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ABSTRACT: The coupling of the local approach to fracture and the polycrystalline aggregates simulations
is investigated in this paper. A series of Representative Volume Elements (RVEs) drawing randomly the crys-
tallographic orientations and the grain geometries are firstly simulated. Then the resulting realizations of the
principal stress random field are used in order to identify the properties of a Gaussian random field using the
periodogram approach. The anisotropy of the stress random field is observed and the correlation lengths are
identified. Then the synthetic realizations of the identified principal stress random field are simulated using the
spectral simulation method. The weakest link theory is lastly applied with this identified principal stress field
and simulations of carbides distributions.

1 INTRODUCTION

The brittle fracture behavior of the A508 steel has
been thoroughly studied for a long time using the mul-
tiscale analysis of material properties. At the meso-
scopic scale, one realized a serie of failure tests
on specimens and estimated an experimental failure
probability curve. In another way, a mechanical mod-
eling of the specimen was realized to apply the lo-
cal approach to fracture theory [1] and the so-called
Beremin model [2], which assumes that cleavage is
controlled by the propagation of the weakest link
between a population of pre-existing micro-defects
in the material. The fitting of the failure probability
curve by the Beremin model gave us the brittle prop-
erties of the material.
This approach has been recently coupled with poly-
crystalline aggregates simulations at the microscopic
scale [3]. The main idea of such an approach is to
model a single material representative volume ele-
ment (RVE) as a polycrystalline aggregate and com-
pute the principal stress field under given load condi-

tions. Then a statistical distribution of defects (car-
bides) is sampled over the volume. In each Gauss
point of the finite element mesh the cleavage crite-
rion is attained somewhere along the load path if a
Griffith-like criterion applied to the size of the carbide
in this Gauss point is reached (cleavage propagation).
Within the weakest link theory the failure of a single
critical carbide induces the failure of the RVE. Then
the failure probability curve of the RVE is fitted using
the Beremin model [3, 4] to explain the dependence
on temperature of material properties. However it is
believed that numerous parameters such as grain ge-
ometry and orientation may influence the stress field
and thus the final result.
In this paper we propose to simulate a series of RVEs
by drawing randomly the crystallographic orienta-
tions and the grain geometries of the material. The
resulting realizations of the principal stress field are
used in order to identify the properties of a Gaussian
random field using the periodogram approach [5, 6].
The anisotropy of the stress random field is observed
and correlation lengths are identified. The weakest



link theory the failure is then applied with this identi-
fied cleavage stress field and simulations of carbides
distributions.

2 LOCAL APPROACH TO FRACTURE AT
MICROSCOPIC SCALE

2.1 Polycrystalline aggregates simulation

The A508 ferritic steel has a granular microstructure
with some ferrite lath packets of different lattice ori-
entations in each grain. The synthetic representation
of this microstructure is showed in [7]. In this work,
the simplified microstructure is used. The construc-
tion of gralunar structure is based on the Voronoi
polyhedra model [8], generated in this work with the
Quickhull algorithm [9]. The same crystallographic
orientation, defined by the three Euler angles ϕ1, φ,
ϕ2, is randomly assigned to all integration points in-
side each individual grain using a uniform distribu-
tion. The random granular structure and the random
crystallographic orientation of each grain are the ori-
gin of the randomness of the stress field in the mate-
rial. Two cases of random microstructure are consid-
ered.

• Case 1 named random geometry (RG): Both the
granular structure and the crystallographic orien-
tations are randomly simulated.

• Case 2 named fixed geometry (FG): The granular
structure is fixed, only the crystallographic ori-
entations are randomly simulated.

Figure 1 shows a polycrystalline aggregate covering
a square volume of size 1000 containing 100 grains.
The random crystallographic orientations are repre-
sented by different colors in each grain. Ferrite has a
body centered cubic (BCC) structure. Three families
of slip systems should be taken into account, namely
{110}〈111〉, {112}〈111〉, {123}〈111〉. However, fol-
lowing [10] it is assumed that the glides on the plane
123 are a succession of micro-glides on the planes
110, 112. This leads to consider only the two first fam-
ilies, which yields 24 slip systems by symmetry. The
model for crystal plasticity chosen in this work has
been originally formulated in [11] within the small
strain framework. The total strain rate ε̇ij is classi-
cally decomposed as the sum of the elastic strain rate
ε̇eij and plastic strain rate ε̇pij .

ε̇ij = ε̇eij + ε̇pij (1)

The elastic part follows the Hooke’s law and the plas-
tic part is calculated from the shear strain rates of the
24 active slip systems.

ε̇pij =
24∑
g=1

γ̇gRg
ij (2)

where γ̇g is the shear strain rate of the slip system g
and Rg

ij is the Schmid factor which is the geometri-
cal projection tensor. The latter is calculated from the
normal vector to the gliding plane n and the direction
of gliding m.

Rg
ij =

1

2
(minj +mjni) (3)

The Resolved Shear Stress (RSS) τ g of the slip system
g is the projection of the stress tensor via the Schmid
factor.

τ g = Rg
ijσij (4)

The shear strain rates γ̇g of each slip system g are the
internal variable that describes plasticity. The evolu-
tion of these variables depends on the difference be-
tween the RSS τ g and the actual critical RSS τ gc in an
elastoviscoplastic setting:

γ̇g =

(
τ g − τ gc
K

)n
sign(τ g) (5)

where K and n are material constants, and sign(a) =
a/|a| if a 6= 0 and 0 otherwise. The critical RSS τ gc
evolves according to the following isotropic harden-
ing law:

τ gc = τ gc0 +Qg

24∑
s=1

hgs(1− e−bgγscum) (6)

where γscum =
t∫
t0

|γ̇s|dt. The exponential term presents

the hardening saturation in the material when the ac-
cumulated slip is high. τ gc0 is the initial critical RSS
on the considered system g. Qg and bg are parameters
which depend on the material. hgs is the hardening
matrix of size 24× 24 whose component hgs presents
the hardening effect of the system g on the system s.
The values of these coefficients and this matrix are
presented in [6].
A tensile test on a bidimensional polycrystalline ag-
gregate is simulated under plane strain conditions
and the grain boundaries considered as perfect in-
terfaces. The boundary conditions applied onto the
aggregate are sketched in Figure 1. The lower sur-
face is blocked along the Y direction. The displace-
ments DX = DY = 0 are blocked at the origin of
the coordinate system (lower left corner). On the up-
per surface, a homogeneous displacement is applied
by steps in the Y direction up to a macroscopic strain
equal to 3.5%. The computation is carried out using
the open source finite element software Code Aster
(http://www.code-aster.org).

2.2 Local approach to fracture

The result of the polycrystalline aggregate simulation
is the principal stress field σI in the Gauss points at



Figure 1: Two-dimensional polycrystalline aggregate modeling
a volume of A508 steel (100 grains, size 1000 x 1000) and the
boundary conditions.

different increase load levels {ε1, . . . , εn}. In this ap-
proach, the specimen is considered as representative.
Thus a single simulation is realized.
At the Gauss points, N statistical distributions of
defects (carbides size) rc are sampled over the vol-
ume. The cleavage is assumed to be controlled by the
propagation of the weakest link between the sampled
micro-defects at the Gauss points. The N samples of
resistance stress field σc is calculated by the Griffith
criterion [12].

σc =

√
πEγp

2(1− ν2)rc
(7)

where

γp is the effective surface energy.

E,ν are the material’s coefficients.

Now for each sample σic, this is compared with the
principal stress field at each load level σjI in in-
creasing order. By interpolation, one can compute the
load level εri that corresponds to failure, i.e. where
σic = σI . The process if repeated for all N samples
of the resistance stress field and N failure load lev-
els {εr1, . . . , εrN} are noted. The empirical distribution
function of this failure load level set shows the failure
probability of the specimen in increasing load level.
The detail of this approach is showed in [7, 3]. Fig-
ure 2 shows the 20 failure probability curves esti-
mated from 20 bi-dimensional specimen simulations
with 20 different microstructures using this approach.

It is showed that the variability of the microstructure
that is represented by the stress random field, influ-
ence the failure probability estimation. Thus this vari-
ability is needed to be taken into account in the local
approach to fracture to estimate the failure probability
of the specimen accurately.
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Figure 2: Failure probability curves estimated from 20 polycrys-
talline aggregate simulations with 20 different microstructures.

3 PRINCIPAL STRESS RANDOM FIELD

3.1 Randomness of principal stress field

The variability of the granular structure and the crys-
tallographic orientations leads the randomness of the
principal stress field in the polycrystalline aggregate.
Thus each polycrystalline aggregate simulation of a
given microstructure gives a realization of the prin-
cipal stress random field. In this work, this stress
random field is assumed to be an ergodic stationary
Gaussian random field. The identification of such a
random field is to identify its constant mean µ, stan-
dard deviation

√
υ and its correlation spatial struc-

ture C(h = |x−x′|). The mean value is directly esti-
mated as the numerical mean of the realizations of the
field. The others are estimated using the periodogram
method.
In this work, 40 polycrystalline aggregate simulations
are carried out for each case of the simulated mi-
crostructure, namely RG and FG. In order to apply
the periodogram method and to avoid the boundary
effect, the principal stress random field has to be pro-
jected on a regular grid of 256 x 256 points in the
domain 800 x 800 in the center of the specimen. In
this paper only the case RG is showed. The other case
is detailed in [6].

3.2 Periodogram approach

The Power Spectral Density (PSD) function of a
stationary random field is defined as the Fourier
transformation of its covariance function. Its estima-
tion from a realization of the random field is called
the periodogram. In the bi-dimensional case, the aver-
age periodogram estimated from K realizations Xi =
{hi(xm, yn), m = 0, . . . ,M − 1, n = 0, . . . ,N − 1},
i = 1, . . . ,K assumed independent of the random
field reads:

P̂ (fxj, fyk) =
1

KMNU
×

∣∣∣∣∣
M−1∑
m=0

N−1∑
n=0

[
w(m,n)hi(xm, yn)

]
e−i2π(

mj
2M

+ nk
2N

)

∣∣∣∣∣
2 (8)



where w(m,n) is the filter window [13, 14] and U is
the spectral power of the window that is calculated by:

U =
1

MN

M−1∑
m=0

N−1∑
n=0

|w(m,n)|2 (9)

In practice, the point number of the grid (M,N ) are
usually chosen as powers of two. The detail of this
method is showed in [5, 6, 14, 15].

3.3 Identification of a Gaussian random field

The full identification process is presented below. The
detail of each step can be found in [6].

• Step 1: Verify the assumption of normality of the
principal stress random field.

• Step 2: Verify the stationarity of the random
field.

• Step 3: Identification of the random field proper-
ties at a given load level.

• Step 4: Identification of the random field proper-
ties at all the load levels.

The Gaussian and stationarity assumption (steps 1,2)
of the random field proved acceptable. In this paper,
one presents only the result of Steps 3 and 4. One
firstly estimate the average periodogram from 40 real-
izations of the stress field. This one is then fitted with
theoretical PSD models by the least square algorithm.
Figure 3 presents the estimated average periodogram.

Figure 3: Average empirical periodogram estimated from 40 re-
alizations of the principal stress random field σI .

From a visual inspection of the obtained empirical pe-
riodograms it appears that a Gaussian (Pg) or an expo-
nential (Pe) model of periodogram such as those pre-
sented below may be consistent with the data. How-
ever it appeared in the various analyses that the peak
of the periodogram is not always at the origin. An
initial frequency is thus introduced which shifts the
theoretical periodogram. Finally, due to lack of fitting
of the single-type periodogram (e.g. Gaussian and
exponential), a combination thereof (so-called mixed

model Pm) is also fitted. The most general model fi-
nally reads:

Pg(fx, fy) = υ1πlx1exp
[
π2l2x1(fx − f

(1)
x0 )2

]
× ly1exp

[
π2l2y1(fy − f

(1)
y0 )2

] (10)

Pe(fx, fy) = υ2
2lx2

1 + 4π2l2x2(fx − f
(2)
x0 )2

× 2ly2

1 + 4π2l2y2(fy − f
(2)
y0 )2

(11)

Pm = Pg + Pe (12)

where υ1, υ2 and lx1, ly1, lx2, ly2 are respectively vari-
ances and correlation lengths in each direction X
and Y (anisotropic field) for each component (1)
(Gaussian part) and (2) (exponential part). Similarly
f
(1)
x0 , f

(1)
y0 , f

(2)
x0 , f

(2)
y0 are initial shift frequencies.

Note that Eq.(10, 11, 12) correspond only to positive
values of fx, fy. The periodogram is then extended by
symmetry for negative frequencies. In terms of asso-
ciated covariance models, the linear combination of
periodograms leads to a linear combination of covari-
ance models. The initial frequency shift in the peri-
odogram leads to oscillatory cosine terms in the co-
variance by inverse Fourier transform:

Cg = υ1exp
[
−(

h2x
l2x1

+
h2y
l2y1

)

]
cos(2πf (1)

x0 hx)

×cos(2πf (1)
y0 hy)

(13)

Ce = υ2exp
[
−(
|hx|
lx2

+
|hy|
ly2

)

]
cos(2πf (2)

x0 hx)

×cos(2πf (2)
y0 hy)

(14)

Cm = Cg +Ce (15)

In order to compare the various fittings the
least-square residual between the empirical peri-
odogram P̄ (fx, fy) (Eq.(8)) and the fitted peri-
odogram P (fx, fy) is finally computed. The following
non dimensional error estimate is used:

∆̄ =

√√√√ 1

MN

N∑
i=1

M∑
j=1

[
P̂ (fxi, fyj)− P (fxi, fyj)

max(P̂ )

]2

(16)

Table 1 presents the results of the fitting of the av-
erage empirical periodogram calculated from 40 re-
alizations of the field using three models, namely



Figure 4: Best fitted periodogram of the principal stress field σI
at 3.5% macroscopic strain (model Gaussian + exponential)

Model Gaussian exponential mixed
∆̄ 0,004 0,004 0,002

G
au

ss
ia

n

√
υ1 78,29 × 49,10
lx1 99,28 × 186,2
ly1 98,46 × 127,6

f
(1)
x0 0,003 × 0,002

f
(1)
y0 0,000 × 0,000

ex
po

ne
nt

ia
l √

υ2 × 103,4 83,87
lx2 × 68,89 69,87
ly2 × 74,63 50,75

f
(2)
x0 × 0,003 0,005

f
(2)
y0 × 0,000 0,000

Table 1: Fitted parameters and error estimates for the three fitted
models: Gaussian, exponential and mixed “Gaussian + exponen-
tial”

Gaussian, exponential and a mixed “Gaussian + ex-
ponential” as in Eq.(10, 11, 12).The best fitted peri-
odogram of the maximal principal stress field σI at
3.5% of macroscopic strain is plotted in Figure 4.
From the results in Table 1 it appears that the mixed
model provides a significantly smaller least-square er-
ror than that obtained from the Gaussian and expo-
nential models respectively. The corresponding fitted
periodogram is plotted in Figure 4.
In order to better appreciate the quality of the fitting,
two-dimensional cuts of the empirical (resp. fitted)
periodogram are given in Figures 5.
In order to comment the result in the Table 1, let us to
define the fluctuation scale ϑ =

√
πl for the Gaussian

component, ϑ= 2l for the exponential component and
the mean size of grains as below:

Dg =

√
4

π
Sg =

√
4

π

1000× 1000

100
= 112.8 (17)

where Sg is the mean area of the grains.
The mixed model leads us to think about two parts of
the stress field: one in the grains and the other on the
grains boundaries. The covariance structure of these
two parts are respectively represented by the Gaus-
sian and the exponential components of the identified
covariance model. One observes that the exponential
component is more dispersed than the other (υ2 > υ1)

0.000 0.005 0.010 0.015 0.020 0.025

f 2x +f 2y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P

1e8 Diagonal cut

Empirical

Fitted

0.000 0.005 0.010 0.015 0.020
fx

0.0

0.5

1.0

1.5

2.0

2.5

P

1e8 Cut X : fy  = 0.0

Empirical

Fitted

0.000 0.005 0.010 0.015 0.020
fx

0.0

0.5

1.0

1.5

2.0

P

1e8 Cut X : fy  = 0.0013

Empirical

Fitted

0.000 0.005 0.010 0.015 0.020
fy

0.0

0.5

1.0

1.5

2.0

P

1e8 Cut Y : fx  = 0.0013

Empirical

Fitted

Figure 5: Cut of the periodograms in different directions

but its fluctuation scale is less than the Gaussian com-
ponent one (0.79Dg − 1.23Dg vs 2Dg − 3Dg). This
result shows that the interaction exists only between
2 or 3 neighbor grains while the fluctuation scale of
stress field part on the grain boundaries is in line with
the mean size of grains.
Figure 6 shows the evolution of the fitted parameters
of the field σI when the number of realization of the
stress field increases. Figure 7 shows the evolution
of the fitted parameters w.r.t the macroscopic strain
level. It appears that the fitted parameters tend to a
converged value when at least 25 realizations of the
stress field are used for their estimation. In Figure 7,
one can observe three deformation steps of the ma-
terial. In the elastic domain, the correlation lengths
are stable when the variance increases. In the domain
of elastic-plastic change, the correlation lengths de-
crease when the variance increases. In the plastic do-
main, the correlation lengths are stable when the vari-
ance increases. The identified stress random field is
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Figure 6: Fitted parameters (
√
υ in left and ly in right) of the

principal stress field in increase data number

then simulated at each load level using the spectral
simulation method [16, 17, 18, 6] to obtain a num-
ber of simulated realizations of the field. These real-
izations are then compared with the resistance stress
field presented in the section 4 to estimate the failure
probability of the specimen.
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4 TAKE INTO ACCOUNT THE STRESS
RANDOM FIELD INTO THE LOCAL
APPROACH TO FRACTURE

4.1 Failure criterion and simulation of carbides
distribution

The brittle fracture of this type of material is assumed
to be controlled by the propagation of micro-defects.
One assumes that a defect is created by the rupture of
the carbides or of the carbides-ferrites joints called the
cleavage. The Griffith criterion that defines the mini-
mal stress level that is required to propagate a circu-
lar micro-defect of size rc is used as the failure crite-
rion (Eq. 7). The size of the carbides is sampled from
a given probability density function according to ex-
perimental evidence. In this work, one uses the Ortner
model (Eq. (18)) that is proposed in [19].

FR(rc) = P(R < rc) = exp

[
−
(

2rc
0,072

)−2,7]
(18)

Because of the projection and the simulation of the
stress field onto a regular post-processing grid, the
simulation of carbide distribution must be realized on
the same grid through two steps.

• The first step is to sample the number of carbides
Ncar on each point of the grid. This is an event
sample type with only one available piece of in-
formation that is the mean number of carbides
calculated by :

ncar =
Mcar

Npts

=
µcarV

Npts

(19)

where ncar is the mean number of carbides in
each point, Mcar is the total number of carbides
in the volume V of the specimen and Npts is
the number of points of the grid and µcar =
7.6 × 1017 (carbides/m3) [20] is the volumetric
mean number of carbides. Moreover Ncar is al-
ways positive. As a consequence the number of
carbides per grid point Ncar is sampled using the
Poisson distribution.

• The second step is to sample the size rci (i =
1, . . . ,Ncar) for each carbide in each point. The

maximal value of the sampled values of rci in
each point is then used to calculate the resistance
stress on this point. Note that there is an upper
bound to the carbide size rmax in Ortner’s model.
Thus we propose to sample rci by the truncated
distribution (Eq. (20)):

F T
R (rc) =

FR(rc)

FR(rmax)
(20)

If the sampled value rci > rmax, it is rejeted and
another value will be sampled.

4.2 Estimation of failure probability

In Section 4.1, one has simulated the carbides distri-
bution. This allows us to sample a number of realiza-
tions of resistance stress field σc on the same projec-
tion grid as the one used topost-process the principal
stress random field σI . In this section, one will use the
simulated realizations of these stress fields to estimate
the failure probability of the specimen.
One considers that the specimen of size 1000× 1000
corresponds to a 500× 500× 1 µm3 specimen of ma-
terial. The maximal size of carbides is 1 µm [20].
Because of low level of loading in the mechanical
modeling, and in order to illustrate the method one
uses the value of the surface energy about γp = 0.5-
− 2 Jm−2. Ones simulates N = 1,000 realizations
for each field σI and σc on the same grid of 256× 256
points.
At each load level εi = 0, . . . ,3.5%, one compares the
value of stress fields σI and σc realization by realiza-
tion and point by point. If in at least one point of the
grid σI > σc, the specimen is considered to be bro-
ken. If among N = 1,000 samples, N i

r ruptures are
observed then the failure probability is estimated by a
classical Monte Carlo estimate, namely :

P̄ i
R =

N i
r

N
(21)

The 95% confidence interval of this estimator is de-
fined by [21] :

P i
R = P̄ i

R ± 1,96

√
P̄ i
R(1− P̄ i

R)

N
(22)

Figure 8 shows the estimated failure probability curve
using N = 1,000, rmax = 1 µm, γp = 1.7 Jm−2
and the corresponding confidence interval. This fig-
ure shows that the confidence interval is rather small.
Thus 1,000 simulations of the stress field appear to be
a good compromise in order to obtain the convergence
of the estimator.

5 CONCLUSION

The main aim of this work is to built a methodol-
ogy that combines different domains, i.e. polycrys-
talline aggregates modeling, random field theory and
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fracture mechanics. This allows us to introduce the
spatial variability of the material’s microstructure in
the local approach to fracture in order to estimate the
failure probability of the material. Thus in this work,
one limits ourselves in the simple case, i.e. bidimen-
sional polycrystalline aggregates simulation, ergodic
stationary Gaussian random field.
However this methodology is open for further devel-
opments. In terms of the mechanical modeling, a de-
velopment to the tridimensional case to account for
the triaxiality of loading (such as as in [7, 22]) is nec-
cessary. Secondly the limit at the grain structure scale
in the modeling of the polycristalline influences not
only the stress field but also the failure probability
due to the reduction of the microstructure obstacles.
Thus a detailed modeling at the lath packets scale
[22] may provide a rather different result. Thirdly the
simulation of the grain structure by a purely random
Voronoı̈ diagram may not reproduce the material mi-
crostructure with full precision. Thus a microstructure
construction method from experimental observations
[23, 22, 24] should be investigated.
In terms of identification and simulation of the ran-
dom field, the ergodic stationary Gaussian hypothesis
is clearly very strong. Thus a development towards
non-Gaussian (possibly non-stationary) random field
representations shall be investigated, see e.g. [25, 26].

REFERENCES

[1] B. Tanguy. Modélisation de l’essai Charpy par
l’approche locale de la rupture - Application au
cas de l’acier 16MND5 dans le domaine de tran-
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