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Abstract.  13 

 As a matter of policy, minimizing human health and environmental risks associated with pesticide use is a major 14 
challenge but necessary for improving agricultural sustainability. Efficient and effective policies that encourage 15 
the use of less risky pesticides, such as pesticide taxes, necessitate a precise and realistic quantification of 16 
potential adverse effects. Various indicators are currently utilized in policies and they focus mainly on a purely 17 
quantitative dimension of the pesticides used, which can lead potentially to unfavorable outcomes of pesticide 18 
policies. A unique dataset applied to pesticide use by Swiss farmers in winter wheat and potato production, 19 
demonstrates that on average the two most important quantitative indicators show a significant correlation with 20 
pesticide risks as expressed by the Danish Load Indicator. However, they have almost no explanatory power for 21 
extreme risks (e.g. most intensive use patterns for pesticides with unfavorable toxicity profiles). Results remain 22 
stable over a range of aggregation levels, from application- to farm-level indicators of pesticide use. These 23 
findings render the commonly used, quantitative indicators ineffective to reduce potential environmental and 24 
human health risks of pesticides and, in the worst case, lead to misinformed market-based pesticide policies 25 
consequential to National Action Plans. 26 

Keywords: Pesticides, Pesticide risks, Pesticide policies, Pesticide indicators 27 

1. Introduction 28 

Current agricultural production systems often rely on an intensive use of pesticides and other 29 

agrochemical inputs. Pesticides are tightly regulated in many countries, subject to rigorous testing 30 

and highly conservative risk assessment paradigms. However, the use of pesticides can still present 31 

potential risks to human and environmental health (Strange and Scott 2005; Damalas 2009; Beketov 32 

et al. 2013; Malaj et al. 2014; Stehle and Schulz 2015). The introduction of effective policies to reduce 33 

adverse effects of pesticides, while maintaining production levels, is a major challenge on the way to 34 

achieving improved sustainability in agriculture (Tilman et al. 2002). In the European Union, the US 35 

and China, public policies have been established to address pesticide risks and stricter pesticide 36 

policies are also being implemented in several other countries (Lefebvre et al. 2015; Pimentel and 37 

Burgess 2014; Osteen and Fernandez‐Cornejo 2013; Zhang and Wen 2008; Sun et al. 2012, MAAF 38 

2015, Bundesrat 2017, Böcker et al., 2018). However, the effectiveness of current policies has been 39 

questioned recently (e.g. Hossard et al. 2017, Finger, 2018). The focus of this research was to 40 

evaluate pesticide use/risk indicators utilized for the purposes of informing market-based pesticide 41 

policy and high-level reduction targets related to National Action Plans.  42 

Setting up policies which promote a reduction in the impacts of pesticides on the environment and 43 

human health is far from straightforward. Pesticides are highly heterogeneous with respect to 44 

properties, application regimes and their potential impact on the environment and human health. 45 

For instance, in the EU alone, a range of 494 active substances for pesticides, with potentially 46 

different adverse effects, are currently authorized (EU 2017). The choice of suitable pesticide 47 

indicators to quantify pesticide use is therefore essential to define efficient and effective policy 48 

measures. 49 

Currently, implemented indicators differ significantly. For example, there are simple, purely 50 

quantitative indicators like the Quantity of Active Ingredients (QA) and the Treatment Frequency 51 

Index (TFI), which abstract from inherent pesticide properties, to very detailed, risk-adjusted 52 

indicators such as the Load Index (LI). QA is a simple measure of kilograms of pesticides used per 53 

area. TFI measures the intensity of applications, i.e. quantity applied per unit of cropped area in 54 
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relation to the recommended dosage (Coll and Wajnberg 2017). The LI indicator accounts for 55 

application intensity as well as a broad range of potential environmental and health risks for each 56 

pesticide (Miljøministeriet 2012; Kudsk et al. 2018). The indicator chosen differs across countries and 57 

institutions. For example, France uses the QA and TFI indicators to set targets for pesticide policies 58 

(MAA 2017). Furthermore, QA and TFI are applied as key indicators for pesticide use statistics by 59 

institutions worldwide (Eurostat 2017; USDA 2017; JKI 2017; MAA 2017) and are standard indicators 60 

for studies on the economics of pesticide use (Ghimire and Woodward 2013; Hossard et al. 2014; 61 

Gaba et al. 2016; Perry et al. 2016; Lechenet et al. 2017). The Danish Load Index (LI) is currently the 62 

only risk-based indicator implemented in European pesticide policies which holistically assesses 63 

potential environmental and health risks of pesticides on a product level. As with the purely 64 

quantitative QA and TFI indicators, this allows pesticide risks to be upscaled along a gradient of 65 

temporal and spatial resolution (Kudsk et al., 2018). Since 2013, it has been used in Denmark for the 66 

assessment of policy targets and at the same time as the basis for pesticide taxation (Böcker and 67 

Finger 2016; Kudsk et al. 2018).  68 

However, it is hypothesized that large quantities of pesticides, as indicated by high QA or TFI 69 

indicator values, may not inherently mean higher risks for human health and the environment (e.g. 70 

high LI indicator values). For example, Kniss (2017) recently showed that herbicide use trends for 71 

major crops in the US were reversed when the assessment was switched from quantity-based to 72 

toxicity-based indicators. More importantly, the use of quantity-based indicators compared to risk-73 

adjusted indicators may lead to major shifts in policy targets if indicators rank pesticide use 74 

inconsistently. These policy targets include, for example, the reduction of temporal or spatial 75 

“hotspots” and extreme application regimes (over a given cropping season), as extreme applications 76 

are major contributors to the negative effects of pesticides on human health (Larsen et al. 2017) and 77 

the environment (Releya and Hovermann 2006; Gordon et al. 2012; Bundschuh et al. 2013, Topping 78 

and Elmeros 2016). Along these lines, Larsen et al. (2017) conclude that there is a need for the 79 

implementation of pesticide policies that tackle extreme applications. Market-based policy measures 80 

such as specific taxes, quotas or subsidies can complement regulatory frameworks and admission 81 

procedures in achieving this target (Baumol and Oates, 1988). However, a misspecification of policy 82 

targets may result in biased policy incentives and finally, adverse policy outcomes. Depending on the 83 

degree of inconsistencies between indicators, indicator choice may therefore have severe 84 

implications for policy outcomes. Although a well-informed policy discussion is of vital importance, 85 

there is a lack of studies which quantify the extent of inconsistencies between pesticide use 86 

indicators in a common, robust framework. 87 

This research gap was addressed by investigating the consistency of pesticide use rankings between 88 

the purely quantitative, but widely used QA and TFI indicators and the LI indicator. The focus goes 89 

beyond average consistency by analyzing consistency for “extreme” application regimes as well as 90 

temporal and spatial “hotspots”. Throughout the article, we refer to extreme applications as the 91 

most intensive use patterns and highest risk scenarios and profiles compared to all other 92 

applications, i.e. the upper tails of the observed distributions of pesticide applications. In the 93 

analysis, across-indicator consistency was tested using a unique panel dataset of pesticide 94 

applications in real farming conditions in Switzerland for two major crops, potatoes and winter 95 

wheat. These crops were chosen because potatoes are characterized by the highest average 96 

pesticide use and winter wheat is the most abundant crop in European (and Swiss) arable crop 97 

production. Pesticide application patterns of farmers, including choices made regarding the products 98 
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used, their concentration, spatial distribution of application, and their timing, are strongly 99 

heterogeneous across farmers. A comparison of indicators on “real” application data was therefore 100 

necessary to derive meaningful policy recommendations, especially regarding risks from the most 101 

intensive pesticide use patterns. The analysis started off by comparing the structure of the indicators. 102 

Then correlation coefficients were used to test the consistency of indicator rankings over the whole 103 

distribution. Secondly, copulas were used to analyze tail dependence between pesticide use 104 

indicators. This meant focus could be placed on across-indicator consistency for extremes, i.e. 105 

observations in the tails of the distribution. The detailed dataset allowed the robustness of results to 106 

be assessed on different aggregation levels and for different pesticide types (i.e. all pesticides, 107 

herbicides and fungicides). 108 

Current pesticide policies aim to reduce negative environmental and health effects of pesticides. 109 

Market-based policy measures achieve this target by incentivizing a change in the farmers’ 110 

application behavior. The objective of this paper is to show that the choice of underlying pesticide 111 

indicators can crucially shift policy targets and incentives, and in the worst-case lead to adverse 112 

outcomes of pesticide policies. The analysis emphasizes that the comparison of indicators should not 113 

merely be based on their average fit. In fact, quantity-based indicators are found to be unsuitable to 114 

proxy high-risk situations.  115 

2. Background 116 

2.1. Current pesticide policies 117 

Since 2012, European Union member states have to draw up National Action Plans (NAPs) for a 118 

“Sustainable use of pesticides” with the goal of reducing “risks and impacts of pesticide use on 119 

human health and the environment” (Directive 2009/128/EC). The revision of existing, and 120 

implementation of new pesticide policies is an ongoing process. In the EU, Directive 2009/128/EC 121 

demands that EU member states review NAPs every five years and the EU commission has recently 122 

announced a “REFIT” evaluation of all EU pesticide legislation (EC 2015). Furthermore, adverse 123 

effects from pesticide use are at the top of the policy agenda in other countries like Switzerland, the 124 

US or China (Bundesrat 2017, Pimentel and Burgess 2014; Osteen and Fernandez‐Cornejo 2013; 125 

Zhang and Wen 2008; Sun et al. 2012). Policy measures within the framework of the NAPs include 126 

training and extension services, the promotion of Integrated Pest Management, inspection and 127 

renewal of equipment, information and awareness raising, as well as market-based policy measures 128 

like pesticide taxes (Böcker and Finger 2016). Market-based policies complement existing regulatory 129 

frameworks and pesticide admission procedures (e.g. see regulations EC No. 1107/2009 and EC No. 130 

396/2005 in the EU and the Federal Insecticide, Fungicide and Rodenticide Act and the Federal Food, 131 

Drug and Cosmetic Act in the USA). Their mix provides an “optimal regulatory strategy” (Skevas et al. 132 

2013, p.97) to reduce externalities from pesticide use on the environment and human health. The 133 

analysis in this article focuses on the incentives of market-based pesticide policies and the definition 134 

of pesticide reduction targets.  See e.g. Storck et al. (2017), Coll and Wajnberg (2017) and EC SAM 135 

(2018) for a discussion of current pesticide regulations and admission procedures.  136 

2.2. Utilized pesticide indicators 137 

The design of pesticide policies, i.e. setting and reviewing targets and defining pesticide indicators, is 138 

complex due to the heterogeneity of available pesticide products, production environments and 139 

farming practices. Worldwide, many countries have reported national targets for the reduction of 140 
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impacts from pesticide use. In Europe, the majority of EU member states as well as Switzerland have 141 

defined risk reduction targets - yet, nine EU countries also report pesticide use reduction targets. 142 

However, a clear definition of measurable targets is less common. For example, only five EU member 143 

states have so far set “high level, measurable reduction targets” according to EU DGHFS (2017). Out 144 

of these five member states, four have defined risk reduction targets (Belgium, Denmark, Greece and 145 

Germany) and one has defined a use reduction target (France). Risk indicators utilized in these 146 

member states  include the POCER indicator in Belgium (Vercruysse and Steurbaut 2002, Claeys et al. 147 

2005, Houbraken et al. 2016), the Load Indicator in Denmark (Kudsk et al. 2018), an environmental 148 

and human risk assessment in Greece (Tsaboula et al. 2016) and the SYNOPS indicator in Germany 149 

(Gutsche and Rossberg 1997, Strassemeyer et al. 2017). A detailed spatial mapping of pesticide use 150 

and associated risks, using pesticide reports, is for example already possible in California based on 151 

the CalPip database (http://calpip.cdpr.ca.gov/) or in Denmark (Kudsk et al. 2018). An extensive 152 

discussion of existing pesticide risk indicators does not lie within the scope of this article, but we 153 

refer to Labite et al. (2011), OECD (2016) and Yang et al. (2017) for an overview and a discussion. The 154 

analysis in this article is restricted to three indicators. More specifically, the widely used, quantity-155 

based indicators QA and TFI are compared to the Danish, risk-based LI indicator. QA, TFI and LI are 156 

chosen because they are i) currently implemented in the framework of the NAP; ii) allow pesticide 157 

use to be scaled to different aggregation levels (product, application, farm, landscape); and iii) can be 158 

computed based on pesticide administration data. They are therefore policy-relevant, can be used as 159 

a foundation for market-based policy instruments (such as taxes) and can be easily implemented in 160 

other countries. Note that easy scalability and low data requirements are accompanied by the 161 

drawback that the indicators utilized  do not consider the application context (e.g. timing, weather 162 

conditions, soil, and distance to bodies of water) and different risk components are aggregated (in 163 

the case of the LI indicator).  164 

3. Methodology and Data 165 

3.1 Indicator calculation 166 

The pesticide use records are based on observations of single applications from various farmers. 167 

Farmers may grow the same crop on several fields of varying size. The observations include a wide 168 

range of different pesticides and span across different years (see Data, Section 3.5 below for a 169 

detailed overview). Thus, the data exhibit a high level of spatial and temporal heterogeneity of 170 

pesticide use. This also implies that pesticide use indicators cannot be simply transformed into each 171 

other without knowledge of field level information. Figure 1 gives an overview of the procedure used 172 

for computation of the QA, TFI and LI indicators. 173 
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 174 

Fig. 1. Intermediate steps in the computation of the QA, TFI and LI indicators 175 

The pesticide products applied (i.e. A, B and C) may contain one or several active ingredients in 176 

different concentrations. It is possible that some products contain similar, or identical active 177 

ingredients. Products are applied in different quantities and on different fields (or parts of fields). The 178 

computation procedure for the QA, TFI and LI indicators is described in detail below. All indicators 179 

are computed on different aggregation levels. 180 

Firstly, all applications were standardized to obtain per ha measures of pesticide use per product. 181 

(1) 𝑃𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒 𝑈𝑠𝑒𝑖𝑗𝑘  𝑝𝑒𝑟 ℎ𝑎 =   ∑ 𝑃𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒 𝑈𝑠𝑒𝑖𝑗𝑘𝑙𝑖𝑛 𝑘𝑔 ∗
𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑖𝑛 ℎ𝑎

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑖𝑒𝑙𝑑 𝑖𝑛 ℎ𝑎
𝑛
𝑙=1    182 
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where, for a given crop and year (indicators omitted for clarity), i denotes the farm, j the field, k 183 

the pesticide product and 𝑙 a single application of the product. 184 

The Quantity of Active Ingredient (QA) indicator is a simple indicator of the quantity of active 185 

substances used per ha (Eurostat 2017; USDA 2017). It was first computed on a product level: 186 

(2) 𝑄𝐴𝑖𝑗𝑘 =  𝑃𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒 𝑈𝑠𝑒𝑖𝑗𝑘 ∗ 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡𝑘  187 

where, for a given crop and year, i denotes the farm, j the field and k the pesticide product. 188 

Field-level pesticide use was computed in a second step. Finally, farm-level pesticide use was 189 

computed as the area weighed mean over all fields per farm, crop and year. 190 

(3) 𝑄𝐴𝑖𝑗 =  ∑ 𝑄𝐴𝑖𝑗𝑘
𝑚
𝑘=1   191 

(4) 𝑄𝐴𝑖 =  ∑  𝑄𝐴𝑖𝑗 ∗
𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑗

𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑖

𝑛
𝑗=1  192 

where, for a given crop and year, i denotes the farm, j the field, k the pesticide product and n the 193 

number of fields per farmer, crop and year. 194 

The Treatment Frequency Index (TFI) indicator is an indicator of pesticide use intensity (Coll and 195 

Wajnberg 2017). It was first computed on a product level: 196 

(5) 𝑇𝐹𝐼𝑖𝑗𝑘 =  
𝑃𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒 𝑈𝑠𝑒𝑖𝑗𝑘 

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) 𝑑𝑜𝑠𝑎𝑔𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑘 𝑝𝑒𝑟 ℎ𝑎 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑐𝑢𝑙𝑡𝑢𝑟𝑒
  197 

where, for a given crop and year, i denotes the farm, j the field and k the pesticide product. If a 198 

range of possible dosages was indicated the maximum dosage was taken, respectively. 199 

Field-level pesticide use was computed in a second step. Finally, farm-level pesticide use was 200 

computed as the weighed mean over all fields per farmer, crop and year. 201 

(6) 𝑇𝐹𝐼𝑖𝑗 =  ∑ 𝑇𝐹𝐼𝑖𝑗𝑘
𝑚
𝑘=1   202 

(7) 𝑇𝐹𝐼𝑖 =  ∑ 𝑇𝐹𝐼𝑖𝑗 ∗
𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑗

𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑖

𝑛
𝑗=1  203 

where, for a given crop and year, i denotes the farm, j the field, k the pesticide product and n the 204 

number of fields per farmer, crop and year. 205 

The Danish Load Index (LI) indicator (Miljøministeriet 2012; Kudsk et al. 2018) is an indicator which 206 

takes into account health, fate and toxicity properties of pesticides. It was first computed on a 207 

product level: 208 

(8) 𝐿𝐼𝑖𝑗𝑘 =  
𝑃𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒 𝑈𝑠𝑒𝑖𝑗𝑘 

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) 𝑑𝑜𝑠𝑎𝑔𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑘 𝑝𝑒𝑟 ℎ𝑎 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑐𝑢𝑙𝑡𝑢𝑟𝑒
∗ 𝐿𝑜𝑎𝑑𝑘   209 

where, for a given crop and year, i denotes the farm, j the field and k the pesticide product. Loadk 210 

denotes the potential, product specific environmental and health impacts of product k. More 211 

precisely, Load is the sum of the Human Health Load, Environmental Fate Load and 212 

Environmental Toxicity Load. The Human Health Load is based on Hazard and Precautionary 213 

Statements; the Environmental Fate Load on half-time in soil, half-time in water, bio-214 

concentration factors and the SCI-GROW (Screening Concentration in Ground Water) index; the 215 

Environmental Toxicity Load on long- term toxicity for fish, daphnia and earthworms and short- 216 
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term toxicity for birds, mammals, daphnia, algae, aquatic plants, earthworms and bees (see e.g. 217 

Kudks et al., 2018).  Human Health Load, Environmental Fate Load and Environmental Toxicity 218 

Load was first computed separately. More specifically, each product was compared to all other 219 

products for each sub-indicator. The relative scores obtained for all sub-indicators were then 220 

summed up in the respective categories Human Health, Environmental Fate and Environmental 221 

Toxicity. Thus, a single value per product was obtained for each of the three Load categories. 222 

Load values in the three categories were finally added up to a total Load, using equal weights for 223 

each category (sub-indicator scores were weighted according to the scheme in Miljøministeriet 224 

2012).  225 

Field-level pesticide use was computed in a second step. Finally, farm-level LI of pesticide use was 226 

computed as the weighed mean over all fields per farmer, crop and year: 227 

(9) 𝐿𝐼𝑖𝑗 =  ∑ 𝐿𝐼𝑖𝑗𝑘
𝑚
𝑘=1   228 

(10) 𝐿𝐼𝑖 =  ∑ 𝐿𝐼𝑖𝑗 ∗
𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑗

𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑖

𝑛
𝑗=1  229 

where, for a given crop and year, i denotes the farm, j the field, k the pesticide product and n the 230 

number of fields per farmer, crop and year. 231 

3.2 Confidence intervals and correlation coefficients  232 

Confidence intervals for the respective moments were computed to assess the statistical significance 233 

of differences in the distribution moments. It was then checked to see if confidence intervals overlap. 234 

If confidence intervals do not overlap, the hypotheses of significantly different parameters can be 235 

accepted (given the chosen error rate). In this way it can, for example, be shown that two 236 

distributions have significantly different means, variances or skewness. Payton et al. (2003) show 237 

that 85% of the confidence intervals should be used to check for overlaps, given a maximum error 238 

rate of 5% to falsely reject the null hypothesis. To compute confidence intervals, 10 000 non-239 

parametric bootstrap replications were drawn from the empirical distribution of the data, from 240 

which a bootstrap cumulative distribution function and confidence intervals were then calculated 241 

(e.g. Davison and Hinkley 1997). 242 

Correlation coefficients were computed first to assess the dependence between indicators. As 243 

dependence between indicators was highly non-linear, a measure of ordinal dependence was 244 

chosen. Kendall’s tau was selected due to its direct connection to the concept of copulas (see Section 245 

3.3) and its better efficiency properties and robustness compared to Spearman’s rho (Croux and 246 

Dehon 2010). Given two sets of observations of the joint random variables 𝑋 and 𝑌, Kendall’s tau is 247 

composed of the difference between concordant and disconcordant pairs of values 𝑥𝑖 and 𝑦𝑖  , i.e. 248 

pairs where rankings “agree” or “disagree”. See Croux and Dehon (2010) for a formal definition. 249 

3.3 Copulas theoretical background 250 

(Bivariate) copulas are functions that allow (two) distribution functions to be “coupled” to a 251 

multivariate distribution function. Formally, consider the two (continuous) distribution functions 252 

𝐹(𝑥) = 𝑃[𝑋 ≤ 𝑥] and 𝐺(𝑦) = 𝑃[𝑌 ≤ 𝑦] of the random variables 𝑋 and 𝑌. Then the joint distribution 253 

function 𝐻(𝑥, 𝑦) can be expressed by the copula function 𝐶(. ) as follows:  254 

(11)  𝐻(𝑥, 𝑦) = 𝐶[𝐹(𝑥), 𝐺(𝑦)] 255 
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where the copula function 𝐶(. ) captures the dependence structure between the two distribution 256 

functions. Empirical applications of the copula concept can be found in various disciplines such as 257 

finance and insurance, as well as in applied agriculture. Copulas can also be used to model joint 258 

occurrence of unfavorable weather conditions for agricultural production. These models then serve 259 

to improve insurances against weather shocks, where the tail of the loss distribution is particularly 260 

relevant (Xu et al. 2010, Okhrin et al. 2013). Copulas are linked directly to concordant measures of 261 

dependence, such as Kendall’s tau (Nelsen 2006). Indeed, such measures of dependence are 262 

functions of the copula value (see Nelsen (2006) for an overview). This can be illustrated for Kendall’s 263 

tau as follows (where 𝐹(𝑥) = 𝑢 and 𝐺(𝑦) = 𝑣): 264 

(12)  𝜏 = 4 ∗ 𝐸[𝐶(𝑢, 𝑣)] − 1  265 

The upper and lower tail dependence coefficients describe dependence in the upper and lower tails 266 

of bivariate distributions. Given the copula function defined in equation (11), the upper and lower 267 

tail dependence coefficients (TDCs), 𝜆𝑈 and 𝜆𝐿 , are defined as: 268 

(13)   𝜆𝑈 = 2 −  lim
𝑡→1

1−𝐶(𝑡,𝑡)

1−𝑡
  and 269 

(14)   𝜆𝐿 =  lim
𝑡→𝑜

𝐶(𝑡,𝑡)

𝑡
   270 

where 𝜆𝑈 and 𝜆𝐿 lie in the range of [0,1] and  𝑡 denotes the 100𝑡-th percentile of 𝐹 and 𝐺, 271 

respectively. Therefore, TDCs depend solely on the copula of the (continuous) random variables and 272 

“theoretical” TDCs can be computed directly from copula parameters (for an overview see Joe (1997) 273 

and Nelsen (2006)). The values obtained for TDCs can be interpreted in such a way that larger values 274 

indicate a higher probability of joint extremes in the respective upper or lower tail than lower values 275 

of the respective TDC. A TDC of zero implies asymptotic (tail) independence. In the context of this 276 

article, a larger “upper TDC” implied a higher probability of jointly capturing major application events 277 

with the two indicators compared, while a smaller “upper TDC” signified that indicator choice had a 278 

large influence on the analysis of pesticide applications, as major application events were not 279 

captured jointly. Differences in upper and lower tail dependence further indicated an asymmetric 280 

dependence structure. 281 

3.4 Copula selection and estimation procedure  282 

The following estimation procedure and robustness checks were applied in this article for the 283 

estimation of copulas and TDCs1:  284 

 (i) Test independence of indicator pairs analytically with independence tests. Before the dependence 285 

structure of indicator pairs was analyzed, independence of all indicator pairs was tested analytically 286 

with a bivariate, asymptotic independence test based on Kendall´s tau (Genest and Favre 2007). 287 

Independence was rejected for all indicator pairs, which led to the next step, the estimation of 288 

copulas and TDCs as indicated above. 289 

                                                           
1 The described estimation and testing procedure was implemented using the R statistical software (R Core 
Team 2013); especially the VineCopula (Schepsmeier et al. 2017), CopBasic (Asquith 2017) and gofCopula 
(Okhrin et al. 2016) packages. All R-codes used for the implementation are documented in the online Appendix 
to provide full transparency of the procedure. 
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 ii) Estimate copula parameters and TDCs for a wide range of copula families with a semi-parametric 290 

estimation procedure with empirical margins. Given the sample size, Frahm et al. (2005) find semi-291 

parametric estimation procedures perform best for the estimation of TDCs. The semi-parametric 292 

estimation consisted of two steps: firstly, parametric copula families with empirical margins were 293 

fitted to the data with a maximum likelihood estimation (Joe 1997). Bivariate Gaussian-, t-, 294 

Archimedean- and two parameter Archimedean copulas were considered, therefore covering a wide 295 

range of possible dependence structures between indicator pairs and all of the most important and 296 

most used copula classes (compare Joe (1997) and Nelsen (2006)). More precisely, 39 different 297 

parametric copula types were fitted to the data with the VineCopula package in R. See Schnepsmeier 298 

et al. (2017) for a full list of these copula types. Secondly, theoretical TDCs were computed on the 299 

basis of the copula parameters estimated in step one.  300 

 iii) Choose the three copula families which fit best overall indicator pairs. It was then analytically and 301 

graphically evaluated which of the copula families computed in step ii) provided the best fit for the 302 

data at hand. Firstly, all the copula families tested were ranked for each indicator pair according to 303 

Akaike Information criteria (AIC), Bayesian Information Criteria (BIC) and maximum likelihood values. 304 

Copula fit was likewise checked graphically with density plots in which the observed data were 305 

plotted against 5000 simulated observations (based on the copula parameters estimated in step 306 

ii)).The three copula families with the best fit for each crop were selected to provide a broad and 307 

robust overview. 308 

iv) Identify copula family with best goodness-of-fit. The copula family with best goodness-of-fit 309 

compared to all other copula families considered in step ii) was identified out of the three copula 310 

families selected in step iii). Goodness-of-fit was tested with Vuong and Clarke tests (Vuong 1989, 311 

Clarke 2007), and the copula family with the highest score among all copula families was chosen. In 312 

addition, Akaike and Schwarz corrections (Vuong 1989, Clarke 2007) were applied for the number of 313 

estimated parameters and then compared to the original results as a robustness check. 314 

v) Check robustness of obtained copula results with a parametric bootstrap test and the fully non-315 

parametric stable tail dependence function approach. Firstly, to support the copula selection and the 316 

findings on tail dependence obtained with the semi-parametric approach described in steps ii) - iv), a 317 

parametric bootstrap test for copula goodness-of-fit (Genest et al. 2006) was performed, based on 318 

Kendall’s process (using Cramer-von-Mises test statistics (Anderson, 1962)). Finally, a second, fully 319 

non-parametric robustness check was carried out using the stable tail dependence function (Kiriliouk 320 

et al. 2016), which is an approach for inference on tail dependence.  321 

3.5 Data description and validity checks 322 

The dataset used here was provided by the Swiss Central Evaluation of Agri-Environmental Indicators 323 

(CE-AEI). The data is obtained from Agroscope, the Swiss Federal center of excellence for agricultural 324 

research, that supervises the collection of the here used data. Farmers participate voluntarily in the 325 

data collection scheme and receive compensations for participation (for detailed information on 326 

payment schemes and confidentiality agreements see www.agrarmonitoring.ch). Data collection is 327 

handled by farmers with the AGRO-TECH software, which is also used to document compliance with 328 

regulations and direct payment schemes, and therefore integrated in daily working routines. Primary 329 

data were collected and anonymized by intermediaries to guarantee anonymity.  330 
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The dataset used for the analysis is unique in its level of detailed information on farmers’ 331 

management practices. It consisted of an unbalanced panel (i.e. not all entities of farmers appear in 332 

the sample in every year) of non-organically producing Swiss farmers reporting on their input use 333 

(e.g. fertilizer, pesticides, machinery) from 2009 to 2013. While the absolute number of observations 334 

on a farm-level was comparatively small (in total 462 farm-level observations), the dataset consisted 335 

of around 7500 and 6000 field-level management measures reported with daily resolution for winter 336 

wheat and potatoes, respectively. Detailed information on the properties of the pesticides used was 337 

available on a product level for each pesticide application. This allowed the robustness of results 338 

from the analysis to be tested over different years, during single years, over different aggregation 339 

levels and for the most important subgroups of pesticides (herbicides and fungicides). Detailed tables 340 

indicating the number of farmers and fields per crop and year and the types of pesticides used per 341 

field are documented in the Appendix (Tables A1 and A2). The analysis considered a wide range of 342 

application regimes, including 118 different pesticides for potatoes and 131 different pesticides for 343 

winter wheat. 344 

As data were self-reported by farmers, double entries and typos might appear in the data set. These 345 

entries had to be identified meticulously and removed before the dataset could be used. Therefore, a 346 

transparent procedure was set up to remove such observations. The procedure is summarized in the 347 

Appendix, Section B1. To calculate pesticide indicators, CE-AEI data were merged on a product level 348 

with information on fate, toxicity and formulation of products from the Pesticide Properties 349 

Database (Lewis et al. 2016), which collects publically available information on pesticides (e.g. from 350 

pesticide admission). Information on recommended standard application dosages was obtained from 351 

the Swiss pesticide register (e.g. BLW 2013). A detailed description of the databases used and data 352 

sources, as well as their linkages, can be found in Figure A1 in the Appendix.  353 

Sample farms differed with regard to farm types, climate conditions, topographic and geographic 354 

regions: thirty-six percent of sample observations consisted of purely crop producing farms, whereas 355 

sixty-four percent of the farms kept at least one animal unit per ha. Seventy-five percent of 356 

observations were located in valleys or hilly regions and twenty-five percent in mountain regions. 357 

The altitude of farm locations extended from 360m to 950m above sea level. Farm locations were 358 

distributed over the most important crop production regions of Switzerland (see Figure 2). 359 
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 360 

Figure 2. Location of sample farms in Switzerland 361 

Source: Own depiction. Shapefiles from Bundesamt für Statistik (BFS), GEOSTAT (2017). Points show farm 362 
locations per municipality. 363 

Spycher et al. (2013) find that average pesticide use in the here used database is well in line with 364 

national pesticide use statistics for Switzerland, which also addresses general concerns regarding 365 

self-reporting and self-selection of farmers. They state that the dataset covers field crops, i.e. winter 366 

wheat and potatoes and the most common pesticide types, i.e. herbicides and fungicides quite well. 367 

However, Spycher et al. (2013) find a slightly lower average pesticide use than in national sales 368 

statistics, as commonly reported for similar datasets (e.g. Krujine et al. 2012). Furthermore, a good fit 369 

of average sample statistics and population averages was found (see Appendix, Section B2). Any 370 

concerns regarding biased self-reporting of extreme pesticide use were also addressed by analyzing 371 

the compliance of Swiss farmers with pesticide regulations, i.e. pesticide overdosing (see Appendix, 372 

Section B2). Results suggest that farmers have reported actual management decisions (i.e. extreme 373 

applications), and were not concerned about anonymity issues.  374 

Possible concerns about the unbalanced structure of the sample and pooling of years were 375 

addressed by testing for significant differences in skewness of pesticide use distribution across single 376 

years (Tables A3 and A4 in the Appendix). In general, none of the five years was found to differ  377 

significantly  in skewness from all other years (at the 5% significance level), except for LI for winter 378 

wheat in 2010. As 2010 was the year with the highest number of participants with winter wheat, this 379 

could indicate that skewness of the LI indicator in winter wheat was biased downwards by pooling. 380 
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The opposite was observed for the QA indicator in winter wheat, where the skewness was found to 381 

be significantly smaller in 2011 and 2012, compared to 2009 and 2010. 382 

4. Results 383 

4.1 Pesticide use trends shift by indicator 384 

Yearly averages of QA, TFI and LI indicators for winter wheat and potato production in Switzerland 385 

(Figure A2, Appendix) showed that pesticide use trends reversed when using different indicators. 386 

More specifically, the TFI and LI indicators pointed towards a positive trend in pesticide use, while 387 

the QA indicator pointed towards a negative trend for the period (2009-2013) under consideration.  388 

Data for all years were then pooled and focus was placed on observations at farm and crop levels, as 389 

the crucial pest management decisions are generally taken at the farm-level (Waterfield and 390 

Zilberman 2012). Histograms of pesticide use by indicator and crop are shown in Figures A3 and A4 in 391 

the Appendix. Results showed that QA and LI indicators had a significantly larger positive skewness 392 

than the TFI indicator (Tables A5 and A6, Appendix), suggesting that QA and LI were more likely to 393 

indicate extreme applications than TFI. Median, 90% and 99% quantiles of indicators were likewise 394 

compared, leading to the same conclusions (Tables A7 and A8, Appendix). 395 

4.2 Analysis of the dependence structure 396 

Significant, positive correlations were found between the QA and LI (in potatoes n=192, Kendall’s 397 

tau= 0.27 P< 0.01; in winter wheat n=270, Kendall’s tau= 0.48, P<0.01) and between TFI and LI (in 398 

potatoes n=192, Kendall’s tau= 0.41, P< 0.01 and in winter wheat n=270, Kendall’s tau= 0.59, P< 399 

0.01).  Correlation for TFI and LI indicators was higher than for QA and LI indicators, and higher for 400 

winter wheat than for potatoes (Table 1). Copulas and tail dependence coefficients (TDCs) were then 401 

used to reveal possible asymmetric dependence structures and provide information on the degree of 402 

dependence in the tails of the distributions, i.e. between extreme observations. Firstly, the best 403 

fitting copulas for the indicator pairs (see Methods, Section 3.4) were identified. Then copula density 404 

was plotted. Figure 3 visualizes how the dependence structure shown in the scatterplot (Fig. 3a) is 405 

captured by the estimated copula function (Fig. 3b). The figure focuses on the comparison of QA and 406 

LI indicators for farm-level pesticide use in potatoes and shows a relatively high dependence 407 

between the lower tails of QA and LI and almost no dependence in the upper tails. Respective figures 408 

for the LI and TFI indicators, as well as farm-level pesticide use in winter wheat can be found in the 409 

Appendix (Figures A5, A6 and A7).  410 
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 411 

Fig. 3. Copulas reveal differences in the dependence structure of indicators between upper and 412 

lower tails  413 

The scatterplot in Figure 3a) shows the relationship between QA and LI values for farm-level pesticide use in 414 
potatoes. Pesticide use in terms of the QA and LI indicators is plotted on the X- and Y- axis, respectively. 415 
Extremely high values of the QA and LI indicator, which do not correspond with extremely high values of the 416 
other indicator, are thus located in the bottom right and top left of the plot respectively. Figure 3b) shows a 417 
contour plot of the fitted copula model for the same observations and indicators (Survival Gumbel copula, see 418 
Methods, Section 2.4 for selection and estimation procedure). X- and Y- axis in the contour plot show 419 
distribution functions for QA and LI values, respectively (see Methods, Section 3.3). The Z-Axis (‘Copula 420 
Density’) shows the probability density of the fitted Survival Gumbel copula. The copula captures the 421 
dependence structure between the distributions of the two indicators, not only on average, but over the whole 422 
distributions. The plot shows a high copula density for joint low values of QA and LI indicator (bottom left 423 
corner) and a low density of the copula for jointly high values of the QA and LI indicator (top right corner). 424 

Upper and lower TDCs of the estimated copula models were then computed to quantify the degree 425 

of dependence in the tails of the distributions. TDCs are a measure for dependence in the upper and 426 

lower tails of distributions and lie in the range from 0 to 1, where larger values indicate a higher 427 

probability of joint extremes. Table 1 shows that all copulas reveal a clearly asymmetric dependence 428 

structure between all indicator pairs. While they show a moderate to strong dependence in the 429 

lower tails, they exhibit very weak to no dependence in the upper tails. Thus, the analysis suggested 430 

that high quantities do not necessarily correspond to high risks. Results were found to be robust over 431 

the three best fitting copula types (see Methods, Section 3.4 for selection procedure) and copula 432 

goodness-of-fit was confirmed (see Appendix, Section B3 on robustness checks for copulas). TDCs 433 

were larger between TFI and LI than between QA and LI, in line with results from the correlation 434 

coefficients. Similarly, a stronger dependence was observed for winter wheat than for potatoes. In 435 

addition, the robustness of the results was checked further by performing the same analysis again 436 

separately for herbicides and fungicides. These are the most relevant pesticide types in the sample 437 

and in European agriculture in general (e.g. Eurostat, 2017). Results were robust for both indicator 438 

pairs over all analyzed crops, pesticide types and copula families, leading to a total of 36 separately 439 

estimated copulas and TDCs (see Appendix Table A9).  440 

Table 1. Significant correlation of quantitative indicators and farm-level pesticide risks – but very 441 

low explanatory power for extreme risks 442 
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 443 

Level of dependence between farm-level indicators of pesticide use in potato (n=190) and winter wheat 444 

(n=270) production. QA, TFI and LI denote the Quantity of Active Ingredient, Treatment Frequency Index and 445 

Load Index Indicators, respectively. LTDC and UTDC are in the range of [0,1] and indicate lower and upper tail 446 

dependence coefficients, i.e. the dependence for extremely low and extremely high observations between two 447 

indicator distributions, respectively. The three copula families analyzed were chosen per crop for the farm-level 448 

observations, according to the six-step selection and testing procedure described in Section 3.4. Survival 449 

Gumbel, BB1 and BB7 copulas refer to the 180 degrees rotated Gumbel, Clayton-Gumbel and Joe-Clayton 450 

copulas, which are one parametric and two parametric Archimedean copulas, respectively. The LTDC of all three 451 

copula families lies in a positive range. The UTDC of the Survival Gumbel copula is zero by definition and in a 452 

positive range for Survival BB1 and BB7 copulas. See Nelsen (1997) for exact definitions of the selected copula 453 

families. Bold numbers indicate the best fitting copula type per indicator pair, according to Vuong and Clarke 454 

goodness-of-fit tests (Vuong 1989, Clarke 2007). Kendall correlation coefficients measured the (average) 455 

ordinal dependence between two indicators and all were significant at the 1% level. Detailed robustness and 456 

goodness-of-fit tests for copulas and TDCs can be found in Appendix, Section B3. 457 

Results continued to remain robust when pesticide use was aggregated on a field level instead of a 458 

farm level (Appendix, Table A10). 459 

4.3 Temporal hotspots shift by indicator 460 

So far, extreme pesticide use was analyzed as “one-year application regimes”, located in the upper 461 

tail of observed pesticide use distributions, without considering the spatial and time dimension of 462 

applications. It was then analyzed if results remained consistent when defining extreme pesticide use 463 

as temporal “hotspots”, i.e. single, daily applications with high risks for the environment and human 464 

health compared to the other applications. Analysis with copulas and TDCs was again applied on a 465 

level of non-aggregated, single pesticide applications. In line with field- and farm-level results, these 466 

results showed that the purely quantitative QA and TFI indicators cannot capture hotspots in terms 467 

of environmental and health risks, as indicated by the LI indicator. Although goodness-of-fit of the 468 

copula models is weaker at the application level than at the farm-level, results remained qualitatively 469 

consistent for both crops, all copula families and different pesticide types tested (Appendix, Table 470 

A11). Single applications, pooled for all farmers and years, were plotted on a daily scale (Figure 4) to 471 

illustrate differences between QA, TFI and LI. Temporal hotspots as indicated by QA, TFI and LI, 472 

Potatoes  
      

        

Comparing LI  Kendall’s τ  Survival Gumbel Survival BB1 Survival BB7 

Indicator to: correlation  Copula  Copula  Copula  

   LTDC UTDC LTDC UTDC LTDC UTDC 

QA Indicator 0.27  0.32 0.00 0.32 0.00 0.36 0.02 

TFI Indicator 0.41  0.49 0.00 0.45 0.06 0.50 0.28 

         

Winter Wheat  
      

        

Comparing LI Kendall’s τ  Survival Gumbel  Survival BB1  BB7  

Indicator to: correlation  Copula  Copula  Copula  

   LTDC UTDC LTDC UTDC LTDC UTDC 

QA Indicator 0.48  0.56 0.00 0.56 0.00 0.62 0.16 

TFI Indicator 0.59  0.63 0.00 0.61 0.01 0.65 0.36 
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respectively (the highest 1% of all applications), were then highlighted. The graph for potatoes 473 

illustrates how indicator choice may shift policy targets. While hotspots for the QA occurred between 474 

May and July, the TFI identifies June to August as the relevant timeframe. Most importantly, the risk-475 

adjusted LI identified another timeframe (July-August) and other applications as relevant hotspots. 476 

This was similarly observed for winter wheat (see Appendix, Figure A8). 477 

  478 
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 479 

Fig. 4. Temporal hotspots of pesticide use in potatoes shift with indicator choice  480 

Bars represent single pesticide applications in potatoes, plotted on a daily scale. Plotted observations include 481 

application data for the years 2009-2013 and all sample farmers. Pesticide use is expressed in Quantity of 482 

Active ingredient (QA), Treatment Frequency Index (TFI) and Load Index (LI) indicators, respectively. “Temporal 483 

Hotspots” indicate the Top 1% of all applications per indicator, respectively. 484 

5. Discussion 485 

Throughout the world, current pesticide policies have been implemented using diverse indicators for 486 

the quantification of pesticide use. Inconsistencies between different pesticide indicators were 487 
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analyzed in this paper to aid the identification of targets for pesticide policies, i.e. use patterns and 488 

profiles associated with the greatest risks for the environment and human health. Results show that 489 

the most important, commonly utilized, quantitative pesticide indicators fail to identify the use 490 

patterns with the greatest risks for the environment and human health from pesticide use, as 491 

indicated by the LI indicator. Therefore, reliance on these indicators for the implementation of high-492 

level pesticide reduction targets and market-based pesticide policies designed to incentivize a 493 

reduction in environmental and health impacts from pesticide use, can lead to a misspecification of 494 

policy targets and, consequently, to biased policy incentives and outcomes. The goal of such policies 495 

is a reduction of risks from pesticide use relative to current levels. It is therefore important to identify 496 

the use patterns associated with the greatest risks, even if they are deemed acceptable in terms of 497 

potential risks by regulatory authorities (e.g. the United States Environmental Protection Agency and 498 

the European Food Safety Authority). 499 

More specifically, the analysis showed that the quantitative indicators QA and TFI have a good 500 

average fit to proxy potential environmental and human health risks of pesticides indicated by the LI 501 

indicator but are unsuitable for identifying the use patterns associated with the greatest risks, i.e. 502 

extreme risks. Differences between indicators may occur due to variations in standard dosages (i.e. 503 

between QA and both TFI and LI), inherent pesticide properties (i.e. between TFI and LI) or 504 

combinations of both (i.e. between QA or TFI and LI). Positive, significant correlations between both 505 

QA and TFI with LI were found. This is in line with Kudsk et al. (2018), who find a good average fit of 506 

TFI and LI indicators. The analysis of the dependence structure was then extended with copulas and 507 

tail dependence coefficients. Very small coefficients of upper tail dependence were found between 508 

both the QA and TFI with the LI. The finding of small “upper TDCs” suggested that indicator choice 509 

has a great influence on the analysis of pesticide applications, as extremely high values are not 510 

captured jointly. These findings show that the two quantitative indicators (QA, TFI) have almost no 511 

explanatory power for the pesticide use observations with the greatest risks for the environment and 512 

health as indicated by the LI indicator. 513 

The findings relating to the very low explanatory power of QA and TFI for extreme pesticide risks 514 

remained robust over different crops (winter wheat and potatoes), when separately testing the main 515 

pesticides types in potato and winter wheat (herbicides and fungicides) and for all tested aggregation 516 

levels of pesticide use (single applications, fields, farms). The existence of higher correlation 517 

coefficients and TDCs for herbicides compared to fungicides as well as for potatoes compared to 518 

winter wheat highlights that the degree of dependence is determined by registered (available) 519 

products and farmers’ application patterns in the analyzed cropping system. Differences in results 520 

between pesticide groups may be an indication of different levels of heterogeneity with regard to 521 

pesticide properties (e.g. toxicity) in the respective group of products. Differences between crops 522 

(winter wheat < potatoes) may be an indication that the more input intensive a crop is, the greater 523 

the inconsistencies between indicators, as one would expect. The comparison of different 524 

aggregation levels is especially important, as the definition of “extreme pesticide use” (i.e. the 525 

greatest observations, located in the upper tail of the distribution) is central for the analysis in this 526 

article. Two policy-relevant definitions of “extreme pesticide use” were covered in the analysis. 527 

Extremes might be relevant in a context of a high risk of aggregated, farm-level pesticide use over the 528 

cropping year (“extreme application regimes”), but also in a context of high temporal and spatial 529 

concentrations of pesticide risks from single applications (“extreme application events”). Peaks, or 530 

“temporal hotspots”, of pesticide use are especially relevant for their effects on ecosystems, like 531 
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bodies of water. Results revealed that in both cases, quantitative indicators are unsuitable for 532 

pinpointing the pesticide applications and application regimes associated with the greatest risks (as 533 

shown by the LI indicator), highlighting the broad relevance of the findings.  534 

In addition, results show that trends in national pesticide use may shift with the choice of pesticide 535 

indicators, as different indicators capture different properties of the pesticides used. To this end, 536 

trends of average, yearly pesticide use were computed and compared for the QA, TFI and LI 537 

indicators. The findings confirmed results of Kniss (2017) for the US, who has observed a reversal in 538 

pesticide use with different indicators. National pesticide use trends serve to evaluate the efficiency 539 

of public policies to regulate pesticide utilization. It is therefore important, from a regulatory 540 

perspective, that the representation of pesticide trends reflects potential pesticide impacts in a 541 

realistic manner. The scope of our study was not to infer on long-term pesticide use trends in 542 

Switzerland, but to identify the differences between indicators. Inference on long-term pesticide use 543 

trends demands a longer time series, which would be more robust to yearly shocks, e.g. caused by 544 

adverse weather events. 545 

The above findings are transferable to other countries and regions with a similar or even greater 546 

heterogeneity of pesticide products in use. The pesticides used by farmers in the sample are similar 547 

to those used by producers in the EU. 97.5% and 95% of the 40 most used herbicides and fungicides 548 

in the non-EU country Switzerland were also approved in Germany (BLV 2017) and France (Anses 549 

2017), and pesticide use patterns are similar between these countries (CH: Baan et al. 2015, GER: JKI 550 

2017, FR: Agreste 2017). Structural differences in the computation of the three indicators were 551 

compared to facilitate the transfer of results to other countries in a more general way. It was found 552 

that in comparison to the QA indicator, the lower skewness and shorter right tail of the TFI indicator 553 

(Tables A5 and A6 and Figures A3 and A4 in the Appendix) are based on the normalization of applied 554 

dosages used to compute it. The greater skewness and longer tail of the LI indicator when compared 555 

to the TFI indicator (see Methods, Section on “Indicator calculation”; Tables A5 and A6 and Figures 556 

A3 and A4 in the Appendix) are based on the heterogeneity of qualitative pesticide properties (i.e. 557 

toxicity) that are also considered. It can therefore be argued that the identified inconsistencies 558 

between indicators translate to countries with similar application patterns and registered products. 559 

Along these lines, inconsistencies should be even more pronounced for countries with a potentially 560 

greater range of qualitative properties (e.g. toxicity) across the pesticides used.  561 

6. Conclusions 562 

In conclusion, results suggest that when implementing pesticide policies, policymakers should 563 

consider choice and design of underlying pesticide indicators with great care, as they have significant 564 

impacts on the incentives of policies. This is highly relevant in the context of the present 565 

implementation and revision of NAPs in Europe, which aim to reduce “risks and impacts of pesticide 566 

use on human health and the environment” (Directive 2009/128/EC). More specifically, given the 567 

results, market-based policies with underlying quantitative indicators currently in force might create 568 

mis-incentives for farmers. Policy measures, such as pesticide taxes (Finger et al. 2017) based on 569 

quantitative indicators, could even encourage the use of more risky products if these were to 570 

become cheaper than products with low inherent risks, but high standard dosages or a large number 571 

of applications. Similarly, the adoption of high-level pesticide reduction targets using quantitative 572 

indicators might lead to the implementation of policies which incentivize the use of more risky 573 

pesticides. Countries which plan to introduce new or revise existing market-based pesticide policies 574 
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or reduction targets should effectively target the “risk components” of pesticides (e.g. risks for the 575 

environment and human health, etc.), to prevent possible mis-incentives. Such “risk components” 576 

might vary in their importance depending on the country and should be adapted to country specific 577 

circumstances. The results of the study are especially relevant in the light of recent evidence on the 578 

effects of extreme pesticide use on the health of residents in agricultural areas (Larsen et al. 2017) 579 

and on the environment (Releya and Hovermann 2006; Gordon et al. 2012, Bundschuh et al. 2013 580 

and Topping and Elmeros 2016). Larsen et al. (2017) conclude that there is a need for the 581 

implementation of pesticide policies that tackle extreme applications. Focusing on incentives of 582 

policies, this study shows that the choice of a non-target-specific indicator can render such policies 583 

inefficient or even lead to detrimental effects. Given the large number of policies currently 584 

introduced to reduce adverse effects from pesticide use and achieve greater sustainability in 585 

agriculture, the results potentially have large-scale implications for farmers’ pesticide use worldwide. 586 

The results of this study also have implications for the analysis of the economic productivity of 587 

pesticides (e.g. as in Hossard et al. 2014 and Lechenet et al. 2017). More specifically, they emphasize 588 

the need to investigate the lack of precision in the assessment of negative external effects with 589 

purely quantitative indicators. Further research is needed in this field to compare the commonly 590 

used quantitative indicators to actual indicators of pesticide efficacy.  591 

The study can be extended in various directions. Firstly, other crops should be considered. This is 592 

particularly important for special crops, vegetables and fruits that are characterized by very high 593 

absolute levels of pesticide use. Secondly, an analysis of determinants of extreme pesticide use is 594 

necessary to design efficient and effective policies for the reduction of this practice. Thirdly, other 595 

indicators might be included to quantify environmental and health risks (e.g. Labite et al. 2011; OECD 596 

2016; Kudsk et al. 2018). These indicators could explicitly include information on the application 597 

context, thus improving the quality of risk assessment (Pierlot et al. 2017). In addition, indicators 598 

based on more complex, site-specific risk assessment models might become more widely available in 599 

the future, given the increasing collection of timely, detailed and spatially explicit data in agriculture. 600 

Finally, the creation of a harmonized risk indicator for pesticides in Europe could further improve the 601 

coherence of policies in the NAP and help to monitor pesticide risks on a detailed level across time 602 

and space in Europe.  603 

  604 
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Appendices 805 

Table A1. Sample size  806 

Year Winter Wheat Potatoes 

2009 61 (195) 44 (101) 

2010 66 (193) 38 (103) 

2011 52 (158) 40 (108) 

2012 48 (137) 32 (82) 

2013 43 (134) 38 (88) 

Total 270 (817) 192 (482) 

Number of farms (fields) per year and crop 807 

  808 
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Table A2. Share of treated fields per pesticide type  809 

 Winter Wheat Potatoes 

Year Herbicide Fungicide Insecticide Herbicide Fungicide Insecticide 

2009 0.92 0.76 0.07 0.88 0.97 0.25 

2010 0.94 0.84 0.08 0.93 0.99 0.27 

2011 0.96 0.76 0.25 0.92 0.97 0.31 

2012 0.96 0.85 0.12 0.96 1.00 0.35 

2013 0.97 0.80 0.04 0.93 0.98 0.39 

Total 0.95 0.80 0.11 0.92 0.98 0.31 

Share of fields treated with at least one pesticide, per pesticide type and year 810 

811 
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Table A3. 85% confidence intervals for skewness of yearly pesticide use distributions in potatoes 812 

Pesticide Type Year QA TFI LI 
  Lower Upper Lower Upper Lower Upper 

All Pesticides 

2009 1.9 4.5 -0.0 0.6 0.3 1.7 

2010 0.9 2.1 -0.1 0.8 0.9 2.9 

2011 1.8 4.4 -0.4 0.3 0.8 1.9 

2012 1.4 3.6 0.1 1.1 0.3 1.3 

2013 2.2 5.2 -0.5 0.2 0.1 1.0 

Skewness is calculated for each year (2009-2013) from farm and culture level pesticide use distributions. Lower 813 
and Upper indicate the lower and upper bound of the 85% confidence interval for each statistic, respectively. 814 
Payton et al. (2003) show that, given a maximum error rate of 5%, 85% confidence intervals should be used to 815 
check for overlaps (see Methods, Section 2.2). Confidence intervals are computed with non-parametric 816 
bootstrapping techniques with 10000 repetitions, respectively. QA, TFI and LI denote the Quantity of Active 817 
Ingredient, Treatment Frequency Index and Load Index Indicators, respectively. 818 

 819 
  820 
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Table A4. 85% confidence intervals for skewness of yearly pesticide use distributions in winter 821 
wheat 822 

Pesticide Type Year QA TFI LI 
  Lower Upper Lower Upper Lower Upper 

All Pesticides 

2009 1.1 3.0 -0.3 0.3 0.9 1.7 

2010 1.3 3.1 -0.1 0.5 -0.0 0.7 

2011 0.2 0.8 0.0 0.6 2.0 3.7 

2012 -0.1 0.6 -0.3 0.3 1.2 2.9 

2013 0.5 1.3 0.3 1.8 1.6 2.9 

Skewness is calculated for each year (2009-2013) from farm and culture level pesticide use distributions. Lower 823 
and Upper indicate the lower and upper bound of the 85% confidence interval for each statistic, respectively. 824 
Payton et al. (2003) show that, given a maximum error rate of 5%, 85% confidence intervals should be used to 825 
check for overlaps (see Methods, Section 2.2). Confidence intervals are computed with non-parametric 826 
bootstrapping techniques with 10000 repetitions, respectively. QA, TFI and LI denote the Quantity of Active 827 
Ingredient, Treatment Frequency Index and Load Index Indicators, respectively. 828 

 829 
  830 
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 831 
Table A5. 85% confidence intervals of summary statistics for farm-level pesticide use in potatoes 832 

Pesticide Type 
Confidence 
Interval of 

QA TFI LI 

Lower Upper Lower Upper Lower Upper 

 Mean 2.46 2.82 1.99 2.23 3.92 4.65 

Herbicides Sd 1.63 1.82 1.05 1.24 3.09 4.00 

 Skewness 0.12 0.50 0.33 0.83 1.23 2.20 

 Mean 5.98 6.66 5.54 6.19 4.41 5.08 

Fungicides Sd 3.10 3.47 2.87 3.31 2.99 3.67 

 Skewness -0.01 0.30 0.27 0.66 0.90 1.58 

 Mean 10.43 11.87 8.48 9.22 8.86 9.84 

All Pesticides Sd 5.87 7.94 3.31 3.82 4.27 5.23 

 Skewness 1.80 2.60 0.05 0.53 0.79 1.47 

Summary statistics are calculated for the pooled data (2009-2013) on a farm and culture level. Lower and 833 
Upper indicate the lower and upper bound of the 85% confidence interval for each statistic, respectively. 834 
Payton et al. (2003) show that, given a maximum error rate of 5%, 85% confidence intervals should be used to 835 
check for overlaps (see Methods, Section 2.2). Confidence intervals are computed with non-parametric 836 
bootstrapping techniques with 10000 repetitions, respectively. QA, TFI and LI denote the Quantity of Active 837 
Ingredient, Treatment Frequency Index and Load Index Indicators, respectively. 838 

  839 
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Table A6. 85% confidence intervals of summary statistics for farm-level pesticide use in winter 840 
wheat  841 

Pesticide Type 
Confidence 
Interval of 

QA TFI LI 

Lower Upper Lower Upper Lower Upper 

 Mean 0.76 0.93 1.23 1.34 0.79 1.03 

Herbicides Sd 0.89 1.05 0.57 0.65 1.08 1.62 

 Skewness 1.25 1.65 0.35 0.82 3.39 4.47 

 Mean 0.71 0.84 1.25 1.42 1.32 1.55 

Fungicides Sd 0.67 0.86 0.92 1.01 1.22 1.4 

 Skewness 1.29 2.71 -0.11 0.2 0.76 1.07 

 Mean 1.9 2.15 3.13 3.37 2.32 2.73 

All Pesticides Sd 1.28 1.55 1.33 1.5 1.99 2.6 

 Skewness 0.84 1.84 0.08 0.56 1.75 2.74 

Summary statistics are calculated for the pooled data (2009-2013) on a farm and culture level. Lower and 842 
Upper indicate the lower and upper bound of the 85% confidence interval for each statistic, respectively. 843 
Payton et al. (2003) show that, given a maximum error rate of 5%, 85% confidence intervals should be used to 844 
check for overlaps (see Methods, Section 2.2). Confidence intervals are computed with non-parametric 845 
bootstrapping techniques with 10000 repetitions, respectively. QA, TFI and LI denote the Quantity of Active 846 
Ingredient, Treatment Frequency Index and Load Index Indicators, respectively. 847 

 848 
  849 
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Table A7. Median, 90% decile and 99% percentiles of farm-level pesticide use in potatoes 850 

Indicator Median 90% decile 99% percentile 

QA 9.85 17.32 41.92 

TFI 8.65 14.00 17.55 

LI 8.75 16.44 23.66 

Parameters are calculated for all years pooled (2009-2013) on a farm and culture level. QA, TFI and LI denote 851 
the Quantity of Active Ingredient, Treatment Frequency Index and Load Index Indicators, respectively. The ratio 852 
of 50% to 90% and 99% percentiles give information about the skewness of the distribution and the weight of 853 
the distribution on upper tails. 854 

 855 
  856 
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Table A8. Median, 90% decile and 99% percentiles of farm-level pesticide use in winter wheat 857 

Indicator Median 90% decile 99% percentile 

QA 1.78 3.9 6.1 

TFI 3.17 5.14 6.53 

LI 2.13 4.71 12.63 

Parameters are calculated for all years pooled (2009-2013) on a farm and culture level. QA, TFI and LI denote 858 
the Quantity of Active Ingredient, Treatment Frequency Index and Load Index Indicators, respectively. The ratio 859 
of 50% to 90% and 99% percentiles give information about the skewness of the distribution and the weight of 860 
the distribution on upper tails. 861 

  862 
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Table A9. Significant correlation of quantitative indicators and farm-level herbicide and fungicide 863 
risks – but very low explanatory power for extreme risks 864 

Potatoes  
 

      

         

Pesticide Comparing LI  Kendall’s τ  Survival Gumbel  Survival BB1 Survival BB7 

Type Indicator to: correlation  Copula  Copula  Copula  

    LTDC UTDC LTDC UTDC LTDC UTDC 

Herbicides QA Indicator 0.17  0.32 0.00 0.32 0.00 0.46 0.00 

 TFI Indicator 0.46  0.58 0.00 0.58 0.00 0.67 0.20 

Fungicides QA Indicator 0.36  0.45 0.00 0.42 0.01 0.48 0.18 

 TFI Indicator 0.62  0.70 0.00 0.68 0.10 0.74 0.52 

          

Winter Wheat  
 

      

         

Pesticide  Comparing LI Kendall’s τ  Survival Gumbel   Survival BB1  BB7  

Type Indicator to: correlation  Copula  Copula  Copula  

    LTDC UTDC LTDC UTDC LTDC UTDC 

Herbicides QA Indicator 0.54  0.55 0.00 0.64 0.00 0.71 0.25 

 TFI Indicator 0.48  0.57 0.00 0.50 0.24 0.57 0.47 

Fungicides QA Indicator 0.58  0.71 0.00 0.71 0.00 0.85 0.06 

 TFI Indicator 0.66  0.77 0.00 0.77 0.00 0.89 0.28 

Level of dependence between farm-level indicators of pesticide use in potato and winter wheat production. 865 
QA, TFI and LI denote the Quantity of Active Ingredient, Treatment Frequency Index and Load Index Indicators, 866 
respectively. LTDC and UTDC are in the range of [0,1] and indicate lower and upper tail dependence 867 
coefficients, i.e. the dependence for extremely low and extremely high observations, respectively. The three 868 
analyzed copula families are chosen per crop for farm-level observations, according to the six-step selection 869 
and testing procedure described in the Methodology, Section 2.4. Bold numbers indicate the best fitting copula 870 
type per indicator pair, according to Vuong and Clarke goodness-of-fit tests (Vuong 1989, Clarke 2007). The 871 
UTDC of the Survival Gumbel copula is zero by definition. Kendall correlation coefficients measure the 872 
(average) ordinal dependence between two indicators and are all significant at the 1% level. Detailed 873 
robustness and goodness-of-fit tests for copulas and TDCs can be found in the Appendix, Section B3. 874 

  875 
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Table A10. Significant correlation of quantitative indicators and field-level pesticide risks – but very 876 
low explanatory power for extreme risks 877 

Level of dependence between field-level indicators of pesticide use in potato and winter wheat production. QA, 878 
TFI and LI denote the Quantity of Active Ingredient, Treatment Frequency Index and Load Index Indicators, 879 
respectively. LTDC and UTDC are in the range of [0,1] and indicate lower and upper tail dependence 880 
coefficients, i.e. the dependence for extremely low and extremely high observations, respectively. LTDC and 881 
UTDC are in the range of [0,1] and indicate lower and upper tail dependence coefficients, respectively. The 882 
three analyzed copula families are chosen per crop for field-level pesticide use observations, according to the 883 
six-step selection and testing procedure described in the Methodology, Section 2.4. Bold numbers indicate the 884 
best fitting copula type per indicator pair, according to Vuong and Clarke goodness-of-fit tests (Vuong 1989, 885 
Clarke 2007). The UTDC of the Survival Gumbel, Survival BB6 and Survival BB8 copulas is zero by definition. 886 
Kendall correlation coefficients measure the (average) ordinal dependence between two indicators and are all 887 
significant at the 1% level. * denotes acceptance of Kendall copula-goodness-of-fit tests (Genest et al. 2006). 888 
Cramer-von Mises test statistics were used to accept/reject the null-hypothesis of a matching copula family at 889 
the 5% level. P-values were computed according to the parametric bootstrap procedure described in Genest et 890 
al. (2006). 891 
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Potatoes  
      

        

Comparing LI  Kendall’s τ  Survival Gumbel    Survival BB1   Survival BB6 

Indicator to: correlation  Copula  Copula  Copula  

   LTDC UTDC LTDC UTDC LTDC UTDC 

QA Indicator 0.47  0.28* 0.00* 0.28 0.00 0.28* 0.00* 

TFI Indicator 0.58  0.42 0.00 0.44 0.00 0.44 0.00 

         

Winter Wheat  
      

        

Comparing LI Kendall’s τ  Survival Gumbel  Survival BB1  Survival BB8  

Indicator to: correlation  Copula  Copula  Copula  

   LTDC UTDC LTDC UTDC LTDC UTDC 

QA Indicator 0.22  0.57 0.00 0.57 0.00   0.00*   0.00* 

TFI Indicator 0.37  0.63 0.00 0.62 0.00 0.00 0.00 
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Table A11. Significant correlation of quantitative indicators and application-level pesticide risks – 893 
but very low explanatory power for extreme risks 894 

Level of dependence between application-level indicators of pesticide use in potato and winter wheat 895 
production. QA, TFI and LI denote the Quantity of Active Ingredient, Treatment Frequency Index and Load 896 
Index Indicators, respectively. LTDC and UTDC are in the range of [0,1] and indicate lower and upper tail 897 
dependence coefficients, i.e. the dependence for extremely low and extremely high observations, respectively. 898 
LTDC and UTDC are in the range of [0,1] and indicate lower and upper tail dependence coefficients, 899 
respectively. The three analyzed copula families are chosen per crop for application-level pesticide use 900 
observations. They represent the best fitting copulas according to the six-step selection and testing procedure 901 
described in the Methodology, Section 2.4. Bold numbers indicate the best fitting copula type per indicator 902 
pair, according to Vuong and Clarke goodness-of-fit tests (Vuong 1989, Clarke 2007).  The UTDC of the Frank, 903 
Survival BB6 and Survival BB8 copulas is zero by definition. All estimates of Kendall correlation coefficients are 904 
significant at the 1% level. Kendall (Genest et al. 2006) goodness-of-fit tests with Cramer-von Mises test 905 
statistics were used to test the null-hypothesis of matching Survival BB6, Survival BB8 and Frank copulas. P-906 
values were computed according to the parametric bootstrap procedure described in Genest et al. (2006). PIOS 907 
goodness-of-fit tests were used for the Student t copula (Zhang et al. 2016). Copula goodness-of fit could not 908 
be confirmed at the 5% level with the above tests. 909 

 910 

  911 

Potatoes  
      

        

Comparing LI  Kendall’s τ  Student t Survival BB6 Survival BB8 

Indicator to: correlation  Copula  Copula  Copula  

   LTDC UTDC LTDC UTDC LTDC UTDC 

QA Indicator 0.10  0.06 0.06 0.28 0.00 0.00 0.00 

TFI Indicator 0.23  0.07 0.07 0.25 0.00 0.00 0.00 

         

Winter Wheat  
      

        

Comparing LI Kendall’s τ   Student t  Frank  Survival BB8  

Indicator to: correlation  Copula  Copula  Copula  

   LTDC UTDC LTDC UTDC LTDC UTDC 

QA Indicator 0.33  0.13 0.13 0.00 0.00 0.00 0.00 

TFI Indicator 0.36  0.07 0.07 0.00 0.00 0.00 0.00 
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 912 

Figure A1. Linkages of used databases 913 

Source: Own depiction. 1 : Central Evaluation of Agri-Environmental Indicators, Switzerland (2009-2013, 914 
compare: Spycher et al. 2013); 2 : Pesticides Properties Database, March, 2016 (compare: Lewis et al. 2016); 3: 915 
Pesticide Load Indicator (compare Miljøministeriet 2012); 4: BLW Pflanzenschutzmittelverzeichniss (2009-2013, 916 
compare BLW 2013).  917 

  918 
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 919 

 920 
Fig. A2. Pesticide use trends shift by indicator 921 

Linear pesticide use trends in winter wheat and potatoes from 2009-2013 with the QA, TFI and LI indicators. 922 
Linear trends are significant for TFI and LI indicators in winter wheat at the 10% and 5% level, respectively. No 923 
significant trend was found for potatoes. Shaded areas indicate 95% confidence intervals of linear trends. 924 

  925 
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  926 

Fig. A3. Distributions of LI and QA indicators show more skewness than the TFI  927 

Histograms of farm-level pesticide use in potato production (pooled observations from 2009-2013). QA, TFI and 928 
LI denote the Quantity of Active Ingredient, Treatment Frequency Index and Load Index Indicators, 929 
respectively. 930 
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  931 

Fig. A4. Distributions of LI and QA indicators show more skewness than the TFI  932 

Histograms of farm-level pesticide use in winter wheat production (pooled observations from 2009-2013). QA, 933 
TFI and LI denote the Quantity of Active Ingredient, Treatment Frequency Index and Load Index Indicators, 934 
respectively. 935 
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 936 

Fig. A5. Copulas reveal differences in the dependence structure of indicators between upper and 937 

lower tails (TFI and LI for potatoes). 938 

Comparing farm-level pesticide use in potatoes measured with the TFI and LI indicators. Figure a) shows a 939 
scatterplot of TFI and LI values. Figure b) shows a contour plot of the fitted copula model (Survival BB1 copula, 940 
see Methods, Section 2.4 for selection and estimation procedure). TFI and LI denote the distribution functions 941 
for TFI and LI values, respectively (see Methods, Section 2.3). The copula captures the dependence structure 942 
between the distributions of the two indicators, not only on average, but over the whole distribution. 943 

  944 
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 945 

Fig. A6. Copulas reveal differences in the dependence structure of indicators between upper and 946 

lower tails (QA and LI for winter wheat). 947 

Comparing farm-level pesticide use in winter wheat measured with the QA and LI indicators. Figure a) shows a 948 
scatterplot of QA and LI values. Figure b) shows a contour plot of the fitted copula model (Survival Gumbel 949 
copula, see Methods, Section 2.4 for selection and estimation procedure). QA and LI denote the distribution 950 
functions for QA and LI values, respectively (see Methods, Section 2.3). The copula captures the dependence 951 
structure between the distributions of the two indicators, not only on average, but over the whole distribution. 952 
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 954 

Fig. A7. Copulas reveal differences in the dependence structure of indicators between upper and 955 

lower tails (TFI and LI for winter wheat). 956 

Comparing farm-level pesticide use in winter wheat measured with the TFI and LI indicators. Figure a) shows a 957 
scatterplot of TFI and LI values. Figure b) shows a contour plot of the fitted copula model (Survival Gumbel 958 
copula, see Methods, Section 2.4 for selection and estimation procedure). TFI and LI denote the distribution 959 
functions for TFI and LI values, respectively (see Methods, Section 2.3). The copula captures the dependence 960 
structure between the distributions of the two indicators, not only on average, but over the whole distribution. 961 

  962 
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 963 

Fig. A8. Temporal hotspots of pesticide use shift with indicator choice (winter wheat). 964 

Single pesticide applications in winter wheat, plotted on a daily scale. Observations include application data for 965 
the years 2009-2013 and all sample farmers. Pesticide use is expressed in Quantity of Active ingredient (QA), 966 
Treatment Frequency Index (TFI) and Load Index (LI) indicators respectively. “Temporal Hotspots” indicate the 967 
Top 1% of all applications per indicator, respectively. 968 

  969 
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B1. Documentation of data cleaning procedure 970 

The following detailed procedure was used to clean data entry mistakes from the raw data: 971 

1) Selection. Only farmers with complete observations (field calendar and socio-972 

economic/bookkeeping data), only relevant cultures, only pesticide applications where all 973 

indicators are available, only farmers with a focus on arable farming (exclude those which 974 

have an area share of more than 5% wine or fruit). 975 

2) Remove outlier fields. Only keep those fields where seeding and harvesting activity (in this 976 

order) is reported. Eliminate fields where a yield of zero is indicated or no seeding and or 977 

harvesting takes place. 978 

3) Remove outlier applications. Remove applications with double accounting (same product, 979 

same day, same amount). 980 

4) Correct farmers’ typos. According to the following procedure: Identify applications where the 981 

product is applied with an amount of (mean +- 1*sd). For applications (mean + 1*sd) also 982 

check if the amount exceeds the recommended standard dosage. For those outliers, check 983 

every individual application in the context of the whole field calendar for the given field/year 984 

and correct if necessary. In addition, compare those applications to applications by other 985 

farmers and applications of the same farmer in other years. In particular, consider the 986 

possibility of split applications/packages/mixtures for those outliers. 987 

Each application was tested according to the above procedure with the software package R (R Core 988 

Team 2013) to avoid  removing or changing actual documented behavior and only remove individual 989 

mistakes and thus guarantee a high data quality. The procedure was designed to test the applications 990 

in the context of the given regulations, of applications of the similar products on other Swiss farms, 991 

other applications on the same farm and the data quality of information on other management 992 

measures provided by the farmer. Given the richness of the data, applications could therefore be 993 

subject to context-specific evaluation thus guaranteeing a higher reliability than simple outlier 994 

identification algorithms. 995 
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B2. Validity checks for self-reporting and self-selection 997 

Swiss pesticide regulations explicitly forbid pesticide overdosing (application dosages higher than 998 

recommended dosages). Therefore, to address any concerns regarding self-reporting by farmers 999 

checks were carried out to verify that they complied with these regulations according to the reported 1000 

data, or reported any violations of these regulations. The latter would be a sign for a high degree of 1001 

trust in anonymity assurances given to farmers. Applications were rated as overdosed when the 1002 

maximum allowed amount in the respective culture was exceeded by more than 5%. 5-year average 1003 

values of the share of overdosed applications were then computed per culture and pesticide type. 1004 

The share of overdosed applications in potato and winter wheat production is 2% and 4.8% for 1005 

herbicides and 5.6% and 3.4% for fungicides, respectively. This suggests that farmers were not 1006 

concerned about reporting and anonymity issues during data collection. We also compared 1007 

important socio-economic characteristics of our sample to the population averages, as reported by 1008 

Agroscope for 2013 (Hoop and Schmid 2014) and the Swiss Institute for Statistics for 2016 (BFS 1009 

2017). The average farm size in the sample is 26.8 ha, which is representative of Swiss crop 1010 

producers with an average farm size of 26.5 ha. We also find a representative age structure in our 1011 

sample. The percentage of farmers in a given age group (population averages in parenthesis) is as 1012 

follows: <39 years: 28(21)%; 40-49 years: 30(30)%; 50-59 years: 35(37)% and >60 years 7(13)%. 1013 

Finally, we found the ratio of farmers with no education lies at 15% compared to 2% as the 1014 

population average. The higher rate of educated farmers, compared to population averages, might 1015 

be explained by the focus on crop producing farms in our sample, compared to a high share of milk 1016 

producing farms in the population. Moreover, our dataset does not cover very remote regions, as 1017 

crop farms are located in more accessible regions (compare Figure 2). 1018 

  1019 
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B3. Assessing robustness of farm-level results for copulas and tail dependence 1020 

As described in the Methodology Section, step v) of the article, robustness was also checked 1021 

regarding the results obtained for copula estimation and tail dependence with a parametric 1022 

bootstrap test and the stable tail dependence function, respectively. The first robustness check was a 1023 

goodness-of-fit test based on Kendall’s process as described in Genest et al. (2006). Cramer-von-1024 

Mises test statistics were used to assess if the null-hypothesis, that the chosen copula family matches 1025 

the empirical copula, is rejected or accepted at the 5% level (Genest et al. (2006) report a higher test 1026 

power for Cramer-von-Mises test statistics than for Kolmogorov-Smirnov test statistics). Genest et al. 1027 

(2006) and Genest and Rémillard (2008) reported that test power for some of the copula families is 1028 

low. Furthermore, it was not possible to identify a power study for the two-parameter copulas used 1029 

to assess tail dependence in this article. However, the results of the test still give some indication of 1030 

whether the distributional assumptions of the selected copulas are met, or if further analysis is 1031 

needed. 1032 

Table B1. Results of copula goodness-of-fit tests 1033 

Potatoes      

   Survival Gumbel Survival BB1 Survival BB7 

 Herbicides QA-LI Reject Reject Reject 

  TFI-LI Accept Accept Accept 

 Fungicides QA-LI Accept Accept Accept 

  TFI-LI Accept Accept Accept 

 All Pesticides QA-LI Accept Accept Accept 

  TFI-LI Reject Accept Reject 

      

Winter Wheat      

      

   Survival Gumbel Survival BB1 BB7 

 Herbicides QA-LI Accept Accept Reject 

  TFI-LI Reject Accept Accept 

 Fungicides QA-LI Reject Reject Reject 

  TFI-LI Reject Reject Reject 

 All Pesticides QA-LI Accept Accept Reject 

  TFI-LI Reject Reject Reject 

Note: The goodness-of-fit test described in Genest et al. (2006) was used. Cramer-von Mises test statistics were 1034 
used to accept/reject the null-hypothesis of a matching copula family at the 5% level. P-values were computed 1035 
according to the parametric bootstrap procedure described in Genest et al. (2006). 1036 

Table B1 reports outcomes of the goodness-of-fit test described by Genest et al. (2006) for all 1037 

indicator pairs and copula families for farm-level pesticide use. With the exception of four copula 1038 

pairs (QA-LI for herbicides in potatoes, fungicides in winter wheat, TFI-LI for all pesticides in winter 1039 

wheat) goodness-of-fit for the best fitting copula is confirmed. The semi-parametric approach used 1040 

to assess tail dependence in this article is expected to show a bad performance if distributional 1041 

assumptions are not met (Frahm et al. 2005). In addition, the fully non-parametric stable tail 1042 

dependence function (Kiriliouk et al. 2016) was used to assess tail dependence and test if the results 1043 

on tail dependence remain valid for those four indicator pairs.  1044 
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Computation of the stable tail dependence function was implemented in accordance with Kiriliouk et 1045 

al. (2016) and using the R package copBasic (Asquith 2017). The function was estimated for the 1046 

following indicator pairs: 1047 

i) QA and LI indicator for herbicides in potato production 1048 

ii) QA and LI indicator for fungicide use in winter wheat production 1049 

iii) TFI and LI indicator for fungicide use in winter wheat production 1050 

iv) TFI and LI indicator for overall pesticide use in winter wheat production 1051 

More specifically, it was checked to verify that the statement of a low degree of upper tail 1052 

dependence for i) to iv) respectively, can be supported by the results of the stable tail dependence 1053 

function method. To this end, the stable tail dependence function was plotted for all indicator pairs, 1054 

as suggested by Kiriliouk et al. (2016). This allows qualitative confirmation or rejection of findings on 1055 

tail dependence. The approach consists of plotting several levels of the stable tail dependence 1056 

function, where levels are ordered according to their relative distance to the upper endpoint of the 1057 

joint distribution of the indicator pairs. The stable tail dependence function 𝑙(𝑥) is defined as 1058 

follows. 1059 

𝑙(𝑥) = lim𝑡↓0 𝑡−1 ℙ[𝐹1(𝑋1) > 1 − 𝑡𝑥1, …  , 𝐹𝑑(𝑋𝑑) > 1 − 𝑡𝑥𝑑] 1060 

where 𝑋 = (𝑋1, … , 𝑋𝑑) is a random vector with continuous marginal distribution functions and a 1061 

joint distribution function. ℙ ( 𝑋1 ≤ 𝑥1, …  , 𝑋𝑑  ≤ 𝑥𝑑),  𝑡 > 0 is small and the numbers  𝑥1, … , 𝑥𝑑  ∈1062 

[0, ∞) parametrize the relative distances to the upper endpoints of the 𝑑 variables (in  this case two, 1063 

namely the respective indicator pair). Tail dependence is therefore investigated close to the upper 1064 

endpoints (1,1) of the joint (bivariate) distribution. An example of how to interpret plots of the stable 1065 

tail dependence function is given in Figure B1 and Figure B2. These illustrate plots of the stable tail 1066 

dependence function for several levels of two Gumbel-Hougaard copulas with theoretical upper TDCs 1067 

of 0.78 and 0.01 indicating strong upper tail dependence and almost no upper tail dependence, 1068 

respectively. 1069 

  1070 
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  1071 

Figure B1. Example plot of the stable tail dependence function for a Gumbel-Hougaard copula with 1072 

a TDC of 0.78 1073 

 1074 

 1075 

Figure B2. Example plot of the stable tail dependence function for a Gumbel-Hougaard copula with 1076 

a TDC of 0.01 1077 

Level sets would show 90° bends and straight lines, respectively for the two extreme cases of 1078 

complete asymptotic dependence and asymptotic independence. Given this indication, the upper 1079 

figure clearly depicts the high degree of tail dependence present, whereas the lower figure points 1080 
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towards (asymptotic) independence, as expected. Figures B3, B4, B5 and B6 show plots of the stable 1081 

tail dependence function for the indicator pairs i) - iv) , respectively. 1082 

  1083 

Figure B3. Plot of the stable tail dependence function for indicator pair i) 1084 

  1085 
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 1086 

Figure B4. Plot of the stable tail dependence function for indicator pair ii) 1087 

 1088 

 1089 

Figure B5. Plot of the stable tail dependence function for indicator pair iii) 1090 
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 1091 

Figure B6. Plot of the stable tail dependence function for indicator pair iv) 1092 

The plots clearly indicate a low level of tail dependence for indicator pairs i) to iv) as the level sets are 1093 

close to straight lines. However, level sets of indicator pair iv)  get closer to the curves shown in 1094 

Figure A10 with a higher relative distance to the end point which indicates a higher degree of 1095 

asymptotic dependence than indicator pairs i) to iii). These findings are in line with the values 1096 

reported for the upper TDCs in Tables 1 and A5, where the estimated upper TDCs for indicator pairs i) 1097 

to iii) were {0.00; 0.00;0.00}, {0.00;0.00;0.06} and {0.00;0.00;0.28} and {0.00;0.01;0.32} for indicator 1098 

pair iv), respectively. The findings for the stable tail dependence function method are therefore in 1099 

line with the findings reported in Tables 1 and A9 and qualitatively support the result indicating only 1100 

a weak upper tail dependence. 1101 
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Online Appenix: R-Code 1103 

# Niklas Möhring, 13.06.2018 1104 
# Appendix to the paper "Quantity based indicators fail to identify extreme 1105 
pesticide risks" by Möhring, Gaba and Finger 1106 
# Documentation of the computation procedure of tail dependence 1107 
coefficients and correlation coefficients in R  1108 
# A detailed description of the procedure and sources can be found in 1109 
section 3.4 of the paper 1110 
 1111 
 1112 
library(dplyr) 1113 
library(VineCopula) 1114 
library(copBasic) 1115 
 1116 
 1117 
# i) Test independence of indicator pairs analytically with independence 1118 
tests #### 1119 
 1120 
 1121 
# Independence tests 1122 
# Repeat for all indicator combinations, crops and aggregation levels 1123 
 1124 
BiCopIndTest(dat[1]][,1], dat[[1]][,2])   # Convert observations to pseudo 1125 
observations with pobs() before testing 1126 
 1127 
 1128 
 1129 
 1130 
# ii) Estimate copula parameters and TDCs for a wide range of copula 1131 
families with a semi-parametric estimation procedure with empirical margins 1132 
#### 1133 
 1134 
 1135 
# Repeat for all indicator combinations, crops, aggregation levels and 1136 
copula families 1137 
summary(BiCopSelect(dat[[1]],dat[[2]],familyset = xy,rotations = FALSE)) # 1138 
Convert observations to pseudo observations with pobs() before testing, 1139 
insert specific copula in familyset 1140 
 1141 
 1142 
 1143 
 1144 
# iii) Choose the three best fitting copula families over all indicator 1145 
pairs #### 1146 
 1147 
 1148 
# Choose the three best fitting copula families according to AIC and BIC 1149 
values, as well as graphical fit with simulated copula distributions 1150 
# Repeat for all indicator combinations, crops and aggregation levels 1151 
 1152 
BiCopCompare(pobs(dat$ind1), pobs(dat$ind2)) 1153 
 1154 
 1155 
 1156 
 1157 
 1158 
# iv) Identify copula family with best goodness-of-fit #### 1159 
 1160 
# Rank copula families according to Vuong and Clarke tests (with and 1161 
without corrections) 1162 
# Repeat for all indicator combinations, crops and aggregation levels 1163 
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 1164 
BiCopVuongClarke(pobs(dat$ind1), pobs(dat$ind2))# 20 - 16 -19 1165 
BiCopVuongClarke(pobs(dat$ind1), pobs(dat$ind2),correction = "Akaike") 1166 
BiCopVuongClarke(pobs(dat$ind1), pobs(dat$ind2),correction = "Schwarz")  # 1167 
Based on the results of all tests identify the copula with best goodness of 1168 
fit out of the three families in step iii) 1169 
 1170 
 1171 
 1172 
 1173 
 1174 
# v) Check robustness of obtained copula results with a parametric 1175 
bootstrap test and the fully non-parametric stable tail dependence function 1176 
approach #### 1177 
 1178 
 1179 
 1180 
# Semi-parametric bootstrap test for copula goodness of fit  based on 1181 
Kendalls process (and CvM statistics) 1182 
# Repeat for all indicator combinations, crops and aggregation levels 1183 
 1184 
BiCopGofTest(dat[[1]], dat[[2]], family = XY,method = "Kendall",B=100) # 1185 
Test if the above chosen copula families resemble the empirical copula well 1186 
based on CvM results 1187 
 1188 
 1189 
 1190 
# Fully non-parametric robustness checks for copulas using the stable tail 1191 
dependence function 1192 
# Repeat for all indicator combinations, crops and aggregation levels 1193 
 1194 
 1195 
stabtaildepf(dat[[1]])  # the data must contain two transformed (pobs()) 1196 
columns with the indicators to compare 1197 
stabtaildepf(dat[[1]], smooth=TRUE, ploton=F, col=2)   1198 
 1199 
 1200 
 1201 
 1202 
# Estimate Kendalls tau correlation coefficients and p-values #### 1203 
# Repeat for all indicator combinations, crops and aggregation levels 1204 
 1205 
cor.test( dat[[1]], dat[[2]], method = "kendall",exact = FALSE)  1206 
 1207 

 1208 


