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Abstract

This thesis studies equilibrium problems in aggregative games. A game describes the

interaction among selfish rational agents, each of them choosing his strategy to optimize

his own cost function, which depends also on the strategies of the other agents. In

particular, the thesis focuses on aggregative games, where the cost of each agent is a sole

function of his strategy and of the average agents’ strategy. Not only such class of games

can model a wide spectrum of applications, ranging from traffic or transmission networks

to electricity or commodity markets, but it also lends itself to an elegant mathematical

analysis.

The first part of the thesis investigates the relation between Nash and Wardrop

equilibria, which are two classical concepts in game theory. Thanks to the powerful

framework of variational inequalities, we derive bounds on the distance between the two

equilibria and use them to show that the agents’ strategies at the Nash equilibrium

converge to those at the Wardrop equilibrium, when the number of agents grows to

infinity. Moreover, we propose novel sufficient conditions to guarantee uniqueness of the

Nash equilibrium for a specific aggregative game, which is often used in applications.

The second part of the thesis is dedicated to the design of algorithms that converge

to Nash equilibrium and to Wardrop equilibrium in presence of constraints coupling

the agents’ strategies. Due to privacy issues and to the large number of agents at

hand in real-life applications, centralized solutions might not be desirable. Hence, we

first propose two parallel algorithms, where a central operator gathers and broadcasts

aggregate information to coordinate the computations carried out by the agents. Then

we design a distributed algorithm that only relies on local communications among the

agents. We test the proposed algorithms in three case studies, where we also numerically

verify the results of the first part of the thesis.

The last part of the thesis introduces the novel concept of equilibrium with inertia.

Both classical Nash and Wardrop equilibria assume that each agent has the flexibility

to change his strategy whenever this leads to an improvement. In some applications,

however, this hypothesis is not realistic. We show that introducing an inertial coefficient

which penalizes action switches leads to a richer set of equilibria, which is however in

general not convex. Since classical algorithms for Nash and Wardrop equilibria cannot

be used in presence of the inertial coefficients, we propose natural agents dynamics and

guarantee their convergence to an equilibrium with inertial coefficients.
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Sommario

Questa tesi studia problemi di equilibrio in giochi aggregativi. Un gioco descrive

l’interazione fra agenti razionali, ognuno dei quali sceglie la sua strategia per ottimizzare

la propria funzione di costo, che dipende anche dalle strategie degli altri agenti. In

particolare, la tesi si concentra sui giochi aggregativi, in cui la funzione di costo di

ogni agente dipende solo dalla sua strategia e dalla media delle strategie di tutti gli

agenti. Questa classe di giochi si presta a modellare un ampio spettro di applicazioni,

che includono reti di traffico e di trasmissione, o mercati di beni e dell’elettricità.

La prima parte della tesi analizza la relazione fra l’equilibrio di Nash e l’equilibrio di

Wardrop, che sono due concetti classici in teoria dei giochi. Grazie al potente strumento

delle disequazioni variazionali, deriviamo dei limiti sulla distanza fra i due equilibri,

che vengono poi usati per mostrare che le strategie degli agenti all’equilibrio di Nash

convergono alle strategie degli agenti all’equilibrio di Wardrop, quando il numero di

agenti tende all’infinito. Inoltre, proponiamo nuove condizioni sufficienti per garantire

l’unicità dell’equilibrio di Nash per uno specifico gioco aggregativo, che risulta molto

rilevante nel contesto applicativo.

La seconda parte della tesi è dedicata allo sviluppo di algoritmi che convergono ad un

equilibrio di Nash o ad un equilibrio di Wardrop in presenza di vincoli che accoppiano

le stategie degli agenti. Per ragioni di privacy ed a causa dell’elevato numero di agenti

in applicazioni tecnologiche, spesso le soluzioni centralizzate non sono praticabili. Per

ovviare a ciò, proponiamo due algoritmi paralleli, in cui un operatore centrale raccoglie

e trasmette informazioni aggregate per coordinare i calcoli portati avanti dagli agenti.

Inoltre, presentiamo un algoritmo distribuito che utilizza soltanto comunicazioni locali

fra gli agenti. Testiamo gli algoritmi presentati su tre applicazioni, grazie alle quali

verifichiamo numericamente i risultati teorici della prima parte della tesi.

L’ultima parte della tesi introduce il nuovo concetto di equilibrio con inerzia. I con-

cetti di equilibrio di Nash e di Wardrop assumono che ogni agente abbia la flessibilità per

cambiare strategia ogni qual volta ciò porti ad un miglioramento. In alcune applicazioni,

tuttavia, quest’ipotesi non è realistica. Mostriamo quindi che l’introduzione di un co-

efficiente d’inerzia, il quale penalizza cambi di azione, risulta in un insieme di equilibri

che è più ricco ma in generale non convesso. Dato che i classici algortimi per l’equilibrio

di Nash o di Wardrop non possono essere applicati in presenza dei coefficienti d’inerzia,

proponiamo delle dinamiche che descrivono in modo naturale il comportamento degli

agenti e mostriamo che convergono ad un equilibrio con coefficienti d’inerzia.
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CHAPTER 1
Introduction

Classical problems in control and optimization are concerned with a single engineering

system. The complexity of the decision making depends on the system itself and can

rest on factors as diverse as nonlinearity, stochasticity, lack of stability or computational

intractability. The perspective is however that of a single decision maker taking actions

to achieve his goal; an example is an engineer who models and identifies a system to

then design a stabilizing controller. Game theory, on the other hand, focuses on the

interaction between different decision makers, or agents, each choosing his strategy to

minimize his cost. Even though the individual agent can be described with a simple

model, the interaction between different agents can give rise to complex behaviors. The

difference between control/optimization and game theory is analogous to the difference

between flying an airplane in the sky and optimally designing an urban road system.

The complexity of the first task resides in understanding the vehicle dynamics and ac-

counting for the weather conditions. The vehicle is just one, but a complicated one.

The complexity of the second task lays in predicting how the human drivers respond to

different road layouts. Each driver just takes the fastest route, but they all choose at

the same time and influence each other. Since human decision makers play an important

role not only in traffic networks, but indeed in many other modern technological and

engineering systems, the understanding of game theory can be beneficial for analysis and

design purposes.

Within the vast realm of game theory, this thesis focuses on the specific class of ag-

gregative games, in which the cost of the individual agent only depends on his strategy

and on some aggregate quantity, as for instance the average agents’ strategy. Besides

modeling a vast spectrum of applications, ranging from traffic or transmission networks

to electricity or commodity markets, aggregative games lead to a simplification of the

mathematical analysis, which can for instance be exploited to propose algorithms requir-

ing little information exchange between the agents. Moreover, as aggregative games are

characterized by an individual-aggregate interaction, they lend themselves particularly

well to control purposes. In particular, it becomes natural to try and influence the ag-

gregate strategy through macroscopic signals, which can be tolls in traffic networks or

11



Chapter 1. Introduction

economic incentives in electricity markets.

To give an example of the modeling and control capabilities of aggregative games,

let us consider the coordinated charging of electric vehicles (EVs). EVs are penetrating

the market and their impact is foreseen to significantly grow in the next decades. They

are in fact preferable over internal combustion engine vehicles because they present a

lower cost per kilometer, do not pollute the air, and can provide ancillary services to

the power grid. Based on these and other considerations, many countries are heavily

subsidizing the EV sector. As of today the market penetration is relatively small, but

different studies show that the effects of EVs charging on the power grid will reach a

level that cannot be ignored. Hence it is necessary to coordinate the charging of the

EVs themselves. However, this task is complicated because the decisions are ultimately

taken by the EV owners, each deciding his charging schedule to save money on the

electricity bill, without compromising habits and comfort. If the electricity price follows

a dynamic scheme, i.e., it adapts based on the total EV consumption, then each agent’s

electricity bill only depends on his strategy and on the average agents’ strategy. In

order to design the dynamic price as a function of past and real-time measurements, it

is crucial to understand that the aggregate EV response to such dynamic price is the

result of interactions among selfish decision makers, which can be naturally modeled as

a game. Moreover, the design task can rely on the aggregative nature of the interaction,

that allows the price to be a sole function of the aggregate consumption, that is easily

measurable with modern sensor technologies.

The first part of the dissertation focuses on the relation between Nash and Wardrop

equilibria. The notion of Nash equilibrium is a central concept in game theory. It has

been applied to a broad class of games in different fields such as economics, communi-

cation networks and electricity markets. Loosely speaking, a configuration constitutes

a Nash equilibrium if no agent can improve his cost by unilaterally deviating from his

strategy, considering the strategies of the other agents as fixed. However, in the context

of aggregative games each agent’s influence on the aggregate becomes negligible when

the number of agents becomes very large. This consideration motivates the introduction

of the Wardrop equilibrium, which describes a configuration where no agent can improve

his cost by unilaterally deviating from his strategy, under the simplifying assumption

that he has no influence at all on the aggregate. This concept is widely adopted in traffic

network congestion under the name of user equilibrium, while it is often referred to as

competitive equilibrium in the economics literature. The goal of the first part of the

thesis is to provide a unifying framework for consistently studying the relations between

Nash and Wardrop equilibria. Such framework helps in particular to derive bounds on

the distance between the two equilibria as the number of agents grows large.

The second part of the thesis aims to design algorithms that achieve an equilibrium

configuration, when the agents are not only coupled through their cost functions, but

also through shared coupling constraints. Even though these constraints arise in many
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1.1 Outline and publications

different applications, such as electricity markets or communication networks, many

classical algorithms cannot be applied in their presence, as they crucially rely on the

fact that the agents’ strategy sets are decoupled. Regarding the information exchange,

in the context of games centralized algorithms are often not feasible, because forcing

the agents to compromise their privacy by communicating to a central coordinator their

strategy sets and their cost functions is simply not an option. Moreover, the large number

of agents at hand makes centralized computations of equilibria not tractable in many

applications. For these reasons, we focus on the design of algorithms that present a

parallel or distributed information structure. A parallel algorithm still features a central

operator, but rather than collecting complete information from the agents and computing

an equilibrium for them, he coordinates the execution of the algorithm by measuring and

broadcasting aggregate quantities, such as the average agents’ strategy. On the contrary,

in a distributed algorithm each agent can only exchange information with his neighbors

as specified by an underlying communication network.

The last part of the dissertation is perhaps the most innovative one, as it introduces

the novel concept of equilibrium with inertia. Both classical Nash and Wardrop equilibria

assume that each agent possesses the flexibility to change his strategy whenever this

leads to an improvement. Such hypothesis is not necessarily realistic in some situations.

Human decision makers are often prone to stick with their choices even though not

optimal, because of lack of information about alternatives, physical or psychological

burden of making a change, or even monetary transitional costs associated to the switch.

Introducing costs for strategy changes leads to a richer set of equilibria, but classical

algorithms for Nash and Wardrop equilibrium either lose guarantees of convergence,

or present an execution that reveals to be detrimental for the agents. To overcome

these issues, we tackle the algorithm design problem from the perspective of the agents

and propose simple improvement dynamics in which agents switch strategy when this

is actually beneficial for them, by taking into account also the cost of such strategy

changes.

We do not provide a review of existing work in this introductory chapter because for

each of our contributions throughout the thesis we conduct a specific literature compar-

ison.

1.1 Outline and publications

Chapter 2 introduces the background material, comprising mathematical tools and re-

sults that are used throughout the thesis. In particular, we focus on the variational

inequality (VI), which can be seen as a generalization of a convex optimization program

and plays a fundamental role in the rest of the dissertation. All the material of Chapter 2

already exists in the literature.

13



Chapter 1. Introduction

Chapter 3 introduces aggregative games with coupling constraints along with the

concepts of Nash equilibrium and Wardrop equilibrium. Based on a well-known refor-

mulation of these equilibria as solutions of certain variational inequalities, we provide

several sufficient conditions for uniqueness of Nash and of Wardrop; moreover, we bound

the distance between Nash and Wardrop in terms of the number of agents in the game.

Chapter 4 focuses on the design of parallel algorithms for finding Nash and Wardrop

equilibria. In particular, we propose a best-response algorithm, which is based on each

agent computing his best possible strategy at every iteration, and a gradient-step al-

gorithm, whose iteration requires each agent to perform a step in the steepest descent

direction. In both cases, at every iteration the central coordinator measures the average

agents’ strategy along with the coupling constraint violation and broadcasts primal and

dual aggregate quantities to the agents in order to guarantee convergence.

Chapters 3 and 4 are based on the articles

[GPP17] B. Gentile*, F. Parise*, D. Paccagnan*, M. Kamgarpour, and J. Lygeros, Nash

and Wardrop equilibria in aggregative games with coupling constraints, arXiv preprint

arXiv:1702.08789 (2017),

[PGP16] D. Paccagnan*, B. Gentile*, F. Parise*, M. Kamgarpour, and J. Lygeros, Dis-

tributed computation of generalized Nash equilibria in quadratic aggregative games with

affine coupling constraints, Proceedings of the IEEE Conference on Decision and Control

(2016), IEEE, pp. 6123–6128,

where a star indicates equal author contributions. In particular the article [GPP17] is

an extension of the preliminary work [PGP16].

Chapter 5 proposes a gradient-step distributed algorithm for computation of Nash

and Wardrop equilibria in presence of coupling constraints. We also prove a standalone

result on parametric variational inequalities, which indeed is crucial to show convergence

of the distributed algorithm. Chapter 5 is based on the following article:

[PGP16] F. Parise*, B. Gentile*, and J. Lygeros, A distributed algorithm for average

aggregative games with coupling constraints, arXiv preprint arXiv:1706.04634 (2017).

Chapter 6 studies three specific applications. The first two are the charging of electric

vehicles and the route choice game in a congested traffic network; they demonstrate and

numerically verify the results presented in Chapters 3 and 4. The third case study is a

Cournot game with transportation costs, which validates via simulation the theoretical

findings of Chapter 5.

Chapter 7 introduces the novel concept of Wardrop equilibrium with inertia. After

investigating its relations with the classical Wardrop equilibrium, we equivalently char-

acterize the set of Wardrop equilibria with inertia as the solution set of a variational

inequality. Finally, we propose agents dynamics that converge to a Wardrop equilibrium

14



1.2 Notation

with inertia. The results in this chapter are based on the work

[PGP16] B. Gentile, D. Paccagnan, B. Ogunsola, and J. Lygeros, A novel concept of

equilibrium over a network, Proceedings of the IEEE Conference on Decision and Control

(2017), IEEE, pp. 6123–6128.

Even though the material of Chapters 3-7 is extracted from the aforementioned four

articles, the presentation in this dissertation introduces more examples and provides

interpretations, reports proofs that are omitted in the articles and conducts more detailed

comparisons with the literature. In particular Chapter 7 contains substantial amount of

results that are not present in [GPO17]. In the rest of the dissertation we report our

minor findings as lemmas, our major contributions as theorems and the results of other

authors as propositions. In the following we present the notation used throughout the

thesis.

1.2 Notation

Vectors

The space of n-dimensional real vectors is denoted with Rn, while Rn
≥0 is the space

of non-negative n-dimensional real vectors and Rn
>0 is the space of strictly positive n-

dimensional real vectors. The symbol 1n indicates the n-dimensional vector of unit

entries, whereas 0n is the n-dimensional vector of zero entries. If x, y ∈ Rn, the notation

x ≥ y indicates that xj ≥ yj for all j ∈ {1, . . . , n}. The vector ei denotes the ith

vector of the canonical basis. Given x1, . . . , xM , with xi ∈ Rn for all i, we use {xi}Mi=1

to denote the set of M vectors, (xi)Mi=1 to denote the sequence of vectors, and [xi]Mi=1 =

[x1; . . . ;xM ] = [(x1)>, . . . , (xM)>]> ∈ RMn to denote the stacked vector. Moreover,

we indicate x−i = [x1; . . . ;xi−1;xi+1; . . . ;xM ] ∈ R(M−1)n. The symbol ‖x‖ denotes the

2-norm of x ∈ Rn.

Matrices

Given A ∈ Rn×n, A � 0 (� 0)⇔ x>Ax = 1
2
x>(A+A>)x > 0 (≥ 0), ∀x 6= 0n. Thus when

checking positive (semi) definiteness of a matrix one has to consider its symmetric part.

diag(A) is the diagonal matrix which has the same diagonal of A. blkdiag(A1, . . . , AM) is

the block diagonal matrix whose blocks are the matrices A1, . . . , AM . ‖A‖ is the induced

2-norm on A. Given g(x) : Rn → Rm we define∇xg(x) ∈ Rn×m with [∇xg(x)]i,j :=
∂gj(x)

∂xi
.

Given g(x) : R→ R, we denote g′(x) = ∂g(x)
∂x

. In denotes the n× n identity matrix and

A⊗B denotes the Kronecker product.
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Chapter 1. Introduction

Sets

Given the sets X 1, . . . ,XM ⊆ Rn, we denote

1

M

M∑

i=1

X i = {z ∈ Rn| ∃(x1, . . . , xM) such that xi ∈ X i,∀ i and z =
1

M

M∑

i=1

xi}.

Given X ⊆ Rn and the function f : X → Rn, we say that f is continuous if it is

continuous in its domain X . We use X−i = X 1 × . . .X i−1 ×X i+1 × . . .XM . The convex

hull of X 1, . . . ,XM is denoted with conv(X 1, . . . ,XM). All the sets are assumed to be

non-empty.

Miscellaneous

Proj
X

[x] is the Euclidean projection of the vector x onto the set X . The symbol := means

“equal by definition”. The notation x̄ ∈ argmin
X

f(x) indicates that x̄ belongs to the

set of minimizers of f over X . When the minimizer is unique, we sometimes use the

notation x̄ = argmin
X

f(x). U [a, b] represents the uniform distribution on the real interval

[a, b]. All the definitions that are not referenced can be found in at least one of the books

[FP03, Ber07, BC10].
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CHAPTER 2
Mathematical background

The goal of this chapter is to introduce the mathematical concepts that are needed for

the results presented in Chapters 3-6. All the definitions, statements and proofs already

exist in the literature. We here present and summarize concepts appearing in different

works according to our perspective, with the attempt of highlighting connections and

differences.

2.1 Basics of variational inequalities

In this section we present the variational inequality, which is an important mathematical

tool used used throughout the thesis.

Definition 1 (Variational inequality). Consider a set X ⊆ Rn and an operator F : X →
Rn. A point x̄ ∈ X is a solution of the variational inequality VI(X , F ) if

F (x̄)>(x− x̄) ≥ 0, ∀x ∈ X . �

The variational inequality (VI) problem was first introduced in infinite dimensional

spaces by the mathematician Guido Stampacchia in the 1960s [HS66], in the context

of boundary problems defined by partial differential equations. The finite-dimension VI

problem of Definition 1 was identified and studied for the first time in the PhD the-

sis of Richard Cottle [Cot66], under the supervision of George Dantzig, well-known for

fundamental contributions in linear programming and operations research in general.

Indeed the VI problem is strictly related to mathematical programming. To shed

light on the connection between the two problem classes, let us consider the optimization

program

argmin
x∈X

f(x), (2.1)

where X ⊆ Rn and f : X → R. The following proposition introduces a well-known

first-order optimality condition for (2.1).

17



Chapter 2. Mathematical background

Proposition 1 ([BT97, p. 210]). Assume that the function f is continuously differen-

tiable on the closed1, convex set X ⊆ Rn.

1. Any local minimizer x̄ of f must satisfy the first-order optimality condition

∇xf(x̄)>(x− x̄) ≥ 0, ∀x ∈ X . (2.2)

2. If f is convex on X , then any x̄ satisfying (2.2) is a global minimizer for f . �

As for some other statements of this chapter, the proof is not reported and it can

be found in the reference provided. The solutions of (2.2) are called stationary points

of f . Since (2.2) is equivalent to VI(X ,∇f) by Definition 1, the problem of finding the

stationary points can be cast as a variational inequality problem. The next proposition

clarifies that the opposite does not hold in general, i.e., not every variational inequality

problem can be cast as a stationary point problem.

Proposition 2. [OR00, Proposition 4.1.6] Let the operator F : X ⊆ Rn → Rn be

continuously differentiable on the closed, convex set X . There exists a function f : X →
R such that ∇xf(x) = F (x) for all x ∈ X (in words, F is a gradient-operator) if and

only if the Jacobian matrix ∇xF (x) is symmetric for all x ∈ X . �

In particular, if we assume the function f in (2.1) to be convex on X , then by Propo-

sition 1 the program (2.1) is equivalent to the stationary point problem (2.2). Hence a

convex optimization program can be seen as a specific instance of a variational inequality,

as visually represented in Figure 2.1.

The KKT system

In the following we review the role of the Karush-Kuhn-Tucker (KKT) system in opti-

mization programs and variational inequalities. To this end, let us focus on a constraint

set X of the form

X = {x ∈ Rn | g(x) ≤ 0m, h(x) = 0p}, (2.3)

with g : Rn → Rm and h : Rn → Rp, or in components gi : Rn → R, i = 1, . . . ,m,

hj : Rn → R, j = 1, . . . , p. The KKT system relative to (2.1) reads [Ber99, p. 310]

∇xf(x) +∇xg(x)λ+∇xh(x)µ = 0n (2.4a)

0m ≤ λ ⊥ g(x) ≤ 0m (2.4b)

h(x) = 0p, (2.4c)

1Throughout the rest of the thesis, we say that a function is differentiable on a closed set X 6= Rn if

there exists an open superset of X where the function is differentiable.
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F (x) =


2 1
1 1

�
x F (x) =


�2 1
1 1

�
x F (x) =


�2 �1
1 1

�
x

variational
inequalities

stationary
point

problems

convex
programs

Figure 2.1: Inclusions among different problem classes. The three sample VI problems

share the same convex, closed set X ⊆ R2 and feature linear operators. The sample opti-

mization program is argmin
x∈X

2x1
2 + 2x1x2 + x2

2, while the sample stationary point problem

consists in finding the stationary points of −2x2
1 + 2x1x2 + x2

2 over X . The left matrix is

symmetric and positive definite, the middle matrix is symmetric but indefinite, the right

matrix is asymmetric and indefinite.

where λ ∈ Rm is the dual variable associated with the constraint g(x) ≤ 0m and µ ∈ Rp

is the dual variable associated with the constraint h(x) = 0p.

We introduce Slater’s constraint qualification, which is then used to establish the

connection between the program (2.1) and the KKT system (2.4).

Definition 2 (Slater’s constraint qualification [BV04, eq. (5.27)]). The set X in (2.3)

is said to satisfy Slater’s constraint qualification if the function gi : Rn → R is convex

for all i = 1, . . . ,m, the function hj : Rn → R is affine for all j = 1, . . . , p, the gradients

{∇xhj}pj=1 are linearly independent, and there exists x ∈ X such that gi(x) < 0 for all

i = 1, . . . ,m. �

Proposition 3 ([PAE13, Theorems 5.33 and 5.45]). Assume that the set X satisfies

Slater’s constraint qualification and that f is differentiable in X .

1. If x̄ solves the program (2.1), then there exist λ̄, µ̄ such that (x̄, λ̄, µ̄) solves the

KKT system (2.4).

2. Assume that f is convex in X . If (x̄, λ̄, µ̄) solves the KKT system (2.4), then x̄

solves the program (2.1). �
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Chapter 2. Mathematical background

x̄ ∈ argmin
x∈X

f(x) =⇒
⇐=

(f convex)

x̄ solves KKT (2.4)

m
x̄ solves VI(X ,∇xf)

Figure 2.2: Relation between (convex) optimization program, KKT system and varia-

tional inequality, under Slater’s constraint qualification. With x̄ solution of KKT (2.4)

we mean that there exist λ̄, µ̄ such that (x̄, λ̄, µ̄) solves (2.4).

The KKT system relative to VI(X ,F ) reads

F (x) +∇xg(x)λ+∇xh(x)µ = 0n (2.5a)

0m ≤ λ ⊥ g(x) ≤ 0m (2.5b)

h(x) = 0p, (2.5c)

where the only difference with (2.4) is that ∇xf(x) is replaced by F (x), just as ∇xf(x)

in (2.2) is replaced by F (x) in Definition 1. We are now ready to draw the connection

between VI(X ,F ) and the KKT system (2.5). We include the proof, as it is short and

instructional.

Proposition 4 ([FP03, Proposition 1.3.4]). Assume that the set X satisfies Slater’s

constraint qualification. Then x̄ solves VI(X ,F ) if and only if there exist λ̄ and µ̄ such

that (x̄, λ̄, µ̄) solves the KKT system (2.5).

Proof. By Definition 1, x̄ solves VI(X ,F ) if and only if

x̄>F (x̄) ≤ x>F (x̄), ∀ x ∈ X ⇔ x̄ ∈ argmin
x∈X

x>F (x̄). (2.6)

Since X satisfies Slater’s constraint qualification and x>F (x̄) is convex, differentiable

in x, by Proposition 3 the program (2.6) is equivalent to its KKT system, that reads

as (2.5). �

Propositions 3 and 4 can be made more general by replacing Slater’s constraint qual-

ification with the less stringent Abadie constraint qualification, as in [PAE13, Theorems

5.33] and [FP03, Proposition 1.3.4]. We choose to use Slater’s constraint qualification

because it is satisfied in the applications of Sections 6.1, 6.2, 6.3 and because it helps

keeping the exposition simpler2, thus allowing to focus on the relations between VI(X ,F )

and the KKT system, which is summarized in Figure 2.2.

In a nutshell, the important concepts presented so far are that

2Verifying Abadie constraint qualification requires knowledge of the solution x̄, hence Slater’s con-

straint qualification is easier to guarantee a priori.
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2.1 Basics of variational inequalities

1. VI(X ,∇xf) and the KKT system (2.4) are first-order necessary conditions for the

program (2.1), which become sufficient if f is convex,

2. the KKT system (2.5) of a VI is a straightforward generalization of the KKT

system (2.4) of an optimization program, and

3. variational inequalities generalize convex optimization programs.

Our interest in variational inequality problems lies in the fact that not only they gen-

eralize optimization programs, but they are also equivalent characterizations of many

equilibrium problems of interest, as it will be explained in Chapters 3 and 7.

Existence and uniqueness of VI solutions

The program (2.6) constitutes an equivalent reformulation of VI(X ,F ). We now intro-

duce a second equivalent reformulation of VI(X ,F ) as fixed point problem, which is used

in this subsection to derive results on existence and uniqueness of VI solutions, and in

Section 2.3 to lay the foundations for algorithms to find solution of the VI.

Proposition 5. Consider a closed, convex set X ⊆ Rn and a scalar τ > 0. Then

x̄ solves VI(X , F ) ⇔ x̄ = Proj
X

[x̄− τF (x̄)]. (2.7)

Proof. By definition of projection,

x̄ = Proj
X

[x̄− τF (x̄)]⇔ x̄ = argmin
x∈X

(x− x̄+ τF (x̄))>(x− x̄+ τF (x̄))

Prop. 1⇔ 2(x− x̄+ τF (x̄))>|x=x̄(y − x̄) ≥ 0, ∀y ∈ X
⇔ F (x̄)>(y − x̄) ≥ 0, ∀y ∈ X ,

which yields (2.7) by Definition 1. �

Proposition 6 ([FP03, Proposition 2.3.3]). Let X ⊂ Rn be a compact, convex set and

F : X → Rn be continuous. The solution set of VI(X ,F ) is non-empty.

Proof. The operator x̄ → Proj
X

[x̄ − τF (x̄)], which is from the compact, convex set X
into itself, is continuous, because F and the projection operator are continuous. By

Brouwer’s fixed point theorem [FP03, Theorem 2.1.18], such operator admits a fixed

point. The conclusion then follows from the equivalence (2.7). �

To state the main result about uniqueness of the solution of a VI, we introduce the

concept of strong monotonicity.
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Chapter 2. Mathematical background

Definition 3 (Monotone and strongly monotone). An operator F : X ⊆ Rn → Rn is

α-strongly monotone (i.e., strongly monotone with monotonicity constant α > 0) if

(F (x)− F (y))>(x− y) ≥ α‖x− y‖2, (2.8)

for all x, y ∈ X . The operator is monotone if (2.8) holds for α = 0. �

Proposition 7 ([FP03, Theorem 2.3.3]). Let X be closed, convex and F : X ⊆ Rn → Rn

be continuous and strongly monotone. Then VI(X ,F) admits one unique solution. �

To verify whether an operator is strongly monotone or monotone one can exploit the

following equivalent characterization.

Proposition 8. [FP03, Proposition 2.3.2] Let X ⊆ Rn be convex. A continuously

differentiable operator F : X ⊆ Rn → Rn is strongly monotone with monotonicity

constant α > 0 if and only if

∇xF (x) � αIn, ∀x ∈ X . (2.9)

It is monotone if and only if

∇xF (x) � 0, ∀x ∈ X . (2.10)

Moreover, if X is compact then there exists α > 0 such that ∇xF (x) � αIn for all x ∈ X
if and only if ∇xF (x) � 0 for all x ∈ X . �

As specified in the notation section, conditions (2.9) and (2.10) are to be read (∇xF (x)+

∇xF (x)>)/2 � αIn and (∇xF (x) +∇xF (x)>)/2 � 0, i.e., positive (semi) definiteness is

expressed on the symmetric part.

Proposition 8 sheds light on the relations between convexity and monotonicity, which

are summarized in the following Table 2.1.

f(x) ∇xf(x)

convex ⇔ monotone

strongly convex ⇔ strongly monotone

Table 2.1: Equivalence between monotonicity and convexity for a twice continuously

differentiable function f .

To prove the equivalences of Table 2.1, note that by Proposition 8 the operator

∇xf(x) is strongly monotone if and only if the Hessian matrix satisfies ∇x∇xf(x) � αIn
for all x ∈ X , which is equivalent [BV04, eq. (9.7)] to strong convexity of f . In the same

way one can show that ∇xf(x) is monotone if and only if f is convex [SPF10, eq. (12)].
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2.2 Operator properties

In view of Table 2.1, we can conclude that Proposition 7 generalizes to VIs the

fact that a strongly convex function over a convex, closed set admits a unique mini-

mizer [FP03, p. 78].

We conclude with a trivial lemma, which we nonetheless report because it is often

referred to in the remaining chapters.

Lemma 1. If F : X → R is α-strongly monotone and G : X → R is monotone, then

F +G is α-strongly monotone. If F and G are monotone, then F +G is monotone.

Proof. The first statement is proven by

(F (x) +G(x)− F (y)−G(y))>(x− y)

= (F (x)− F (y))>(x− y)︸ ︷︷ ︸
≥α‖x−y‖2

+ (G(x)−G(y))>(x− y)︸ ︷︷ ︸
≥0

≥ α‖x− y‖2. (2.11)

The second statement is proven by replacing α with 0 in (2.11). �

2.2 Operator properties

In the previous section we introduced monotonicity and α-strong monotonicity. We

now present and analyze other two properties of F : X ⊆ Rn → Rn that are used in

the thesis. The properties of Definitions 3-5 will then serve in the next Section 2.3 as

sufficient conditions for convergence of two simple algorithms to a solution of VI(X ,F).

Definition 4 (Lipschitz, nonexpansive, contractive). An operator F : X ⊆ Rn → Rn is

L-Lipschitz continuous (with constant L > 0) if

‖F (x)− F (y)‖ ≤ L‖x− y‖

for all x, y ∈ X . F is nonexpansive if it is Lipschitz with constant L = 1. F is δ-

contractive if it is Lipschitz with constant δ ∈ [0, 1). �

Definition 5 (Cocoercive). The operator F : X ⊆ Rn → Rn is η-cocoercive (i.e.,

cocoercive with cocoercitivity constant η > 0) if for all x, y ∈ X

(F (x)− F (y))>(x− y) ≥ η||F (x)− F (y)||2. �

We point out that Definitions 3, 4 and 5 are provided with the standard dot product

and corresponding 2-norm, but they could be expressed with any scalar product in Rn

and corresponding norm. While Definitions 4-5 are already sufficient to move on with

the following material, the rest of Section 2.2 is dedicated to introducing a visual tool

to relate the different operator properties. Given Definitions 3, 4 and 5, one could ask

questions like:
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Chapter 2. Mathematical background

1. can a cocoercive operator be contractive?

2. does cocoercitivity imply strong monotonicity?

The following Figure 2.3 helps answering these questions.

(�, 0) (1, 0)(�1, 0) (0, 0) (1/⌘, 0)

↵-SSMON

⌘-COC

�-CON

NE

MON

Figure 2.3: Illustration in R2 of δ-contractiveness (δ-CON), nonexpansiveness (NE), α-

strong monotonicity (α-SSMON), η-cocoercitivity (η-COC), monotonicity (MON). For

each of these five properties we draw the corresponding region where F (1, 0) is restricted

to be, assuming that (0, 0) is a fixed point of F .

We derive the analytical expression of the regions in Figure 2.3. Let us denote the two

Cartesian coordinates of F (1, 0) as (p, q) = F (1, 0).

• Strongly monotone and monotone:

((p, q)− (0, 0))>((1, 0)− (0, 0)) ≥ α‖(1, 0)− (0, 0)‖ ⇔ p ≥ α.

• Lipschitz, contractive and nonexpansive:

‖(p, q)− (0, 0)‖ ≤ L‖(1, 0)− (0, 0)‖ ⇔ p2 + q2 ≤ L2.
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2.2 Operator properties

• Cocoercive:

((p, q)− (0, 0))>((1, 0)− (0, 0)) ≥ η‖(p, q)− (0, 0)‖2

⇔ p ≥ η(p2 + q2)⇔ p2 − p

η
+

1

4η2
+ q2 ≤ 1

4η2
⇔
(
p− 1

2η

)2

+ q2 ≤
(

1

2η

)2

.

The idea of Figure 2.3 comes from [GB14, Figure 1]. While it clearly fails to com-

pletely characterize the operators (for instance, it assumes that one fixed point exists,

which is not always the case), it provides the visual intuition to relate the different op-

erator properties. For instance, the two questions above can be answered by inspecting

Figure 2.3.

1. Nothing prevents a cocoercive operator to be contractive and the COC region is

contained in the CON region when η > 1, implying that an operator η-cocoercive

with η > 1 is also contractive. Indeed this last claim can be proved analytically:

‖F (x)− F (y)‖2
COC

≤ 1

η
(F (x)− F (y))>(x− y)

Cauchy
Schwarz≤ 1

η
‖F (x)− F (y)‖‖x− y‖

⇒ ‖F (x)− F (y)‖ ≤ 1

η
‖x− y‖.

2. By inspecting Figure 2.4, one can guess that there can be a cocoercive operator

which is not strongly monotone. Indeed an example is F (x) = 0n for all x. In the

same way, Figure 2.4 hints that any strongly monotone and Lipschitz operator is

cocoercive. Indeed, this is proved by

(F (x)− F (y))>(x− y)

strong
mon.≥ α‖x− y‖2

Lipschitz

≥ α

L
‖F (x)− F (y)‖2. (2.12)

With the goal of providing a visual reference more complete than Figure 2.3 for relat-

ing different operator properties, we introduce in the following some further definitions,

which are typically used to guarantee convergence of certain algorithms to a fixed point,

as in [Ber07, Theorem 2.1], [CP02, p. 522], or in [GPC16, Corollary 1] for game theo-

retical applications. Such definitions are not used in the rest of the thesis and jumping

to Section 2.3 does not affect the understanding of the following chapters.

Definition 6 (Pseudocontractive, firmly nonexpansive). An operator F : X ⊆ Rn → Rn

is said to be

a. γ-strongly-pseudocontractive (with constant γ > 0) if In − F is γ-strongly mono-

tone.

b. pseudocontractive if In − F is monotone.
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Chapter 2. Mathematical background

(0, 0) (1/⌘, 0)

↵-SSMON

⌘-COC

(L, 0)

L-LIP

Figure 2.4: In gray the Lipschitz region, in brown the strongly-monotone region, in

gray-brown squares their intersection, which is contained in a cocoercive ball for η small

enough.

c. ρ-strictly-pseudocontractive (with constant ρ < 1) if

‖F (x)− F (y)‖2 ≤ ‖x− y‖2 + ρ‖F (x)− F (y)− (x− y)‖2 (2.13)

d. firmly non-expansive if (2.13) holds with ρ = −1.

Proposition 9. The operator F : X ⊆ Rn → Rn is η-cocoercive if and only if the

operator In − F is (1− 2η)-strictly pseudo contractive.

Proof. We prove the statement by equivalently rewriting (1− 2η)-strict pseudocontrac-

tiveness of In − F as η-cocoercitivity of F :

‖F (x)− F (y)− (x− y)‖2 ≤ ‖x− y‖2 + (1− 2η)‖F (x)− F (y)‖2

⇔ ‖F (x)− F (y)‖2 − 2(F (x)−F (y))>(x− y) + ‖x− y‖2 ≤ ‖x− y‖2 + ‖F (x)− F (y)‖2

− 2η‖F (x)− F (y)‖2

⇔ −2(F (x)− F (y))>(x− y) ≤ −2η‖F (x)− F (y)‖2

⇔ (F (x)− F (y))>(x− y) ≥ η‖F (x)− F (y)‖2. �

In Figure 2.5 we complete the visual representation of Figure 2.3 by including in cyan the

regions relative to the properties of Definition 6, whose analytical derivation is straight-

forward given Definition 6 and Proposition 9. Indeed, the way we realized validity of
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2.2 Operator properties

Proposition 9 was by first drawing Figure 2.5 based on Definition 6 and then equating

the radii of the two circles, i.e., imposing 1 + 1+ρ
1−ρ = 1

η
, which yields ρ = 1− 2η.

(1, 0)(0, 0) (1/⌘, 0)
✓

1 + ⇢

1� ⇢
, 0

◆

↵-SSMON

⌘-COC⇢-SPC

�-SSPC

PC

MON

FNE

Figure 2.5: Illustration in R2 of some of the properties of Figure 2.3 along with γ-

strong-pseudocontractiveness (γ-SSPC), ρ-strict-pseudocontractiveness (ρ-SPC), pseu-

docontractiveness (PC).

Figure 2.5 suggests that firm-nonexpansiveness, which is equivalent to (−1)-strict pseu-

docontractiveness, can also be regarded as 1-cocoercitivity; this can be easily verified

analytically.

Moreover, as a consequence of Proposition 9, there is a one-to-one relation between

the properties of Definitions 3-5 and those of Definition 6, as detailed in the following

Table 2.2. Such relation results in the symmetric role of the properties in brown and

cyan of Figure 2.5.
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Chapter 2. Mathematical background

F In − F
strongly monotone ⇔ strongly pseudocontractive

cocoercive ⇔ strictly pseudocontractive

monotone ⇔ pseudocontractive

Table 2.2: Relations between operator properties.

2.3 Algorithms for variational inequalities

In this section we study two algorithms for finding a solution of VI(X ,F ). We start with

the simple projection algorithm with constant step length τ , which generalizes to VI the

gradient projection algorithm [Ber99, eq. (2.31)] for optimization programs.

The projection algorithm

Algorithm 1: Projection algorithm

Initialization τ > 0, k = 0, x(0) ∈ X
Iterate x(k+1) = Proj

X

[
x(k) − τF (x(k))

]

k ← k + 1

In the rest of this section we consider X to be closed, convex, F to be Lipschitz and

study convergence of Algorithm 1 under further assumptions on F . By Definitions 3

and 5 and by (2.12) it follows that

F strongly monotone⇒ F cocoercive⇒ F monotone,

as can be also seen by looking at Figures 2.3 and 2.4.

Proposition 10 ([FP03, Theorem 12.1.8]). Let X ⊆ Rn be closed, convex, let F : X →
Rn be η-cocoercive and let VI(X ,F) admit a solution. Then for any x(0), the sequence

(x(k))
∞
k=0 generated by Algorithm 1 with τ < 2η converges to a solution of VI(X ,F). �

By Proposition 10, under Lipschitz continuity both cocoercitivity and strong mono-

tonicity are sufficient to guarantee convergence of Algorithm 1. The next example shows

how Lipschitz continuity and monotonicity are not sufficient to guarantee convergence

of Algorithm 1.

Example 1 ([FP03, Example 12.1.3]). Consider the closed and convex set Rn. By

Definition 1, for any operator F : Rn → Rn, the solution of VI(Rn,F ) coincides with
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2.3 Algorithms for variational inequalities

the solution of the system of equations F (x) = 0n. Let us define the linear operator

F : R2 → R2 as

F (x1, x2) =

[
0 1

−1 0

] [
x1

x2

]
. (2.15)

The unique solution of VI(X ,F ) is 0n. Monotonicity of the operator F is guaranteed by

∇xF (x) =
1

2

([
0 1

−1 0

]
+

[
0 −1

1 0

])
=

[
0 0

0 0

]
� 0, ∀x ∈ X ,

together with Proposition 8. Linearity implies Lipschitz continuity. Let us now study

the sequence produced by Algorithm 1. For any τ > 0 we have

x(k+1) = Proj
R2

[x(k) − τF (x(k+1))] = x(k) − τF (x(k+1)) =

[
1 −τ
τ 1

]
x(k). (2.16)

The eigenvalues of the matrix in (2.16) are 1 ± iτ , where i is the imaginary unit, and

they are both outside of the unit circle. We can conclude that Algorithm 1 does not

converge to the solution of VI(X ,F ), unless initialized at the solution. �

The operator in (2.15) is Lipschitz and monotone, but it is not a gradient operator,

i.e., there exists no function f : R2 → R such that ∇f(x) = F (x) for all x, as can be seen

by Proposition 2 and the fact that the matrix in (2.15) is not symmetric. This is crucial

to show that Algorithm 1 does not converge. Indeed, if the operator F is Lipschitz,

monotone and it is a gradient operator, then convergence of Algorithm 1 is guaranteed

by the following Proposition 11 and Corollary 1.

Proposition 11 ([BC10, Theorem 18.15]). Let X ⊆ Rn be closed, convex and f : X → R
be convex, differentiable in X . Then the gradient ∇f : X → Rn is L-Lipschitz if and

only if it is 1/L-cocoercive. �

Corollary 1. Let X ⊆ Rn be closed, convex, F : X → Rn be monotone, L-Lipschitz,

and VI(X ,F ) admit a solution. Assume that F is a gradient operator, i.e., there exists

a function f : X → R such that ∇f(x) = F (x) for all x in X . Then for any x(0), the

sequence (x(k))
∞
k=0 generated by Algorithm 1 with τ < 2/L converges to a solution of

VI(X ,F).

Proof. Since ∇f is monotone, then f is convex (see Table 2.1) and we can use Propo-

sition 11 to conclude that F = ∇f is 1/L cocoercive. Convergence of Algorithm 1 for

τ < 2η = 2/L is then guaranteed by Proposition 10 applied to VI(X ,∇f). �

Note that the only assumption of Corollary 1 which is not satisfied by the VI of

Example 1 is the fact that F is a gradient operator.

The proof of equivalence between cocoercitivity and Lipschitzianity for a generic

monotone gradient operator (Proposition 11) is involved and can be found in [BC10,
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Chapter 2. Mathematical background

Theorem 18.15]. Based on Figure 2.3, we provide in the following an intuition of why a

monotone Lipschitz gradient operator F is cocoercive.

Let us reason for the sake of contradiction. Because F is monotone and Lipschitz,

F not being cocoercive corresponds in Figure 2.3 to the image of (1, 0) belonging to the

x2-axis without the origin, i.e., F (1, 0) = (0, p) for some p 6= 0. This is the only way

F (1, 0) is not contained in any of the cocoercive circles (parametrized by η). Then by

the multivariate mean value theorem3 [Wik17]

(∫ 1

0

∇xF

([
0

0

]
+ t

[
1

0

])
dt

)([
1

0

]
−
[
0

0

])
= F (1, 0)− F (0, 0) =

[
0

p

]

⇒
∫ 1

0

∇xF (t, 0)dt =

[
0 p

p q

] (2.17)

for some scalar q, with the integral in (2.17) meant component-wise4. In the implication

of (2.17) we used the symmetry of the integral matrix, which is due to Proposition 2

and the fact that F is a gradient operator. Since [∇xF (t, 0)](1,1) must be non-negative

for all t ∈ [0, 1] (otherwise it would not be positive definite and F would not be mono-

tone by Proposition 8), then by (2.17) [∇xF (t, 0)](1,1) = 0 for all t ∈ [0, 1]. By (2.17)

and p 6= 0, there must exist t̂ ∈ [0, 1] such that [∇xF (t̂, 0)](1,2) = [∇xF (t̂, 0)](2,1) 6= 0,

hence [∇xF (t̂, 0)] is indefinite and F is not monotone by Proposition 8), which is a

contradiction.

This gives the visual idea of why in the 2-dimensional case a monotone gradient

operator is always cocoercive. Obviously there exists a rigorous proof for the generic

n-dimensional case, but the scope here is to give an example of how Figures 2.3 and 2.5

can provide simple intuitions of implications that can be then proved rigorously.

The extragradient algorithm

Algorithm 1 finds a VI solution in presence of a strongly monotone or cocoercive operator,

but its convergence is not guaranteed if the operator is only monotone. A slight variation

of the projection algorithm results in the extragradient algorithm, which is guaranteed

3A slightly different version can be found in [Cla90, Proposition 2.6.5].
4The mean-value theorem requires F to be continuously differentiable, which is not needed for Propo-

sition 11. Indeed this is just a visual explanation, Proposition 11 does not even require existence of a

fixed point of F , which is instead hidden in all the derivations based on Figure 2.3.

30



2.3 Algorithms for variational inequalities

to converge for any monotone and Lipschitz operator.

Algorithm 2: Extragradient algorithm

Initialization τ > 0, k = 0, x(0), x̃(0) ∈ S
Iterate x̃(k+1) = Proj

X
[x(k) − τF (x(k))]

x(k+1) = Proj
X

[x(k) − τ F (x̃(k))]

k ← k + 1

Proposition 12 ([FP03, Theorem 12.1.11]). Let X ⊆ Rn be closed, convex, let F :

X → Rn be monotone, L-Lipschitz and let VI(X ,F) admit a solution. Then for any x(0),

the sequence (x(k))
∞
k=0 generated by Algorithm 2 with τ < 1/L converges to a solution

of VI(X ,F). �

Example 1 (continued). Similarly to what done in (2.16) for Algorithm 1, we derive

the expression of the update rule of Algorithm 2 applied to the linear operator in (2.15):

x(k+1) = Proj
R2

[x(k) − τF (Proj
R2

[x(k) − τF (x(k))])] = [x(k) − τF ([x(k) − τF (x(k))])] =

=

([
1 0

0 1

]
− τ

[
0 −1

1 0

]
+ τ 2

[
0 −1

1 0

]2
)
x(k) =

[
1− τ 2 +τ

−τ 1− τ 2

]
x(k). (2.18)

The eigenvalues of the matrix in (2.18) are 1 − τ 2 ± iτ , whose square magnitude is

1 − 2τ 2 + τ 4 + τ 2 = 1 − τ 2 + τ 4, which is smaller than 1 for any 0 < τ < 1. We can

conclude that for any initial condition Algorithm 2 converges to the unique solution of

VI(R2,F ), whereas Example 1 shows that Algorithm 1 fails to converge. Note that the

bound τ < 1 corresponds to the bound of Proposition 12, because the Lipschitz constant

of a linear operator is the maximum singular value of the corresponding matrix, which

for the specific F equals 1. �

We conclude with a table that summarizes the sufficient conditions for convergence

of Algorithms 1-2. Many other algorithms for solving monotone, cocoercive and strongly

Sufficient condition Algorithm

F cocoercive projection

F monotone, Lipschitz extragradient

F monotone, Lipschitz, gradient projection

Table 2.3: Sufficient conditions of Propositions 10, 12 and Corollary 1; further assump-

tions on existence of a solution, on X and on τ are not listed to focus on the key properties

of F .

monotone VI are present in the literature; a comprehensive treatment can be found
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in [FP03, Chapters 10, 11, 12]. We present only Algorithms 1-2 because of their simple

nature and because they are used in the remaining chapters.

2.4 Parametric variational inequalities

In this section we report a result of convergence for parametric variational inequalities,

which is later used in Chapter 5 to propose a distributed algorithm for finding the Nash

equilibrium of an aggregative game. To this end, we introduce the following definitions

of distance between two sets.

Definition 7 (Kuratowski convergence of sets [SW79, eq. (2.1)]). A sequence of sets

(Xν ⊆ Rn)∞ν=1 is said to Kuratowski converge to a set X ⊆ Rn, in symbols Xν → X , if

lim supXν ⊆ X ⊆ lim inf Xν , (2.19)

where

lim inf Xν := {x ∈ Rn|∃ (xν)
∞
ν=1 with xν ∈ Xν such that x = lim

ν→∞
xν},

lim supXν := {x ∈ Rn|∃ (νk)
∞
k=1, (xνk)

∞
k=1 with xνk ∈ Xνk such that x = lim

k→∞
xνk}. �

By definition lim inf Xν ⊆ lim supXν . Condition (2.19) requires the opposite inclusion

to hold.

Definition 8 (Hausdorff convergence of sets [SW79, p. 22]). The Hausdorff distance

between two non-empty subsets X and S of Rn is defined as

dH(X ,S) := max{sup
s∈S

inf
x∈X
‖x− s‖2, sup

x∈X
inf
s∈S
‖x− s‖2} .

A sequence of sets (Xν ⊆ Rn)∞ν=1 is said to Hausdorff converge to X ⊆ Rn if

lim
ν→∞

dH(Xν ,X ) = 0. �

It is easy to verify that the sequence Xν := {(x, y) ∈ R2|y ≤ νx} Kuratowski con-

verges to X := {(x, y) ∈ R2|x ≥ 0}, but it does not Hausdorff converge. In general Haus-

dorff convergence is stronger than Kuratowski convergence, in that the former implies

the latter when Xν is closed for all ν [SW79, Theorem 2], while the opposite implication

holds if Xν is closed for all ν and X is compact [SW79, Theorem 3].

We are now ready to present a classical result in convergence of parametric variational

inequalities, introduced in the work [Mos69] of Umberto Mosco in 1969. In the following

Proposition 13 we report a simplified version of [Mos69, Theorem A], where for the sake

of readability we introduce slightly stronger assumptions compared to the original ones

of [Mos69, Theorem A].
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2.4 Parametric variational inequalities

Proposition 13. Let us consider the closed, convex set X ⊆ Rn and the operator

F : X → Rn. Let us consider the sequence of closed, convex sets (Xν)∞ν=1 and the

sequence of operators (Fν)
∞
ν=1, with Fν : Xν → Rn. Assume that

1. F is continuous and monotone, Fν is continuous and monotone for all ν, and

limν→∞ Fν(x) = F (x) for all x ∈ X ;

2. VI(X ,F ) admits a unique solution x̄;

3. Xν is bounded uniformly in ν;

4. Xν Kuratowski converges to X .

Then the sequence (xν)
∞
ν=1, where xν is a solution of VI(Xν ,Fν), converges to x̄. �
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CHAPTER 3
Nash and Wardrop equilibria

in aggregative games

3.1 Game and equilibria

Motivated by the considerations of Chapter 1, we consider a set of M agents. Each

agent can choose his strategy xi in his individual constraint set X i ⊂ Rn. For finite

horizon discrete-time dynamic games the constraint set can represent the dynamics of a

system [MCH13, GPC16], as in the electric vehicle application of Section 6.1. We assume

that the cost function

J i(xi, σ(x)) (3.1)

of agent i depends on his own strategy xi ∈ X i and on the strategies of the other agents

via the average strategy σ(x) := 1
M

∑M
j=1 x

j ∈ 1
M

∑M
j=1X j, as typical of aggregative

games [Jen10]. Besides the individual constraints, each agent has to satisfy a coupling

constraint, which involves the decision variables of other agents. Upon defining the

vector of stacked-strategies as x = [x1; . . . ;xM ] ∈ RMn, the coupling constraint can be

expressed as

x ∈ C := {x ∈ RMn | g(x) ≤ 0m} ⊂ RMn, (3.2)

with g : RMn → Rm. The coupling constraint in (3.2) can model for instance the fact

that the overall usage level for a certain commodity cannot exceed a fixed capacity, as

in the applications of Chapter 6. The cost and constraints just introduced give rise to

the game

G :=





agents : {1, . . . ,M}
cost of agent i : J i(xi, σ(x))

individual constraint : X i

coupling constraint : C,

(3.3)

which is the focus of Chapters 3, 4, 5 and 6. We denote for convenience X := X 1× . . .×
XM and define

Qi(x−i) := {xi ∈ X i | g(x) ≤ 0m}, Q := X ∩ C. (3.4)
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Chapter 3. Nash and Wardrop equilibria in aggregative games

If there is no coupling constraint, i.e., C = RMn, then G becomes a game described in

normal form as in [Aub07, Definition 1]. We point out that the entire thesis focuses on

continuous strategy spaces [Aub07] rather than discrete strategy spaces [NRT07]. The

reader interested in a specific instance of the game G in (3.3) can read the first two pages

of one of the applications of Chapter 6.

3.1.1 Equilibrium definitions

We consider two notions of equilibrium for the game G in (3.3), namely the Nash and

the Wardrop equilibrium. The concept of Nash equilibrium was originally formulated for

games without coupling constraints in the seminal works of Von Neumann [VNM45] and

Nash [Nas51], and then extended to games with coupling constraints by Debreu [AD54]

and Rosen [Ros65].

Definition 9 (Nash Equilibrium). A vector of strategies xN = [x1
N; . . . ;xMN ] ∈ RMn is

an ε-Nash equilibrium of the game G if xN ∈ Q and for all i ∈ {1, . . . ,M} and all

xi∈Qi(x−iN )

J i(xiN, σ(xN))≤J i
(
xi, 1

M
xi+ 1

M

∑
j 6=i x

j
N

)
+ ε . (3.5)

If (3.5) holds with ε = 0 then xN is a Nash equilibrium. �

Intuitively, a feasible set of strategies {xiN}
M

i=1 is a Nash equilibrium if no agent can

improve his cost by unilaterally deviating from his strategy, assuming that the strategies

of the other agents are fixed. When the game features no coupling constraints, i.e.,

C = Rn, then in Definition 9 the unilateral strategy change xi is constrained to be in

X i rather than in Qi(x−iN ). A Nash equilibrium for a game with coupling constraints is

usually referred to as generalized Nash equilibrium [FK07]; in this thesis we omit the

word generalized for brevity, even though we consider a game with coupling constraints.

Note that on the right-hand side of (3.5) the decision variable xi appears in both

arguments of J i(·, ·). However, as the number of agents grows the contribution of agent

i to the average σ(x) decreases. This observation motivates the definition of Wardrop

equilibrium.

Definition 10 (Wardrop Equilibrium). A vector of- strategies xW = [x1
W; . . . ;xMW] ∈

RMn is a Wardrop equilibrium of the game G if xW ∈ Q and for all i ∈ {1, . . . ,M} and

all xi∈Qi(x−iW)

J i(xiW, σ(xW)) ≤ J i(xi, σ(xW)). �

Intuitively, a feasible set of strategies {xiW}
M

i=1 is a Wardrop equilibrium if no agent can

improve his cost by unilaterally deviating from his strategy, assuming that the average

strategy is fixed.
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3.1 Game and equilibria

The next examples clarifies the origin of the term “Wardrop equilibrium” by show-

ing that Definition 10 generalizes to generic aggregative games the notion of Wardrop

equilibrium introduced in [War52, Smi79, Daf80] for traffic networks.

Example 2 (Wardrop equilibrium for parallel roads). We consider a game where each

agent i ∈ {1, 2, ...,M} wants to send γi ∈ R>0 units of mass from origin to destination,

which are connected by n parallel roads as in Figure 3.1. In this simple example, all the

agents share the same origin and destination. The strategy xi represents the distribution

of mass γi across the roads, hence the constraint set of agent i is the simplex

xi ∈ X i :=
{
xi ∈ Rn

≥0|1>nxi = γi
}
.

Each road j ∈ {1, 2, ..., n} is associated with a travel time tj(σ(x)) which is a function of

the average mass distribution across the roads. The cost function of agent i represents

his total travel time:

J(xi, σ(x)) =
n∑

j=1

tj(σ(x))xij = t(σ(x))>xi,

where we denoted t(σ(x)) = [tj(σ(x))]nj=1. This game features no coupling constraints,

i.e., C = Rn.
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Let us consider a Wardrop equilibrium xW and equivalently rewrite the no-improvement
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Chapter 3. Nash and Wardrop equilibria in aggregative games

condition of Definition 10 in terms of σ(xW):

xW is Wardrop equilibrium ⇔ t(σ(xW))>xiW ≤ t(σ(xW))>xi, ∀xi ∈ X i, ∀i
(?)⇔ 1

M

M∑

i=1

t(σ(xW))>xiW ≤
1

M

M∑

i=1

t(σ(xW))>xi, ∀x ∈ X

⇔ t(σ(xW))>σ(xW) ≤ t(σ(xW))>σ(x), ∀x ∈ X

⇔ t(σ(xW))>σ(xW) ≤ t(σ(xW))>σ, ∀σ ∈ 1

M

M∑

i=1

X i.

⇔ σ(xW) ∈ argmin
σ∈ 1

M

∑M
i=1 X i

t(σ(xW))>σ. (3.6)

The equivalence (?) is straightforward in the direction ⇒, whereas the direction ⇐ for

a specific i can be seen by fixing x−i = x−iW , as all the summands vanish except the ith

one. Upon defining γavg := 1
M

∑M
i=1 γ

i, one can rewrite

1

M

M∑

i=1

X i =
{
σ ∈ RE

≥0|1>nσ = γavg

}
.

Defining the Wardrop equilibrium in terms of the aggregate quantity σ(xW) as in (3.6),

rather than the individual strategies xW, is standard in all the literature of transporta-

tion engineering. Such aggregate equilibrium is also referred to as traffic user equilib-

rium [Daf80] and it is defined and analyzed not only for a parallel road network, but for a

generic network with different origin-destination pairs [Smi79], as we study in Section 6.2.

In the following, we show how (3.6) corresponds to the original definition of equilib-

rium [War52] given in words by Wardrop in 1952. This correspondence has already been

derived in [Daf80], but we report it nonetheless for its instructive nature. By Proposi-

tion 3, σ(xW) is a solution of the optimization program in (3.6) if and only if it solves

its KKT system:

t(σ(xW))− λ+ µ1n = 0n (3.7a)

0n ≤ λ ⊥ σ(xW) ≥ 0n, (3.7b)

1>nσ(xW) = γavg, (3.7c)

where λ ∈ Rn is the dual variable corresponding to the non-negativity constraint and µ ∈
R is the dual variable corresponding to the constraint 1>nσ = γ. By substituting (3.7a)

into (3.7b), the system (3.7) can be simplified into

0n ≤ t(σ(xW)) + µ1n ⊥ σ(xW) ≥ 0n, (3.8a)

1>nσ(xW) = γavg. (3.8b)

We now argue that it must hold

µ = −tmin(σ(xW)) := − min
j∈{1,...,n}

tj(σ(xW)).
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3.1 Game and equilibria

Indeed, if µ > −tmin(σ(xW)) then t(σ(xW)) + µ1n > 0n, hence by the orthogonality

condition (3.8a) σ(xW) = 0n which violates (3.8b). If instead µ < −tmin(σ(xW)) then

t(σ(xW)) + µ1n ≥ 0n does not hold. We can conclude that (3.8) reads as

0n ≤ t(σ(xW))− tmin(σ(xW))1n ⊥ σ(xW) ≥ 0n,

1>nσ(xW) = γavg,

which is equivalent to σ(xW) ≥ 0n, 1>nσ(xW) = γavg and

σj(xW) > 0⇒ tj(σ(xW)) = tmin(σ(xW))

σj(xW) = 0⇒ tj(σ(xW)) ≥ tmin(σ(xW)).
(3.10)

In words, “all the used roads feature minimum travel time and there is no unused road

more convenient than a used one”. This is indeed the celebrated Wardrop user equilib-

rium principle [War52], which is at the core of contemporary transportation engineer-

ing, for stationary traffic networks [CSM11, She85] as well as for dynamic ones [Smi79,

FBS93]. �

Comparison with the literature

Even though the Wardrop equilibrium is a classical concept, the existing literature on

aggregative games [ABS02b, AW04, ABEA06, ACA11, MW95, DN87] focuses on the

aggregate formulation (3.10), defining the Wardrop equilibrium in terms of σ(x), whereas

Definition 10 is expressed in terms of the agents’ strategies x. The first glimmer of

Wardrop equilibrium in terms of x appears in the works [MCH13, GPC16], where however

it is not recognized as an equilibrium concept on its own and connected to the classical

Wardrop in terms of σ(x), but rather only identified as an ε-Nash. To the best of

our knowledge, ours is the first effort to define a Wardrop equilibrium in terms of x.

This appears to be a natural attempt, as it is common understanding that Nash and

Wardrop equilibria are closely related, but to better characterize the distance between

the two, they need to be defined on the same space, namely the one of the agents’

strategies x ∈ RMn. As a bibliographical note, we point out that the work [Gra17],

which appeared online a couple of days before our manuscript [GPP17], also defines

the Wardrop equilibrium in terms of x by naming it aggregative equilibrium, but fails

to recognize its connection with the classic Wardrop equilibrium expressed in terms of

σ(x).

It is also worth mentioning that we define such concept for a generic aggregative game,

with arbitrary individual constraint sets X i and cost function J i(xi, σ(x)), whereas the

aforementioned works [ABS02b, AW04, ABEA06, ACA11, MW95, DN87] focus on spe-

cific applications, as transportation networks, competitive markets or charging of electric

vehicles, and hence each of them considers either specific constraint sets or specific cost
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Chapter 3. Nash and Wardrop equilibria in aggregative games

functions. Indeed for generic constraint sets X i and cost function J i(xi, σ(x)) it is not

possible to express the Wardrop equilibrium in terms of σ(x), as we instead did in Exam-

ple 2, specifically in reformulation (3.6). So studying the Wardrop equilibrium in terms

of x is not a mere change of perspective, but rather a new approach that can address a

larger class of equilibrium problems.

3.2 Relation with variational inequalities

The results of Sections 3.4 and of Chapters 4 and 5 are based on the fact that certain Nash

and Wardrop equilibria of the game G in (3.3) can be obtained by solving a variational

inequality, which is the subject of this section. This is a well-known result which follows

from the first-order optimality condition of Proposition 1. For finite dimensional spaces,

such result was shown for games without coupling constraints in [Ben74, eq. (1.11)] and

for games with coupling constraints in [Har91, Theorem 3], then generalized in [FFP07,

Theorem 2.1]. This result allows one to employ the powerful mathematical tool of

variational inequalities (see Chapter 2) to study and find equilibria of the game. Let us

define

FN(x) := [∇xiJ
i(xi, σ(x))]Mi=1 = ∇z1J

i(xi, σ(x)) +
1

M
∇z2J

i(xi, σ(x)), (3.11a)

FW(x) := [∇xiJ
i(xi, z)|z=σ(x)]

M
i=1 = ∇z1J

i(xi, σ(x)), (3.11b)

where FN, FW : X → RMn and where we used the notation

∇z1J
i(xi, σ(x)) = ∇z1J

i(z1, z2)|z1=xi,z2=σ(x),

∇z2J
i(xi, σ(x)) = ∇z2J

i(z1, z2)|z1=xi,z2=σ(x).

The operator FN is obtained by stacking together the gradients of each agent’s cost with

respect to his decision variable. FW is obtained similarly, but considering σ(x) as fixed

when differentiating. The following proposition provides a sufficient characterization of

the equilibria described in Definitions 9 and 10 as solutions of two variational inequalities,

which feature the same set Q, defined in (3.4), but different operators, namely FN and

FW in (3.11).

Assumption 1. For all i ∈ {1, . . . ,M}, the individual constraint set X i is closed and

convex. The set Q in (3.4) has non-empty interior. The cost functions J i(xi, σ(x)) are

convex in xi for any fixed {xj ∈ X j}j 6=i. The cost functions J i(xi, z) are convex in xi

for any z ∈ 1
M

∑M
j=1X j. The cost functions J i(z1, z2) are continuously differentiable in

[z1; z2] for any z1 ∈ X i and z2 ∈ 1
M

∑M
j=1X j. The function g in (3.2) is convex. �

Proposition 14. Under Assumption 1, the following hold.

1. Any solution x̄N of VI(Q, FN) is a Nash equilibrium of the game G in (3.3);
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3.2 Relation with variational inequalities

2. Any solution x̄W of VI(Q, FW) is a Wardrop equilibrium of the game G in (3.3). �

Proof (based on first-order condition). The proof of the first statement can be found

in [FFP07, Theorem 2.1], but we report it here as it is fundamental and instructional.

By definition, if x̄N solves VI(Q, FN) then

FN(x̄N)>(x− x̄N) ≥ 0, ∀ x ∈ Q. (3.12)

Consider i ∈ {1, . . . ,M}, set x−i = x̄−iN in (3.12) and consider an arbitrary xi ∈ Qi(x̄−iN );

then all the summands in (3.12) vanish except the ith one and (3.12) reads

∇xiJ
i(x̄iN, σ(x̄N))>(xi − x̄iN) ≥ 0, ∀ xi ∈ Qi(x̄−iN ). (3.13)

Consider the convex function xi → J i(xi, 1
M
xi + 1

M

∑
j 6=i x̄

j
N) : Qi(x̄−iN ) → R. Since

Qi(x̄−iN ) is a convex set, the first-order condition (3.13) is equivalent to optimality of x̄iN
by Proposition 1, that is,

(3.13)⇔ J i
(
x̄iN, σ(x̄N)

)
≤ J i

(
xi,

1

M
xi +

1

M

∑

j 6=i

x̄jN

)
, ∀ xi ∈ Qi(x̄−iN ).

As this holds for all i ∈ {1, . . . ,M} and since x̄N ∈ Q, then x̄N is a Nash equilibrium of

G by Definition 9.

The proof of the second statement is analogous to the first one, but we report

it nonetheless for its novelty. We rewrite the operator FW(x) as F̃W(x, σ(x)), where

F̃W(x, z) := [∇xiJ
i(xi, z)]Mi=1. By definition, if x̄W solves VI(Q, FW) then FW(x̄W)>(x −

x̄W) ≥ 0 for all x ∈ Q, i.e.

F̃W(x̄W, z̄W)>(x− x̄W) ≥ 0, ∀x ∈ Q, (3.14)

where z̄W = σ(x̄W). Consider i ∈ {1, . . . ,M}, set x−i = x̄−iW in (3.14) and consider

an arbitrary xi ∈ Qi(x̄−iW); then all the summands in (3.14) vanish except the ith one

and (3.14) reads

∇xiJ
i(x̄iW, z̄W)>(xi − x̄iW) ≥ 0, ∀ xi ∈ Qi(x̄−iW). (3.15)

Consider the convex function xi → J i(xi, z̄W) : Qi(x̄−iW)→ R. Since Qi(x̄−iW) is a convex

set, the first-order condition (3.15) is equivalent to optimality of x̄W by Proposition 1,

that is,

(3.15)⇔ x̄iW ∈ argmin
xi∈Qi(x̄−iW )

J i
(
xi, z̄W

)
.

Substituting z̄W = σ(x̄W), one has J i (x̄iW, σ(x̄W)) ≤ J i (xi, σ(x̄W)) for all xi ∈ Qi(x̄−iW).

As this holds for all i ∈ {1, . . . ,M} and since x̄W ∈ Q, then x̄W is a Wardrop equilibrium

of G by Definition 10. �
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Alternative proof (based on KKT system). We conduct an alternative proof of Propo-

sition 14 based on the KKT system, which requires the additional Slater’s constraint

qualification but gives a further insight into the relation between equilibria and VI solu-

tions in terms of the dual variables relative to the coupling constraints. This alternative

proof is well known in the literature and can be found in [FK07, Theorem 8]. We report

only the one relative to the Nash equilibrium, the one for Wardrop being analogous.

For ease of readability we assume that X i = Rn for all i, but this can be easily

generalized to any closed and convex set X i, see [FK07, Theorem 9]. Further, we must

assume that Q = {x ∈ RMn| g(x) ≤ 0m} in (3.4) satisfies Slater’s constraint qualification

of Definition 2 Then by Proposition 4 VI(Q, FN) is equivalent to its KKT system

FN(x) +∇xg(x)λ = 0Mn

0m ≤ λ ⊥ g(x) ≤ 0m

which is equivalent to

∇xiJ
i(x, σ(x)) +∇xig(x)λ = 0n ∀ i ∈ {1, . . . ,M} (3.17a)

0m ≤ λ ⊥ g(x) ≤ 0m ∀ i ∈ {1, . . . ,M}. (3.17b)

Condition (3.17b) is redundantly repeated M times to draw a sharper parallel with the

following KKT system (3.18). By Proposition 3, the optimality condition (3.5) for the

Nash equilibrium is equivalent to M KKT systems, one for each agent:

∇xiJ
i(x, σ(x)) +∇xig(x)λi = 0n ∀i ∈ {1, . . . ,M} (3.18a)

0m ≤ λi ⊥ g(x) ≤ 0m ∀i ∈ {1, . . . ,M}. (3.18b)

The difference between (3.17) and (3.18) is that in the former each agent must share the

same dual variable λ ∈ Rn, while in the latter each agent can choose his own λi ∈ Rn. It

is then clear that any solution x̄N to (3.17) (i.e., x̄N such that there exists λ̄ with (x̄N, λ̄)

solving (3.17)) is also a solution to (3.18) (i.e., x̄N such that there exists {λ̄i}Mi=1 with

(x̄N, {λ̄i}Mi=1) solving (3.18)), but the viceversa is not true in general. �

Proposition 14 states that a solution of the variational inequality is an equilibrium.

The converse in general does not hold, due to the presence of the coupling constraints, as

highlighted in the alternative proof of Proposition 14. This can also be seen in the first

proof, because (3.13) does not imply (3.12). The equilibria that can be obtained as solu-

tions of the corresponding variational inequality are called variational equilibria [FK07,

Definition 3] and in this Chapter 3, as well as in Chapters 4 and 5 they are denoted with

x̄N, x̄W instead of xN, xW, that indicate any equilibria satisfying Definitions 9 and 10.

If on the other hand C = RMn, then Q = X 1× . . .XM and Qi(x̄−iN ) = X i, thus (3.13)

implies (3.12). This fact is even more direct to see in the alternative proof, where the

dual variable relative to the coupling constraint does not exist in the first place. As a
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consequence, for a game without coupling constraints xN solves the VI(Q, FN) if and

only if it is a Nash equilibrium of G and xW solves the VI(Q, FW) if and only if it is a

Wardrop equilibrium of G [FK07, Corollary 1]. In other words, variational inequalities

completely characterize Nash and Wardrop equilibria of a convex game without cou-

pling constraint. The survey [FK07] presents an instructive example of a simple game

with coupling constraints admitting multiple Nash equilibria but only one variational

equilibrium (Example 1, p. 175 and its continuation, p. 186).

Variational and normalized equilibria

The work by Rosen [Ros65] is one of the first to study games with coupling con-

straints and introduces the concept of normalized Nash equilibrium, that is a vector

xN for which there exist weights r ∈ RM
>0 such that xN solves the VI(Q, F r

N), where

F r
N(x) := [ri∇xiJ

i(xi, σ(x))]Mi=1. The variational Nash equilibrium (as introduced in the

previous section) is a special case of normalized Nash equilibrium, because it corresponds

to r = 1M . Following a very similar proof to that of Proposition 14, one can show that

any normalized Nash equilibrium is a Nash equilibrium, so that

x variational equilibrium ⇒ x normalized equilibrium ⇒ x equilibrium.

The opposite implications do not hold in general, as it is shown in Example 1 [FK07, p.

188], but in games without coupling constraints the three concepts coincide, as explained

in the previous subsection.

It is proven in [Ros65] that the choice of r corresponds to a split of the burden of

satisfying the coupling constraint among the agents. The intuition behind this lays in

the fact that finding a normalized equilibrium amounts to solving (3.17) where the first

summand ∇xiJ
i(x, σ(x)) is pre-multiplied by ri > 0, which is equivalent to dividing the

common dual variable λ by ri in the second summand, so that by solving VI(Q, F r
N)

the agents are assigned different dual variables based on r. The lower ri, the higher the

responsibility for agent i of satisfying the coupling constraint.

In the context of aggregative games, however, each agent contributes equally to the

average and in all the applications of Chapter 6 we study coupling constraints expressed

on the average. Therefore we split the burden of the coupling constraint equally among

the agents by selecting r = 1M , that is, we focus on variational equilibria, as typically

done in the aggregative game literature [FK07, PP09, FFP07]. Nonetheless we note that

our results could be easily extended to normalized equilibria by using the operator F r
N

instead of FN. The above discussion was conducted for Nash, but the same arguments

are also valid for the Wardrop equilibrium.
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3.3 Sufficient conditions for strong monotonicity

As variational equilibria are solutions of variational inequalities, one can use the VI

results of Chapter 2 to establish existence and uniqueness of variational equilibria.

Proposition 15 ([Ros65, Theorems 1 and 2]). Under Assumption 1,

1. if the set Q is bounded then there exists a variational Nash equilibrium (Proposi-

tion 6);

2. if the operator FN is strongly monotone then there exists a unique variational Nash

equilibrium (Proposition 7), but there might be multiple Nash equilibria.

The same statements hold for variational Wardrop equilibrium.

Proof. The statements are trivial consequences of the VI reformulation in Proposition 14,

and of the results on existence and uniqueness of VI solutions in Propositions 6 and 7.

�

This section is dedicated to deriving sufficient conditions that guarantee strong mono-

tonicity of the VI operators, which is not only needed to guarantee uniqueness of the

variational equilibrium, but it is also crucial for the results of proximity of Nash and

Wardrop of the next Section 3.4 and for convergence of the algorithms of Chapters 4 and

5. In particular, each of the next three subsections considers a special form of (3.1) and

provides sufficient conditions for monotonicity and strong monotonicity of FN and FW.

Generic price function

We specialize the cost function (3.1) of agent i to

J i(xi, σ(x)) := vi(xi) + p(σ(x))>xi. (3.19)

The cost in (3.19) can describe applications where xi denotes the usage level of a certain

commodity, whose negative utility is modeled by vi : X i → R and whose per-unit cost

p : 1
M

∑M
i=1X i → Rn depends on the average usage level [CLL14, MCH13]. Chapter 6

indeed focuses on three applications which all share the form (3.19). The operators

in (3.11) become

FW(x) = [∇xiv
i(xi)]Mi=1 + [p(σ(x))]Mi=1, (3.20a)

FN(x) = FW(x) +
1

M
[∇zp(z)|z=σ(x)x

i]Mi=1. (3.20b)
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3.3 Sufficient conditions for strong monotonicity

The next lemma makes use of Proposition 8, together with the relation between con-

vexity and monotonicity of Table 2.1, to derive simple sufficient conditions for strong

monotonicity of the operators FN and FW in (3.20).

Lemma 2. The following hold.

1. Suppose that for each agent i ∈ {1, . . . ,M} the function vi in (3.19) is convex and

that p is monotone; then FW is monotone. Under the further assumption that p is

affine and strongly monotone, FN is strongly monotone.

2. Suppose that for each agent i ∈ {1, . . . ,M} the function vi in (3.19) is strongly

convex and that p is monotone. Then FW is strongly monotone. �

Proof. 1) Let us first show that FW is monotone. Since vi is convex, then ∇xiv
i(xi) is

monotone in xi by Table 2.1. Hence [∇xiv
i(xi)]Mi=1 is monotone. Moreover, for any x1, x2

([p(σ(x1))]Mi=1 − [p(σ(x2))]Mi=1)>(x1 − x2)

= M(p(σ(x1))− p(σ(x2)))>(σ(x1)− σ(x2)) ≥ 0,
(3.21)

where the last inequality follows from the fact that p is monotone. By (3.20a) and the

fact that the sum of two monotone operators is monotone by Lemma 1, one can conclude

that FW is monotone.

To show that FN is strongly monotone, we write the affine expression of p as p(x) =

Cx + c, where there exists α > 0 such that C � αIn by Proposition 8. Then the term
1
M

[∇zp(z)|z=σ(x)x
i]Mi=1 in (3.20b) equals 1

M
(IM⊗C>)x. Since∇x(

1
M

(IM⊗C>)x) � α
M
IMn,

then 1
M

[∇zp(z)|z=σ(x)x
i]Mi=1 is strongly monotone by Proposition 8. Having already shown

that FW is monotone, the proof is concluded upon noting that the sum of a monotone

operator and a strongly monotone operator is strongly monotone by Lemma 1.

2) Strong convexity of vi is equivalent to strong monotonicity of ∇xiv
i(xi) in xi

by Table 2.1. Then [∇xiv
i(xi)]Mi=1 is strongly monotone. Monotonicity of [p(σ(x))]Mi=1

in (3.20a) can be shown as in (3.21). �

Contrary to the next two subsections, we do not provide a specific literature compar-

ison for Lemma 2, as its statement and proof are elementary.

Diagonal price function

We now focus on a cost function which is even more specific than (3.19),

J i(xi, σ(x)) = vi(xi) +
n∑

t=1

pt(σt(xt))x
i
t =: vi(xi) + p(σ(x))>xi. (3.22)

We refer to p as diagonal price function, because the tth component of p only depends on

σt(xt), where σt(xt) = 1
M

∑M
i=1 x

i
t and we defined xt := [x1

t , . . . , x
M
t ]> ∈ RM . The different
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Chapter 3. Nash and Wardrop equilibria in aggregative games

components of x are in general still coupled by the individual constraint X i. The cost

function (3.22) is widely used in the literature, especially for plug-in electric vehicles

(see [MCH13, GPC16] and Section 6.1) and traffic networks (see [BMW56, CSSM04] and

Section 6.2). While simple sufficient conditions for strong monotonicity and monotonicity

for FW can be directly derived by Lemma 2, the following Theorem 1 provides a more

interesting sufficient condition for strong monotonicity of FN.

Theorem 1. Let X be closed, convex. Assume that for each agent i ∈ {1, . . . ,M} the

function vi in (3.19) is convex and that for each t the price function pt in (3.22) is twice

continuously differentiable, strictly increasing. If there exists x0 such that X i ⊆ [0, x0]n

for all t ∈ {1, . . . , n}, i ∈ {1, . . . ,M} and if

min
t∈{1,...,n}
z∈[0,x0]

(
p′t(z)− x0p′′t (z)

8

)
> 0. (3.23)

then the operator FN is strongly monotone.

Proof. Let us first show that pt strictly increasing for all t implies p monotone:

(p(y)− p(z))>(y − z) =
n∑

t=1

(pt(yt)− pt(zt))(yt − zt) > 0.

Then by Lemma 2 the operator FW(x) = [vi(xi) + p(σ(x))]Mi=1 is monotone. According

to (3.20b), to show strong monotonicity of FN it is sufficient to show that under con-

dition (3.30) the term [∇zp(z)|z=σ(x)x
i]Mi=1 is strongly monotone for all x ∈ X , which is

equivalent to ∇x[∇zp(z)|z=σ(x)x
i]Mi=1 � 0 for all x ∈ X by Proposition 8, due to compact-

ness of X . We have

∇x[∇zp(z)|z=σ(x)x
i]Mi=1 = IM⊗∇zp(z)|z=σ(x) +

1

M
1M⊗

(
[diag{p′′t (σt)xit}nt=1]Mi=1

)>
, (3.24)

where diag{p′′t (σt)xit}nt=1 is the diagonal matrix whose entry in position (t, t) is p′′t (σt)x
i
t.

The permutation matrix P = [[e>t+(i−1)n]Mi=1]nt=1 (where ei is the ith vector of the canonical

basis) permutes (3.24) in block-diagonal form

P∇x[∇zp(z)|z=σ(x)x
i]Mi=1P

> =



p′1(σ1)IM

. . .

p′n(σn)IM


+

1

M



p′′1(σ1)x11>M

. . .

p′′n(σn)xn1>M


 ,

(3.25)

where xt = [xit]
M
i=1. It suffices to show p′t(σt)IM + 1

M
p′′t (σt)xt1

>
M � 0 for all t. By the

following Lemma 3, if xt ∈ [0, x0] then λmin

(
xt1>M + 1Mx>t

)
/2 ≥ −x0M

8
, which concludes

the proof. �

Lemma 3. For all M ∈ N it holds

min
y∈[0,1]M

λmin

(
y1>M + 1My

>) ≥ −M
4
. (3.26)
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Proof. The statement is trivially true for M = 1. For M > 1, the left-hand side of (3.26)

is equivalent to

min
y∈[0,1]M

‖v‖=1

v>
(
y1>M + 1My

>) v = min
y∈[0,1]M

‖v‖=1

2
(
v>y

) (
1>Mv

)
. (3.27)

Let us consider a pair y?, v? minimizing (3.27). If 1>Mv
? = 0, then the bound (3.26) is

trivially satisfied. We are left with two cases, 1>Mv
? > 0 and 1>Mv

? < 0. Let us start

analyzing 1>Mv
? > 0. To minimize 2

(
v>y

) (
1>Mv

)
, it must be

y?i =

{
0 if v?i > 0

1 if v?i < 0,
for all i ∈ {1, . . . ,M}. (3.28)

Without loss of generality, we can assume y?i ∈ {0, 1} if v?i = 0. Hence y? ∈ {0, 1}M
and (3.26) reduces to

min
p∈{0,...,M}

λmin




2(1p1>p ) 1p1>(M−p)

1(M−p)1>p 0(M−p)0>(M−p)


, (3.29)

where without loss of generality we assumed the first p components of y? to be 1 and

the remaining to be 0. Note that the matrix in (3.29) features p identical rows followed

by M − p other identical rows. Hence any of its eigenvectors must have p identical

components followed by M − p other identical components. With this observation and

the definition of eigenvalue, simple algebraic computations show that the matrix in (3.29)

has only two distinct eigenvalues, the minimum of the two being p−√Mp. The function

p−√Mp is minimized over the reals for p = M/4 with corresponding minimum λmin =

−M/4, as it can be seen by using the change of variables p = q2 and minimizing the

quadratic function q2 −
√
Mq. Since p ∈ {0, . . . ,M} in (3.29), the value −M/4 is a

lower bound for the minimum eigenvalue, and it is attained only if M is a multiple of

4. We conclude by noting that the derivation for the case 1>Mv
? < 0 is identical to the

derivation for the case 1>Mv
? > 0 just shown, upon switching 0 and 1 in (3.28). �

Corollary 2. Under the assumptions of Theorem 1, if p′′t < 0 for all t, then FN is strongly

monotone. �

Remark 1. The assumption in Theorem 1 of non-negativity of the agents’ decisions x

is met for several relevant applications, as the three studied in Chapter 6. If x can take

negative values, in Theorem 1 we can assume X i ⊆ [−x0, x0]n, rather than X i ⊆ [0, x0]n.

Then to guarantee strong monotonicity of FN condition (3.23) has to be replaced with

min
t∈{1,...,n}
z∈[−x0,x0]

(
p′t(z)− x0p′′t (z)

)
> 0. (3.30)

This follows from replacing 0 with −1 in (3.28), which results in the matrix (3.29)

becoming [21p1>p , 0p×M−p; 0p×M−p,−21M−p1>M−p], whose minimum eigenvalue is −2M ,

obtained for p = 0. �
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Chapter 3. Nash and Wardrop equilibria in aggregative games

To the best of our knowledge, the only work studying uniqueness of the variational

Nash equilibrium for a diagonal price function is [YSM11], which also studies an ag-

gregative game and in [YSM11, Lemma 3] it exploits expression (3.25) to give conditions

for ∇xFN(x) to be a P -matrix, which in turn guarantees uniqueness of the Nash equi-

librium in absence of coupling constraints. It is interesting to note that uniqueness

in [YSM11] holds under p′t > 0, p′′t > 0, whereas Theorem 1 guarantees uniqueness under

the complementary case p′t > 0, p′′t < 0.

Affine price function

We now focus on a cost function which is a specific case of (3.19):

J i(xi, σ(x)) :=
1

2
(xi)>Qxi + (Cσ(x) + ci)>xi , (3.31)

whereQ ∈ Rn×n is symmetric, C ∈ Rn×n, ci ∈ Rn. These cost functions have been used in

many works on aggregative games [HCM07, GPC16, BP13]. Since the operators FN, FW

defined in (3.11) are obtained by differentiating quadratic functions, their expression is

affine and can be explicitly characterized as

FW(x) =

(
IM ⊗Q+

1

M
1M1>M ⊗ C

)
x+ c, (3.32a)

FN(x) = FW(x) +
1

M
(IM ⊗ C>)x, (3.32b)

where c = [c1; . . . ; cM ]. The following lemma exploits the characterization (3.32) to

derive sufficient conditions for strong monotonicity of FW, FN.

Lemma 4. The following hold.

• If Q � 0, C � 0 or if Q � 0, C � 0 then FN in (3.32b) is strongly monotone.

• If Q � 0, C � 0 then FW in (3.32a) is strongly monotone.

• If Q � 0, Q− C>Q−1C � 0 then FW in (3.32a) is strongly monotone.

Proof. By Proposition 8, strong monotonicity of FW in (3.32a) is equivalent to∇xFW(x) =(
IM ⊗Q+ 1

M
1M1>M ⊗ C

)> � 0, which is independent from x. In the same way, strong

monotonicity of FN in (3.32b) is equivalent to
(
IM ⊗Q+ 1

M
1M1>M ⊗ C

)>
+ 1

M
(IM ⊗

C>)> � 0. Building on this, the first two statements are straightforward to prove. The

last statement needs a slightly more elaborate proof. By using Schur’s theorem

Q � 0

Q− C>Q−1C � 0

}
⇒
[
Q C>

C Q

]
� 0⇒

[
x> x>

] [Q C>

C Q

] [
x

x

]
> 0, ∀ x ∈ Rn

⇔ x>
(
Q+

C + C>

2

)
x > 0, ∀ x ∈ Rn ⇔ Q+ C � 0. (3.33)
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We show in the following that Q+C � 0 implies∇xFW(x) � 0 by proving non-negativity

of each eigenvalue λj of ∇xFW(x) = IM ⊗ Q + 1
M

1M1>M ⊗ (C + C>)/2. Corresponding

to λj there exists an eigenvector vj 6= 0Mn such that

(
IM ⊗Q+

1

M
1M1>M ⊗

C + C>

2

)
vj = λjvj ⇔ Qvij +

C + C>

2M

M∑

i=1

vij = λjv
i
j, ∀ i

⇒
(
Q+

C + C>

2

) M∑

i=1

vij = λj

M∑

i=1

vij. (3.34)

As a consequence, λj is an eigenvalue of Q + (C + C>)/2 (hence λj > 0 by (3.33)) if∑M
i=1 v

i
j 6= 0n. If instead

∑M
i=1 v

i
j = 0n then from (3.34) it follows that Qvij = λjv

i
j, ∀ i,

so λj is an eigenvalue of Q, hence λj > 0 by assumption. �

The works [PKL16] and [BG17] study strong monotonicity of FN for affine p. Specif-

ically, [PKL16, Proposition 1] proves the first bullet, while slightly different necessary

and sufficient conditions are provided in [BG17, Corollary 1].

3.4 Distance between variational Nash and Wardrop

It is clear from Lemma 2, Theorem 1 and Lemma 4 that often only one of FN and FW

features strong monotonicity, which is required to guarantee that a variational equilib-

rium can be achieved using the algorithms proposed in Chapter 4. Hence it is important

to derive results on the distance between the two variational equilibria, which is the goal

of this section, where we focus on aggregative games with large number of agents. The

basic intuition is that as the number of agents M grows, solving the VI for the variational

Nash is similar to solving the VI for the variational Wardrop, because FN converges to

FW, as it can be seen for instance in (3.20).

Formally, we consider a sequence of games (GM)∞M=1. For fixed M , the game GM is

played among M agents and is defined as in (3.3) with an arbitrary coupling constraint

C and, for every agent i, arbitrary J i(xi, σ(x)) and X i. For the sake of readability, we

avoid the explicit dependence on M in denoting these quantities and in denoting xN,

xW, FN, FW.

Assumption 2. There exists a convex, compact set X 0 ⊂ Rn such that ∪Mi=1X i ⊆ X 0

for each GM in the sequence (GM)∞M=1. For each M and i ∈ {1, . . . ,M}, the function

J i(z1, z2) is Lipschitz with respect to z2 in X 0 with Lipschitz constant L2 independent

from M , i and z1 ∈ X i. �

We note that Assumption 2 implies that σ(x) ∈ X 0 for any M and any x ∈ X 1 ×
· · ·×XM . Moreover, under Assumption 2 we defineR :=maxy∈X 0{‖y‖}. Furthermore, if
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the cost function (3.1) takes the specific form (3.19), then p being Lipschitz in X 0 with

constant Lp implies J i(z1, z2) being Lipschitz with respect to z2 in X 0 with constant

L2 = RLp, because

‖J i(z1, z2)− J i(z1, z
′
2)‖ = ‖(p(z2)− p(z′2))>z1‖

Cauchy
Schwarz≤ ‖p(z2)− p(z′2)‖‖z1‖ ≤ RLp‖z2 − z′2‖.

(3.35)

The next proposition shows that every Wardrop equilibrium is an ε-Nash equilibrium,

with ε tending to zero as M grows.

Proposition 16 ([GPC16, Theorem 1]). Let the sequence of games (GM)∞M=1 satisfy

Assumption 2. For each GM , every Wardrop equilibrium is an ε-Nash equilibrium, with

ε = 2RL2

M
. �

Proof. Consider any Wardrop equilibrium xW of GM (not necessarily a variational one).

By Definition 10, xW ∈ Q and for each agent i

J i(xiW, σ(xW)) ≤ J i(xi, σ(xW)), ∀ xi ∈ Qi(x−iW).

It follows that for each agent i and for all xi ∈ Qi(x−iW)

J i(xiW, σ(xW))− J i(xi, 1
M

(xi +
∑

j 6=i x
j
W))

= J i(xiW, σ(xW))− J i(xi, σ(xW))︸ ︷︷ ︸
≤0

+J i(xi, σ(xW))− J i(xi, 1
M

(xi +
∑

j 6=i x
j
W))

≤ L2‖σ(xW)− 1
M

(xi +
∑

j 6=i x
j
W)‖ = L2

M
‖(xiW +

∑
j 6=i x

j
W)− (xi +

∑
j 6=i x

j
W)‖

= L2

M
‖xiW − xi‖ ≤ 2RL2

M
,

hence xW is an ε-Nash equilibrium of GM , by Definition 9. �

Proposition 16 is a strong result but it provides no information on the distance

between the set of strategies constituting a Nash and the set of strategies constituting a

Wardrop equilibrium. In the following we study this distance for variational equilibria.

Theorem 2. Let the sequence of games (GM)∞M=1 satisfy Assumption 2, and each GM
satisfy Assumption 1. Then the following hold.

1. If the operator FN relative to GM is strongly monotone on Q with monotonicity

constant α
M
> 0, then there exists a unique variational Nash equilibrium x̄N of

GM . Moreover, for any variational Wardrop equilibrium x̄W

‖x̄N − x̄W‖ ≤
L2

α
M

√
M
. (3.36)

As a consequence, if α
M

√
M →∞ as M →∞, then ‖x̄N − x̄W‖ → 0 as M →∞.
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3.4 Distance between variational Nash and Wardrop

2. If the operator FW relative to GM is strongly monotone on Q with monotonicity

constant α
M
> 0, then there exists a unique variational Wardrop equilibrium x̄W

of GM . Moreover, for any variational Nash equilibrium x̄N

‖x̄N − x̄W‖ ≤
L2

α
M

√
M
. (3.37)

As a consequence, if α
M

√
M →∞ as M →∞, then ‖x̄N − x̄W‖ → 0 as M →∞.

3. If in each game GM the cost function J i(xi, σ(x)) takes the form (3.19) with vi = 0

and p is strongly monotone in X 0 with monotonicity constant α, then there exists a

unique σ̄ such that σ(x̄W) = σ̄ for any variational Wardrop equilibrium x̄W of GM .

Moreover, for any variational Nash equilibrium x̄N of GM and for any variational

Wardrop equilibrium1 x̄W of GM

‖σ(x̄N)− σ(x̄W)‖ ≤
√

2RL2

αM
. (3.38)

Hence, ‖σ(x̄N)− σ(x̄W)‖ → 0 as M →∞. �

Proof. 1) We first bound the distance between the operators FN and FW in terms of M .

By (3.11) it holds

‖FN(x)− FW(x)‖2 = ‖[∇xiJ
i(xi, σ(x))]Mi=1 − [∇xiJ

i(xi, z)|z=σ(x)]
M
i=1‖2

=
M∑

i=1

‖ 1

M
∇zJ

i(xi, z)|z=σ(x)‖2≤ 1

M2

M∑

i=1

L2
2 =

L2
2

M
,

where the inequality follows from the fact that J i(z1, z2) is Lipschitz in z2 in X 0 with

constant L2 by Assumption 2 and hence the term ‖∇zJ
i(xi, z)|z=σ(x)‖ is bounded by L2

by definition of derivative. It follows that

‖FN(x)− FW(x)‖ ≤ L2√
M
. (3.39)

for all x ∈ X 0. We exploit (3.39) to bound the distance between Nash and Wardrop

strategies. Since FN is strongly monotone on Q by assumption, VI(Q, FN) has a unique

solution x̄N by Proposition 7. Moreover, by [Nag13, Theorem 1.14] for all solutions x̄W

of VI(Q, FW) it holds

‖x̄N − x̄W‖ ≤
1

α
M

‖FN(x̄W)− FW(x̄W)‖. (3.40)

The bound (3.40) can be thought of as the generalization to VI of the same bound for

strongly convex functions. Combining this with equation (3.39) yields the result.

1If p is Lipschitz with constant Lp, then in (3.38) L2 can be replaced by RLp, as by (3.35). This is

used in the application Sections 6.1, 6.2.
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2) As in the above, with Nash in place of Wardrop and viceversa.

3) Any solution x̄W to VI(Q,FW) satisfies

FW(x̄W)>(x− x̄W) ≥ 0, ∀x ∈ Q⇔∑M
i=1 p(σ(x̄W))>(xi − x̄iW) ≥ 0, ∀x ∈ Q⇔

p(σ(x̄W))>(σ(x)− σ(x̄W)) ≥ 0, ∀x ∈ Q.
(3.41)

Any solution x̄N to VI(Q,FN) satisfies

FN(x̄N)>(x− x̄N) ≥ 0, ∀x ∈ Q⇔

p(σ(x̄N))>(σ(x)− σ(x̄N)) +
1

M2

M∑

i=1

(∇zp(z)|z=σ(x̄N)x̄
i
N)>(xi − x̄iN) ≥ 0, ∀x ∈ Q.

(3.42)

Exploiting the strong monotonicity of p in X 0, one has

α‖σ(x̄W)− σ(x̄N)‖2 ≤ (p(σ(x̄W))− p(σ(x̄N)))>(σ(x̄W)− σ(x̄N))

= p(σ(x̄W))>(σ(x̄W)− σ(x̄N))− p(σ(x̄N))>(σ(x̄W)− σ(x̄N))

≤
by (3.41)

−p(σ(x̄N))>(σ(x̄W)− σ(x̄N)) ≤
by (3.42)

1

M2

M∑

i=1

(x̄iN)>(∇zp(z)|z=σ(x̄N))
>(x̄iW − x̄iN)

= 1
M2

∑M
i=1(x̄iN)>(∇zJ

i(x̄iW, z)|z=σ(x̄N) −∇zJ
i(x̄iN, z)|z=σ(x̄N))

≤ 1
M2

∑M
i=1 ‖x̄iN‖‖∇zJ

i(x̄iW, z)|z=σ(x̄N)‖+ 1
M2

∑M
i=1 ‖x̄iN‖‖∇zJ

i(x̄iN, z)|z=σ(x̄N)‖
≤ 2L2

M2

∑M
i=1 ‖x̄iN‖ ≤ 2L2

M2

∑M
i=1 R ≤ 1

M
2RL2.

We conclude that ‖σ(x̄W)− σ(x̄N)‖ ≤
√

2RL2

αM
. �

The bound (3.36) implies that ‖x̄W− x̄′W‖ ≤ 2LpR

α
M

√
M

for any two variational Wardrop

equilibria x̄W and x̄′W of GM . Hence one can draw conclusions on the distance between

variational Wardrop equilibria without assumptions on the corresponding operator FW,

but only on FN. For instance, if α
M

√
M → ∞ as M → ∞, then any two variational

Wardrop equilibria tend to each other. In the same way, (3.37) implies that for any two

variational Nash equilibria x̄N and x̄′N of GM it holds ‖x̄N − x̄′N‖ ≤ 2LpR

α
M

√
M
.

The first two statements of Theorem 2 assume strong monotonicity of either FW, FN.

Due to the term 1
M

[∇zp(z)xi|z=σ(x)]
M
i=1 in (3.20b), in general assessing monotonicity of FN

is more difficult than assessing monotonicity of FW. The next lemma gives a sufficient

condition for strong monotonicity of FN based on the strong monotonicity of FW.

Lemma 5. Let the sequence of games (GM)∞M=1 satisfy Assumption 2 and for each game

GM let the cost functions be of the form (3.19). Moreover, assume that for each GM the

corresponding FW is strongly monotone with monotonicity constant αW independent

from M and that p is C2 in X 0. Then for any αN < αW there exists M̂ such that FN is

strongly monotone with monotonicity constant αN, for each M > M̂ .
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3.4 Distance between variational Nash and Wardrop

Proof. Let us use within this proof the notation D(x) := 1
M

[∇zp(z)xi|z=σ(x)]
M
i=1, hence

D(x) is the difference between FN(x) and FW(x), as by (3.20). We start by bounding

the Lipschitz constant of D in terms of M . Since p is C2 on the compact set X 0, there

exists Lpp > 0 such that
∑n

j=1 ‖[∇z([∇zp(z)](:,j)x
j)]|z=σ(x)‖2 ≤ Lpp, ∀x ∈ X 0. Moreover,

[M∇xD(x)]> = IM ⊗∇zp(z)|z=σ(x) +
1

M

[
∇z(∇zp(z)x1) ∇z(∇zp(z)x1)

...
∇z(∇zp(z)xM ) ∇z(∇zp(z)xM )

]

|z=σ(x)

.

Hence

‖[M∇xD(x)]>‖2 ≤
√
Mn‖[M∇xD(x)]>‖∞

≤
√
Mn

(
‖∇zp(z)|z=σ(x)‖∞ + max

i
‖[∇z(∇zp(z)xi)]|z=σ(x)‖∞

)

≤
√
Mn

(
‖∇zp(z)|z=σ(x)‖2 + max

i
‖[∇z(∇zp(z)xi)]|z=σ(x)‖2

)

≤
√
Mn (Lp + LppR) .

This implies ‖[∇xD(x)]>‖2 ≤ n(Lp+LppR)√
M

=: Ld√
M

, meaning that D is Lipschitz with

constant Ld√
M

. Consequently,

(FN(x)− FN(y))>(x− y) = (FW(x)− FW(y))>(x− y) + (D(x)−D(y))>(x− y)

≥ αW‖x− y‖2 − ‖D(x)−D(y)‖‖x− y‖ ≥ (αW − Ld√
M

)‖x− y‖2.

The statement is proven upon noticing that for any αN < αW there exists M̂ such that

(αW − Ld√
M

) > αN > 0. �

In Lemma 5 the role of Nash and Wardrop is symmetric and it also holds that strong

monotonicity of FN implies strong monotonicity of FW for M large enough.

Comparison with the literature

Proposition 16 states that, under fairly general assumptions, any Wardrop equilibrium

is an ε-Nash equilibrium. Such result follows directly from the fact that each agent

contributes only via the average and that the cost functions are Lipschitz. Consequently,

the contribution of each agent scales linearly with the inverse of the number of agents

M . This same idea is used to prove similar results in many previous contributions.

Regarding the Wardrop equilibrium expressed in terms of σ(x) as in (3.10), the case

of potential games is investigated in [AW04, ABEA06], routing games are considered in

[ACA11], flow control and routing in communication networks are discussed in [ABS02b].

The statement of Proposition 16 is also showed with a more involved proof in [GPC16].

Proposition 16 is a trivial extension of those works to generic aggregative games with

coupling constraints.
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Chapter 3. Nash and Wardrop equilibria in aggregative games

Our main result is to prove that, by introducing further assumptions, one can actually

go beyond Proposition 16 and derive bounds on the Euclidean distance between Nash

and Wardrop equilibria. In Theorem 2 we consider two types of additional assumptions:

the first is strong monotonicity of either the Nash or Wardrop operator (statements 1 and

2), the second is a structural assumption on the cost functions (statement 3). The only

previous results bounding the Euclidean distance between the two equilibria that we are

aware of are obtained in [HM85]. Therein a similar bound to our result of Theorem 2-

3) is derived specific to routing/congestion games. However, that work assumes that

the number of agents increases by means of identical replicas of the agents. To be

specific, [HM85] considers an original game with M̃ agents with constraints {X i}M̃i=1 and

cost functions {J i}M̃i=1; each game GM features M · M̃ agents, where each original agent

(i.e., its constraints and cost functions) is replicated M times. We here prove that a

similar argument as in [HM85] can be used to address the case of generic new agents

instead of identical copies. Moreover, the results in Theorem 2-1) and Theorem 2-

2) address a more general class of aggregative games (i.e. not necessarily congestion

games) by employing a new type of argument, based on a sensitivity analysis result for

variational inequalities with perturbed strongly monotone operators [Nag13, Theorem

1.14]. We note that the works [DN87, AW04, ABEA06] guarantee convergence of Nash to

Wardrop in terms of Euclidean distance, but do not provide a bound on the convergence

rate.

Finally, our results are derived for variational equilibria. We remark that if there are

no coupling constraints, as in the previous works, then any equilibrium is a variational

equilibrium. Hence our results subsume the results above. We remark that including

coupling constraints does not increase the complexity of the mathematical treatment

of Section 3.4; on the contrary the design of the algorithms in Chapters 4 and 5 is

specifically tailored to account for coupling constraints.
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CHAPTER 4
Two parallel algorithms

While the main result of Chapter 3 is on the relations between Nash and Wardrop

equilibria, Chapters 4 and 5 propose algorithms that converge to such equilibria. We

make a distinction between distributed and parallel information structure:

• in distributed algorithms each agent can only exchange information with his neigh-

bors, as specified by an underlying communication network (see Figure 4.1a);

• in parallel algorithms the agents do not communicate with each other, but there

exists a central operator (or facilitator) which can measure aggregate quantities

relative to the agents and broadcast information to the them. For instance, if the

cost function is as in (3.19), the central operator can measure the average strategy

σ(x) and broadcast the price p(σ(x)).

(a) Distributed (b) Parallel

Figure 4.1: Distributed (a) and parallel (b) information exchange.

In large-scale applications parallel or distributed schemes are often preferable to central-

ized ones for reasons of privacy and computational tractability. A thorough discussion

of advantages and disadvantages of parallel and distributed computation is outside the

scope of this thesis and can be found in [BT97, Section 1.1]. Chapter 4 proposes two

parallel algorithms and Chapter 5 proposes a distributed algorithm.
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Chapter 4. Two parallel algorithms

In the previous Chapter 3 we focused on a sequence of games with increasing number

of agents, because we studied proximity between variational Nash and Wardrop equilibria

for large number of agents. Here instead we propose algorithms for finding the variational

equilibria of the game G in (3.3) with fixed number of agents M . We start by making

an assumption on the individual and coupling constraint sets.

Assumption 3. The coupling constraint in (3.2) is of the form

x ∈ C := {x ∈ RMn |Ax ≤ b} ⊂ RMn, (4.1)

with A := [A1, . . . , AM ] ∈ Rm×Mn, Ai ∈ Rm×n for all i ∈ {1, . . . ,M}, b ∈ Rm. Moreover,

for all i ∈ {1, . . . ,M}, the set X i in (3.3) can be expressed as X i = {xi ∈ Rn|gi(xi) ≤
0mi , h

i(xi) = 0pi}, where gi : Rn → Rmi is continuously differentiable and hi : Rn → Rpi

is affine. The set Q in (3.4), which can thus be expressed as Q = {x ∈ RMn|gi(xi) ≤
0mi , h

i(xi) = 0pi ∀i, Ax ≤ b}, satisfies Slater’s constraint qualification of Definition 2.

Linearity of the coupling constraints arises in a range of applications, as explained

in [FK07, page 188] and in [YP17, Remark 3.1]. Moreover, in the three applications of

Chapter 6 the coupling constraints are linear. We also assume that agent i does not

wish to disclose information about his cost function J i and individual constraint set X i

and that he knows his influence on the coupling constraint, that is, the sub-matrix Ai
in (4.1). Moreover, we assume the presence of a central operator that is able to measure

the agents’ average strategy σ(x), to evaluate the quantityAx−b in (4.1) and to broadcast

aggregate information to the agents. Based on this information structure, in the following

we focus on the design of parallel algorithms to obtain a solution of either VI(Q, FN)

or VI(Q, FW). As the techniques are the same for Nash and Wardrop equilibrium, we

consider the general problem VI(Q, F ), where F can be replaced with FN or FW. The

symbol F i(x) indicates the ith block of F (x) which for F = FN equals ∇xiJ
i(xi, σ(x))

and for F = FW equals ∇xiJ
i(xi, z)|z=σ(x), so that F (x) = [F 1(x); . . . ;FM(x)].

We start by noting that, if F is a monotone gradient operator on Q, that is, if there

exists a convex function f(x) : RMn → R such that F (x) = ∇xf(x) for all x ∈ Q,

then by Figure 2.1 (and the explanation below it) VI(Q, F ) is equivalent to the convex

optimization program

argmin
x∈Q

f(x). (4.2)

Therefore a solution of VI(Q, F ) and thus a variational equilibrium can be found by

applying any of the parallel optimization algorithms available in the literature [BT97] to

problem (4.2); the parallel structure arises because each agent can evaluate ∇xif(x) by

knowing only his strategy xi and σ(x). Equivalently, if F is a gradient operator then G
is a potential game [MS96] with potential function f(x), hence parallel convergence tools

available for potential games can also be employed [DHZ06, MAS09]. We anticipate that

in the three applications of Chapter 6 the Wardrop operator FW in (3.20a) is a gradient

operator but the Nash operator FN in (3.20b) is not.
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In the following we intend to find a solution of VI(Q, F ) when F is not necessarily a

gradient operator, so that these standard methods cannot be applied. Based on [SPF12],

in order to propose parallel schemes in presence of coupling constraints we introduce two

reformulations of VI(Q, F ) in an extended space [x;λ] where λ is the dual variable relative

to the coupling constraint C. These two reformulations will then be used to propose two

alternative algorithms. Specifically, we define for any λ ∈ Rm
≥0 the game

G(λ) :=





agents : {1, . . . ,M}
cost of agent i : J i(xi, σ(x))+ λ>Aix

i

individual constraint : X i

coupling constraint : RMn.

The fact that the coupling constraint C is equal to RMn means that G(λ) is a game

without coupling constraints. We also introduce the extended VI(Y , T ) with Y ⊆ RMn+m

and T : RMn+m → RMn+m defined as

Y := X × Rm
≥0 , T (x, λ) :=

[
F (x) + A>λ

−(Ax− b)

]
. (4.3)

The following proposition draws a connection between VI(Q, F ), the game G(λ) and

VI(Y , T ).

Proposition 17. [SPF12, Section 4.3.2] Let Assumptions 1 and 3 hold. The following

statements are equivalent.

1. The vector x̄ is a solution of VI(Q, F ).

2. There exists λ̄ ∈ Rm
≥0 such that x̄ is a variational equilibrium of G(λ̄) and 0m ≤

λ̄ ⊥ b− Ax̄ ≥ 0m.

3. There exists λ̄ ∈ Rm
≥0 such that the vector [x̄; λ̄] is a solution of VI(Y , T ). �

Proof. The proof consists in writing the KKT system relative to each of the statements

and showing that the three KKT systems coincide.

1) Under Assumption 3 the set Q, and consequently the sets {X i}Mi=1, X and Y ,

satisfy Slater’s constraint qualification. As a consequence, by Proposition 4 VI(Q, F ) is

equivalent to its KKT system

F i(x) +∇xig
i(xi)µi +∇xih

i(xi)νi + A>i λ = 0n, ∀ i ∈ {1, . . . ,M} (4.4a)

0mi ≤ µi ⊥ gi(x) ≤ 0mi , ∀ i ∈ {1, . . . ,M} (4.4b)

hi(xi) = 0pi , ∀ i ∈ {1, . . . ,M} (4.4c)

0m ≤ λ ⊥ Ax− b ≤ 0m, (4.4d)
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Chapter 4. Two parallel algorithms

where µi is the dual variable associated to the constraint gi(xi) ≤ 0mi , ν
i is the dual

variable associated to the constraint h(x) = 0pi and λ is the dual variable associated to

the constraint Ax ≤ b.

2) By definition of x̄ being a variational equilibrium of G(λ̄), x̄ solves VI(Q, F (x) +

A>λ̄), which is equivalent to its KKT system:

F i(x) + A>i λ̄+∇xig
i(xi)µi +∇xih

i(xi)νi = 0n, ∀ i ∈ {1, . . . ,M} (4.5a)

0mi ≤ µi ⊥ gi(x) ≤ 0mi , ∀ i ∈ {1, . . . ,M} (4.5b)

hi(xi) = 0pi , ∀ i ∈ {1, . . . ,M}. (4.5c)

Moreover, by the second part of statement 2), x̄ satisfies

0m ≤ λ̄ ⊥ Ax− b ≤ 0m. (4.5d)

3) Finally, by Proposition 4, VI(Y , T ) is equivalent to its KKT system

F i(x) +∇xig
i(xi)µi +∇xih

i(xi)νi + A>i λ = 0n, ∀ i ∈ {1, . . . ,M} (4.6a)

− Ax+ b− λ = 0m, (4.6b)

0mi ≤ µi ⊥ gi(x) ≤ 0mi , ∀ i ∈ {1, . . . ,M} (4.6c)

hi(xi) = 0pi , ∀ i ∈ {1, . . . ,M} (4.6d)

0m ≤ η ⊥ −λ ≤ 0m. (4.6e)

where the primal variables are x and λ, while the dual variables are µ, ν and η.

Substituting (4.6b) into (4.6e) results in 0m ≤ λ̄ ⊥ Ax − b ≤ 0m; one can then see by

direct inspection that the KKT systems (4.4), (4.5) and (4.6) are equivalent. �

In subsection 4.1 we exploit the equivalence between 1) and 2) to propose a best-

response algorithm that converges to a Wardrop equilibrium. In subsection 4.2 we lever-

age on the equivalence between 1) and 3) to propose a gradient step algorithm that can

be employed to converge to a Nash equilibrium (with FN) or to converge to a Wardrop

equilibrium (with FW).

Nash Wardrop

best response - Algorithm 3

gradient step Algorithm 4 Algorithm 4

The core difference between a best-response algorithm and a gradient step one is

that in the former each agent updates his strategy by minimizing his cost function, while

in the latter each agent updates his strategy by performing one step in the steepest

descent direction of his cost function. Whether it is more realistic to assume that one
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4.1 Best-response parallel algorithm for Wardrop equilibrium

agent performs a complete minimization or moves precisely according to his gradient is in

general application dependent and a proper discussion of the topic is beyond the scope of

this thesis. We limit ourselves to pointing out that most works proposing algorithms to

achieve Nash or Wardrop equilibria employ either best-response [SPF10, GPC16, Jen10,

ABS02a, MCH13, Gra17] or gradient step [CLL14, Ros65, YSM11, YP17, KNS12, ZF16]

schemes. The work [FK07] provides an overview of different paradigms, starting from

best-response and gradient methods but covering also less common schemes. We perform

a specific comparison with existing algorithms at the end of Section 4.1 and Section 4.2.

4.1 Best-response algorithm

for Wardrop equilibrium

Based on the equivalence between 1) and 2) in Proposition 17, we here introduce Al-

gorithm 3 to achieve a Wardrop equilibrium. The algorithm features an outer loop, in

which the central operator broadcasts the dual variable λ(k) based on the current con-

straint violation, and an inner loop, in which the agents update their strategies to the

Wardrop equilibrium of the game G(λ(k)) by using a best-response iteration. With the

goal of enforcing the coupling constraint, in the inner loop the central operator provides

an incentive / penalty, which is represented by the additive term A>i λ(k)x
i in the cost of

each agent.

Regarding the information exchange, the best-response iteration of the inner loop is

parallel, as at every inner iteration the central operator broadcasts to all the agents the

quantity z(h), which he can compute by measuring the average agents’ strategy; in turn

each agent optimizes his strategy given z(h). If the cost function is of the form (3.19),

then the central operator can broadcast directly the price p(z(h)) rather than z(h). In the

outer loop, the central operator measures the coupling constraint violation to update the

dual variable λ(k), which he then broadcasts to all the agents. If the coupling constraint

is expressed on the average agents’ strategy σ(x), then the central operator only needs

to measure σ(x) to perform the dual update and in this case the entire algorithm is

parallel.

We use the term best-response with a slight abuse of terminology, as in its usual mean-

ing [SPF12, Section 4.2.4] this refers to argminxi∈X iJ
i(xi, 1

M
(xi +

∑
j 6=i x

j
(h))) + λ>(k)Aix

i;

here the term 1
M

(xi +
∑

j 6=i x
j
(h)) is replaced with z(h), meaning that at each itera-

tion the agent considers the average strategy as fixed and provided by the central

operator, who updates z(h) via the so-called Mann iteration [Ber07, Chapter 4]. The

works [GPC16, Gra17] refer to argminxi∈X i J
i(xi, z(h)) as optimal response rather than

best response.

Algorithm 3 is a two-level algorithm, because at every iteration the agents compute
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Chapter 4. Two parallel algorithms

Algorithm 3: best response for Wardrop equilibrium

Initialization: τ > 0, k = 0, xi(0) ∈ X i ∀ i, λ(0) ∈ Rm
≥0.

Iterate

1. Strategies are updated to a Wardrop equilibrium of Gλ(k)

Initialization h = 0, x̃i(0) = xi(k), z(0) ∈ Rn

Iterate until convergence x̃i(h+1) = argmin
xi∈X i

J i(xi, z(h)) + λ>(k)Aix
i,∀i

z(h+1) =

(
1− 1

h

)
z(h) +

1

h

(
1

M

M∑

j=1

x̃j(h+1)

)

h← h+ 1

Upon convergence x(k+1) = x̃(h)

2. Dual variables are updated

λ(k+1) = Proj
Rm≥0

[λ(k) − τ(b− Ax(k+1))]

k ← k + 1

the Wardrop equilibrium of the game without coupling constraints Gλ(k) . This is a task

that in principle requires an infinite amount of iterations of the inner loop. We stress the

fact that the following convergence result of Theorem 3 holds in the ideal case where the

inner loop achieves exact convergence to the Wardrop equilibrium of Gλ(k) . Establishing

convergence under inexact computation of the Wardrop equilibrium of Gλ(k) is subject of

future work.

The following assumption is used in Theorem 3 to prove convergence of Algorithm 3.

Assumption 4. For all i ∈ {1, . . . ,M} and λ ∈ Rm
≥0, the mapping z 7→ argmin

xi∈X i
J i(xi, z)+

λ>Aix
i is single valued; moreover, it is nonexpansive (Definition 4) or strongly pseudo-

contractive (Definition 6). �

The authors of [GPC16] consider a cost function of linear quadratic form (3.31) and

in [GPC16, Theorem 2] show that if Q � 0, C = C> � 0 or if Q � 0, Q− C>Q−1C � 0,

then Assumption 4 is satisfied. Lemma 4 states that under any of these two conditions,

i.e., if Q � 0, C = C> � 0 or if Q � 0, Q−C>Q−1C � 0, then FW is strongly monotone,

which is one of the assumptions of the following Theorem 3.

Theorem 3. Suppose that the operator FW in (3.11b) is strongly monotone on X with

constant α, that Assumptions 1, 3, 4 hold, and that X i is bounded for all i ∈ {1, . . . ,M}.
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4.1 Best-response parallel algorithm for Wardrop equilibrium

Then for any x(0), λ(0), the sequence (x(k))
∞
k=0 generated by Algorithm 3 with τ < 2α

‖A‖2

converges to a variational Wardrop equilibrium of G.

Proof. We split the proof into three parts. First we show convergence of the inner loop,

then of the outer loop, finally we conclude with a continuity argument.

Inner loop. In [GPC16, Theorem 3 and Corollary 1], it is shown that under Assump-

tion 4, for any λ(k) ∈ Rm
≥0 the sequence (x̃(h))

∞
h=1 converges to x(k) such that

xi(k) = argmin
xi∈X i

J i
(
xi,

1

M

M∑

i=1

xi(k)

)
+ λ>(k)Aix

i. (4.8)

In [GPC16, Theorem 1] it is shown that x(k) is an ε-Nash equilibrium for the game G(λ(k)),

with ε = O( 1
M

), but indeed (4.8) coincides with Definition 10 of Wardrop equilibrium1.

Outer loop. Convergence of the outer loop is based on [PSP10, Proposition 8], but

therein it is proved convergence to a Nash equilibrium, whereas Algorithm 3 achieves

a Wardrop equilibrium, hence we report the entire proof for completeness. For each

λ ∈ Rm
≥0 define FW(x;λ) := FW(x) + A>λ. Such operator is strongly monotone in x on

the set Q with the same constant α as FW(x). By Proposition 15, G(λ) has a unique

variational Wardrop equilibrium which we denote by x̄W(λ). The outer loop update can

be written as

λ(k+1) = Proj
Rm≥0

[λ(k) − τ(b− Ax̄W(λ(k)))],

which is the update step of the projection algorithm reported in Algorithm 1 when

applied to VI(Rm
≥0,Φ), with Φ(λ) := b− Ax̄W(λ).

We now show cocoercitivity of Φ. To this end, consider λ1, λ2 ∈ Rm
≥0 and the corre-

sponding unique solutions x1 := x̄W(λ1) of VI(X ,FW(x) + A>λ1) and x2 := x̄W(λ2) of

VI(X ,FW(x) + A>λ2). By Definition 1 of variational inequality,

(x2 − x1)>(FW(x1) + A>λ1) ≥ 0 , (4.9a)

(x1 − x2)>(FW(x2) + A>λ2) ≥ 0 . (4.9b)

Adding (4.9a) and (4.9b) we obtain (x2−x1)>(FW(x1)−FW(x2)+A>(λ1−λ2)) ≥ 0, i.e.,

(x2− x1)>A>(λ1−λ2) ≥ (x2− x1)>(FW(x2)−FW(x1)). Since FW is strongly monotone,

it follows from the last inequality that

(Ax2 − Ax1)>(λ1 − λ2) ≥ α‖x2 − x1‖2 . (4.10)

Moreover, since by definition of induced matrix norm ‖A(x2 − x1)‖ ≤ ‖A‖‖x2 − x1‖,
then

‖x2 − x1‖2 ≥ ‖A(x2 − x1)‖2

‖A‖2
. (4.11)

1This is consistent with the fact that it is an ε-Nash with ε = O( 1
M ) thanks to Proposition 16.
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Chapter 4. Two parallel algorithms

Combining (4.10), (4.11), and adding and subtracting b, we obtain

(b− Ax2 − (b− Ax1))>(λ2 − λ1) ≥ α

‖A‖2
‖b− Ax2 − (b− Ax1)‖2,

hence Φ is cocoercive in λ with constant cΦ = α/‖A‖2. Proposition 10 then guarantees

that λ(k) converges to a solution of VI(Rm
≥0,Φ), provided that VI(Rm

≥0,Φ) admits at least

a solution; the latter fact can be shown using the equivalence between 1) and 2) in

Proposition 17 and the existence of a solution of VI(Q,F ) by Proposition 15.

We have thus shown that λ(k) converges to a solution λ̄ of VI(Rm
≥0,Φ). We now state

that λ̄ solves VI(Rm
≥0,Φ) if and only if 0m ≤ λ̄ ⊥ (b−Ax̄W(λ̄)) ≥ 0m, which can be shown

by writing down the KKT system (2.5) relative to VI(Rm
≥0,Φ), see [FP03, Proposition

1.1.3]. Hence we can conclude that λ(k) → λ̄ and 0m ≤ λ̄ ⊥ (b− Ax̄W(λ̄)) ≥ 0m.

Continuity argument. By the inner loop argument x(k) = x̄W(λ(k)) is a Wardrop

equilibrium of G(λ(k)) and by the outer loop argument λ(k) converges to a desired λ̄.

Moreover, [Nag90, Theorem 1.14] in our setup reads

‖x̄(λ̄)− x̄W(λ(k))‖ ≤
‖A‖
α
‖λ̄− λ(k)‖,

hence x(k) = x̄W(λ(k))→ x̄(λ̄) and the proof is concluded. �

Remark 2 (Convergence rate). We cannot provide general convergence rates for Al-

gorithm 3, but if in Assumption 4 the best-response operator is strongly pseudocon-

tractive, it is possible to replace z(h+1) = (1 − 1
h
)z(h) + 1

h
( 1
M

∑M
j=1 x̃

j
(h+1)) with z(h+1) =

(1 − 1
µ
)z(h) + 1

µ
( 1
M

∑M
j=1 x̃

j
(h+1)) and guarantee geometric convergence of the inner loop

for µ ∈ (0, 1] small enough, see e.g. [Ber07, Theorem 3.6 (iii)]. �

Comparison with the literature

Finding the equilibrium of a game modified by a dual variable which is in turn updated

based on the coupling constraint violation is not a new idea; the principle is borrowed

from dual ascent methods in convex optimization [BPC11, eq. (2.2)] and in the context

of games the algorithm appears for Nash equilibrium in [PSP10, Proposition 8]. Our

contribution consists in applying such idea to the Wardrop equilibrium problem and in

using the existing best-response algorithm in [GPC16, Algorithm 1] in the inner loop.

At the end of Section 3.1 we explained that, to the best of our knowledge, the only

other work defining a Wardrop equilibrium in terms of x is [Gra17], which also considers

coupling constraints and proposes a single-level best-response algorithm for Wardrop

equilibrium, which to date constitutes the only alternative to Algorithm 3. Thus we

here perform a detailed comparison with the work [Gra17].

• The work [Gra17] focuses on a Wardrop equilibrium that satisfies the coupling

constraints, rather than on the more restrictive concept of (generalized) Wardrop
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4.2 Gradient step parallel algorithm for Nash and Wardrop equilibrium

equilibrium of Definition 10. Mathematically, this amounts to looking for a solution

of a relaxed version of (3.17), where (3.17b) is replaced by g(x) ≤ 0m, thus ignoring

the orthogonality condition and the non-negativity of the dual variable. Whether

one or the other equilibrium concept is more suitable depends on the application.

• The single-level algorithm in [Gra17] is very similar to the inner loop of Algorithm 3,

the main difference being that z is updated in a more sophisticated manner which is

needed to ensure convergence to an equilibrium satisfying the coupling constraints.

Since it is single-level rather than two-level, it is in principle more attractive than

Algorithm 3; moreover, [Gra17] proves a logarithmic convergence rate whereas we

do not study the convergence rate.

• Regarding the assumptions on the cost functions, [Gra17] does not assume that J i

is continuously differentiable, nor that FW is strongly monotone, nor a regularity

condition similar to Assumption 4, but on the other hand studies the specific cost

function J i(xi, σ(x)) = vi(xi) + (Cσ(x)) + c)>xi, with vi strongly convex and C

symmetric. In this case FW is a gradient-operator by Proposition 2, i.e., VI(X ,FW)

is equivalent to an optimization program.

• Regarding the coupling constraint, [Gra17] imposes a generic convex constraint on

the average, i.e. σ(x) ∈ S, with the requirement that S ⊆ 1
M

∑M
i=1X i, with the

last inclusion not needed in our setup. On the other hand, we assume the coupling

constraint to be affine in x and anyway Algorithm 3 can be carried out in a parallel

fashion only if the coupling constraint is expressed on the average, as commented

above.

4.2 Gradient step parallel algorithm for Nash and

Wardrop equilibrium

By exploiting the equivalent reformulation of VI(Q, F ) as the extended VI(Y , T ) given

in Proposition 17, we propose here an algorithm that can be used to achieve a Nash or to

achieve a Wardrop equilibrium. Solving VI(Y , T ) instead of VI(Q, F ) allows the design

of a parallel algorithm, because the set Y is the Cartesian product X 1 × . . .XM × Rm
≥0,

and thus the individual constraint sets X i are decoupled.

Algorithm 4 finds a solution of VI(Y , T ), where T is as in (4.3), with F = FN, and

hence achieves a Nash equilibrium. If the same algorithm is used with F = FW it achieves
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a Wardrop equilibrium.

Algorithm 4: gradient step for Nash equilibrium / for Wardrop equilibrium

Initialization τ > 0, k = 0, xi(0) ∈ X i ∀ i, λ(0) ∈ Rm
≥0

Iterate σ(k) = 1
M

∑M
i=1 x

i
(k)

xi(k+1) =Proj
X i

[xi(k)− τ∇xi{J i(xi(k),σ(x(k)))+A>i λ(k)}],∀i

λ(k+1) =Proj
Rm≥0

[λ(k)− τ(b− 2Ax(k+1) + Ax(k))]

k ← k + 1

Regarding the information exchange, at every primal iteration the central operator

measures the average agents’ strategy σ(x) and broadcasts it to the agents. Then each

agent computes his new strategy xi(k+1) by taking a gradient step, based on his previous

strategy xi(k), the previous average σ(x(k)) and the previous dual variable λ(k). Given

the new coupling constraint violation, the central operator updates the price to λ(k+1)

and broadcasts it to the agents. If the coupling constraint is expressed on the average

strategy σ(x), then the central operator only needs to measure σ(x) to perform the dual

update and in this case the entire algorithm is parallel.

Let us now compare Algorithm 3 and Algorithm 4. In both cases the cost of each

agent is modified by the additive term A>i λ(k)x
i, with the goal of enforcing the coupling

constraint. The first key difference between the two algorithms is that in Algorithm 3 at

the primal update each agent chooses the current minimizer of his cost function, whereas

in Algorithm 4 he moves a step in the projected direction of the current gradient. The

dual update is similar in the two cases, with the only difference being that Algorithm 4

features an extra 2τAx(k+1) term. The second key difference is that Algorithm 3 is com-

posed by two-loops, while Algorithm 4 consists in a single loop. A numerical comparison

of the performances of the two algorithms is conducted in Section 6.1 for the electric

vehicles application.

Theorem 4. Let Assumptions 1 and 3 hold.

• Let FN in (3.11a) be strongly monotone in X with constant α and Lipschitz in X
with constant LF . Set τ > 0 such that

τ <
−L2

F +
√
L4
F + 4α2‖A‖2

2α‖A‖2
. (4.13)

Then for any x(0), λ(0), the sequence (x(k))
∞
k=0 generated by Algorithm 4 converges

to a variational Nash equilibrium of G.

• Let FW in (3.11b) be strongly monotone on X with constant α and Lipschitz

on X with constant LF , then Algorithm 4 with ∇xiJ
i(xi(k), z)|z=σ(x) in place of
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4.2 Gradient step parallel algorithm for Nash and Wardrop equilibrium

∇xiJ
i(xi(k), σ(x(k))) converges to a variational Wardrop equilibrium, if τ satis-

fies (5.12). �

Remark 3 (Convergence rate). By specializing the result in [MW95] we proved in

[PGP16, Proposition 1] that if the operator F is not only monotone but also affine and

the set X is a polyhedron then for τ small enough Algorithm 4 converges R-linearly, i.e.,

lim supk→∞(‖y(k) − ȳ‖)
1
k < 1. �

The proof of Theorem 4 is not reported here to avoid distracting the reader from

the main contributions of this thesis. Indeed, Algorithm 4 is the standard asymmetric

projection algorithm [FP03, Algorithm 12.5.1] applied to VI(Y , T ), which is known to

converge when F is strongly monotone. The technical novelty in the proof compared to

previous works is described in [GPP17].

Comparison with the literature

We start by showing that monotonicity of F implies monotonicity of T , as

(T (x1, λ1)− T (x2, λ2))>
([
x1

λ1

]
−
[
x2

λ2

])
=

[
F (x1)− F (x2) + A>(λ1 − λ2)

−A(x1 − x2)

]>[
x1 − x2

λ1 − λ2

]

= (F (x1)− F (x2))>(x1 − x2)︸ ︷︷ ︸
≥0 as F is strongly monotone

+ (λ1 − λ2)>A(x1 − x2)− (x1 − x2)>A>(λ1 − λ2)︸ ︷︷ ︸
=0

≥ 0.

It is also straightforward to show that Lipschitzianity of F implies Lipschitzianity of T .

As a consequence, any algorithm for monotone variational inequalities converges to the

desired variational equilibrium. A treatment of the classic ones can be found in [FP03,

Chapter 12]. Specifically, it is possible to use the extragradient algorithm reported in

Algorithm 2, which however requires twice as many primal and dual updates per iteration

compared to Algorithm 4. Conducting a thorough comparison of existing algorithms for

monotone variational inequalities applied to Nash and Wardrop equilibrium problems is

beyond the scope of this thesis.

There is though a final point to be made. We explained in the literature comparison

at the end of Section 3.1 that the work [Gra17], which is the only other study on the

Wardrop equilibrium in terms of the strategies x, proposes a best-response algorithm. As

a consequence, while there are plenty of gradient-step algorithms for the Nash equilibrium

[CLL14, Ros65, YSM11, YP17, KNS12, ZF16], to the best of our knowledge Algorithm 4

can be seen as the first gradient-step algorithm that coordinates the agents to a Wardrop

equilibrium in terms of x. This is by no means a major contribution by itself; the novelty

rather consists in defining the Wardrop in terms of x in the first place, with the variational

inequality reformulation and the application of an existing algorithm being just natural

subsequent steps.
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CHAPTER 5
A distributed algorithm

While Chapter 4 introduces parallel algorithms for Nash and Wardrop equilibrium, this

Chapter 5 proposes a distributed algorithm, where the agents can only communicate

locally with their neighbors as in the scheme of Figure 4.1a. The algorithm is based on

gradient step, not on best response, and it is formulated for Nash equilibrium, but as we

point out in Subsection 5.3.1, all the treatment carries through for Wardrop equilibrium

as well. We perform a specific comparison with other distributed algorithms at the end

of Section 5.1.

As a side contribution, to prove convergence of the distributed algorithm, we in-

troduce a novel result on convergence of parametric variational inequalities, which is

applicable beyond the context of games. The result is reported in the standalone Sec-

tion 5.3, where we give a detailed explanation of how the result contributes to the existing

literature on convergence of parametric variational inequalities.

The chapter results can be generalized, as shown in Subsection 5.3.1, and they are

applied in Section 6.3 to a Cournot game with transportation costs.

5.1 Gradient step distributed algorithm

for Nash and Wardrop equilibrium

We start by introducing the following assumption.

Assumption 5. The coupling constraint C in (3.2) is of the form

x ∈ C := {x ∈ RMn | Âσ(x) ≤ b̂}, (5.1)

with Â ∈ Rm×n, b̂ ∈ Rm, for some m ∈ N. �

Assumption 5 is more stringent than Assumption 3, in that the coupling constraint

is not only required to be an affine inequality, but also to be expressed on the average

strategy. The coupling constraint in (5.1) can model the fact that the usage level for a

certain commodity cannot exceed a fixed capacity, as in [KH12] and in [Gra17].
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Chapter 5. A distributed algorithm

5.1.1 Communication limitations

The main objective of the chapter is to coordinate the agents’ strategies to a Nash

equilibrium of G by using a distributed algorithm that only requires communications

over a pre-specified (sparse) communication network. We model such network by its

adjacency matrix T ∈ [0, 1]M×M , where the element Tij ∈ [0, 1] is the weight that

agent i assigns to communications received from agent j, with Tij = 0 representing

no communication. For brevity, we refer to T as communication network, even though

it is the adjacency matrix of the communication network. Agent j is an in-neighbor of

i if Tij > 0 and an out-neighbor if Tji > 0. We denote the sets of in- and out-neighbors

of agent i as N i
in and N i

out, respectively. Algorithm 5, which we are about to introduce,

requires each agent to communicate both with his in-neighbors and out-neighbors. We

introduce the following assumption on the communication network T .

Assumption 6 (Communication network). The communication matrix T is primitive

and doubly stochastic. �

The standard definitions of primitive and doubly-stochastic can be found in [OSAFM07],

where graph theoretical conditions guaranteeing Assumption 6 are also presented. Dou-

bly stochastic means that 1>nT = 1>n and T1n = 1n, while primitive means that there

exists h ∈ N such that [T h]ij > 0 for all i, j. Loosely speaking, Assumption 6 ensures

that if the agents communicate a sufficiently large number of times over T , they are able

to recover the average of the agents’ strategies.

5.1.2 The algorithm and its convergence

To compute an almost Nash equilibrium in a distributed fashion, we propose the following

Algorithm 5, where at iteration k each agent i updates four variables:

- his strategy xi(k),

- a dual variable λi(k) relative to the coupling constraint C,

- a local average of his in-neighbors’ strategies σiν,(k),

- a local average of his out-neighbors’ dual variables µiν,(k).

To overcome the fact that the communication network is sparse we assume that to

compute σiν,(k) and µiν,(k) the agents communicate not once but multiple times over the

network T . The number of communications per update is denoted by ν ∈ N and is a

tuning parameter of the algorithm. The primal and the dual variable are in turn updated

by a gradient-like step that depends on a second tuning parameter τ > 0. By inspecting

the primal and dual update steps, it is possible to recognize the basic structure of the
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5.1 Gradient step distributed algorithm for Nash and Wardrop equilibrium

asymmetric projection algorithm, whose simpler parallel version constitutes Algorithm 4.

We finally note that both tuning parameters ν and τ are decided a priori and do not

change during the algorithm execution.

Regarding the information exchange, each agent communicates with his out-neighbors

to compute µiν,(k), and with his in-neighbors to compute σν,(k+1); he then uses these two

quantities to perform the primal and dual update. The algorithm is distributed in that

each agent only needs to communicate with his in-neighbors and out-neighbors.

Algorithm 5: for Nash equilibrium

Initialization τ > 0, ν ∈ N, k = 0, xi(0) ∈ X i ∀ i, λi(0) ∈ Rm
≥0 ∀ i, σiν,(0) = xi(0)

Iterate Communication: Dual
µiν,(k) = λi(k),∀ i
repeat ν times

µiν,(k) =
∑

j∈N iout
Tji µ

j
ν,(k),∀ i

Update: Primal
F i
ν,(k) = ∇z1J i(xi(k), σ

i
ν,(k)) + [T ν ]ii∇z2J i(xi(k), σ

i
ν,(k)), ∀ i

xi(k+1) =Proj
X i

[xi(k)−τ(F i
ν,(k) +Â

>
µiν,(k))],∀ i

Communication: Primal
σiν,(k+1) = xi(k+1),∀ i
repeat ν times

σiν,(k+1) =
∑

j∈N iin
Tijσ

j
ν,(k+1),∀ i

Update: Dual
⌊
λi(k+1) =Proj

Rm≥0

[λi(k) − τ(b̂− 2Âσiν,(k+1) + Âσiν,(k))],∀ i

k ← k + 1

To prove convergence, we introduce the following additional assumptions.

Assumption 7 (Coupling constraints). The matrix Â and the vector b̂ in (5.1) are such

that the following implication holds.

{Â>ŝ = 0n, b̂>ŝ ≤ 0, ŝ ≥ 0m} ⇒ ŝ = 0m. �

Example 3. In this example we show that the simple coupling constraint of the form

b ≤ σ(x) ≤ b̄ satisfies Assumption 7, when b < b̄ component-wise. To express C in

terms of (5.1), it must be Â> = [In,−In] and b̂> = [b̄,−b]. Then the first condition of

Assumption 7 reads [In,−In]ŝ = 0n, which is equivalent to ŝj = ŝj+n for all j = 1, . . . , n.
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Chapter 5. A distributed algorithm

The second condition reads [b̄,−b]ŝ = 0, which is equivalent to

n∑

j=1

b̄j ŝj − bj ŝj+n = 0⇔
n∑

j=1

(b̄j − bj)ŝj = 0.

Since sj ≥ 0 by the third condition and b̄j − bj > 0 by assumption, it follows sj = 0

for all j, hence Assumption 7 is met. We show in the application of Section 6.3 another

example of coupling constraint satisfying Assumption 7. �

We introduce a last regularity assumption, before stating the convergence result for

Algorithm 5.

Assumption 8. The set X is bounded, the cost function J i(z1, z2) is twice continuously

differentiable in z1, z2 for all i, the operator F = [∇xiJ
i(xi, σ(x))]Mi=1 is strongly monotone

in X . �

Theorem 5. Suppose that Assumptions 1, 5, 6, 7, 8 hold and that the set X satisfies

Slater’s constraint qualification. Then, for every precision ε > 0, there exists a minimum

number of communications νε > 0 such that, for every ν > νε and for every initial condi-

tion (x(0), λ(0)) ∈ X × RMm
≥0 , the sequence (x(k))

∞
k=1 produced by Algorithm 5 converges

to an ε-Nash equilibrium of G for τ small enough. �

The proof of Theorem 5 is the subject of the next Section 5.2, where in Theorem 7 we

also provide a precise bound on τ .

Comparison with the literature

Distributed algorithms for Nash equilibrium of aggregative games are already present in

the literature [KNS12, CLL14, PGG15b, KNS16], but these works do not handle coupling

constraints. In other words, they build on the core assumption that the strategy sets

are decoupled. Subsection 5.2.1 highlights how the proof of Theorem 5 simplifies in the

absence of coupling constraints.

To the best of our knowledge, the only distributed algorithm available in the literature

for aggregative games with coupling constraints is [LYH16]. However such algorithm is

only applicable if the coupling constraints can be expressed as the solution set of a system

of linear equations [LYH16, eq. (5)]. This is a very restrictive assumption that prevents

the applicability of the algorithm suggested in [LYH16] to many practical cases.

We finally note that our work has some affinity with the distributed algorithms

suggested in [YP17, ZF16, YSM11] to compute a Nash equilibrium of generic games

(i.e., games that do not necessarily feature the aggregative structure considered here)

with coupling constraints. The term “distributed” in all these references, however, refers

to the fact that any specific agent is only allowed to communicate with the agents that
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affect his cost function. In average aggregative games the cost function of each agent is

influenced by the strategy of all the other agents, because it is affected by the average

agents’ strategy. Consequently, the schemes proposed in [ZF16, YSM11, YP17] can

theoretically be applied to aggregative games, but they would require communications

among all the agents, or the presence of a central coordinator, as it was the case in

Chapter 4.

5.2 Proof of convergence

The proof of the statement of Theorem 5, which is the subject of this section, unfolds

as follows.

1. We define the auxiliary game Gν parametric in the number of communications ν

and study in Lemmas 6 and 7 convergence of the primitives of Gν to those of G.

2. In Theorem 6 we prove that the variational Nash equilibrium of Gν is an εν-Nash

equilibrium of G, with εν → 0 as ν →∞. To this end we exploit a novel result on

parametric convergence of variational inequalities, which is derived in Section 5.3.

3. In Theorem 7 we show that Algorithm 5 converges to a variational Nash of Gν .

Combining Theorem 6 and Theorem 7 proves Theorem 5.

The auxiliary game

We start by introducing the auxiliary game Gν . In each iteration of Algorithm 5 the

agents communicate ν times over T ; mathematically this is equivalent to communicating

once over a fictitious network with adjacency matrix T ν . Based on T ν , we introduce for

each agent i ∈ {1, . . . ,M} the local average σiν(x), defined as

σiν(x) :=
M∑

j=1

[T ν ]ijx
j.

We define Gν as a game with same constraints and cost functions as in G in (3.3), except

for the fact that each agent reacts to the local average σiν(x) instead of the global average

σ(x) = 1
M

∑M
j=1 x

j. Specifically, upon defining

Cν := {x ∈ RMn | Âσjν(x) ≤ b̂, ∀j ∈ {1, . . . ,M}}
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we formally introduce the multi-communication network aggregative game as

Gν :=





agents : {1, . . . ,M}
cost of agent i : J i(xi, σiν(x))

individual constraint : X i

coupling constraint : Cν .

The definition of Nash equilibrium for Gν is the analogous of Definition 9 for G, so we

do not report it here. To introduce the variational Nash equilibrium of Gν , let us define

the following quantities.

Fν(x) := [∇xiJ
i(xi, σiν(x))]Mi=1, (5.3a)

Qν := {x ∈ X |Aνx ≤ b}, (5.3b)

Qi
ν(x
−i) := {xi ∈ X i|Aνx ≤ b}, (5.3c)

Aν := T ν ⊗ Â, (5.3d)

b := 1M ⊗ b̂. (5.3e)

By the analogous of Proposition 14, if J i(xi, σiν(x)) is convex in xi for all x−i ∈ X−i, every

solution x̄ν of VI(Qν ,Fν) is a Nash equilibrium of Gν , called variational Nash equilibrium.

We also recall the quantities corresponding to (5.3) relative to G

F (x) := [∇xiJ
i(xi, σ(x))]Mi=1, (5.4a)

Q := {x ∈ X |Ax ≤ b}, (5.4b)

Qi(x−i) := {xi ∈ X i|Ax ≤ b}, (5.4c)

A :=
1

M
1M1M

> ⊗ Â. (5.4d)

Note that throughout this chapter we use F as in (5.4a) rather than FN for ease of

notation. In (5.4) the coupling constraint C is expressed in the redundant form Ax ≤ b

(consisting of M repetitions of the constraint Âσ(x) ≤ b̂) to match the structure of

Aνx ≤ b in (5.3).

We conclude by stating convergence of the operator Fν to F as ν tends to infinity.

Lemma 6. Let Assumptions 1, 5 and 6 hold and X be bounded. Then

lim
ν→∞

T ν =
1

M
1M1M

>, lim
ν→∞

Aν = A, lim
ν→∞

Fν(x) = F (x),

with the last being uniform in x. The operators Fν are bounded on X uniformly in ν. �

Proof. The fact that T primitive and doubly stochastic implies limν→∞ T
ν = 1

M
1M1M>

is a well-known result in consensus theory, whose proof can be found in [Bul18, Corollary
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5.1]. Convergence of Aν to A follows immediately from definitions (5.3d), (5.4d) and the

properties of the Kronecker product. Note that

F (x) = [∇z1J
i(xi, σ(x)) +

1

M
∇z2J

i(xi, σ(x))]Mi=1,

Fν(x) = [∇z1J
i(xi, σiν(x)) + [T ν ]ii∇z2J

i(xi, σiν(x))]Mi=1.

Uniform convergence of Fν to F follows by continuity of ∇z1J
i(z1, z2) and ∇z2J

i(z1, z2)

in z1, z2 for all i (ensured by Assumption 1), by [T ν ]ii → 1
M

, since T ν → 1
M

1M1>M , and

by σiν(x)→ σ(x) uniformly in x.

Finally, as ‖∇z1J
i(z1, z2)‖ and ‖∇z2J

i(z1, z2)‖ are continuous functions over the com-

pact set X i × conv{X 1, . . . ,XM} by Assumption 1, then there exists κ > 0 such that

‖∇z1J
i(z1, z2)‖ < κ and ‖∇z2J

i(z1, z2)‖ < κ. Note that [T ν ]ii ≤ 1 for all i ∈ {1, . . . ,M}
and for all ν > 0, since T and thus T ν are non-negative and doubly stochastic. Then for

all x ∈ X

‖Fν(x)‖2 =
M∑

i=1

‖∇z1J
i(xi, σiν(x)) + [T ν ]ii∇z2J

i(xi, σiν(x))‖2

≤
M∑

i=1

(
‖∇z1J i(xi, σiν(x))‖2+2‖∇z1J

i(xi, σiν(x))‖‖∇z2J
i(xi, σiν(x))‖+‖∇z2J

i(xi, σiν(x))‖2
)

≤
M∑

i=1

(κ2 + 2κ2 + κ2) = 4Mκ2,

which proves that Fν is bounded, uniformly in ν. �

The next lemma provides a sufficient condition for Fν to be strongly monotone, which

is then used in Theorem 6.

Lemma 7. Under Assumptions 1, 6 and 8, there exists νSMON such that Fν is strongly

monotone for all ν > νSMON. �

Proof. We point out that the statement is not dissimilar in spirit from Lemma 5, but

the proof is conducted differently. Observe that

(Fν(x)− Fν(y))>(x− y)

= (F (x)− F (y))>(x− y) + (Fν(x)− F (x)− (Fν(y)− F (y)))>(x− y)

≥ αF‖x− y‖2 − ‖Fν(x)− F (x)− (Fν(y)− F (y))‖︸ ︷︷ ︸
≤`ν‖x−y‖

‖x− y‖

≥ (αF − `ν)‖x− y‖2,

where `ν is the Lipschitz constant of Fν − F , which is Lipschitz continuous because

J i is twice continuously differentiable for all i and X is compact (as it is closed by
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Assumption 1 and bounded by Assumption 8). Moreover, for the same reason and since

σν(x) → σ(x) uniformly in x, then ∇x(Fν(x) − F (x)) → 0 uniformly in x and hence

`ν → 0, thus concluding the proof. �

Auxiliary theorems

Theorem 6 (Convergence of x̄ν to x̄). Suppose that Assumptions 1, 5, 6, 7, 8 hold.

Then

1. The game G has a unique variational Nash equilibrium x̄ and for any ν > νSMON,

Gν has a unique variational Nash equilibrium x̄ν . Moreover,

lim
ν→∞

x̄ν = x̄. (5.5)

2. For every ε > 0, there exists a νε > νSMON such that, for every ν > νε, the

variational Nash equilibrium x̄ν of Gν is an ε-Nash equilibrium of G. �

Proof. 1) Existence and uniqueness of x̄ and x̄ν solutions to VI(Q,F ) and VI(Qν ,Fν)

respectively is guaranteed by Proposition 7, because the operator F is strongly monotone

by assumption and the operator Fν (for ν > νSMON) is strongly monotone by Lemma 7.

By Proposition 8, strong monotonicity of Fν implies ∇xFν(x) � αIMn for all x, which in

turn implies ∇xiF
i
ν(x) � αIn for all x, hence J i(xi, σiν(x)) is convex in xi. Consequently,

Proposition 14 guarantees that x̄ and x̄ν are the unique variational Nash equilibria of

G and Gν , respectively. The limit (5.5) follows from Theorem 8 in Section 5.3, which is

a general result on convergence of parametric variational inequalities. The theorem is

based on Assumption 9 in Section 5.3.

To verify such assumption note that Lemma 6 implies Aν → A and, for each x ∈ X ,

Fν(x)→ F (x); moreover, bν = b for all ν. We are left with proving (5.14), which in our

setup reads

{A>s = 0Mn, b>s ≤ 0, s ≥ 0Mn} ⇒ s = 0Mn. (5.6)

To prove (5.6) take s := [s1; . . . ; sM ] ∈ RMn such that A>s = 0Mn, b>s ≤ 0 and s ≥ 0Mn

and define ŝ :=
∑M

j=1 s
j ∈ Rn. Then

A>s = 0Mn ⇔
(

1

M
1M1>M ⊗ Â>

)
s = 0Mn ⇒ Â>ŝ = 0n,

b>s ≤ 0 ⇔ (1>M ⊗ b̂>)s ≤ 0 ⇒ b̂>ŝ ≤ 0,

s ≥ 0Mn ⇒ ŝ ≥ 0n.

By Assumption 7, we conclude ŝ = 0n. Since s ≥ 0Mn, it must be s = 0Mn, thus proving

(5.6).
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2) We divide the proof of this statement into two parts: i) we prove that x̄ν ∈ Q

for any ν > 0, and ii) we prove that condition (3.5) is satisfied, as these are the two

conditions of Definition 9 of ε-Nash.

i) Being x̄ν a Nash equilibrium for Gν , x̄ν ∈ Qν , hence x̄ν ∈ X and Âσiν(x̄ν) ≤ b̂ for all

i. By summing over all i and dividing by M , we obtain

Â

(
1

M

M∑

i=1

σiν(x̄ν)

)
≤ b̂. (5.7)

However,

M∑

i=1

σiν(x̄ν) =
M∑

i=1

M∑

j=1

[T ν ]ijx̄
j
ν =

M∑

j=1

(
M∑

i=1

[T ν ]ij

)
x̄jν =

M∑

j=1

x̄jν = Mσ(x̄ν), (5.8)

where the second to last equality holds because, by Assumption 6, T is doubly stochastic

and so is T ν as a consequence. By substituting (5.8) into (5.7) we obtain Âσ(x̄ν) ≤ b̂,

thus x̄ν ∈ Q for any ν.

ii) Since x̄ν is a Nash equilibrium for Gν , for all i ∈ {1, . . . ,M} and for all xiν ∈ Qiν(x̄−iν )

it holds

J i(x̄iν ,
∑

j

[T ν ]ijx̄
j
ν) ≤ J i(xiν , [T

ν ]iix
i
ν +

∑

j 6=i

[T ν ]ijx̄
j
ν). (5.9)

For all i, J i(z1, z2) is continuously differentiable on the compact set X , hence Lipschitz,

because defined on a compact set. Then there exists a common Lipschitz constant L

such that for all i, all z1, z
a
1 , z

b
1 ∈ X i, and all z2, z

a
2 , z

b
2 ∈ conv(X 1, . . . ,XM)

‖J i(za1 , z2)− J i(zb1, z2)‖ ≤ L‖za1 − zb1‖,
‖J i(z1, z

a
2)− J i(z1, z

b
2)‖ ≤ L‖za2 − zb2‖.

Let D := maxz∈conv{X 1,...,XM}{‖z‖} and δ(ν) := ‖ 1
M

1M1M> − T ν‖∞. Set ε1 := ε/(4LD).

By Lemma 6, there exists ν1 > 0 such that for all ν > ν1, δ(ν) < ε1. Moreover,

J i(x̄iν , σ(x̄ν)) = J i(x̄iν ,
∑

j
1
M
x̄jν) ≤ J i(x̄iν ,

∑
j[T

ν ]ijx̄
j
ν) + L‖∑j(1/M − [T ν ]ij)x̄

j
ν‖

≤ J i(x̄iν ,
∑

j[T
ν ]ijx̄

j
ν) + L

∑
j |1/M − [T ν ]ij|‖x̄jν‖

≤ J i(x̄iν ,
∑

j[T
ν ]ijx̄

j
ν) + LDmaxi {

∑
j |1/M − [T ν ]ij|} = J i(x̄iν ,

∑
j[T

ν ]ijx̄
j
ν) + LDδ(ν)

(5.9)

≤ J i(xiν , [T
ν ]iix

i
ν +

∑
j 6=i[T

ν ]ijx̄
j
ν) + LDε1 ≤ J i(xiν ,

1
M
xiν +

∑
j 6=i

1
M
x̄jν) + 2LDε1

= J i(xiν ,
1
M
xiν +

∑
j 6=i

1
M
x̄jν) + ε

2
,

(5.10)

for all xiν ∈ Qiν(x̄−iν ), for all ν > ν1. The last inequality in (5.10) can be proven with

a chain of inequalities similar to the previous ones in (5.10). Condition (5.10) implies

that (3.5) holds for all xiν ∈ Qiν(x̄−iν ), as we used the fact that x̄ν is a Nash equilibrium

for Gν . Since we however want to prove that x̄ν is an ε-Nash for G, we need to prove
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that (3.5) holds for all xi ∈ Qi(x̄−iν ).

To this end, take any such xi ∈ Qi(x̄−iν ). Set ε2 := ε/(2L + 2L
M

). Since we showed in

the first statement that x̄ν → x̄, by Lemma 9 in Section 5.3, there exists1 ν2 > νSMON

such that for all ν > ν2 and all i ∈ {1, . . . ,M} there exists x̃iν ∈ Qiν(x̄−iν ) such that

‖xi − x̃iν‖ ≤ ε2. From (5.10) we know that since x̃iν ∈ Qiν(x̄−iν ) then

J i(x̄iν , σ(x̄ν)) ≤ J i(x̃iν ,
1
M
x̃iν +

∑
j 6=i

1
M
x̄jν) + ε

2

≤ J i(xi, 1
M
xi +

∑
j 6=i

1
M
x̄jν) + (L+ L

M
)ε2 + ε

2
= J i(xi, 1

M
xi +

∑
j 6=i

1
M
x̄jν) + ε.

(5.11)

As (5.11) holds for all i ∈ {1, . . . ,M} and for all xi ∈ Qi(x̄−iν ) and given part i), we have

proven that x̄ν is an ε-Nash equilibrium for G, for all ν > νε := max{ν1, ν2}. �

Theorem 7 (Convergence of Algorithm 5). Let Assumptions 1 and 5 hold and the set

X satisfy Slater’s constraint qualification of Definition 2. Suppose that for the value of ν

used in Algorithm 5 the operator Fν in (5.3a) is strongly monotone with constant αν > 0

and Lipschitz with constant Lν > 0. Let the step-size τ satisfy

τ <
−L2

ν +
√
L4
ν + 4α2

ν‖Aν‖2

2αν‖Aν‖2
. (5.12)

Then for every initial condition (x(0), λ(0)) ∈ X × RMm
≥0 the sequence (x(k))

∞
k=1 produced

by Algorithm 5 converges to the unique variational Nash equilibrium of Gν . �

Proof. Let us define x(k) := [xi(k)]
M
i=1, λ(k) := [λi(k)]

M
i=1, σν,(k) := [σiν,(k)]

M
i=1, µν,(k) := [µiν,(k)]

M
i=1.

Then the communication steps are equivalent to

σν,(k) = (T ν ⊗ In) x(k),

µν,(k) = (T ν ⊗ Im)>λ(k).

Consequently, the update steps can be rewritten as

xi(k+1) = Proj
X i

[xi(k) − τ(F i
ν,(k) + Â

>
M∑

j=1

[T ν ]jiλ
j
(k))],

λi(k+1) = Proj
Rm≥0

[λi(k) − τ(b̂− 2Â
M∑

j=1

[T ν ]ijx
j
(k+1) + Â

M∑

j=1

[T ν ]ijx
j
(k))],

for all i ∈ {1, . . . ,M} or, in compact form,

x(k+1) = Proj
X

[x(k) − τ
(
Fν(x(k)) + Aν

>λ(k)

)
],

λ(k+1) = Proj
RMm
≥0

[λ(k) − τ(b− 2Aνx(k+1) + Aνx(k))].
(5.13)

1As Lemma 9 requires uniqueness of x̄ν , we take ν2 > νSMON. Note than ν2 is independent from i.
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5.2 Proof of convergence

The update (5.13) coincides with one iteration of the asymmetric projection algorithm

given in [FP03, Algorithm 12.5.1] applied to VI(Qν , Fν). Then [GPP17, Theorem 3]

shows that, by choosing τ as in (5.12), which also implies τ < 1/‖Aν‖, Algorithm 5 is

guaranteed to converge to the unique solution of VI(Qν , Fν), if Qν satisfies Slater’s con-

straint qualification. This is the case because X satisfies Slater’s constraint qualification

and because the coupling constraint is affine, see [BV04, eq. (5.27)]. �

Remark 4. Note that Aν = T ν ⊗ Â, hence ‖Aν‖ = ‖T ν‖‖Â‖. Under Assumption 6,

‖T ν‖ = 1 since T is doubly stochastic. Hence in this case, one can use ‖Â‖ instead of

‖Aν‖ in (5.12). Moreover, Lemma 7 guarantees that strong monotonicity of Fν assumed

in Theorem 7 is met for ν > νSMON. �

5.2.1 Simplification in absence of coupling constraints

As anticipated in Section 5.1, distributed algorithms for the Nash of aggregative games

without coupling constraints have already been proposed in the literature, for example

in [KNS12, CLL14, PGG15b, KNS16]. We highlight here how the proofs of Theorems 6

and 7 and the steps of Algorithm 5 greatly simplify in the absence of coupling constraints

(i.e. when C = RMn).

Regarding the first statement of Theorem 6, in the absence of coupling constraints the

variational inequality relative to Gν and G feature the same set X , which is not affected

by the parameter ν. Convergence of x̄ν to x̄ can thus be proven by using standard

sensitivity analysis results for VI, as explained in details at the beginning of Section 5.3.

In this case one can even prove Lipschitz continuity of the solution, so it is possible

to derive bounds on the minimum number of communications ν needed to achieve any

desired precision in (5.5).

Regarding the second statement of Theorem 6, in the absence of coupling constraints

the fact that x̄ν is an ε-Nash equilibrium of G is a trivial consequence of (5.5) and

of the fact that the cost functions are Lipschitz. The difficulty when introducing the

coupling constraints are that i) the feasibility of x̄ν in Gν does not imply automatically

feasibility of x̄ν in G and ii) in the definition of Nash equilibrium, the set of feasible

deviations Qiν(x̄−iν ) in Gν is different from the set of feasible deviations Qi(x̄−iν ) in G
(without coupling constraints both these sets would instead be simply X i). This is why

to prove the second statement of Theorem 6 one needs to show Hausdorff convergence

of Qiν(x̄−iν ) to Qi(x̄−iν ) as ν →∞, as done in Lemma 8 of Section 5.3.

Regarding Algorithm 5 and Theorem 7, in the absence of coupling constraints one

needs to solve VI(X , Fν) in a distributed fashion. Since the constraint set X can be

decoupled among the agents, the standard projection algorithm [FP03, Algorithm 12.1.1]

is distributed and it is guaranteed to converge, because Fν is strongly monotone. In other

words, one can run Algorithm 5 performing only the primal steps, with simplified strategy

77



Chapter 5. A distributed algorithm

update xi(k+1) = Proj
X i

[xi(k)−τF i
ν,(k)], which is distributed.

5.3 Novel convergence result

for parametric variational inequalities

The notation used in this section is disjoint from the rest of the chapter, because we

present a standalone result on convergence of parametric variational inequalities, which

is at the core of the proof of Theorem 6. Specifically, we study the convergence of the

solution x̄θ of VI(Qθ, Fθ) to the solution x̄θ̂ of VI(Qθ̂, Fθ̂) when θ → θ̂ and both the set

and the operator are affected by the parameter θ. In the literature on convergence of

solutions of parametric variational inequalities it is common to assume that Fθ̂ is strongly

monotone and that Fθ converges uniformly to Fθ̂ as θ → θ̂. Besides that, the literature

on the topic can be divided into three classes, based on the assumptions on the sets.

1) The first class of results focuses on sets that do not change, so that only the

operator is affected by the parameter, and studies convergence of the solution x̄θ of

VI(Q, Fθ) to the solution x̄θ̂ of VI(Q, Fθ̂). If the set Q is closed and convex, Fθ is

Lipschitz in θ uniformly in x and Fθ̂ is strongly monotone, then the solution is Lipschitz

continuous [Nag13, Theorem 1.14], [FP03, Section 5.3]. Strong monotonicity of Fθ̂ can

be relaxed if the set Q is a polyhedron [QM89].

2) The second class of results [Tob86, Kyp87, Daf88] focuses on parametric sets that

can be described as Qθ := {x ∈ Rn | g(x, θ) ≤ 0m} for a suitable parametric function

g(x, θ). Assuming that g(x, θ) converges uniformly in x to g(x, θ̂) as θ → θ̂ and that at

x̄θ̂ the linear independence constraint qualification [FP03, p. 253] holds, it can be shown

that the parametric solution x̄θ is locally Lipschitz continuous around θ̂. Such results

have been applied to games, as for example in [PR03, Tob90].

3) The third class of results [Daf88, Mos69] is the most general and only assumes

that Qθ converges to Qθ̂ according to the Kuratowski set convergence definition. In this

case one can prove continuity of x̄θ around θ̂. We are not aware of results proving local

Lipschitz continuity in this case.

Here we do not assume the linear independence constraint qualification, because this

is difficult to guarantee a priori for G. Instead, we focus on a specific form of the sets and

prove convergence in Kuratowski as well as Hausdorff distance, whose definitions are in

Section 2.4. We then exploit the results in the third class described above, specifically

those of [Daf88], [Mos69], to show continuity of the VI solution. It is important to

highlight that we do not consider a continuous parameter θ tending to θ̂, but we rather

focus on the slightly less general case of a discrete parameter ν ∈ N that tends to

infinity, for two different reasons. The first is that Theorem 6 requires a continuity

result on a discrete parameter, while the second lays in the fact that we could not find
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5.3 Novel convergence result for parametric variational inequalities

the continuous counterpart of the discrete results on continuity of a sequence of sets

provided by [Mos69, SW79], which are used to prove Lemma 8. Specifically, we consider

sets Qν and Q∞ that take the form

Qν := {x ∈ X ⊂ Rn|Aνx ≤ bν},
Q∞ := {x ∈ X ⊂ Rn|A∞x ≤ b∞},

with X convex and compact, Aν , A∞ ∈ Rm×n, bν , b∞ ∈ Rm, and consider operators

Fν : X → Rn, F∞ : X → Rn. Our result can also be interpreted as an extension

of [BD95, Boo63] on parametric quadratic programs, and of [QM89, Yen95] on parametric

variational inequalities over polyhedral sets, in that we consider sets that are obtained

as the intersection of a parametric polyhedron with a generic convex and compact set

X . Finally, we note that the parameter appears also in the matrix Aν and not only in

bν , as in [Yen95, HRT07] or as in model-predictive control [BMD02, Theorem 4]. The

following assumption summarizes the specifics of our setup.

Assumption 9. Suppose that

a) The set X ⊂ Rn is convex, compact and has non-empty interior.

Moreover, limν→∞Aν = A∞, limν→∞ bν = b∞ and

{A>∞s = 0n, b
>
∞s ≤ 0, s ≥ 0m} ⇒ s = 0m. (5.14)

b) The operator F∞ : X → Rn is continuous, strongly monotone and there exists

νSMON > 0 such that Fν : X → Rn is continuous, strongly monotone for each ν > νSMON.

For each x ∈ X , limν→∞ Fν(x) = F∞(x). �

We note here that (5.14) is less restrictive than the assumption that A∞ has full

row rank (i.e., A>∞s = 0n ⇒ s = 0m), which is usually imposed to guarantee the linear

independence constraint qualification a priori, see for example [Daf88, Remark 2.2].

The next Lemma 8 proves Kuratowski and Hausdorff convergence of the sets. Kura-

towski convergence of Qν → Q∞ is a key part of the proof of the following Theorem 8.

The fact that dH(Qν ,Q∞)→ 0 is instead used in Lemma 9, which is in turn needed for

the proof of Theorem 6.

Lemma 8. If Assumption 9a holds then as ν →∞ we have

Qν → Q∞ and dH(Qν ,Q∞)→ 0. �

Proof. We define Sν := {x ∈ Rn|Aνx ≤ bν}, S∞ := {x ∈ Rn|A∞x ≤ b∞} and start by

showing that Sν → S∞, that is, we prove that (2.19) holds. To show lim supSν ⊆ S∞,

consider an arbitrary x̂ ∈ lim supSν , a sequence (νk)
∞
k=1, νk → ∞ and points xνk ∈ Sνk

such that xνk → x̂. Since Aνkxνk ≤ bνk for all k > 0, passing to the limit as νk →∞ we

obtain A∞x ≤ b∞, hence x̂ ∈ S∞.
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Conversely, we show S∞ ⊆ lim inf Sν . Consider an arbitrary x̂ ∈ S∞, to show that

x̂ ∈ lim inf Sν one needs to construct a sequence (xν)
∞
ν=1 with xν ∈ Sν and such that

xν → x̂. To this end, define Ã : [0, 1]→ Rm×n, b̃ : [0, 1]→ Rm×1 by

Ã(t) :=

{
Ab1/tc if t ∈ (0, 1]

A∞ if t = 0

b̃(t) :=

{
bb1/tc if t ∈ (0, 1]

b∞ if t = 0.

Note that Aν = Ã(1/ν), bν = b̃(1/ν) for all ν ∈ N. By Assumption 9a,

Ã(t) −−→
t→0

Ã(0) = A∞,

b̃(t) −−→
t→0

b̃(0) = b∞.

Let
x̃(t) := Proj

S̃(t)

[x̂] = argmin
x∈Rn

‖x− x̂‖2

s.t. Ã(t)x ≤ b̃(t)

be the projection of x̂ onto S̃(t) := {x ∈ Rn|Ã(t)x ≤ b̃(t)}. Assumption 9a implies

that the regularity conditions required by [BD95, Theorem 2.2] are met, hence x̃(t) is

continuous at t = 0, that is

x̃(t)→ x̃(0) = Proj
S̃(0)

[x̂] = Proj
S∞

[x̂] = x̂ .

Consider now the sequence (xν := x̃(1/ν))∞ν=1. Clearly xν ∈ S̃(1/ν) = Sν and we have

limν→∞ xν = x̂, thus proving that x̂ ∈ lim inf Sν . We have thus shown that Sν → S∞.

Since Qν = Sν ∩ X and Q∞ = S∞ ∩ X , X is closed and convex with non-empty interior

and Sν is closed and convex for all ν, by [Mos69, Lemma 1.4] we have that Qν → Q∞.

To conclude, since Qν are closed subsets of Rn for all ν and Q∞ is compact and non-

empty, using [SW79, Theorem 3] we obtain that Qν → Q∞ implies dH(Qν ,Q∞) → 0,

thus completing the proof. �

We use Lemma 8 and [Mos69, Theorem A(b)] to show that the solution of VI(Qν , Fν)
converges to the solution of VI(Q∞, F∞).

Theorem 8. If Assumption 9 holds then VI(Q∞, F∞) has a unique solution x̄∞ and, for

ν > νSMON, VI(Qν , Fν) has a unique solution x̄ν . Moreover

x̄ν → x̄∞. �
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Proof. The fact that VI(Q∞, F∞) and VI(Qν , Fν) (for ν > νSMON) have a unique solution

is an immediate consequence of their strong monotonicity (Assumption 9b) and of Propo-

sition 7. To prove convergence we apply Proposition 13 to the sequence (VI(Qν , Fν))∞ν=1

and to VI(Q∞, F∞). All the assumptions of Proposition 13 are direct consequences of

Assumption 9, except for Qν → Q∞, which is proven in Lemma 8. Thus x̄ν → x̄∞. �

To conclude the section, we state and prove Lemma 9, which is used in the proof of

Theorem 6, but is reported here for ease of readability, as its proof needs Lemma 8. The

notation of Lemma 9 is the same of Section 5.2.

Lemma 9. Let Assumptions 5, 7 hold, the set X be convex, compact, with non-empty

interior, and consider the sequence (x̄ν ∈ RMn)∞ν=1 with x̄ν → x̄. Then, for every ε > 0

there exists ν̃ > 0 such that for all ν > ν̃, all i ∈ {1, . . . ,M} and all xi ∈ Qi(x̄−iν ) there

exists an x̃iν ∈ Qi
ν(x̄
−i
ν ) such that ‖xi − x̃iν‖ ≤ ε, where Qi(x̄−iν ) and Qi

ν(x̄
−i
ν ) are defined

in (5.4c) and (5.3c) respectively. �

Proof. We show this statement in two steps. Specifically, we show that for every ε > 0

there exists ν̃ > 0 such that for all ν > ν̃ and all i ∈ {1, . . . ,M}

1. dH(Qi(x̄−i), Qi(x̄−iν )) ≤ ε/2, and

2. dH(Qi(x̄−i),Qiν(x̄−iν )) ≤ ε/2.

The conclusion then follows by the triangular inequality of the Hausdorff distance.

1) Note that

Qi(x̄−i) := {xi ∈ X i|Âxi ≤Mb̂−
∑

j 6=i

Âx̄j =: bi},

Qi(x̄−iν ) := {xi ∈ X i|Âxi ≤Mb̂−
∑

j 6=i

Âx̄jν =: biν}.

By assumption x̄ν → x̄. Consequently, biν → bi. We now show that the implication

{Â>ŝ = 0n, (bi)>ŝ ≤ 0, ŝ ≥ 0m} ⇒ ŝ = 0m

holds. The inequalities (bi)>ŝ ≤ 0 and Â>ŝ = 0n imply

Mb̂>ŝ ≤
(∑

j 6=i

Âx̄j
)>
ŝ =

∑

j 6=i

(x̄j)>(Â>ŝ) = 0⇒ b̂>ŝ ≤ 0.

By Assumption 7 we obtain ŝ = 0m. Consequently, the sets Qi(x̄−i), Qi(x̄−iν ) sat-

isfy (5.14) and hence Assumption 9a, so the conclusion follows by Lemma 8.

2) It can be proven similarly as the previous one. Note that the value of ν̃ used in the

proof might depend on Â, b̂, x̄, but not on x̄ν . This is needed to apply Lemma 9 in

Theorem 6 and it comes from proving the statement in two steps instead of applying

Lemma 8 directly to Qi
ν(x̄
−i
ν ), Qi(x̄−iν ). �
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5.3.1 Generalizations

In the following subsections, we briefly comment on some immediate generalizations of

the results above, that were omitted to keep the exposition simple.

Distributed algorithm for network aggregative games

Algorithm 5 is used here to find an ε-Nash of G. However, if we assume that Fν in (5.3a)

is strongly monotone when ν = 1, then Algorithm 5 can be used to find the variational

Nash equilibrium of any network aggregative game, as defined in [PGG15a] with network

T , by setting ν = 1. Algorithm 5 thus constitutes an alternative to the distributed

algorithms derived for generic games in [YP17, ZF16]. Moreover, note that if we set

T = 1
M

1M1>M and ν = 1 then Algorithm 5 achieves the variational Nash equilibrium of

G, but communications among all agents or the presence of a central coordinator are

required.

Weighted average

The above results can be immediately generalized to aggregative games that depend

on a weighted average σ(x) =
∑M

i=1 wix
i, for some wi > 0 instead of the average

σ(x) = 1
M

∑M
i=1 x

i used above. We can impose
∑M

i=1 wi = 1 without loss of general-

ity. Then Assumption 6 can be modified to require T to be a primitive matrix with

w = [w1, . . . , wM ] > 0 as left eigenvector relative to the eigenvalue 1 (normalized such

that w>1M = 1).

Local strategy sets of different dimensions

In the previous sections we have assumed that the strategy set of each agent has n

components, i.e, X i ⊂ Rn. Following the same arguments as in Section 6.3, our results

can be generalized to the case in which each agent features a strategy set of different

dimension, i.e, X i ⊂ Rni , as in [Jen10, YP17] and the aggregate strategy is σi(x) =
1
M

∑M
j=1[Hjxj + hj] ∈ Rn, for some matrices Hj ∈ Rn×nj and vectors hj ∈ Rn.

Wardrop instead of Nash equilibrium

The focus of this paper is on Nash equilibrium, but the setup and the results extend

to the Wardrop equilibrium. If in the primal update of Algorithm 5 we use F i
ν,(k) =

∇z1J i(xi(k), σ
i
ν,(k)) (neglecting thus the second summand) then Algorithm 5 converges to

a Wardrop equilibrium.

Finally, as for all distributed communication schemes, it would be important to assess

the algorithm performance in the presence of delay and packet loss.

82



CHAPTER 6
Applications

6.1 Charging of electric vehicles

Electric-vehicles (EV) are foreseen to significantly penetrate the market in the com-

ing years [ZWH15], therefore coordinating their charging schedules can provide services

beneficial to the grid operations [GTL13]. By assuming that the energy price depends

on the aggregate consumption, the works [MCH13, GPC16, PKL16] formulate the EV

charging problem as an aggregative game and propose parallel schemes based on optimal

response or gradient step, in the absence of coupling constraints. The proposed schemes

steer the agents to Nash [PKL16] or Wardrop [MCH13, GPC16] equilibria1. Compared

to the existing literature, we use the sufficient condition of Theorem 1 to guarantee

strong monotonicity of FN, even for the case of vi = 0 in (3.19), which is not handled

by [MCH13, GPC16, PKL16, Gra17]. Moreover, we introduce constraints coupling the

agents’ charging profiles, which can model limits on the aggregate peak consumption

(these are also introduced in the recent work [Gra17]). Finally, we study the distance

between the aggregate strategies at the Nash and at the Wardrop equilibrium and we

establish uniqueness of the dual variables associated to the violation of the coupling

constraints.

Constraints

We consider M electric vehicles and we identify agent i with vehicle i. The state of charge

of vehicle i at time t is described by the variable sit. The time evolution of sit is specified

by the discrete-time system sit+1 = sit+b
ixit , t = 1, . . . , n, where xit is the charging control

(or energy consumption) over the time interval t and the parameter bi > 0 is the charging

efficiency. We assume that the charging control cannot take negative values and that at

time t it cannot exceed x̃it ≥ 0. The final state of charge is constrained to sin+1 ≥ ηi,

where ηi ≥ 0 is the desired state of charge of agent i. Denoting xi = [xi1, . . . , x
i
n]> ∈ Rn,

1As pointed out in Section 3.1, the works [MCH13, GPC16] do not recognize the limit point as

Wardrop equilibrium, but rather conclude that it is an ε-Nash.
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the individual constraint of agent i can be expressed as

xi ∈ X i :=

{
xi ∈ Rn

∣∣∣∣
0 ≤ xit ≤ x̃it, ∀ t = 1, . . . , n∑n

t=1 x
i
t ≥ θi

}
, (6.1)

where θi := (bi)
−1

(ηi − si1), with si1 ≥ 0 the state of charge at the beginning of the

time horizon. Besides the individual constraints xi ∈ X i, we also introduce the coupling

constraint

x ∈ C :=

{
x ∈ RMn

∣∣∣∣∣
1

M

M∑

i=1

xit ≤ Kt, ∀ t = 1, . . . , n

}
, (6.2)

indicating that at time t the grid cannot deliver more than M ·Kt units of power to the

vehicles. In compact form (6.2) reads as (1>M ⊗ In)x ≤MK , where K := [K1, . . . , Kn]>.

Cost function

The cost function of each agent represents his energy bill, which we model as

J i(xi, σ(x)) =
n∑

t=1

pt

(
dt + σt(x)

κt

)
xit =: p(σ(x))>xi. (6.3)

The cost (6.3) can be interpreted as the sum over all intervals of the energy consumption

xit multiplied by the energy unit price pt at that interval. In (6.3) we assume that the

energy price for each time interval pt : R≥0 → R>0 depends on the ratio between total

consumption and total capacity (dt+σt(x))/κt at that time interval t. The quantity dt is

the non-EV demand at time t, which is inflexible and considered fixed within the game,

divided by M , while σt(x) := 1
M

∑M
i=1 x

i
t is the EV demand at time t divided by M . The

constant κt is the total production capacity divided by M as in [MCH13, eq. (6)]. The

total production capacity κt is in general not related to the upper bound Kt.

We point out that the energy price p is a function of σ(x) rather than
∑M

i=1 x
i, because

we assume that the energy infrastructure scales with the number of agents, as argued

in [MCH13, eq. (6),(7)]. In other words, agent i does not see his energy price increased

by the mere fact that new customers join the market. The same reasoning underlies the

choice of expressing the coupling constraint on σ(x).

6.1.1 Theoretical guarantees

We define the game GEV
M as in (3.3), with X i, C and J i(xi, σ(x)) as in (6.1), (6.2) and

(6.3) respectively. In the following corollary we cast the main results of Chapters 3 and 4

to the EV application.

Corollary 3. Consider a sequence of games (GEV
M )∞M=1. Assume that there exists x̃0 such

that x̃it ≤ x̃0 for all t ∈ {1, . . . , n}, i ∈ {1, . . . ,M} and for each game GEV
M . Moreover,
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assume that for each game GEV
M the set Q = C ∩ X has non-empty interior and that for

each t the price function pt in (6.3) is twice continuously differentiable, strictly increasing

and Lipschitz in [0, x̃0] with constant Lp. Moreover, assume

min
t∈{1,...,n}
z∈[0,x̃0]

(
p′t(z)− x̃0p′′t (z)

8

)
> 0. (6.4)

Then:

1. A Wardrop and a Nash equilibrium exist for each game GEV
M of the sequence. Fur-

thermore, every Wardrop equilibrium is an ε-Nash equilibrium with ε = 2n(x̃0)2Lp
M

.

2. The function p is strongly monotone, hence for each game GEV
M there exists a

unique σ̄ such that σ(x̄W) = σ̄ for any variational Wardrop equilibrium x̄W of GEV
M .

Moreover for any variational Nash equilibrium x̄N of GEV
M , ‖σ(x̄N) − σ(x̄W)‖ ≤

x̃0

√
2nLp
αM

, where α is the monotonicity constant of p.

3. For each game GEV
M the operator FW is monotone, hence the extragradient algorithm

(Algorithm 2) with operator FW converges to a variational Wardrop equilibrium

of GEV
M .

4. For each game GEV
M the operator FN is strongly monotone. Hence, Algorithm 4

converges to the unique variational Nash equilibrium of GEV
M . �

Proof. 1) We show that Assumption 1 holds. Indeed the sets X i in (6.1) are convex

and compact, the function g in (3.2) is affine and hence convex, and Q has non-empty

interior by assumption. For each z fixed, the function J i(xi, z) is linear hence con-

vex in xi. We prove in the last statement that FN is strongly monotone. This is

equivalent to ∇xFN(x) � 0 by Proposition 8, which by definition of FN(x) implies

∇xi(∇xiJ
i(xi, σ(x))) � 0, which implies convexity of J i(xi, σ(x)). Finally, J i(z1, z2)

is continuously differentiable in [z1; z2] because pt is twice continuously differentiable. As

Assumption 1 holds and Q is bounded, Proposition 15 guarantees the existence of a Nash

and of a Wardrop equilibrium. The ε-Nash property is guaranteed by Proposition 16

upon verifying Assumption 2. This holds because ∪Mi=1X i ⊆ [0, x̃0]n = X 0 and because

J i(z1, z2) is Lipschitz in z2 in X 0 with Lipschitz constant L2 = RLp, as by assumption

Lp is the Lipschitz constant of pt and (3.35) holds. Moreover, R := maxy∈X 0{‖y‖} =

‖x̃01n‖ = x̃0
√∑n

i=1 1 = x̃0
√
n. Then the expression ε = 2RL2/M given in Proposi-

tion 16 in this case reads ε = (2n(x̃0)2Lp)/M .

2) The fact that each pt is strictly increasing in [0, x̃0] implies that ∇zp(z) � 0 in [0, x̃0]n,

where p(z) :=
[
p1(d1+z1

κ
), . . . , pn(dn+zn

κ
)
]>

. In turn ∇zp(z) � 0 guarantees strong mono-

tonicity of p in the compact set [0, x̃0]n by Proposition 8. This, together with Assump-

tions 1 and 2 verified above, allows us to use the bound (3.38) in Theorem 2, which
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proves the statement.

3) Since X is closed and convex, Proposition 12 guarantees that the extragradient al-

gorithm converges to a Wardrop equilibrium, because FW is monotone (by the first

statement of Lemma 2) and Lipschitz (as J i is twice continuously differentiable on a

compact set), and a variational Wardrop equilibrium exists by Proposition 15.

4) Assumption 1, which has been shown to hold in the first statement, and Assumption 3,

which trivially holds, allow us to use Theorem 4, because FN is strongly monotone by

Theorem 1, as condition (6.4) is identical to (3.23). �

6.1.2 Uniqueness of dual variables.

Corollary 3 shows that under condition (6.4) the operator FN of GEV
M is strongly mono-

tone, hence the game GEV
M admits a unique variational Nash equilibrium by Proposi-

tion 15. We study here the uniqueness of the associated dual variables λ̄N introduced

in Proposition 17. Guaranteeing unique dual variables might be important to convince

the vehicle owners to participate in the proposed scheme, as the dual variables represent

the penalty price associated to the coupling constraint. Define Rtight ⊆ {1, . . . , n} as

the set of instants in which the coupling constraint C is active. We provide a sufficient

condition for uniqueness of the dual variables which relies on a slight modification of the

linear-independence constraint qualification.

Lemma 10. Assume that Q = C ∩ X has non-empty interior, that for each t the price

function pt in (6.3) is continuously differentiable, strictly increasing. Let condition (6.4)

hold and consider the unique variational Nash equilibrium x̄N of GEV
M . If there exists a

vehicle i such that

• x̄iN,t /∈ {0, x̃it} for all t ∈ Rtight and

• x̄iN,t′ /∈ {0, x̃it′} for some t′ /∈ Rtight,

then the dual variables λ̄N associated to the coupling constraint (6.2) are unique. �

Before reporting the proof, we note that the sufficient condition of Lemma 10 is

to be verified a-posteriori; in other words, it depends on the primal solution x̄N. In

the numerical analysis presented in the following such sufficient condition always holds.

Uniqueness of the dual variables associated to the coupling constraint of an aggregative

game has been studied also in [YSM11, Theorem 4], where the conditions in the bullets

of Lemma 10 are not required but p is restricted to be affine. A sufficient and necessary

condition for uniqueness of the dual variables is the strict Mangasarian-Fromovitz con-

straint qualification [Kyp85], but this requires an a-posteriori check on both the primal

variable x̄N and on the dual variables λ̄N.
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Proof. Existence of the dual variables relative to VI(Q,FN) follows from Proposition 17,

so we are left with proving uniqueness. The constraint set Q, which is the intersection

of (6.1) and (6.2), can be expressed as Γx ≤ γ with

Γ =




IM ·n
−IM ·n
−IM ⊗ 1>n
1>M ⊗ In


 , γ =




x̃

0Mn

−θ
MK


 ,

where θ = [θ1, . . . , θM ]>, and x̃ = [[x̃it]
n
t=1]Mi=1. Let us partition the constraint matrix Γ

into its individual part Γ1 and coupling part Γ2

Γ =

[
Γ1

Γ2

]
, Γ1 =




IM ·n
−IM ·n
−IM ⊗ 1>n


 , Γ2 =

[
1>M ⊗ In

]
(6.5)

and γ = [γ>1 , γ
>
2 ]> accordingly. By Proposition 4, the KKT conditions for VI(Q, FN) at

the primal solution x̄N are

FN(x̄N) + Γ>1 µ+ Γ>2 λ = 0Mn, (6.6a)

02Mn ≤ µ ⊥ γ1 − Γ1x̄N ≥ 02Mn, (6.6b)

0M ≤ λ ⊥ γ2 − Γ2x̄N ≥ 0M . (6.6c)

Define µ̃ and λ̃ as the dual variables corresponding to the active constraints (the other

dual variables must be zero due to (6.6b) and (6.6c)). The KKT system (6.6) in µ̃, λ̃

only reads

Γ̃>1 µ̃+ Γ̃>2 λ̃ = −FN(x̄N),

µ̃, λ̃ ≥ 0 ,
(6.7)

where Γ̃1, Γ̃2 contain the subset of rows of Γ1,Γ2 corresponding to active constraints. To

conclude the proof we need to show that (6.7) has a unique solution λ̃. To this end we

apply the subsequent Lemma 11. By analyzing the expression of Γ1 and Γ2 in (6.5),

one could show that the negation of the assumption of Lemma 11 is equivalent to the

existence of R′ ⊆ Rtight such that for each vehicle i it holds x̄iN,t ∈ {0, x̃ir} for all t ∈ R′
or x̄iN,t ∈ {0, x̃it} for all t ∈ {1, . . . , n} \R′. Such R′ cannot exist by assumption. �

Lemma 11. Consider A1 ∈ Rm×n1 , A2 ∈ Rm×n2 , b ∈ Rm. If the implication A1x1 +

A2x2 = 0 ⇒ x1 = 0 holds for all x2 ∈ Rn2 , then the linear system of equations

A1x1 + A2x2 = b has at most one solution in x1.

Proof. Assume Ax̃ = b and Ax̂ = b, then A1x̃1 + A2x̃2 = b and A1x̂1 + A2x̂2 = b imply

A1(x̂1 − x̃1) + A2(x̂2 − x̃2) = 0, which by assumption implies x̂1 = x̃1. �
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6.1.3 Numerical analysis

The numerical study is conducted on a set of heterogeneous agents. We set the price

function to pt(zt) = 0.15
√

(dt + σt(x))/κt as in [MCH13, eq.(25)], and n = 24. The

agents differ in θi, randomly chosen according to U [0.5, 1.5]; they also differ in x̃it, which

is taken such that the charge is allowed in a connected interval, with left and right

endpoints uniformly randomly chosen: within the interval, x̃it is constant and randomly

drawn for each agent, according to U [1, 5]; outside this interval, x̃it = 0. The demand

dt is taken as the typical (non-EV) base demand over a summer day in the United

States [MCH13, Figure 1]; κt = 12 kW for all t, and the upper bound Kt = 0.55 kW is

picked such that the coupling constraint (6.2) is active in the middle of the night. Note

that with these choices all the assumptions of Corollary 3 are met. In particular, for the

given choice of p condition (6.4) holds because p′′t (z) < 0 for all z and all t. Figure 6.1

presents the aggregate consumption at the Nash equilibrium found by Algorithm 4, with

stopping criterion ‖(x(k+1), λ(k+1))− (x(k), λ(k))‖∞ ≤ 10−4.

20 24 4 8 12
6

6.5

7

7.5

8

8.5

9

Time of the day

P
ri

m
al

va
ri

ab
le

[k
W

]

0.17

0.33

0.5

0.67

0.83

1

D
u
al

va
ri

ab
le

[$
/k

W
]

σ(x̄N) + d
d

λ̄N

Figure 6.1: Aggregate EV demand σ(x̄N) and dual variables λ̄N for M = 100, subject

to σ(x) ≤ 0.55 kW. The region below the dashed line corresponds to σ(x) + d ≤ 0.55

kW+d.

Figure 6.2 illustrates the bound ‖σ(x̄N) − σ(x̄W)‖ ≤ x̃0

√
2nLp
αM

of the second state-

ment of Corollary 3. Since FW is monotone but not strongly monotone, Algorithms 3

and 4 are not guaranteed to converge, hence the Wardrop equilibrium is computed with

the extragradient algorithm (in Algorithm 2) with stopping criterion ‖(x(k+1), λ(k+1))−
(x(k), λ(k))‖∞ ≤ 10−4. The Nash x̄N is computed instead with Algorithm 4, with the

same stopping criterion. The ε-Nash property of the Wardrop equilibrium in the first

statement of Corollary 3 can also be illustrated, resulting in a plot similar to Figure 6.2,

which we omit here.
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Figure 6.2: Distance between the aggregates σ(x̄N) and σ(x̄W) at the Nash and Wardrop

equilibrium (solid line). Corollary 3 ensures that such distance is upper bounded by

β/
√
M for β = x̃0

√
2nLp/α. The dotted line shows 1/

√
M , illustrating that our bound

has the right trend, while the constant β � 1 is, in this case, conservative.

The aggregate Wardrop strategy is valley filling

The first work [MCH13] that proposed to study the charging of EVs as a noncooperative

game focused also on the valley filling property of the aggregate EV consumption, in

a setup without coupling constraints (i.e., with C = RMn). The term valley filling

refers to the fact that the overnight non-EV energy demand valley is filled by the EV

energy consumption; the corresponding desirability for grid operations and social welfare

is addressed in [MCH13, Lemma 3.1]. Specifically, according to [MCH13, eq. (9)] an

aggregate strategy σ(x) is valley filling if there exists a constant δ > 0 such that

σt(x) > 0⇒ σt(x) + dt = δ. (6.8)

This is indeed the case for σ(x̄W), as visualized in Figure 6.3.

The reason for which σ(x̄W) is valley filling can be understood by reinterpreting the

EV game GEV
M as the parallel road game of Example 2, with each time slot t corresponding

to a parallel road that connects origin and destination, see Figure 3.1. The energy price

pt at a certain interval t corresponds to the travel time along the road t. Then (3.10)

becomes
σt(x̄W) > 0⇒ pt(σ(x̄W)) = pmin(σ(x̄W)),

σt(x̄W) = 0⇒ pt(σ(x̄W)) ≥ pmin(σ(x̄W)),

which implies (6.8) with δ = pmin(σ(x̄W)), thus proving that σ(x̄W) is valley filling. Other

works [GPC16, VGA15] studied the valley filling property for EVs along with [MCH13],

and in particular showed that the Nash strategies are almost valley filling, but to the

best of our knowledge this is the first time that the aggregate Wardrop equilibrium is

proved to be valley filling.
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Figure 6.3: The aggregate EV demand σ(x̄W) at the Wardrop equilibrium, which is

computed by the extragradient algorithm in absence of coupling constraints, exhibits

the valley filling property (6.8).

6.1.4 Local coupling constraints.

Instead of the coupling constraint (6.2), we consider here m = H · n local coupling

constraints of the form
∑

j∈Nh

xjt ≤ Kh, ∀ t ∈ {1, . . . , n}, ∀h ∈ {1, . . . , H},

where Nh ⊂ {1, . . . ,M} represents the subset of agents connected to the same trans-

former h, which cannot provide more than Kh units of power at any time t. Figure 6.4

shows the strategies of three agents, connected to the same transformer, at the varia-

tional Nash equilibrium found by Algorithm 4. It is evident that the coupling constraint

forces a coordination between agents 1 and 2: agent 2 charges his EV in the first part of

the night while agent 1 starts charging in the second part.

6.1.5 Quadratic cost function

Different works in the EV literature [GPC16, KCM11, Gra17] use the quadratic cost

of the form (3.31), with Q � 0 and C � 0, diagonal. Existence of a Nash and of a

Wardrop equilibrium is guaranteed by Proposition 15, while Proposition 16 gives the

ε-Nash property. Further, Lemma 4 shows that the resulting operators FN and FW are

strongly monotone with monotonicity constant independent from the number of agents

M . Theorem 2 ensures then that ‖x̄N − x̄W‖ ≤ L2/(α
√
M), with L2 that can be shown

to be equal to R · λmax(C). A Nash equilibrium can be found using Algorithm 4 (as

FN is strongly monotone), while a Wardrop equilibrium can be achieved using both

Algorithm 4 (as FW is strongly monotone) and Algorithm 3 (see [GPC16, Theorem 2]).
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Figure 6.4: Nash strategies x̄1
N, x̄2

N, x̄3
N and their aggregate x̄1

N + x̄2
N + x̄3

N, found with

Algorithm 4. The agents differ in θi and the local coupling constraint imposes x̄1
N,t +

x̄2
N,t + x̄3

N,t ≤ 0.9kW,∀t ∈ {1, . . . , n}. We also report the interval of allowed charge for

each agent i. Outside the allowed interval x̃it = 0, while inside x̃it = 1 for all t, so that

the upper bound is inactive, due to the coupling constraint.

Figure 6.5 presents a comparison between Algorithm 3 and 4 for Wardrop in terms of

iteration count, where Q = 0.1In, C = In, ci = d for all i. Figure 6.5 (top) represents

the number of primal updates required to converge, while Figure 6.5 (bottom) depicts

the number of dual updates. For both algorithms the number of iterations does not

seem to increase with the number of agents M . Algorithm 3 needs much fewer dual

iterations, while Algorithm 4 requires fewer primal iterations, as one would expect given

that Algorithm 3 features an inner loop of primal updates for each dual update.
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Figure 6.5: Primal (top) and dual (bottom) updates required to converge with precision

‖(x(k+1), λ(k+1))− (x(k), λ(k))‖∞ ≤ 10−4; mean and standard deviation for 10 repetitions.

As each iteration of Algorithm 4 performs one primal and one dual update, the two black

lines (top and bottom) coincide.
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6.2 Route choice in a road network

Traffic congestion is a well-recognized issue in densely populated cities, and the cor-

responding economic costs are significant [AS94]. Traffic engineers have studied the

problem for decades from different perspectives, including theoretical [Vic69] and nu-

merical [KHR02] analysis or field experiments [GD08]. Since every driver seeks his own

interest (e.g., minimizing the travel time) and is affected by the others’ choices via conges-

tion, a classic approach is to model the traffic problem as a noncooperative game [Daf80].

Specializing [FP03, Section 1.4.5], we focus on a stationary model that aims at capturing

the basic interactions among the vehicles flow during rush hours. Such model extends

the parallel roads network of Example 2 to a generic network, and it differs from [CSM11]

in the cost function (6.11), where we introduce a term penalizing the deviation from a

preferred route. We assume that the travel time on each road depends only on the traffic

on that road, whereas [Daf80] considers also upstream and downstream influence. While

most traffic literature focuses solely on the Wardrop equilibrium [CSM11, Daf80], we also

study the Nash equilibrium and illustrate the distance between the two. On the other

hand, many game theory works on traffic [RT02, CK05] investigate the so-called price

of anarchy, or price of stability, whereas we do not focus on the social cost of Nash and

Wardrop equilibria. We perform a numerical analysis based on the data set of the city

of Oldenburg in Germany [Bri02]. Specifically, we investigate via simulation the effect

of road access limitations, expressed as coupling constraints [San75].

Constraints

We consider a strongly-connected directed graph (V , E) with vertex set V = {1, . . . , V },
representing geographical locations, and directed edge set E = {1, . . . , E} ⊆ V × V ,

representing roads connecting the locations. Each agent i ∈ {1, . . . ,M} is a driver who

wants to drive from his origin oi ∈ V to his destination di ∈ V .

Let us introduce the vector xi ∈ [0, 1]E to describe the strategy (route choice) of

agent i, with [xi]e representing the probability that agent i transits on edge e [DPP05].

To guarantee that agent i leaves his origin and reaches his destination with probability

1, the strategy xi has to satisfy

∑

e∈in(v)

[xi]e −
∑

e∈out(v)

[xi]e =





−1 if v = oi

1 if v = di

0 otherwise,

∀ v ∈ V ,

where in(v) and out(v) represent the set of in-edges and the set of out-edges of node

v. We denote the graph incidence matrix [Bul18, Chapter 8] by B ∈ RV×E, so that

[B]ve = 1 if edge e points to vertex v, [B]ve = −1 if edge e exits vertex v and [B]ve = 0
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otherwise. The individual constraint set of agent i is then

X i := {x ∈ [0, 1]E : Bx = bi}, (6.9)

where bi ∈ RV is such that [bi]v = −1 if v = oi, [bi]v = 1 if v = di and [bi]v = 0 otherwise.

We introduce the coupling constraint

x ∈ C := {x ∈ RME | 1
M

∑M
i=1 x

i
e ≤ Ke, ∀ e ∈ E}, (6.10)

expressing the fact that the number of agents on edge e cannot exceed MKe. Such

constraint can be imposed by authorities [ADPL94] to decrease the congestion in a

specific road or neighborhood, with the goal of reducing noise or pollution.

Cost function

We assume that each agent i ∈ {1, . . . ,M} wants to minimize his travel time and, at the

same time, is not willing to deviate too much from a preferred route x̃i ∈ X i. We model

such trade-off with the following cost function

J i(xi, σ(x)) =
γi

2
‖xi − x̃i‖2 +

E∑

e=1

te(σe(xe))x
i
e, (6.11)

with γi ≥ 0 a weighting factor, xe := [x1
e, . . . , x

M
e ]> ∈ RM , σe(xe) = 1

M

∑M
i=1 x

i
e and

te(σe(xe)) the travel time on edge e. Note that in case agent i travels along a path with

probability 1, i.e., xi ∈ {0, 1}E, then
∑E

e=1 te(σe(xe))x
i
e represents the expected travel

time along that path.

Travel time

This subsection is devoted to the derivation of the analytical expression of the travel time

te(σe(xe)). The reader not interested in the technical details of the derivation can jump to

the expression of te(σe(xe)) in (6.14), which is illustrated in Figure 6.6. We note that the

model under consideration is static because the variable xie denotes the probability that

agent i drives through edge e, with no notion of time causality and sequentiality among

the edges. Such a model is appropriate to study a road network in a time interval in which

the traffic conditions can be considered stationary, as for instance during rush hours. We

introduce the quantity De(xe) =
∑M

i=1 x
i
e to describe the total demand on edge e. We

consider a rush-hour interval [0, h] and we assume that the instantaneous demand equals

De(xe)/h at any time t ∈ [0, h] and zero for t > h. We assume that edge e can support a

maximum flow Fe (agents per unit of time) and features a free-flow travel time te,free. As

we are interested in comparing games with different number of agents, we further assume

that the peak hour duration h is independent from the number of agents M and that
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6.2 Route choice in a road network

the edge maximum capacity flow Fe scales linearly with it, i.e. Fe(M) = fe ·M , with

fe constant in M . The consideration underpinning this last assumption is that the road

infrastructure scales with the number of agents to accommodate the increasing demand,

similarly as what assumed in [MCH13] for the energy infrastructure.

If De(xe)/h ≤ Fe then every agent has instantaneous access to edge e and no queue

accumulates, hence the travel time equals te,free. We focus in the rest of this paragraph

on the case De(xe)/h > Fe. An increasing queue forms in the interval [0, h] and, since

after the time t = h no more agents arrive, for t > h the queue accumulated until t = h

decreases at rate Fe. The number of agents qe(t) queuing on edge e at time t obeys then

the dynamics

q̇e(t) =

{
De(xe)
h
· 1[0,h](t)− Fe if qe(t) ≥ 0

0 otherwise,
qe(0) = 0, (6.12)

where 1[0,h] is the indicator function of [0, h]. The solution qe(t) to (6.12) is hence

qe(t) =





(
De(xe)−Feh

h

)
t if 0 ≤ t ≤ h,

De(xe)− Fe t if h ≤ t ≤ De(xe)/Fe,

0 if t ≥ De(xe)/Fe.

(6.13)

As a consequence, the total queuing time at edge e (i.e, the queuing times summed

over all agents) is the integral of qe(t), which equals De(xe)(De(xe) − Feh)/(2Fe); the

(average) queuing time is the total queuing time divided by the total demand, that is,

(De(xe)− Feh)/(2Fe).

As a conclusion, the travel time function for edge e takes the expression

tPWA
e (De(xe)) =

{
te,free if 0 ≤ De(xe) ≤ Feh,

te,free + De(xe)−Feh
2Fe

if Feh ≤ De(xe) ≤M.

Since σe(xe) = 1
M

∑M
i=1 x

i
e = 1

M
De(xe), we can express the travel time function tPWA

e in

terms of σe(xe), and with a small abuse of notation write

tPWA
e (σe(xe)) =

{
te,free if 0 ≤ σe(xe) ≤ feh,

te,free + σe(xe)−feh
2fe

if feh ≤ σe(xe) ≤ 1.

The function tPWA
e (σe) is reported in Figure 6.6. In words, if the average number of agents

on edge e is smaller than a critical threshold, then the travel time equals the free-flow

travel time; if instead this number exceeds the critical threshold, then the travel time

also accounts for the time spent queuing. Note that tPWA
e is a continuous and piece-wise

affine function of σe, but it is not continuously differentiable, hence Assumption 1 would
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not hold. Therefore, we define te appearing in (6.11) as the smoothed version of tPWA
e

te(σe(xe)) =





te,free if 0 ≤ σe(xe) ≤ feh−∆e,
1
2
aσe(xe)

2 + bσe(xe) + c if feh−∆e ≤ σe(xe) ≤ feh+ ∆e,

te,free + σe(xe)−feh
2fe

if feh+ ∆e ≤ σe(xe) ≤ 1.

(6.14)

where the values of ∆e, a, b, c are such that te is continuously differentiable2, as illus-

trated in Figure 6.6. We note that the function te(σe(xe)) is used within a stationary

feh−∆e feh feh+ ∆e

tfree

σe

tPWA
e (σe)
te(σe)

Figure 6.6: Piece-wise affine travel time tPWA
e (σe) and its smooth approximation te(σe).

traffic model but includes the average queuing time which is based on the dynamic func-

tion (6.13). We have performed a more thorough analysis of a dynamic traffic model

in [BPG17], but we remark that the dynamic traffic equilibrium is in general known to

be hard to compute [LS02].

Finally, we remark that a travel time with similar monotonicity properties can be

derived from the piece-wise affine fundamental diagram of traffic [LZ11, Figure 7], but

te(σe(xe)) would present a vertical asymptote which is absent here.

6.2.1 Theoretical guarantees

We define the route-choice game GRC
M as in (3.3), with (6.9) defining X i, (6.10) specifying

C, and (6.11), (6.14) constituting J i(xi, σ(x)). In the following we specialize the main

results of Chapters 3 and 4 to the route choice game.

Corollary 4. Consider the sequence of games (GRC
M )∞M=1. Assume that for each game

GRC
M the set Q = C ∩ X is non-empty, that h > 0 and te,free, fe > 0 for each e ∈ E .

Moreover, assume that there exists γ̂ > 0 such that γi ≥ γ̂ for all i ∈ {1, . . . ,M}, for all

M . Then:

2The values are ∆e = 0.5(
√

(feh)2 + 4feh − feh), a = 1/(4fe∆e), b = 1/(4fe) − h/(4∆e), c =

te,free + (feh)2/(8fe∆e)− h/4− (∆e)/(8fe).
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6.2 Route choice in a road network

1. The operator FW is strongly monotone, hence each game GRC
M admits a unique

variational Wardrop equilibrium. For every M satisfying

M > max
e∈E

1

32fe∆eγ̂
(6.15)

the operator FN is strongly monotone, hence each game GRC
M admits a unique

variational Nash equilibrium. Every Wardrop equilibrium is an ε-Nash equilibrium

with ε = E
Mfmin

, where fmin = mine∈E fe.

2. For any variational Nash equilibrium x̄N of GRC
M , the unique variational Wardrop

equilibrium x̄W of GRC
M satisfies

‖x̄N − x̄W‖ ≤
√
E

2fminγ̂
√
M
.

3. For any M , Algorithm 4 with operator FW converges to a variational Wardrop equi-

librium of GRC
M . For M satisfying (6.15), Algorithm 4 with operator FN converges

to a variational Nash equilibrium of GRC
M . �

Proof. 1) Assumption 1 and the consequent existence of a variational Nash and of a

variational Wardrop equilibrium for any M can be shown as in Corollary 3. The operator

FW for the cost (6.11) reads

FW(x) = [γi(xi − x̂i) + t(σ(x))]Mi=1, (6.16)

where t(σ(x)) := [te(σe(xe))]
E
e=1. Since te(σe(xe)) in (6.14) is a monotone function of

σe(xe), it is straightforward to show that the operator t(σ(x)) is monotone in x. Then

FW is strongly monotone with constant γ̂ because it is the sum of a monotone and a

strongly monotone operator with constant γ̂ by Lemma 1. As a consequence, each GRC
M

admits a unique variational Wardrop equilibrium.

We now show that under (6.15) FN is strongly monotone. By (3.20b), its expression

is

FN = FW +
1

M
[[t′e(σe(xe))x

i
e]
E
e=1]Mi=1. (6.17)

To prove strong monotonicity of FN it suffices to show that the term [[t′e(σe(xe))x
i
e]
E
e=1]Mi=1

is monotone, as FW is strongly monotone. However, to this end we cannot directly use

Theorem 1, because te is not strictly increasing in the interval [0, feh−∆e] and because t

is not twice continuously differentiable3. For this reason, we conduct a slightly different

proof. Under the assumptions of Proposition 8, monotonicity of [[t′e(σe(xe))x
i
e]
E
e=1]Mi=1 is

guaranteed if

∇x

(
[[t′e(σe(xe))x

i
e]
E
e=1]Mi=1

)
� 0, ∀x ∈ [0, 1]ME, (6.18)

3To see it, observe that te is piece-wise quadratic, continuous with continuous derivatives, but

t′′e (σe) = 0 for σe ∈ [0, feh − ∆e] or σe > feh + ∆e, while t′′e (σe) = 1/(8fe∆e) > 0 for σe ∈
[feh−∆e, feh−∆e].
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because Q = X ∩ C ⊂ [0, 1]ME. Condition (6.18) is equivalent to

∇xe

(
[t′e(σe(xe))x

i
e]
M
i=1

)
� 0, ∀xe ∈ [0, 1]M , ∀e ∈ E . (6.19)

The issue here is that Proposition 8 cannot be applied, as it requires FN to be con-

tinuously differentiable and this is not the case because t is not twice continuously

differentiable, as observed above. Nonetheless, we can use [DTL96, Proposition 2.1],

which extends the classical result of Proposition 8 to operators which are not necessarily

continuously differentiable, but at least admit a generalized Jacobian (which is the multi-

dimensional version of the generalized-gradient, or sub-gradient, see [Cla90, Definition

2.6.1]). In our setup, it is crucial to observe that t′e(σe) is continuously differentiable in

each of the open intervals (0, feh−∆e), (feh−∆e, feh+∆e), and (feh+∆e, 1). Then each

matrix belonging to the sub-Jacobian at the points σe = feh − ∆e and σe = feh + ∆e

is positive semi-definite if the Jacobian is positive semi-definite in the three intervals

separately (and the same holds for the points σe = 0 and σe = 1). Mathematically this

means that instead of condition (6.19) it suffices to check, for all e ∈ E , the following

three conditions separately.

∇xe

(
[t′e(σe(xe))x

i
e]
M
i=1

)
� 0,∀xe ∈ [0, 1]M s.t. σe(xe) ∈ (0, feh−∆e) (6.20a)

∇xe

(
[t′e(σe(xe))x

i
e]
M
i=1

)
� 0,∀xe ∈ [0, 1]M s.t. σe(xe) ∈ (feh−∆e, feh+ ∆e) (6.20b)

∇xe

(
[t′e(σe(xe))x

i
e]
M
i=1

)
� 0,∀xe ∈ [0, 1]M s.t. σe(xe) ∈ (feh+ ∆e, 1). (6.20c)

Conditions (6.20a) and (6.20c) are trivially satisfied, because in those two intervals t′e(σe)

is constant, hence ∇xe

(
[t′e(σe(xe))x

i
e]
M
i=1

)
is a multiple of the identity.

To verify Condition (6.20b) we can now legitimately invoke Theorem 1, because

indeed [t′e(σe(xe))x
i
e]
M
i=1 is continuously differentiable in (feh−∆e, feh+∆e). Specifically,

we can use a slight modification of the sufficient condition (3.23), where it is enough to

show that the left-hand side is greater than −γ̂M , because of (6.17) and the fact that

FW features strong monotonicity constant γ̂ by (6.16). This translates into the sufficient

condition

min
e∈E

σe∈(feh−∆e,feh+∆e)

(
t′e(σe)−

t′′e(σe)

8

)
> −γ̂M,

which, since t′(σe) ≥ 0 and t′′e(σe) = 1/(4fe∆e), is implied by

max
e∈E

1

32 fe∆e

< γ̂M,

which is equivalent to (6.15). We can conclude that under condition (6.15) FN is strongly

monotone and thus GRC
M admits a unique variational Nash equilibrium.

Finally, we verify Assumption 2 in order to use Proposition 16 that guarantees the ε-

Nash property. We have X 0 = [0, 1]E and t is continuously differentiable hence Lipschitz
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6.2 Route choice in a road network

in X 0, with Lipschitz constant Lp = 1/(2fmin) (see (6.14) or Figure 6.6). Moreover,

R := maxy∈X 0{‖y‖} = ‖1E‖ =
√∑

e∈E 1 =
√
E. Then (3.35) establishes that L2 in

Proposition 16 equals RLp, which in our case reads L2 =
√
E/(2fmin). Hence we can

conclude that the quantity ε = 2RL2/M of Proposition 16 becomes here ε = E/(Mfmin),

thus concluding the proof of the first statement.

2) Since all the assumptions of Theorem 2 have just been verified, it is a direct

consequence of its second statement. Specifically, by substituting the expressions L2 =√
E/(2fmin) and αM = γ̂ derived above, the upper bound L2/(αM

√
M) in (3.37) reads

here
√
E/(2fminγ̂

√
M).

3) As Assumption 3 holds trivially, all the assumptions of Theorem 4 have just been

verified and its statement concludes the proof. �

6.2.2 Numerical analysis

For the numerical analysis we use the data set of the city of Oldenburg [Bri02], whose

graph features 175 nodes and 213 undirected edges4 and is reported in Figure 6.7. For

each agent i the origin oi and the destination di are chosen uniformly at random. Re-

garding the cost (6.11), te,free is computed as the ratio between the edge length, which is

provided in the data set, and the free-flow speed. Based on the road topology, we divide

the roads into main roads, where the free-flow speed is 50 km/h, and secondary roads,

where the free-flow speed is 30 km/h. Moreover, we assume a peak hour duration h of 2

hours, and for all e ∈ E , we set fe = 4 · 10−3 agents per second, which corresponds to 1

vehicle every 4 seconds for M = 60 agents. Finally, the parameter γi is picked uniformly

at random in [0.5, 3.5] and x̃i is such that x̃ie = 1 if e belongs to the shortest path from oi

to di, while x̃ie = 0 otherwise. The shortest path is computed based on {te,free}Ee=1. Note

that with the above values the bound (6.15) becomes M > 16.14, which is satisfied also

for a small number of agents.

We compute the Wardrop equilibrium with Algorithm 4 relatively to M = 60 drivers

without coupling constraint, i.e. with Ke = 1 for all e ∈ E . We report in Figure 6.7 the

corresponding queuing time te(σe(xe))− te,free as by (6.14).

We illustrate in Figure 6.8 the change in the queuing time of an entire neighborhood

when introducing a coupling constraint that upper bounds the total number of agents

on a single edge, relatively to a Wardrop equilibrium with M = 60. At the Wardrop

equilibrium, the dual variable λe corresponding to the coupling constraint equals 21.2

units of time. Thanks to Proposition 17, this can be interpreted as a tolling price that

a vehicle pays to use the road subject to the coupling constraint.

4The graph in the original data set features 6105 vertexes and 7035 undirected edges. For reasons

of computational tractability, we reduce it by excluding all the nodes that are outside the rectangle

[3619, 4081] × [3542, 4158] and all the edges that do not connect two nodes in the rectangle. The

resulting graph is strongly connected.
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Figure 6.7: The queuing time te(σe(xe)) − te,free reported in green-red color scale. Note

that this pattern changes if one modifies the origin-destination pairs. Each edge presents

a specific travel direction and the one next to it is used for the opposite travel direction.

The convention is that vehicles drive on the right side.
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Figure 6.8: On the left, the queuing time in a neighborhood without any coupling con-

straints; 10% of the agents transits on edge 95, and the queuing time is 7.28 minutes. On

the right, the queuing time in presence of a coupling constraint allowing at most 3% of

the entire agents on edge 95; the queuing time is reduced to 1.42 minutes, but it visibly

increases on the edges of the alternative route.
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Finally, we illustrate the second statement of Corollary 4 by reporting in Figure 6.9

the distance between the unique variational Wardrop equilibrium and the variational

Nash equilibrium found by Algorithm 4. The ε-Nash property of the Wardrop equi-

librium in Proposition 16 can also be illustrated with a similar plot, which is omitted

here.
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Number of agents M

‖x̄N − x̄W‖
1/
√
M

Figure 6.9: Distance between variational Nash and Wardrop equilibria. As in Fig. 6.2,

the function 1/
√
M illustrates the trend of the bound derived in Corollary 4 and not the

specific constant, which is conservative and not shown here.
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6.3 Cournot game with transportation costs

To illustrate the theoretical findings of Chapter 5, we study in detail a Cournot game

with transportation costs, as introduced5 in [FP03, Section 1.4.3]. Such setup extends the

Cournot game [Jen10, Section 2] and the multi-market Cournot game [YP17, Section 7.1]

because it considers transportation costs. Our novel contributions consist in introducing

coupling constraints, providing sufficient conditions for strong monotonicity based on

Theorem 1, and focusing on distributed convergence.

Consider a single-commodity6 Cournot game with M firms and V markets, which

correspond to V physical locations. Firm i ∈ {1, . . . ,M} chooses to sell yiv ∈ R≥0 amount

of commodity at each market v ∈ {1, . . . , V }. Each firm i produces its commodity at

a given fixed location `i ∈ {1, . . . , V } and then ships its commodity to the different

markets over a transportation network, where the V nodes represent market locations

and a directed edge connecting two nodes represents a road connecting two markets.

We characterize the network by its incidence matrix B ∈ {0, 1,−1}V×E, where E is the

number of edges and Bv,e = −1 if edge e leaves node v, Bv,e = 1 if edge e enters node

v and Bv,e = 0 otherwise [Bul18, Chapter 8]. Denote by ri ∈ R≥0 the total amount of

commodity produced and sold by firm i (i.e., ri =
∑V

v=1 y
i
v) and by tie ∈ R≥0 the amount

of commodity transported by firm i over edge e, with ti = [tie]
E
e=1. Define the strategy

vector of firm i as xi := [ti; ri] ∈ RE+1
≥0 , which uniquely determines yi := [yiv]

V
v=1, due to

the balance equation

yi = Bti + e`ir
i = H ixi, (6.21)

with H i := [B, e`i ] ∈ RV×(E+1) and ej the jth canonical vector. The balance equa-

tion (6.21) states that the commodity yiv sold at node v 6= `i equals the commodity

shipped to v minus the commodity that from v is shipped further in the network. The

commodity sold at `i equals the difference between the total production ri and the total

amount shipped from the production node `i.

Cost function

We assume that at each market the commodity is sold at a price that depends on the total

commodity sold by the M firms. We allow for inter-market effects and use the inverse

demand function7 p : RV
≥0 → RV

≥0 that maps the normalized vector σ(x) = 1
M

∑M
j=1 y

j =
1
M

∑M
j=1H

jxj to the vector of prices of each market p(σ(x)) := [pv(σ(x))]Vv=1. We stress

that in this section σ(x) represents 1
M

∑M
j=1H

jxj rather than 1
M

∑M
j=1 x

j. Then the

5We developed the model from scratch to later find out that it is identical to [FP03, Section 1.4.3].
6The analysis applies also to a multi-commodity game as in [YP17, Section 7.1], but we consider a

single-commodity game for ease of exposition and we rather focus on the transportation costs.
7The inverse demand function determines the price for which demand equals supply at market v.

This is why we can assume that all the supply is sold.
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revenue of firm i is p(σ(x))>yi. Moreover, for firm i transporting tie commodity over an

edge comes with a cost equal to

cie(t
i
e) := βiet

i
e − γie(tie), (6.22)

where, for all i, γie is a strongly concave, increasing function with maximum derivative

smaller than βie. The transportation cost in (6.22) can be thought of as the sum of

two terms: the first is a cost proportional to the amount shipped, the second term is a

discount that increases as the amount of shipped commodity increases.

The production cost function of firm i has a similar form

ai(ri) := βiar
i − γia(ri), (6.23)

where γia is a strongly concave, increasing function with maximum derivative smaller

than βia. Note that the functions (6.22) and (6.23) are strongly convex, as in [FP03,

Section 1.4.3].

To sum up, the cost function of firm i is

J i(xi, σ(x)) := ai(ri)︸ ︷︷ ︸
production cost

+
∑E

e=1 c
i
e(t

i
e)︸ ︷︷ ︸

transportation cost

− p(σ(x))>yi︸ ︷︷ ︸
revenue

. (6.24)

Constraints

The strategy of firm i must satisfy the individual constraints

X i := {xi ∈ RE+1
≥0 |xi ≤ r̄i · 1E+1, y

i = H ixi ≥ 0V }, (6.25)

where r̄i is the production capacity of firm i. Note that (6.25) implies tie ≤ r̄i for each

e, which is needed to guarantee boundedness of X i and it can be imposed without loss

of generality if ri ≤ r̄i, as the transportation costs cie are increasing.

Moreover, we assume that each market v is composed by retailers whose storage

capacity imposes an upper bound Kv > 0 on the total commodity that can be sold at

market v, thus giving rise to the coupling constraints σ(x) ≤ K := [Kv]
V
v=1.

Communication network

We assume that the firms can communicate with each other according to a sparse com-

munication network, described by the adjacency matrix T , which we assume satisfies

Assumption 6. This network can model spatial proximity of firms, or the fact that they

may want to share their strategies only with firms they trust.
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6.3.1 Theoretical guarantees

We focus hereafter on a Nash equilibrium as in Chapter 5; we denote with F the Nash

operator, which is instead denoted with FN in Chapters 3 and 4. We define the Cournot

game GCO as in (3.3), with X i, C and J i(xi, σ(x)) as introduced above. The only differ-

ence with (3.3) is that the aggregate σ(x) depends on yi = H ixi instead of xi directly.

We next show that the statements of Chapter 5 can be easily extended to cover such

case8.

Extension

Set Hblkd := blkdiag(H1, . . . , HM) ∈ RMV×M(E+1) . The quantities in (5.4) relative to G
generalize to

F (x) := [∇xiJ
i(xi, σ(x))]Mi=1,

= [∇z1J
i(xi, σ(x)) + 1

M
H>i ∇z2J

i(xi, σ(x))]Mi=1,

Q := {x ∈ X 1 × · · · × XM |Ax ≤ b}, (6.26a)

A :=

(
1

M
1M1>M ⊗ Â

)
Hblkd, (6.26b)

b := 1M ⊗ b̂. (6.26c)

The quantities in (5.3) relative to Gν generalize to

Fν(x) := [∇xiJ
i(xi, σiν(x))]Mi=1, (6.27a)

= [∇z1J
i(xi, σiν(x)) + [T ν ]iiH

>
i ∇z2J

i(xi, σiν(x))]Mi=1,

Qν := {x ∈ X 1 × · · · × XM |Aνx ≤ b}, (6.27b)

Aν := (T ν ⊗ Â)Hblkd. (6.27c)

As the coupling constraint Ax ≤ b cannot be expressed on the average σ(x) because of

the presence of Hblkd in (6.26b), we replace Assumptions 5 and 7 with the following one.

Assumption 7’. The matrix A in (6.26b) and the vector b in (6.26c) are such that the

following implication holds.

{A>s = 0Mn, b>s ≤ 0, s ≥ 0m} ⇒ s = 0m. �

The proofs of Theorems 5 and 6, which rely on Assumptions 5 and 7, can be conducted

in the same way using Assumption 7’.

8Defining a new game with strategies x̃i = Hixi, so that the aggregate depends only on the x̃i, is

not possible in general as the cost J i(xi, σ(x)) cannot be expressed as a function of the variables (x̃i)Mi=1

unless Hi is full column rank for all i. This is not the case in the Cournot game under consideration.
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Verify the assumptions

To use Theorem 5 in the numerical analysis of the next subsection, we need to verify

its Assumptions 1, 6, 7’, 8. Assumption 6 holds by problem statement. Assumption 7’

is satisfied, because {(1M ⊗ K)>s ≤ 0, s ≥ 0V } ⇒ s = 0V , as K > 0V . To guarantee

Assumption 8 we make the following assumption, whose sufficiency is proven in Lemma

12.

Assumption 10 (Cournot-game regularity conditions). The cost J i(z1, z2) is twice con-

tinuously differentiable in [z1; z2] for all i, and the inverse demand function p satisfies

one of the following conditions.

1) p is affine, i.e., p(σ(x)) = −Dσ(x) + d, for some D ∈ RV×V , d ∈ RV and D � 0.

2) pv depends only on the commodity sold at v, i.e., p(σ(x)) =: [pv(σv(x))]Vv=1. For each

v, pv is twice continuously differentiable, strictly decreasing and satisfies

min
v∈{1,...,V }
z∈[0,r̃]

(
−p′v(z) +

r̃p′′v(z)

8

)
> 0, r̃ := max

i∈{1,...,M}
r̄i. (6.28)

Lemma 12. Under Assumption 10 the Cournot game GCO satisfies Assumption 8.

Proof. The set X is bounded as X ⊆ [0, r̃]M(E+1) and J i is twice continuously differen-

tiable by assumption, so we are left with proving strong monotonicity of FN. We start

by expressing the operator F as

F (x) = [∇xi

(
ai(ri) +

E∑

e=1

cie(t
i
e)

)
]Mi=1 + P (x),

where P (x) := −[∇xi(p(σ(x))>yi)]Mi=1. Since for each i the functions ai and cie are strongly

convex and continuously differentiable, by Table 2.1 and Proposition 8 there exists α > 0

such that

∇x([∇xi

(
ai(ri) +

E∑

e=1

cie(t
i
e)

)
]Mi=1) � αIM(E+1), ∀x ∈ X .

We now prove that ∇xP (x) � 0 under either of the two conditions stated.

1) We have

M · P (x) :=
[∑

j

H>i DHjx
j +H>i D

>Hix
i−MH>i d

]M
i=1

= [H>DH +H>blkdD
>Hblkd]x−M [H>i d]Mi=1,

with H := ([H>i ]Mi=1)> and Hblkd = blkdiag(H1, . . . , HM). Moreover, since D � 0, then

∇xP (x) =
1

2M
(H>(D +D>)H +H>blkd(D +D>)Hblkd) � 0.
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2) Let P̃ (y) := −[∇yi(p(
1
M

∑M
j=1 y

j)>yi)]Mi=1. By Theorem 1, under (6.28) P̃ (y) is strongly

monotone, i.e., there exists α′ > 0 such that ∇yP̃ (y) � α′IME by Proposition 8. Note

that condition (6.28) exhibits a minus sign compared to condition (3.23), as p appears

with a minus sign in (6.24) and with a plus sign in (3.22). Moreover, from p(σ(x))>yi =

p( 1
M

∑M
j=1 H

jxj)>H ixi one immediately gets that P (x) = H>blkdP̃ (Hblkdx). It follows

that for any x and corresponding y = Hblkdx,

∇xP (x) = (H>blkd∇yP̃ (y)Hblkd)|y=Hblkdx � 0. (6.29)

We have proven that∇xF (x) � αIM(E+1) for all x. Consequently, F is strongly monotone

by Proposition 8 and Assumption 8 is satisfied. �

Remark 5. If the function p is as in Assumption 10.1 and D = D>, then GCO is a

potential game [MS96]. In other words, there exists a function f : Q → R such that

∇xf(x) = F (x) and VI(Q,F ) is equivalent to argmin
x∈Q

f(x), as described in Figure 2.1.

Then a Nash equilibrium can be found by solving the optimization program argmin
x∈Q

f(x).

We also point out that condition (6.28) is satisfied if for each market v the function pv
is convex and strictly decreasing. �

Regarding Assumption 1, Assumption 10 implies that J i is continuously differentiable

in its arguments and that ∇x[∇xiJ
i(xi, σ(x))]Mi=1 � αIM(E+1) by Proposition 8, which in

turn implies ∇xi∇xiJ
i(xi, σ(x)) � αIE+1, which implies convexity of J i in xi for all fixed

x−i. The sets X i are trivially convex, closed and have non-empty interior.

Finally, the next lemma shows that for the network, number of communications ν

and price functions used in the numerical analysis of the next subsection, Fν is strongly

monotone, as required by Theorem 7.

Lemma 13. Under Assumption 10.1, if T is the adjacency matrix of an undirected

network, so that T = T>, then the operator Fν is strongly monotone for any ν even.

Proof. The expression of Fν(x) is very similar to F (x) in Lemma 12

Fν(x) = [∇xi

(
ai(ri) +

E∑

e=1

cie(t
i
e)

)
]Mi=1 + Pν(x),

where Pν(x) := −[∇xi(p(σ
i
ν(x))>yi)]Mi=1. Since Fν is continuously differentiable, we can

prove its strong monotonicity by showing that there exists α > 0 such that ∇xFν(x) �
αIM(E+1), thanks to Proposition 8. As in Lemma 12, there exists α > 0 such that

∇x[∇xi

(
ai(ri)+

∑E
e=1 c

i
e(t

i
e)

)
]Mi=1 � αIM(E+1) for all x, hence the proof is concluded upon

showing that for all ν even, ∇xPν(x) � 0. If we denote P̃ν(y) := −[∇yi(p(σ
i
ν(y))>yi)]Mi=1

then simple algebraic computations show that

∇yP̃ν(y) = blkdiag([T ν ]11D, . . . , [T
ν ]MMD) + T ν ⊗D. (6.30)
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Note that [T ν ]ii ≥ 0 for all i and for all ν, hence the first summand in (6.30) is positive

semidefinite. Note that, as the matrix T is symmetric, T ν � 0 for all ν even and thus

T ν ⊗ D � 0 since it is the Kronecker product of two symmetric positive semidefinite

matrices. Overall, we have ∇yP̃ν(y) � 0 for all ν even. Finally, as in (6.29), we have

∇xPν(x) = (H>blkd∇yP̃ν(y)Hblkd)|y=Hblkdx � 0. �

6.3.2 Numerical analysis

We consider two simulation setups. The first is a small example to develop intuition

about the problem, the second is used to illustrate the applicability to a more complex

scenario.

Small network

We consider a simple chain transportation network with V = 5 markets, E = 4 roads

and M = 3 firms. As illustrated in Figure 6.10 we assume that the firms {1, 2, 3} are

located at markets {1, 3, 5}, respectively, and are otherwise identical, with r̄i = 5 for all

i.

v = 5v = 4v = 3v = 2v = 1

firm
i = 1 i = 2 i = 3

firm firm

Figure 6.10: Small network with the 3 firms located in markets 1, 3, 5, respectively. The

transportation network is represented with a solid line, the communication network with

a dashed line.

Regarding the cost functions, for each firm i, we set

cie(t
i
e) = ce(t

i
e) = tie −

(
1− 1

1 + tie

)
∀e, (6.31a)

ai(ri) = a(ri) = 2

[
ri −

(
1− 1

1 + ri

)]
. (6.31b)

For each market v, we consider the inverse demand function pv to be affine and

independent from the commodity sold at other markets. Specifically, for all v, pv(σ) =

10− σv. We assume that firm 2 bidirectionally communicates with firms 1 and 3, while
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1 and 3 do not communicate, according to the communication matrix

T =




2/3 1/3 0

1/3 1/3 1/3

0 1/3 2/3


 ,

which is primitive and doubly stochastic, hence satisfies Assumption 6.

We run Algorithm 5 with τ = 0.005, ν = 10 and initial conditions all equal to zero9.

We use max{‖x(k)−x(k−1)‖∞, ‖λ(k)−λ(k−1)‖∞} < 10−4 as stopping criterion. Figure 6.11

(top) reports the sales yi for each firm in the 5 markets at the variational Nash equilibrium

of GCO
ν (with ν = 10), for the case when there are no coupling constraints (i.e., K is

chosen so large that it has no effect). Figure 6.11 (bottom) reports how the equilibrium

changes if we introduce the coupling constraint [σ(x)]3 ≤ 1/3, so that the total capacity

of market 3 is 1. In both cases the GCO
ν (with ν = 10) variational equilibrium is an

εν-Nash equilibrium for GCO, as by the second statement of Theorem 6. The value of

εν can be computed after convergence according to Definition 9. A more descriptive

quantity is the relative maximum improvement ε̂ν , defined as10

ε̂ν := max
i∈{1,...,M}
xi∈Qi(x̄−iν )

J i(x̄iν , σ(x̄ν))− J i(xi, 1
M
xi +

∑
j 6=i

1
M
x̄jν)

J i(x̄iν , σ(x̄ν))
, (6.32)

which equals 0.0014 (for the game without coupling constraint) and 0.0035 (for the game

with coupling constraint).

Large network

As a more realistic example we consider the transportation network illustrated in Fig-

ure 6.13 which consists of V = 43 possible markets and E = 51 (bidirectional) edges

connecting them. The network is taken from11 the data set [Bri02], which provides also

the Cartesian coordinates of the vertexes. We consider 5 firms that differ only for their

locations `i, which are `1 = 37, `2 = 20, `3 = 11, `4 = 6, `5 = 35 as indicated in Fig-

ure 6.13. Each firm has a production capacity of r̄i = 10, while we consider a capacity

of 1.5 for each market (i.e. K = 1.5/5). The production cost is as in (6.31b) while the

transportation cost for edge e is the same for each firm i and is

cie(t
i
e) = ce(t

i
e) = ρe

(
tie −

(
1− 1

1 + tie

))
,

9The values in (5.12) can be shown to be αν = 4/(1+ r̃)3 = 0.0185, Lν = λmax(H>blkd[(IM ⊗D)(T ν⊗
IE) + diag(T ν) ⊗ D>]Hblkd) = 9.9124 and ‖Aν‖ = 1; then (5.12) reads τ < 1.8 · 10−4. This is a

conservative bound, we verified by simulations that the algorithm converges also for τ = 0.005.
10Note that for any fixed x̄ν , ε̂ν in (6.32) can be computed by solving the M optimization programs

{minxi∈Qi(x̄−i
ν ) J

i(xi, 1
M xi+

∑
j 6=i

1
M x̄jν)}Mi=1.

11As in Section 6.2, we consider a subgraph of the original data set for computational tractability.
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0

1

2

3

market v=1 market v=2 market v=3 market v=4 market v=5
0

1

2

3 y1
v

y2
v

y3
v

Figure 6.11: Production per firm and market without coupling constraint (top) and

with coupling constraint [σi(x)]3 ≤ 1/3 (bottom). In both cases the total production

at the equilibrium is ri = r̄i = 5 for all i. Both simulations are obtained with ν = 10

communications.

where ρe ∈]0, 1] is the normalized12 length of road e. The inverse demand function p is

affine, i.e. p(σ) = 10 · 145 −Dσ and it encodes intra-market competition via the matrix

D whose component in position (h, k) is [D]h,k = 1 if h = k, [D]h,k = 0.3(1−ρe), if there

is a road e = (h, k) between markets h and k, while [D]h,k = 0 otherwise. In words,

the price pv at market v not only decreases when more commodity is sold at v, but also

when more commodity is sold at the neighboring markets, with physically close markets

being more influential. We verified numerically that D � 0. We use the communication

matrix T that corresponds to a symmetric ring, i.e.,

T =




0 0.5 0 0 0.5
0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5

0.5 0 0 0.5 0



,

which satisfies Assumption 6. We run Algorithm 5 with τ = 0.05, initial conditions all

equal to zero and different values of ν13. As for the small network, we use max{‖x(k) −
x(k−1)‖∞, ‖λ(k) − λ(k−1)‖∞} < 10−4 as stopping criterion. We consider even values of

ν between 2 and 20. For each ν we run Algorithm 5 and find the variational Nash

equilibrium of GCO
ν , which is an εν-Nash equilibrium for GCO, as by the second statement

12The normalized length of a road is defined as the absolute length divided by the maximum length

road in the network.
13The values in (5.12) can be shown to be αν = 4/(1 + r̃)3 = 0.003, Lν = λmax(H>blkd[(IM ⊗D)(T ν ⊗

IE)+diag(T ν)⊗D>]Hblkd) = 12.89 and ‖Aν‖ = 1; then (5.12) reads τ < 1.8·10−5. This is a conservative

bound, we verified by simulations that the algorithm converges also for τ = 0.05.
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of Theorem 6. After convergence εν can be computed according to Definition 9 and

ε̂ν according to (6.32). Figure 6.12 (top) reports the value of ε̂ν as function of ν, thus

numerically verifying the second statement of Theorem 6. Figure 6.12 (bottom) reports

the value of ‖x̄ν−x̄‖2 as function of ν, thus numerically verifying the first statement (5.5)

of Theorem 6. In Figure 6.13 we illustrate the variational Nash equilibrium of GCO

obtained by setting ν = 1 and T = 1
M

1M1>M . We note that each firm is the only seller

at the location where it produces, and more in general firms tend to sell close to their

production location, as expected.

0

1

2 ε̂(ν)

2 4 6 8 10 12 14 16 18 20
0

2

4

6

number of communications ν

‖x̄ν − x̄∞‖2

Figure 6.12: Relative maximum cost improvement ε̂ν in (6.32) as a function of ν.
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Figure 6.13: Variational Nash equilibrium of GCO for the large network, computed by

Algorithm 1 for ν = 1 and T = 1
M

1M1>M . In the top plot, each market takes the color of

the firm that sells the most commodity in that market. The production locations of the

firms are denoted by squares. The bottom plot reports yiv for each agent i and market v.
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CHAPTER 7
The Wardrop equilibrium with inertia

7.1 Definition and examples

While the previous chapters focused on equilibria defined in the strategy space x, we here

consider an equilibrium in σ(x), analogously to what done in (3.10) for the Wardrop equi-

librium of a parallel road network. As we only deal with the aggregate σ(x), we discard

the dependence from the strategies x and refer directly to σ. We start by introducing

the definition of parallel Wardrop, which coincides with conditions (3.10) relative to the

Wardrop equilibrium of parallel roads.

Definition 11 (Parallel Wardrop equilibrium). Given utilities {uj : R≥0 → R}nj=1 and

mass γ > 0, the vector σ̄ ∈ Rn is a parallel Wardrop equilibrium if σ̄ ≥ 0n, 1>n σ̄ = γ and

for all j ∈ {1, . . . , n}

σ̄j > 0⇒ uj(σj) ≥ uh(σh), ∀h ∈ {1, . . . , n}. (7.1)

�

Compared to conditions (3.10), Definition 11 is based on maximization of the utilities

{uj}nj=1 rather than minimization of the travel times {tj}nj=1 (to establish the equivalence

it suffices to set uj = −tj) and it assumes that utility uj is a sole function of σj rather

than being a function of the entire vector σ = [σj]
n
j=1.

The fact that in Definition 11 only actions with maximum utility are used hinges

upon the ability of switching between actions without incurring any cost. The next

Definition 11 accounts for the fact that in many practical situations such switches do

not come for free.

Definition 12 (Inertial Wardrop equilibrium). Given utilities {uj : R≥0 → R}nj=1,

inertia coefficients {cjh ≥ 0}nj,h=1 and mass γ > 0, the vector σ̄ ∈ Rn is an inertial

Wardrop equilibrium if σ̄ ≥ 0n, 1>n σ̄ = γ and for all j ∈ {1, . . . , n}

σ̄j > 0⇒ uj(σj) ≥ uh(σh)− cjh, ∀h ∈ {1, . . . , n}. (7.2)

�
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To comment on the definition of inertial Wardrop (which we also refer to as Wardrop

with inertia) we interpret σj as the sum of infinitesimal agents who are choosing action

j. The no-improvement condition (7.2) states that the infinitesimal agents at action j

do not have any incentive in switching to action h, considering the difference in utilities

and the cost of switching (or inertia coefficient) cjh. The presence of the coefficients

{cjh}nh,j=1 constitutes the only difference between the standard Definition 11 and the

novel Definition 12. The coefficients can model different phenomena, such as

• an effective cost or fee that the agents incur for switching action;

• the attitude of the agents to adhere to their habits, or their reluctance to trying

something different;

• the lack of information about other options.

Note that the no-improvement condition (7.2) does not impose anything on empty ac-

tions, i.e., actions that are not taken by any agent. In other words, the utility of an

empty action can be arbitrarily bad and the configuration σ̄ still be an equilibrium.

We conveniently define the simplex and the positive simplex as

S :=
{
σ ∈ Rn

≥0 |
n∑

j=1

σj = γ
}
⊂ Rn, S>0 :=

{
σ ∈ Rn

>0 |
n∑

j=1

σj = γ
}
⊂ Rn.

Given σ ∈ S, we say that the infinitesimal agents at action j are jealous of action h (or

that action h is attractive for agents at j) if uj(σj) < uh(σh) − cjh. The next example

provides some intuition about the equilibrium set.

Example 4. Let us consider three possible actions (that is, n = 3) with utilities and

inertia coefficients

u1(σ1) = 1.2− σ1

u2(σ2) = 1.2− σ2 C =




0 0.2 0.3

1 0 0.8

0.1 1.2 0


 , (7.3)

u3(σ3) = 1− σ3,

where the entry (j, h) of C equals cjh. We take γ = 1, so that σ3 = 1 − σ1 − σ2. We

explicitly compute the six conditions (7.2):

σ1 > 0 ⇒ 1.2− σ1 + 0.2 ≥ 1.2− σ2 ⇔ σ2 ≥ σ1 − 0.2 (7.4a)

σ1 > 0 ⇒ 1.2− σ1 + 0.3 ≥ 1− (1− σ1 − σ2) ⇔ σ2 ≤ −2σ1 + 1.5 (7.4b)

σ2 > 0 ⇒ 1.2− σ2 + 1 ≥ 1.2− σ1 ⇔ (((((((
σ2 ≤ σ1 + 1 (7.4c)

σ2 > 0 ⇒ 1.2− σ2 + 0.8 ≥ 1− (1− σ1 − σ2) ⇔ (((((((((
σ2 ≤ −0.5σ1 + 1 (7.4d)

σ3 > 0 ⇒ 1− (1− σ1 − σ2) + 0.1 ≥ 1.2− σ1 ⇔ σ2 ≥ −2σ2 + 1.1 (7.4e)

σ3 > 0 ⇒ 1− (1− σ1 − σ2) + 1.2 ≥ 1.2− σ2 ⇔ ((((((2σ2 ≥ −σ1, (7.4f)
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where we strike through the inequalities which are implied by σ ∈ S, and we color code

the remaining three according to Figure 7.1, which reports the solution to (7.4) (i.e, the

equilibrium set) computed numerically. The figure plots only the variables σ1 and σ2,

because σ3 = 1− σ1 − σ2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ1

σ2

σ 2
≥
σ 1
−
0.2

σ
2 ≥

−
2σ

1 +
1 .1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
inertial Wardrop
parallel Wardrop

σ
2 ≤

−
2σ

1 +
1 .5

Figure 7.1: In black the equilibrium set for Example 4 obtained by gridding the space

and verifying for every point whether it satisfies Definition 12 or not. In dashed line we

indicate the simplex boundary, in green and yellow inequalities (7.4). The set is visibly

non-convex because it includes the segment [0.1, 0.9] − [0, 1]. The point in cyan is the

parallel Wardrop [0.4, 0.4], which satisfies condition (7.1).

The first observation is that the inertial Wardrop equilibrium set is visibly not a

singleton; this marks a difference with Chapters 3-6, where the focus is mostly on unique

Nash or Wardrop equilibria. The lack of uniqueness is due to the positivity of the inertia

coefficients cjh. Indeed, if cjh = 0 for all j, h, then the inertial Wardrop of Definition 12

coincides with the parallel Wardrop of Definition 11, which in Figure 7.1 is marked in

cyan and is unique, as explained in the following Section 7.2.

As a second observation, we point out the non-convexity of the inertial Wardrop

equilibrium set, which is due to the presence of the segment [0.1, 0.9]− [0, 1]. The points

of the segment belong to the equilibrium set even though they do not satisfy the green

inequality in (7.4e). Indeed, this is the case because (7.4e) enforces the green inequality

only when σ3 > 0, whereas σ3 = 0 in the segment. Non-convexity is never an issue in

Chapters 3-6. �
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Example 5. Let us change utilities and inertia coefficients compared to (7.3)

u1(σ1) = −2.5σ2
1 − 0.51σ1

u2(σ2) = −3.75σ2
2 − 0.33σ2 C =




0 0.4 0.9

0.8 0 1

0.3 0.6 0


 , (7.5)

u3(σ3) = −0.5σ2
3 − 0.42σ3.

The total mass is again γ = 1 and we report in Figure 7.2 the inertial Wardrop equilib-

rium set.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
inertial Wardrop
parallel Wardrop

Figure 7.2: In black the equilibrium set for Example 5 obtained by gridding the space

and verifying for every point whether it satisfies Definition 12 or not. In dashed line we

indicate the simplex boundary. The set is visibly non-convex. The point in cyan is the

parallel Wardrop of Definition 11.

Contrary to Example 4, non-convexity of the equilibrium set arises because a point

σ ∈ S>0 is an inertial Wardrop if and only if it satisfies the system

u1(σ1) ≤ u2(σ2)− c12, u1(σ1) ≤ u3(σ3)− c13,

u2(σ2) ≤ u1(σ1)− c21, u2(σ2) ≤ u3(σ3)− c23,

u3(σ3) ≤ u1(σ1)− c31, u3(σ3) ≤ u2(σ2)− c32.

(7.6)

If the utilities were affine as in Example 4, then the solution set of (7.6) would be convex.

Instead, with non-affine utilities it is not guaranteed to be convex, and indeed it is not

with the specific choice (7.5). �

116



7.2 Relation with the parallel Wardrop equilibrium

7.2 Relation with the parallel Wardrop equilibrium

In this section we propose an algorithm for finding an inertial Wardrop and highlight its

drawbacks.

Lemma 14. A point σ̄ ∈ Rn is a parallel Wardrop equilibrium if and only if it is a

solution of VI(S,−u), where u = [uj]
n
j=1. �

Proof. The proof can be conducted by exploiting the derivations of Example 2, but we

report it here in full for completeness. By Proposition 4, σ̄ is a solution of VI(S,−u) if

and only if it solves its KKT system:

− u(σ)− λ+ µ1n = 0n (7.7a)

0n ≤ λ ⊥ σ ≥ 0n, (7.7b)

1>nσ = γ, (7.7c)

where λ ∈ Rn is the dual variable corresponding to the non-negativity constraint and µ ∈
R is the dual variable corresponding to the constraint 1>nσ = γ. By substituting (7.7a)

into (7.7b), the system (7.7) can be simplified into

0n ≤ −u(σ) + µ1n ⊥ σ ≥ 0n, (7.8a)

1>nσ = γ. (7.8b)

We now argue that it must hold

µ = umax(σ) := max
j∈{1,...,n}

uj(σj).

Indeed, if µ > umax(σ) then −u(σ) + µ1n > 0n, hence by the orthogonality condi-

tion (7.8a) σ = 0n which violates (7.8b). If instead µ < umax(σ) then −u(σ) + µ1n ≥ 0n
does not hold. We can conclude that (7.8) reads as

0n ≤ −u(σ) + umax(σ)1n ⊥ σ ≥ 0n,

1>nσ = γavg,

which is equivalent to

σ ≥ 0n, 1>nσ = γ

σj > 0⇒ uj(σj) = umax(σ), ∀ j ∈ {1, . . . , n},
(7.10)

and conditions (7.10) coincide with Definition 11. �

Lemma 15. Every parallel Wardrop equilibrium is an inertial Wardrop equilibrium.

Proof. It follows directly from Definitions 11 and 12, since condition (7.1) implies con-

dition (7.2), as cjh ≥ 0 for all j, h ∈ {1, . . . , n}. �
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We cast in the following the projection algorithm of Section 2.3 to VI(S,−u), where

σ(k) indicates the iterate k of the algorithm.

Algorithm 6: Projection algorithm

Initialization τ > 0, k = 0, σ(0) ∈ S
Iterate σ(k + 1) = Proj

S
[σ(k) + τu(σ(k))]

k ← k + 1

Lemma 16. If uj is non-increasing in [0, γ] and L-Lipschitz for all j, then Algorithm 6

converges to a parallel Wardrop equilibrium for τ < 2/L.

Proof. Since uj is non-increasing for all j, then

(−u(σ1) + u(σ2))>(σ1 − σ2) =
n∑

j=1

(−uj(σ1
j ) + uj(σ

2
j ))(σ

1
j − σ2

j )︸ ︷︷ ︸
≥0

≥ 0, ∀σ1, σ2 ∈ S,

hence −u is monotone by Definition 3. As uj is Lipschitz, then it is continuous,

hence by the fundamental theorem of calculus it admits a primitive Uj. It follows that

∇σ

(
−∑n

j=1 Uj(σj)
)

= −u(σ), hence −u is a gradient operator. A solution of VI(S,−u)

exists by Proposition 6, because S is convex, compact and −u is continuous. Thus all

the assumptions of Corollary 1 are met and its statement concludes the proof. �

Corollary 5. Under the assumptions of Lemma 16, Algorithm 6 converges to an inertial

Wardrop equilibrium.

Proof. The statement is a straightforward consequence of Lemmas 15 and 16. �

Example 4 (continued). Thanks to Lemma 14, we can show uniqueness of the parallel

Wardrop equilibrium in Example 4. Indeed, each uj in (7.3) is strictly decreasing, hence

the operator −u is strongly monotone in the set S. Then VI(S,−u) admits a unique solu-

tion by Proposition 7. The following shows that the solution is [σ̄1, σ̄2, σ̄3] = [0.4, 0.4, 0.2].



−u1(σ̄1)

−u2(σ̄2)

−u3(σ̄3)



>



σ1

σ2

σ3


−



σ̄1

σ̄2

σ̄3




 =



−0.8

−0.8

−0.8



>



σ1

σ2

σ3


−



σ̄1

σ̄2

σ̄3




 =

(−0.8)

(
3∑

j=1

σj −
3∑

j=1

σ̄j

)
= (−0.8)(1− 1) = 0, ∀ σ ∈ S.

Lemma 15 reflects in the fact that the cyan point corresponding to the parallel

Wardrop in Figure 7.1 is within the inertial Wardrop equilibrium set.
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We now analyze Algorithm 6 on this simple example to highlight its drawbacks. By

Corollary 5, convergence of Algorithm 6 to the parallel Wardrop is guaranteed for τ < 2,

because the Lipschitz constant L of the utilities in (7.4) equals 1. If we choose τ = 1,

the first iteration of Algorithm 6 becomes

σ(1) = Proj
S

[
σ(0) + u(σ(0))

]
= Proj

S

[
σ(0) +




1.2

1.2

1


− σ(0)

]
= Proj

S

[



1.2

1.2

1



]

=




0.4

0.4

0.2


 ,

so one iteration is enough to converge to the parallel Wardrop, for any initial condition

σ(0).

Firstly, we consider as initial condition σ(0) = [0.4; 0.2; 0.4], which is not an inertial

Wardrop, because σ3(0) > 0 and u3(σ3(0)) = 1 − 0.4 = 0.6 < 0.7 = 0.8 − 0.1 =

u1(σ1(0))− c31. In other words, the agents at action 3 are jealous of the agents at action

1. On the contrary, agents at 3 are not jealous of agents at 2, because u3(σ3(0)) = 0.6 ≥
−0.2 = u2(σ2(0))− c32. The first iteration of Algorithm 6 consists in 0.2 units of agents

switching from action 3 to action 2, even though such switch is detrimental for the agents

performing it. Indeed, the agents at 3 would rather prefer to switch to action 1.

Secondly, we consider the initial condition σ(0) = [0.4; 0.3; 0.3]. It can be verified that

σ(0) belongs to the inertial Wardrop equilibrium set. Nonetheless, in the first iteration

of Algorithm 6, 0.1 units of agents move from action 3 to action 2. �

We are now ready to list the two drawbacks of Algorithm 6.

1. The agents are forced to switch action even when such switch is detrimental, as

highlighted in Example 4. In particular, they might be forced to switch even if

already at an inertial Wardrop equilibrium.

2. To perform the projection operation of Algorithm 6, the agents need to know not

only the utility u(σ(k)) of all actions, but also the amount of agents σ(k) performing

such actions.

Section 7.4 proposes an algorithm that overcomes these two drawbacks. To streamline the

presentation, we first establish the connection between inertial Wardrop and variational

inequality.

7.3 Variational inequality reformulation

of the inertial Wardrop equilibrium

In this section we show that the set of inertial Wardrop equilibria coincides with the

solution set of a certain variational inequality, which is different from the one relative to

the parallel Wardrop. We then study monotonicity of the VI operator.
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Chapter 7. The Wardrop equilibrium with inertia

Let us define the operator F : S → Rn
≥0 as follows

F (σ) = [Fj(σ)]nj=1,

Fj(σ) = max
h∈{1,...,n}

(uh(σh)− uj(σj)− cjh), (7.11)

where we use the convention that cjj = 0 for all j ∈ {1, . . . , n}, as in (7.3). Then one

of the elements of {uh(σh) − uj(σj) − cjh}nh=1 is uj(σj) − uj(σj) − cjj = 0, hence for all

j ∈ {1, . . . , n} it holds Fj(σ) ≥ 0 for all σ ∈ S. Moreover, by Definition 12 the agents at

j find another action attractive if and only if uh(σh)− uj(σj)− cjh > 0; in other words,

Fj(σ) = 0 if and only if the agents at j are not jealous of any other action. The next

lemma clarifies that F (σ) > 0n is not possible.

Lemma 17. For each σ ∈ S there exists j? such that Fj?(σ) = 0.

Proof. Take j? ∈ argmax
j∈{1,...,n}

uj(σj). Then Fj?(σ) = 0 by its definition (7.11). �

Theorem 9. A vector σ̄ ∈ Rn is an inertial Wardrop equilibrium if and only if it is a

solution of VI(S, F ).

Proof. The proof consists in showing that the KKT system of VI(S, F ) is equivalent to

Definition 12 of inertial Wardrop. Since the set S satisfies Slater’s constraint qualifica-

tion, by Proposition 4 VI(S, F ) is equivalent to its KKT system

F (σ) + µ1n − λ = 0n (7.12a)

σ ≥ 0n (7.12b)

1>nσ = γ (7.12c)

λ ≥ 0n (7.12d)

λ>σ = 0, (7.12e)

where µ ∈ R is the dual variable corresponding to the constraint 1>nσ = γ and λ ∈ Rn

is the dual variable corresponding to the constraint σ ≥ 0n. The system (7.12) can be

compactly rewritten as

0n ≤ µ1n + F (σ) ⊥ σ ≥ 0n, (7.13a)

1>nσ = γ. (7.13b)

Lemma 17 ensures the existence of j ∈ {1, . . . , n} such that Fj(σ) = 0. Then µ < 0 is not

possible, otherwise the non-negativity condition on µ1n + F (σ) is violated. Moreover,

since F (s) ≥ 0n, µ > 0 is not possible, as by (7.13a) this would imply σ = 0n thus

violating (7.13b). We can conclude that µ = 0 and (7.13) becomes

0n ≤ F (σ) ⊥ σ ≥ 0n, (7.14a)

1>nσ = γ. (7.14b)
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7.3 Variational inequality reformulation of the inertial Wardrop equilibrium

The system (7.14) is equivalent to

σ ∈ S, and

σj > 0 ⇒
(7.14a)

uj(σj) ≥ uh(σh)− cjh, ∀ j, h ∈ {1, . . . , n}.

which coincides with Definition 12. �

Corollary 6. For any set of non-negative inertia coefficients {cjh ≥ 0}nj,h=1, continuous

utility functions {ui : R≥0 → R}ni=1 and total mass γ > 0, there exists an inertial

Wardrop equilibrium.

Proof. It follows from Theorem 9 and Proposition 6 on existence of VI solutions, because

F is continuous as each of its components is the point-wise maximum of continuous

functions. �

Absence of monotonicity

If VI(S, F ) exhibits any of the monotonicity properties of Table 2.3, then convergence

of the projection or the extragradient algorithm would be guaranteed. However, the

following classical result about variational inequality solutions clarifies that monotonicity

cannot be always guaranteed.

Proposition 18 ([FP03, Theorem 2.3.5]). Let X ⊆ Rn be closed, convex and F : X →
Rn be continuous and monotone. Then the solution set of VI(X , F ) is convex. �

Since the inertial Wardrop equilibrium set in Figure 7.1 is not convex, then the cor-

responding variational inequality operator F cannot be monotone. In the following we

generalize such observation by providing a weak sufficient condition for absence of mono-

tonicity. To this end, we introduce a generalization of Proposition 8, because therein the

VI operator is assumed to be continuously differentiable, whereas F is not.

Proposition 19. [DTL96, Proposition 2.1] An operator F is monotone in X ⊆ Rn if

and only if for every x ∈ X each generalized Jacobian φ ∈ ∂F (σ) is positive semidefinite.

�

The definition of generalized Jacobian ∂F (σ) can be found in [Cla90, Definition 2.6.1];

we do not report it here because all we need in the proof of the following Theorem 10 is

that if F is differentiable at σ, then ∂F (σ) = {∇σF (σ)}. In words, the generalized Ja-

cobian coincides with the Jacobian. The following Theorem 10 clarifies that in presence

of strictly decreasing utilities the inertial Wardrop operator F in (7.11) is never mono-

tone, except for the degenerate case in which the entire set S is an inertial Wardrop

equilibrium.
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Chapter 7. The Wardrop equilibrium with inertia

Theorem 10. Assume that in [0, γ] the function uj is strictly decreasing and Lipschitz

for all j ∈ {1, . . . , n}, that cjh ≥ 0 for all j, h ∈ {1, . . . , n} and that there exists a point

σ̂ ∈ S which is not an inertial Wardrop equilibrium. Then F is not monotone in S.

Proof. The proof is composed by four parts.

1) We first show that there exists σ̃ ∈ S>0 such that σ̃ is not an inertial Wardrop.

For the sake of contradiction, assume that each σ ∈ S>0 is an inertial Wardrop. Since σ̂

belongs to the closure of S>0, we can construct a sequence (σ(m))∞m=1 ∈ S>0 such that

limm→∞ σ(m) = σ̂. Since each σ(m) is an inertial Wardrop and it is positive, then for

all j, h it holds uj(σj(m)) ≥ uh(σh(m))− cjh. Taking the limit and exploiting continuity

of {uj}nj=1 we obtain

lim
m→∞

uj(σj(m)) ≥ lim
m→∞

uh(σh(m))− cjh, ∀ j, h ∈ {1, . . . , n}

⇔ uj(σ̂j) ≥ uh(σ̂h)− cjh, ∀ j, h ∈ {1, . . . , n},
(7.15)

hence σ̂ is an inertial Wardrop equilibrium, against the assumption.

2) After establishing the existence of σ̃ ∈ S>0 which is not an inertial Wardrop, we now

show that there exists an open ball Bε̃(σ̃) centered around σ̃ of radius ε̃ > 0 such that

none of the points in Bε̃(σ̃)∩S>0 is an inertial Wardrop. Let us reason again for the sake

of contradiction. If for each ε > 0 there exists an inertial Wardrop in Bε(σ̃) ∩ S>0, then

we can construct a sequence of inertial Wardrop equilibria converging to σ̃. With the

same continuity argument used in (7.15), we can conclude that σ̃ is an inertial Wardrop,

which is false by assumption. This demonstrates the existence of ε̃ > 0 such that none

of the points in Bε̃(σ̃) ∩ S>0 is an inertial Wardrop. By Rademacher’s theorem [AFP00,

Theorem 2.14], Lipschitzianity of {uj}nj=1 guarantees1 existence of σ? ∈ Bε̃(σ̃)∩S>0 such

that F is differentiable at σ?.

3) The previous part guarantees differentiability of F at a point σ? ∈ S>0 which is not

an inertial Wardrop. This third part is dedicated to showing that there exist j?, h? ∈
{1, . . . , n} such that j? ∈ A(h?, σ?) and A(j?, σ?) = {j?}, where we denote

A(k, σ) := argmax
`∈{1,...,n}

{u`(σ`)− uk(σk)− ck`}. (7.16)

Since σ? is not an inertial Wardrop, then there exist `1, `2 such that

u`1(σ
?
`1

) < u`2(σ
?
`2

)− c`1`2 . (7.17)

Condition (7.17) is equivalent to `2 ∈ A(`1, σ
?) and `1 /∈ A(`1, σ

?). If A(`2, σ
?) =

{`2} then the statement is proven with h? = `1, j
? = `2, otherwise there exists `3 ∈

1Radamacher’s theorem assumes F to be defined on an open subset of Rn, but S>0 is not open in

Rn. Indeed, one just needs to define F on the n − 1 dimensional open set {σ ∈ Rn−1
≥0 |1>n−1σ < γ}, by

using σn = γ −∑n−1
j=1 σj and then apply the theorem to conclude existence of a differentiable point in

{σ ∈ Rn−1
≥0 |1>n−1σ < γ} which implies existence of a differentiable point in the original S>0.
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7.3 Variational inequality reformulation of the inertial Wardrop equilibrium

A(`2, σ
?)\{`2}. Note that it cannot be `3 = `1, because this means

u`2(σ
?
`2

) ≤ u`1(σ
?
`1

)− c`2`1 ,

which together with (7.17) results in

u`1(σ
?
`1

) < u`1(σ
?
`1

)− c`2`1 − c`1`2 ,

which is not possible, because c`1`2 , c`2`1 ≥ 0 by assumption. Hence we established

that `3 6= `1. If A(`3, σ
?) = {`3} then the statement is proven with h? = `2, j

? =

`3, otherwise there exists `4 /∈ {`1, `2, `3} such that `4 ∈ A(`3, σ
?). Since there are

only n different actions, by continuing the chain of reasoning we conclude that there

exists k ∈ {2, . . . , n} such that `k ∈ A(`k−1, σ
?) and A(`k, σ

?) = {`k}, thus proving the

statement with h? = `k−1 and j? = `k. We now show that not only j? ∈ A(h?, σ?),

but actually A(h?, σ?) = {j?}. For the sake of contradiction, assume that there exists

` 6= j? such that ` ∈ A(h?, σ?). This means that Fh?(σ
?) = uj?(σ

?
j?)− uh?(σ?h?)− ch?j? =

u`(σ
?
` ) − uh?(σ?h?) − ch?`. Then consider the vector of the canonical basis ej? ∈ Rn and

compute

lim
t→0+

Fh?(σ
? + tej?)− Fh?(σ?)

t
=

lim
t→0+

[u`(σ
?
` )− uh?(σ?h?)− ch?`]− [u`(σ

?
` )− uh?(σ?h?)− ch?`]

t
= 0,

(7.18)

where the first equality holds because for t > 0 we have

uj?(σ
?
j? + t)− uh?(σ?h?)− ch?j? < uj?(σ

?
j?)− uh?(σ?h?)− ch?j? = u`(σ

?
` )− uh?(σ?h?)− ch?`,

due to uj? being strictly decreasing by assumption. Moreover,

lim
t→0−

Fh?(σ
? + tej?)− Fh?(σ?)

t
=

lim
t→0−

[uj?(σ
?
j? + t)− uh?(σ?h?)− ch?j? ]− [uj?(σ

?
j?)− uh?(σ?h?)− ch?j? ]

t
=

lim
t→0−

uj?(σ
?
j? + t)− uj?(σ?j?)

t
= u′j?(σ

?
j?) < 0.

(7.19)

where the first equality holds because for t < 0 we have

uj?(σ
?
j? + t)− uh?(σ?h?)− ch?j? > uj?(σ

?
j?)− uh?(σ?h?)− ch?j? = u`(σ

?
` )− uh?(σ?h?)− ch?`,

due to uj? being strictly decreasing by assumption. From (7.18) and (7.19) we obtain that

Fh? is not differentiable2 at σ?, against what proved in the second part. Hence we must

conclude that there cannot exist ` 6= j? such that ` ∈ A(h?, σ?), thus A(h?, σ?) = {j?}.
2Again, to be more rigorous one should define F in the n− 1 dimensional domain.
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4) Since F is differentiable in σ? by the second part of the proof, then ∂F (σ?) =

{∇σF (σ?)} is a singleton. As A(h?, σ?) = A(j?, σ?) = {j?} by the third part of the

proof, then

uj?(σ
?
j?)− ch?j? > u`(σ

?
` )− ch?`, ∀ ` 6= j?,

uj?(σ
?
j?)− cj?j? > u`(σ

?
` )− cj?`, ∀ ` 6= j?.

(7.20)

As a consequence of (7.20) there exists a small enough open ball around σ? where

Fj?(σ
?) = uj?(σ

?
j?) − uj?(σ

?
j?) − cj?j? = 0 and Fh?(σ

?) = uj?(σ
?
j?) − uh?(σ

?
h?) − ch?j? .

Thus

[∇σF (σ?)]j?h?×j?h? =

[
∂Fj? (σ?)

∂σj?

∂Fj? (σ?)

∂σh?
∂Fh? (σ?)
∂σj?

∂Fh? (σ?)
∂σh?

]
=

[
0 0

u′j?(σ
?
j?) −u′h?(σ?h?)

]
,

whose symmetric part has determinant 0 · (−u′h?(σ?h?))− (u′j?(σ
?
j?))

2/4 < 0, which makes

[∇σF (σ?)]j?h?×j?h? indefinite. Thus ∇σF (σ?) itself is indefinite and F is not monotone

in S due to Proposition 19. �

Remark 6. Even though the statement of Theorem 10 requires uj to be strictly de-

creasing for all j, its proof only requires uj? to be strictly decreasing at σ?j? . Indeed, it

is enough to assume that uj is Lipschitz for all j, cjh ≥ 0 for all j, h ∈ {1, . . . , n} and

there exist σ? ∈ S>0, j?, h? ∈ {1, . . . , n} such that j? ∈ A(h?, σ?),A(j?, σ?) = {j?} and

uj? is strictly decreasing at σ?j? . �

Remark 7. Definition 11 of parallel Wardrop coincides with Definition 12 of inertial

Wardrop if cjh = 0 for all j, h ∈ {1, . . . , n} and, as a consequence of Lemma 14 and

Theorem 9, the solution sets of VI(S,−u) and VI(S, F ) coincide. This does not mean

that, if cjh = 0 for all j, h, the operators −u and F exhibit the same monotonicity

properties outside the solution set. Indeed, if uj is non-increasing for all j, by the

proof of Lemma 16 −u is monotone, whereas F can lack monotonicity, as just stated in

Theorem 10. �

We conclude this section by pointing out that both Example 4 and Example 5 satisfy

the sufficient condition of Theorem 10. This reflects for Example 4 in the indefinite

matrix

∇σF ([0.2; 0.2; 0.6]) =




0 0 0

0 0 0

−1 0 1




and for Example 5 in in the indefinite matrix

∇σF ([0.25; 0.5; 0.25]) =




0 0 0

−1.75 4.1 0

0 0 0


 .
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7.4 Dynamics converging to

an inertial Wardrop equilibrium

At the end of Section 7.2 we commented on two important drawbacks of Algorithm 6.

This section is dedicated to the design of an algorithm that overcomes them. To this

end, let us introduce some notation.

Given σ ∈ S, for each j such that σj > 0 we define the envy set of j as

Eout
j (σ) := {h ∈ {1, . . . , n} s.t. uj(σj) < uh(xh)− cjh} .

If instead σj = 0 we define Eout
j (σ) = ∅. Note that the definition of Eout

j is different

from that of A(j, σ) given in (7.16). For any j ∈ {1, . . . , n}, we define E in
j (σ) = {h ∈

{1, . . . , n} s.t. j ∈ Eout
h (σ)}. Using this notation

σ̄ is an inertial Wardrop equilibrium ⇔
σ̄ ∈ S and Eout

j (σ̄) = ∅, ∀ j ∈ {1, . . . , n}.

Definition 13 (Transition matrix). Given σ ∈ S and 0 < τ < 1, we define the transition

matrix P (σ) ∈ Rn×n as

Pjj(σ) =

{
1 if Eout

j (σ) = ∅
1− τ if Eout

j (σ) 6= ∅,
Phj(σ) =

{
0 if h /∈ Eout

j (σ)

τ/|Eout
j (σ)| if h ∈ Eout

j (σ),

where |Eout
j (σ)| indicates the cardinality of Eout

j (σ). �

Note that for all σ ∈ S we have P (σ) ∈ Rn×n
≥0 and 1>nP (σ) = 1>n by construction. In other

words, P is a column stochastic matrix [OSAFM07]. We are now ready to introduce the

algorithm.

Algorithm 7: Improvement dynamics

Initialization: 0 < τ < 1, k = 0, σ(0) ∈ S.

Iterate: σ(k + 1) = P (σ(k))σ(k),

k ← k + 1.

Algorithm 7 can be given the following interpretation: at iteration k, if the agents

at action h see one alternative attractive action, a fraction τ of them switches to that

action. If there is more than one attractive action, then the fraction of τ agents equally

splits among the attractive actions.

Algorithm 7 does not present the two drawbacks of Algorithm 6 explained at the end

of Section 7.2. First of all, agents switch action only if the switch is convenient. Sec-

ondly, to determine whether a switch is convenient they need to be aware of the inertial

coefficients and they only need measure the other actions’ utilities u(σ(k)); contrary to

Algorithm 6, indeed, they do not need to measure the mass of agents σ(k) performing
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other actions. As a consequence, Algorithm 7 can be interpreted as the natural dynamics

of agents switching actions until they reach an equilibrium.

Since σ(0) ∈ S, then σ(k) ∈ S for all k. Indeed, non-negativity is preserved because

P (σ) ∈ Rn×n
≥0 , and 1>nσ(k + 1) = 1>nP (σ(k))σ(k) = 1>nσ(k) = 1>nσ(0), due to column-

stochasticity of P (σ).

Theorem 11. Assume that in [0, γ] the utility uj is non-increasing and L-Lipschitz for

each j ∈ {1, . . . , n} and there exists cmin > 0 such that cjh ≥ cmin for all j, h ∈ {1, . . . , n}.
If 0 < τ < cmin/(Lγ), then σ(k) in Algorithm 7 converges to an inertial Wardrop

equilibrium σ̄. Moreover, if σ̄ > 0n, then the algorithm terminates in a finite number of

steps.

Proof. We prove the statement by showing that σ(k)→ σ̄ such that Eout
j (σ̄) = ∅ for all

j ∈ {1, . . . , n}. Let us denote µ(k) = min
j∈{1,...,n}

uj(σj(k)). We show in the following that

µ(k) is a non-decreasing sequence.

First, note that for any action j we have σj(k + 1)− σj(k) ≤ τγ, because any other

action h transfers at most τσh(k) to action h. Then we can bound the maximum utility

decrease
uj(σj(k + 1))− uj(σj(k)) ≥ −L|σj(k + 1)− σj(k)|
≥ −Lτγ ≥ −Lτγ = −βcmin,

(7.21)

where the first inequality follows by Lipschitz continuity, the last by the choice of τ and

β = (τLγ)/cmin ∈]0, 1[.

Secondly, note that if some action j faces a utility decrease, that is, if uj(σj(k+1)) <

uj(σj(k)), then it must be σj(k + 1) > σj(k), because uj is non-increasing. Then there

exists h such that j ∈ Eout
h (σ(k)). It follows that

j faces utility decrease at step k ⇒ uj(σj(k)) > uh(σh(k)) + chj ≥ µ(k) + cmin.

(7.22)

Combining (7.21) with (7.22) we obtain

j faces utility decrease at step k ⇒
uj(σj(k + 1)) > µ(k) + (1− β)cmin,

which implies

µ(k + 1) ≥ µ(k).

Since µ(k) is non-decreasing and it has an upper bound ({uj}nj=1 are continuous functions

in a compact set), there exists a value µ? such that

lim
k→∞

µ(k) = µ?. (7.23)

We show in the following that there exists an action j? such that

lim
k→∞

uj?(σj?(k)) = µ?. (7.24)
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To this end, we note that by definition of limk→∞ µ(k) = µ?, there exists k̂ such that

µ(k) > µ? − cmin(1− β)/2, ∀k ≥ k̂. (7.25)

Then
j faces utility decrease at step k ≥ k̂ ⇒
uj(σj(k)) ≥ µ? − cmin(1− β)/2 + cmin

= µ? + cmin(1 + β)/2,

(7.26)

where the first inequality follows from combining (7.22) and (7.25). Combining (7.21)

and (7.26) we obtain

j faces utility decrease at step k ≥ k̂ ⇒
uj(σj(k + 1)) ≥ µ? − cmin(1− β)/2 + cmin(1− β)

= µ? + cmin(1− β)/2.

(7.27)

Figure 7.3 illustrates the inequalities (7.26) and (7.27).

no decrease possible

possible utility after decrease

µ(k)

µ? µ? +
cmin

2
(1� �) µ? +

cmin

2
(1 + �)

Figure 7.3: Illustration of µ(k)→ µ? from below and of the inequalities (7.26) and (7.27)

after iteration k̂ (with β = 0.5).

Combining inequalities (7.26) and (7.27) we obtain that

∃ k1 ≥ k̂ such that uj(σj(k1)) ≥ µ? + ρ > µ? ⇒
uj(σj(k)) ≥ min{µ? + ρ, µ? + cmin(1− β)/2} for all k ≥ k1.

(7.28)

It then follows

∃ k1 ≥ k̂ such that uj(σj(k1)) > µ? ⇒ lim
k→∞

uj(σj(k)) 6= µ?. (7.29)

By (7.29) and (7.23) it follows that there exists at least an action j? such that it holds

uj?(σj?(k)) ≤ µ? for all k ≥ k̂. Using again (7.23) and the squeeze theorem, we can

conclude that j? satisfies (7.24).
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Note that for k ≥ k̂ the set E in
j?(σ(k)) is empty due to (7.22) and uj?(σj?) ≤ µ?.

In words, no other action can envy j? after step k̂. This implies that uj?(σj?(k)) is a

non-decreasing sequence, and in turn σj?(k) is a non-increasing sequence, due to the fact

that uj? is a non-increasing function. As a consequence

lim
k→∞

σj?(k) = σ̄j? ≥ 0. (7.30)

If σ̄j? = 0, then clearly Eout
j? (σ̄j? , σ−j?) = ∅ by definition, independently from the values

taken by σ−j? . If instead σ̄j? > 0, since the only possible mass decrease for j? is of the

form σj?(k+ 1) = (1− τ)σj?(k), then convergence is achieved in a finite number of steps.

In other words, there exists k̃ such that σj?(k) = σ̄j? for all k ≥ k̃. In this case, for k ≥ k̃

not only E in
j?(σ(k)) = ∅, but also Eout

j? (σ(k)) = ∅, because otherwise j? would encounter a

mass decrease.

Having concluded that there exists j? ∈ {1, . . . , n} such that its mass converges (in a

finite number of steps if σ̄j? > 0), we propose a last argument to show that there exists

h? ∈ {1, . . . , n}\{j?} such that its mass converges to σ̄h? (in a finite number of steps

if σ̄j? , σ̄h? > 0). Then the same last argument recursively applies to {1, . . . , n}\{j?, h?}
and the proof is concluded.

The last argument distinguishes two cases: σ̄j? > 0 and σ̄j? = 0. In the first case

σ̄j? > 0, we already showed that there exists k̃ such that E in
j?(σ(k)) = Eout

j? (σ(k)) = ∅ for all

k > k̃. Then action j? has no interaction with any the other action and considering k ≥ k̃

we apply to {1, . . . , n}\j? the reasoning of part (ii) of this proof until equation (7.30) to

show that there is an action h? ∈ {1, . . . , n}\{j?} with mass that converges to σ̄h? (in a

finite number of steps if σ̄h? > 0).

Let us now focus on the second case σ̄j? = 0. The main idea here is that, even though

Eout
j? does not become the empty set at any finite iteration k, the mass σj? becomes so

small that transferring mass to the other n−1 actions does not have an influence on their

convergence. Proving this requires a cumbersome analysis that does not add much to the

intuition already provided. Let us denote η(k) = min
h∈{1,...,n}\{j?}

uh(σh(k)). Contrary to µ(k),

the sequence η(k) is not non-decreasing in general because the analogous of (7.22) does

not hold, as action j? could transfer some of its mass to {1, . . . , n}\{j?} thus making

their utilities decrease. Nonetheless, we show that there exists η? such that

lim
k→∞

η(k) = η?. (7.31)

To this end, we fix ε > 0 and we show that there exists k? such that |η(k)− η?| < ε

for all k ≥ k?. By definition of limk→∞ σj?(k) = 0, there exists k∞ such that

σj?(k) < ε/(2L), ∀ k ≥ k∞. (7.32)
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Let us now construct the sequence

η0(k) = η(k) + δ(k),

δ(k + 1) = δ(k) + max{0, η(k)− η(k + 1)}, δ(k∞) = 0.

In words, the sequence δ(k) accumulates the (absolute value of the) decreases of η(k) due

to j?, and summing it to η(k) results in a sequence η0(k) which is non-decreasing and

bounded from above, hence it admits a limit η?. By definition, there exists k0 such that

η0(k) > η?− ε/2 for all k ≥ k0. Moreover, δ(k+ 1)− δ(k) = max{0, η(k)− η(k+ 1)} > 0

only if Eout
j? (σ(k)) 6= ∅ and in this case max{0, η(k) − η(k + 1)} ≤ L · τσj(k). In words,

the only way η(k) can decrease is if action j? transfers some mass to the others, and

even then we have a bound on the utility decrease that this can cause. Summing up

lim
k→∞

δ(k) =
∞∑

k=k∞

max{0, η(k)− η(k + 1)} ≤ Lσj?(k∞) <
(7.32)

ε/2,

hence, since δ(k) is non-decreasing, δ(k) < ε/2 for all k ≥ k∞. Then for k ≥ max{k∞, k0}
it holds

η? − η(k) = η? − η0(k) + η0(k)− η(k)

= η? − η0(k)

<ε/2

+ δ(k)

<ε/2

< ε

which proves (7.31).

Finally, we want to show that there exists h? ∈ {1, . . . , n}\{j?} such that

lim
k→∞

uh?(σh?(k)) = η?. (7.33)

Consider an action ` 6= j? such that

lim
k→∞

u`(σ`(k)) 6= η?. (7.34)

Since η(k) → η?, then max{0, η(k) − η(k + 1)} → 0 as k → ∞. This, together with

η(k)→ η?, implies that condition (7.34) is equivalent to the existence of θ > 0 such that

for all k′ ≥ 0 there exists k′′ ≥ k′ such that

u`(σ`(k
′′)) > η? + θ. (7.35)

There are two possibilities in which ` can face a utility decrease after k′′, namely through

a mass transfer from some action {1, . . . , n}\{j?, `} or through a mass transfer from

action j?. If the mass transfer happens through some action {1, . . . , n}\{j?, `}, we can

use the same argument of Figure 7.3 and in particular of implication (7.28) to conclude

from (7.35) that

u`(σ`(k)) ≥ min{η? + θ, η? + cmin(1− β)/2}, ∀ k ≥ k′′. (7.36)
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If instead the mass transfer happens through j?, by σj?(k)→ 0 one can take k′ such that

σj?(k) < θ/(2L), ∀k ≥ k′ (7.37)

and take k′′ such that (7.35) holds. Then

u`(σ`(k)) ≥ u`(σ`(k
′′))− L θ

2L
> η? + θ − θ

2
= η? +

θ

2
. (7.38)

for all k ≥ k′′, where the first inequality holds due to Lipschitz continuity and to (7.37),

while the second inequality holds due to (7.35). We can conclude that if (7.34) holds

for action `, then either (7.36) or (7.38) holds. Consequently, after k′′ action ` does not

attain the minimum η(k). If (7.34) holds for all ` ∈ {1, . . . , n}\j?, then the minimum

η(k) is not attained by any action after k′′, which is a contradiction. Then there must

exist h? such that (7.33) holds. With the same argument that led to (7.30), we can

conclude that there exists σ̄h? ≥ 0 such that limk→∞ σh?(k) = σ̄h? ≥ 0. As done for j?,

we can conclude that Eout
h? = ∅. �

Generalizations

We present in the following three generalizations of the material presented in this chapter.

Multi-class inertial Wardrop equilibrium

The concept of inertial Wardrop introduced in Definition 12 relies on the idea that each

infinitesimal agent perceives the same utility uj and the same inertial coefficients cjh.

This assumption can be relaxed by introducing A different classes and indicating with σαj
the mass of agents belonging to class α which choose action j. We denote σj =

∑A
α=1 σ

α
j

and σα = {σαj }nj=1.

Definition 14. Consider utilities {uαj : R → R}, inertia coefficients {cαjh ≥ 0} and

masses {γα > 0}, with j, h ∈ {1, . . . , n}, α ∈ {1, . . . , A}. The vector σ̄ ∈ RnA is a

multi-class inertial Wardrop equilibrium if σ̄ ≥ 0nA, 1>Aσ̄
α = γα for all α, and

σ̄αj > 0⇒ uαj (σ̄j) ≥ uαh(σ̄h)− cαjh, ∀h ∈ {1, . . . , n}, (7.39)

for all j ∈ {1, . . . , n} and α ∈ {1, . . . , A}. �

Note that even though different classes might perceive different utilities at the same

action h, each of these utilities is a function of the sole
∑A

α=1 σ
α
j . This is indeed what

couples the different classes together. If in Definition 14 we have cjh = 0 for all j, h,

we obtain the definition of multi-class parallel Wardrop equilibrium. Upon redefining
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S = S1× · · · × SA ⊂ RnA as the Cartesian product of the simplex sets, one can redefine

the operator F : S → RnA
≥0 , where

F (σ) = [[Fα
j (σ)]Aα=1]nj=1,

Fα
j (σ) = max

h∈{1,...,n}
(uαh(σh)− uαj (σj)− cαjh).

Using a trivial extension of the proof of Theorem 9, it is possible to show that the set

of multi-class parallel Wardrop equilibria coincides with the solution set of VI(S, F ).

Theorem 10 about lack of monotonicity also extends to the multi-class case. The first

two parts of the proof are identical, the last two parts only differ in that j?, h? exist for

a specific class α?.

Algorithm 7 can also be extended. Indeed, let us define

Eout,α
j (σ) :=

{
h ∈ {1, . . . , n} s.t. uαj (σj) < uαh(xh)− cαjh

}

and P ∈ RnA×nA = blkdiag(P 1, . . . , PA), where the entries of Pα are

Pα
jj(σ) =

{
1 if Eout,α

j (σ) = ∅
1− τ if Eout,α

j (σ) 6= ∅,
Pα
hj(σ) =

{
0 if h /∈ Eout,α

j (σ)

τ/|Eout,α
j (σ)| if h ∈ Eout,α

j (σ).

Then σ(k + 1) = P (σ(k))σ(k) converges to a multi-class parallel Wardrop equilibrium,

under the same assumptions of Theorem 11. Some parts of the proof have to be slightly

generalized but the structure remains the same. We do not report the extension of the

proof in full detail.

Relaxations of Algorithm 7

When introducing Algorithm 7 we specified that, in presence of multiple alternative

attractive actions, the fraction τ of agents equally splits among the attractive actions.

This restriction is not needed, i.e., the fraction τ can split in any arbitrary way among

the attractive actions without compromising the convergence result.

Moreover, the proof never uses the fact that the agents switch in a synchronous manner.

As a consequence, Algorithm 7 converges also if the agents switch asynchronously.

Finally, instead of assuming that a τ fraction of the agents switches and requiring τ <

cmin/Lγ, one could let any number of agents switch as long as this number is bounded

by τ < cmin/L.

Atomic agents with discrete action set

Instead of a continuum of infinitesimal agents, one could consider a finite number M of

atomic agents. Each agent possesses unitary mass and can choose only one of the actions

{1, . . . , n}. In other words, his strategy xi must belong to the set {ej}nj=1, where ej is
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the jth vector of the canonical basis. The utility uj is a function of σj = (1/M)
∑M

i=1 x
i
j.

The definition of inertial equilibrium then requires that no atomic agent i ∈ {1, . . . ,M}
has an incentive to switch action, considering the utilities of the alternative actions and

the corresponding inertial coefficients. The continuum of infinitesimal agents studied in

this chapter represents the limiting situation obtained as the number of agents M grows

to infinity. Note that the theory of Chapters 2-3 does not apply, as the action space is

discrete. As a consequence, the reformulation as VI is not possible. Nonetheless, one can

formulate Algorithm 7 by letting an agent i switch to an arbitrary action whenever such

action is attractive. Convergence is guaranteed upon substituting the original bound on

τ with a bound on the maximum number of agents that can switch at the same time.

Comparison with the literature

To the best of our knowledge, the concept of inertial Wardrop equilibrium in Definition 12

is novel, due to the presence of the inertial coefficients cjh. As a consequence, all the

material in the chapter has not been previously studied by other authors.

The journey that leads us to the definition of the inertial Wardrop equilibrium starts

with the study of the migration equilibrium introduced by Anna Nagurney. The se-

ries of works [Nag89, Nag89, NPZ92, NPZ93] defines the migration equilibrium in a

way that resembles Definition 12, but with some important differences. The migration

equilibrium considers a fixed initial mass distribution σ0 ∈ S, with σ0
j representing the

amount of agents residing at a physical location j, which enjoy utility uj(σ
0). The initial

distribution σ0 is transformed into the final distribution σ1 ∈ S, which is a function

of the migrations (fjh)
n
j,h=1 (that in our terms are action switches). The variables are

thus the migrations (fjh)
n
j,h=1 themselves. Each migration comes with a migration cost

cjh(fjh) which is a function of the amount fjh of agents migrating. In our case instead

cjh is constant. A migration equilibrium consists in a set of migrations (fjh)
n
j,h=1 such

that, considering the fixed initial utilities u(s0), the migration costs cjh(fjh) and the

corresponding final utilities u(σ1), no other set of migrations is more convenient.

To sum up, the migration equilibrium and the inertial Wardrop of Definition 12 share

the same key ingredients, which are however arranged in a different manner. The main

consequences are that the migration equilibrium equivalent VI is different from our VI

in Theorem 9 and, most importantly, the algorithms proposed in the works of Nagurney

do not resemble Algorithm 7. In particular, they do not aim at describing the natural

dynamics of the agents seeking an equilibrium.

On the other hand, the works in population games focus exactly on (continuous-time)

agents dynamics that achieve the Wardrop equilibrium3 described in conditions (3.10).

A particular class of agents dynamics is those of imitation dynamics, which are similar to

3In the population games literature a point satisfying conditions (3.10) is referred to as Nash equi-

librium [San10, p. (24)], contrary to the terminology used in this thesis.
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the discrete-time Algorithm 7 in that agents switch to more attractive actions. Different

works provide local [San01, Nac90] and global [CT14, ZCF17] convergence guarantees,

but rather than digging into the vast literature of population games, we point out that

those works consider inertia coefficients equal to zero, hence study a different problem.

As highlighted in Chapter 8, adapting the agents dynamics proposed in population games

to the case of positive inertia coefficients is a very interesting possibility.

Finally, we remark that introducing different classes of agents is not a novel idea,

because it appears already in the migration equilibrium works [Nag13, Section 5.3] and

in the population games ones [San10, Section 2.1].
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CHAPTER 8
Conclusions and outlook

This thesis focused on various aspects of equilibrium problems in aggregative games.

Chapter 1 motivated the relevance of the systems that are described by aggregative

games. Chapter 2 presented background material, while Chapter 3 was dedicated to

the systematic study of the relations between Nash and Wardrop equilibria through the

framework of variational inequalities. Chapters 4 and 5 designed parallel and distributed

algorithms that converge to such equilibria. Chapter 6 focused in detail on three different

case studies to verify the results of the previous Chapters 3-5. Chapter 7 introduced the

novel concept of Wardrop equilibrium with inertia and proposed agent dynamics that

converge to it.

In the following we make clear what we believe are the main novel technical contri-

butions of the thesis by listing them one by one.

• Theorem 1 provided sufficient conditions for strong monotonicity of the Nash op-

erator for a diagonal price function;

• Theorem 2 bounded the distance between the strategies at the Nash and the strate-

gies at the Wardrop in terms of the number of agents;

• Theorem 3 and Theorem 4 proved convergence in presence of coupling constraints

of the parallel best-response Algorithm 3 and of the parallel gradient-step Algo-

rithm 4, respectively;

• Theorem 5 showed that the distributed gradient-step Algorithm 5 converges to an

almost-Nash equilibrium in presence of coupling constraints;

• Theorem 10 provided weak sufficient conditions for absence of monotonicity of the

VI relative to the inertial Wardrop equilibrium;

• Theorem 11 established convergence to an inertial Wardrop equilibrium of the

agents dynamics in Algorithm 7.
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Outlook

Regarding future research directions, for almost each one of the sections of the thesis

we could propose some plausible further work. We list in the following the three future

developments that we consider the most valuable and on which we would invest our time.

Distributed algorithm for exact Nash

Chapter 5 proposed the distributed Algorithm 5 whose iteration requires ν communica-

tions among the agents. Theorem 5 proved that, for each ε > 0, there exists νε > 0 such

that by setting ν > νε, Algorithm 5 converges to an ε-Nash equilibrium. Figure 6.12

suggests that in practical situations the number ν of communications required to achieve

a good accuracy ε might not be very high. Nonetheless, from a theoretical point of view

it would be valuable to design an algorithm that achieves an exact Nash equilibrium

(rather than an ε-Nash) with only one communication (i.e., ν = 1) per iteration, over

a generic strongly connected and doubly-stochastic communication network. In particu-

lar, one would need to propose a gradient step algorithm and a best-response algorithm.

Designing the two algorithms would probably require two different approaches, as indeed

was the case for the parallel Algorithms 3 and 4.

Enhancing the results of the inertial Wardrop equilibrium

One open question about the inertial Wardrop equilibrium of Chapter 7 is whether the

equilibrium set is connected or not. The three-dimensional examples that we investigated

so far visually indicate that the answer is positive, as in Figure 7.1 and Figure 7.2. When

we instead simulated action spaces of considerably higher cardinality, it was difficult to

establish connectedness of the solution set, due to the lack of a visual representation

similar to those of Figure 7.1 and Figure 7.2.

It would be also important to make the generalizations presented at the end of Sec-

tion 7.4 into rigorous statements. In particular, we believe that the proof of convergence

of Algorithm 7 might simplify a bit if, instead of assuming that a τ fraction of the agents

switches and requiring τ < cmin/Lγ, one could let any number of agents switch as long

as this number is bounded by τ < cmin/L. In particular, one could probably prove with

a very simple example that such bound is tight, in the sense that there exists an instance

of utilities and positive inertial coefficients such that the modified version of Algorithm 7

oscillates whenever τ ≥ cmin/L.

Finally, finding a relevant application of the results of Chapter 7 would be extremely

valuable. In the work [GPO17] we have developed a case study on area coverage for

taxi drivers in the territory of Hong Kong, but the model does not necessarily describe

the taxi drivers’ behavior in a realistic manner. The concept of migration equilibrium
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of Anna Nagurney has been applied in ecology to study migration patterns of tuna

fish [MKM16]. We believe that the Wardrop equilibrium with inertia could find appli-

cation in planning of technological systems used by a large number of people. In the

terminology of Chapter 7, modifying the perceived utilities (through economic incen-

tives) or the inertial coefficients (through fees or tolls), or even including a new action in

the game (through enhancement of the current infrastructure), would result in the old

equilibrium configuration to not be an equilibrium anymore. Since the new configuration

will in general possess a plethora of equilibria, the agent dynamics of Algorithm 7 could

be used to predict to which specific equilibrium the agents will move to.

More general concept of equilibrium with inertia

The presence of the inertia coefficients introduced in Chapter 7 for non-atomic agents

could be incorporated in the standard Definitions 9 and 10 of Nash and Wardrop equi-

librium expressed for M atomic agents. A set of strategies xN = [x1
N; . . . ;xMN ] ∈ RMn is

then an inertial Nash equilibrium if for all i ∈ {1, . . . , n} and xi ∈ X i

J i(xiN, σ(xN)) ≤ J i
(
xi, 1

M
xi + 1

M

∑
j 6=i x

j
N

)
+ f i(xiN, x

i), (8.1)

where f i represents the burden for agent i of switching from action xiN to action xi. In

a more general version, one could even let f i depend also on σ(x). The analogous of

condition (8.1) defines the Wardrop equilibrium with inertia for atomic agents.

A key step in the development of the results of Chapters 3-5 is Proposition 14, which

allows to reformulate the Nash equilibrium as a variational inequality. Condition (8.1)

cannot be directly reformulated as a VI, but perhaps one could exploit one of the many

generalization of the concept of variational inequality, see [Noo98].
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