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Abstract
Technology deployment policies can play a key role in bringing early-stage energy technologies to the
market and reducing their cost along their learning curves. Yet deployment policiesmay drive
unintended and premature lock-in of currently leading technologies. Here we develop an empirically
calibrated agent-basedmodel to analyse howdeployment policy design influenceswhich technologies
are selected by investors.We focus onGermany’s solar photovoltaics feed-in tariff policy between
2003 and 2011 and analyse two design features, technology specificity and application specificity. Our
results show that both features are highly important in technology selection and that spillover effects
between applications exist. Policies that fail to consider these effects can unintendedly lock in or lock
out technologies. To avoid this, policymakers can leverage the fact that different technologies are
competitive in different applications and, by designing application-specific deployment policies,
effectively offer a level playing field for competing technologies.

1. Introduction

Climate change mitigation requires a technological
transition of our energy systems (IPCC 2014, Erickson
et al 2015). Besides carbon pricing and R&D support,
technology deployment policies play a central role
in inducing such transitions by addressing market
failures associated with learning by doing (Sandén
and Azar 2005, van Benthem et al 2008, van den
Bergh 2013, Bertram et al 2015). Deployment policies
have been crucial in triggering capacity additions and
thus inducing technological learning and cost reduc-
tions, particularly for renewable energy technologies
(del Río González 2008, Fouquet and Johansson 2008,
Couture and Gagnon 2010, Huenteler et al 2016).
Solar photovoltaics (PV), for instance, has experienced
a steep increase in global deployment to 300 GW in
2016 (REN21 2017) and a sharp decrease in cost of
over 99% in the past four decades (Trancik et al 2015).

As a result, today, solar PV is cost competitive with
conventional technologies in many markets (Creutzig
et al 2017). Technology deployment policies are also
important for new technologies necessary for the deep
decarbonisation of energy systems, such as battery
storage (Trancik 2014, Landry and Gagnon 2015,
Malhotra et al 2016).

Yet deployment policies may drive unintended
and premature technological lock-in, a situation
where one technology is almost exclusively selected
at the expense of other technologies (Unruh 2000,
Zeppini and van den Bergh 2011, Battke et al 2016).
This phenomenon arises from self-reinforcing and
path-dependent processes which reduce the cost
of the adopted technology, such as economies of
scale, learning-by-doing, learning-by-using, and
network externalities, and hence give it a sustained
advantage over competing technologies (Dosi 1982,
David 1985, Arthur 1989, Sandén and Azar 2005,
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van den Bergh 2008). For novel technologies, the early
phase of market deployment is pivotal to drive down
their learning curve and thus determining their future
competitiveness with other technologies (Hoppmann
et al 2013). Lock-in may be undesirable in early-stage
technologies for two reasons. First, it can result in
long-term inefficiencies (Schmidt et al 2016). These
arise from locking out technologies which, though
more expensive at the outset, would offer superior
learning rates. Thus, long-term economic cost of
deployment would be higher because faster learning
technologies would not have been deployed in their
early stage. As predicting future learning curves of
early-stage technologies is difficult, encouraging tech-
nological diversity is regarded a viable alternative to
achieve long-term economic efficiency (Arthur 1989,
Sandén and Azar 2005, del Río González 2008,
Schmidt et al 2016). Second, premature technological
lock-in, all else equal, inherently reduces long-term
diversity and hence the resilience of the energy system
against external shocks (van den Bergh et al 2006, Stir-
ling 2010). An example is the carbon lock-in of the
current energy system which not only is the main
source of climate change but also leaves the economy
vulnerable to fossil-fuel price shocks, such as the 1970s
oil crises (Unruh 2000, 2002). It is important to note
that premature technological lock-in is not per se eco-
nomically inefficient. In fact, in case the superior tech-
nology becomes dominant early on, societal costs
are reduced. However, since it is difficult to predict
future developments—whether of economic, envir-
onmental, or technological nature—it may be pre-
ferential to foster competition between different
technological choices at least at the outset in
order to avoid locking in inferior technologies (van
den Bergh 2008, Schmidt et al 2016). In any case,
policymakers should be aware of deployment
policies’ potential consequences in terms of lock-in.

Different modelling approaches have been used in
the literature to analyse technology diffusion and lock-
in in the energy sector. The spectrum ranges from
equation-based models, such as system dynamics
models (e.g. Usha Rao and Kishore 2009; Guidolin
and Mortarino 2010, Davies and Diaz-Rainey 2011,
Islam 2014, Radomes and Arango 2015) to more rule-
based approaches, such as agent-based models (e.g.
Faber et al 2010, Maya Sopha et al 2011, Rai and
Robinson 2013, Rai and Robinson 2015, Robinson
and Rai 2015). However, two aspects remain under-
explored. On the one hand, the number of ex-post
models using empirical data for policy evaluation is
scarce (Rai and Henry 2016). On the other hand, the
role of deployment policy design (Howlett et al 2015)
in locking-in technologies has not yet been explicitly
analysed in such models, despite lively debates in the
literature suggesting that the policy design is a key fac-
tor in inducing technology diffusion and innovation
(Dinica 2006, Lipp 2007, Kemp and Pontoglio 2011,
Schmidt and Sewerin 2018).

In this article, we address this gap by improving
the understanding of how different design features of
deployment policies influence which technologies are
selected by markets. We do so by analysing the case of
Germany’s solar PV feed-in tariff (FiT)4 and the selec-
tion between the main solar PV technologies, crystal-
line silicon and thin film. Germany’s FiT is widely
acknowledged to have been the first and foremost
driver of global solar PV deployment in the analysed
period between 2003 and 2011 and therefore a key
contributor to the substantial decrease in solar PV cost
during that period (Peters et al 2012, Trancik
et al 2015, Lauber and Jacobsson 2016). The German
case thus represents a relatively unique policy experi-
ment with an immense impact on the global energy
system. In the absence of alternative cases with similar
importance but different policy design, we use an
empirically calibrated agent-based model (ABM) to
analyse counterfactual policy scenarios, i.e. we model
what could have happened had the German policy
design been different. For this purpose, we first remo-
del the historical German case and then analyse how
hypothetical alternative policy design scenarios could
have changed the selection of PV technologies.

2.Design features of deployment policies

We analyse the influence of two deployment policy
design features, technology specificity and application
specificity, on technology selection. Here, technology
selection is defined as the choice of a particular
technology among alternatives by investors. In a
market environment, technology selection largely
depends on the competitiveness of the different
technological options and is closely interrelated to
technology diffusion in the way that investors selecting
one technology push its increased diffusion.

Technology specificity is the key design feature
analysed in the literature about technology selection
and lock-in (del Río González 2008, Azar and Sandén
2011, Kalkuhl et al 2012, Lehmann and Gawel 2013,
Schmidt et al 2016, Gawel et al 2017, Schmidt and
Sewerin 2018). Technology-specific policy instru-
ments directly foster the deployment of an individual
technology or groups of technologies (Gawel et al
2017). Importantly, they may be technology-specific
to a greater or lesser extent. For example, while most
renewable portfolio standards enacted in the
US states did not differentiate between renewable
energy technologies (Carley 2009, Horner et al 2013,
Jenner et al 2013, Wiser et al 2017), the FiT in
Germany offered different levels of support for various
renewable energy technologies, such as wind or solar
PV, but did not make a distinction between different

4
A FiT is a technology deployment policy which offers long-term

and cost-covering remuneration per unit of electricity as well as
guaranteed grid access to renewable energy (Jacobs 2012).
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solar PV technologies (Hoppmann et al 2014, Lauber
and Jacobsson 2016).

Application specificity is the second analysed design
feature and has only recently received attention from
policy scholars. It refers to the question of whether a
policy differentiates between applications in which
multi-purpose technologies can be employed (Battke
and Schmidt 2015, Schmidt et al 2016). Examples of
multi-purpose technologies include solar PV, which
can be used for open-space or rooftop installations,
and batteries, which can offer different grid services,
such as frequency regulation or grid investment defer-
ral (Battke and Schmidt 2015). In 2004, Germany’s
solar PV FiT shifted from an application-neutral tariff
for all installations to an application-specific system
that differentiates not only between open-space and
rooftop applications but also between sizes within the
rooftop application (Hoppmann et al 2014) (see
figure 1 and supplementary note 1 available online at
stacks.iop.org/ERL/13/104011/mmedia). This shift
provided an opportunity for different users and inves-
tors, such as homeowners and professional investors,
to enter the market and, together with a large increase
in rooftop tariffs, led to a surge in capacity additions
(Hoppmann et al 2014).

In our study, we operationalise the two design fea-
tures in the model using the remuneration granted for
individual technologies and applications. In other
words, we offer different tariffs for the technologies
and applications in the case of technology-specific
and application-specific policy designs, respectively.

Analogously, a neutral policy design corresponds to
equal tariffs for all installations.

3.Methods

3.1. The rationale for using agent-basedmodelling
In this study, we model a system that reproduces the
selection and diffusion patterns of solar PV technolo-
gies under the actual as well as counterfactual policy
designs in Germany from 2003 to 2011. This system is
characterised by a large number of decentralised solar
PV installations with capacities ranging from a few kW
to over one MW and built on rooftops as well as on
open space. Different types of investors typically
choose different types of installations (Dewald and
Truffer 2011): homeowners build small-scale rooftop
installations, while professional investors, such as
farmers, financial investors and also supermarket
chains, opt for larger-scale rooftop and open-space
installations. We first calibrate the model with histor-
ical data on these investments and then use the
number of investment decisions that were taken in the
calibration to evaluate the counterfactual policy design
scenarios. Thus, the modelled number of installations
in other policy scenarios is flexible to diverge from the
historical case.

In previous studies, different approaches have
been taken to model technology diffusion processes.
On the one hand, system dynamic models, such as the
Bass-diffusionmodel, are used tomodel aggregate dif-
fusion on the basis of a small number of homogeneous

Figure 1.Historical development of the solar PV FiT and total installed capacity inGermany during the analysed period 2003–2011
(Bundesgesetzblatt 2000, 2004, 2008, 2011, BMWi 2016). The tariffs were typically granted for 20 years. At first, the size of installations
eligible to receive the FiTwas capped. A policy design change in 2004 not only removed the size cap but also paid different tariffs to the
two applications, open space (green shades) and rooftop (ochre shades). Installed capacity (dashed line) increasedmassively after this
change, and solar PV therefore progressed along the learning curve. The automatic annual tariff regression of 5%which had been
implemented to account for technology cost reductions was exceeded by the solar PV learning rate.
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representative agents whose adoption decisions are
based on the number of previous adopters (Bass 1969,
Norton and Bass 1987). However, these diffusion
models have been criticised for their lack of predictive
and explanatory power since they do not inform about
the mechanisms behind the diffusion process and are
entirely stylised which is why they cannot be empiri-
cally calibrated (Kiesling et al 2012). Additionally, they
assume a homogeneous population.

On the other hand, agent-based models distinctly
simulate the adoption decision of a number of hetero-
geneous agents who interact with and are dependent
on other agents and, by aggregating them, can simu-
late macro-level phenomena (Bonabeau 2002, Kiesl-
ing et al 2012, Rai andRobinson 2015).

In this study, we use an agent-based model for
three main reasons: first, our case consists of a hetero-
geneous population of investors, whose investment
decisions influence future agents in their decision-
making. Second, high-resolution bottom-up data on
historically-built solar PV installation is available and
hence allows for the use of a calibrated and computa-
tionally expensive model. Third with the ABM
approach, we are not limited to model a fixed number
of agents nor a fixed installed capacity, and we can
hence keep these parameters as well as the modelled
policy outcome variable. Other modelling approaches
would not allow for this flexibility which we think is
necessary to model the effect of counterfactual policy
designs on the technology diffusion across different
technologies and applications.

3.2. Agents’ characteristics and operationalisation
of investment decision
The agents in our model take investment decisions
for specific solar PV installations, i.e. they decide
whether to invest in an installation and, if so, in which
technology. Their decision-making process is based
on the net present value (NPV) of the potential
installation. The NPV is the sum of the discounted
cash flows over the investment’s lifetime minus the
initial investment (equation (1)) and represents the
expected future earnings at today’s value. It therefore
allows for different investment options, which, in this
study, are the two solar PV technologies thin film and
crystalline silicon, to be easily compared

å= - +
+

=
= ( )

( )I
r

NPV
CF

1
, 1t

t

T
t
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where It=0 represents the initial investment, r the
discount rate, CFt the net cash flow in year t, and T the
duration of the investment. The investment cost
depends on the size of the installation and the module
and balance-of-system (BOS) prices which we draw
from different price curves. More specifically, we use
two different module price curves for crystalline
silicon and thin film, respectively, and one BOS price
curve for all installations (supplementary figures 1(a)–
(c)). However, since the size is defined as the installed

capacity, BOS prices are increased by 20% for thin film
because of its lower efficiency (Fraunhofer ISE 2015)
and the resulting need formore BOS equipment.With
increasing project size, we assume that themodule and
BOS prices decrease linearly due to economies of scale
(see supplementary figure 1(d)). The annual cash flows
correspond to the difference between the revenues
from electricity sales and expenses and are represented
by equation (2):

= - ( )ECF FiT O&M , 2t t t t

where Et is the energy produced by the installation in
year t, FiTt the tariff granted in year t for the produced
energy, and O&Mt the cost for the operation and
maintenance of the installation. Values are based on
literature and summarised in supplementary tables 1
and 3. The annually produced energy is determined by
the installation’s capacity and the number of annual
full-load hours.

The agents determine the NPV of a potential
installation and hence the investment attractiveness
for both technologies and decide whether to invest at
all (NPV�0) and, if so, in which PV technology
(maximumNPV).

We consider two types of agents who take invest-
ment decisions: small-scale rooftop investors, such as
homeowners, and large and medium-scale investors,
such as farmers, supermarket chains and financial
investors. The agents are differentiated by the type of
installation for which an investment decision is taken.
Small-scale rooftop investors are considered to invest
in rooftop installations with peak capacities up to
30 kW, while large-scale investors are considered to
invest in rooftop installations with peak capacities
above 30 kWand open-space installations.

The heterogeneity between the agents is modelled
by the propensity of the agents for choosing crystalline
silicon as opposed to thin film which we assume to be
larger for small-scale rooftop investors than for large-
scale investors (see supplementary note 2 for the dri-
vers of this propensity). We operationalise the pro-
pensity for crystalline silicon by applying a transaction
cost parameter which increases the investment cost of
thin film compared to crystalline silicon, hence ren-
dering thin film slightly less attractive. The parameter
is used to fit the model to the historical data (see
section 3.3).

The model aggregates the investment decisions of
all agents with an annual resolution.

3.3. Aggregation of investment decisions
The model performs two steps which are executed
independently5. The Calibration Step is used to
calibrate the model to simulate historical solar PV
diffusion in Germany, and the subsequent Alternative
Policy Scenario (APS) Step uses the output of the
Calibration Step to analyse how the technology

5
The model code as well as the data are available from the

corresponding author upon reasonable request.
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selection changes under the counterfactual FiT design
scenarios.

The two steps work in a similar fashion, and each
consists of two modules, the Investment Decision
Module and the Price Curve Module (figure 2). First,
the Investment DecisionModule models one year (see
(1) in figure 2). It starts with the selection of an instal-
lation. An installation is defined by its size (in kW) and
application type (rooftop or open space) and hence
determines if the agent is a small-scale rooftop inves-
tor or a large-scale investor. In the Calibration Step,
the installations are picked from a pool of the histori-
cally-built installations for the specific year, while in
the APS Step, the installations are randomly selected
from a distribution based on all historical installations
built during the analysed timeframe (see data in sup-
plementary figure 2(a)). This distribution is assumed
to proportionally represent the actual surfaces avail-
able for solar PV installations in Germany. When the
agent has analysed the investment attractiveness of her
installation and taken her investment decision, the
model moves to the next installation and its corresp-
onding agent. The number of annual investment deci-
sions is defined, in the Calibration Step, by the number
of investment decisions necessary to represent all the
historical capacity additions of the specific year, and
conversely, in the APS Step, by the total number of
investment decisions—whether positive or negative—
taken for the same year in the Calibration Step (sup-
plementary table 4)6. Once all the investment deci-
sions of a specific year have been taken (2), the model
moves to the Price Curve Module. Here, the annual
capacity additions are introduced in the historical
price curves for the respective solar PV technology as

well as for BOS (3) (supplementary figures 1(a)–(c)),
and the module prices and BOS prices are determined
for the next year (4). The new prices are then input
back in the Investment DecisionModule (5)where the
next year ismodelled7.

The model output consists of the number of
annual installations and their capacity, application as
well as solar PV technology. Total annual capacity
additions and shares of the two solar PV technologies
are obtained by aggregation. The results are fitted to
the empirical data by varying the agents’ propensity to
install crystalline silicon (see section 3.2). More pre-
cisely, we run the model with different combinations
of the parameters for small-scale investors and large-
scale investors, respectively, and then choose the com-
bination with the minimum cumulative square devia-
tion from the historical total annual shares of thin film
for the analysis of the different policy scenarios (see
supplementary table 2 and supplementary figure 3).
The historical total annual shares of thin film and crys-
talline silicon are derived from different data sources
(supplementary figure 2(d)).

3.4. Alternative policy design scenarios
The first step of our analysis remodels the history of
Germany’s FiT between 2003 and 2011 and hence
assesses the influence of past policy design on the
selection between the twomajor PV technologies, thin
film and crystalline silicon (see supplementary note 3
for details on the technologies). The thus obtained

Figure 2. Simplified overview of themodel. The consequent steps taken in themodel are represented by the numbered bubbles and
explained on the right-hand side.

6
The average number of investment decision amounted to

2194 734 decisions over the analysed period.

7
Overall, we ran ten different seeds resulting in 5311 255 312

individual model runs for the two-step calibration (each represent-
ing one investment decision) and 342 378 452 individual model
runs for the analysis of the historical case and the alternative policy
scenarios. The output of the ten seedswas averaged.
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technology shares were validated in interviews with
twoGerman solar PV experts.

In the second step, we analyse technology selection
under three hypothetical alternative policy design sce-
narios using the number of investment decisions from
the historical case, all other input data and the model
architecture remaining equal. As shown in table 1, the
historical case as well as the alternative scenarios vary
in their technology specificity and application specifi-
city—that is, their tariff levels differ for specific PV
technologies and applications. Since the historical FiT
was very generous (Hoppmann et al 2014), we use the
lowest historical tariff (i.e. the open-space tariff) as
baseline tariff (see data in supplementary table 5). The
historical annual tariff reduction of 5% is thus pre-
served. In the technology-neutral and application-
neutral Scenario 1, this baseline tariff is offered to both
technologies and applications. In the technology-spe-
cific and application-neutral Scenario 2, the baseline
tariff is only offered to one technology while the tariff
for the other technology is varied and applications are
not differentiated. Conversely in the technology-neu-
tral and application-specific Scenario 3, the baseline
tariff is only offered to one application while the tariff
for the other application is varied and technologies are
not differentiated. To assess how the level of the tariff
influences the selection of the technology, we vary the
tariffs between−15% and+15% of the baseline tariff.
This range is selected because historically the rooftop

tariffs were, on average, 15% higher than the open-
space tariffs.

We assume the input parameters to remain the
same for all scenarios (see supplementary note 4 for
more details).

4. Results

4.1.Historical case
Figure 3(a) displays the simulated results of the
historical case representing the diffusion of the crystal-
line-silicon and thin-film technologies within the
rooftop and open-space applications. The results show
that, in the historical case, both PV technologies are
selected by investors and neither achieves complete
dominance, with crystalline silicon and thin film
obtaining total final shares of 87% and 13%, respec-
tively. The selection of technologies between the two
applications differs greatly. Crystalline silicon dom-
inates rooftop capacity additions, with a total share
exceeding 94% compared to roughly 71% for open-
space installations. These differences stem from the
smaller size of rooftops and rooftop installations (see
supplementary figure 2(a)). Since thin-film installa-
tions incur higher BOS costs per installed capacity due
to the lower efficiency and these BOS costs make up a
higher share of the total investment costs for small-
scale installations, crystalline silicon is the more
popular choice. The opposite applies to open-space

Table 1.Policy design of the historical case and the alternative scenarios analysed in this study. The columns illustrate if
the historical case and scenarios are specific (in dark grey) or neutral (in light grey) in terms of application or
technology, as well as which tariff variations are studied in the second step of themodelling process.

Technology Application Variation

Historical case Neutral Specific (higher tariff for rooftop) —

Scenario 1 Neutral Neutral Total tariff±15%

Scenario 2 Specific Neutral Tariff for individual technology±15%

Scenario 3 Neutral Specific Tariff for individual application±15%

Figure 3. Simulation results of the historical case for (a) the annual diffusion of thinfilm (in red) and crystalline silicon (in blue) across
applications, and (b) the total shares of thinfilm (in red) and crystalline silicon (in blue) by size class totalled over the entire period. The
results were validated byGerman solar PV experts (see section 3.4).
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installations. This fact is reflected by the results in
figure 3(b) which show that installations smaller than
100 kW are almost entirely dominated by crystalline
silicon, whereas more than a quarter of installations
larger than 100 kWuse thin-film technology.

4.2. Scenario 1: Technology-neutral, application-
neutral policy design
We start by analysing the PV technology-neutral and
application-neutral policy design scenario which
offers the same baseline tariff to all installations
(Scenario 1). Figure 4(a) shows that for this scenario,
crystalline silicon is initially utilised, especially in
rooftop, but is subsequently replaced and completely
dominated by thin film. Increasing the overall tariff by
10% results in the same selection pattern; crystalline
silicon is completely replaced by thin film by 2009, but
with a 3-times higher overall deployment (figure 4(b)).

Figure 4(c) displays the PV technology shares
when the overall tariff varies between −15% and
+15% relative to the baseline tariff. The red and blue
colours represent a high share of thin film and crystal-
line silicon, respectively. Tariffs in the range of−3% to
+12% of the baseline tariff result in the lock-in of thin
film—that is, in the latter years, the share of thin film

approaches 1.0. This dominance originates in open
space (middle heatmap), is followed by rooftop
roughly two years later (right heatmap), and suggests
that spillover effects between applications are highly
relevant in the analysed diffusion and selection
mechanisms. Spillover effects are cost reductions
achieved for one business case which also improve
another business case. They can occur between tech-
nologies but also between applications (Nemet 2012,
Battke and Schmidt 2015). In this study, we only focus
on spillovers between applications. Tariffs above
+13% of the baseline tariff should be interpreted with
caution, as they exceed the generosity of the historical
tariff, whichwas used to calibrate ourmodel.

At tariffs below −5% of the overall tariff, no clear
pattern is discernible. This outcome is attributable to
the very low deployment of both PV technologies in
both applications which drops to below 1 GW at a tar-
iff 6% lower than the baseline tariff (see supplemen-
tary figure 4). This outcome is also reflected in the
empty areas in the heatmaps, which represent years
during which no installation is built. Comparing the
individual heatmaps of both applications shows that
the rooftop market is dominated by one technology
while in open space competition between the

Figure 4.Application-neutral andPV technology-neutral policy design (Scenario 1); (a), (b) Simulation results of PV technology
diffusion across applications at the application-neutral and PV technology-neutral baseline tariff and at a 10%higher tariff,
respectively; (c) sensitivity analysis indicating the shares of the thin-filmPV technology (in red) and crystalline silicon PV technology
(in blue)when the baseline tariffs are varied between−15%and+15%. A variation of 0% in the heatmaps corresponds to the baseline
tariff for all installations. The results represent the average values of ten different random seed runs. Thewhite areas represent years in
which neither of the PV technologies diffused—that is, no installationwas built and, hence, no PV technologywas selected.
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technologies prevails, i.e. shares between 0.3 and 0.7
are achieved for both technologies. These results sug-
gest that, if competition between the two technologies
is the desired outcome, the tariff in a neutral policy
design scenario needs to be very low—that is below
3% of the baseline tariff. Yet, as previously mentioned,
this option only induces very low technology
diffusion.

4.3. Scenario 2: Technology-specific, application-
neutral policy design
Figures 5(a) and (b) display the results for Scenario 2
with variations of the tariffs for crystalline silicon
(figure 5(a)) and thin film (figure 5(b)). They show that
a PV technology-specific but application-neutral pol-
icy design induces similar selection patterns of the two
applications in that themore supportedPV technology
becomes dominant and competition between the PV
technologies is low (see also overall levels of deploy-
ment for the most extreme cases, i.e. +15% and
−15%, in supplementary figures 5(a) and (b)). For
crystalline silicon, however, this only applies when a
tariff differential of at least 7% is implemented
because, below 7%, thin film is dominant in the last
year of analysis. This level seems to be the price
difference that would have been necessary in Germany
for crystalline silicon to overcome its generally higher
cost. For the individual applications, the selection
patterns are similar to the results for the historical case
and Scenario 1: at the outset, crystalline silicon
dominates rooftopwhile competition between the two
technologies is present in open space before one
technology becomes dominant in both applications.

4.4. Scenario 3: Technology-neutral, application-
specific policy design
Figures 5(c) and (d) display the results for the
application-specific but technology-neutral policy
design with variations of the tariffs for open space
(figure 5(c)) and rooftop (figure 5(d)). They show that
varying the open-space tariff while keeping the rooftop
tariff constant (figure 5(c)) always results in thin film’s
dominance and only influences the speed at which this
dominance is achieved—that is, how early or late the
colour change to red occurs in the figure. This result
arises from the fact that the baseline tariff is too low to
induce significant capacity additions for the rooftop
application and hence does not offer crystalline silicon
the same cost reductions as thin film for the open-
space application (see overall levels of deployment for
the most extreme cases, i.e. +15% and −15%, in
Supplementary figures 5(c) and (d)). Conversely,
varying the rooftop tariff (figure 5(d)) induces more
competition between the technologies and prevents
the complete lock-in of thin film at rooftop tariffs that
are 13% higher than the open-space tariff. These
results do not only correspond to the historical case,
where rooftop received, on average, a 15% higher

tariff, they also show a remarkable degree of similarity
to the results of Scenario 1 (figure 4(c)), suggesting that
the diffusion of open-space installations is more
influenced by cost reductions from rooftop capacity
additions than by increases in the open-space tariff.

4.5. General observations
Generally, for almost any tariff combination, we find
that one technology becomes dominant. Inmost cases,
the eventually dominant PV technology is thin film,
even though crystalline silicon is initially more eco-
nomically interesting because of its lower BOS costs
and hence a more attractive investment option at the
outset of the analysed time period. As for the historical
case analysis, spillover effects between applications are
the driving force behind thin film’s dominance. In the
scenario analyses, however, policymakers cannot
adjust the policy design throughout the modelled
period. This contrasts with the historical case, where
policymakers adapted the tariffs in 2010 beyond the
5% annual rate in view of the high module price
reductions.

The results show that the relative deployment of
crystalline silicon vis-à-vis thin film is decisive in
which technology ismainly selected. Themore crystal-
line silicon is selected in the early phase the less likely is
a lock-in to thin film. This is because of the initial cost
disadvantage for crystalline silicon which needs to be
overcome by deploying enough crystalline silicon
compared to thin film to push further down its learn-
ing curve. This can be reached through higher tariffs
for crystalline silicon (figure 5(a) and supplementary
figure 5(b)) or for rooftop (figure 5(d) and supplemen-
taryfigure 5(d)).

5.Discussion andpolicy implications

Our findings provide general insights on the role of
deployment policy design in energy technology selec-
tion and offer a qualitative basis to derive policy
implications for multi-purpose technologies. We
demonstrate not only that technology specificity
directly influences technology selection, but also that
application specificity is equally important since the
competitiveness of technologies varies across applica-
tions. The risk of locking-in technologies prematurely
may be reduced by supporting a niche application
where alternative technologies can thrive and profit
from learning feedbacks. In the analysed case, German
policymakers managed to break the initial lock-in of
crystalline silicon and induce competition by includ-
ing open-space installations in the support scheme.

The results illustrate that spillover effects between
applications are extremely important in the process of
technology adoption. Cost reductions attributable to
capacity additions in one application can also induce
high diffusion in other applications thanks to learning
feedbacks in technology-unspecific elements of solar
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PV installations, such as BOS (Shum and Wata-
nabe 2008). Policymakers can leverage these effects by
implementing application-specific policy designs
which are more cost-efficient but achieve the same
goals as application-neutral designs. This outcome

arises from the fact that policymakers may offer higher
remuneration to applications that are initially more
expensive while supporting other applications to a les-
ser extent. To achieve the same results, application-
neutral policies contrarily need to remunerate all

Figure 5. (a), (b)Technology selection patterns under application-neutral, PV technology-specific policy design (Scenario 2)with
variation of the (a) thin-film and (b) crystalline-silicon tariff. (c), (d)Technology selection patterns under application-specific, PV
technology-neutral policy design (Scenario 3)with variation of the (c) open-space and (d) rooftop tariff. The shares of thin film and
crystalline silicon are indicated in red and blue, respectively. In all heatmaps, variation of 0%corresponds to an equal tariff (baseline
tariff) for all installations and, therefore, the results at 0% are the same throughout all heatmaps. The results represent the average
values of ten different random seed runs. Thewhite areas represent years inwhich neither of the PV technologies diffused—that is, no
installationwas built and, hence, no PV technologywas selected.
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applications equally, thus offering unnecessary reven-
ues to cheaper applications.

Finally, the technology selection dynamics differ
between applications. Our analysis shows that dom-
inance by one technology generally occurs in one
application first, then spilling over to other applica-
tions and, finally, locks in the entire market. This gra-
dual change in competitiveness between technologies
leaves policymakers time to react and adapt their pol-
icy design if competition between technologies is
desired. Note that lock-in might be undesirable not
only in the short term in order to avoid potential long-
term inefficiencies but also in the long-run because
technological diversity increases the resilience of the
energy sector against shocks, such as fuel or resource
shortages (van den Bergh et al 2006, Stirling 2010).
Policymakers, however, need to be aware that sup-
porting several technologies over long periods is not
necessarily the most cost-efficient strategy, since the
learning rates for different technologies may vary and
technologies which prove inefficient in the long term
may thus receive unjustified policy support (Azar and
Sandén 2011).

Our insights can be extended to other multi-pur-
pose technologies, such as battery storage (Battke and
Schmidt 2015, Schmidt et al 2016, Stephan et al 2016).
To avoid premature lock-in, policymakers can lever-
age the fact that different technologies are competitive
in different applications and, by designing applica-
tion-specific deployment policies, effectively offer a
level playing field for many technologies (Schmidt
et al 2016). Thus, learning effects can be fostered for all
early-stage technologies, and the ultimately most effi-
cient technologiesmay then be selected bymarkets at a
later point. However, our results also show that com-
petition between technologies within and across appli-
cations and the risk of ending up with a technological
lock-in at the outset need to be understood when
designing deployment policies. Dynamic models cali-
brated with historical data and using predictions of
future price developments can thus be used by policy-
makers to make informed decisions about the design
of future technology deployment policies.

We contribute methodologically to the emerging
but still scarce number of ex-post models for policy
design evaluation (Rai and Henry 2016) and offer a
tool to better understand the mechanisms between
design elements and technology selection. Yet given
the limitations of our modelling approach and case,
future research could explore if similar results are
achieved when a structurally different model is used or
a different policyfield is analysed.
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