
ETH Library

Modeling wetting-phase relative
permeability hysteresis based on
subphase evolution

Journal Article

Author(s):
Khayrat, Karim; Jenny, Patrick

Publication date:
2017-12

Permanent link:
https://doi.org/10.3929/ethz-b-000291498

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Computational Geosciences 21(5), https://doi.org/10.1007/s10596-017-9655-y

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000291498
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10596-017-9655-y
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Comput Geosci (2017) 21:863–875
DOI 10.1007/s10596-017-9655-y

ORIGINAL PAPER

Modeling wetting-phase relative permeability hysteresis
based on subphase evolution

Karim Khayrat1 · Patrick Jenny1

Received: 30 September 2016 / Accepted: 21 April 2017 / Published online: 24 May 2017
© Springer International Publishing Switzerland 2017

Abstract A recently introduced subphase framework for
modeling the nonwetting phase relative permeability is
extended to the wetting phase. Within this framework, the
wetting phase is divided into four subphases, which are dis-
tinguished by their connectivity; backbone, dendritic, iso-
lated and corner-film subphases. The subphase saturations
evolve according to inter-subphase volume transfer terms,
which require modeling. An advantage of distinguishing the
subphases is that wetting phase relative permeability rela-
tions as functions of these constituent subphases can be
developed. In order to develop models for the inter-subphase
volume transfer and the wetting phase relative permeability
in a strongly wetted system, quasi-static flow simulations in
pore networks were conducted to analyze the evolution of
the wetting subphases during drainage and imbibition. The
simulation results suggest that hysteresis trends apparent in
experimentally obtained wetting phase relative permeability
curves for Berea sandstone may be explained by accounting
for corner-film flow.

Keywords Relative permeability · Hysteresis · Porous
media · Two-phase flow

1 Introduction

Modeling two-phase flow in porous media is important for
a large number of applications including carbon dioxide
sequestration and enhanced oil recovery. The basis for many
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macroscopic models describing two-phase flow through
porous media is Darcy’s law, in which relative permeabil-
ities are important parameters. These quantify the conduc-
tance of a porous medium for the two different phases.

In principle, the relative permeabilities are functions of
the spatial fluid-phase arrangement. Nevertheless, the rel-
ative permeabilities are usually modeled as functions of
fluid saturations only, as these have been traditionally read-
ily measured in experiments. However, the relationship
between the relative permeabilities and fluid saturations
exhibits hysteresis, and hence requires nontrivial models.

Several existing nonwetting-phase relative permeability
hysteresis models assume that hysteresis is caused by trap-
ping of the nonwetting phase during imbibition [13, 28,
29]. However, such models do not qualitatively capture the
hysteretic behavior of the nonwetting-phase relative perme-
ability for some media. Furthermore, although experimen-
tally obtained wetting-phase relative permeabilities exhibit
hysteresis [1, 6, 33], they are usually assumed to be non-
hysteretic functions of saturation. In order to understand the
causes for the observed hysteresis, pore-scale information is
required.

Pore-scale information may be obtained either through
numerical simulations or experiments. Numerical simula-
tion methods, such as volume of fluid (VOF) methods [21,
35, 42], lattice Boltzmann methods [17, 31] and pore net-
work models [10, 16, 34] have been widely used to study
two phase flow in porous media. Of the three methods, pore
network models are the cheapest computationally. They
have been used to investigate a wide variety of phenomena
such as the effect of pore-structure on relative perme-
ability (e.g., [2, 3, 9, 11, 23]); the relationship between
capillary pressure and fluid-fluid interfacial area [24, 25,
37]; the effect of inertia on interface displacement patterns
[32]; and ganglion dynamics [14, 15, 43]. An advantage of
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pore-network simulations compared to experiments is that
one can isolate and study the effects of several microscale
properties, such as pore size distribution, flow rates, and
contact angle hysteresis on the macroscale flow properties
such as relative permeability.

Recently, a large number of experiments have been con-
ducted in which two-phase flow processes in porous media
are imaged using X-ray computed micro-tomography. This
has made a vast amount of pore-scale data available such
as the Euler characteristic [18], interfacial surface area [39]
and ganglion size distribution [8]. However, current Darcy-
scale models typically do not incorporate such information,
but rather rely on empirical relations between the saturation
and macroscopic quantities such as relative permeabilities
and capillary pressure. In this paper, a model for the wet-
ting phase relative permeability will be proposed based
on pore-scale observations obtained through pore network
simulations.

In a previous theoretical work presented by Hilfer [19],
the nonwetting and wetting fluid phases is each divided
into a continuous hydraulically connected subphase and a
trapped nonpercolating subphase. Hysteretic relations for
relative permeabilities and capillary pressure were devel-
oped based on this division. Building on this work, a sub-
phase modeling framework was recently devised by Khayrat
and Jenny [27], where the connected nonwetting-phase
is further divided into backbone and dendritic subphases.
Pore-network simulations were used to study the evolution
of the subphases in the context of modeling the nonwetting
phase relative permeability. A nonwetting-phase relative
permeability model as a function of the backbone subphase
was proposed which captured complex hysteretic behavior.

Here, the subphase modeling framework is extended
to the wetting phase with the wetting phase sub-divided
into backbone, dendritic, film, and isolated subphases. In
Section 2, the wetting subphases are defined and their
evolution equations are presented. The evolution equations
contain volume transfer terms which require modeling. For
this purpose, experimental data is required. Due to the dif-
ficulty in obtaining such data, quasi-static pore-network
simulations are employed as a substitute for experiments.
Simulation results for the evolution of the wetting subphases
as well as for the wetting-phase relative permeability are
discussed in Section 3. Next, in Section 4, insights gained
from flow simulations in pore-network are used to propose
a model for the wetting-phase relative permeability in terms
of the subphase saturations.

2 Theory

In this paper, incompressible immiscible two-phase flow
in a rigid porous medium is considered, where one fluid

is nonwetting and the other is wetting. The receding and
advancing contact angles are assumed to be zero, i.e.,
strongly wetting conditions are assumed. Furthermore, suf-
ficiently low capillary numbers are assumed such that vis-
cous effects can be neglected. Let Sn and Sw denote the
nonwetting and wetting-phase saturations, respectively. The
mass conservation equations of the wetting and nonwetting
phases can be written as [5]

φ
∂Sα

∂t
− ∂

∂xi

(
K

μα

krα

∂Pα

∂xi

)
= 0, (1)

where Darcy’s law for two-phase flow is assumed and grav-
ity is neglected. Here, φ is the porosity of the porous
medium, K the absolute permeability, and Pα , μα and
krα the pressure, viscosity and relative permeability of
phase α, respectively, where α = n denotes the nonwet-
ting and α = w the wetting phase. The nonwetting and
wetting pressures are related by the macroscopic capillary
pressure

Pc(S) = Pn − Pw. (2)

For simplicity, throughout this paper, the wetting and non-
wetting saturations should be interpreted as scaled satu-
rations, related to the actual phase saturation Sα by the
relation

Sα = Sα − SwIR

1 − SwIR

, (3)

where SwIR
is the connate (or irreducible) wetting saturation.

2.1 Wetting fluid subphases

The wetting phase can be divided into four separate sub-
phases: a backbone subphase, a dendritic subphase, a film
subphase, and an isolated subphase (see Fig. 1a). The total
wetting-phase saturation can be written as

Sw = Swb + Swd + Swi + Swf , (4)

where the subscripts b, d, i and f identify the backbone,
dendritic, isolated and film subphases, respectively.

In order to define the subphases, the porous medium
is assumed to be represented by a network consisted of
pore-bodies and pore-throats. A representative elementary
volume (REV) [5] of the porous medium is then considered,
which is large enough such that the subphase saturations are
independent of the REV size. The wetting backbone sub-
phase consists of the volume of wetting-phase-filled (WPF)
pores which can be connected to both inlet and outlet bound-
aries of the REV by at least two independent simple paths
through WPF pores. Two paths are independent if they
do not share a pore-throat. The wetting dendritic subphase
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(a) (b) (c)

(d) (e)

Fig. 1 Conceptual illustration of the wetting backbone (dark blue),
dendritic (green), film (light blue) and isolated (yellow) subphases
during imbibition. The gray and red regions represent the solid and
nonwetting phase, respectively. The dashed ellipses highlight changes
in the fluid-fluid interface. The flow direction is from bottom to top.
Note that the illustration represents a two-dimensional slice of a porous
medium and that all the volume belonging to the film subphase is
connected through the wetting phase in three dimensions. a Hypo-
thetical fluid distribution at the beginning of imbibition. b Increase
in the backbone subphase saturation after a cooperative pore-filling

event and the resulting transfer of dendritic and film subphase vol-
umes to the backbone subphase volume. c Increase in the dendritic
subphase saturation after piston displacement events and the resulting
transfer of film subphase volume to the dendritic subphase volume.
d Increase in the isolated subphase saturation after snap-off displace-
ment events and the resulting transfer of film subphase volume to
the isolated subphase volume. e Increase in the dendritic subphase
saturation after a cooperative pore-filling event and the resulting trans-
fer of isolated and film subphase volume to the dendritic subphase
volume

consists of the volume of WPF pores which can be con-
nected to the REV boundary by only one independent path
through WPF pores. The wetting isolated subphase consists
of WPF pore-volumes surrounded by NPF pores.

The film subphase consists of the volume of thin wet-
ting films covering the solid surface as well as thicker films
in the corners of nonwetting-phase-filled (NPF) pores. The
thin wetting films are typically a few nanometers thick [41],
and their contribution to the saturation is neglected here.
On the other hand, the volume of the corner films are non-
negligible [40] and taking them into account is important
in correctly predicting the wetting-phase relative perme-
ability [10]. Note that under strong wettability conditions,
the wetting phase forms a connected phase even at low
wetting-phase saturation values.

Note that the considered REV is required to satisfy both
a lower and an upper bound. The lower bound is required to
ensure that the REV is sufficiently large, such that the sub-
phase saturations are independent of the REV size. Such a
lower bound may not necessarily exist if the porous medium
is heterogeneous at all scales. Furthermore, since we have
assumed capillary dominated flow, an upper bound for the

REV size is required such that the macroscale capillary
pressure Ca and macroscopic gravillary number Gl [20] are
negligibly small. This ensures that the viscous pressure drop
and gravitational pressure drop across the REV are negligi-
ble compared to the capillary pressure, and hence capillary
equilibrium within the REV can be assumed.

2.2 Subphase evolution

During imbibition, the wetting-phase saturation increases
and the wetting subphase saturations evolve with volume
being transferred between the subphases. An increase in
the wetting-phase saturation can result in a direct increase
in the wetting backbone due to a cooperative pore-filling
displacement and a resulting transfer of dendritic and film
subphase volumes to the backbone subphase (Fig. 1a, b).
Here, “direct” indicates that the volume previously occupied
by the nonwetting phase is transferred to a particular wetting
subphase after a displacement event without initially being
transferred to another subphase.

A direct increase in the dendritic saturation can occur
either due to piston-type displacements (Fig. 1b, c), resulting
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in volume transfer from the film to the dendritic subphase,
or due to cooperative pore-filling displacement (Fig. 1d, e),
resulting in volume transfer from the film (and possibly
the isolated) subphase to the dendritic subphase. A direct
increase in the isolated subphase can occur due to snap-
off displacement (Fig. 1c, d), resulting in volume transfer
from the film subphase to the isolated subphase. It can also
occur due to cooperative pore-filling and piston-type dis-
placements. Finally, a direct increase in the film subphase
saturation is caused by swelling of wetting film as the cap-
illary pressure decreases during imbibition. This swelling
can only occur in pore-bodies occupied by the connected
non-wetting subphase due to the assumed incompressibility.

Similarly, during drainage, the wetting phase decreases,
which results in a direct decrease in the wetting subphases,
as well as volume transfer between the subphases. Further-
more, the nonwetting phase displaces the wetting phase only
through piston-type displacements, leading to different fluid
phase arrangements in the porous medium than during imbi-
bition. This in turn results, for drainage-imbibition cycles, in
the non-uniqueness of the relative permeabilities as a func-
tion of the fluid saturations. Modeling the evolution of the
subphase evolution would allow to develop relative perme-
ability models which take into account the contributions of
the different subphases.

The evolution of the wetting subphase saturations can be
described by

φ
∂Swb

∂t
= λwbφ

∂Sw

∂t
+ Qwd−wb − Qwb−wf , (5)

φ
∂Swd

∂t
= λwdφ

∂Sw

∂t
− Qwd−wi − Qwd−wb (6)

−Qwd−wf ,

φ
∂Swi

∂t
= λwtφ

∂Sw

∂t
+ Qwd−wi − Qwi−wf (7)

and φ
∂Swf

∂t
= λwf φ

∂Sw

∂t
+ Qwb−wf + Qwd−wf (8)

+Qwi−wf ,

where Qβ1−β2 is the volume transfer between subphases
β1 and β2, and λwb, λwd, λwf , λwt ∈ [0, 1] with λwb +
λwd + λwf + λwt = 1. The terms of the form λβφ ∂Sw

∂t

indicate the direct increase in subphase β. Note the absence
of a term capturing the volume transfer between the back-
bone and isolated wetting subphases Qwb−wi . Under the
assumption that only one pore scale event may occur instan-
taneously, during imbibition a volume of isolated wetting
phase is transferred to the dendritic subphase first and can
only become part of the backbone subphase when another
fluid path is established after further imbibition. In order to
provide relations for Qβ1−β2 and λβ , pore-scale information
is required.

3 Pore network study

In order to study the wetting subphase saturations as well
as the wetting-phase relative permeability (WRP), pore-
network models are employed. Note that it is not our aim
here to compare experimental data which pore-network
simulation results. Rather we consider pore-network sim-
ulations as substitutes for real experiments and rely on
their qualitative behavior being correct. However, provided
sufficient data are available, a similar analysis could be
conducted based on laboratory experiments.

3.1 Network models

Two structured pore-network models, representing artificial
consolidated (network A) and unconsolidated (network B)
porous media, as well as one unstructured pore-network rep-
resentative of Berea sandstone (network C), are employed
in this work. The structured networks consist of 120 ×
60 × 60 pore bodies (120 pore bodies along the general
flow direction) with each pore body having 6 incident pore
throats. The pore elements (i.e., pore throats and pore bod-
ies) of networks A and B have square cross-sections with
inscribed radii distributed, following [23], according to the
beta distribution

f (r) = (r − rmin)
a−1 (rmax − r)b−1

(rmax − rmin)
a+b−1 B(a, b)

, (9)

where a and b are shape parameters, rmin and rmax are
the minimum and maximum inscribed radii, respectively,
and B(a, b) is the beta function. The parameters used are
given in Table 1. Network C was generated by the stochas-
tic pore network generator described by [22] and consists of
670,000 pore-bodies and 1.4 million pore-throats, each hav-
ing a cross-section characterized by a different shape-factor

G = Atot

P2
, (10)

where P and Atot are the cross-sectional perimeter and
area of the pore element, respectively. The statistics of net-
work C is shown in Table 2. All networks used here are
homogeneous and isotropic.

Table 1 Parameters of beta distribution, Eq. (9), used to sample the
pore-elements for the artificial structured pore-networks [23]

Consolidated Unconsolidated

Bodies Throats Bodies Throats

a 1.25 1.5 2.5 1.5

b 2.5 2 1.5 1.5

rmin (μm) 20 1 40 15

rmax (μm) 75 25 64 40
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Table 2 Pore size statistics of
network C, generated by the
stochastic pore network
generator described in [22]

Maximum Minimum Mean Standard deviation

Inscribed pore-body radius (μm) 73.5 3.62 19.3 8.44

Inscribed pore-throat radius (μm) 48.7 0.90 10.4 6.37

Coordination number 19 2 4.14 1.43

Number of pore bodies 0.67E6

Number of pore throats 1.41E6

Network size (cm3) 1.8 × 0.9 × 0.9

3.2 Simulation of drainage and imbibition

In this subsection, the simulation of drainage and imbi-
bition in a pore-network are briefly described and the
treatment largely follows [34]. The implementation details
for the drainage and imbibition algorithms can be found in
[26, Appendix C].

In order to simulate both primary and secondary
drainage, an algorithm essentially identical to the standard
invasion percolation algorithm [44] is employed and con-
sists of successive piston-type pore displacements. At each
step, the WPF pore throat or pore body which has the
least threshold capillary pressure is invaded by the non-
wetting phase. The capillary pressure is set to be equal to
the largest threshold capillary pressure overcome. This is
repeated until a desired nonwetting saturation is reached
or the pore-network is fully drained. Following [34], the
threshold capillary pressure pe

c of a pore element is given by

pe
c = γ

1 + 2
√

πG

r
. (11)

Here, r is the inscribed radius of a pore-element, γ is
the interfacial tension between the nonwetting and wetting
phases.

The simulation of imbibition takes into account, in addi-
tion to piston-type displacements, snap-off and cooperative
pore-body filling events. At each step of the imbibition sim-
ulation, the NPF pore throat or pore body which has the
greatest threshold capillary pressure is invaded by the wet-
ting phase and the capillary pressure is set to be equal to
the least threshold capillary pressure overcome. The thresh-
old capillary pressure for piston-displacement is identical to
Eq. (11), while the threshold capillary pressure for snap-off
in a pore throat (for zero contact angle) is given by (see [34])

p
snapoff
c = γ

rt
, (12)

where rt is the inscribed radius of pore throat. For coopera-
tive pore filling, the threshold capillary pressure depends on
the number of neighboring throats filled with non-wetting
fluid [30]. A cooperative pore-filling mechanism of type Iz

occurs when z neighboring throats are filled with the non-
wetting phase. Following [23], a simple capillary pressure

threshold for the Iz displacement mechanism in a pore body
of radius rb is used:

p
coop
c = γ

1 + 2
√

πG

zrb
. (13)

Note that after a cooperative pore filling mechanism Iz,
with z > 1, or snap-off has occurred, nonwetting fluid may
become trapped. Trapped regions are excluded from fur-
ther imbibition displacement events. A visualization of the
subphase evolution in network C for primary drainage and
secondary imbibition is shown in Fig. 2.

3.3 Pore element conductance

In order to compute the relative permeability of the entire
network for a given fluid configuration, the conductances
of each fluid in a pore element needs to computed. When
a pore element (i.e. pore throat or pore body) is filled with
nonwetting fluid at the center of the pore and wetting fluid
at its corners, the wetting and non-wetting cross-sectional
areas are

Aw = rw

(
1

4G
− π

)
, (14)

where rw = γ /Pc and

An = Atot − Aw, (15)

respectively [4]. This models the dependence of the corner-
film volume on the capillary pressure, which is illustrated in
Fig. 3.

The local saturation in a pore element is given by

Sloc = Aα

Atot

, (16)

where α ∈ {n,w}. Given the local saturation in each pore
element, the saturation in the entire network can be obtained
for each fluid subphase.

The hydraulic conductance of nonwetting fluid in a pore-
element is modeled by (see [4])

gn = r2H,nAn

8μnl
, (17)

where l the length of the pore element, μn is the viscosity of

the nonwetting phase and rH,n = 1
2

(
r +

√
An

π

)
is the mean
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(a) Sw = 0.78 Swbulk = 0.75 Swc = 0.72

(b) Sw = 0.55 Swbulk = 0.51 Swc = 0.39

(c) Sw = 0.090 Swbulk = 0.067 Swc = 0.0

(d) Sw = 0.60 Swbulk = 0.52 Swc = 0.17

Fig. 2 Structure of the film (left column), backbone (center-left col-
umn), dendritic (center-right column) and isolated (right column)
wetting subphases during a primary drainage-secondary imbibition
cycle in network C at four different wetting phase saturations. a Sw =
0.78 during drainage. b Sw = 0.55 during drainage. c Sw = 0.09

during drainage. d Sw = 0.6 during imbibition. Indicated in all figures
are the connected saturation Swc = Sw −Swf and Swbulk

= Swb+Swd ..
Note that the structure of the film subphase as illustrated here is the
same as that of nonwetting-phase

hydraulic radius. The hydraulic conductance of the wet-
ting fluid through the corners of a pore element is modeled
by

gw = r2wAw

8βμwl
, (18)

where μw is the viscosity of the wetting phase and β = 5.3
is a dimensionless resistance factor (see [36] for details).
When a pore-element is completely filled with wetting fluid,
the conductance can be computed as

gw = r2H Atot

8μwl
, (19)
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(a) (b)

Fig. 3 Wetting corner film (blue) and nonwetting fluid (red) in a
square cross-section of a pore or throat. a At a capillary pressure
Pc = P0. b At a capillary pressure Pc < P0

where rH = 1
2

(
r +

√
Atot

π

)
. The effective conductance

gα,ij of phase α between the centers of pore i and pore j in
a network is computed by the harmonic average

1

gα,ij

= 1

gα,k

+ 1

2

(
1

gα,i

+ 1

gα,j

)
, (20)

where gα,k is the conductance of the throat connecting pore
i and pore j .

3.4 Relative permeability

Given a certain fluid configuration and the corresponding
pore element conductances, one can obtain the relative per-
meabilities by solving for the pressure field in the network
with an imposed unit pressure gradient in a given direction
and using

krα = Qα
totμαLnet

KAnet

, (21)

where Anet is the network’s cross-sectional area orthogo-
nal to the pressure gradient, Lnet is its length along the
pressure gradient, K is the permeability of the network and
Qα

tot is the across of the network resulting from the applied
pressure gradient. Note that an implicit assumption in this
procedure is the fluid-fluid interfaces are frozen and the

Fig. 5 Primary drainage-secondary imbibition wetting-phase relative
permeability curves for Berea Sandstone obtained by pore-network
simulations, compared to those obtained experimentally in a super-
critical CO2/brine system (experiment 25 in [1]) and a oil/water system
[33] (as presented in [7]). The experimental results are scaled accord-
ing to Eq. (3) with SwIR

= 0.35 for the CO2/brine system and
SwIR

= 0.3 for the oil/water system

fluid-configuration is homogeneous (see, for example, [12]
for more details).

The PD-SI-SD curves of the wetting-phase relative per-
meability for networks A, B and C are shown in Fig. 4.
The wetting-phase relative permeability for all networks is
larger during SI than during PD. It can also be observed
from Fig. 4 that the WRP for the SI-SD cycle is hysteretic,
being larger during SI than during SD. In summary kPD

rw <

kSD
rw < kSI

rw for the krw − Sw relation.
Figure 5 compares the PD and SI wetting phase-relative

permeabilities for Network C with experimental measure-
ments by [1] for a supercritical CO2/brine system in Berea
sandstone, and by [33] for an oil/water system in Berea
sandstone. There is good qualitative agreement between the
network modeling and both of the experimental results.
This suggests that the network model employed sufficiently
captures the pore-scale mechanisms responsible for WRP
hysteresis in strongly wetted systems.

(a) (b) (c)

Fig. 4 Pore-network simulation results: PD, SI and SD curves of the wetting-phase relative permeability vs. the wetting-phase saturation for a
network representative of (a) an artificial consolidated porous medium, (b) an artificial unconsolidated porous medium, and (c) Berea sandstone
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(a) (b) (c)

Fig. 6 Pore-network simulation results: PD, SI and SD curves of the normalized film saturation S∗
wf = Swf

Sn+Swf
vs. the wetting-phase saturation

for a network representative of a an artificial consolidated porous medium, b an artificial unconsolidated porous medium, and c Berea sandstone

The quantitative discrepancy between the network mod-
eling results and either of the two experimental results can
be attributed to the assumption of a fixed zero advancing and
receding contact angle, the simplified geometry and topol-
ogy used in network models, and the simplified equations
used to calculate the phase conductances in each pore ele-
ment. A better match may be obtained by tuning the network
model parameters to fit either of the two experiments.

3.5 Film subphase and capillary pressure

The cause of hysteresis in the Sw − krw relation can be
explained by considering the evolution of the film subphase.
Figure 6 shows the evolution of the normalized film sat-
uration S∗

wf = Swf /
(
Sn + Swf

)
. Note that hysteresis is

significant in the S∗
wf -Sw relation with S∗PD

wf < S∗SD
wf <

S∗SI
wf . This is the same trend as observed for the WRP.

During drainage, the capillary pressure increases and the
wetting film in pores occupied by the connected nonwet-
ting subphase shrinks, while during imbibition the capillary
pressure decreases and the wetting film swells in pores
occupied by the connected nonwetting subphase. The PD-
SI-SD curves of the capillary pressure for the three different
networks are shown in Fig. 7.

The behavior of film subphase can account for the hys-
teresis in Sw-krw relation as follows: At low wetting-phase
saturations, the main bottle-neck for the wetting-phase rela-
tive permeability is the wetting film as it has a significantly
lower conductance compared to that of the wetting-phase
filled pores. Due to film swelling, the conductance of
the wetting film is higher during imbibition than during
drainage, resulting in the observed hysteresis in the krw−Sw

curves shown in Fig. 4.

3.6 Isolated subphase

Figure 8 shows the PD-SI-SD curves of the isolated wet-
ting subphase saturation Swi vs. the bulk wetting-phase
saturation Swbulk

= Swb + Swd + Swt for networks A,
B and C. During primary drainage, the nonwetting phase
displaces and surrounds the wetting phase, causing islands
of the wetting phase to become isolated. Below a thresh-
old bulk wetting-phase saturation Scrit dr

wbulk
, Swi = Swbulk

and Swc = Swb + Swd = 0. Further drainage results
in the draining of the isolated subphase through the wet-
ting film. During imbibition, clusters of isolated wetting
phase form through snap-off displacements and these clus-
ters grow through cooperative pore-filling events until, for

(a) (b) (c)

Fig. 7 Pore-network simulation results: PD, SI and SD curves of the capillary pressure vs. the wetting-phase saturation for a network
representative of a an artificial consolidated porous medium, b an artificial unconsolidated porous medium, and c Berea sandstone
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(a) (b) (c)

Fig. 8 Pore-network simulation results: PD, SI and SD curves of Swi vs. Swbulk
for a network representative of a an artificial consolidated porous

medium, b an artificial unconsolidated porous medium, and c Berea sandstone

networks B and C, a threshold bulk wetting-phase saturation
Scrit imb

wbulk
is reached such that a cluster spanning the network

is formed. This threshold is not reached for network A due
to significant non-wetting trapping compared to the other
two networks. For network B, Scrit dr

wbulk
≈ Scrit imb

wbulk
, while for

network C Scrit dr
wbulk

< Scrit imb
wbulk

. Further imbibition results
in a decrease in the isolated subphase saturation until the
residual nonwetting-phase saturation is reached. Note that
no hysteresis is observed in the SI and SD curves of the
Swbulk

− Swi relation.

3.7 Backbone and dendritic subphases

The PD, SI and SD curves of the subphase saturations Swb

and Swd for networks A, B and C are shown in Fig. 9.
For network A, Swc = Swb + Swd is nonzero only dur-
ing primary drainage. Moreover, due to a high Scrit imb

wbulk
, the

range in which Swc > 0 is insignificant for network C.
For network B, it can be observed that, for a given Swc,
SSI

wb < SSD
wb < SPD

wb and SPD
wd < SSD

wd < SSI
wd (see

Fig. 9b).

4 Modeling and calibration

In this section, a model for the wetting-phase relative per-
meability will be proposed and then calibrated using the
previously presented network simulation results. It will be
shown that the relative permeability may be modeled as a
function of the bulk saturation Swbulk

and the film saturation
Swf . Since the volume transfer terms between the subphases
constituting the bulk phase, i.e., Qwd−wi and Qwd−wb, as
well as the terms representing their direct change λwdφ ∂Sw

∂t
,

λwbφ
∂Sw

∂t
, λwiφ

∂Sw

∂t
, are not required to compute Swbulk

and
Swf , their modeling will not be pursued here. Models for
these terms may be developed in a similar manner as for the
volume transfer terms between the backbone, dendritic and
trapped nonwetting phase as shown in [27], if required.

For the following, a reduced set of equations

φ
∂Swbulk

∂t
= (

1 − λwf ilm

)
φ ∂Sw

∂t
− Qwbulk−wf , (22)

and φ
∂Swf

∂t
= λwf ilm

φ ∂Sw

∂t
+ Qwbulk−wf , (23)

(a) (b) (c)

Fig. 9 Pore-network simulation results: PD, SI and SD curves of Swb

vs. Swc (solid lines) and Swd vs. Swc (dashed lines) for a network
representative of a an artificial consolidated porous medium (values

are nonzero only for PD curve), b an artificial unconsolidated porous
medium, and c Berea sandstone
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which is obtained by summing Eqs. (5–7) and is sufficient
for modeling the bulk and film saturations will be consid-
ered. Here, Qwbulk−wf = Qwb−wf + Qwd−wf + Qwi−wf

is the volume transfer between the bulk and the film wet-
ting subphases, a model of which will be developed in
Section 4.2.

4.1 Relative permeability

Contrary to the case of the nonwetting phase described in
[27], where the nonwetting-phase relative permeability was
determined to be a nearly non-hysteretic function of the
nonwetting backbone saturation, the wetting-phase relative
permeability is function of all the subphase saturations since
they all contribute to the flow. However, it was observed in
Figs. 4 and 6 that the hysteresis in the wetting-phase rel-
ative permeability may be explained by the swelling and
shrinking of the wetting film saturation during imbibition
and drainage. Based on this, we propose to model the
wetting-phase relative permeability by the relation

krw =
((

1 − Swbulk

) (
Swf

1 − Swbulk

)αwp

+(
Swbulk

)1+βp
)1/p

,

(24)

which is a power average of the contribution of the film
saturation to the WRP, modeled by

(
Swf /

(
1 − Swbulk

))αw ,

and that of the bulk saturation, modeled by
(
Swbulk

)β . Note
that for p = 1 this relation reduces to an arithmetic aver-
age, while for p = −1 it reduces to a harmonic average.
Figure 10 shows a comparison between the wetting-phase
relative permeability computed using Eq. (24) for network B
and that obtained from pore-network simulations. Note that
the values for Swf and Swbulk

, used to compute the modeled

Fig. 10 Comparison between wetting-phase relative permeability
curve obtained from the calibrated model Eq. (24) (solid lines) and
from pore-network simulations (dashed lines) for network B. The
parameters used in Eq. (24) are α = 1.7, β = 0, p = 0.18. The values
used for Swf and Swbulk

are obtained from the network simulations for
network B

relative permeability, are also obtained from the network
simulations. The model is able to capture the hysteretic
behavior of the Sw − krw relation with a good match for the
secondary imbibition and secondary drainage curves. How-
ever, there is a discrepancy between the model and network
results for the primary drainage curve, possibly due to the
decrease of the importance of the film subphase saturation
for the WRP at higher wetting-phase saturations.

4.2 Film saturation

The terms λwf ilm
and Qwbulk−wf in Eq. (22), required to

compute the film saturation, will now be modeled. It is use-
ful to subdivide the film subphase into two components;
one present in the pores occupied by the connected nonwet-
ting phase (which swells or shrinks as the capillary pressure
decreases or increases), and another which is present in
pores occupied by the trapped nonwetting phase (which due
to the assumed incompressibility does not swell or shrink).
The saturations of former and latter are denoted in the fol-
lowing as Swf c and Swf t , respectively with Swf = Swf c +
Swf t .

The volume fraction of the film subphase in the pores
occupied by the connected nonwetting phase is assumed to
be inversely proportional to the capillary pressure and is
modeled by the power law

Swf c

Swf c + Snc

= AP
−αwf
c , (25)

where A and αwf > 0 are fitting parameters and Snc is
the connected nonwetting-phase saturation. Differentiating
with respect to t , it can be shown that

∂Swf c

∂t
= κ

1 − κ

∂Snc

∂t

−αwf AP
−αwf −1
c Snc

1 + κ

(1 − κ)2

∂Pc

∂t
, (26)

where κ(Pc) = AP
−αwf
c . The first term on the right-hand

side corresponds to the change in Swf c due to drainage
(imbibition) of pores, as well as untrapping (trapping) of the
nonwetting phase. This is the contribution to the volumetric
transfer term Qwbulk−wf arising from the transfer of Swf c to
Swbulk

. The second term on the right-hand side corresponds
to the shrinking (swelling) of the film subphase as the capil-
lary pressure increases (decreases). Note that this term also
corresponds to the term λwf

∂Sw

∂St
in Eq. (23), which is the

direct increase or decrease of the film subphase. Hence, we
obtain an expression for λwf ilm

:

λwf ilm
= −αwf AP

−αwf −1
c Snc

1 + κ

(1 − κ)2

∂Pc

∂Sw

(27)

In order to model Swf t , imbibition and secondary drainage
have to be distinguished (Swf t = 0 during primary
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drainage). During imbibition, the change in Swf t is related
to the capillary pressure at which trapping takes place, and
can be written as

∂Simb
wf t

∂t
= AP

−αwf
c

1 − AP
−αwf
c

∂Snt

∂t
, (28)

where Snt is the trapped nonwetting-phase saturation. How-
ever, during secondary drainage, the change in Swf t due to
untrapping is determined not by the capillary pressure at the
time of trapping but that at the time at which trapping took
place. This can be written as

∂Sdr
wf t

∂t
= AP imb

c (Snt )
−αwf

1 − AP imb
c (Snt )

−αwf

∂Snt

∂t
. (29)

where P imb
c is the capillary pressure function for the imbi-

bition preceding the secondary drainage but evaluated at the
current Snt . Summing Eqs. (26) and (28) for imbibition and

(a)

(b)

Fig. 11 Comparison between the S∗
wf − Sw curves obtained from the

model Eqs. (26–29) (solid lines) and from pore-network simulations
(dashed lines). a For network B with calibrated parameters A = 1.12 ·
105 and α = 1.40. b For network C with calibrated parameters A =
126 and α = 1.03. The values used for Pc and Snt are obtained from
network simulations

(26) and (29) for drainage, one arrives at an expression for
Qwbulk−wf for imbibition and drainage:

Qimb
wbulk−wf = κ

1 − κ

∂Snc

∂t
+ κ

1 − κ

∂Snt

∂t
,

Qdr
wbulk−wf = κ

1 − κ

∂Snc

∂t
+ AP imb

c (Snt )
−αwf

1 − AP imb
c (Snt )

−αwf

∂Snt

∂t
.

Figure 11 shows the S∗
wf − Sw relation as obtained from

pore-network simulation data and by the calibrated model
Eqs. (26–29) for networks B and C. As can be observed,
there is excellent quantitative agreement for the primary
drainage curves, which were used to calibrate the param-
eters A and αwf in Eq. (25). There is poorer quantita-
tive agreement for the secondary imbibition and secondary
drainage curves. Better agreement may be obtained by using
the SI and SD data in order to calibrate the parameters.

5 Discussions and conclusions

The pore-network study presented in Section 3 strongly
suggests that the hysteresis in the wetting phase relative per-
meability is due to difference in the wetting corner film
thickness between drainage and imbibition. Furthermore,
the hysteresis trends presented here match two-phase exper-
imental results reported in [1] and [33], where the wetting
phase relative permeability is larger during imbibition than
during drainage for a given wetting phase saturation. Based
on observations from the network study, a model for the
wetting phase relative permeability was proposed, with its
independent variables being the bulk and film wetting sub-
phases. The proposed model was shown to capture the
hysteretic trends in the Sw − krw relation.

However, the difference between advancing and reced-
ing contact angles (another possible cause for hysteresis),
which occurs in realistic porous media, was not considered
in the pore-network study presented here. In network mod-
els which capture contact angle hysteresis (e.g., [34]), film
swelling is initially suppressed during imbibition and the
contact angle in each pore is increased until the receding
contact angle is reached. On reaching the receding con-
tact angle, the film starts swelling. Taking this behavior
into account can change both the volume of the wetting
film phase as well as the sequence in which the individual
pores are imbibed. This in turn would lead to changes in the
observed Sw − krw curves. In order to apply to more gen-
eral cases, the proposed subphase evolution models would
need to be extended to take these pore-scale mechanisms
into account.

Analyzing the wetting subphases was important in under-
standing relative relative permeability hysteresis. A similar
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analysis can be done on experimentally obtained data, if
available. Note that such an analysis is not only relevant for
modeling relative permeability hysteresis, but also has great
value for modeling dispersion in two-phase flow through
porous media. For example, it has been shown previously
in [38] that taking film flow into account greatly affects the
dispersion coefficient in the wetting phase.
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