1 and 4-2.  

 

 
Figure C.1. The simple synthetic fracture network compared to the fracture probability map 
obtained from the inversion of stress orientation data. 

The inversion process requires an initial DFN (as shown in Figure 4-2), which is randomly 

populated based on the prior information of Table 4-2. The following figure presents the initial 

DFN realizations to reconstruct the fracture network using the stress-based tomography. Figure 

C.2 (left and right) belong to the synthetic and outcrop-based fracture networks (presented as 

the test cases within the Chapter 4).  
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Figure C.2. The initial DFN realization in the inversion process of (left) synthetic network 
(right) outcrop-based network. 

As it is discussed in the results, we assumed a very low friction angle to reconstruct the stress 

variabilities similar to the real field observations. However, one may question the impact of 

higher fiction angles on the inversion process. Thus, a higher friction angle of 35° is selected 

to reconstruct the fracture network using stress based tomography. The other inversion 

parameters are kept unchanged (listed in table Tables 4-1 and 4-2). Figure C.3 represents the 

resulting probability map. Higher friction angles may result in lower degrees of stress 

variability, but stress-based tomography is still able to highlight the most important features 

within the network. Since the fracture strength parameters (shear and normal stiffness) are 

difficult to constrain, one may change them to reproduce comparable stress variabilities to 

borehole data.  

Figure C.4 shows the strong similarity between the original and reproduced stress profile for 

both 𝜎𝜎1 and 𝛽𝛽 in a randomly chosen DFN from the ensemble. However, because of the higher 

complexity and small stress variabilities, the match is not as excellent as for the synthetic case. 
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Figure C.3. Probability map of the inversion derived from the stress-based tomography of the 
outcrop0based case with a friction angle of 35°.  

 
Figure C.4. Stress profiles of initial outcrop-based model with a friction angle of 35° compared 
to those of a randomly sampled DFN of the final ensemble.  
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