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Abstract: A search is presented for pair production of heavy vector-like T and B quarks

in proton-proton collisions at
√
s = 13 TeV. The data sample corresponds to an integrated

luminosity of 35.9 fb−1, collected with the CMS detector at the CERN LHC in 2016. Pair

production of T quarks would result in a wide range of final states, since vector-like T quarks

of charge 2e/3 are predicted to decay to bW, tZ, and tH. Likewise, vector-like B quarks

are predicted to decay to tW, bZ, and bH. Three channels are considered, corresponding to

final states with a single lepton, two leptons with the same sign of the electric charge, or at

least three leptons. The results exclude T quarks with masses below 1140–1300 GeV and

B quarks with masses below 910–1240 GeV for various branching fraction combinations,

extending the reach of previous CMS searches by 200–600 GeV.
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1 Introduction

The discovery of a Higgs boson [1–3] (H) has further encouraged searches for new physics

at the CERN LHC. Potentially divergent loop corrections to the Higgs boson mass require

either significant fine tuning of the standard model (SM) parameters or new particles at

the TeV scale. The existence of heavy top quark partners is particularly well motivated

to cancel the largest corrections from SM top quark loops. In supersymmetric theories

bosonic partners of the top quark serve this purpose, but in several other theories, such

as little Higgs [4, 5] or composite Higgs [6–9] models, this role is filled by fermionic top

quark partners. These heavy quark partners interact predominantly with the third gen-

eration of the SM quarks [10, 11] and have vector-like transformation properties under
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Figure 1. Leading order Feynman diagrams showing pair production and decays of TT (left) and

BB (right).

the SM gauge group SU(2)L ×U(1)Y × SU(3)C , inspiring the name “vector-like quarks”

(VLQs). A heavy fourth generation of chiral quarks has been excluded by precision elec-

troweak measurements from electron-positron collisions [12, 13] and by the measurement

of Higgs-boson-mediated cross sections [14, 15], but VLQs are not excluded by these ex-

perimental data.

We search for a vector-like T quark with charge 2e/3 that is produced in pairs with its

antiquark, T, via the strong interaction in proton-proton collisions at
√
s = 13 TeV. Our

search uses a data sample corresponding to an integrated luminosity of 35.9 fb−1, collected

with the CMS detector in 2016. Many models in which VLQs appear assume that T

quarks may decay to three final states: bW, tZ, or tH [16], as illustrated by the diagrams

in figure 1. The partial decay widths depend on the particular model [17], but for VLQ

masses significantly larger than the W boson mass, as considered here, an electroweak

singlet T quark is expected to have branching fractions (B) of 50% for T→ bW, and 25%

for both T→ tZ and tH [17, 18]. A doublet T quark decays only to tZ and tH, each with

50% branching fraction. Although this search is optimized for TT production, vector-like

bottom (B) quark decays can produce similar final state signatures, as illustrated in figure 1

(right), and are also considered. A B quark with charge −e/3 is expected to decay to tW,

bH, or bZ with branching fractions equal to those of the corresponding T quark decays

to the same SM boson. In the interpretation of this search we assume that only one type

of new particle is present, either the T or the B quark. The singlet branching fraction

scenario is used as a benchmark for both T and B quarks.

Searches for pair-produced T and B quarks have been performed by both the ATLAS

and CMS Collaborations at
√
s = 7 TeV [19–21], 8 TeV [22–25] and at 13 TeV (with 2.6 fb−1

and 36 fb−1 of data) [26–32]. Previous searches by CMS in single lepton final states have

excluded T quark masses below 1295 GeV for B(bW) = 100% [29], and masses below 790 to

900 GeV for any possible choice of branching fractions to the three decay modes [28]. This

search focuses on channels with exactly one lepton, a same-sign (SS) dilepton pair, and

at least three leptons (trilepton). For background categorization, the latter two channels

– 2 –
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distinguish between leptons produced directly in decays of W, H, or Z bosons (prompt)

and leptons produced from other sources (nonprompt), such as heavy flavor hadron decays.

This paper is organized as follows: section 2 describes the CMS detector and how events

are reconstructed, section 3 describes the simulated background samples, and section 4

describes the physics objects. In sections 5–7 we describe strategies for the three channels of

the search, and in section 8 we describe the systematic uncertainties. Lastly, in sections 9–

10 we present our results and give a summary.

2 The CMS detector and event reconstruction

The central feature of the CMS detector is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon

pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and

a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two

endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by

the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded

in the steel flux-return yoke outside the solenoid. A more detailed description of the

CMS detector, together with a definition of the coordinate system used and the relevant

kinematic variables, can be found in ref. [33].

A particle-flow (PF) algorithm aims to reconstruct and identify each individual par-

ticle in an event with an optimized combination of information from the various elements

of the CMS detector [34]. The energy of photons is directly obtained from the ECAL

measurement. The energy of electrons is determined from a combination of the electron

momentum at the primary interaction vertex as determined by the tracker, the energy of

the corresponding ECAL cluster including the energy sum of all bremsstrahlung photons

compatible with originating from the electron track. The momentum of muons is obtained

from the curvature of the corresponding track. The energies of charged hadrons are de-

termined from a combination of their momenta measured in the tracker and the matching

ECAL and HCAL energy deposits, corrected for zero-suppression effects and for the re-

sponse function of the calorimeters to hadronic showers. Finally, the energies of neutral

hadrons are obtained from the corresponding corrected ECAL and HCAL energies.

Jets are reconstructed from the individual particles produced by the PF event algo-

rithm (PF particles), clustered with the anti-kT algorithm [35, 36] with distance parameters

of 0.4 (“AK4 jets”) and 0.8 (“AK8 jets”). Jet momentum is determined as the vector sum

of all particle momenta in the jet, and is found from simulation to be within 5–15% of the

true momentum over the whole transverse momentum (pT) spectrum and detector accep-

tance. Additional proton-proton interactions within the same or nearby bunch crossings

(“pileup”) can contribute additional tracks and calorimetric energy depositions to the jet

momentum. To mitigate this effect, tracks identified to be originating from pileup vertices

are discarded, and an offset correction [37] is applied to correct for remaining contribu-

tions. Jet energy corrections are derived from simulation, and are confirmed with in situ

measurements of the energy balance in dijet, multijet, and photon/Z (→ e+e−/µ+µ−) +

jet events. A smearing of the jet energy is applied to simulated events to mimic detector
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resolution effects observed in data [38]. Additional selection criteria are applied to each

event to remove spurious jet-like features originating from isolated noise patterns in certain

HCAL regions [39].

Events of interest are selected using a two-tiered trigger system [40]. The first level

(L1), composed of custom hardware processors, uses information from the calorimeters and

muon detectors to select events at a rate of around 100 kHz within a time interval of less

than 4µs. The second level, known as the high-level trigger (HLT), consists of a farm of

processors running a version of the full event reconstruction software optimized for fast

processing, and reduces the event rate to around 1 kHz before data storage.

3 Simulated samples

To compare the SM expectation with 2016 collision data, samples of events of all relevant

SM background processes and the TT signal are simulated using the Monte Carlo (MC)

method. Background processes are simulated using several matrix element generators and

NNPDF3.0 [41] parton distribution functions (PDFs) at leading-order (LO) or next-to-

leading-order (NLO). The powheg v2 [42–45] generator is used to simulate tt events, single

top quark events in the t-channel and tW channel, ttH events, WZ events decaying to three

leptons, and ZZ events decaying to four leptons at NLO. The MadGraph5 amc@nlo

2.2.2 [46] generator with the FxFx matching scheme [47] is used for NLO generation of

ttW events, as well as ttZ events, tttt events, triboson events, and s-channel production of

single top quark events. The MadGraph5 amc@nlo 2.2.2 generator is used in LO mode

with the MLM matching scheme [48] to generate W+jets, Drell-Yan+jets, multijet events,

and W+W+events.

Parton showering and the underlying event kinematics are simulated with

pythia 8.212 [49, 50], using the underlying event tunes CUETP8M2T4 [51] for tt sim-

ulation and CUETP8M1 [52] for all other processes. Diboson samples for use in the single-

lepton channel are also generated at LO with pythia. Detector simulation for all MC

samples is performed with Geant4 [53]. Additional inelastic pp collisions, both within

the same bunch crossing as well as in the previous and following bunch crossings, are sim-

ulated in all samples. Weights are applied to simulated events so that the distribution of

the number of pileup events agrees with data.

The simulated background samples are grouped into categories. In the single-lepton

channel, the “TOP” group is dominated by tt and includes single top samples; the “EW”

group is dominated by the electroweak W+jets and includes Drell-Yan+jets, and diboson

samples; and the “QCD” group includes quantum chromodynamics multijet samples. In

the same-sign dilepton and trilepton channels the “VV(V)” group contains all WW, WZ,

ZZ, and triboson samples, and the “tt+X” group contains ttW, ttZ, ttH, and tttt samples.

Other backgrounds in these channels are estimated from data.

The TT and BB signals are simulated at LO using the MadGraph5 amc@nlo gen-

erator interfaced with pythia 8.212 for parton showering and fragmentation. Signal with

masses between 800 and 1800 GeV are simulated in steps of 100 GeV. A narrow width

of 10 GeV is assumed for each generated T and B signal, independent of its mass. The
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T/B quark mass [GeV] Cross section [fb]

800 196± 8

900 90± 4

1000 44± 2

1100 22± 1

1200 11.8± 0.6

1300 6.4± 0.4
0.3

1400 3.5± 0.2

1500 2.0± 0.1

1600 1.15± 0.09
0.07

1700 0.67± 0.06
0.04

1800 0.39± 0.04
0.03

Table 1. Theoretical cross sections of TT or BB production, for various masses, assuming a width of

10 GeV at each mass point. The cross section uncertainties include contributions from uncertainties

in the PDFs and uncertainties estimated by varying factorization and renormalization scales by a

factor of two.

corresponding theoretical cross sections, computed at next-to-NLO with the Top++2.0

program [54–59], are listed in table 1.

4 Reconstruction methods

This search requires that selected events have at least one reconstructed pp interaction

vertex within the luminous region (longitudinal position |z| < 24 cm and radial position

ρ < 2 cm) [60]. The reconstructed vertex with the largest value of summed physics-object

p2T is taken to be the primary pp interaction vertex. The physics objects are the jets,

clustered using the jet finding algorithm [35, 36] with the tracks assigned to the vertex as

inputs, and the associated missing transverse momentum, taken as the negative vector sum

of the pT of those jets. Each event must have at least one charged lepton (electron or muon)

candidate that is reconstructed within the detector acceptance region of |η| < 2.5 (2.4)

for electrons (muons), excluding the barrel-endcap transition region (1.44 < |η| < 1.57)

for electrons.

Events containing leptons are initially selected using the HLT. For the single-lepton

channel events must pass a set of triggers requiring one electron or muon with pT > 15 GeV

and jets with pT that sums to at least 450 GeV. A secondary set of triggers selects events

with one isolated electron (pT > 35 GeV) or one muon (pT > 50 GeV). For the SS dilepton

channel events must pass triggers based on double lepton combinations, with momentum

thresholds that varied over time. The dielectron trigger requires two electrons with pT > 37

and 27 GeV. Triggers for electron-muon events have a variety of thresholds: both leptons

with pT > 30 GeV, or one lepton with pT > 37 GeV and the other flavor lepton with
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pT > 27 GeV. The dimuon trigger requires one muon with pT > 30 GeV, and another

muon with pT > 11 GeV. For the trilepton channel, dilepton triggers with lower momentum

thresholds were used to select events with isolated leptons. The dielectron channel requires

an electron with pT > 23 GeV and another electron with pT > 12 GeV. Events with both

lepton flavors are selected with triggers that require one lepton with pT > 23 GeV and a

different flavor lepton with pT > 8 GeV. The dimuon trigger selects events featuring one

muon with pT > 17 GeV and another muon with pT > 8 GeV.

Dedicated event filters remove events that are affected by: known noise patterns in the

HCAL, accelerator-induced particles traveling along the beam direction at large radius (up

to 5m), anomalously high energy deposits in certain ECAL “superclusters” [61], ECAL

cell triggers that are not performing optimally, and muon candidates with large track

uncertainties matched to misreconstructed tracks or charged hadrons.

Electrons are reconstructed [61] taking into account track quality, association between

the track and electromagnetic shower, shower shape, and the likelihood of the electron

being produced in a photon conversion in the detector. A multivariate discriminant is

used to identify well-reconstructed electrons at two quality levels: a tight level with ≈88%

efficiency (≈4% misidentification efficiency) and a loose level with ≈95% efficiency (≈5%

misidentification efficiency).

Muons are reconstructed using information from both the CMS silicon tracker and the

muon spectrometer in a global fit, matching deposits in the silicon tracker with deposits

in the muon detector [62]. Identification algorithms consider the global fit χ2 value, the

number or fraction of deposits in the trackers and muon detectors, track kinks, and the

distance between the track from the silicon tracker and the primary interaction vertex. We

consider two quality levels: a tight level with ≈97% efficiency, and a loose level with ≈100%

efficiency, in the barrel region of the detector. Both levels have a hadronic misidentification

efficiency of <1%.

The large Lorentz boost of the decay products of the T quarks can produce final-state

leptons that are in close proximity to hadronic activity, and are similar to background

events with jets that contain a lepton from semileptonic hadron decays. The isolation of a

lepton from surrounding particles is evaluated using a variable Imini, defined as the pT sum

of PF particles within a pT-dependent cone around the lepton, corrected for the effects of

pileup using the effective area of the cone [37] and divided by the lepton pT. The radius of

the isolation cone in η − φ space, R, is determined by:

R =
10 GeV

min(max(pT, 50 GeV), 200 GeV)
. (4.1)

Using a pT-dependent cone size allows for greater efficiency at high energies when jets

and leptons are more likely to overlap. The reconstructed electrons and muons must have

Imini < 0.1 to be labeled tight, and Imini < 0.4 to be labeled loose. Scale factors to describe

efficiency differences between data and MC simulation for the lepton reconstruction, iden-

tification, and isolation algorithms are calculated using the “tag-and-probe” method [62],

and are applied to simulated events.

– 6 –
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All AK4 jets with pT > 30 GeV that lie within the tracker acceptance of |η| < 2.4 are

considered in this search (unless otherwise noted, “jets” refers to AK4 jets). Additional

selection criteria are applied to reject events containing noise and mismeasured jets. Lep-

tons that pass tight identification and isolation requirements in the single-lepton channel,

or loose requirements in the SS dilepton and the trilepton channels are removed from jets

that have an angular separation of ∆R =
√

(∆η)2 + (∆φ)2 < 0.4 with the leptons (where

φ is azimuthal angle in radians), before jet energy corrections are applied. This is done by

matching PF particles in the lepton and jet collections and subtracting the four-momentum

of a matched lepton candidate from the jet four-momentum. In the SS dilepton and the

trilepton channels, loose leptons, as well as tight leptons, are removed from jets because

these leptons are used to estimate nonprompt lepton backgrounds.

The missing transverse momentum vector ~pmiss
T is defined as the projection onto the

plane perpendicular to the beam axis of the negative vector sum of the momenta of all

reconstructed PF objects in an event. Its magnitude is referred to as pmiss
T . The energy

scale corrections applied to jets are propagated to pmiss
T . We define HT as the scalar pT

sum of all reconstructed jets in the event that have pT > 30 GeV and |η| < 2.4. In addition,

we define the ST as the scalar sum of pmiss
T , the pT of leptons, and the HT in the event.

This search relies on techniques to analyze the internal structure of jets and to identify

the parton that created the jet. Jets are tagged as b quark jets using a multivariate

discriminant, specifically the combined secondary vertex (CSVv2) algorithm [63], which

uses information about secondary vertices within the jet. For simulated tt events, our

requirement on this discriminant has an efficiency for tagging true b quark jets of ≈65%,

averaged over jets with pT > 30 GeV. The efficiency for falsely tagging light-quark or gluon

jets, measured in multijet event data, is ≈1%. Efficiency differences in data and simulation

are corrected by applying scale factors, which are functions of jet pT and flavor [63].

Heavy VLQ decays can produce top quarks and W, Z, or Higgs bosons with high mo-

menta, causing their decay products to merge into a single AK8 jet. The “N -subjettiness”

algorithm [64] creates jet shape variables, τN , that quantify the consistency of the jet’s in-

ternal structure with an N -prong hypothesis. Ratios of τN/τN−1 are powerful discriminants

between jets predicted to have N internal energy clusters and jets predicted to have fewer

clusters. Techniques called “pruning” or “softdrop” [65–67] remove soft and wide-angle

radiation from the jet so that the mass of its primary constituents can be measured more

accurately. The softdrop algorithm identifies two smaller subjets within the AK8 jet, and

these can be identified as b quark subjets using the same algorithm as that applied to AK4

jets. The AK8 jets are reconstructed independently of AK4 jets, so they will frequently

overlap. Unless otherwise stated, jet multiplicity criteria assume that AK4 and AK8 jets

are clustered independently and may share constituents.

An AK8 jet is labeled as W tagged if it has pT > 200 GeV, |η| < 2.4, pruned jet

mass between 65 and 105 GeV, and the ratio of N -subjettiness variables τ2/τ1 < 0.6.

These requirements yield a W tag efficiency of 60–70%, depending on AK8 jet momentum.

The pruned mass distribution in simulation is smeared such that the resolution of the W

mass peak matches the resolution observed in data [39]. Scale factors describing efficiency

differences between data and simulation for the τ2/τ1 selection are applied to the AK8 jets
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matched to true boosted hadronic W boson decays [39]. An AK8 jet is labeled as H tagged

if it has pT > 300 GeV, |η| < 2.4, pruned mass between 60 and 160 GeV, and at least one

b-tagged subjet. Having a larger mass than the W boson mass, the Higgs boson requires

more momentum for the b quarks to merge into one AK8 jet. This algorithm exploits the

large branching fraction of the Higgs boson to bb pairs and has an efficiency of ≈65%. If

an AK8 jet is both H and W tagged, the H tag is given precedence.

5 Single-lepton channel

The single-lepton channel includes events with exactly one charged lepton. Boosted

hadronic decay products of W and Higgs bosons are identified in AK8 jets and used to

categorize events. This final state is highly sensitive to TT production with at least one

T → bW or T → tH decay, as well as BB production with at least one B → tW or

B→ bH decay.

5.1 Event selection and categorization

Each event must have one electron or muon that passes the tight selection requirements

described previously. The tight lepton must have pT > 60 GeV, and events with extra

leptons passing the loose quality requirements with pT > 10 GeV and |η| < 2.5 (2.4) for

electrons (muons) are rejected. We also require pmiss
T of at least 75 GeV to account for the

presence of a neutrino from a W boson decay and to reduce multijet background events.

Each selected event must have at least three jets with pT > 300, 150, and 100 GeV.

Events must also have at least two AK8 jets with pT > 200 GeV and |η| < 2.4, which are

permitted to overlap with the AK4 jets. The requirement of at least two AK8 jets is highly

efficient for signal in all decay modes (>98%) and reduces the background contribution.

Events are divided into 16 categories based on lepton flavor and the presence of H-,

W-, and b-tagged jets:

• H2b: events with one or more H-tagged jets with two b-tagged subjets each;

• H1b: events failing the H2b criterion, but having one or more H-tagged jets with only

one b-tagged subjet;

• W1 : events with zero H-tagged jets but at least one W-tagged jet;

• W0 : events with zero H-tagged jets and zero W-tagged jets.

In both the H1b and H2b categories, we require an extra b-tagged jet that does not overlap

with the H-tagged jet, since signal events with a Higgs boson always contain at least one

top quark decay as well. In the W0 category we require a fourth jet with pT > 30 GeV

and |η| < 2.4. Events in the W0 and W1 categories are subcategorized by the number of

b-tagged jets (1, 2, ≥3).

Discrepancies in the modeling of top quark momentum are corrected by applying a

weight that depends on the generated top quark pT [68] to simulated tt events. Discrep-

ancies observed in HT-binned MadGraph samples are corrected by applying a scaling

– 8 –
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the fit to data: pruned mass in AK8 jets with τ2/τ1 < 0.6 (upper left), N -subjettiness τ2/τ1 ratio

in AK8 jets with pruned mass between 65–105 GeV (upper right), pruned mass in AK8 jets with

two b-tagged subjets (lower left), and number of b-tagged subjets in AK8 jets with pruned mass

in the range 60–160 GeV (lower right). Vertical dashed lines mark the selection windows for each

distribution. The black points are the data and the filled histograms show the simulated background

distributions, grouped into categories as described in section 3. The expected signal is shown by

solid and dotted lines for T quark masses of 1.0 and 1.2 TeV. The final bin includes overflow events.

Uncertainties, indicated by the hatched area, include both statistical and systematic components.

The lower panel shows the difference between data and background divided by the total uncertainty.

function that describes the observed difference in the HT spectrum between binned and

inclusive simulations [28, 69, 70].

To maximize signal efficiency in the search regions, and to create signal-depleted control

regions, we calculate the minimum angular separation between the highest pT AK8 jet and

any other AK8 jet in the event. In background processes there are often only two AK8 jets,

usually emitted back to back from each other. In signal processes there are typically more

than two AK8 jets and the minimum separation will be significantly smaller. The search

region is therefore defined by requiring 0.8 < ∆Rmin(leading AK8, other AK8) < 3.0, and

the control region by requiring ∆Rmin(leading AK8, other AK8) > 3.0. Signal efficiencies

in the search region for the singlet decay mode are 9–15%, increasing with VLQ mass.

– 9 –



J
H
E
P
0
8
(
2
0
1
8
)
1
7
7

Figure 2 shows distributions of W tagging input variables after all selection require-

ments: pruned mass in AK8 jets with τ2/τ1 < 0.6, showing a clear W boson contribution

in signal events, and τ2/τ1 in AK8 jets with pruned mass inside the mass window of

65–105 GeV. The distribution of τ2/τ1 shows that background processes with primarily

one-prong jets, such as W+jets or multijet events, are concentrated at higher values, while

signal events and top quark decays tend toward lower values. Figure 2 also shows the

pruned mass in AK8 jets with two b-tagged subjets, and the number of b-tagged subjets in

AK8 jets with a pruned mass within the range 60–160 GeV. The H tag algorithm is efficient

for both H → bb and Z → bb decays. The systematic difference between data and back-

ground (bkg) is due to known issues with jet momentum distributions in the tt simulation

that are only partially corrected by applying the top quark momentum weight [71]. The

residual difference is described by the uncertainty in the renormalization and factorization

energy scales, discussed further in section 8.

To search for VLQ events in the W0 and W1 categories, we analyze the minimum mass

constructed from the lepton (`) and a b-tagged jet, labeled min[M(`, b)]. This distribution

provides strong discrimination between tt events and signal events with a T→ bW decay.

Reconstructing the mass of two out of three leptonic SM top quark decay products, namely

the lepton and b quark jet, produces a sharp edge below the top quark mass, while T → bW

decays will produce a similar edge near the T mass. Since the H tagged categories have

relatively few T → bW decays, the ST distribution is used as the search variable in these

categories. Compared to other possibilities, such as using ST as the search variable in

all categories, this combination of discriminating variables provides the best sensitivity to

T quark production in the 1 TeV mass range in the singlet branching fraction scenario.

Distributions of min[M(`, b)] and ST in the search regions are shown in section 9.

5.2 Background modeling

Backgrounds are modeled from simulation in this channel and we perform a closure test

in a control region, categorizing events as done in the search regions. The control region

is defined by requiring ∆Rmin(leading AK8, other AK8) > 3. Further selection criteria

are applied to form regions with significant amounts of H-tagged jets, W+jets events, or

tt events. To form the tt control region, events from the W1 and W0 categories are split

according to lepton flavor and b tag content: 1, 2 or ≥3 b-tagged jets. In the W+jets control

region, events from the W1 and W0 categories without b-tagged jets are categorized based

on W tag content: zero or at least one W-tagged jets. The H-tagged jet control region

includes events from the H1b or H2b categories, split according to lepton flavor and number

of b-tagged jets (0 or ≥1) that do not overlap any H-tagged jet. Signal efficiencies in the

control regions are negligibly small (<1%) for both TT and BB production.

The comparison between data and simulation in these regions is used to evaluate the

level of remaining differences after the event selection, efficiency corrections, and generator-

level corrections, such as the differences in the rate of misidentified W- or H-tagged jets.

In all control regions the data agree with simulation, within the systematic uncertainties

described in section 8.
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Sample 0 H, ≥0 W, 0 b 0 H, ≥0 W, ≥1 b ≥1 H, ≥0 W, ≥1 b

TT (1.0 TeV) 1.99± 0.15 6.94± 0.37 3.63± 0.22

TT (1.2 TeV) 0.65± 0.05 2.08± 0.11 0.94± 0.06

BB (1.0 TeV) 1.73± 0.14 6.55± 0.36 2.94± 0.20

BB (1.2 TeV) 0.64± 0.04 1.94± 0.10 0.82± 0.05

TOP 1120± 220 2830± 580 2360± 370

EW 3050± 510 580± 100 195± 34

QCD 322± 73 116± 30 47± 18

Total bkg 4490± 580 3520± 600 2600± 370

Data 4420 3409 2476

Data/bkg 0.99± 0.13 0.97± 0.16 0.95± 0.14

Table 2. Predicted and observed event yields in the aggregated control region categories of the

single-lepton channel. Uncertainties include both statistical and systematic components.

To provide background-dominated regions in the statistical interpretation of the re-

sults, the control regions are aggregated into fewer categories. These aggregate regions

target the tt + jets background in events with zero H-tagged jets and at least one b-tagged

jet, the W+jets background in events without any H- or b-tagged jets, and misidentified

H-tagged jets in events with at least one H-tagged jet and any number of b-tagged jets

(including zero). To constrain the uncertainty in the renormalization and factorization

energy scale for the background events, the HT distribution is used in these categories.

Predicted and observed event yields in the control regions are listed in table 2.

6 Same-sign dilepton channel

The SS dilepton channel attempts to make use of a unique feature of VLQ signals, namely

the presence of prompt SS dilepton pairs. In TT production SS lepton pairs are most

common in events having at least one T → tH decay, where the Higgs boson decays to a

pair of W bosons. Since at least one W boson is produced in the decay of the other T quark,

at least four W bosons are present in the final state, two of each charge. In BB production

SS lepton pairs are more frequent, arising from events with at least one B → tW decay,

since at least one other W boson is produced in the decay of the other B quark.

6.1 Event selection and categorization

We require events to have exactly two leptons with the same electric charge that are within

the detector acceptance (|η| < 2.4). Different triggers were used during early and late

2016 data taking, with different pT requirements for the leptons. We require the leading

(subleading) lepton to have pT greater than 40 (35) GeV for the early data set and greater

than 40 (30) GeV for the later data set. The two leptons must pass the tight identification

and isolation requirements described in section 4 and the events are divided into three

categories based on the flavors: ee, eµ, and µµ.
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After requiring two tight SS leptons, we apply additional selection criteria to reduce

the background rate. To remove quarkonia decays we require M(`, `) > 20 GeV. To remove

Z boson decays we reject dielectron events with invariant lepton pair mass 76.1 < M(`, `) <

106.1 GeV. This cut is not applied to dimuon events because muons have a negligibly small

rate of charge misidentification. We require the number of jets to be ≥4 and the scalar

sum of selected jet and lepton transverse momenta, H lep
T to exceed 1200 GeV.

To search for VLQ events in data in the SS dilepton channel, we perform a counting

experiment using the yield of events passing the selections. Signal efficiencies for this

channel after applying all selection criteria are 0.42 (0.5)% for a singlet T quark of mass

1.0 (1.2) TeV.

6.2 Background modeling

We consider three categories of backgrounds associated with this channel: SM processes

with SS dilepton signatures; opposite-sign (OS) prompt leptons misreconstructed as SS lep-

tons; and nonprompt leptons from heavy flavor hadron decays, jets misidentified as leptons,

or photons converting to electrons. Leptons from tau decays are likely to be interpreted

as prompt electrons or muons, whereas hadronic tau decays are likely to be considered to

be nonprompt leptons. The background contribution from prompt SS dilepton processes

is obtained from simulated samples in the VV(V) and tt + X groups.

Prompt OS dileptons can contribute background events when one lepton is assigned

the wrong charge, leading to an SS dilepton final state. Muon reconstruction in CMS

provides very reliable charge identification, leading to a very small rate of charge misiden-

tification that is considered negligible for this search. The rate of charge misidentification

for electrons is derived from a data sample dominated by Z → ee decays, by computing

the ratio of SS dilepton events to all events. Misidentification efficiencies are derived as a

function of |eta| for electrons with pT < 100 GeV, 100 < pT < 200 GeV, and pT > 200 GeV.

The values are about 1% in the barrel region and about 5% in the endcap region. The

number of SS dilepton events arising from charge misidentification is estimated by weight-

ing the number of observed OS dilepton events that pass all other selection criteria, by the

misidentification efficiency per electron.

Same-sign dilepton events arising from the presence of one or more nonprompt leptons

is the primary reducible background. Two components of this background are jets misiden-

tified as leptons and nonprompt leptons that pass tight isolation criteria. This contribution

is estimated using the “tight-to-loose” method [72], in which events with one or more loose

leptons are weighted by the tight-loose ratios expected for prompt and nonprompt leptons.

The efficiency for prompt leptons to pass the tight selection criteria, or “prompt lepton

efficiency,” is determined using events with a lepton pair invariant mass within 10 GeV of

the Z boson mass. For muons the average prompt efficiency, found to be generally constant

over pT and η, is 0.943 ± 0.001. For electrons the prompt efficiency depends on pT and

ranges from 0.80 to 0.95.

The “misidentified lepton efficiency,” or efficiency for nonprompt leptons to pass the

tight selection criteria, is determined using a data sample enriched in nonprompt leptons.

The fraction of prompt leptons from W and Z boson decays is reduced by requiring exactly
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Figure 3. The H lep
T distributions before the fit to data in events with at least two jets after the

SS dilepton selection and Z-boson/quarkonia vetoes, for the ee, eµ, and µµ categories, and for

the combination of all categories. The black points are the data and the filled histograms show

the background distributions, with simulated backgrounds grouped into categories as described in

section 3. The expected signal is shown by solid and dotted lines for T quark masses of 1.0 and

1.2 TeV. The final bin includes overflow events. Uncertainties, indicated by the hatched area, include

both statistical and systematic components. The lower panel shows the difference between data and

background divided by the total uncertainty. Accepted events are required to have H lep
T > 1200 GeV.

one loose lepton per event, low pmiss
T , and that the lepton and pmiss

T be inconsistent with a

W boson decay (transverse mass <25 GeV). At least one jet is required with large angular

separation from the lepton (∆R > 1.0). Events are rejected if the invariant mass of any

jet-lepton combination is compatible with the Z boson mass, within 10 GeV. Misidentified

lepton efficiencies are then measured as a function of lepton pT and η, with values ranging

from 0.17–0.25 for electrons and 0.16–0.33 for muons.

Figure 3 shows the full spectrum of H lep
T distributions for SS dilepton events in the

different lepton flavor categories, where two or more jets are required in each event.

7 Trilepton channel

The trilepton final state is highly sensitive to VLQ pair production with at least one

T→ tZ, B→ bZ, or B→ tW decay, all of which can produce two or more prompt leptons.
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When combined with the decay of the other T or B quark, three or more prompt leptons

can exist in the final state, a signature that is rare in SM processes.

7.1 Event selection and categorization

We select events with at least three leptons, each with pT > 30 GeV, that pass the tight

identification and isolation requirements described in section 4. The background from

nonprompt leptons is estimated in a control sample with less restrictive selection criteria,

including events with three leptons that pass the loose identification and isolation require-

ments. Leptons are sorted first based on tight or loose quality, and then based on pT in

descending order. The events are divided into the four categories of the flavors (e or µ) of

the first three leptons: eee, eeµ, eµµ, and µµµ.

Additionally, to reject background events with leptons originating from low-mass reso-

nances, no OS same flavor lepton pair with invariant mass M(`, `)OS < 20 GeV is allowed.

We also require the events to have at least three jets with pT > 30 GeV and |η| < 2.4,

at least one of which is b-tagged, since top quark decays and/or b quarks are expected

in signal events. Lastly, we require pmiss
T > 20 GeV. These requirements create a sample

with many leptons from Z and W boson decays, together with several jets to account for

hadronic decays products of the T or T. To search for VLQ events in data in the trilepton

channel, we use the ST distribution to discriminate the signal from the background. With

respect to the expected number of events before any selections, the signal efficiencies for

this channel after all selections are 0.65 (0.66)% for a singlet T quark of mass 1.0 (1.2) TeV.

We define a signal-depleted control region for the purpose of calculating misidentified

lepton efficiencies. This control region is defined using the initial selection requirements

above, except that we require exactly two jets instead of at least three. Processes containing

nonprompt leptons contribute almost equally to this region and to the signal region.

7.2 Background modeling

Backgrounds are divided into two categories, prompt and nonprompt. The prompt category

contains events originating from SM processes capable of producing three or more prompt

leptons in the final state. These include the WZ, ZZ, and triboson processes in the “VV(V)”

group, and the ttZ and ttW processes in the “tt+V” group. We use simulation to predict

the yields of these background processes. The nonprompt category contains events with

nonprompt leptons that pass the tight lepton identification and isolation criteria, and jets

misidentified as leptons, such as trilepton events coming from tt or Z +jets processes. We

use a three-lepton extended version of the tight-to-loose technique to estimate the rate of

nonprompt background events.

7.3 Prompt and misidentified lepton efficiencies

Prompt lepton efficiencies are the same in the same-sign dilepton and trilepton channels.

Misidentified lepton efficiencies are obtained from measurements in the control region using

events with exactly three leptons. The misidentified lepton efficiencies are obtained by

calculating the minimum of a χ2 statistic from fits of the predicted background to data.
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Figure 4. Distributions of lepton pT (left) and ST (right) before the fit to data in the control region

of the trilepton channel. The black points are the data (horizontal bars indicate the bin width) and

the filled histograms show the background distributions, with simulated backgrounds grouped into

categories as described in section 3. The expected signal is shown by solid and dotted lines for T

quark masses of 1.0 and 1.2 TeV. The final bin includes overflow events. Uncertainties, indicated

by the hatched area, include both statistical and systematic components. The lower panel shows

the difference between data and background divided by the total uncertainty.

The predicted background is the sum of the nonprompt background estimate and the

prompt MC background. Specifically, we use the bins (i) of the lepton pT distribution to

calculate χ2:

χ2(r) =
∑
i

[
N i

data − (N i
NP(r) +N i

MC)
]2

N i
NP(r) +N i

MC

, (7.1)

where r represents the prompt and misidentified lepton efficiencies, Ndata is the number

of events observed in data, NNP(r) is the number of nonprompt background events (as

a function of r) estimated from data, NMC is the number of prompt background events

estimated from MC simulation.

Using eq. (7.1), we calculate χ2 for each of the four flavor categories, while varying

both the misidentified electron and muon efficiencies from 0.01 to 0.5, and sum the indi-

vidual terms. The minimum of the χ2 per degree of freedom is found to be 1.58 which

corresponds to misidentified electron and muon efficiencies of 0.20± 0.02 and 0.14± 0.01,

respectively. The uncertainties are the standard deviations of a Gaussian probability dis-

tribution constructed from the χ2 values.

Figure 4 shows distributions of lepton pT and ST in the control regions, where the non-

prompt background is estimated using the misidentified lepton efficiencies that correspond

to the minimum of the χ2.

We perform a closure test for the nonprompt background estimation by measuring

the misidentified lepton efficiencies in a tt MC sample. This measurement is used to

predict the number of events with three tight leptons, two of which are prompt and one

nonprompt. The following discrepancies are observed between the number of observed

and predicted events: 28% in the eee channel, 31% in the eeµ channel, 17% in the eµµ

channel, and 20% in the µµµ channel. In addition, we perform misidentification efficiency
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measurements using the χ2 minimization method described above in the tt MC sample in

both the control region and signal region selections. We observe that there is a change

of 0.04 in the misidentified electron efficiency between regions and negligible change in

the misidentified muon efficiency. The change in the misidentified electron efficiency is

assigned as a systematic uncertainty. The misidentified lepton efficiencies are taken to be

pT-independent and any dependency on η is included as a systematic uncertainty.

8 Systematic uncertainties

We consider sources of systematic uncertainties that can affect the normalization and/or

the shape of expected background distributions. A summary of the systematic uncertainties

and how they are applied to signal and background samples can be found in table 3.

The uncertainty in the integrated luminosity is 2.5% [73] and is applied to all samples.

Lepton reconstruction, identification, and isolation efficiency scale factor uncertainties are

applied based on the number of leptons in each channel. Trigger efficiency uncertainties

in each channel are independent, and are applied as a function of lepton flavor, pT, and

|η| in the single lepton channel, and as flat percentages in the SS dilepton and trilepton

channels. In the single-lepton channel a 15% uncertainty is applied to the cross section of

diboson samples [74–76], and a 16% uncertainty is applied to single tW production.

In the SS dilepton channel, closure tests are performed in the tt MC simulation by

comparing the predicted nonprompt background using the tight-to-loose method and the

observed nonprompt background from truth information, based on which an uncertainty

of 50% is applied for the nonprompt background yield. An uncertainty of 30% is applied

to the OS prompt background to account for possible pT variations in the rate of charge

misidentification within the pT bins, and for differences in rates of charge misidentification

calculated in Drell-Yan versus tt MC.

In the trilepton channel, an uncertainty in the nonprompt background yield is cal-

culated by varying the misidentified lepton efficiencies by their uncertainties of 0.04 for

electrons and 0.01 for muons. These are obtained by summing in quadrature the statistical

uncertainties and the systematic uncertainties due to the possible discrepancies between

misidentification efficiencies measured in the control region and in the signal region. It re-

sults in an uncertainty of 12–30% (4–12%) in the nonprompt background yield. From the

closure test described in section 7, we also apply an uncertainty of 17–31% in the nonprompt

background yield based on discrepancies between the tight-to-loose method prediction and

the observed yields in simulation. As an additional source of systematic uncertainty, we

evaluate the remaining difference in yield between the background estimate and data in

the control region, using the misidentification efficiencies measured in that region. These

differences range from 2% in the µµµ channel to 35% in the eee channel. In the SS dilep-

ton channel the muon fake rate can be modeled by a quadratic dependence on η, while the

trilepton channel uses an η-independent value. The change in trilepton nonprompt back-

ground yield if an η-dependent muon fake rate is adopted is 12–33%, and an additional

uncertainty is applied to take account of this. Finally, the prompt lepton efficiencies were

calculated in a control sample selected using a trigger with less stringent lepton isolation
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Source Uncertainty
1` SS 2` ≥3`

Sig Bkg Sig Bkg Sig Bkg

Integrated luminosity 2.5% Yes MC Yes MC Yes MC

Reconstruction 1% Yes MC Yes MC Yes MC

Identification 2%(e), 3%(µ) Yes MC Yes MC Yes MC

Isolation (e, µ) 1% Yes MC Yes MC Yes MC

Trigger (e or µ) ±σ(pT, η) Yes MC — — — —

Trigger (``) 3% — — Yes MC — —

Trigger (```) 3% — — — — Yes MC

Charge misid. rate 30% — — No OS — —

` misid. efficiency 50% — — No NP — —

` misid. efficiency 4–30% — — — — No NP

µ misid. efficiency η dep. 12–33% — — — — No NP

NP method closure 17–31% — — — — No NP

NP method in CR 2–35% — — — — No NP

Prompt ` efficiency 2–9% (e), 1–7% (µ) — — — — No NP

Pileup σinel. ± 4.6% Yes MC Yes MC Yes MC

Jet energy scale ±σ(pT, η) Yes MC Yes MC Yes MC

Jet energy res. ±σ(η) Yes MC Yes MC Yes MC

HT scaling env(upper, lower fits) No W+jets — — — —

b tag: b ±σ(pT) Yes MC — — Yes MC

b tag: light ±σ Yes MC — — Yes MC

W tag: τ2/τ1 ±σ Yes MC — — — —

W tag: τ2/τ1 pT ±σ(pT) Yes MC — — — —

W/H tag: mass scale ±σ(pT, η) Yes MC — — — —

W/H tag: mass res. ±σ(η) Yes MC — — — —

H tag: propagation 5% Yes MC — — — —

Renorm./fact. scale env(×2,×0.5) Shape MC Accept. MC Shape MC

PDF RMS(replicas) Shape MC Accept. MC Shape MC

VV rate 15% No VV — — — —

Single tW rate 16% No tW — — — —

Table 3. Summary of values for normalization uncertainties and dependencies for shape uncer-

tainties. The symbol σ denotes one standard deviation of the uncertainty and “env” denotes an

envelope of values. Background from opposite-sign dilepton events is denoted “OS”, background

from nonprompt leptons is denoted “NP”, while other backgrounds modeled from simulation are de-

noted “MC”. For signals, theoretical uncertainties are labeled as “Shape” for shape-based searches,

and “Accept.” for counting experiments. Additionally, “CR” denotes control region and “RMS”

denotes root mean square.

requirements than those in the triggers used to select the trilepton channel events. Because

the true prompt efficiency in the trilepton channel is expected to be slightly higher than

the values used for the SS dilepton channel, an uncertainty is assigned by comparing the

trilepton nonprompt background yields with yields obtained when using prompt lepton

efficiencies of unity. These uncertainties ranges from 2–9% (1–7%) in the nonprompt back-

ground yield for electrons (muons), with the smallest values in the categories with only one

lepton of a given flavor and the largest uncertainties in the same-flavor channels.
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Uncertainties affecting both the shape and normalization of the distributions in mul-

tiple channels include uncertainties related to the jet energy scale, jet energy resolution,

and b tagging and light-parton mistag rates [63]. The uncertainty due to the pileup sim-

ulation is evaluated by adjusting the total inelastic cross section (σinel.) used to calculate

the correction by ±4.6% [77].

The uncertainties in the PDFs used in MC simulations are evaluated from the set of

NNPDF3.0 MC replicas [41]. Renormalization and factorization energy scale uncertain-

ties are calculated by varying the corresponding scales up and down (both independently

and simultaneously) by a factor of two and taking the envelope, or largest spread, of all

observed variations as the uncertainty. These theoretical uncertainties are applied to the

signal simulations primarily as shape uncertainties. The normalization uncertainty is small

and associated with changes in acceptance. For backgrounds, the full theoretical uncer-

tainties are applied. All common uncertainties are treated as correlated across the three

analysis channels.

In the single-lepton channel we also associate shape uncertainties with the W tagging

scale factors for the pruned mass scale and smearing, the τ2/τ1 selection efficiency, and

its pT dependence [39]. An uncertainty of 5% is applied to account for the effects of

propagating corrections derived from the W mass peak to the Higgs mass peak. These

corrections are anticorrelated between categories with and without H tags. The uncertainty

in the generator-level top quark pT reweighting is estimated as the difference between

weighted and unweighted distributions. This uncertainty is excluded from fits because of

strong correlations with the renormalization and factorization energy scale uncertainties.

The uncertainty in the HT scaling procedure is the difference between scaling functions

obtained by fitting the inclusive-to-binned HT ratio after shifting values up or down by

their statistical uncertainties.

9 Results

The strongest overall sensitivity to TT and BB production is achieved by combining the

three leptonic channels, since each channel is sensitive to different VLQ decay modes.

Table 4 shows the selection efficiency for all three channels in each TT or BB decay mode,

with respect to the total number of expected events for a given decay mode (e.g., tHtH).

The most sensitive decay modes for each channel are noted in bold. Comparing efficiencies

across TT decay modes, the single-lepton channel has the highest efficiency for decay

modes with at least one T → bW decay, the SS dilepton channel is sensitive to B → tW

decays, and the trilepton channel has high efficiency for decay modes with at least one

T→ tZ decay.

Distributions of min[M(`, b)] and ST in the search regions are shown in figures 5

and 6 for the single-lepton channel categories. The distributions are binned such that the

simulated background has a statistical uncertainty of <30% in each bin. Figure 7 shows the

ST distribution in each category of the trilepton channel. The slight excess of data in the

low ST region is within the systematic uncertainty in the misidentified lepton efficiencies

that describes the rate difference between the control and signal regions. Predicted and
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TT (1.0 TeV) BB (1.0 TeV)

Decay mode 1` SS2` ≥3` Decay mode 1` SS2` ≥3`

tHtH 9.1 1.1 0.74 bHbH 2.9 0.16 0.08

tHtZ 8.4 0.78 1.50 bHbZ 1.8 0.05 0.22

tHbW 11.0 0.61 0.29 bHtW 11.2 0.61 0.31

tZtZ 7.4 0.45 1.92 bZbZ 1.0 0.02 0.25

tZbW 9.2 0.34 0.88 bZtW 9.2 0.23 0.89

bWbW 10.8 0.02 — tWtW 12.3 2.5 1.28

TT (1.2 TeV) BB (1.2 TeV)

Decay mode 1` SS2` ≥3` Decay mode 1` SS2` ≥3`

tHtH 10.9 1.4 0.81 bHbH 3.2 0.19 0.08

tHtZ 10.1 0.93 1.48 bHbZ 2.0 0.08 0.19

tHbW 12.4 0.71 0.31 bHtW 12.6 0.73 0.29

tZtZ 8.8 0.53 1.98 bZbZ 1.0 0.03 0.20

tZbW 10.4 0.27 0.87 bZtW 10.4 0.28 0.87

bWbW 11.4 0.04 — tWtW 14.1 2.8 1.33

TT (1.4 TeV) BB (1.4 TeV)

Decay mode 1` SS2` ≥3` Decay mode 1` SS2` ≥3`

tHtH 11.7 1.5 0.81 bHbH 3.2 0.19 0.07

tHtZ 10.8 0.95 1.47 bHbZ 2.0 0.07 0.18

tHbW 13.3 0.49 0.30 bHtW 13.4 0.75 0.29

tZtZ 9.3 0.29 1.87 bZbZ 1.0 0.02 0.20

tZbW 10.9 0.75 0.85 bZtW 11.0 0.29 0.81

bWbW 11.8 0.03 — tWtW 15.4 3.05 1.36

Table 4. Signal efficiencies in the single-lepton, same-sign dilepton, and trilepton channels, split

into the six possible final states of both TT and BB production, for three mass points. Efficiencies,

stated in percent, are calculated with respect to the expected number of events in the corresponding

decay mode, before any selection. The most sensitive decay modes for each channel are noted in

bold. The efficiency for bWbW events in the same-sign dilepton and trilepton channels is negligible,

as is the efficiency for bZbZ events in the same-sign dilepton channel.

observed event yields for the single-lepton, SS dilepton, and trilepton channels are listed in

tables 5–7. The T quark distributions and event yields are for the singlet branching fraction

benchmark. No significant excess of data above the background prediction is observed.

Using the Theta program [78], we calculate Bayesian credible intervals [79] to set 95%

CL upper limits on the production cross section of TT at each simulated mass point, for

various branching fraction scenarios. Limits are calculated in a simultaneous fit to binned

marginal likelihoods from the min[M(`, b)] and ST distributions for the 16 single-lepton

signal-region categories, HT distributions for the 6 single-lepton aggregate control regions,

event yields for the SS dilepton channel, and ST distributions for the 4 trilepton categories.

Statistical uncertainties in the background estimates are treated using the Barlow-Beeston

light method [80, 81]. Other systematic uncertainties are treated as nuisance parameters,

as listed in table 3. Normalization uncertainties are given log-normal priors, and shape

uncertainties with shifted templates are given Gaussian priors with a mean of zero and

width of one. The signal cross section is assigned a flat prior distribution.
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Figure 5. Distributions of min[M(`, b)] before the fit to data in the single-lepton W0 (left) or W1

(right) categories with 1, 2, or ≥3 (upper to lower) b-tagged jets. The black points are the data

(horizontal bars indicate the bin width) and the filled histograms show the simulated background

distributions, grouped into categories as described in section 3. The expected signal is shown by

solid and dotted lines for T quark masses of 1.0 and 1.2 TeV. The final bin includes overflow events.

Uncertainties, indicated by the hatched area, include both statistical and systematic components

The lower panel shows the difference between data and background divided by the total uncertainty.
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Sample 0 H, 0 W, 1 b 0 H, 0 W, 2 b 0 H, 0 W, ≥3 b

TT (1.0 TeV) 21.5± 1.2 12.87± 0.74 4.41± 0.29

TT (1.2 TeV) 6.48± 0.36 3.68± 0.21 1.22± 0.08

TOP 2030± 420 1070± 230 172± 38

EW 720± 120 94± 16 7.2± 1.4

QCD 117± 31 18.1± 9.7 5.9± 5.2

Total bkg 2870± 450 1180± 230 185± 38

Data 2598 1054 182

Data/bkg 0.90± 0.14 0.89± 0.17 0.98± 0.22

Sample 0 H, ≥1 W, 1 b 0 H, ≥1 W, 2 b 0 H, ≥1 W, ≥3 b

TT (1.0 TeV) 27.7± 1.4 13.91± 0.73 3.75± 0.22

TT (1.2 TeV) 8.22± 0.43 3.84± 0.20 0.92± 0.06

TOP 1410± 290 660± 130 95± 21

EW 291± 47 38.1± 7.6 2.68± 0.58

QCD 36± 13 6.6± 6.5 <1

Total bkg 1730± 290 700± 140 98± 21

Data 1589 594 96

Data/bkg 0.92± 0.16 0.84± 0.17 0.98± 0.23

Sample H1b, ≥0 W, ≥1 b H2b, ≥0 W, ≥1 b

TT (1.0 TeV) 36.7± 2.0 7.92± 0.59

TT (1.2 TeV) 11.18± 0.60 2.39± 0.19

TOP 1510± 300 49± 11

EW 46.9± 8.1 4.2± 1.5

QCD 14.4± 6.3 <1

Total bkg 1570± 300 53± 11

Data 1488 44

Data/bkg 0.95± 0.18 0.83± 0.21

Table 5. Numbers of predicted and observed events for signal region categories of the single-lepton

channel before the fit to data. Uncertainties include both statistical and systematic components.

Sample ee eµ µµ

TT (1.0 TeV) 1.34± 0.08 3.11± 0.18 2.12± 0.12

TT (1.2 TeV) 0.42± 0.02 1.00± 0.06 0.66± 0.04

Prompt SS 4.03± 0.57 10.2± 1.4 5.79± 0.82

Nonprompt 4.6± 2.6 10.6± 5.6 5.4± 3.0

Charge misid. 4.1± 1.3 2.61± 0.81 —

Total bkg 12.8± 3.0 23.4± 5.8 11.2± 3.1

Data 12 31 9

Data/bkg 0.94± 0.35 1.33± 0.41 0.80± 0.35

Table 6. Numbers of predicted and observed events for lepton flavor categories in the same-

sign dilepton channel before the fit to data. Uncertainties include both statistical and systematic

components.
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Figure 6. Distributions of ST before the fit to data in the single-lepton H1b (left) or H2b (right)

categories. Uncertainties, indicated by the hatched area, include both statistical and systematic

components. The black points are the data (horizontal bars indicate the bin width) and the filled

histograms show the simulated background distributions, grouped into categories as described in

section 3. The final bin includes overflow events. The expected signal is shown by solid and dotted

lines for T quark masses of 1.0 and 1.2 TeV. The lower panel shows the difference between data

and background divided by the total uncertainty.

Sample eee eeµ eµµ µµµ

TT (1.0 TeV) 1.60± 0.14 2.54± 0.18 3.32± 0.23 2.79± 0.23

TT (1.2 TeV) 0.40± 0.03 0.71± 0.05 0.90± 0.06 0.78± 0.06

VV(V) 4.32± 0.77 5.44± 0.78 6.52± 0.93 5.89± 0.89

tt +V 20.9± 2.9 31.9± 4.1 37.0± 4.7 35.8± 5.0

Nonprompt 19± 11 41± 18 51± 15 20.0± 8.4

Total bkg 44± 11 78± 19 94± 15 61.7± 9.8

Data 54 102 111 71

Data/bkg 1.22± 0.35 1.31± 0.34 1.18± 0.22 1.15± 0.23

Table 7. Numbers of predicted and observed events for lepton flavor categories in the trilepton

channel before the fit to data. Uncertainties include both statistical and systematic components.

Figure 8 shows 95% CL upper limits on the production of T and B quarks in the bench-

mark branching fraction scenarios. We exclude singlet T quark masses below 1200 GeV

(1160 GeV expected), doublet T quark masses below 1280 GeV (1240 GeV expected), sin-

glet B quark masses below 1170 GeV (1130 GeV expected), and doublet B quark masses

below 940 GeV (920 GeV expected). Masses below 800 GeV were excluded in previous

searches. For T and B quark masses in the range 800–1800 GeV, cross sections smaller than

30.4–9.4 fb (21.2–6.1 fb) and 40.6–9.4 fb (101–49.0 fb) are excluded for the singlet (doublet)

scenario. Figure 9 shows the expected and observed limits for scans over many possible T

and B quark branching fraction scenarios. Based on the branching factions, lower limits

on T and B quark masses range from 1140 to 1300 GeV, and from 910 to 1240 GeV.
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Figure 7. Distributions of ST in the trilepton final state before the fit to data, in the four flavor

categories. The black points are the data (horizontal bars indicate the bin width) and the filled

histograms show the background distributions, with simulated backgrounds grouped into categories

as described in section 3. The expected signal is shown by solid and dotted lines for T quark masses

of 1.0 and 1.2 TeV. The final bin includes overflow events. Uncertainties, indicated by the hatched

area, include both statistical and systematic components. The lower panel shows the difference

between data and background divided by the total uncertainty.
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Figure 8. The 95% CL expected and observed upper limits on the cross section of TT (upper

row) and BB (lower row) production after combining all channels for the singlet (left) and doublet

(right) branching fraction scenarios. The predicted cross sections are shown by the red curve, with

the uncertainty indicated by the width of the line.
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Figure 9. The 95% CL expected (left) and observed (right) lower limits on the T quark (upper

row) and B quark (lower row) mass, expressed in GeV, after combining all channels for various

branching fraction scenarios.
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10 Summary

A search has been presented for pair-produced vector-like T and B quarks in a data sample

of proton-proton collisions recorded during 2016 by the CMS experiment, and correspond-

ing to an integrated luminosity of 35.9 fb−1. The search is performed in channels with

one lepton, two same-sign leptons, or at least three leptons in the final state and makes

use of techniques to identify Lorentz-boosted hadronically decaying W and Higgs bosons.

Combining these channels, we exclude T (B) quarks at 95% confidence level with masses

below 1200 (1170) GeV in the singlet branching fraction scenario and 1280 (940) GeV in

the doublet branching fraction scenario. For other branching fraction scenarios this search

excludes T (B) quark masses below 1140–1300 GeV (910–1240 GeV). This represents an

improvement in sensitivity of typically 200–600 GeV, compared to previous CMS results.
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and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia pro-

grammes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for

Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into

Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract

C-1845; and the Weston Havens Foundation (U.S.A.).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[3] CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at√
s = 7 and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].

[4] M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in

little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE].

[5] O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs,

JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].

[6] R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models,

Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

[7] R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology

simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

[8] D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion

masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

[9] M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys.

B 254 (1985) 299 [INSPIRE].

[10] J.A. Aguilar-Saavedra, Mixing with vector-like quarks: constraints and expectations, EPJ

Web Conf. 60 (2013) 16012 [arXiv:1306.4432] [INSPIRE].

– 27 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7235
https://doi.org/10.1007/JHEP06(2013)081
https://arxiv.org/abs/1303.4571
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4571
https://doi.org/10.1103/PhysRevD.69.075002
https://arxiv.org/abs/hep-ph/0310039
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0310039
https://doi.org/10.1007/JHEP01(2013)164
https://arxiv.org/abs/1204.6333
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.6333
https://doi.org/10.1103/PhysRevD.75.055014
https://arxiv.org/abs/hep-ph/0612048
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0612048
https://doi.org/10.1088/1126-6708/2007/05/074
https://arxiv.org/abs/hep-ph/0612180
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0612180
https://doi.org/10.1016/S0550-3213(05)80021-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B365,259%22
https://doi.org/10.1016/0550-3213(85)90221-4
https://doi.org/10.1016/0550-3213(85)90221-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B254,299%22
https://doi.org/10.1051/epjconf/20136016012
https://doi.org/10.1051/epjconf/20136016012
https://arxiv.org/abs/1306.4432
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4432


J
H
E
P
0
8
(
2
0
1
8
)
1
7
7

[11] F. del Aguila, J.A. Aguilar-Saavedra and R. Miquel, Constraints on top couplings in models

with exotic quarks, Phys. Rev. Lett. 82 (1999) 1628 [hep-ph/9808400] [INSPIRE].

[12] DELPHI, OPAL, LEP Electroweak, ALEPH, L3 collaboration, S. Schael et al.,

Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP,

Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].

[13] O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model

with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802

[arXiv:1209.1101] [INSPIRE].

[14] A. Djouadi and A. Lenz, Sealing the fate of a fourth generation of fermions, Phys. Lett. B

715 (2012) 310 [arXiv:1204.1252] [INSPIRE].

[15] CMS collaboration, Searches for Higgs bosons in pp collisions at
√
s = 7 and 8 TeV in the

context of four-generation and fermiophobic models, Phys. Lett. B 725 (2013) 36

[arXiv:1302.1764] [INSPIRE].

[16] J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of
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University, Budapest, Hungary

M. Csanad, N. Filipovic, P. Major, M.I. Nagy, G. Pasztor, O. Surányi, G.I. Veres
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S. Albergoa,b, A. Di Mattiaa, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b

– 37 –



J
H
E
P
0
8
(
2
0
1
8
)
1
7
7

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
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Italy

A. Benagliaa, A. Beschib, L. Brianzaa,b, F. Brivioa,b, V. Cirioloa,b,15, S. Di Guidaa,d,15,

M.E. Dinardoa,b, S. Fiorendia,b, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M. Malbertia,b,

S. Malvezzia, R.A. Manzonia,b, A. Massironia,b, D. Menascea, L. Moronia, M. Paganonia,b,

D. Pedrinia, S. Ragazzia,b, T. Tabarelli de Fatisa,b
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P. Laricciaa,b, E. Manonia, G. Mantovania,b, V. Mariania,b, M. Menichellia, A. Rossia,b,

A. Santocchiaa,b, D. Spigaa
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L. Baronea,b, F. Cavallaria, M. Cipriania,b, N. Dacia, D. Del Rea,b, E. Di Marcoa,b,

M. Diemoza, S. Gellia,b, E. Longoa,b, B. Marzocchia,b, P. Meridiania, G. Organtinia,b,

F. Pandolfia, R. Paramattia,b, F. Preiatoa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b
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M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw,

Warsaw, Poland

K. Bunkowski, A. Byszuk32, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski,

M. Misiura, M. Olszewski, A. Pyskir, M. Walczak
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