
ETH Library

Polynomial chaos expansions
for uncertain dynamical systems.
Applications in earthquake
engineering

Report

Author(s):
Mai, Chu V.

Publication date:
2018-08

Permanent link:
https://doi.org/10.3929/ethz-b-000287120

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
IBK Bericht 502

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000287120
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


i b k
Institut für Baustatik und Konstruktion, ETH Zürich

Polynomial chaos expansions for 
uncertain dynamical systems. 
Applications in earthquake 
engineering  

Chu Van MAI 

 IBK Bericht Nr. 502, August 2018



KEYWORDS:   Polynomial chaos expansions, uncertain dynamical systems, earthquake 
engineering, surrogate modelling, time-warping, nonlinear autoregressive with exogenous input 
models, fragility curves

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die 
der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, 
der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der 
Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, 
vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im 
Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes in der 
jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen 
unterliegen den Strafbestimmungen des Urheberrechts.

Chu Van MAI: Polynomial chaos expansions for uncertain dynamical systems. Applications in 
earthquake engineering

Bericht IBK Nr. 502, März 2018

© 2018 Institut für Baustatik und Konstruktion der ETH Zürich, Zürich

Sie finden das Verzeichnis der IBK-Publikationen auf unserer Homepage unter: 
The catalogue of IBK publications is available on our homepage at:
http://www.ibk.ethz.ch/publikationen/ibk-reports/alle-berichte.html

Die meisten Berichte von Nr. 270 bis Nr. 333 sind auch noch in gedruckter Form unter Angabe der 
ISBN-Nr. erhältlich bei:
Most reports from No. 270 to No. 333 can still be purchased in printed form by indicating the ISBN 
number from:

AVA Verlagsauslieferung AG
Centralweg 16
CH-8910 Affoltern am Albis

Tel. ++41 44 762 42 00 
Fax ++41 44 762 42 10
e-mail: avainfo@ava.ch

Berichte ab Nr. 334 sind nur noch in elektronischer Form verfügbar. Sie finden die 
entsprechenden Dateien in der research-collection der ETH Bibliothek unter https://
www.research-collection.ethz.ch oder über die Links auf unserer Homepage.
Reports from No. 334 onwards are only available in electronic form. The respective files can be 
found in the research-collection of the ETH Library at https://www.research-collection.ethz.ch or 
through the links on our homepage.



POLYNOMIAL CHAOS EXPANSIONS FOR

UNCERTAIN DYNAMICAL SYSTEMS

APPLICATIONS IN EARTHQUAKE
ENGINEERING

Chu Van MAI

Institute of Structural Engineering
ETH Zurich

August 2018





i

Foreword

Computer simulations are nowadays a standard tool for modelling complex engineering

systems such as bridges, nuclear power plants or wind turbines. However, simulation

results allow the analyst to make decisions only if they provide an accurate description

of the real world. Although the physics of the system behaviour is well understood

in most cases, meaningful predictions of its future performance are obtained only if its

characteristics and properties, as well as its loading and more generally its environmental

conditions are perfectly well known. This is rarely the case in practice, unfortunately.

In this context, uncertainty quantification aims at properly modelling the lack of

knowledge and/or the variability of parameters describing the system using probability

theory. Then uncertainties on the input parameters can be propagated through the com-

putational model of the system, so that certain statistics of the predicted performance

indicators can be estimated: mean, standard deviation, probability of exceeding some

admissible threshold, etc. Propagating uncertainties through a computational model re-

quires repeated runs of the latter for a sample set of input parameters. Monte Carlo

simulation usually require a large number of such simulations, which is not tractable in

the case of costly, high-fidelity models. In this respect surrogate models such as poly-

nomial chaos expansions have been developed in the last decades to make such analyses

feasible.

This research report was written as a PhD thesis (ETH Dissertation Nr. 23822) by Chu

Van MAI and presents innovative methods to build surrogate models of realistic dynamical

systems found in civil, mechanical and chemical engineering. The new techniques have

been applied in the context of earthquake engineering, where the estimation of the so-

called fragility curves of structures submitted to seismic ground motion is of interest. I

would like to thank Chu Van MAI for his high commitment all along this research project,

and the quality of his contributions to the development of performance-based engineering.

Zurich, August 2018

Bruno Sudret
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Abstract
In modern science and engineering, the consideration of uncertainties has become

indispensable. The framework of uncertainty quantification, which aims at identifying,
quantifying and hierarchizing the sources of uncertainties and studying their effects on
the outputs of computational models, has been developed in the last decades. To this
end, polynomial chaos expansions (PCEs) represent a powerful and versatile tool which
is commonly used in various research fields. The objective of this PhD work is to develop
PCE methods that can be applied to dynamical systems with uncertain parameters and/or
uncertain excitation.

Chapter 2 presents the general mathematical foundation of generalized PCEs and all
the aspects associated with their practical computation. An original analytical formu-
lation of derivatives of PCEs, which allows a straightforward computation of sensitivity
measures, is introduced.

In Chapter 3, a literature review on PCE methods for uncertain dynamical systems
is thoroughly presented. It opens discussions on why pure vanilla PCEs fail to represent
the uncertain behaviour of dynamical systems and how to overcome this issue. Success-
ful existing methods are examined, which reveals their common strategy. Nonetheless,
most of those methods are intrusive by construction, meaning that they are developed to
solve specific uncertain evolution equations. The findings constitute the guidance upon
which two non-intrusive, general-purpose methods are proposed in the remaining of the
manuscript.

Chapter 4 introduces a PC-based stochastic time-warping method to solve problems of
random oscillations. The idea is to capture the dynamics characterized by the vibration
frequency with the stochastic time-warping process before applying PCEs to represent
the effects of uncertainties on the random amplitudes.

In Chapter 5, a more general method is investigated to solve problems of mechani-
cal systems subject to stochastic excitations. The dynamics is handled with a stochastic
nonlinear autoregressive with exogenous input (NARX) model, whose stochastic param-
eters are modelled with PCEs. The use of a sparsity-promoting regression technique is
considered for selecting appropriate NARX terms and polynomial chaos functions.

Finally, Chapter 6 features applications of PC-based surrogate models in the con-
text of earthquake engineering. Predictions of the transient structural responses obtained
with the proposed surrogates are used to compute seismic fragility curves. Original non-
parametric methods for computing these curves are introduced, which allows one to assess
the accuracy of the commonly used parametric methods based on the lognormal format.

The manuscript focuses on applications of PCEs in structural dynamics. However, the
developed methods can be easily extended and used in various contexts as some numeri-
cal case studies from chemical engineering will illustrate. More importantly, the strategy
utilized in the manuscript appears to be a promising research path which differs signif-
icantly from existing approaches and shall attract more attention from the uncertainty
quantification community.
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Résumé
De nos jours, il est indispensable de considérer les effets des incertitudes sur les pré-

dictions des modèles numériques. La quantification des incertitudes, qui a pour but
d’identifier, de quantifier et de hiérarchiser les sources d’incertitudes ainsi que d’étudier
leurs effets sur les sorties des modèles numériques, a été constamment développée durant
les deux dernières décennies. A ce titre, la décomposition en polynômes de chaos (PCs)
représente un outil puissant et générique utilisé dans de nombreux domaines. L’objectif
de la présente thèse est de développer des méthodes basées sur les PCs pour les systèmes
dynamiques ayant des paramètres incertains et/ou soumis à des excitations incertaines.

Le chapitre 2 présente les fondations mathématiques des PCs ainsi que tous les aspects
associés à leur implémentation d’un point de vue pratique. Une formulation analytique
originale des dérivées de PCs, qui permet une estimation directe des indices de sensibilité,
est proposée.

Dans le chapitre 3, nous présentons une étude bibliographique des méthodes basées sur
les PCs pour résoudre les problèmes de systèmes dynamiques incertains. Nous évoquons
les raisons pour lesquelles les PCs classiques n’arrivent pas à représenter le comporte-
ment incertain des systèmes dynamiques et analysons les méthodes les plus performantes
proposées récemment. Cependant, ces dernières sont intrusives dans la plupart des cas,
c’est-à-dire qu’elles sont développées pour un système spécifique. L’étude bibliographique
nous permet d’orienter notre recherche vers deux méthodes non-intrusives, qui sont dé-
taillées dans la suite du rapport.

Dans le chapitre 4, nous introduisons une méthode basée sur les PCs et la technique
de time-warping stochastique pour résoudre les problèmes d’oscillations aléatoires. L’idée
est de capturer la dynamique caractérisée par la fréquence de vibration par le processus
de time-warping avant d’appliquer les PCs pour représenter les effets des incertitudes sur
les amplitudes incertaines.

Dans le chapitre 5, une méthode plus générale est étudiée afin de résoudre les pro-
blèmes des systèmes mécaniques soumis à des excitations stochastiques. La dynamique est
ainsi capturée par un modèle auto-régressif non-linéaire stochastique dont les paramètres
incertains sont modélisés par PCs. L’utilisation d’une technique favorisant des structures
creuses permet de sélectionner les fonctions auto-régressives et les polynômes appropriés
de façon optimale.

Le chapitre 6 présente les applications de modèles de substitution basés sur PCs dans
le contexte du génie parasismique. Les prédictions des réponses structurales transitoires
obtenues avec les méta-modèles sont utilisées pour calculer les courbes de fragilité. Deux
méthodes non-paramétriques sont proposées pour ce calcul. Elles permettent d’évaluer la
pertinence des méthodes classiques basées sur l’hypothèse de distribution lognormale.

Le manuscrit aborde principalement des applications en dynamique des structures.
Il est néanmoins possible d’appliquer les méthodes développées dans des contextes variés
comme le montrent les exemples issus de l’ingénierie chimique. La stratégie utilisée semble
prometteuse. Elle est différente des approches classiques et mérite plus d’attention de la
communauté scientifique travaillant sur le thème de la quantification des incertitudes.
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1
Introduction

1.1 Introduction to uncertainty quantification

1.1.1 Computer simulation

In modern science and engineering, computer simulations represent an indispensable tool
for research and design processes. The computer models, which are based on rigorous
mathematical equations and numerical methods, allow one to reproduce and predict the
behaviour of complex physical systems. The use of computer models is unanimous in all
contexts with applications including the simulation and forecast of large scale natural phe-
nomena (e.g. typhoons, earthquakes, biological and chemical systems), human-systems
(e.g. in economic and social science) and engineering systems (e.g. machines, buildings,
aircrafts).

It is worth noting that the processor power is predicted to double every two years
according to the so-called Moore’s law which still holds true (Moore, 1965; Mack, 2011).
For instance, during the 20-year period from 1986 to 2007 the general purpose computing
capacity grew at an annual rate of 58% (Hilbert and López, 2011). In particular, the
development of super-computers with several thousands of processors has allowed the
simulation of extremely large and complex systems, e.g. the behaviour of the entire
Tokyo city during an earthquake (Ichimura et al., 2014).

Despite the drastic growth of the computing power, one challenge will always remain
for practitioners: the more complex the considered system is, the harder it becomes to
represent the system accurately with a computer model. First of all, computer models
are always based on assumptions simplifying or approximating the real world phenomena,
thus resulting in inevitable modelling errors. Second, the parameters used as input of the
simulations are hardly known perfectly because of their inherent natural variability or
lack of knowledge. In other words, effects of uncertainty on analyses with computer
simulations are certain. This is a fact that modellers must always be aware of. In this
context, uncertainty quantification, which aims at dealing with uncertainties, has become
a must in all branches of science and engineering.

1.1.2 Uncertainty quantification

In engineering, uncertainty quantification (UQ) is conducted by a multi-step analysis,
which can be graphically summarized by the sketch depicted in Figure 1.1.
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Figure 1.1 – General sketch for uncertainty quantification in engineering (adapted from Sudret
(2007))

Step A consists in defining the model of the considered physical system and the asso-
ciated criteria used to assess the performance of the system. Herein, all the ingredients
necessary for a classical deterministic analysis are defined, namely the input and output
of the computer model and the associated algorithms. The model is commonly defined
by the functionM: x 7→ y =M(x) where x gathers the input parameters and y is the
model response. In a general case, x includes parameters describing and governing the
system, which is problem-dependent whereas y includes the quantities of interest.

Step B consists in quantifying the sources of uncertainties. More precisely, it relies
on the identification of input parameters that are not perfectly known, i.e. prone to
uncertainties and the modelling of these parameters in a probabilistic context by means
of statistical methods using data from experiments, legacy data or expert judgement.
Step B results in the random vector of input parametersX modelled by a joint probability
density function (PDF) fX .

Step C consists in propagating the input parameters uncertainties through the model
to the output quantities of interest. The objective is to study the probabilistic content
of the response. Various methods for propagating uncertainties can be used to obtain
different levels of information on the output (Sudret, 2007).

• Second moment methods are used to compute the mean and variance of the response.
To this end, one can use Monte Carlo simulation, perturbation, quadrature and
weighted integral methods.

• Structural reliability methods (Ditlevsen and Madsen, 1996; Lemaire, 2009) are used
to compute the probability of not fulfilling a prescribed safety criterion, which is
obtained from the tail of the PDF of the model output. These methods include
Monte Carlo simulation, importance sampling, subset simulation, first- and second-
order reliability methods.
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• Spectral analysis allows one to represent the complete probabilistic content (i.e. the
entire PDF) of the response by a functional tool, which represents the response as
a function of the random input parameters. The spectral stochastic finite element
method introduced by Ghanem and Spanos (1991) is such a tool.

Step C’ aims at conducting sensitivity analysis on the considered model. To simulate
complex engineering problems, a large number of input parameters is commonly required,
as specified in Step A. Quantifying the probabilistic model (Step B) for each of these
parameters might require important efforts and in reality appears unnecessary. This is due
to the fact that usually only a small subset of the parameters play a significant role whereas
the variabilities of the remaining parameters do not induce important effects. Therefore
it makes sense to rank the parameters in accordance with their relative importances so
as to identify those with dominant and negligible effects. Sensitivity analysis techniques
such as perturbation-, FORM- and variance-based methods (Sudret, 2007), are used for
this purpose.

At this point, it is worth emphasizing that one can distinguish two types of uncertain-
ties, namely aleatory and epistemic (Der Kiureghian and Ditlevsen, 2009). Uncertainties
are characterized as aleatory if it is impossible to reduce them. They are related to the
inherent randomness of the considered phenomenon. As an example, modelling uncer-
tain parameters with probabilistic distributions using empirical data (Step B) consists
in representing the intrinsic aleatory variability of the parameters. In contrast, when
modellers foresee a possibility to reduce uncertainties by gathering more knowledge, in-
formation and data, they are considered epistemic. For instance, the parameters defining
the probabilistic models which are commonly determined using empirical data are prone
to epistemic uncertainties which reduce with more observations. From this simple exam-
ple, one sees that most problems in engineering involve both types of uncertainties. The
current manuscript investigate the problem of uncertainty propagation (Step C), in which
uncertainties from input parameters are classified as aleatory. The joint effects of aleatory
and epistemic uncertainties are not in the scope of the work. However, an investigation
on epistemic uncertainties due to limited data (i.e. statistical uncertainty) affecting the
estimated output quantities of interest (i.e. fragility curves) will be conducted in Chap-
ter 6.

1.2 Uncertainty quantification in earthquake engi-
neering

The general UQ framework specified in the previous section can be applied to all engi-
neering problems, e.g. design of cars and aircrafts. In this section, the framework will
be explained step-by-step in detail in the context of earthquake engineering, which is
specifically of interest in civil and nuclear engineering.
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1.2.1 Defining model

In Step A, the computer model of the physical system (i.e. structure, mechanical compo-
nent) is defined. It includes the system of equations governing the structural behaviour
and the numerical methods used as solvers. The simplest models are single- and multi-
degree-of-freedom oscillators, which have been commonly used to describe in a simplified
manner the displacements and restoring forces of the structures (Chopra, 1995). More
complicated models are obtained with the finite element (FE) method, in which the entire
large, complex structure is numerically divided into smaller, simpler parts called finite el-
ements. Each of the finite elements is modelled by simple equations, which are then
assembled into a large system of equations describing the original problem. In order to
define a FE model, the following input parameters are required:

• Parameters determining the geometry of the system including dimensions of ele-
ments, cross-sections, etc.

• Parameters determining the material constitutive law, e.g. the Young’s modulus,
the yield stress and strain, parameters governing the shape of hysteretic loops, etc.

• Parameters determining the loading applied to the system which might be time-
independent (e.g. dead, live, intermittent loads) or time-dependent (e.g. earthquake
and wind excitations).

• Parameters determining the boundary conditions, e.g. the contact between compo-
nents, the imposed displacement, the degree of freedom at the boundary nodes.

• “Parameters” (more precisely user-defined options) determining the algorithm used
to solve the FE code. For instance, these parameters concern the consideration of
the P −∆ effects, the use of force- or displacement-based elements, the refinement
of the FE mesh.

The output quantities of the model include the responses of the components and struc-
tures to the earthquake excitation and other types of loadings. The responses commonly
searched for are time histories of nodal displacements, reaction forces, stress and strain
fields, crack width at a section, etc.

1.2.2 Quantifying sources of uncertainty

After the computer model of the system has been defined in Step A, the quantification of
sources of uncertainty (Step B) is now of interest. Earthquake engineering is particularly
exposed to uncertainties from different sources as listed in the following:

• Geometry of the system: the mechanical components and structures are built ac-
cording to a given design. Due to human- or equipment-related imperfections during
the manufacturing process, the geometry might not correspond exactly the original
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design. In some cases, the discrepancies between the design and the real model rep-
resent a harmful flaw for the components and structures, see e.g. Le Gratiet et al.
(2016). The probabilistic models for the geometrical parameters can be obtained
by statistical analysis on the manufactured elements or the legacy database.

• Material constitutive law: in reality, the parameters governing the material be-
haviour differ from the codified properties. Note that the recommended design val-
ues are conventionally chosen as prescribed quantiles of the properties distribution
functions. The statistical models of material properties can be found in the prob-
abilistic codes (Joint Committee on Structural Safety, 2001b) or statistical studies
(Mirza and MacGregor, 1979; Bartlett and Macgregor, 1996). Ghanem and Spanos
(1991); Zhang and Ellingwood (1995) modelled the uncertain material properties
as random fields by series expansions involving orthogonal functions in the context
of stochastic FE method. Recently, Kwon and Elnashai (2006); Liel et al. (2009)
considered uncertainties in structural component strength, stiffness, deformation
capacity and cyclic deterioration in seismic risk assessment.

• Loading: the loads (either dead, live or intermittent) applied to the structures are
always different from the codified values used in the design process. Probabilistic
models for these loads can be found in the codes, for instance see Joint Committee
on Structural Safety (2001a). In earthquake engineering, special attention has been
given to the variability of seismic excitations which represents a paramount source
of uncertainty. The randomness of earthquake excitations concerns the magnitude
of the event and the associated return period, the direction of the shaking, the
spatial variability of the ground motions, the temporal and spectral contents of
the motions, etc. The variability of seismic motions has been a long-term topic
in earthquake engineering. Probabilistic models have been proposed to model the
seismic excitations. In the 1960s, random process models were used to represent
earthquake accelerograms (Bogdanoff et al., 1961; Rosenblueth, 1964; Iyengar and
Iyengar, 1969). Sophisticated probabilistic models for seismic motions have been
continuously introduced and improved, see e.g. Conte and Peng (1997); Boore
(2003); Rezaeian and Der Kiureghian (2010a); Konakli and Der Kiureghian (2012),
among others.

1.2.3 Propagating uncertainty

The third step consists in propagating uncertainties from the uncertain parameters iden-
tified and modelled by probabilistic laws so as to study the responses statistical content.

1.2.3.1 Second-moment analysis

The mean and standard deviation of the responses are determined by second moment
methods. The most commonly used include Monte Carlo simulation and equivalent lin-
earization.
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The Monte Carlo method is based on the law of large numbers, of which the general
idea can be summarized as follows. By means of random sampling techniques (Rubinstein,
1981; Owen, 1992), a large sample of the uncertain parameters x is generated in accor-
dance with the joint PDF fX . Using the deterministic numerical model, an equally large
population of resulting responses y is obtained. This allows the Monte Carlo estimates
of the statistical moments of the response quantities. The Monte Carlo estimates have
been commonly used as references to validate any newly proposed technique, see e.g. Liu
et al. (1986); Ghanem and Spanos (1991). Use of MCS for second-moment analysis in
structural dynamics and earthquake engineering is universal, see e.g. Shinozuka (1972);
Papadrakakis and Papadopoulos (1996); Hwang et al. (1998); Duenas-Osorio et al. (2007).

Equivalent linearization (EQL) is a method developed specifically for estimating the
first two moments of the responses of a weakly or slightly non-linear system to random
excitation (Caughey, 1963). The method aims at replacing a non-linear system with an
equivalent linear one such that an approximation error is minimized (Proppe et al., 2003).
Multiple linearization criteria might be of interest, e.g. the equality between the first two
moments of the linearized and non-linearized responses (Proppe et al., 2003), criterion
based on the dissipative energy (Elishakoff and Zhang, 1992), tail-equivalent probability
(Fujimura and Der Kiureghian, 2007; Der Kiureghian and Fujimura, 2009), etc.

1.2.3.2 Reliability analysis

Reliability analysis in the context of earthquake engineering aims at computing the proba-
bility that the considered component or structure fails to fulfil a prescribed safety criterion,
which is commonly specified by a limit value of structural responses, namely displacement,
deformation or stress. To clearly define the failure of the system, a limit state function,
which depends on the input parameters x, is specified. In the space of input parameters,
the limit state function x 7→ g(x) conventionally defines two domains, namely the safe
domain Ds = {x : g(x) > 0} and the failure domain Df = {x : g(x) ≤ 0}. Given a set of
parameters x∗, the system is considered in the failure mode (resp. safe mode) if x∗ ∈ Df
(resp. x∗ ∈ Ds). The common reliability methods include Monte Carlo simulation (MCS)
and its variants (subset simulation, importance sampling), first- and second-order relia-
bility methods.

MCS is the universal tool to conduct reliability analyses in earthquake engineering.
Rosenblueth (1964) performed a probabilistic earthquake-resistant design in which prob-
abilistic distributions of parameters governing the earthquake excitations and the random
characteristics of the structures were taken into account. MCS was used to compute the
probability of survival (i.e. non-failure) of the structures, based on which the adequacy
of the proposed designs could be assessed. With the increasing computing power, use of
MCS has become more and more popular for complex structures, see e.g. Karamlou and
Bocchini (2015); Mai et al. (2016a). However, the low convergence rate of MCS hinders its
application to the computation of small failure probabilities, which is of particular interest
in nuclear engineering when low-probability events might lead to considerable damages
and consequences. Therefore, variance-reduction techniques, e.g. importance sampling
(Harbitz, 1983; Melchers, 1989) and subset simulation (Au and Beck, 2001, 2003) have
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been proposed to accelerate the convergence, thus improving the efficiency of MCS.
The First- and Second-Order Reliability Method (FORM and SORM) were introduced

to compute the approximate probability of failure at a low cost compared to MCS. FORM
(resp. SORM) relies on first transforming the random variables X into a set of standard
normal variablesU , then approximating the failure surface in the space ofU in the vicinity
of the most likely failure point with a tangent hyperplane (resp. parabola) (Hurtado and
Barbat, 1998). In principle, FORM and SORM are designed for time-invariant reliability
problems, which is due to the fact that the time variable is not present in the procedure.
However these methods have also been used for stochastic dynamic problems in earthquake
engineering, provided that the excitations are discretized and represented in terms of a
finite number of random variables (Der Kiureghian and Fujimura, 2009). Li and Der
Kiureghian (1995) first used FORM for assessing the safety of non-linear structures subject
to random excitations. Subsequent publications in this topic include the works by Zhang
and Der Kiureghian (1997); Der Kiureghian (2000); Franchin (2004); Barbato and Conte
(2006).

1.2.3.3 Spectral methods

MCS represents a pointwise characterization of the random response, i.e. the value of
the response given a set of input parameters x is computed locally. Thus a sample
with a sufficiently fine resolution in the parameters domain is required to capture the
statistical properties of the response. The pointwise characterization can bee seen as a
discretized form of a global continuous function relating the response y to the random
input parameters x. In contrary, spectral UQ methods aim at reconstructing a functional
dependence of the response on x. The functional form is typically written as follows:

y
def= M(x) =

∑

i∈N
yi φi(x), (1.1)

in which φi(x)’s constitute a suitable basis of the space of second-order random variables
x and yi’s are the coordinates of y on this basis. The spectral representation in Eq. (1.1)
is exploited to obtain the statistical properties of y, either analytically or numerically by
random sampling.

Ghanem and Spanos (1991) pioneered the use of spectral representations in the con-
text of the stochastic finite element method. The original work investigated the stochastic
response of a structure with spatial random field of Young’s modulus of the material. Use
of Hermite polynomial chaos functions was introduced to represent the random response.
Since then, this method has been generalized, popularized and applied in stochastic struc-
tural mechanics and several other fields (Stefanou, 2009). In earthquake engineering,
recent applications of polynomial chaos expansions include the work by Ghanem et al.
(2005); Sudret and Mai (2013a); Saha et al. (2013); Spiridonakos and Chatzi (2015a,b).
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1.2.3.4 Sensitivity analysis

In the context of earthquake engineering, sensitivity analysis is conducted to identify the
uncertain parameters with significant (resp. negligible) effects on structural responses
and on the system’s reliability.

Wall and Bucher (1987) investigated the influences of parameters uncertainties
(namely soil parameters in the Kanai-Tajimi earthquake model (Kanai, 1957) and os-
cillator’s parameters) on the expected exceedance rate of a linear oscillator. The results
indicated that ground and system uncertainties cause large variations of the mean ex-
ceedance rate, which must not be neglected in reliability analysis. Jensen and Iwan (1992)
considered the sensitivity of the random responses of a five-degree-of-freedom primary-
secondary system with respect to the stochastic stiffness. By sensitivity analysis, Der
Kiureghian (1996) found out that for the considered primary subsystem, the damping
uncertainty is the most important whereas the mass and stiffness are the most relevant
for the secondary subsystem. Kahan et al. (1996) analyzed the sensitivity of the struc-
tural responses with respect to small spatial variability of seismic motions. Based on the
sensitivity analysis, Huh and Haldar (2001) could consider two parameters to be set at
their mean values, namely the plastic section modulus of the beams and columns, which
allowed them to reduce the complexity of the reliability analysis. Porter et al. (2002) ex-
amined the effects of various factors namely spectral acceleration, ground-motion details,
mass, damping, structural force-deformation behaviour and building-component fragility
on the repair cost of a building in future earthquakes.

1.3 Probabilistic seismic risk assessment

In earthquake engineering, it is of utmost importance to study the statistics of struc-
tural responses (e.g. time-dependent displacements, stresses), to quantify the probability
of failure and conduct a sensitivity analysis on uncertain parameters. However, it has
been shown that the mentioned information is not sufficient for properly assessing the
performance of structures, in particular those of major importance such as nuclear power
plants, high-rise buildings or other structures with important social impacts. There has
been a need for a probabilistic framework to assess the seismic risk of structures in socio-
economic terms, e.g. number of fatalities and injuries, downtime and consequent financial
costs.

To this end, the Pacific Earthquake Engineering Center (PEER) has been developing
a probabilistic performance-based earthquake engineering (PBEE) framework (Cornell
and Krawinkler, 2000; Günay and Mosalam, 2013). In this multi-element framework,
stochastic dynamics play an important role. The modeller/engineer conducts non-linear
transient analyses of the structures, in some cases with stochastic structural properties,
subject to random seismic excitations selected from a database of recorded motions or
generated synthetically with probabilistic models. The seismic intensity measures and
resulting random responses are retrieved to build a probabilistic seismic demand model,
which consequently specifies the probability conditioned on an intensity measure that
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the structural response exceeds a critical value. The outcome is commonly represented
graphically as seismic fragility curves.

Due to the high computational cost of the non-linear transient analyses, usually only a
limited number of simulations is performed. In addition, use of simplifying assumptions for
analytical and numerical conveniences is a widely accepted practice (e.g. set the shape
of the fragility curves to a lognormal cumulative distribution function). However, the
current development of advanced computational approaches, e.g. the spectral stochastic
finite element method, might allow one to validate such assumptions and practice. This
will be done with the use of spectral methods for surrogating the original structural model,
thus obtaining reliable estimates at acceptable computational expenses.

1.4 Surrogate modelling

Use of Monte Carlo simulation (MCS) for propagating uncertainties (e.g. for second mo-
ment, reliability and sensitivity analyses) is universal in engineering. It is due to the fact
that MCS is theoretically simple, computationally straightforward, generally applicable
and well-suited for parallel processing (Schuëller, 2001). The MCS procedure does not
depend on the complexity of the considered problem, e.g. the number of random parame-
ters, the complexity of non-linear behaviours. However, the low convergence rate of MCS
estimators represents a major issue that needs to be solved. For instance, to evaluate
a probability of failure of magnitude 10−k with relative accuracy of 5%, the number of
model simulations required by MCS is 4× 10k+2. In earthquake engineering, each model
simulation (i.e. non-linear transient analysis of a structure under earthquake shakings)
is computationally expensive. Despite current considerable computing power, conducting
a proper MCS on daily design leads to prohibitive costs for engineers. There are several
techniques proposed to substitute MCS, e.g. equivalent linearization and perturbation
method for second moment analysis, FORM and SORM for reliability analysis. In partic-
ular, MCS represents a collocation-type method which characterizes the random response
point-wise. It is appealing to consider a method that allows a global representation of
the response and can be used for several purposes (i.e. second moment, reliability and
sensitivity analyses) at low computational expenses.

In this context, surrogate models, also known as response surface models, metamodels
or emulators, appear as a promising alternative to MCS (Forrester et al., 2008). In a
nutshell, surrogate modelling aims at constructing an approximate model that mimics
the behaviour of the considered computer simulation while being computationally cheap
to evaluate. The process of surrogate modelling consists of three stages (Simpson et al.,
2001; Forrester et al., 2008):

• Stage 1: One first prepares the data, a.k.a. the experimental design, used for fitting
the surrogate model. The data are collected from numerical simulations or real
measurements. They consist of a set of realizations of random parameters which
might be obtained by different sampling schemes and the associated response values.
Next, one chooses a surrogate modelling approach to investigate. Forrester et al.
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(2008) presented a wide variety of options, namely polynomial functions, radial basis
function, Kriging, support vector regression, artificial neural networks. However, we
will not go through all the mentioned approaches in this manuscript. We focus only
on the polynomial chaos expansion metamodelling technique, which was introduced
in the context of the spectral stochastic finite element method (Ghanem and Spanos,
1991).

• Stage 2: Using the prepared data, one determines the parameters defining the sur-
rogate model. This is the training process, in which numerical algorithms are used
to identify parameters that lead to a sufficiently accurate surrogate model in the
sense that it satisfies specified criteria, e.g. minimizing an error estimator.

• Stage 3: The accuracy of the identified model is validated on an independent vali-
dation set which is different from the data used for training. The surrogate model is
judged in terms of predicting the random responses. Only after the validation can
the surrogate model be used for other purposes, e.g. second moment analysis, sensi-
tivity analysis, design optimization. Note that one may also rely on cross-validation
techniques in cases when it is not possible to have an independent validation set.

In the context of stochastic mechanics, Wong (1985) used the response surface method
to replace a long-running FE code in the reliability analysis of soil slopes with uncertain
soil density, elastic moduli, cohesion and angle of friction. Faravelli (1989) represented the
structural response (stress) in terms of polynomial functions of spatial averages of design
variables (i.e. the Young’s modulus and the thickness of the component). The response
surface model was then used to assess the reliability of a pressure vessel. Ghanem and
Spanos (1991) used Hermite polynomial chaos basis functions to represent the stochastic
response of a structure with spatial random field of Young’s modulus of the material.
Since then, spectral methods have proved their effectiveness when being used for surrogate
modelling in various fields of science and engineering, see e.g. Le Maître and Knio (2010).

In the field of earthquake engineering and probabilistic risk assessment, surrogate mod-
elling has been introduced recently. Huh and Haldar (2001) approximated the limit state
functions with polynomial response surfaces then conducted FORM for time-dependent
reliability of structures subject to earthquake motions. Iervolino et al. (2004) used sec-
ond order polynomial expansion to represent the parameters of lognormal fragility curves
(i.e. median and standard deviation) for ground supported liquid storage tanks with
uncertain liquid filling height. From a similar perspective, Towashiraporn et al. (2008)
presented the first and second order moment of the structural responses as polynomial
response surfaces of uncertain structural and earthquake properties, namely the steel yield
strength, the elastic modulus, the damping ratio and the spectral acceleration. The re-
sponse surface was then used to compute fragility curves. Liel et al. (2009) also described
the median collapse capacity of a structure as a function of the model random variables.
Sudret and Mai (2013a) used PCEs to replace a linear steel frame subject to random seis-
mic excitation, which was then combined with MCS to compute seismic fragility curves
of the structure. Saha et al. (2013) utilized PCEs for statistical analyses of responses of
base-isolated liquid storage tanks with uncertain structural parameters subject to random
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sinusoidal excitation. More recently, Gidaris et al. (2015) approximated the medians of
structural responses (e.g. peak inter-story drift and peak floor acceleration) as functions
of the uncertain structural and ground motions parameters by Kriging. The metamodel
was then used to compute seismic fragility curves.

In this work, we are particularly interested in applying polynomial chaos expansions
(PCEs) to represent the time-dependent stochastic responses of structures under earth-
quake excitations. Note that the objective is different from surrogating the first and
second order moments of the responses (Towashiraporn et al., 2008; Liel et al., 2009; Gi-
daris et al., 2015). We aim at building PCEs that are capable of predicting the response
time-histories to random values of uncertain parameters. This is a challenging task be-
cause plain vanilla PCEs are well known to fail when it comes to approximating stochastic
dynamical systems (Wan and Karniadakis, 2006; Le Maître et al., 2010). A simple and
straightforward application of PCEs is leading to inaccurate models. It is therefore of
utmost importance to figure out the reasons of the failure and find a solution to overcome
this challenging issue.

1.5 Goal and outline of the manuscript

Following this introduction, the goal of the PhD thesis is to develop polynomial chaos
expansions for stochastic dynamics1 and apply this technique to earthquake engineering.
The manuscript aims at:

• presenting a systematic and thorough review of existing methods based on PCEs in
the context of stochastic dynamics;

• investigating novel methods that can help to improve the accuracy and effectiveness
of PCEs in stochastic dynamics;

• applying the investigated methods to solve stochastic dynamics problems, in par-
ticular realistic earthquake engineering applications;

• validating assumptions that are commonly used for computing seismic fragility
curves of structures in seismic risk assessment.

To this end, the work conducted during the PhD is organized in six chapters as follows:
Chapter 2 presents briefly the general mathematical background of PCEs. In addition,

it describes the aspects associated with the use of PCEs in practice, namely the handling
of dependent random variables, the truncation of polynomial functions, the computation
of relevant coefficients using an advanced sparse adaptive scheme, the estimation of errors
and the post-processing of PCEs for obtaining statistical content of the responses. In
particular, this chapter features a section which introduces a novel method to compute
sensitivity indices using PCEs.

1For the sake of simplicity, the term “stochastic dynamics” is occasionally used in this manuscript to
refer to the considered problems of dynamical systems subject to uncertainties.
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Chapter 3 consists of a literature review of PCE methods that have been used so far
to handle stochastic dynamics problems. Advantages and limitations of each method are
pointed out and connections between them are clarified. In particular, the methods are
classified in an unprecedented manner which allows to emphasize their characteristics,
thus explaining the effectiveness (resp. ineffectiveness) of certain methods. Based on the
established big picture of the framework, two novel methods are proposed in Chapters 4
and 5.

Chapter 4 presents a novel approach for surrogating the time-dependent responses of
oscillatory systems with random parameters. The approach is based on the concept of
stochastic time-warping, which introduces an auxiliary time scale specific to each realiza-
tion of the uncertain response. The auxiliary time scale is determined so as to maximize
the similarity between the random response and a deterministic reference trajectory. PCEs
are then used to represent the transformed responses on the new time scale as well as the
stochastic time-warping parameters.

Chapter 5 investigates the use of nonlinear autoregressive representations of time series
(so-called NARX models) together with PCEs to surrogate the response time-history of
systems with random parameters and external excitations. The NARX model which
captures the dynamical behaviour of the system is identified by a regressors selection
technique which has been commonly used to compute PCEs. Most importantly, the
stochastic NARX coefficients are represented with PCEs.

Chapter 6 introduces applications of the developed PC-based surrogate models in
probabilistic seismic risk assessment. A large number of simulations is obtained with
surrogate models, which allows the use of recently introduced non-parametric methods to
compute seismic fragility curves. The assumptions commonly used for computing these
curves and the effect of epistemic uncertainties are then discussed.

Chapter 7 finally summarizes the findings and contributions of the work. It also opens
discussions on the limitations of the proposed methods as well as new research paths that
can follow up.



2
Polynomial chaos expansions

Monte Carlo simulation (MCS) is the classical tool for uncertainty quantification, which
is based on repeated simulations of the computational model to estimate the statistics of
the output, e.g. the first and second order moments (mean, variance), the distribution
or the probability of exceeding a prescribed threshold. Use of MCS represents several
advantages. It is robust in the sense that no hypothesis or condition on the input, out-
put or computational model is required. In addition, it is applicable to all problems of
arbitrary complexity given that the computational model is available. The error of the
estimator converges independently of the dimensionality of the problem, therefore MCS
is advantageous in case a large number of random variables is involved. However, the
convergence rate of the MCS estimator is proportional to 1/

√
N where N is the number

of numerical simulations, which is deemed a low rate. This hinders the applicability of
MCS in the cases when running a large number of numerical simulations is prohibitive
in terms of computational resources. To overcome this issue, several approaches were
proposed in order to accelerate the statistical convergence of the MCS-based estimators.
For instance, importance sampling and subset simulation are widely used in reliability
analysis. However, the proposed approaches are not yet sufficient in practical applica-
tions. They are less robust than the traditional MCS, and have to be tailored to the
problems under investigation, e.g. the selection of an importance sampling density has to
be carefully addressed.

In this context, spectral methods have proven to be an effective alternative to MCS.
The spectral methods are based on the concept of constructing the functional dependence
of the output quantity on the input random variables. The computed Fourier-like rep-
resentation is then used for estimating the statistics analytically (i.e. by using only the
spectral expansion) or numerically (i.e. by sampling the input variables and computing
the output with the closed-form spectral expression). Whether using the spectral expan-
sions in an analytical or numerical manner, the required computational cost is reduced
significantly compared to applying MCS directly to the original model.

The spectral approach was introduced by Ghanem and Spanos (1991) in the frame-
work of the stochastic finite element method. The random spatial variation of the Young
modulus was described as a Gaussian stochastic field by means of the Karhunen-Loève
expansion. The resulting stochastic stiffness matrix of the system was obtained with
the random Young modulus field. The response of the structure was represented by a
series of Hermite polynomial chaos functions. Both expansions were introduced in the
deterministic system of equations. The resulting set of deterministic equations allows one
to determine the coefficients of the polynomial expansion of the response. Later, Xiu
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and Karniadakis (2002) generalized the spectral approach to the Askey scheme of poly-
nomials, thus offering the possibility to represent the responses with different orthogonal
polynomials, for instance Legendre, Laguerre, Jacobi. The approach is termed generalized
polynomial chaos expansions (PCEs).

The spectral approach described above is intrusive in the sense that one needs to
interfere with the finite element code or in a general case with the original system of
equations describing the considered system. In most practical cases, this is not feasible
because the numerical models are of “black box” type . Usually, only a set of model
simulations is available for the analysis. This situation requires non-intrusive methods,
see e.g. Choi et al. (2004); Xiu and Hesthaven (2005); Berveiller et al. (2006), which are
in the focus of this manuscript. Note that the non-intrusive methods aim at determining
the expansion coefficients using techniques such as stochastic collocation, projection and
regression without modifying the original deterministic code, thus being applicable to
daily-life engineering problems.

This chapter is organized as follows: first the non-intrusive generalized polynomial
chaos expansion is presented. Then a sparse adaptive scheme for computing PCEs, which
is used throughout this manuscript, is described. Next, one reviews the use of PCEs
for computing the output statistics. Finally, a contribution to the framework is pre-
sented, namely the analytical estimation of derivative-based global sensitivity measures
with PCEs which was published in Sudret and Mai (2015).
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2.1 Generalized polynomial chaos expansions

2.1.1 Spectral representation

Let us consider the computational model Y = M(X). Herein X = (X1, . . . , XM) is
a M -dimensional input vector of random variables with given joint probability density
function (PDF) fX defined over an underlying probability space (Ω,F ,P) andM : x ∈
DX ⊂ RM 7→ R is the computational model of interest, where DX is the support of the
distribution of X. Without loss of generality, one considers the case of a scalar valued
output and assumes that the input random variables are independent, i.e. the joint PDF
is the product of the marginal PDFs:

fX(x) = fX1(x1) . . . fXM (xM). (2.1)

Assuming that the scalar output Y is a second order random variable, i.e. E [Y 2] < +∞,
the computational modelM belongs to the Hilbert space H of square-integrable functions
with respect to the inner product:

< u , v >H=
∫

DX

u(x)v(x)fX(x)dx, (2.2)

Denote byHi the Hilbert space of square-integrable functions with respect to the marginal
probability measure PXi(dxi) = fXi(xi)dxi. Hi is equipped with an inner product:

< u , v >Hi=
∫

DXi

u(xi)v(xi)fXi(xi)dxi, (2.3)

where DXi is the support of the distribution of Xi. Let us denote by {φik, k ∈ N} an
orthonormal basis of Hi satisfying:

< φik , φ
i
l >Hi= δkl, (2.4)

with δkl being the Kronecker symbol, which is equal to 1 if k = l and equal to 0 otherwise.
Soize and Ghanem (2004) proved that the Hilbert space H is isomorphic to the tensor

product ⊗Mi=1Hi of vector spaces Hi. Thus a basis of H may be obtained by the tensor
product of the univariate bases {φik, k ∈ N} , i = 1, . . . ,M . Consequently, the random
variable Y = M(X) that results from the propagation of the uncertainties modelled by
X through the computational modelM may be cast as:

Y =
∑

α1∈N
. . .

∑

αM∈N
yα1...αMφ

1
α1(X1) . . . φMαM (XM). (2.5)

with yα1...αM being deterministic coefficients. For the sake of simplicity, the notation of
multi-indices α = {α1, . . . , αM} is used. The spectral representation of Y is rewritten as
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follows:
Y =

∑

α∈NM
yαφα(X), (2.6)

where φα(X) =
M∏
i=1

φiαi(Xi) are the multivariate basis functions and yα are the associated
deterministic coefficients.

2.1.2 Polynomial chaos expansions

Let us define a space Hi spanned by univariate orthonormal polynomials {ψik, k ∈ N} , i =
1, . . . ,M , which is associated with the probabilistic model of Xi. For instance, when Xi is
a uniform over [−1, 1] (resp. standard normal) random variable, the corresponding poly-
nomial basis comprises orthonormal Legendre (resp. Hermite) polynomials (Abramowitz
and Stegun, 1970). The spectral representation in Eq. (2.6) becomes the so-called general-
ized polynomial chaos expansion (PCE) (Xiu and Karniadakis, 2002; Soize and Ghanem,
2004):

Y =
∑

α∈NM
yαψα(X), (2.7)

in which ψα(X) =
M∏
i=1

ψiαi(Xi) are multivariate orthonormal polynomials obtained by the
tensor product of univariate polynomials and α = (α1, . . . , αM) are the multi-indices
with αi, i = 1, . . . ,M , denoting the degree of the univariate polynomial in Xi.

In practice, the input random variables are usually not standardized, therefore it is
necessary to transform the them into standard variables. We define the isoprobabilistic
transform Z = T −1(X) which is a mapping from the original random space of Xi’s onto
a standard space of M basic independent random variables Zi’s. As an example Zi may
be a standard normal random variable or a uniform variable over [−1, 1]. Finally, Y can
be represented by PCE as follows:

Y =M(X) =M◦ T (Z) =
∑

α∈NM
yαψα(Z). (2.8)

2.1.3 Case with dependent random variables

The above polynomial chaos expansion was derived with the assumption that the input
random variables are independent. In the case when the input vector comprises dependent
variables, an isoprobabilistic transform must be used (Sudret, 2015). Assuming that the
dependence between the components of X is modelled by a Gaussian copula (Nelsen,
2006), the isoprobabilistic transform is built as follows. Each input random variable Xi

of marginal cumulative distribution function (CDF) FXi(Xi) is first transformed into a
standard normal variable Zi:

Zi = Φ−1 (FXi(Xi)) , (2.9)
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where Φ is the standard normal CDF. The resulting Gaussian random vector Z =
(Z1, . . . , ZM) has zero-mean and correlation matrixR with pseudo-correlation coefficients
Ri,j = ρ(Zi, Zj) = Cov [Zi, Zj] /

(
σZi σZj

)
in which σZi and σZj are standard deviations

of Zi and Zj respectively. Next, Z is transformed into a standard normal random vector
U with identity covariance matrix by means of the following linear transform:

U = L−1 ·D−1 ·Z, (2.10)

in whichD = Diag(σZi , . . . , σZM ) is the diagonal matrix with the ith element on the diag-
onal being equal to σZi and L is the lower-triangular matrix obtained with the Cholesky
decomposition of the correlation matrix R. Finally, the PCE of the random variable Y
reads:

Y =M(X) =M◦ T (U) =
∑

α∈NM
yαψα(U ). (2.11)

For more general forms of dependence (e.g. other copulas), the Rosenblatt transform
(Rosenblatt, 1952) may be used.

2.1.4 Truncation schemes

In practice, use of an infinite series expansion in Eq. (2.7) is not tractable. A truncated
form of PCE with a finite number of terms must be used instead:

Y =
∑

α∈A
yαψα(X) + ε, (2.12)

in which A is the countable truncation set of the multi-indices α and ε is the truncation-
induced error. The most popular truncation scheme consists in considering only the
polynomials with total degree not exceeding a prescribed value p, i.e. :

A ≡ AM,p = {α ∈ NM : ||α||1 =
M∑

i=1
αi 6 p}. (2.13)

This standard scheme is, however, not effective in cases of high dimensionality in the
random space and high degree polynomials. To overcome this issue, Blatman (2009) in-
troduced two schemes that allow to reduce significantly the cardinality D = card(AM,p) =
(M + p)!/(M ! p!) of the truncation set.

In the first scheme, one assumes that the effects of univariate polynomials, and in-
teraction between low-degree functions are more important than high-degree interaction
effects. Thus, in the multi-indices space, the relevant polynomials lie in the subset defined
by the following hyperbolic truncation scheme:

A ≡ AM,p
q = {α ∈ NM : ||α||q =

(
M∑

i=1
αqi

)1/q

6 p }, (2.14)

where 0 < q ≤ 1 is the parameter governing the hyperbol and p is the prescribed maxi-
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mum degree of the multivariate polynomials. Given a value of p, the cardinality of AM,p
q

increases as q increases but remains smaller than the size of AM,p (which corresponds to
q = 1).

In the second scheme, one assumes that low-rank1 polynomials are more important
than high-rank terms, i.e. two-dimensional interaction polynomials are more relevant
than three-dimensional functions and so on. This assumption is based on the so-called
hierarchy principle (Yuan et al., 2007), according to which the model can be approximated
by low-rank terms. The low-rank truncation scheme reads (Blatman and Sudret, 2011):

A ≡ AM,p
r = {α ∈ NM : ||α||0 =

M∑

i=1
1αi>0 ≤ r, ||α||1 =

M∑

i=1
αi 6 p}, (2.15)

in which ||α||0 is the rank of the multivariate polynomial ψα, defined as the total number
of non-zero component indices αi, i = 1, . . . ,M . The prescribed rank r is chosen as a
small integer value, e.g. r = 2, 3, 4.

2.1.5 Computation of the coefficients

In the context of the spectral stochastic finite element method, the Galerkin scheme has
been commonly used. The Galerkin scheme consists in converting the original system of
equations to the weak formulation, resulting in a linear system of equations that allows
to determine the coordinates of the response in the random space. This is an intrusive
approach due to the fact that the original system of equations, e.g. the finite element
code, is modified.

Non-intrusive methods were proposed as an alternative to the Galerkin scheme, in
which the expansion coefficients are estimated using only an experimental design (ED), i.e.
a series of samples of input parameters and associated output values obtained by running
the original computational model. It is worth emphasizing that the latter is neither
modified nor adapted. In the literature, the non-intrusive approach includes stochastic
collocation, projection and regression methods.

The stochastic collocation method is based on the so-called Lagrange interpolation
scheme. The computational model is approximated by means of Lagrange polynomials,
which satisfy the solutions at the collocation nodes. The coefficients of the expansion are
the output values at those specified points. This method must be used with structured
collocation nodes, i.e. the points obtained with sparse grids (Nobile et al., 2006). The
convergence of the approximation is crucially affected by the selected ED.

In the projection method (Le Maître et al., 2001; Matthies and Keese, 2005), using the
orthogonality of the polynomials, the expansion coefficients are estimated by the inner
products between the expansion and the corresponding polynomial functions. Numerical
integration techniques are applied to obtain the approximate values of the estimates. The
accuracy of this method relies on the choice of the integration weights and nodes, which

1The “rank” of a polynomial function ψα(·) is the l0-norm of the multi-index ||α||0.
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can be random, quasi-random or determined by quadrature rules.
The regression method consists in estimating the set of coefficients ŷα = {yα,α ∈ A}

that minimizes the mean square error:

E
[
ε2
] def= E



(
Y −

∑

α∈A
yαψα(X)

)2

 , (2.16)

which means:

ŷα = arg min
yα∈RcardA

E



(
M(X)−

∑

α∈A
yαψα(X)

)2

 . (2.17)

In practice, the coefficients are obtained by minimizing an empirical mean over a sample
set:

ŷα = arg min
yα∈RcardA

1
N

N∑

i=1

(
M(x(i))−

∑

α∈A
yαψα(x(i))

)2

, (2.18)

where X =
{
x(i), i = 1, . . . , N

}
is obtained with random sampling of the input vector.

The computational model M is run for each point in X , resulting in the sample set of
output quantity values Y =

{
y(i) =M(x(i)), i = 1, . . . , N

}
. By evaluating the polyno-

mial basis onto each sample point in X , one obtains the information matrix, which is
defined as follows:

A
def=
{
Aij = ψj(x(i)), i = 1, . . . , N, j = 1, . . . , cardA

}
, (2.19)

i.e. the ith row of A is the evaluation of the polynomial basis functions at the point x(i).
This is basically the problem of estimating the parameters of a linear regression model,
for which the least squares solution reads:

ŷα =
(
ATA

)−1
AT Y . (2.20)

2.1.6 Error estimators

Using an experimental design (ED) containing the input samples X and the correspond-
ing response values Y , the coefficients of the polynomial chaos representation can be
estimated, leading to the following approximative model:

M̂(X) =
∑

α∈A
ŷαψα(X). (2.21)

The expected squared error of the approximation, also called the generalization error
reads:

Err = E
[(
M(X)− M̂(X)

)2
]
. (2.22)
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In practice, it is not possible to calculate this quantity exactly. Instead, an empirical
estimate over the ED can be obtained:

Erremp = 1
N

N∑

i=1

(
M(x(i))− M̂(x(i))

)2
. (2.23)

The relative empirical error is defined by:

εemp = Erremp
Var [Y ] , (2.24)

in which
Var [Y ] = 1

N − 1

N∑

i=1

(
y(i) − Ȳ

)2
, Ȳ = 1

N

N∑

i=1
y(i). (2.25)

The generalization error Err is underestimated by the empirical error Erremp (Blat-
man, 2009). This is due to the so-called overfitting phenomenon where the latter systemat-
ically decreases with the increasing degree of the polynomial basis while its generalization
counterpart Err may indeed increase. It is of utmost importance to use an error indicator
that is less prone to overfitting. Herein the leave-one-out (LOO) cross validation error is
utilized.

Cross validation consists in partitioning the ED into two complementary subsets, train-
ing a model using one subset, then validating its prediction on the other one. In this
context, the term LOO means that the validation set comprises only one sample. Setting
one point x(i) apart from X , one can build a PCE model MPC\i(·) from the remaining
points X\x(i) =

{
x(1), . . . ,x(i−1),x(i), . . . ,x(n)

}
. The predicted residual error at the

point x(i) reads:
∆(i) def= M(x(i))−MPC\i(x(i)). (2.26)

The LOO error is defined as the empirical mean of the residual errors ∆(i), i.e. :

ÊrrLOO = 1
n

n∑

i=1
∆(i)2

. (2.27)

At first glance, computing the LOO error appears computationally demanding since
it requires to train and validate N PCE models. However, due to the linear regression
formula of PCE, one can compute the LOO error ÊrrLOO by means of algebraic derivations
from a single PCE modelMPC(·) built with the full ED X as follows (Blatman, 2009):

ÊrrLOO = 1
N

N∑

i=1

(
M(x(i))−MPC(x(i))

1− hi

)2

, (2.28)

in which hi is the ith diagonal term of the matrix A
(
ATA

)−1
AT. The relative LOO
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error is obtained by:

ε̂LOO = ÊrrLOO
Var [Y ] . (2.29)

2.2 Sparse adaptive polynomial chaos expansions

In practice, not all polynomial functions specified in the truncation basis are important
and contribute significantly to the output. In addition, the ordinary least squares method
requires a large number of model evaluations, typically two to three times the cardinality
of the polynomial basis. In case the problems have high dimensionality and high degree
polynomials must be used, i.e. P is large, the required size of the ED soon becomes
excessive. However, the number of available simulations is usually limited. Therefore,
it is of utmost importance to use a technique that can detect the relevant polynomials
even with a limited number of simulations. Least angle regression (LARS) (Efron et al.,
2004) is an iterative method for regressor selection, which was proven to be particularly
powerful when the number of regressors is much larger than the size of the ED, and only
a few regressors are relevant.

In the following, one will shortly describe the adaptive sparse PCE scheme proposed by
Blatman and Sudret (2011) which is a non-intrusive least-square minimization technique
based on the LARS algorithm. LARS allows one to achieve a sparse representation, i.e.
the number of active polynomial functions is small compared to the size of the candidate
set. This is done in an adaptive manner, i.e. the candidate functions become active one
after another in the descending order of their importance. The relevance of a candidate
polynomial is measured by means of its correlation with the residual of the expansion
obtained in the previous iteration. The optimal PCE is chosen to minimize the LOO error
estimator. The sparse adaptive PCE scheme can be summarized as follows (Blatman and
Sudret, 2011):

1. Initialize the set of candidate regressors to the full basis and the set of selected
regressors to ∅.

2. Initialize all coefficients equal to 0. Set the residual equal to the output vector.

3. For each iteration until m = min(P,N − 1) regressors have been analyzed, perform
the following steps:

• Determine the candidate polynomial that is most correlated to the current
residual and add it to the selected basis,

• Update simultaneously all the active coefficients associated with the selected
basis until another regressor is as correlated with the residual as they are. This
is done using ŷ(k+1)

α = ŷ(k)
α + γ(k) ω̃(k) with ω̃(k) and γ(k) are descent direction

and step respectively. The residual is updated correspondingly.

4. Choose the best PCE from the iteration in which the LOO error indicator is mini-
mized.
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2.3 Post processing of polynomial chaos expansions

Let us discuss the use of PCEs for propagating the uncertainties from the input param-
eters to the output quantity of interest. The analytical formula of PCEs allows one to
post-process the representation in order to obtain the output statistical moments with-
out additional cost. The output probability density function can also be obtained at a
computational expense significantly smaller than that of the traditional MCS approach.
This is due to the fact that with PCE one can predict the output on a large set of input
parameters by simply evaluating polynomial functions. In particular, the polynomial co-
efficients provide sensitivity measures that reveal directly the importance of the uncertain
parameters in the model.

2.3.1 Statistical moments

The analysts are commonly interested in the statistical moments of the considered quan-
tity, for instance its expected value and variance, which can partially describe the uncer-
tainty characteristics.

PCEs bear a particular property which is the orthonormality of the polynomial func-
tions. Indeed, the following equations hold:

E [ψα(X)] = 0 ∀α 6= 0, (2.30)

and
E
[
ψα(X)ψβ(X)

]
= δαβ ∀α, β. (2.31)

Using this property, the estimates of the output first and second order moments, i.e.
mean and variance, can be computed analytically as follows:

µY
def= E


 ∑

α∈NM
yαψα(X)


 = y0, (2.32)

D
def= Var

[∑

α∈A
yαψα(X)

]
=
∑

α∈A
α 6=0

y2
α Var [ψα(X)] =

∑

α∈A
α 6=0

y2
α. (2.33)

One notes that the first and second order moments of the output are obtained using only
the coefficients of PCE, which does not require additional computational cost. The higher
order moments can also be estimated straightforwardly with the expansion coefficients by
means of analytical derivations. The reader is referred to Sudret (2007) for the closed
form expressions of those quantities.
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2.3.2 Probability density function

Knowing the statistical moments may be insufficient to fully describe the uncertainty
in the output. As an example, the multimodal distribution of a quantity can only be
observed on the entire probability density function (PDF).

Due to its nature, PCEs can be used inexpensively for a large number of evaluations,
providing a large sample set of the output. This allows to compute the PDF of the output
numerically by means of the so-called kernel density estimation technique.

For a single random variable Y , the kernel density estimate of the PDF reads (Wand
and Jones, 1995):

f̂Y (y) = 1
Nh

N∑

i=1
K
(
y − yi
h

)
, (2.34)

where {y1, . . . , yN} is a sample set of Y , h is the bandwidth parameter and K(·) is the
kernel function which integrates to one. Classical kernel functions are the Epanechnikov,
uniform, normal and triangular functions. The choice of the kernel is known not to
affect strongly the quality of the estimate provided the sample set is sufficiently large
(Wand and Jones, 1995). In case a standard normal PDF is adopted for the kernel, i.e.
K(y) = ϕ(y) ≡ exp (−y2/2) /

√
2π, the kernel density estimate rewrites:

f̂Y (y) = 1
Nh

N∑

i=1
ϕ
(
y − yi
h

)
. (2.35)

In contrast, the choice of the bandwidth h is crucial for the kernel density estimate. An
inappropriate value of h can lead to an oversmoothed or undersmoothed estimated PDF.
Different techniques for computing the bandwidth are thoroughly reviewed by Duong
(2004).

2.3.3 Variance-based sensitivity analysis

Sensitivity analysis (SA) examines the sensitivity of the model output with respect to
the input parameters, i.e. how the output variability is affected by the variability of the
input factors (Saltelli et al., 2000, 2004, 2008). Two major classes of techniques for SA
in the literature are variance-based and derivative-based methods. Variance-based SA
relies upon decomposing the output variance into contributions of marginal effects of in-
put parameters and interactions between them. The use of PCEs to derive analytically
variance-based sensitivity measures is reviewed hereafter. For the sake of clarity, the au-
thor’s original contribution is presented in the next section in which analytical derivations
are introduced for computing derivative-based global sensitivity measures with PCEs.

Using the orthonormality property of the polynomial basis, Sudret (2006, 2008) pro-
posed an original post-processing of PCEs for conducting sensitivity analysis. For any
subset of variables Xu with u = {i1, . . . , is} ⊂ {1, . . . ,M}, one defines the set of multi-
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variate polynomials ψα depending only onXu, which is specified by a set of multi-indices:

Au = {α ∈ A : αk 6= 0 if and only if k ∈ u} . (2.36)

The Sobol’ decomposition of the truncated PCE may be written as follows:

Y = y0 +
∑

u⊂{1, ... ,M}
u6=∅

Mu(Xu), (2.37)

where:
Mu(Xu) def=

∑

α∈Au

yαψα(X). (2.38)

The Sobol’ sensitivity index Su for the subset of variablesXu is defined as follows (Sobol’,
2001):

Su
def= Du

D
= Var [Mu(Xu)]

D
, (2.39)

where the partial variance Du reads:

Du = Var [Mu(Xu)] =
∑

α∈Au

y2
α. (2.40)

The total sensitivity index for subset Xu is given by (Sobol’, 2001):

STu
def= DT

u
D

=

∑
v⊃u

Dv

D
=

∑
v⊃u

Var [Mv(Xv)]

D
, (2.41)

where the sum in the numerator is extended over all sets v = {j1, . . . , jt} which contain
u. It represents the total amount of uncertainty apportioned to the subset of variables
Xu, including its sole effects and interactions with other variables.

As a consequence, having a PCE at hand, the Sobol’ indices at any order may be
computed by a mere combination of the squares of the coefficients. For instance, for a
single variable Xi, i = 1, . . . ,M , the first order PC-based Sobol’ index reads:

Si =
∑

α∈Ai
y2
α/D, Ai = {α ∈ A : αi > 0, αj 6=i = 0} , (2.42)

whereas the total PC-based Sobol’ index is:

STi =
∑

α∈ATi

y2
α/D, ATi = {α ∈ A : αi > 0} . (2.43)
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2.4 Polynomial chaos derivative-based global sensi-
tivity measures

2.4.1 Derivative-based sensitivity measures

Derivative-based sensitivity analysis originates from the Morris method (Morris, 1991)
which was introduced to detect input parameters having substantial impacts on the output
and those with negligible influences using parameters elementary effects.

Consider a computational model Y = M(X) with Y being the scalar output and
X being the vector of uncertain input variables. In the Morris method (Morris, 1991),
when investigating the variable Xi one first samples an experimental design (ED) X ={
x(1), . . . ,x(N)

}
and then varies this sample in the ith direction. The elementary effect

(EE) is defined as:

EE
(j)
i = M(x(j)

r )−M(x(j))
∆ , (2.44)

in which x(j) =
{
x

(j)
1 , . . . , x

(j)
i , . . . , x

(j)
M

}
is the jth sample point and x(j)

r ={
x

(j)
1 , . . . , x

(j)
i + ∆, . . . , x(j)

M

}
is the perturbed sample. The Morris importance measure

(Morris factor) is defined as the average of the EEi’s:

µi = 1
N

N∑

j=1
EE

(j)
i . (2.45)

By definition, the empirical variance σ2
i of the EEs is given by:

σ2
i = 1

N − 1

N∑

j=1
(EE(j)

i − µi)2. (2.46)

The resulting mean µi and standard deviation σi are usually plotted in a two-dimensional
graph, see Figure 2.1. This graph is interpreted as follows: when µi and σi are jointly small
(lower left corner of the plot), the parameter Xi is considered as unimportant. When µi is
large and σi is small (lower right corner) then Xi is considered as an influential parameter,
which is in a quasi-linear relationship with the output (a zero standard deviation indicates
a fully linear dependence). Finally, when σi is large (upper part of the plot), the parameter
Xi is deemed important and the output depends on this very parameter in a nonlinear
way and/or it interacts with other parameters.

Kucherenko et al. (2009) generalized the quantities in Eqs.(2.45)-(2.46) as follows:

µi
def= E

[
∂M
∂xi

(X)
]

=
∫

HM
∂M
∂xi

(x)dx, (2.47)
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Figure 2.1 – Morris method: representation of the mean and standard deviation of the ele-
mentary effects (output plot of the UQLab software (Marelli et al., 2015))

σ2
i =

∫

HM

[
∂M
∂xi

(x)
]2

dx− µ2
i , (2.48)

provided that ∂M
∂xi

is square-integrable on the unit hypercube HM (assuming the input
parameters have been rescaled to this hypercube). The interpretation of these measures
is similar as for the original Morris method.

The elementary effects may take positive or negative values, therefore by calculating
their average (or expected value) the effects may counteract. This might lead to a misin-
terpretation of the importance of Xi. To avoid this, Campolongo et al. (2007) modified
the Morris factor as follows:

µ∗i = E
[∣∣∣∣∣
∂M
∂xi

(X)
∣∣∣∣∣

]
. (2.49)

Recently, Sobol’ and Kucherenko (2009) introduced a new sensitivity measure (SM) which
is the mean-squared derivative of the model with respect to Xi:

νi = E



(
∂M
∂xi

(X)
)2

 . (2.50)

Sobol’ and Kucherenko (2009) and Lamboni et al. (2013) established a link between the
measure νi in Eq. (2.50) and the total Sobol’ indices. In case of a uniform variable
Xi ∼ [ai, bi] this relationship reads:

STi ≤ SDGSMi = (bi − ai)2

π2
νi
D
, (2.51)
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where SDGSMi is the upper-bound to the total sensitivity index STi and D is the model
output variance. The above result can be extended to other types of distributions. When
Xi ∼ N (ai, bi) is a Gaussian random variable with mean ai and variance b2

i , one gets:

STi ≤ SDGSMi = bi
2 νi
D
. (2.52)

In the general case, Lamboni et al. (2013) define the upper bound of the total Sobol’ index
of Xi as:

SDGSMi = 4Ci2
νi
D
, (2.53)

in which Ci = sup
x∈R

min [FXi(x), 1− FXi(x)]
fXi(x) is the Cheeger constant, FXi is the cumulative

distribution function of Xi and fXi is the probability density function of Xi.
In the following, one will demonstrate the use of PCEs to compute the DGSMs ana-

lytically, first in cases of Hermite and Legendre polynomials, then in a general case. This
work has originally been presented in Sudret and Mai (2013c) and Sudret and Mai (2015).

2.4.2 Case of Hermite polynomial chaos expansion

In this section, we consider a computational model Y = M(X) where Y is the scalar
output and X = (Xi, . . . , XM) is the input vector composed of M independent Gaussian
variables Xi ∼ N (µi, σi). One first uses an isoprobabilistic transform which reads:

X = T (Z) : Xi = µi + σiZi, (2.54)

to convert Xi into a standard normal random variable Zi ∼ N (0, 1) . The truncated PCE
of Y reads:

Y =MA(X) =MA (T (Z)) =
∑

α∈A
yαψα(Z), (2.55)

in which α = {α1, . . . , αM} is a multi-index, A is the truncated set of multi-indices
α, ψα(z) =

M∏
i=1

H̃eαi(zi) is the multivariate polynomial basis obtained by the tensor

product of univariate orthonormal Hermite polynomials H̃eαi(zi) (see A.1) and yα is the
deterministic coefficient associated with ψα(z).

Since T is a one-to-one mapping with ∂zi
∂xi

= 1
σi
, the derivative-based sensitivity index

reads:

νi = E



(
∂MA
∂xi

(X)
)2

 = E



(
∂MA ◦ T

∂zi

∂zi
∂xi

)2

 = 1

σi2
E



(
∂MA ◦ T

∂zi
(Z)

)2

 . (2.56)

The DGSM of Xi, in other words the corresponding upper bound to the total Sobol’
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index STi , is computed according to Eq. (2.52):

SDGSMi = σ2
i

νi
D

= 1
D
E



(
∂MA ◦ T

∂zi
(Z)

)2

 = 1

D
E



(
∂

∂zi

∑

α∈A
yαψα(Z)

)2

 , (2.57)

in which D def= ∑
α∈A,α6=0

y2
α is the PCE-based estimate of the output variance. This requires

computing the partial derivatives of MA(z) = ∑
α∈A

yαψα(z). The first order derivative

H̃e
′

n(z) = dH̃en
dz (z) is proved to be (see A.1):

H̃e
′

n(z) =
√
n H̃en−1(z). (2.58)

Consequently, the derivative of the multivariate orthonormal Hermite polynomial
ψα(z) =

M∏
i=1

H̃eαi(zi) with respect to zi is obtained with:

∂ψα
∂zi

(z) =
M∏

j=1
j 6=i

H̃eαj(zj)
√
αiH̃eαi−1(zi) (2.59)

provided that αi > 0 and ∂ψα
∂zi

(z) = 0 otherwise. Then the derivative of a Hermite PCE
with respect to zi is given by the following expression:

∂MA
∂zi

(z) =
∑

α∈A(i)

√
αi yαψα′i

, (2.60)

in which A(i) = {α ∈ A, αi > 0} is the set of multi-indices α with a non-zero ith

component αi and α
′
i = {α1, . . . , αi−1, αi − 1, αi+1, . . . , αM} is the index vector derived

from α by subtracting 1 from αi. The expectation of the squared derivative in Eq. (2.57)
is reformulated as:

E



(
∂MA
∂zi

(Z)
)2

 = E


 ∑

α∈A(i)

∑

β∈A(i)

√
αi βi yαyβ ψαi′ψβ′i


 . (2.61)

Due to the linearity of the expectation operator, the above equation requires computing
E
[
ψαi′ψβ′i

]
. Note that the orthonormality of the polynomial basis leads to E

[
ψαi′ψβ′i

]
=

δαβ where δαβ is the Kronecker symbol. Thus one obtains:

E



(
∂MA
∂zi

(Z)
)2

 =

∑

α∈A(i)

αi y
2
α. (2.62)

The result is that, the DGSM of a Hermite PCE is given the following analytical expres-
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sion:

ŜDGSMi = 1
D

∑

α∈A(i)

αi y
2
α =

∑
α∈A(i)

αi y
2
α

∑
α∈A,α 6=0

y2
α

. (2.63)

Note that the total Sobol’ indices STi can be obtained directly from the PCE by
ŜTi =

∑

α∈A(i)

y2
α/

∑

α∈A,α6=0
y2
α as shown in Eq. (2.43). With integer indices αi > 0, it is

clear that the inequality STi ≤ SDGSMi always holds.

2.4.3 Case of Legendre polynomial chaos expansion

Let us consider now the case when the input vector X contains M independent uniform
random variables Xi ∼ U [ai, bi]. An isoprobabilistic transform is used to convert the
input factors into standard uniform variables Z = (Zi, . . . , ZM):

X = T (Z) : Xi = bi + ai
2 + bi − ai

2 Zi, (2.64)

where Zi ∼ U [−1, 1] is uniformly distributed over [−1, 1]. The Legendre PCE has the form
of the expansion in Eq. (2.55), except that ψα(z) =

M∏
i=1

L̃eαi(zi) is now the tensor product

of univariate orthonormal Legendre polynomials L̃eαi(zi) (see A.2). The transform T is a
one-to-one linear mapping with ∂zi

∂xi
= 2
bi − ai

, thus the derivative-based sensitivity index
is given by:

νi = E



(
∂MA
∂xi

(X)
)2

 = 4

(bi − ai)2 E



(
∂MA ◦ T

∂zi
(Z)

)2

 . (2.65)

Similarly to Eq. (2.57), the upper bound DGSM to the total Sobol’ index STi is computed
from Eq. (2.51) as:

SDGSMi = (bi − ai)2

π2
νi
D

= 4
π2D

E



(
∂MA ◦ T

∂zi
(Z)

)2



= 4
π2D

E



(
∂

∂zi

∑

α∈A
yαψα(Z)

)2

 .

(2.66)

It is therefore necessary to compute the derivative of univariate and multivariate Legendre
polynomials. Denoting the derivative of an univariate Legendre polynomial by L̃e

′

i(z) def=
dL̃ei(z)

dz , it is proved that (see A.2):

{
L̃e
′

1(z), . . . , L̃e
′

n(z)
}T

= CLe · {L̃e0(z), . . . , L̃en−1(z)}T, (2.67)
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in which CLe is a constant matrix whose ith row contains the coordinates of the derivative
of L̃ei(z) onto a basis consisting of lower-degree polynomials

{
L̃ej(z), j = 0, . . . , i− 1

}
.

In other words, one has L̃e
′

i(z) =
i∑

j=1
CLe
ij L̃ej−1(z). Consequently, the partial derivative of

the multivariate orthonormal Legendre polynomials ψα(z) =
M∏
i=1

L̃eαi(zi) with respect to
zi is given by:

∂ψα
∂zi

(z) =
M∏

j=1
j 6=i

L̃eαj(zj)
(
αi∑

l=1
CLe
αil
L̃el−1(zi)

)
. (2.68)

For a given multi-index α = {α1, . . . , αM}, let us define by αri the index vector obtained
by substituting the ith component of α with r:

αri = {α1, . . . , αi−1, r, αi+1, . . . , αM} . (2.69)

Using this notation, Eq. (2.68) rewrites as follows:

∂ψα
∂zi

(z) =
αi∑

l=1
CLe
αil

M∏

j=1
j 6=i

L̃eαj(zj)L̃el−1(zi). =
αi∑

l=1
CLe
αil
ψαl−1

i
. (2.70)

Denote by A(i) the set of multi-indices α having a non-zero index αi, i.e. A(i) = {α ∈
A, αi > 0}. The partial derivative of a Legendre PCE with respect to zi then reads:

∂MA
∂zi

(z) =
∑

α∈A(i)

yα
∂ψα
∂zi

(z) =
∑

α∈A(i)

αi∑

l=1
yαC

L
αil
ψαl−1

i
(z). (2.71)

Denote by B(i) the set of multi-indices β representing the ensemble of multivari-
ate polynomials generated by differentiating the linear combination of polynomials{
ψα(z), α ∈ A(i)

}
. B(i) is obtained with:

B(i) =
{
β = α+ (k − αi) · ei, α ∈ A(i), k = 0, . . . , αi − 1

}
, (2.72)

where:

ei = (0, . . . , 0,
ithpos.︷︸︸︷

1 , 0 . . . , 0). (2.73)
The derivative of Legendre PCE rewrites:

∂MA
∂zi

(z) =
∑

β∈B(i)

bβ ψβ(z), (2.74)

in which the coefficient bβ is obtained from Eq.(2.71) as follows:

bβ =
∑

α∈A(i)
α=β+l·e

yαC
L
αi (βi+1) ∀ l ∈ N. (2.75)
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Since the polynomials ψβ are also orthonormal, one obtains:

E



(
∂MA
∂zi

(Z)
)2

 =

∑

β∈B(i)

b2
β. (2.76)

Finally, the DGSMs of Legendre PCEs read:

ŜDGSMi = 4
π2

∑
β∈B(i)

b2
β

∑
α∈A,α6=0

y2
α

. (2.77)

2.4.4 General case

Consider now the general case where the input vector X contains M independent ran-
dom variables with different prescribed PDFs, i.e. Gaussian, uniform or others. Such a
problem can be addressed using generalized polynomial chaos expansions (Xiu and Karni-
adakis, 2002). As the derivatives of Hermite and Legendre polynomials in Eq. (2.58) and
Eq. (2.67) hold component-wise, the derivative of a generalized PCE with respect to one
parameter results in a generalized PCE of lower degree, as identically given by Eq. (2.60)
and (2.71). This representation can be obtained given the proper matrix yielding the
derivative of the univariate polynomials in the same univariate orthonormal basis, see A.1
for Hermite polynomials and A.2 for Legendre polynomials. The derivation for Laguerre
polynomials is also given in A.3 for the sake of completeness.

2.4.5 Numerical applications

2.4.5.1 Morris function

We first consider the Morris function that is widely used in the literature for sensitivity
analysis (Morris, 1991; Lamboni et al., 2013). This function reads:

y = βo +
20∑

i=1
βi ωi +

20∑

i<j

βij ωi ωj +
20∑

i<j<l

βijl ωi ωj ωl + β1234 ω1 ω2 ω3 ω4, (2.78)

in which:

• ωi = 2 (Xi − 1/2) except for i = 3, 5, 7 where ωi = 2
(

1.2 Xi

Xi + 1 −
1
2

)
,

• the input vector X = {X1, . . . , X20} contains 20 uniform random variables
{Xi ∼ U [0, 1], i = 1, . . . , 20},

• βi = 20 for i = 1, 2, . . . , 10,

• βij = −15 for i, j = 1, 2, . . . , 6, i < j,
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• βijl = −10 for i, j, l = 1, 2, . . . , 5, i < j < l,

• β1234 = 5,

• the remaining first and second order coefficients are defined by βi = (−1)i, β0 = 0
and βij = (−1)i+j,

• and the remaining third order coefficients are set to 0.

First, a PCE is built using the LARS-based sparse adaptive scheme using a Latin
Hypercube experimental design of size NPCE = 500. Then the PCE is post-processed to
obtain the total Sobol’ indices and the upper-bound derivative-based sensitivity measures
(DGSMs) using Eq. (2.43) and Eq. (2.77), respectively. The procedure is replicated 100
times in order to provide the 95% confidence interval of the resulting sensitivity indices.

As a reference, the total Sobol’ indices are computed by Monte Carlo simulation (MCS)
using the sensitivity package in R (Pujol et al., 2013). One samples two experimental
designs of size N = 5, 000 denoted respectively by A and B then computes the correspond-
ing output vectors YA and YB. To estimate the total sensitivity index STi with respect to
the random variable Xi, one replaces the entire ith column in sample A (which contains
the samples of Xi) by the ith column in sample B to obtain a new experimental design
denoted by Ci. Then the output YCi is computed from the input Ci. The variance-based
STi is obtained by means of YA, YB and YCi using the sobol2007 function (Pujol et al.,
2013; Saltelli et al., 2010). The total number of model evaluations required by the MCS
approach is 5, 000 × (2 + 20) = 110, 000. After 100 replications we also obtain the 95%
confidence interval on the sensitivity indices.

The DGSMs are also computed by MCS for comparison, using a finite difference
scheme to evaluate the gradient for each realization. 500 realizations are used, leading
to a total number of 500 × (20 + 1) = 10, 500 model evaluations. Again the approach is
replicated 100 times to obtain the confidence intervals.
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Figure 2.2 – Morris function: PCE-based vs. MCS-based total Sobol’ indices
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Figure 2.3 – Morris function: PCE-based vs. MCS-based derivative-based global sensitivity
measures (DGSM)

Figure 2.2 shows the total Sobol’ sensitivity indices computed by MCS and by PCE
as well as their 95% confidence intervals. The median results (circles and diamonds)
are close to each other, and show that input parameters X11, . . . , X20 are unimportant
factors, while X1, X2, X4 and X6 are substantial ones. It is observed that the confidence
intervals are much smaller for the PCE-based indices than for the MCS-based indices, at
a cost which is two order of magnitude smaller though (500 runs instead of 110,000).

Figure 2.3 shows the DGSMs computed by MCS and by PCE as well as their 95%
confidence intervals. Again the results obtained by the two approaches compare very
well to each other and it is observed that the confidence intervals are smaller when using
PC expansions. By comparing Figures 2.2 and 2.3, one can verify that the obtained
total Sobol’ indices are always smaller than the DGSMs, as expected. Moreover, the less
significant the parameter is, the closer the DGSM gets to the total Sobol’ index.

2.4.5.2 Oakley & O’Hagan function

The second numerical application is the function proposed by Oakley and O’Hagan (2004)
which reads:

f(X) = aT1X + aT2 cos(X) + aT3 sin(X) +XTMX, (2.79)
in which the input vectorX = {X1, . . . , X15} consists of 15 independent standard normal
random variables {Xi ∼ N (0, 1), i = 1, . . . , 15}. The 15 × 1 vectors aj, j = 1, 2, 3 and
the 15× 15 matrix M are provided at www.sheffield.ac.uk/st1jeo.

The PCE-based approach is run with a Latin Hypercube experimental design of size
NPCE = 600. The size of a single sample set for the MCS approach is N = 10, 000,
resulting in 10, 000 × (2 + 15) = 170, 000 model runs. The procedure is similar as in
Section 2.4.5.1.
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Figure 2.4 – Oakley & O’Hagan function: PCE-based vs. MCS-based total Sobol’ indices
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Figure 2.5 – Oakley & O’Hagan function: PCE-based vs. MCS-based derivative-based global
sensitivity measures (DGSM)

Figures 2.4 and 2.5 show the total Sobol’ indices and the DGSMs computed both from
a PCE and by Monte Carlo simulation. The conclusions are similar to the ones already
drawn from the first example: the median values of the PCE-based DGSMs are almost
identical to the MCS-based estimators while the confidence intervals are much smaller.
Here the computational cost is 600 runs for PCE against 600× (15 + 1) = 9, 600 for the
MCS. From the values one can conclude that X11, . . . , X15 are important parameters,
whereas the other have medium to little importance.

In order to better assess the accuracy of polynomial chaos expansions as a tool for
computing the DGSMs, we carry out a parametric study on the number of samples used
in the analysis. Precisely, a Latin hypercube sample of size N is used as the experimental
design for establishing the PCE, and as the set of points where the gradient is computed
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for the MCS-based approach (thus 2×N points are used for computing a single DGSM).
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Figure 2.6 – Oakley & O’Hagan function: convergence of the PCE-based (resp. MCS-based)
DGSMs as a function of the number of runs (NB: abscissa is the size of the
experimental design for PCE, whereas the actual number of runs for MCS is
twice larger, for each DGSM).

The convergence plots are shown in Figure 2.6 for variables X3, X9, X15 and X11
which range from unimportant to most important. In each case the reference solution
is attained using 500 runs or less using PCEs whereas the convergence is not attained
even for 2 × 2, 000 runs using MCS. Again it is emphasized that a single experimental
design (e.g. of size 500) is used for computing all 15 DGSMs, whereas MCS requires
(15 + 1) times this number as a whole, which makes PCEs even more appealing in large
dimensions.

2.4.6 Discussion

The scheme for computing PCE-based DGSMs faces certain limitations. First, only the
cases with linear probabilistic transforms were considered. In case a nonlinear transform is
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required, for instance to convert a random variable of arbitrary distribution to a standard
normal variable, the derivation of analytical formulations will not be straightforward as
shown herein. The generalization requires further investigations. In addition, the DGSMs
are always the upper bounds of the total Sobol’ indices, which can also be computed using
PCEs with no additional cost. The total Sobol’ indices can yet indicate the importance
of the input parameters. Therefore, obtaining the DGSMs only helps consolidate the
conclusions on the relevance of each parameter.

However, a promising perspective for this approach should be underlined. More pre-
cisely, it is important to prove that the derivatives of PCEs can be obtained analytically
and in particular can be represented as polynomial chaos expansions. This opens the
path for different researches. For instance, it can be used in the context of the derivative-
based optimization under uncertainties using PCEs, which deserves more attention in the
future. In addition, it may be useful in the gradient-enhanced l1-minimization scheme
(Peng et al., 2016), in which the derivative information is computed to accelerate the
identification of PC coefficients. Furthermore, it will be helpful in computing the gradi-
ent matrix in the iterative rotation approach aiming at enhancing the sparsity of PCEs
(Yang et al., 2016). In general, our finding on the analytical formulations to represent
derivatives of PCEs might serve researches involving the computation of gradients of the
output quantity.

2.5 Summary

This chapter presented the theory of generalized polynomial chaos expansions. The as-
pects related to the use of PCEs in practice were outlined, i.e. the truncation schemes,
the non-intrusive regression method for estimating the coefficients and the error estima-
tors. The least angle regression-based scheme for computing sparse adaptive PCEs, which
plays a significant role in the remaining part of this manuscript, was reviewed. Then, use
of PCEs for estimating the output statistics was recalled. Finally, a contribution to the
framework in which PCEs are used for computing analytically the derivative-based global
sensitivity measures was introduced.



3
Literature review on polynomial chaos expansions for
stochastic dynamics

The previous chapter presented the theory of generalized polynomial chaos expansions
(PCEs) which allow the representation of random response quantities as functions of un-
certain parameters of the considered systems. Note that the specified PC formulations
are established only for the case of static systems, i.e. the random response at a specific
location is time-independent. However, this is not the case in practice where the consid-
ered systems are commonly dynamical, i.e. the responses vary not only in the stochastic
and spatial domain but also in time. Considering the stochastic dynamical problems has
been a long-term challenge, in particular use of PCEs has been shown not effective by
several works, see e.g. Wan and Karniadakis (2006); Beran et al. (2006b); Le Maître et al.
(2010). The current chapter aims at summarizing and analysing the contributions that
allow one to solve this problem.

The chapter is organized as follows: first, the theory of PCEs is applied to uncertain
dynamical systems, i.e. to problems involving time-dependent random response quanti-
ties, which are encountered in various fields such as structural dynamics and fluid dynam-
ics. The non-intrusive PCE-based approach commonly used to handle such problems is
presented and applied to an illustrative numerical example. This allows one to underline
the limitations of the classical approach and the reasons hindering its effectiveness are
analyzed. Next, we present a review on various methods proposed in the literature which
gives the big picture of the status quo. Finally, the approaches to be investigated by the
author are clarified.

3.1 Problem set-up

3.1.1 Time-frozen polynomial chaos expansions

In this work, we focus on stochastic dynamical systems where the random response is a
time-dependent quantity y(t) =M(ξ, t). The latter is commonly the solution of a system
of first-order ordinary differential equations (ODEs):

dy
dt = f(y, ξ, t), (3.1)
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where y(t, ξ) is the time-dependent response of the system with the initial condition
y(t = 0) = y0 and the vector ξ = {ξ1, . . . , ξM} comprises M uncertain parameters of
the system modelled by M independent second-order random variables Ξi, i = 1, . . . ,M
defined over a probability space (Ω,F ,P). ξ may include the parameters governing the
system behaviour, e.g. masses, stiffness, damping ratio, reaction parameters. The initial
condition can also be uncertain, in which case it becomes a random variable belonging
to ξ. Without loss of generality, we consider one component of the output quantity, e.g.
y(t, ξ) with the initial condition y(t = 0) = y0. At each time instant, y(t, ξ) is modelled
by a second-order random variable. In this context, the polynomial chaos representation
of the response is cast as:

y(t) =
∑

α∈A
yα(t)ψα(ξ) + ε(t), (3.2)

in which the notation yα(t) indicates time-dependent PCE coefficients and ε(t) is the
residual at time t. The representation of a time-dependent quantity by means of PCEs
as in Eq. (3.2), in which the effects of t and ξ are separated, is commonly used in the
literature, see e.g. Wan and Karniadakis (2005); Pettit and Beran (2006); Le Maître et al.
(2010); Gerritsma et al. (2010).

The time-dependent coefficients can be determined by means of intrusive or non-
intrusive methods. Using the intrusive method, the truncated form of the PC represen-
tation is introduced in the original system of equations. Then one uses the properties of
the orthonormality of the PC basis in order to extract a modified system of equations,
which will be solved to obtain the time-dependent coefficients. The intrusive method is
illustrated in the following by means of a numerical example.

Let us consider an undamped linear single-degree-of-freedom (SDOF) oscillator, whose
equation of motion is an ODE as follows (Le Maître et al., 2010):

ÿ(t, ξ) + k(ξ) y(t, ξ) = 0. (3.3)

Herein y(t, ξ) is the time-dependent displacement of the oscillator and k(ξ) is the uncertain
stiffness which is defined by k = k0 + k1 ξ with ξ ∼ U [−1, 1] being a uniform random
variable. The truncated PC representation of the response reads:

y(t, ξ) =
P∑

i=1
yi(t)ψi(ξ), (3.4)

with P = card(A), where A is the set of multi-indices in the expansion in Eq. (3.2).
Substituting Eq. (3.4) into Eq. (3.3), one obtains the approximate equation:

P∑

i=1
ÿi(t)ψi(ξ) + k(ξ)

P∑

i=1
yi(t)ψi(ξ) = 0. (3.5)

Taking the Galerkin projection of the above equation successively on each orthonormal
polynomial ψl(ξ), l = 1, . . . , P , one obtains the following deterministic system of P cou-
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pled ODEs:

ÿl(t) +
P∑

i=1
yl(t) < k(ξ)ψi(ξ) , ψl(ξ) >= 0, l = 1, . . . , P, (3.6)

in which < · , · > is the inner product defined on the space of second-order random vari-
ables on P. The P time-dependent PC coefficients are obtained by solving the system
of equations (3.6). The intrusive method has been widely used in the literature. How-
ever, it is not usable when the original system of equations is not available, which is a
common situation in practice when handling legacy computer codes. In addition, the
intrusive solution is strongly problem-dependent, i.e. when considering a different prob-
lem, the Galerkin projection scheme must be adapted accordingly. Herein, it is observed
that computing the deterministic coefficients < k(ξ)ψi(ξ) , ψl(ξ) >, i, l = 1, . . . , P , in
Eq. (3.6) is straightforward due to the form of the original ODE representing a simple
linear oscillator. When another system with a different mechanism is of interest, the
use of the Galerkin projection scheme might become troublesome. Let us make a minor
modification to Eq. (3.3) so as to consider a Duffing oscillator with a cubic stiffness term:

ÿ(t, ξ) + k(ξ) y3(t, ξ) = 0. (3.7)

The Galerkin projection scheme results in the following system of equations:

ÿl(t)+ < k(ξ)
(

P∑

i=1
yi(t)ψi(ξ)

)3

, ψl(ξ) >= 0, l = 1, . . . , P. (3.8)

This final system of ODEs is still manageable, however is considerably more complicated
than that defined by Eq. (3.6). The use of the intrusive method for problems involving
complex dynamical behavior, e.g. an hysteretic restoring force, will certainly introduce
issues in deriving a suitable system of equations. In general, the coupled equations ob-
tained with the Galerkin projection scheme is significantly larger and more complicated
than the original equations, but needs to be solved only once.

Despite the fact that the intrusive method has been considerably used in the liter-
ature, it is of utmost importance to introduce non-intrusive methods that do not rely
explicitly on the system of equations describing the problems. Instead of manipulating
the equations, non-intrusive methods only make use of a set of samples obtained by run-
ning the numerical model. The separated representation of the PCE in Eq. (3.2) makes it
relatively simple to apply non-intrusive methods. At a given time instant t, using a sam-
ple set of the random parameters X =

{
ξ(1), . . . , ξ(N)

}
and the corresponding responses

Y(t) =
{
y(t, ξ(1)), . . . , y(t, ξ(N))

}
, the coefficients {yα(t),α ∈ A} and the accuracy of the

PCEs may be estimated with different techniques presented in Chapter 2, namely stochas-
tic collocation, projection, regression methods. In such an approach, the metamodel of
the response would be computed independently at each time instant, hence the name
time-frozen PCEs.

Once the PC coefficients are determined, Eq. (3.2) can be used to compute the evolu-
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tion of the response statistics. The multivariate polynomial chaos functions are orthonor-
mal, i.e. :

E
[
ψα(ξ)ψβ(ξ)

] def=
∫

DΞ

ψα(ξ)ψβ(ξ) fΞ(ξ) dξ = δαβ ∀α, β ∈ NM , (3.9)

in which δαβ is the Kronecker symbol that is equal to 1 if α = β and equal to 0 otherwise.
In particular, each multivariate polynomial is orthonormal to ψ0(ξ) = 1, which leads
to E [ψα(ξ)] = 0 ∀α 6= 0 and Var [ψα(ξ)] = E

[(
ψ2
α(ξ)

)]
= 1 ∀α 6= 0. Thus, the

time-dependent mean and standard deviation of the response can be estimated with no
additional cost by post-processing the truncated PC coefficients in Eq. (3.2) as follows:

µ̂Y (t)
def= E

[∑

α∈A
yα(t)ψα(ξ)

]
= y0(t) , (3.10)

σ̂2
Y (t)

def= Var
[∑

α∈A
yα(t)ψα(ξ)

]
=
∑

α∈A
α 6=0

y2
α(t). (3.11)

3.1.2 Failure of time-frozen polynomial chaos expansions

To illustrate the use of time-frozen PCEs, let us consider a simple numerical example
which is the free vibration of a linear undamped oscillator (Eq. (3.3)). Note that Le
Maître et al. (2010) also investigated this example to illustrate the limitation of the
intrusive approach. Herein y(t, ξ) is the time-dependent displacement of the oscillator
and k(ξ) is the uncertain stiffness of the system which is defined by k = k0 + k1 ξ with
ξ ∼ U [−1, 1] being a uniform random variable, k0 = (2 π)2 and k1 = 0.2 k0. The initial
conditions are deterministic with y(t = 0) = 1 and ẏ(t = 0) = 0. The exact solution of
the problem is y(t, ξ) = cos(

√
k(ξ) t) (Le Maître et al., 2010).

Figure 3.1 depicts the displacement of the oscillator for three different values of ξ at
the early instants t < 10 s. The effect of uncertainty in this parameter is pronounced,
when the resulting solution trajectories differ significantly. It is seen that the differences
between trajectories tend to increase as time progresses.

The non-intrusive time-frozen sparse PCE1 approach is now applied to model the
displacement y(t, ξ) of the oscillator at every 0.5 s until 50 s, i.e. at t = 0, 0.5, 1, . . . , 50 s.
First N = 500 numerical simulations are conducted. At each considered time instant
t, the set of parameter samples X = {ξ1, . . . , ξN} and the corresponding displacements
Y(t) = {y(t, ξ1), . . . , y(t, ξN)} are used as the experimental design for the metamodel. In
order to judge the effect of the polynomial degree on the accuracy of the method, PCEs
of degree up to 10 and 30 are computed.

1The non-intrusive time-frozen sparse PCE approach refers to the instantaneous computation of PCEs
with the LARS-based sparse adaptive scheme presented in Section 2.2. For the sake of simplicity, it will
be denoted by time-frozen PCE throughout the manuscript.
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Figure 3.1 – Linear oscillator – Three solutions to different values of ξ .

Figure 3.2 depicts the relative LOO error of time-frozen PCEs as a function of time t.
When the maximal polynomial degree is 10, the LOO error exhibits a fast growth which
starts right after the initial instant t = 0. At t = 20 s, the LOO error is about 1. Using
higher maximal polynomial degree (p = 30), PCE remains highly accurate until t = 20 s,
at which point the accuracy starts degenerating at a rate which is slightly slower than for
PCEs with p = 10. Note that at certain instants, the resulting PCEs of maximal degree
p = 30 are highly inaccurate whereas PCEs at neighbouring instants are of acceptable
quality. This might be a sign of the instability that PCEs exhibit, which is due to the
limited number of samples available. The conclusion is that by increasing the polynomial
degree, the accuracy of PCEs can be improved. However, this only allows to delay the
onset of the accuracy degeneration. At a certain point, high-degree PCEs will start loosing
their accuracy, though at a slightly smaller rate compared to low-degree PCEs.

Let us now use the resulting PCEs to predict the time-dependent statistics of the
response. Given the exact solution y(t, ξ) = cos(

√
k(ξ) t), the mean value of the response

at instant t can be obtained as:

E [y(t, ξ)] =
1∫

−1

y(t, ξ) 1
2 dξ (3.12)

The standard deviation of the response can be obtained approximately using the Tay-
lor expansion for the moments of function of random variables (Benaroya et al., 2005).
However the approximation might be prone to large inaccuracy due to the non-linear
relationship between ξ and y(t, ξ). Therefore, the empirical standard deviation obtained
from 104 Monte Carlo samples is used herein as reference.

Figure 3.3 shows that PCEs of degree 10 are capable of predicting accurately the
expected values of the responses at considered time instants. Regarding the standard
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Figure 3.2 – Linear oscillator – Evolution of the LOO error in time t .

deviation (Figure 3.4), degree-10 PCEs fail to capture the trend of the trajectory from
t = 20 s onwards. Using polynomials of degree 30, the standard deviation can be predicted
relatively well except for the later instants (t > 35 s).

The observed results suggest that non-intrusive time-frozen PCEs are not effective even
for the considered simple example concerning a linear oscillator with only one uncertain
parameter and without external excitation or damping. Le Maître et al. (2010) showed
that the intrusive method faces the same problem, when its accuracy degenerates in time.
Therefore it is extremely difficult to apply PCEs to more complicated time-dependent
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problems, which has been reported in multiple publications, see e.g. Wan and Karniadakis
(2005); Gerritsma et al. (2010).

0 10 20 30 40 50
−1

−0.5

0

0.5

1

t (s)

M
e

a
n

 

 

Reference

Time−frozen PCE

(a) Maximal polynomial degree p = 10

0 10 20 30 40 50
−1

−0.5

0

0.5

1

t (s)

M
e

a
n

 

 

Reference

Time−frozen PCE

(b) Maximal polynomial degree p = 30

Figure 3.3 – Linear oscillator – Evolution of the response mean in time t .
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Figure 3.4 – Linear oscillator – Evolution of the response standard deviation in time t .
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3.1.3 Why time-frozen polynomial chaos expansions fail

The current section aims at clarifying the reasons that cause time-frozen PCEs failure in
representing time-dependent random responses.

In the considered linear oscillator system, the relationship between the input parameter
ξ and the solution becomes increasingly non-linear as time progresses. The increasingly
non-linear dependence of the solution on the input parameters is also reported in different
publications, see e.g. Wan and Karniadakis (2005); Pettit and Beran (2006). Figure 3.5
depicts the response y(t, ξ) plotted as a function of the uncertain parameter ξ at different
time instants t = 2, 3, 10, 20, 30, 40 s. At t = 2, 3 s, the response is a parabolic-like function
of ξ. At t = 10 s, the function becomes sinusoidal-like in the considered range of ξ. The
frequency of the sinusoidal-like function is increasing with time. This is consistent with
the exact solution of the displacement y(t, ξ) = cos(

√
k(ξ) t), in which the response at the

instant t is a cosine function of
√
k0 + k1 ξ with frequency t/(2 π).

The increasing non-linearity of the solution with respect to the parameter leads to the
following by-products. First, the probability density function (PDF) of y(t, ξ) becomes
bi-modal at late instants, whereas they are uni-modal at the early stage. This multi-
modality of the response can be seen as an indicator that approximation by means of
time-frozen PCEs is becoming harder in time. Representation of multi-modal quantities
using PCEs was investigated by Nouy (2010) and Soize (2015). Second, the expansions
containing polynomials suitable for representing the response at the early instants become
insufficient at later instants, as reported by Ghosh and Ghanem (2008); Gerritsma et al.
(2010). In order to maintain the accuracy, the expansion needs to be updated with
higher-degree polynomials or different types of basis functions that can represent well the
non-linearity, see e.g. Wan and Karniadakis (2006); Pettit and Beran (2006); Paffrath
and Wever (2007); Ghosh and Ghanem (2008).

At this point, we should clarify why the response becomes an increasingly non-linear
function of the uncertain parameter as time progresses. The question itself contains a hint
for the answer. Indeed, this phenomenon happens only when the temporal variable t inter-
venes in the systems. On the contrary, in static problems where the systems remain in the
equilibrium state, the input-response function does not evolve, i.e. it remains the same at
all instants. Therefore the evolution of the input-response function is uniquely due to the
dynamics of the considered systems. For instance, in the linear oscillator under investiga-
tion, the response is a periodic function of time t with uncertain frequency. For the same
amplitude of the response, its dynamics are governed solely by its frequency. The distinct
values of the uncertain parameter result in out-of-phase trajectories. Consequently, the
input-response function exhibits an increasing level of non-linearity. In more complicated
problems, the dynamics is governed by more complex mechanism involving the solution
history (or memory), as shown in the next section of literature review. Therefore, use
of PCEs for capturing the increasingly non-linear relationship consists in capturing the
consequence of the dynamics. The question is whether it is suitable to catch the dynamics
by using larger and more complicated bases. PCEs is a tool for propagating uncertainties
and is not a tool designed to represent the dynamics. It is therefore more effective to use
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Figure 3.5 – Linear oscillator – Evolution of the response in time t .

PCEs only for the uncertainties-related part of the problem while capturing the dynamics
with a different tool designed for this specific purpose.

Let us now discuss another aspect of the problem relating to the fundamental formula
of PCEs for time-dependent problems, which consists in separating the effects of time t
and the uncertain parameters. For the considered linear oscillator, the PCE reads:

y(t, ξ) =
P∑

i=1
ψi(ξ) yi(t). (3.13)
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The representation is rewritten this way in order to emphasize the fact that from a
different point of view yi(t) (resp. ψi(ξ)) can be considered basis functions (resp. co-
efficients). This represents the time-dependent stochastic response y(t, ξ) as a linear
combination of deterministic modes yi(t), i = 1, . . . , P with corresponding stochastic
coefficients ψi(ξ), i = 1, . . . , P . This follows the principle of superposition that is un-
fortunately not valid for non-linear dynamics. In other words, for problems involving
non-linearity, the classical representation of PCEs for time-dependent problems is merely
a crude approximation of the dynamics. It has also been observed that even for systems
with linear behaviour (e.g. the oscillator considered herein), this representation of PCEs
is not effective (Le Maître et al., 2010). Therefore, a different representation in which the
effects of time t and ξ are not separated might be of interest.

3.2 Current polynomial chaos expansion approaches
for stochastic dynamics

This section includes an extensive literature review of the state-of-the-art methods for
PCEs in the context of time-dependent problems, e.g. in structural and fluid dynamics
and chemical systems. The different methods are classified into two major groups in
accordance with the philosophy of how to handle the problems. For each method, the main
features, differences and similarities with respect to the other methods, its effectiveness
and limitations will be discussed.

There are different ways of classifying the methods presented hereinafter, for instance
intrusive vs. non-intrusive PCEs, global vs. local PCEs, etc. Herein, it is proposed
to classify the methods into two groups according to the guiding principles, which are
explained in the next paragraph.

Uncertain dynamical system involves two aspects, namely uncertainty and dynamics.
As explained in the previous section, the dynamics of the system results in the increasingly
non-linear dependence of the response on the stochastic input parameters as time pro-
gresses. There are so far two groups of methods for handling this problem. The first one
refers to methods that use PCEs to capture directly the increasing non-linearity, which
is the consequence of the dynamics. The second group includes methods that directly
capture the dynamics of the systems with a specific technique while representing the ef-
fect of uncertainties with PCEs, thus avoiding modelling the strong non-linearity with the
uncertainty propagation tool. For the sake of clarity, the evolution of PCE methods for
uncertain dynamics in the two groups is depicted in Figure 3.6.
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3.2.1 Approach 1: capture the consequence of the dynamics

The so-called consequence of the dynamics is the increasingly non-linear dependence of
the response on the random input parameters. This has been currently handled by means
of global high-degree PCEs, local low-degree PCEs or different types of basis functions.

3.2.1.1 Use of high-degree global functions

To represent a highly non-linear function, the use of high-degree PCEs is the first solu-
tion that one commonly investigates. For instance, Li and Ghanem (1998) and Lucor
and Karniadakis (2004) suggested that strong non-linear dynamics can only be captured
accurately using high polynomial degree.

The most relevant issue for high-degree PCEs is the curse of dimensionality, which
means the cardinality of the PC basis increases exponentially with the number of random
variables and the total degree. Meanwhile, usually a limited number of model simulations
is available. In the literature, different methods have been designed to break the curse
of dimensionality for high-degree and high-dimensional PCEs that can be used in the
context of time-dependent problems.

Lucor and Karniadakis (2004) proposed an adaptive generalized PCE approach which
reads:

y(t, ξ) = ȳ(t) +
K∑

i=1
yi(t) ξi +

M∑

i=K+1
yi(t) ξi +

P∑

j=M+1
yj(t)ψj(ξi|Ki=1), (3.14)

where ȳ(t) is the mean trajectory, the first two summations include the linear terms
and the third summation comprises the non-linear terms of the expansion which are
polynomials of random variables {ξi, i = 1, . . . , K}. The intrusive Galerkin projection
method is used to compute the time-dependent PC coefficients yi(t), i = 1, . . . , P . The
linear terms are sorted and reordered according to the L2-norm of the time-series yi(t), i =
1, . . . ,M over the considered duration. Only the non-linear terms with contribution from
K input variables with the largest L2-norm of yi(t) are kept in the next iteration. During
each iteration, all the PC coefficients are recomputed and the linear terms are reordered
based on the resulting L2-norm. The process is repeated until convergence is reached,
i.e. the ordering of the K largest linear contributors is stable. The idea is to adaptively
select the non-linear interaction polynomials, which actually allows one to reduce the
cardinality of the PC basis. The method was applied to a Duffing oscillator with one
uncertain parameter subject to a sinusoidal excitation with random amplitude (Lucor
and Karniadakis, 2004).

To break the curse of dimensionality, Blatman and Sudret (2010) introduced truncation
schemes that allow one to reduce significantly the size of the candidate basis. Furthermore,
the authors used the least angle regression technique to effectively select the relevant PC
functions. The resulting sparse adaptive PCE scheme was presented earlier in chapter
2 of the current manuscript and can be used to enhance the accuracy at late instants.
From a similar perspective, different methods have been proposed to exploit the sparsity
of PCEs, e.g. l1-minimization technique (Jakeman et al., 2015; Hampton and Doostan,
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2015).
Instead of enhancing the sparsity of the PC expansions, Doostan et al. (2013) intro-

duced the use of low rank approximation (LRA) which relies on the canonical decompo-
sition of the response. The method is based on solving a sequence of one-dimensional
least squares regression problems. When considering one dimension, all variables in the
other directions are frozen. This is alternated over all directions. The alternating ap-
proach allows the computation of high-degree and high-dimensional PCEs, which appears
promising and might be applied to time-dependent problems.

As observed in the previous section, the probability density function of the response is
evolving and becomes multimodal at late instants of the response. Nouy (2010) proposed
the use of mixtures of PCEs to represent the multimodal distribution. Soize (2015) also
focused on the representation of a multimodal response quantity. It can be expected
that the proposed methods will help improving the accuracy of PCEs when applied to
time-dependent problems.

3.2.1.2 Use of low-degree local functions

From a different perspective, Wan and Karniadakis (2005) realized that increasing the
polynomial degree might be ineffective for long term responses. This is due to the use
of global polynomial functions defined over the entire random space. When a highly
non-linear relationship is of interest, a large number of global basis functions is required.
However, over each sub-domain of the random space, the non-linearity is significantly
lower and the degree of perturbation is scaled down; thus low-degree local basis functions
can be used effectively. Based on this observation, Wan and Karniadakis (2005) proposed
an adaptive multi-element PC approach. The space of random inputs is decomposed
into non-overlapping sub-elements. In each sub-element, new local random variables are
defined in accordance with their distribution functions. Finally, low-degree PCEs are
applied element-wise. In order to maintain the accuracy, an adaptive decomposition
of the random space is required. At the next time instant, an element is divided into
two equal sub-elements or kept intact depending on the local decay rate of the relative
error of the PC approximation on that element. An indicator is proposed to select the
most sensitive random dimension to be decomposed. This method was applied to the
Kraichnan-Orsag problem with three random variables representing the initial conditions
of the responses.

Sharing a similar point of view, Paffrath and Wever (2007) used windowed Hermite
expansion which consists in constructing conditional polynomials in small sub-elements
in the space of random inputs. This allows one to zoom into the critical region in the
random space, in this case the neighbourhood of the point with the highest probability
of failure. The method is used for computing the time-dependent failure probability
in systems of ODEs such as the predator-prey model (three random variables) and the
Belousov-Zhabotinsky reaction (one random variable).

Recently, Chen et al. (2015) proposed to use local PCEs in non-overlapping sub-
domains which are obtained by dividing the spatial space and imposing artificial interface
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boundary conditions. The local solutions are obtained by using PCEs of local random
variables and auxiliary variables governing the artificial boundary conditions.

As a summary, the methods presented in this section rely on decomposing the problems
into several sub-problems either in the random or in the spatial space, which can be solved
independently. The sub-problems are less complex than the original problem with respect
to the dependence of the solution on the input parameters, thus local PCEs can be used
effectively.

3.2.1.3 Use of different basis functions

In order to capture the non-smooth behaviour of the response as a function of random
parameters, Ghosh and Ghanem (2008) introduced the basis enrichment of PCEs. By in-
tegrating a priori knowledge about the system and its non-smooth behaviour, the PC basis
is updated with appropriate enrichment basis functions, namely absolute, step and inverse
function etc. Although the orthogonality is not maintained for the enriched basis, this
method allows one to capture the highly non-linear behaviour (including discontinuity)
in the considered problems, namely the free vibration of a simply supported rectangular
plate (two random variables) and a 2 DOF linear system with uncertain stiffness of the
linear spring.

Another approach consists in substituting the full original polynomial bases. Ghosh
and Iaccarino (2007) showed that trigonometric (sinus and cosine) functions perform
better than PCEs for a simple problem of CO surface oxidation. The trigonometric ex-
pansion predicts the statistics of the response more accurately than PCEs. Pettit and
Beran (2006) used Haar wavelets of random variables which are based on a piecewise-
constant mother wavelet to represent the responses of limit cycle oscillations. Le Maître
et al. (2007) proposed to substitute the PC representation by a multi-resolution scheme
based on multi-wavelet expansion consisting of the piece-wise continuous polynomial func-
tions (multi-wavelets) obtained by translations and dilations of the normalized Hermite
polynomials. The multi-resolution scheme allows the local refinement of the expansion in
appropriate areas of the random space.

The presented methods share the common feature that the steep, non-smooth depen-
dence is captured by functions different from polynomials. However, the use of different
basis functions, for instance compact polynomial multi-wavelets, has a much higher com-
putational cost than PCEs (Le Maître et al., 2007).

3.2.2 Approach 2: capture the dynamics

The second approach relies on capturing the dynamics by specific tools so that low-degree
PCEs can be used effectively to represent the uncertainties. Special techniques can be
used for systems with particular characteristics, e.g. periodicity. In the following, we
present different techniques that have been investigated to capture the dynamics.
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3.2.2.1 Methods for periodic random responses

We first consider the problems involving periodic random responses, which are relevant
in various fields of engineering. Examples include the steady-state response of systems
subject to sinusoidal excitation (Lucor and Karniadakis, 2004), the limit cycle oscillations
of aircraft wing in a transonic regime (Bunton and Denegri, 2000; Denegri, 2000) and
the response of self-oscillation systems (Sarrouy et al., 2013). Uncertainty quantification
of periodic responses has attracted a large attention, see e.g. Beran et al. (2006a); Le
Meitour et al. (2010); Schick et al. (2014).

Many of the methods presented in Section 3.2.1 were illustrated with dynamical sys-
tems involving periodicity, however they are based on the ideas of using high-degree PCEs,
or local basis functions or functions different than polynomials. For instance, Le Meitour
et al. (2010) used the multi-element approach for the limit cycle oscillation of an air-foil,
whereas Beran et al. (2006a) used Haar wavelets. Hereafter, two methods specifically
designed for limit cycle oscillations are discussed.

Witteveen and Bijl (2008) proposed to use a non-intrusive constant phase interpo-
lation which consists in interpolating the responses onto their phase space. The phase
of the vibrations is extracted by measuring the local extrema in the sampled response
trajectories. In the phase space, the trajectories become actually in-phase, thus use of
PCEs is more effective. A further step to transform the response from the phase space
back to the time space is required.

Le Maître et al. (2010) proposed the intrusive asynchronous time integration scheme, in
which the transformed time variable τ(t, ξ) is introduced. τ(t, ξ) is adjusted in such a way
that the spectrum of the solution in the transformed time scale remains narrow-banded.
In other words, the transformed trajectories vary in a small neighbourhood of a reference
trajectory. Finally, one needs to solve a new set of ODEs involving the transformed time
τ(t, ξ) and the transformed trajectory y(τ, ξ).

The above two methods follow the same principle that the representation of the so-
lution in the normal time space is too complex for using PCEs, thus a projection of the
solution on a suitable space is sought so that it is more convenient for the PC repre-
sentation. In particular, in the selected space (phase or transformed time), despite the
uncertainties from the input parameters, the response trajectories exhibit a low level of
variability by remaining in-phase. Indeed, the uncertain frequencies of the solution, which
in this case characterize the dynamics of the oscillation, are captured by the intrusive time
transform operator or the phase interpolation scheme.

3.2.2.2 Methods for general cases

In a general case, the responses are not periodic functions, thus a general approach must
be used.

Gerritsma et al. (2010) observed that the PDF of the solution evolves in time, which
makes the polynomials associated with initial distributions no longer optimal for repre-
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senting long-term responses. Therefore, an adaptation of the set of uncertain variables is
needed. Time-dependent PCEs are constructed by adding new random variables on-the-
fly. At instant t, PCEs read:

y(t, ξ) =
P∑

i=1
yi(t)ψi(ξ). (3.15)

When the non-linear coefficients become too large with respect to the linear coefficients,
a new random variable equal to the solution at that time instant is added. At a later
instant t′ = t+ ∆t, time-dependent PCEs read:

y(t′, ξ) =
P ′∑

j=1
yj(t′)ψj(ξ, ξ∗) =

P ′∑

j=1

[
yj(t′)ψ(M+1)

j (ξ∗)
] M∏

k=1
ψ

(k)
j (ξk), (3.16)

in which ξ∗ ≡ y(t, ξ) is the newly added random variable and ψ
(k)
j (·) is the univariate

polynomial in the direction k of the multivariate polynomial ψj(·). Time-dependent
PCEs represent the response at the considered instant as polynomial chaos functions of
the responses at early instants and original random variables. This is a major difference
compared to the classical representation of PCEs, where the dynamics of PC coefficients
are not evident, i.e. no connection between the PC coefficient yj(t′) and the past values of
the response is specified. The classical representation led to the idea that PC coefficients
can be determined instant-wise in a non-intrusive manner. One can argue that in the
intrusive method, the PC coefficients are described by ordinary differential equations, thus
they exhibit the dynamics. However, it is reminded that even the intrusive PCEs fail in
relatively simple problems, which might be due to the separated form of the representation.
In time-dependent PCEs, the PC-coefficients are functions of the responses past values
(ξ∗), which are themselves functions of ξ. The clear distinction between the effects of the
temporal variable t and the uncertain parameters ξ disappears, when ξ governs indirectly
the PC-coefficients yj(t′)ψ(M+1)

j (ξ∗) in Eq. (3.16). Time-dependent PCE were used to
solve the Kraichnan-Orszag problem with three random parameters. Recently, Heuveline
and Schick (2014) combined time-dependent PCEs with the multi-element approach. The
time-dependent PCEs are applied in each sub-domain in the random space. The hybrid
approach allows to take advantages of both methods.

From a similar perspective, Luchtenburg et al. (2014) proposed the PC-based flow
map composition, in which a short term flow map is the solution of the original system of
ODEs in small time window. The long-term response can be obtained by the composition
of intermediate flow maps:

ϕN ∆t
0 = ϕM ∆t

(M−1) ∆t ◦ ϕ(M−1) ∆t
(M−2) ∆t ◦ · · · ◦ ϕ2 ∆t

∆t ◦ ϕ0
∆t. (3.17)

Each of the short term flow maps can be approximated by means of PCEs as follows:

ϕt0+∆t
t0 (y, ξ) =

P∑

i=1

Q∑

j=1
ϕt0+∆t
t0,ij ψi(y)ψj(ξ). (3.18)
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The PC coefficients ϕt0+∆t
t0,ij are computed by means of the Gaussian quadrature method.

The representation of the PC-flow map composition is similar to time-dependent PCEs
in the sense that current responses are used to predict their future values. The method
was applied successfully to predict the positions of particles in a double gyre flow with
uncertain initial conditions (two random variables) (Luchtenburg et al., 2014).

The idea that the projection coefficients follow dynamical behaviours was also inves-
tigated by Le Maître and Mathelin (2010). The equation-free model reduction method
consists in, first projecting the response on a reduced basis using the Karhunen-Loève
expansion and second, seeking a mapping for the projection coefficients which is of the
form:

yi(t+ T ) =MT (yi(t)). (3.19)
Le Maître and Mathelin (2010) proposed a polynomial representation for the mapping
functionMT (·), of which the coefficients are determined with Gaussian quadrature.

Recently, in the context of structural dynamics, Spiridonakos and Chatzi (2015a,b);
Spiridonakos et al. (2016) introduced the PC-nonlinear autoregressive with exogenous
input (NARX) model which reads:

y(t, ξ) =
Q∑

i=1

P∑

j=1
ϑi,j ψj(ξ) gi(z(t)), (3.20)

where gi(z(t)), i = 1, . . . , Q are non-linear autoregressive functions of past values of the
responses and the excitation gathered in the vector z(t). In the proposed approach, the
NARX model is used to represent the dynamical behaviour of the system, whereas PCEs
tackle the uncertainty part. A two-phase scheme is employed. First, a stochastic NARX
model is identified to represent the dynamical system. It is characterized by a set of
specified NARX model terms and associated random coefficients. Second, the latter are
represented as PCEs of the random input parameters which govern the uncertainties in
the considered system. In the two phases, both the NARX terms and the polynomial
functions are selected with the heuristic genetic algorithm. The approach proved its ef-
fectiveness in several case studies in structural dynamics with limited number of random
variables (Spiridonakos and Chatzi, 2015a,b). It is worth mentioning that early combi-
nations of system identification tools with polynomial chaos expansions can be found in
the literature. Ghanem et al. (2005) regressed the restoring force of an oscillator on the
Chebychev polynomials of state variables of the system, then used PCEs to represent the
polynomial coefficients. Wagner and Ferris (2007) used PC-ARIMA models with a-priori
known deterministic coefficients for characterizing terrain topology. Linear ARX-PCE
models were also used by Kopsaftopoulos and Fassois (2013), Samara et al. (2013) and
Sakellariou and Fassois (2016).

The PC-NARX model can be considered as an extension of time-dependent PCEs or
PC-flow map composition. It takes into account the effect of the excitation in the system
and past values from several previous steps are included.

Observing that a fixed-in-time basis in KL expansion (or in other reduced basis model)
may not describe effectively the solution with strong time-dependent form, Sapsis and
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Lermusiaux (2009) proposed dynamically orthogonal field equations, which consists in
deriving intrusively a system of equations describing the evolution of the spatial and
stochastic basis. The bases are therefore constructed on-the-fly instead of being com-
puted a priori using the covariance matrix and solving eigen-problems. The dynamically
orthogonal condition imposes that the evolution of the spatial basis is orthogonal to the
space spanned by the basis themselves. Later, Cheng et al. (2013) proposed a dynam-
ically bi-orthogonal method, which is considered the reformulation of the dynamically
orthogonal field equations by Choi et al. (2014). These approaches, which are intrusive
in essence, are not considered in the present work.

A common feature of the methods presented in this section is that the PC coeffi-
cients follow dynamical evolutions, which can be represented by a suitable mapping from
the past values of the response. Their formulas differ fundamentally from the classical
separated representation, in which the response is projected onto a set of determinis-
tic time-dependent bases yi(t), which have no connection with the past values of the
responses, thus do not involve the dynamics.

3.2.3 Approaches to be investigated

At the beginning, the author considered that high-degree polynomials might help to solve
time-dependent problems. Therefore, Mai and Sudret (2015c) developed the hierarchical
PCE approach, in which the non-linear interaction terms are selectively added to the
expansion depending on the selected linear terms. This approach shares similarities to
the adaptive PCEs proposed by Lucor and Karniadakis (2004), when the interaction
polynomial functions are selected adaptively under a specified constraint. However, it
was soon realized that increasing the polynomial degree in time is not a sustainable
approach due to the fact that it only deals with the consequences of the dynamics. It is
nothing more than using an uncertainty quantification tool to mimic the dynamics. The
root of the problem, which is associated with the dynamical behaviour of the systems, is
thus not efficiently tackled.

From that point on, all efforts are focused on the dynamics of the problems. It was
observed that one can take advantages of particular characteristics of the problems. For
instance, when the responses of interest are periodic, the ideas introduced by Witteveen
and Bijl (2008) and Le Maître et al. (2010) presented in Section 3.2.2.1 appear relevant.
By means of the time transform or the interpolation on the phase space, the complexity of
the derived problem is reduced significantly. This allows an effective use of PCEs. Inspired
by those ideas, a non-intrusive approach is proposed in Chapter 4, in which stochastic
time transform is used to obtain in-phase trajectories and then, PCEs are applied in the
transformed time scale.

In a general case, for instance in structural dynamics, it is of utmost importance
to introduce a non-intrusive generalized method. The combination of PCEs and NARX
model (Spiridonakos and Chatzi, 2015a,b) seems promising. In this approach, the dynam-
ical behavior is handled effectively by the NARX tool. In Chapter 5, the computation
of PC-NARX model based on least angle regression is investigated with applications on
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structures with random properties subject to stochastic excitations.

3.3 Summary

In the current chapter, classical time-frozen non-intrusive PCEs for time-dependent prob-
lems are first investigated. By means of a simple numerical example, the limitations of
the classical approach are revealed. We attempted a thorough review of state-of-the-art
methods that were introduced in the last decade to solve such problems. Inspired by
the ideas of Witteveen and Bijl (2008), Le Maître et al. (2010), Spiridonakos and Chatzi
(2015a), two approaches will be investigated in the next two chapters of this manuscript.
For problems with periodic or quasi-periodic responses, the time transform idea is devel-
oped in an original completely non-intrusive way. For more general cases, the use of the
least angle regression technique for computing PC-NARX model is considered.



4
Stochastic time-warping polynomial chaos expansions

The use of polynomial chaos expansions (PCEs) in problems involving stochastic dynamics
has so far attracted great attention. In mechanics and fluid dynamics, this problem has a
major importance, see for instance the stochastic flow simulations (Wan and Karniadakis,
2006) or random responses of nonlinear aeroelastic systems (Pettit and Beran, 2006).
However, the application of PCEs to such problems is facing important challenges, in
particular PCEs loose accuracy with time. PCEs are currently not capable of representing
the time-dependent responses at late instants and it is of utmost importance to find a
solution to this issue.

In this context, an interesting problem emerges in nonlinear oscillating systems pos-
sessing a limit cycle1 which may depend on the uncertain parameters. Limit cycle oscilla-
tions (LCO) represent a class of time-dependent problems that plays an important role in
several fields, see e.g. aerospace engineering (Bunton and Denegri, 2000) and mechanical
engineering (Sarrouy et al., 2013) among others. Use of PCEs to represent LCO systems
has attracted a large attention and actually almost all novel ideas with PCEs are applied
first to LCO systems or systems involving periodicity. For instance, Wan and Karniadakis
(2006) used multi-element PCEs whereas Beran et al. (2006a) proposed different methods
namely use of Haar wavelets as local bases or use of B-spline functions. These approaches
aim at resolving the highly nonlinear behaviour of LCO responses in the stochastic do-
main. There are also techniques that are designed specifically for LCO. Le Maître et al.
(2010) proposed an intrusive time transform of the trajectories which aims at representing
the transformed time-histories in a small neighborhood of a reference trajectory, i.e. to
reduce their variability by making them in-phase. A transformed time line τ is introduced,
of which the varying clock speed τ̇ = dτ

dt is adjusted in an intrusive setup at each time
step. This is achieved by minimizing the Euclidean distance between the distinct trajecto-
ries and the reference counterpart. From a similar perspective, Witteveen and Bijl (2008)
interpolated the oscillatory responses on the phase space to obtain in-phase oscillations.
Inspired by the two mentioned approaches, a non-intrusive time transform, which consists
in finding a suitable stochastic warping of the time line to increase the similarity between
different trajectories in the transformed (warped) time scale, is introduced in the present
chapter. The proposed approach focuses on increasing the frequency and phase similarity
of the considered trajectories in problems involving periodicity.

It is worth noting that in the engineering literature, the time-warping technique has

1Limit cycle is a closed isolated trajectory in the phase-space of self-oscillated oscillators. The nearby
trajectories can either spiral in toward or away from the limit cycle.
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been of interest for decades. For instance, in the context of voice recognition, Sakoe and
Chiba (1978) first proposed time-warping to eliminate the timing differences and obtain
maximum coincidences between two speech patterns. Wang and Gasser (1997) proposed a
novel cost function to determine the time-warping function. Later, Ramsay and Li (1998)
used the technique under the name “curve registration” for biological data. The essential
idea consists in the registration (or alignment) of salient curve features by means of a
suitable smooth monotone transformation of the temporal variable t. The actual analyses
are then carried out on the aligned curves. Note that the same idea can also be conducted
in the spatial domain. For instance, registering the outcomes over surfaces or volumes are
particularly important in medical imaging (Bookstein, 1997).

In this chapter, we are adding one dimension to the time-warping technique by in-
corporating the effects of uncertainties in the transformation function. This results in
a stochastic time-transform framework. Indeed, due to the inherent randomness of the
stochastic problem, a time transformation function with deterministic parameters is not
suitable. Therefore, stochastic transform parameters must be used and will be cast as
functions of the original random parameters.

The chapter is organised as follows: in Section 4.1, the theory of the stochastic time-
warping framework is introduced. A method to determine the stochastic parameters of
the transformation function is proposed. Use of principal component analysis is presented
for the purpose of reducing the associated computational cost. Section 4.2 illustrates
the proposed framework with numerical engineering applications. Discussions on this
approach are given in the next section, followed by a summary of the conducted work.
The theoretical foundation of the approach was originally introduced by Mai and Sudret
(2015a,b) and has been recently submitted for publication (Mai and Sudret, 2016a).

4.1 Stochastic time-warping polynomial chaos ex-
pansions for random oscillations

4.1.1 Stochastic time-warping

Consider a dynamical system (e.g. a structural dynamic or chemical system) whose
behaviour is modelled by a system of first-order differential equations:

dy
dt = f(y, ξ, t), (4.1)

where the initial condition is y(t = 0) = y0 and the random vector ξ comprises inde-
pendent second-order random variables defined over a probability space (Ω,F ,P). ξ may
include the parameters governing the system behaviour, e.g. masses, stiffness, damping
ratio, reaction parameters, frequency and amplitude of excitation. The initial condition
can also be uncertain, in which case it becomes a random variable belonging to ξ. The
time-dependent response of the system is denoted by y(t, ξ). Without loss of generality,
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we consider one component of the output quantity, e.g. y(t, ξ) with the initial condition
y(t = 0) = y0. At each time instant, y(t, ξ) is assumed to be a second-order random
variable. As in the works by Wan and Karniadakis (2005, 2006); Witteveen and Bijl
(2008); Le Maître et al. (2010), herein we focus on the class of problems when y(t, ξ) is
an oscillatory response with random frequencies and amplitudes.

The time dependent response y(t, ξ) is represented by means of time frozen PCEs as
follows:

y(t, ξ) =
∑

α∈A
yα(t)ψα(ξ) + ε(t, ξ). (4.2)

A virtual time variable τ(t, ξ), which is obtained by a stochastic time-warping, is intro-
duced as follows:

τ(t, ξ) =
Nτ∑

i=0
ci(ξ) fi(t) = F (t, ξ), (4.3)

where {fi(t), i ∈ N} are functions of the physical time t and {ci(ξ), i ∈ N} are coefficients
which depend on the input random variables ξ. The coefficients {ci(ξ), i ∈ N} can be
represented by means of PCEs as follows:

ci(ξ) =
∑

α∈NM
ciαψα(ξ), (4.4)

where ψα(ξ) and ciα are respectively the orthonormal polynomial functions and the co-
efficients of the expansion. The only constraint on the time-warping is that τ is a strictly
monotonically increasing function of t. Then the inverse transform may be cast as:

t(τ, ξ) = F−1(τ, ξ). (4.5)

In other words, for each realization ξ0, i.e. each trajectory of the system response,
we assume a one-to-one mapping between t and τ . The response trajectory may then be
represented in the transformed (warped) time scale as follows:

y(τ, ξ) =
∑

β∈B
yβ(τ)ψβ(ξ) + ε(τ, ξ), (4.6)

in which B is the truncation set of the multi-indices β. The inverse time transform allows
one to obtain the PCEs of the response in the physical time scale as follows:

y(t, ξ) = y(F−1(τ, ξ), ξ). (4.7)

The objective is to find a suitable time-warping defined by Eq. (4.3) and (4.4) so
that the cardinality of B remains small (i.e. low-degree PCEs can be used) to achieve
an acceptable error ε(τ) even at late instants. This can be obtained if the trajectories
y(τ(t, ξ)) become in-phase, as suggested by Le Maître et al. (2010) and Witteveen and
Bijl (2008). First, a deterministic reference trajectory yr(t) is introduced. The stochastic
time-warping (Eq. (4.3)) is determined by maximizing the similarity between y(τ(t, ξ))
and the reference counterpart yr(t) for all values of ξ, which makes the responses become
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in-phase. This allows the effective computation of Eq. (4.6). Having at hand the time-
warping (Eq. (4.3)) and the PCEs of the response in the virtual time line τ (Eq. (4.6)),
one can finally obtain the PCEs in the physical time line t by conducting the inverse
time-warping. The proposed non-intrusive time-warping approach is explained in detail
in the following. For the sake of clarity, it is graphically summarized in Figure 4.1.

• One first chooses a reference trajectory yr(t) which is for instance obtained by con-
sidering the mean values of the input vector ξ, i.e. yr(t) = y(t,E [ξ]). In general,
yr(t) may be any realization of the response quantity y(t) obtained with a specific
sample ξ0. For the numerical case studies considered in the current chapter, the
choice of yr(t) did not affect the final results.

• Let us start now the time-warping, which consists in transforming the time line with
the purpose of increasing the similarity between different realizations of the output
y(t, ξ). Assume that one is given a set of trajectories yi(t) ≡ y(t, ξi), i = 1, . . . , n
for n realizations of ξ corresponding to an experimental design in the input space
DΞ . Then for each i, the following steps are performed:

– Define a linear time-warping τ = ki t + φi. In general, the functions fi(t) in
Eq. (4.3) might be polynomials of t. However, when investigating the problem
of vibration with random frequencies, a linear transform usually suffices. This
is due to the periodicity of the considered response trajectories. In the intrusive
time transform approach (Le Maître et al., 2010), although a linear warping
function is not specified for the considered examples, the resulting transformed
time τ represents a linear relationship when plotted against t. Wang and Gasser
(1997) also used a linear warping function. In particular, given the complexity
of the problems under investigation, use of a linear function facilitates the
inverse transform in the next phase, which is highly convenient. This linear
warping represents two actions, namely scaling and shifting, respectively driven
by the parameters ki and φi. The time line is stretched (resp. compressed)
when ki > 1 (resp. 0 < ki < 1) and is shifted to the left (resp. to the right)
when φi < 0 (resp. φi > 0). In fact, the scaling factor ki (resp. shifting factor
φi) allows to maximize the similarity in frequency (resp. phase) between the
considered trajectories.

– Determine the parameters (ki, φi) governing the time-warping as the solution of
an optimization problem which aims at maximizing the similarity between the
response trajectory yi(ki t+φi) and the reference counterpart yr(t). The details
of the optimization problem, in which a measure of similarity is introduced,
will be described in the next section.

– Represent yi(t) on the transformed time line τ . For this purpose, one chooses
a grid line of τ with the desired time interval. In fact, the finer the grid
is, the smaller is the error introduced by the interpolation. The trajectory
yi(t) is projected onto τi = ki t + φi to obtain yi(τi). In order to assure that
all transformed time lines τi start at 0, when t ≤ t0, one uses the following
transform τi = ki t0 + φi

t0
t. The small value t0 is chosen so that ki t0 +φi > 0∀i.
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For instance, t0 = 0.2 s is used for the numerical applications in this chapter.
Finally the projected trajectory is linearly interpolated on the selected time
line τ yielding yi(τ).

• One builds PCEs of k(ξ), φ(ξ) and y(τ, ξ) using the realizations {ki, φi, yi(τ), i =
1, . . . , n} as the experimental design (or training set):

k(ξ) =
∑

γ∈G
kγ ψγ(ξ) + εk, (4.8)

φ(ξ) =
∑

θ∈T
φθ ψθ(ξ) + εφ, (4.9)

y(τ, ξ) =
∑

β∈B
yβ(τ)ψβ(ξ) + εy(τ, ξ). (4.10)

In the above equations, γ, θ and β are multi-indices belonging to the truncation set
G, T and B of the expansions. kγ , φθ and yβ(τ) are coefficients computed by means
of sparse adaptive PCEs (Blatman and Sudret, 2011). k(ξ) and φ(ξ) are scalar quan-
tities, therefore the computation of their PCE models is straightforward. However,
for the vector-valued response y(τ, ξ), it might be computationally expensive when
τ is of important length. This computational cost can be reduced significantly by
coupling PCEs with the principal component analysis (Blatman and Sudret, 2013).
The combination of PCA and PCEs will be described in detail in Section 4.1.3.

Figure 4.1 – Stochastic time-warping approach: computation of PCEs

4.1.2 Determination of time-warping parameters

This section describes the optimization problem used for determining the parameters k
and φ of the time-warping process. We first propose a function to measure the similarity
between two trajectories y1(t) and y2(t):

g(y1(t), y2(t)) =

∣∣∣∣∣
T∫
0
y1(t)y2(t)dt

∣∣∣∣∣
‖y1(t)‖‖y2(t)‖ , (4.11)
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in which
T∫
0
y1(t)y2(t)dt is the inner product of the two considered time histories and ‖ · ‖

is the associated L2-norm. In practice, the trajectories are discretized and thus, the
inner product (resp. the L2-norm) becomes the classical dot product between two vectors
(resp. the Euclidean norm). By the Cauchy-Schwarz inequality, this similarity measure
always takes values in the interval [0, 1]. It attains its maximum when the considered
trajectories have the same frequency and phase content, in other words the trajectories
are “in-phase”. Note that the proposed similarity measure of in-phase vibrations will equal
1 independently of the differences in their amplitudes.

The parameters (ki, φi), i = 1, . . . , n are determined as the maximizers of the simi-
larity measure between yi(τ) and yr(t). The objective function reads:

g(ki, φi) =

∣∣∣∣∣
T∫
0
yi(ki t+ φi)yr(t)dt

∣∣∣∣∣
‖yi(ki t+ φi)‖‖yr(t)‖

. (4.12)

Note that the optimal warping parameters (ki, φi) are different for each trajectory. This
results in varying total durations of the trajectories after the warping process. This also
occurred in the intrusive time transform approach (Le Maître et al., 2010, Figure 4) The
objective function is therefore computed on the overlapped duration between the warped
trajectory and the reference one.

Let us now examine the solution (ki, φi) of the proposed optimization problem. The
constraint that τ is a strictly monotonically increasing function of t requires that ki > 0.
In case yr(t) and yi(t, ξi) are both monochromatic signals, the value of ki that maximizes
their similarity in frequency is unique. However, there are multiple values for the shifting
factor φ that make the considered trajectories in phase. This will be investigated in the
next paragraph.

Figure 4.2 depicts the objective function g(k, φ) as a similarity measure between the
reference trajectory yr(t) = sin(π t) and a response y(t) = sin(2 π t). The two trajectories
are chosen in such a way that (k, φ) = (2, 0) is the maximizer of g(k, φ). However, there are
three global maxima in the depicted interval [−1.5, 1.5] of φ. This is due to the fact that in
the virtual time line τ , if the transformed trajectory y(τ) is shifted (whether to the left or
to the right) a distance equal to 1/2 of the period Tr = 2 s of the reference counterpart,
the similarity measure reaches another global maximum. In fact, if Tr/4 ≤ φ ≤ Tr/2
(resp. −Tr/2 ≤ φ ≤ −Tr/4) maximizes the similarity measure, then φ − Tr/2 (resp.
φ + Tr/2) in the interval [−Tr/4, Tr/4] is also a maximizer. In addition, for the sake of
simplicity, it is preferable that φ is as close to 0 as possible, i.e. the time line of the scaled
trajectory is shifted as least as possible. Therefore, the selected value of φ needs to satisfy
the condition that the shifted distance (in time) is not larger than 1/4 of the period Tr of
the reference trajectory yr(t), i.e. |φ| ≤ Tr/4. This constraint ensures that the solution
is unique. By adopting the constraint on φ, one finds the solution (k, φ) = (2, 0) for the
considered example.

Finally, one can set up the global optimization problem for determining the time-
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Figure 4.2 – Similarity measure as a function of k and φ

warping parameters as follows:

(ki, φi) = arg max
ki∈R+

|φi|6Tr/4

g(ki, φi). (4.13)

This problem can be solved by means of global optimization methods.

4.1.3 Principal component analysis and time-warping polyno-
mial chaos expansions

Blatman and Sudret (2013) proposed a two-step approach which combines principal com-
ponent analysis (PCA) and PCEs to handle problems involving vector-valued responses,
in which case the instant-wise application of PCEs might lead to an important compu-
tational burden. The first step consists in conducting PCA to capture the stochastic
features of the random vector-valued response with a small number of deterministic prin-
cipal components and the associated non-physical random variables. The second step
relies on representing the resulting random variables with adaptive sparse PCEs. In this
section, PCA is first reviewed then the PCA-PCE approach is presented to compute the
surrogate model of the transformed responses y(τ, ξ).

4.1.3.1 Principal component analysis

Consider a random vector Y = (Y1, . . . , YK) in which Yi, i = 1, . . . , K is a finite-variance
random variable. The covariance matrix Σ of the random vector Y reads:

Σ = E
[
(Y − E [Y ]) (Y − E [Y ])T] , (4.14)
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in which the (i, j)-element is the covariance between random variables Yi and Yj:

Σij = Cov [Yi, Yj] = E [(Yi − µi) (Yj − µj)] . (4.15)

The eigen-decomposition of the covariance matrix reads:

Σ = V ΛV T, (4.16)

in which V = {v1, . . . ,vK}T is aK×K matrix with the ith column vi being an eigenvector

of the covariance matrix and Λ =




λ1 0 0 . . . 0
0 λ2 0 . . . 0
... ...
0 0 0 . . . λK




is a diagonal matrix whose

element λi is the eigenvalue corresponding to vi. Note that the eigenvectors are arranged
in V according to the descending order of eigenvalues λ1 > λ2 > · · · > λK .

The principal component decomposition of the random vector Y reads (Jolliffe, 2002):

Y = E [Y ] +
K∑

i=1
Ai vi, (4.17)

where Ai is a random variable which can be obtained as:

Ai = vT
i (Y − E [Y ]). (4.18)

Given that most of the stochastic features of the random vector Y can be captured by
the first few eigenvectors, an approximative representation can be obtained by retaining
only first K ′ eigenvectors in the decomposition as follows:

Y (K′) = E [Y ] +
K′∑

i=1
Ai vi. (4.19)

The squared L2-norm of the truncation error reads (Blatman and Sudret, 2013):

‖ Y − Y (K′) ‖2=
K∑

i=K′+1
λi. (4.20)

A relative error measure can be defined as follows:

‖ Y − Y (K′) ‖2

‖ Y ‖2 = 1−

K′∑
i=1

λi

K∑
i=1

λi

. (4.21)

This error measure indicates the percentage of the variability in the original random vector
Y that is not explained by the set of first K ′ eigenvectors.

In practice, the mean vector and covariance matrix of Y can only be determined
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empirically using a set of realizations Y =
{
y(1), . . . ,y(N)

}
. The 1 ×K empirical mean

ȳ = {ȳ1, . . . , ȳK} is calculated by:

ȳ = 1
N

N∑

i=1
y(i). (4.22)

The (i, j)-element of the empirical covariance matrix reads:

Σ̃i,j = 1
N − 1

N∑

k=1

(
y

(k)
i − ȳi

) (
y

(k)
j − ȳj

)
. (4.23)

The eigen-decomposition of the sample-based covariance matrix is given by:

Σ̃ = Ṽ Λ̃ Ṽ
T
, (4.24)

where Ṽ is the K × K eigenvectors matrix Ṽ = {ṽ1, . . . , ṽK} and Λ̃ =


λ̃1 0 0 . . . 0
0 λ̃2 0 . . . 0
... ...
0 0 0 . . . λ̃K



is a diagonal matrix with λ̃i being the eigenvalue associated with

the K × 1 empirical eigenvector ṽi.
The approximate principal component decomposition of Y using empirical mean and

eigenvectors is written as follows:

Y = ȳ +
K∑

i=1
Ai ṽi, (4.25)

where the random variable Ai is obtained with:

Ai = ṽT
i (Y − ȳ). (4.26)

The sample matrix Y can be represented by PCA as follows:

Y = Ȳ +
K∑

i=1
ai ṽ

T
i , (4.27)

in which Ȳ = {ȳ, . . . , ȳ} T is a N ×K matrix obtained by replicating the empirical mean
N times, ai is the N × 1 vector of projection coefficients and ṽi is the K × 1 empirical
eigenvector. The coefficients vector ai which contains N samples of the random variable
Ai is calculated by:

ai = (Y − Ȳ) ṽi. (4.28)
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4.1.3.2 Use of PCA with time-warping PCEs

Having reviewed the construction of PCA, let us now apply this technique to the problem
of representing the time dependent response quantity y(τ, ξ). The latter is considered a
random vector with the response at each time instant τ being a finite-variance random
variable. A sample set Y of y(τ, ξ) is obtained after the time-warping process. Due to the
time scaling and shifting, the durations of the different trajectories are not equal. In other
words, in the matrix Y there are missing values at the end of certain rows. Similarly to
Eq. (4.22), the empirical mean ȳ(τ) of the response can be computed at each instant as:

ȳ(τi) = 1
card(Ki)

∑

k∈Ki
y(τi, ξ)(k), (4.29)

in which Ki is the set of observations where the value of y(τi, ξ) is available. Similarly to
Eq. (4.23), the empirical covariance matrix Σ̃ can be computed element-wise:

Σ̃i,j = 1
card(Kij)− 1

∑

k∈Kij

(
y(τi, ξ)(k) − ȳ(τi)

) (
y(τj, ξ)(k) − ȳ(τj)

)
, (4.30)

in which Kij is the set of observations where the realizations of y(τi, ξ) and y(τj, ξ) are
both available. Σ̃ is then used to compute the empirical eigenvectors ṽi (Eq. (4.24)).

The response can be represented by means of PCA as follows:

y(τ, ξ) = ȳ(τ) +
K∑

i=1
Ai(ξ) ṽi(τ), (4.31)

where ȳ(τ) is the empirical mean vector, ṽi(τ) is an empirical eigenvector determined
with a sample set of y(τ, ξ) and Ai(ξ) is a finite variance random variable. Only a few
eigenvectors are retained in the decomposition, which leads to:

y(τ, ξ) = ȳ(τ) +
K′∑

i=1
Ai(ξ) ṽi(τ) + ε1(τ). (4.32)

The number of principal components is selected so that the relative error 1 −

K′∑
i=1

λi

K∑
i=1

λi

is

smaller than a prescribed threshold, e.g. ε = 0.01. The samples of the random coefficient
Ai(ξ) can be obtained using Eq. (4.28), which are then used as experimental design to
compute the PCE of this random coefficient:

Ai(ξ) =
∑

α∈A
ci,αψα(ξ) + ε2,i. (4.33)

Finally, the response in the transformed time scale is represented by PCA and PCEs as
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follows:

y(τ, ξ) = ȳ(τ) +
K′∑

i=1

∑

α∈A
ci,αψα(ξ) ṽi(τ) + ε(τ). (4.34)

Note that Blatman and Sudret (2013) introduced a measure of the upper bound of the total
error induced by the truncation of the principal component analysis and the approximation
of the random coefficients Ai(ξ) by PCEs. The reader is referred to the mentioned paper
for more details. Herein this error measure can be used as an indicator of the accuracy
of the computed surrogate models.

4.1.4 Predicting random oscillations with time-warping polyno-
mial chaos expansions

Let us now demonstrate the use of time-warping PCEs to predict responses of the model
given a new set of input parameters ξ′. For the sake of clarity, the procedure is depicted
in Figure 4.3 and explained in two steps as follows:

• One predicts k(ξ′), φ(ξ′) and y(τ, ξ′) using the computed PCEs in equations (4.8),
(4.9) and (4.34).

• One maps y(τ, ξ′) into y(t, ξ′) using the inverse time-warping t = τ − φ(ξ′)
k(ξ′) when

t > t0 and t = t0
k(ξ′) t0 + φ(ξ′) τ when t ≤ t0.

Figure 4.3 – Stochastic time-warping approach: prediction of the response trajectories using
PCEs

4.2 Numerical applications

The time-warping-based polynomial chaos expansions (PCEs) developed in this chapter
are now applied to various engineering problems, namely a model of rigid body dynamics,
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a nonlinear Duffing oscillator, the so-called Oregonator model describing the chemical
reaction between three species, a Bouc-Wen oscillator subject to a stochastic sinusoidal
excitation and the so-called Kraichnan-Orszag model. In each case, time-frozen sparse
PCEs2 are applied first to show the degradation of the prediction accuracy after a certain
time. Time-warping PCEs with simple linear time transforms are then investigated. The
PCE surrogate models are computed using a small number of numerical simulations of the
original model as experimental design, then validated on a large independent validation
set of size Nval = 10, 000. The accuracy of the time-frozen and time-warping PCE models
are judged on the basis of predicting the responses to specific sets of input parameters
and estimating the time histories of first- and second-order statistics of the responses.

More precisely, the relative error of the prediction #i reads:

εval,i =

T∑
t=1

(y(t, ξi)− ŷ(t, ξi))2

T∑
t=1

(y(t, ξi)− ȳ(t, ξi))2
, (4.35)

where ŷ(t, ξi) is the output trajectory predicted by PCEs and ȳ(t, ξi) is the mean value of
the actual response time series y(t, ξi) which is obtained with the original numerical solver.
The above formula is also used to assess the accuracy of the predicted time-dependent
statistics (i.e. mean, standard deviation).

These problems are solved in the UQLab framework (Marelli and Sudret, 2014b), more
specifically using the least angle regression algorithm implemented in the polynomial chaos
expansion module (Marelli and Sudret, 2015).

4.2.1 Rigid body dynamics

We first consider the rotation of a rigid body described by Euler’s equations (Peraire and
Widnall, 2009) (Figure 4.4). The conservation of angular momentum reads:





Mx = Ixx ẋ− (Iyy − Izz) y z,
My = Iyy ẏ − (Izz − Ixx) z x,
Mz = Izz ż − (Ixx − Iyy)x y,

(4.36)

in which Mx, My, Mz are the external moments, Ixx, Iyy, Izz are the moments of inertia
and x, y, z are the angular velocities about the principal axes. In the case when the
rigid body rotates freely under no external excitation, i.e. Mx = My = Mz = 0 and
Ixx = 1− ξ

2 Iyy, Izz = 1 + ξ

2 Iyy, one obtains the following set of reduced equations:





ẋ(t) = y(t) z(t),
ẏ(t) = ξ x(t) z(t),
ż(t) = −x(t) y(t).

(4.37)

2For the sake of simplicity, the term “time-frozen PCEs”, which refers to the instantaneous sparse
adaptive PCEs presented in Chapter 3, will be used throughout the manuscript.
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The initial conditions are set equal to x(0) = 0, y(0) = 1, z(0) = 1. Assume that ξ is
modelled by a random variable with uniform distribution: ξ ∼ U(−1, 1). Suppose a solver
of the coupled ordinary differential equations is available. For any realization of ξ, this
solver provides discretized trajectories {{x(ti), y(ti), z(ti)} , ti = 0,∆t, . . . , n∆t ≡ T}. In
this example, the equations are solved using the Matlab ordinary differential equation
solver ode45 (Runge-Kutta method, total duration T = 50 s, time step ∆t = 0.01). We
aim at building PCEs of the angular velocity x(t) as a function of the random variable
ξ. Note that the corresponding polynomial functions are from the family of orthonormal
Legendre polynomials since ξ is uniformly distributed.

Figure 4.4 – Rotation of a rigid body (after Peraire and Widnall (2009)).

Figure 4.5 depicts a set of 50 trajectories of x(t) obtained for different realizations of the
random variable ξ. This set is used as the experimental design for fitting the time-frozen
PCEs. x(t) are oscillatory trajectories which fluctuate around zero at different frequencies.
This is a typical example of the problem of stochastic oscillation with uncertain frequencies
(Wan and Karniadakis, 2005, 2006). At the early instants (t < 10 s), one can differentiate
between the distinct trajectories, whereas this is hardly the case at later instants, since the
patterns are mixed up completely. Due to the growing difference in frequency and phase,
x(t, ξ) is more and more non-linear as a function of ξ for increasing t and subsequently, the
probability density function of X(t) becomes bi-modal at late instants (see Figure 4.6).
This explains why increasing-degree time-frozen PCEs are required in order to represent
x(t). As analyzed previously, this is not a sustainable approach since the order of PCEs
will certainly become overly high at some point.

Time-frozen PCEs are now utilized to model the variability of the response trajectories,
and exemplify the deficiency of such an approach. At each instant t, an adaptive PCE
scheme with total polynomial degree increasing from 1 to 20 is used (Eq. (4.2)) based on
the available 50 data points from the experimental design made of the 50 trajectories. The
PCE model which results in the smallest leave-one-out (LOO) error is retained. Figure 4.7
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Figure 4.5 – Rigid body dynamics – N = 50 different trajectories x(t) in the original time
scale t.

depicts the LOO error of these time-frozen PCEs, which is increasing in time, showing
that the accuracy of the PCE model degenerates.

For validation purpose, a set of 10, 000 trajectories is computed using the ode45 Matlab
solver. Figure 4.8 depicts two particular response trajectories predicted by time-frozen
PCEs versus the actual responses obtained by numerically solving the system of ordinary
differential equations (4.37). After 15 s (when the LOO error is approximately 10−2)
the PCE prediction deviates significantly from the actual trajectory. In particular, there
are signs of instability in the PCE model, e.g. the PCE-based prediction for consecutive
instants differ noticeably in terms of accuracy. We now consider the time-dependent
statistics of the response x(t). Figure 4.9 represents its mean and standard deviation.
In the early time instants (t < 15 s), time-frozen PCEs represent the statistics with
relatively small error compared to Monte Carlo simulation (MCS). However, after 15 s,
the accuracy declines quickly. In particular, PCEs cannot capture the oscillatory behavior
of the standard deviation. Another interpretation is that even degree-20 time-frozen PCEs
cannot capture the complex distribution of the response at late time instants.

Let us now apply the time-warping approach to pre-process the trajectories x(t). Pro-
vided that the initial condition is equal to 0, it suffices to use a linear time-warping τ = k t.
For each computed realization of the angular velocity x(t, ξi), i = 1, . . . , 50, the param-
eters ki is estimated as the maximizer of the similarity measure described in Eq. (4.12).
Note that the same 50 trajectories are used as the experimental design for this approach
and the reference trajectory is obtained with the mean value of the input parameter. The
optimization problem is solved by means of the global optimization toolbox in Matlab.
The function fmincon based upon an interior-point algorithm is used while allowing for
a maximum of 2, 000 function evaluations. Adaptive sparse PCEs of degree up to 20 are
used to represent the parameter k. The relative LOO error is 3.82×10−4, which indicates
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Figure 4.6 – Rigid body dynamics – x(t, ξ) as a function of ξ for particular instants and its
probability density function.

a high accuracy of the PCE model.
The time-warping is carried out using the estimated parameters and the responses are

interpolated into the transformed time line τ , leading to in-phase trajectories x(τ) (see
Figure 4.10). As expected, x(τ) are smooth functions of ξ at all instants, which allows
the effective use of PCEs.

Then principal component analysis (PCA) is conducted on the obtained transformed
trajectories. 18 first principal components are retained in order to obtain a PCA trunca-
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Figure 4.7 – Rigid body dynamics – Leave-one-out error of time-frozen PCEs.

tion error ε1 =
K∑

i=K′+1
λi/

K∑
i=1

λi smaller than 1×10−3. The first eight principal components
are depicted in Figure 4.11. Figure 4.12 depicts the PCA truncation error ε1 as a function
of the number of retained principal components, the LOO error ε2 of the PCE for the
coefficient of each principal component and the upper bound of the total error of the
PCA-PCE model. It shows that the PCA truncation error ε1 decreases exponentially
with the number of retained principal components. Using PCE to represent the first PCA
coefficient, the obtained relative LOO error is 7.7× 10−3. It is also clear that it is harder
to represent the higher mode PCA coefficients by means of PCEs, which was observed
by Blatman and Sudret (2013). However, it is worth noting that most of the stochastic
features of the response can be captured by the first few components.

Figure 4.13 depicts two specific realizations of the angular velocity x(t) predicted
by time-warping PCEs, which are plotted together with the predictions by time-frozen
sparse PCEs and the actual responses obtained by the numerical solver. As mentioned
previously, one observes that starting from 15 s, the direct approach encounters instability,
which results in inaccurate predictions. The time-warping approach allows one to improve
notably the quality of the PCE prediction. The predictions by time-warping PCEs are in
excellent agreement with the actual responses. A relative error exceeding 0.1 is recorded
in only 79 simulations among 10, 000 validations.

In Figure 4.14, the time-dependent mean and standard deviation of the response are
plotted. Time-frozen PCEs allow one to represent the mean trajectory with relatively
small discrepancy compared to the trajectory obtained with the MCS. It can faithfully
predict the standard deviation at the early instants t < 15 s, however becomes suddenly
unstable afterwards. In contrast, time-warping PCEs provide estimates of the statistics
that are almost indistinguishable from the MCS estimates. The relative errors between
the reference and predicted mean and standard deviation are 7.31×10−4 and 7.19×10−4.
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Figure 4.8 – Rigid body dynamics – Two particular trajectories and their prediction by time-
frozen PCEs.
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Figure 4.9 – Rigid body dynamics – Mean and standard deviation of the trajectories predicted
by time-frozen PCEs.



4.2. Numerical applications 75

(a) N = 50 different trajectories x(τ) in the warped time scale τ
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Figure 4.10 – Rigid body dynamics – Different trajectories x(τ) in the warped time scale τ
and x(τ) as a function of the random variable ξ.
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Figure 4.11 – Rigid body dynamics – The first eight principal components.
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Figure 4.13 – Rigid body dynamics – Two particular trajectories and their predictions by
time-frozen and time-warping PCEs.
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Figure 4.14 – Rigid body dynamics – Mean and standard deviation of the trajectories: com-
parison of the two approaches.
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4.2.2 Duffing oscillator

Let us consider a non-linear damped single-degree-of-freedom Duffing oscillator under free
vibration, which is described by the following equation of motion:

ÿ(t) + 2ω ζ ẏ(t) + ω2 (y(t) + ε y3(t)) = 0. (4.38)

The oscillator is driven by uncertain parameters described in Table 4.1 and the initial
conditions are y(t = 0) = 1 and ẏ(t = 0) = 0. Note that a simplified form of this
equation which represents an undamped linear oscillator was used in other publications for
illustrating the time-dependent generalized polynomial chaos (Gerritsma et al., 2010), the
intrusive time-transform approach (Le Maître et al., 2010) and the flow map composition
PCEs (Luchtenburg et al., 2014).

Table 4.1 – Uncertain parameters of the Duffing oscillator

Input parameters Distribution Values
ζ Uniform U [0.015, 0.045]
ω Uniform U [π, 3π]
ε Uniform U [−0.25, −0.75]

Hereafter, we aim at building PCEs of the displacement y(t) as a function of the
random variables (ζ, ω, ε). First, we use 200 trajectories of y(t) as experimental design to
compute time-frozen PCEs of degree up to 20. The corresponding LOO error (Figure 4.15)
start showing insufficient accuracy at t = 3 s.
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Figure 4.15 – Duffing oscillator – Leave-one-out error ε̂LOO of time-frozen PCEs.

We now use the time-warping approach, which requires only 50 trajectories y(t) as
experimental design. The 50 trajectories in the original time scale are plotted in Fig-
ure 4.16(a). The same trajectories after time-warping are plotted in Figure 4.16(b). A
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linear time-warping with two parameters, i.e. τ = k t + φ, is used for each trajectory.
Using PCEs of degree up to 20, the metamodels of k and φ are obtained with relative LOO
error 1.87× 10−5 and 2.08× 10−4 respectively, which indicates a high level of accuracy.

(a) Original time scale t

(b) Warped time scale τ

Figure 4.16 – Duffing oscillator – N = 50 different trajectories of the response in the original
and warped time scales.

PCA is applied to retrieve eight principal components that results in the PCA trunca-
tion error smaller than 1× 10−3. Figure 4.17 depicts the retained principal components.
Figure 4.18 shows the upper bound of the surrogate model versus the number of principal
components, which starts converging at the eighth component. The relative LOO errors
of PCE models for the first two components are 8× 10−4 and 4× 10−3, respectively.
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Figure 4.17 – Duffing oscillator – The first eight principal components.

An independent validation set of 10, 000 runs is used to judge the accuracy of the PCE
models. Figure 4.19 presents two specific realizations of the displacement y(t) obtained
with two distinct sets of parameters (ζ, ω, ε). Without time-warping, PCEs are capable of
predicting the response at the early time instants (t < 3 s), then their accuracies degener-
ate with time, resulting in incorrect predictions. By introducing the time-warping of the
trajectories, PCEs can faithfully capture the damped oscillatory behaviour. Only 0.18%
of predictions exhibits a relative error exceeding 0.1. Note that an experimental design of
size 200 is used for time-frozen PCEs, whereas only 50 trajectories are used for computing
time-warping PCEs. This emphasizes the fact that the time-warping pre-processing of
the response allows one to build accurate PCEs at a relatively small computational cost.
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Figure 4.18 – Duffing oscillator – PCA truncation-induced error ε1, PCE approximation error
ε2 normalized by trace(Σ̃) and the upper bound ε =

(√
ε1 +√ε2

)2 of the total
error.

In terms of time dependent statistics (Figure 4.20), time-frozen PCEs can predict
rather well the mean trajectory, however fail to represent the standard deviation after early
instants (t > 3 s). In contrast the time-warping approach provides excellent accuracy on
the mean and standard deviation time histories. The relative discrepancies between mean
and standard deviation time histories predicted by time-warping PCEs with the reference
trajectories are respectively 3.27× 10−5 and 3.47× 10−4.
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Figure 4.19 – Duffing oscillator – Two particular trajectories and their predictions by time-
frozen and time-warping PCEs.
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Figure 4.20 – Duffing oscillator – Mean and standard deviation of the trajectories: comparison
of the two approaches.
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4.2.3 Oregonator model

We consider now the Oregonator model which describes the dynamics of a well-stirred,
homogeneous chemical system governed by a three species coupled mechanism. Note that
this benchmark problem was used by Le Maître et al. (2010) for illustrating the intrusive
time-transform approach. This chemical system undergoes an oscillation governed by the
following ordinary differential equations (ODEs):





ẋ(t) = k1 y(t)− k2 x(t) y(t) + k3 x(t)− k4 x(t)2,
ẏ(t) = −k1 y(t)− k2 x(t) y(t) + k5 z(t),
ż(t) = k3 x(t)− k5 z(t),

(4.39)

in which (x, y, z) denotes the three species concentration and the coefficients ki, i =
1, . . . , 5 are the reaction parameters. Hereafter, all the reaction parameters are considered
independent random variables with uniform and normal distributions (see Table 4.2). It
is worth noting that Le Maître et al. (2010) considered only k4 and k5 as uniform random
variables while fixing the remaining parameters (k1 = 2, k2 = 0.1, k3 = 104). The
initial condition is (x0, y0, z0) = (6000, 6000, 6000), which corresponds to a deterministic
mixture. We aim at building PCEs of the concentration x(t) as a function of the random
parameters (k1, k2, k3, k4, k5).

Table 4.2 – Reaction parameters of the Oregonator model

Input parameters Distribution Values
k1 Uniform U [1.8, 2.2]
k2 Uniform U [0.095, 0.1005]
k3 Gaussian N (104, 1.04)
k4 Uniform U [0.0076, 0.0084]
k5 Uniform U [23.4, 28.6]

Figure 4.21 depicts 50 trajectories among 500 realizations of x(t), which are used as
the experimental design for fitting time-frozen PCEs. One notices that after 5 seconds,
the different trajectories are completely out-of-phase. Time-frozen PCEs of total degree
up to 20 are used. The corresponding LOO error (Figure 4.22) exhibits a relatively fast
escalation. The PCE model actually starts degenerating at t = 3 s. In particular, time-
frozen PCE predictions are negative, i.e. non physical, at some instants (see Figure 4.25).

We now apply the proposed non-intrusive time-warping approach to this problem.
Note that only 50 trajectories of x(t) are used as an experimental design. A linear time-
transform τ = k t + φ is again utilized. The parameters k and φ are determined and
adaptive PCEs of k and φ are then computed. The relative LOO errors of the PCE
models for k and φ are respectively 4.42 × 10−5 and 4.8 × 10−2, which indicate a high
accuracy. The response trajectories are interpolated into the transformed time line τ
(Figure 4.21) and adaptive sparse PCEs of degree up to 20 combined with PCA are then
used.

Using PCA, 18 components are retained to obtain a truncation error ε1 smaller than



4.2. Numerical applications 87

(a) Original time scale t (b) Warped time scale τ

15 16 17 18 19 20
0

1000

2000

3000

4000

5000

6000

7000

t (s)

x
(t

)

(c) Original time scale t (zoom)

15 16 17 18 19 20
0

1000

2000

3000

4000

5000

6000

7000

τ (s)

x
(τ

)

(d) Warped time scale τ (zoom)

Figure 4.21 – Oregonator model – N = 50 different trajectories of the response. The figures in
the first row are zoomed in the range [15, 20] to obtain the figures in the second
row.

1× 10−2. The first eight components are depicted in Figure 4.23. Figure 4.24 shows the
convergence of the errors with respect to the number of principal components. The PCEs
for the first two coefficients have relative errors 7.57× 10−4 and 1.5× 10−3, respectively.

Figure 4.25 depicts two particular realizations computed by the numerical solver (Mat-
lab ordinary differential equation solver ode45, using a time step ∆t = 0.01 for the total
duration T = 40 s) and predictions by PCEs with and without time-warping. It is shown
that without time-warping, PCEs fail to capture the oscillatory behaviour of the response.
In contrast, the use of a time-warping allows PCE to predict the response with great ac-
curacy. 1.24% of the predictions (among 10, 000 samples) has a relative error larger than
0.1.

A validation set of 10, 000 trajectories is used to get reference values of mean and
standard deviation of the concentration x(t). Figure 4.26 depicts the statistics of x(t)
predicted by time-frozen and time-warping PCEs. Without time-warping, the estimates
by PCEs differ significantly from the reference trajectories already from 3 s. The discrep-
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Figure 4.22 – Oregonator model – Leave-one-out error ε̂LOO of time-frozen PCEs.

ancies then quickly increase in time. For instance, PCEs without time-warping estimate a
decreasing trend in time for the standard deviation, whereas the latter actually oscillates
around a constant value (around 1400) with high frequency. By introducing the time-
warping pre-processing, one can use sparse PCEs to capture the complex behaviour of the
time dependent statistics of the response all along the trajectories. The relative error for
the mean and standard deviation trajectories are 3.11×10−4 and 3.6×10−3, respectively.

Finally, the time-warping PCE scheme is applied to surrogate the responses y(t) and
z(t) of the system using the same experimental design of size 50 and the same procedure.
Figure 4.27 shows a great agreement between two specific trajectories, the mean and
standard deviation of (x, y, z) in the state-space predicted by time-warping PCEs and the
reference functions.
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Figure 4.23 – Oregonator model – The first eight principal components.
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Figure 4.24 – Oregonator model – PCA truncation-induced error ε1, PCE approximation error
ε2 normalized by trace(Σ̃) and the upper bound ε =
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Figure 4.25 – Oregonator model – Two particular trajectories and their predictions by time-
frozen and time-warping PCEs. The figures in the first row are zoomed in the
range [15, 20] to obtain the figures in the second row.
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Figure 4.26 – Oregonator model – Mean and standard deviation of the trajectories: compari-
son of the two approaches.
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Figure 4.27 – Oregonator model – Trajectories of (x(t), y(t), z(t)) predicted by time-warping
PCEs vs. the reference trajectories.
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4.2.4 Forced vibration of a Bouc-Wen oscillator

In the previous case studies, self-oscillating systems were considered. In general, the
proposed approach is also applicable to forced vibration systems. Let us now consider the
SDOF Bouc-Wen oscillator (Kafali and Grigoriu, 2007) subject to a stochastic excitation.
The equation of motion of the oscillator reads:

{
ÿ(t) + 2 ζ ω ẏ(t) + ω2(ρ y(t) + (1− ρ) z(t)) = −x(t),
ż(t) = γẏ(t)− α |ẏ(t)| |z(t)|n−1 z(t)− β ẏ(t) |z(t)|n , (4.40)

in which ζ is the damping ratio, ω is the fundamental frequency, ρ is the post- to pre-yield
stiffness ratio, γ, α, β, n are parameters governing the hysteretic loops and the excitation
x(t) is a sinusoidal function given by x(t) = A sin(ωx t).

Deterministic values are used for the following parameters of the Bouc-Wen model:
ρ = 0, γ = 1, n = 1, β = 0. The remaining parameters are considered independent
random variables with associated distributions given in Table 4.3.

Table 4.3 – Uncertain parameters of the Bouc-Wen model

Input parameters Distribution Mean Standard deviation
ζ Uniform 0.02 0.002
ω Uniform 2π 0.2 π
α Uniform 50 5
A Uniform 1 0.1
ωx Uniform π 0.1π

One aims at representing the oscillator displacement y(t) as a function of the uncertain
input parameters using time-warping PCEs. To this end, 100 simulations of the oscillator
are carried out using the Matlab solver ode45 with time increment ∆t = 0.005 s for the
total duration T = 30 s and initial condition y(t = 0) = 0, ẏ(t = 0) = 0. The displacement
trajectories are depicted in Figure 4.28(a).

For this case study, a time-warping scheme τ = k t with only one parameter is used.
After the time-warping process, the trajectories become in-phase as depicted in Fig-
ure 4.28(b). Adaptive sparse PCE representing k has the relative LOO error 5 × 10−5.
In order to achieve a truncation error ε1 smaller than 1× 10−3, 13 first principal compo-
nents are retained in PCA. Figure 4.29 depicts the first eight principal components. The
relative LOO errors of PCEs for the first two components are 6× 10−3 and 6.21× 10−2,
respectively. Figure 4.30 shows the errors induced by PCA and PCE as a function of the
number of retained principal components.

Let us validate the accuracy of the time-warping PCE model. In Figure 4.31, two
specific predictions of the PCE model are plotted against the actual responses obtained
with the original Matlab solver. A remarkable agreement can be observed. Among 10, 000
validations, only 4.87% has a relative error larger than 0.1. Regarding the time depen-
dent mean and standard deviation of the oscillator, time-warping PCE-based estimates
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(a) Original time scale t

(b) Warped time scale τ

Figure 4.28 – Bouc-Wen oscillator – N = 100 different trajectories of the solution in the
original time scale t and in the transformed time line τ .

outstandingly match the reference trajectories (Figure 4.32). Only a minor discrepancy
can be observed at the end of the considered time duration T = 30 s, which is due to
the modest number of simulations used as the experimental design. The corresponding
relative errors are both 2.4× 10−3, respectively
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Figure 4.29 – Bouc-Wen oscillator – The first eight principal components.
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Figure 4.30 – Bouc-Wen oscillator – PCA truncation-induced error ε1, PCE approximation
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(b) ξ = (0.0196, 6.1226, 46.9916, 1.0291, 3.4542)

Figure 4.31 – Bouc-Wen oscillator – Two particular trajectories and their predictions by time-
warping PCEs.
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(b) Standard deviation

Figure 4.32 – Bouc-Wen oscillator – Mean and standard deviation of the trajectories: com-
parison of time-warping PCE estimates and the reference trajectories.
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4.2.5 Kraichnan-Orszag model: 1D case

In the previous numerical applications, we considered the systems with uncertain govern-
ing parameters subject to deterministic initial conditions. Hereafter, let us investigate the
dynamical systems with random initial conditions, e.g. the so-called Kraichnan-Orszag
three-mode problem. It was introduced by Kraichnan (1963) to model a system of several
interacting shear waves and was studied later by Orszag (1967) in the case of Gaussian
initial conditions. This model is described by the following system of ODEs:





ẋ(t) = y(t) z(t),
ẏ(t) = z(t)x(t),
ż(t) = −2x(t) y(t).

(4.41)

In the first place, we consider the 1D case which is a benchmark problem used to
illustrate the time-dependent PCE approach (Gerritsma et al., 2010). The initial condition
of x(t) is considered stochastic, i.e. x(t = 0) = α + 0.01 ξ with ξ ∼ U [−1, 1] whereas
y(t = 0) = 1.0, z(t = 0) = 1.0. Note that when α is in the range [0, 0.9], the responses are
insensitive to the initial conditions. For α ∈ [0.9, 1], there is a strong dependence of the
responses on the initial conditions. Figure 4.33 depicts the large discrepancies between
time-histories of x(t) due to a minor variability of the initial condition x(t = 0). Herein,
we consider α = 0.99 as in Gerritsma et al. (2010).

Figure 4.33 – Kraichnan-Orszag model – N = 50 different trajectories x(t) in the original time
scale t.

The surrogate model of the response x(t) is computed with time-warping PCEs using
an experimental design of size N = 50 (Figure 4.33). Herein, a time-warping scheme
τ = k t with one governing parameter is used. The trajectories resulting from the time-
warping process are depicted in Figure 4.34. The adaptive sparse PCE representing k
has a relative LOO error equal to 2.2× 10−6. 13 first principal components are retained
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so that 99.9% of the response’s variance is explained. Figure 4.35 depicts the first four
principal components. The relative LOO errors of PCEs for the first two components are
9.4× 10−5 and 7× 10−3, respectively. Figure 4.36 shows the errors induced by PCA and
PCE as a function of the number of retained principal components.

Figure 4.34 – Kraichnan-Orszag model – N = 50 different trajectories x(τ) in the warped time
scale τ
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Figure 4.35 – Kraichnan-Orszag model – The first four principal components.

The time-warping PCE model is then validated by accessing the accuracy of its pre-
dictions. Figure 4.37 plots two specific predictions of the surrogate model which are
graphically indistinguishable from the actual time-histories obtained with the original
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Figure 4.36 – Kraichnan-Orszag model – PCA truncation-induced error ε1, PCE approxima-
tion error ε2 normalized by trace(Σ̃) and the upper bound ε =

(√
ε1 +√ε2

)2 of
the total error.

Matlab solver. Only 1.27% of the predictions experience a relative error larger than 0.1.
Regarding the mean and standard deviation trajectories (Figure 4.38), the time-warping
approach leads to respective relative errors equal to 2.1 × 10−4 and 5.3 × 10−4, which
shows an excellent agreement between the predictions and the true functions.

This numerical example illustrates the potential application of the proposed time-
warping approach to problems with uncertain initial conditions. The excellent perfor-
mance of the approach is even more impressive given the chaotic behaviour of the consid-
ered system, i.e. the responses are strongly sensitive with respect to a minor variability
of the initial condition.



4.2. Numerical applications 103

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

2

t (s)

x
(t

)

 

 

Reference

Time−warping PCE

(a) ξ = 0.6294

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

2

t (s)

x
(t

)

 

 

Reference

Time−warping PCE

(b) ξ = −0.7460

Figure 4.37 – Kraichnan-Orszag model – Two particular trajectories and their predictions by
time-warping PCEs.



104 Chapter 4. Stochastic time-warping PCEs

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

t(s)

M
e

a
n

 

 

Reference

Time−warping PCE

(a) Mean trajectory

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t (s)

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

 

 

Reference

Time−warping PCE

(b) Standard deviation

Figure 4.38 – Kraichnan-Orszag model – Mean and standard deviation of the trajectories:
comparison of time-warping PCE estimates and the reference trajectories.
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4.2.6 Kraichnan-Orszag model: 2D case

Let us consider the transformed Kraichnan-Orszag model which was investigated by Wan
and Karniadakis (2005) and Guo et al. (2016). the system of ODEs reads:





ẋ(t) = x(t) z(t),
ẏ(t) = −y(t) z(t),
ż(t) = −x(t)2 + y(t)2,

(4.42)

in which the initial conditions are considered stochastic: x(t = 0) = 1, y(t = 0) =
0.1 ξ1 and z(t = 0) = ξ2 with ξi ∼ U [−1, 1], i = 1, 2. For the present system, the
stochastic simulation of the responses is challenging since the solution is not only sensitive
to the initial conditions but also exhibits bifurcation on the parameters ξ1 and ξ2 (see
Figure 4.39). To overcome the singularity associated with the bifurcation of the solution,
Wan and Karniadakis (2005) proposed the use of multi-element PCEs whereas Guo et al.
(2016) recently introduced the weighted essentially non-oscillatory collocation method.
Herein, we aim at simulating the response y(t) by time-warping PCEs using a small
experimental design of size N = 200 (Figure 4.40).

Figure 4.39 – Kraichnan-Orszag model – The solution y(to) at to = 6 s on the random space.
The bifurcation at ξ1 = 0 is visible.

For this problem, the time-warping scheme τ = k t is utilized. Figure 4.41 depicts
the resulting in-phase trajectories. It shows two ensembles of trajectories, which are
symmetric with respect to the line y(t) = 0. They correspond to the initial condition
y(t = 0) < 0 and y(t = 0) > 0, thus being a consequence of the bifurcation under
study. The parameter k is modelled by an adaptive sparse PCE with a relative LOO
error 2 × 10−3. To explain 99.9% of the response’s variance, we retained the first seven
principal components, four of them are depicted in Figure 4.42. The relative LOO errors
of PCEs for the first two components are equal to 1.59×10−2 and 3.91×10−2, respectively.
The errors induced by combining PCA with time-warping PCE are plotted in Figure 4.43
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Figure 4.40 – Kraichnan-Orszag model – N = 200 different trajectories y(t) in the original
time scale t.

as a function of the number of retrieved principal components.

Figure 4.41 – Kraichnan-Orszag model – N = 200 different trajectories y(τ) in the warped
time scale τ

The time-warping PCE model is then used to predict the solutions to new values of
the initial conditions. Two specific predictions of the surrogate model are plotted against
the actual time-histories obtained with the original Matlab solver in Figure 4.44. There
are non-negligible discrepancies between the predictions and the actual solutions, with
the corresponding relative errors 1.31× 10−2 and 5.6× 10−2. Among 10, 000 runs, 26.22%
has a relative error larger than 0.2.
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Figure 4.42 – Kraichnan-Orszag model – The first four principal components.
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Figure 4.43 – Kraichnan-Orszag model – PCA truncation-induced error ε1, PCE approxima-
tion error ε2 normalized by trace(Σ̃) and the upper bound ε =

(√
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)2 of
the total error.

Figure 4.45 presents the predicted mean and standard deviation trajectories. Due to
the bifurcation, the solution exhibits two different behaviours characterized by trajectories
symmetric with respect to the line y(t) = 0, thus the mean trajectory is close to zero
everywhere. The predicted standard deviation differ from the reference trajectory by a
relative error 3.42×10−2, which indicates a relatively good agreement. In order to obtain
more accurate predictions with time-warping PCEs, one might tackle independently the
two dynamical behaviours of the response associated with the initial condition y(t = 0) <
0 and y(t = 0) > 0. It is worth noting that herein the prediction is made for a long time
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period, i.e. T = 50 s. In the works conducted by Wan and Karniadakis (2005) and Guo
et al. (2016) only the first 10 seconds were taken into account.
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(b) ξ = (−0.5607, −0.5002)

Figure 4.44 – KO model – Two particular trajectories and their predictions by time-warping
PCEs.

As a summary, time-warping PCEs can potentially be applied to any problem with
similar features, i.e. systems subject to uncertain initial conditions in which the solutions
exhibit a bifurcation and/or chaotic behaviour. The resulting accuracy might not be
outstanding, however, it remains acceptable in the context of engineering applications.
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Figure 4.45 – Kraichnan-Orszag model – Mean and standard deviation of the trajectories:
comparison of time-warping PCE estimates and the reference trajectories.
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4.2.7 Quarter car model

In the last numerical application, we investigate a quarter car model of a vehicle suspension
whose behaviour is modelled by a nonlinear two DOF system (Kewlani et al., 2012)
(Figure 4.46). The sprung mass ms and the unsprung mass mu are connected by a
nonlinear spring of stiffness ks and a linear damper of damping coefficient c. The forcing
function x(t) is applied to mu through a linear spring of stiffness ku. y1(t) and y2(t) are
respectively the displacements of ms and mu, which are governed by the following system
of ODEs:

{
ms ÿ1(t) = −ks (y1(t)− y2(t))3 − c (ẏ1(t)− ẏ2(t)),
mu ÿ2(t) = ks (y1(t)− y2(t))3 + c (ẏ1(t)− ẏ2(t)) + ku (x(t)− y2(t)). (4.43)

Herein, a sinusoidal function road profile with amplitude A and frequency ω is considered:

x(t) = A sin(ω t). (4.44)

Figure 4.46 – Quarter car model – Mechanical system.

All the parameters of the quarter car model and of the excitation ξ =
{ks, ku, ms, mu, c, A, ω} are considered uncertain. They are modelled by independent
random variables with marginal distributions given in Table 4.4. Note that Kewlani et al.
(2012) addressed this numerical example with the multi-element PCE approach in which
only two parameters ks, ku were considered uncertain and the solution was computed only
for the first 6 seconds.

Table 4.4 – Parameters of the quarter car model and of the road excitation

Parameter Distribution Mean Standard deviation
ks (N/m3) Gaussian 2000 200
ku (N/m) Gaussian 2000 200
ms (kg) Gaussian 20 2
mu (kg) Gaussian 40 4
c (N s /m) Gaussian 600 60
A (m) Uniform 0.1 0.01/

√
3

ω (rad/s) Uniform 2π 0.2 π/
√

3
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We aim at computing the surrogate model of the displacement y1(t) with time-warping
PCEs using a small experimental design of size N = 200 (Figure 4.47). A time-warping
scheme τ = k t with one governing parameter is specified, which results in trajectories in
the transformed time line depicted in Figure 4.48. Parameter k is then modelled by an
adaptive sparse PCE with the relative LOO error of 4.9 × 10−3. Next, 26 first principal
components are retained so that the truncation leads to a relative error smaller than
1 × 10−3. The first four principal components are depicted in Figure 4.49. The relative
LOO errors of PCEs for the first two components are respectively 0.40 and 0.224, which
indicates indeed a relatively low level of accuracy. Figure 4.50 shows the errors induced
by the truncation of PCA and the approximation with PCE as a function of the number
of principal components kept by the algorithm.

Figure 4.47 – Quarter car model – N = 200 different trajectories y1(t) in the original time
scale t.

The time-warping PCE model is then validated by accessing the accuracy of its pre-
dictions. Two specific predictions of the surrogate model are plotted against the actual
time-histories obtained with the original Matlab solver in Figure 4.51. The amplitudes of
the predictions are in good agreement with the true amplitudes although the peaks are not
perfectly captured. This is due to the fact that PCEs in the transformed time scale did not
achieve a high accuracy. However, the predicted trajectories are strongly in-phase with the
reference trajectories, which can be explained by the appropriate stochastic time-warping
model obtained with PCEs. Among 10, 000 validations, 19.98% has a relative error larger
than 0.5. Regarding the mean and standard deviation trajectories (Figure 4.52), the time-
warping approach leads to corresponding relative errors of 5.7×10−3 and 8.4×10−3 which
shows an excellent agreement between the predictions and the reference. Minor inaccu-
racy of the standard deviation is observed at the late instants, which can be removed by
introducing additional samples in the experimental design.

This example showcases the application of the time-warping approach in high-
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Figure 4.48 – Quarter car model – N = 200 different trajectories y1(τ) in the warped time
scale τ
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Figure 4.49 – Quarter car model – The first four principal components.

dimensional complex engineering problems, in which uncertainties from the mechanical
properties and the excitations are accounted for simultaneously. It is worth noting that
the resulting surrogate model is capable of capturing the time-dependent statistics (mean
and standard deviation) of the response although it can only predict specific solutions
with limited accuracy.
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Figure 4.50 – Quarter car model – PCA truncation-induced error ε1, PCE approximation error
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(b) ξ = (2087.88, 2184.06, 21.57, 43.43, 550.57, 0.10, 5.75)

Figure 4.51 – Quarter car model – Two particular trajectories and their predictions by time-
warping PCEs.
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Figure 4.52 – Quarter car model – Mean and standard deviation of the trajectories: compar-
ison of time-warping PCE estimates and the reference trajectories.
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4.3 Discussion

In this section, we discuss the reasons why a simple time-warping process allows to reduce
significantly the complexity of the considered problems, in such a way that sparse PCEs
can be applied successfully. The apparent explanation relies on the fact that the time-
warping process maximizes the similarities in frequency and phase content of the different
response trajectories by making them in-phase with a reference trajectory. As a result,
the transformed responses vary around a reference trajectory. It is not mandatory that
the responses in the transformed time line stay in a small neighbourhood of the reference
counterpart in contrast to what is suggested by Le Maître et al. (2010). This is showcased
by the numerical example of the Bouc-Wen oscillator, when variabilities in the responses
after time-warping remain large, though they are smaller than in the original time scale.

The effectiveness of the time-warping PCEs approach may be further explained in a
more general manner as follows. It was observed that when presented on the temporal
variable t, the system’s responses are increasingly non-linear functions of the uncertain
parameters. When projecting the responses onto a suitable time scale, in this case the
transformed time line τ , the resulting trajectories become smooth functions of the un-
certain input parameters, whose complexity does hardly increase with time. Therefore,
PCEs can be applied effectively to the projected responses and represent well the solutions
at late instants. In this chapter, a measure of similarity was proposed to define a suit-
able space for projecting the responses, which exploits the periodicity of the trajectories.
Further investigations are required to clearly determine such a suitable space in a more
general case.

In the proposed approach, the virtual time τ is a function of the uncertain parameters
ξ. In other words, the time scale τ onto which the responses are projected is not deter-
ministic. This differs significantly from approaches commonly used in the literature, in
which the response trajectories are first projected onto a set of deterministic reduced basis
determined a priori using a set of numerical simulations of the system. This is usually
done with a simple linear transform in which the basis functions are deterministic, for
instance the use of data compression techniques such as principal component analysis or
wavelet decomposition.

When analysing further, one discovers a particular feature which constitutes a major
difference between the classical time-frozen PCE approach and the proposed time-warping
method. The PC coefficients yβ(τ) in the time-warping representation (Eq. (4.6)) are
functions of τ , therefore being dependent on ξ. This contradicts the representation of
time-frozen PCEs (Eq. (4.2)), in which t and ξ intervene in the solution in a separated
manner.

From a more general perspective, the effectiveness of the approach can be explained
by analysing the functionalities of time-warping and PCEs. The most important feature
of an oscillatory trajectory consists in its spectral content, which is characterized by the
vibration periodicity. The other feature is the temporal content, which is characterized by
the vibration amplitude. The pre-processing step handles partially the dynamics of the
system by dealing with the frequency content. By means of the time-warping process, the
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trajectories have similar frequencies and phases. In other words, in terms of frequencies,
the transformed trajectories exhibit a similar dynamical behaviour, which is close to that
of the reference trajectory. The other aspect of the dynamics, i.e. the random temporal
amplitude of the trajectories, is handled by means of sparse PCEs. As a summary, the dy-
namic is captured by the time-warping process, whereas the uncertainties are represented
by PCEs.

As explained, sparse PCEs alone are not capable of dealing with the dynamics. The
proposed approach illustrates a novel way to solve the uncertain dynamical problems, in
which a specialized technique might be used to capture the dynamical aspect whereas
sparse PCEs are used to propagate uncertainties. This principle is further developed in
the next chapter to tackle more complex problems in which non-linear uncertain structures
subject to stochastic motions are of interest and where the response trajectories are non-
stationary, i.e. they do not show pseudo-periodic oscillations. The projection of the
responses onto a special basis made of auto-regressive functions will allow us to represent
the non-linear dynamical behaviour of the systems.

Finally, it is worthwhile mentioning that the proposed methodology is fully non-
intrusive, i.e. the surrogate models of the systems’ response trajectories are obtained
by using a pre-computed set of trajectories related to an experimental design. In this re-
spect, the methodology is readily applicable to any other problems featuring randomized
limit cycle oscillations.

4.4 Summary

In this chapter, a non-intrusive sparse PCE approach based on a stochastic time-warping
process is introduced. The proposed approach focuses on solving the problem of stochastic
oscillations with random frequencies, which has been of long-term interest in the uncer-
tainty quantification community. The practical application of the approach is explained in
detail, including the determination of parameters governing the time-warping process, the
coupling of principal component analysis and polynomial chaos expansions to represent
the responses in the transformed time space and the use of the resulting surrogate model
for predicting responses of the system and conducting statistical analyses. The chapter is
concluded with a discussion on the reasons for the effectiveness of the proposed approach,
which differs from the classical approach in terms of the philosophy employed to solve the
stochastic dynamical problems.





5
Polynomial chaos nonlinear autoregressive with
exogenous input model

The stochastic time-warping PCE approach introduced in the previous chapter allows
one to tackle a class of problems involving oscillatory dynamics. It leads to a signifi-
cant improvement compared to the time-frozen PCE approach. However, the use of the
time-warping method in a more complicated case such as earthquake engineering is not
straightforward. In this situation, a different strategy needs to be developed.

Recently, Spiridonakos and Chatzi (2012, 2013, 2015a,b) introduced a numerical ap-
proach that is based on the combination of two techniques, namely PCEs and nonlinear
autoregressive with exogenous input (NARX) modelling, which is a universal tool in the
field of system identification. In the proposed approach, the NARX model is used to
represent the dynamical behaviour of the system, whereas PCEs tackle the uncertainty
part. A two phase scheme is employed. First, a stochastic NARX model is identified to
represent the dynamical system. It is characterized by a set of specified NARX model
terms and associated random coefficients. Second, the latter are represented as PCEs of
the random input parameters which govern the uncertainties in the considered system.
In the two phases, both the NARX terms and the polynomial functions are selected by
means of the heuristic genetic algorithm, which evolves randomly generated candidates
toward better solutions using techniques inspired by natural evolution, e.g. mutation and
crossover (Goldberg, 1989). The PC-NARX model is distinguished from conventional
deterministic system identification tools in that it allows one to account for uncertainties
arising both from the system properties, e.g. stiffness, hysteretic behaviour and energy
dissipation, and from the stochastic excitations, e.g. ground motions in structural analy-
sis. The approach proved its effectiveness in several case studies in structural dynamics
(Spiridonakos and Chatzi, 2015a,b). It is worth mentioning that early combinations of
system identification tools with polynomial chaos expansions can be found in the litera-
ture. Ghanem et al. (2005) regressed the restoring force of an oscillator on the Chebychev
polynomials of state variables of the system, then used PCEs to represent the polynomial
coefficients. Wagner and Ferris (2007) used PC-ARIMA models with a-priori known de-
terministic coefficients for characterizing terrain topology. Linear ARX-PCE models were
also used by Kopsaftopoulos and Fassois (2013), Samara et al. (2013) and Sakellariou and
Fassois (2016). However, in those studies the input parameters are not characterized by
known probability density functions, thus the bases are constructed from arbitrarily se-
lected families of orthogonal polynomials. Jiang and Kitagawa (1993) and Poulimenos and
Fassois (2006) used time-dependent autoregressive moving average model with stochastic
parameter evolution, in which the model parameters are random variables that change
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with time under stochastic smoothness constraints. Lately, Kumar and Budman (2014)
represented the coefficients of a Volterra series with PCEs. Most recently, Ozen and Bal
(2016) introduced the dynamical PCEs, which is also based on the idea that the future
evolution of the response depends on the present solution. The above mentioned ap-
proaches were carried out in the time domain. In the frequency domain, Pichler et al.
(2009) used linear regression-based metamodels to represent the frequency response func-
tions of linear structures. In particular, the same strategy was recently used with PCEs
by Yang et al. (2015), Jacquelin et al. (2015) and Yaghoubi et al. (2016).

In summary, the PC-NARX model consists of two components, namely a NARX and
a PCE model. Spiridonakos and Chatzi (2015a,b) computed the two components with
the heuristic genetic algorithm. The current chapter aims at introducing the so-called
least angle regression (LARS) technique (Efron et al., 2004) for the computation of both
NARX and PCE which are merely linear regression models. Indeed LARS has proven
to be efficient in computing adaptive sparse PCEs at a relatively low computational cost
(Blatman and Sudret, 2011). Note that LARS has been recently used for selecting the
NARX terms in the context of system identification (Zhang and Li, 2015). Yet the original
contribution of this chapter is to use LARS as a selection scheme for both NARX terms
and PCE basis terms. This way we provide a new fully non-intrusive surrogate modelling
technique that allows to tackle nonlinear dynamical systems with uncertain parameters.

The chapter is organized as follows: in the first section, the theory of NARX model
is briefly reviewed. Next, the proposed LARS-based PC-NARX approach is introduced.
The methodology is illustrated with four benchmark engineering case studies. Finally, a
detailed discussion on the approach is given. The content of this chapter was presented
by Mai and Sudret (2016b); Mai et al. (2016c) and has been submitted for publication in
the International Journal for Uncertainty Quantification (Mai et al., 2016b).
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5.1 Nonlinear autoregressive with exogenous input
model

Let us consider a computational model y(t) =M(x(t)) where x(t) is the time-dependent
input excitation and y(t) is the response time history of interest. System identification
aims at building a mathematical model describingM using the observed data of the input
and output signals. Herein, we focus on system identification in the time domain. One
discretizes the time duration under investigation in T discrete instants t = 1, . . . , T . A
nonlinear autoregressive with exogenous input (NARX) model allows one to represent the
output quantity at a considered time instant as a function of its past values and values of
the input excitation at the current or previous instants (Chen et al., 1989; Billings, 2013):

y(t) = F (z(t)) + εt = F (x(t), . . . , x(t− nx), y(t− 1), . . . , y(t− ny)) + εt, (5.1)

where F(·) is the underlying mathematical model to be identified, z(t) =
(x(t), . . . , x(t− nx), y(t− 1), . . . , y(t− ny))T is the vector of current and past values,
nx and ny denote the maximum input and output time lags, εt is the residual error of the
NARX model. In standard NARX models, the residual is assumed to be a normally inde-
pendently distributed process. There are multiple options for the mapping function F(·),
e.g. wavelet, polynomial, sigmoid functions, radial basis functions and neural networks,
which commonly specify an explicit function form with a finite number of parameters
to describe the underlying relationship. Such a function is classified as parametric time
series forecasting model (Cheng et al., 2015). In the literature, the following linear-in-
the-parameters form is commonly used:

y(t) =
ng∑

i=1
ϑi gi(z(t)) + εt, (5.2)

in which ng is the number of model terms gi(z(t)) that are functions of the regression
vector z(t) and ϑi are the coefficients of the NARX model.

NARX models allow one to capture the dynamical behaviour of the system which
follows the principle of causality, i.e. the current output quantity (or state of the system)
y(t) is affected by its previous states {y(t− 1), . . . , y(t− ny)} and the external excitation
{x(t), . . . , x(t− nx)}. Note that the cause-consequence effect tends to fade away as time
evolves, therefore it suffices to consider only a limited number of time lags before the
current time instant. It is worth emphasizing that the model terms may be constructed
from a variety of global or local basis functions. For instance the use of polynomial
NARX model with gi(z(t)) being polynomial functions is popular in the literature, see
e.g. Leontaritis and Billings (1985); Spinelli et al. (2006); Cantelmo and Piroddi (2010);
Cheng et al. (2011).

The identification of a NARX model for a system consists of two major steps. The
first one is structure selection, i.e. determining which NARX terms gi(z(t)) are in the
model. The second step is parameter estimation, i.e. determining the associated model
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coefficients. Note that structure selection, particularly for systems involving nonlineari-
ties, is critically important and difficult. Including spurious terms in the model leads to
numerical and computational problems, therefore Billings (2013) suggests to identify the
simplest model to represent the underlying dynamics of the system, which can be achieved
by using the orthogonal least squares algorithm and its derivatives to select the relevant
model terms one at a time. Different approaches for structure selection include trial
and error methods, see e.g. Chen and Ni (2011); Piroddi (2008), and correlation-based
methods, see e.g. Wei and Billings (2008); Cheng et al. (2011).

The identified model can be used for several purposes. First, it helps the analysts reveal
the mechanism and behaviour of the underlying system. Understanding how a system
operates offers the possibility to control it better. Second, the identified mathematical
model can be utilized for predicting future responses of the system. From this point of
view, it can be considered a metamodel (or approximate model) of the originalM.

5.2 Polynomial chaos - nonlinear autoregressive with
exogenous input model

Consider a computational model y(t, ξ) = M(x(t, ξx), ξs) where ξ = (ξx, ξs)
T is the

vector of uncertain parameters, ξx and ξs respectively represent the uncertainties in the
input excitation x(t, ξx) and in the system itself. For instance, ξx can contain parameters
governing the amplitude and frequency content of the excitation time series, while ξs
can comprise parameters determining the system properties such as geometries, stiffness,
damping and hysteretic behaviour.

Spiridonakos and Chatzi (2015a,b) proposed a numerical approach based on PCEs and
the NARX model to identify the metamodel of such a dynamical system with uncertainties
arising from both the excitation and the system properties. The time-dependent output
quantity is first represented by means of a NARX model:

y(t, ξ) =
ng∑

i=1
ϑi(ξ) gi(z(t)) + εg(t, ξ), (5.3)

in which the model terms gi (z(t)) are functions of the regression vector z(t) =
(x(t), . . . , x(t − nx), y(t − 1), . . . , y(t − ny))T, nx and ny denote the maximum input
and output time lags, ϑi(ξ) are the coefficients of the NARX model, εg(t, ξ) is the resid-
ual error, with zero mean Gaussian distribution and variance σ2

ε (t). The proposed NARX
model differs from the classical NARX model in the fact that the coefficients ϑi(ξ) are
functions of the uncertain input parameters ξ instead of being deterministic. The stochas-
tic coefficients ϑi(ξ) of the NARX model are then represented by means of truncated PCEs
as follows (Soize and Ghanem, 2004):

ϑi(ξ) =
nψ∑

j=1
ϑi,j ψj(ξ) + εi, (5.4)
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in which {ψj(ξ), j = 1, . . . , nψ} are multivariate orthonormal polynomials of ξ,
{ϑi,j, i = 1, . . . , ng, j = 1, . . . , nψ} are associated PC coefficients and εi is the truncation
error. Finally, by substituting for Eq. (5.4) in Eq. (5.3), the PC-NARX model reads:

y(t, ξ) =
ng∑

i=1

nψ∑

j=1
ϑi,j ψj(ξ) gi(z(t, ξ)) + ε(t, ξ), (5.5)

where ε(t, ξ) is the total error time series due to the truncations of NARX and PCE
models. In the proposed approach, the NARX model is used to capture the dynamics of
the considered system, whereas PCEs are used to propagate uncertainties.

Let us discuss the difference between the PC-NARX model and the conventional time-
dependent PCE formulation in Eq. (3.2). For the sake of clarity, Eq. (5.5) can be rewritten
as follows:

y(t, ξ) =
nψ∑

j=1

( ng∑

i=1
ϑi,j gi(z(t, ξ))

)
ψj(ξ) + ε(t, ξ). (5.6)

At a particular instant t, the polynomial coefficients yj(t) def=
ng∑
i=1

ϑi,j gi(z(t, ξ)) are rep-
resented as functions of the past values of the excitation and the output quantity of
interest. In other words, the polynomial coefficients follow certain dynamical behaviours,
which constitutes a fundamental difference when being compared with the coefficients
in the conventional model in Eq. (3.2). There the polynomial coefficients at time t are
deterministic and are determined independently. As a consequence, a high and increas-
ing polynomial order is required to maintain an accuracy level and properly capture the
dynamics as time evolves (Wan and Karniadakis, 2006). In contrast, when a functional
form is used to relate the coefficients yj(t) with the excitation and output time series, a
low and constant polynomial order suffices. Spiridonakos and Chatzi (2015a) used PC-
NARX models with fourth order PCEs to obtain remarkable results in the considered
structural dynamics case studies. In the literature, Gerritsma et al. (2010) showed that
when applying time-dependent PCEs, i.e. adding previous responses to the set of ran-
dom variables to represent the current response, low-order polynomials could also be used
effectively. From a similar perspective, the PC-flow map composition scheme proposed
by Luchtenburg et al. (2014) was also proven efficient in solving the problems with low
polynomial order, which was impossible with PCEs alone. At this point, one can rec-
ognize a similarity between the time-dependent PCE, the PC-flow map composition and
the PC-NARX model. These methods rely on a recursive formulation which allows the
prediction of future output values using orthogonal polynomials of its current state, thus
making use of the causality effect in the dynamical system. In the recursive formulation
of time-dependent PCEs and the PC-flow map composition, only one lagged output is
utilized as historical data. PC-NARX model takes into consideration a series of lagged
output and external excitations, therefore it can be considered as an extension of time-
dependent PCEs and the PC-flow map composition that can be used in a more general
case.

Indeed, not all the NARX and PC terms originally specified are relevant, as com-
monly observed in practice. The use of redundant NARX or PC terms might lead to
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large inaccuracy. Therefore, it is of utmost importance to identify the correct structure
of NARX and PC models, i.e. to select appropriate NARX terms and PC bases. To
this end, Spiridonakos and Chatzi (2015a) proposed a two-phase approach, in which the
NARX terms and PC functions are subsequently selected by means of a genetic algorithm
(Goldberg, 1989). However, due to the linear-in-parameters formulations of the NARX
model (Eq. (5.3)) and the PC expansions (Eq. (5.4)), the question of selecting NARX and
PC terms boils down to solving two linear regression problems. To this end, it appears
that one can use techniques that are specially designed for linear regression analysis, for
instance the least angle regression (LARS) technique proposed by Efron et al. (2004). In
the field of system identification, LARS has been recently used by Zhang and Li (2015) for
selecting the NARX terms. Before that, Cantelmo and Piroddi (2010) used the least ab-
solute shrinkage and selection operator method (LASSO) (Tibshirani, 1996) for adaptive
selection of a polynomial NARX model. Efron et al. (2004) showed that with one mod-
ification, the LARS procedure provides the entire paths of LASSO solution coefficients.
The use of LARS in system identification can be classified as a correlation-based method,
which selects the NARX terms that make significant contribution to the output using
correlation analysis, see e.g. Billings and Wei (2008); Wei and Billings (2008); Cheng
et al. (2011). LARS has also been used in the adaptive sparse PCE scheme (Blatman
and Sudret, 2011) and showed great advantages compared to the other predictor selection
methods, i.e. fast convergence and high accuracy with an ED of limited size.

5.2.1 Least angle regression-based approach

In this section, we introduce least angle regression (LARS) for the selection of appropriate
NARX and PCE models. A two-phase approach is used, which sequentially selects NARX
and PCE models as follows:

• Phase 1: Selection of the appropriate NARX model among a set of candidates.

– Step 1.1: One specifies general options for the NARX model (model class
and related properties), e.g. type of basis functions (polynomials, wavelet,
sigmoid functions, neural network, etc.), maximum time lags of input and
output, properties of the basis functions (e.g. maximum polynomial order).
Note that it is always preferable to start with simple models having a reasonable
number of terms. In addition, any available knowledge on the system, e.g.
number of degrees of freedom, type of non-linear behaviour, should be used in
order to obtain useful options for the general NARX structure. This leads to
a full NARX model which usually contains more terms than actually needed
for a proper representation of the considered dynamical system. At this stage,
one assumes that the specified full NARX model contains the terms that can
sufficiently describe the system. This assumption will be verified in the final
step of this phase.

– Step 1.2: One selects some candidate NARX models that are subsets of the
specified full model. To this end, one considers the experiments exhibiting a
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high level of non-linearity. For instance those experiments can be chosen with
measures of nonlinearity or by inspection of the simulations with maximum
response values exceeding a specified threshold. For each of the selected exper-
iments, one determines a candidate NARX model containing a subset of the
NARX terms specified by the full model. This is done using LARS and the
input-output time histories of the considered experiment.

For experiment #k, the one-step-ahead prediction of the response reads:

ŷp(t, ξk) =
ng∑

i=1
ϑi(ξk) gi(ẑp(t, ξk)), (5.7)

in which

ẑp(t, ξk) =
(
x(t, ξx,k), . . . , x(t− nx, ξx,k), y(t− 1, ξk), . . . , y(t− ny, ξk)

)T
,

(5.8)
where y(t) is the recorded data used for training the NARX model. Denoting
φ(t) = {gi(ẑp(t), i = 1, . . . , ng)}T and ϑ = {ϑi, i = 1, . . . , ng}T, the residual
time series reads:

εp(t, ξk) = y(t, ξk)− ŷp(t, ξk) = y(t, ξk)− φT(t)ϑ(ξk). (5.9)

Thus, the sum of squared errors is given by:

T∑

t=1
[εp(t, ξk)]

2 =
T∑

t=1

[
y(t, ξk)− φT(t)ϑ(ξk)

]2
. (5.10)

Using Eq. (5.9) and assembling all time instants in the k-th experiment, one
obtains: 



y(1, ξk)
...

y(T, ξk)


 =




φT(1)
...

φT(T )


 ϑ(ξk) +




ε(1, ξk)
...

ε(T, ξk)


 (5.11)

The above equation can be rewritten in matrix notations as follows:

yk = Φk ϑ(ξk) + εk, (5.12)

where yk is the T ×1 vector of output time-series, Φk is the T ×ng information
matrix with the ith row containing the evaluations of NARX terms φ(t) at
instant t = i and εk is the residual vector. This is typically the equation of a
linear regression problem, for which the relevant NARX regressors among the
NARX candidate terms φ(t) can be selected by LARS.

Note that the same candidate model might be obtained from different selected
experiments. In theory all the available experiments can be considered, i.e. the
number of candidate models is at most the size of the ED. Herein, we search for
the appropriate NARX model among a limited number of experiments which
are exhibiting strong non-linearity.
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– Step 1.3: For each candidate NARX model, the corresponding NARX coeffi-
cients are computed for each of the experiments by ordinary least-squares. The
parameters ϑ(ξk) minimizing the total errors in Eq. (5.10) is the least-squares
solution of Eq. (5.12), i.e. :

ϑ(ξk) = arg min
ϑ

(εT
k εk) =

[
ΦT
k Φk

]−1
ΦT
k yk, (5.13)

with the information matrix Φk containing only the NARX regressors specified
in the NARX candidate. Having at hand the NARX coefficients, the free-run
reconstruction for each experiment output is conducted as follows:

ŷs(t, ξk) =
ng∑

i=1
ϑi(ξk) gi(ẑs(t, ξk)), (5.14)

in which

ẑs(t, ξk) =
(
x(t, ξx,k), . . . , x(t− nx, ξx,k), ŷs(t− 1, ξk), . . . , ŷs(t− ny, ξk)

)T
.

(5.15)
It is worth underlining that the free-run reconstruction of the response is ob-
tained using only the excitation time series x(t) and the response initial con-
dition y0. The response is reconstructed recursively, i.e. its estimate at one
instant is used to predict the response at later instants. This differs from
Eq. (5.7) where the recorded response was used in the recursive formulation.
The relative error for simulation #k reads:

εk =

T∑
t=1

(y(t, ξk)− ŷs(t, ξk))2

T∑
t=1

(y(t, ξk)− ȳ(t, ξk))2
, (5.16)

in which ŷs(t, ξk) is the output trajectory reconstructed by the NARX model
and ȳ(t, ξk) is the mean value of the response time series y(t, ξk).

– Step 1.4: One selects the most appropriate NARXmodel among the candidates.
Herein, the error criterion of interest is the mean value of the relative errors:

ε̄ = 1
K

K∑

k=1
εk. (5.17)

We propose to choose the NARX candidate that achieves a small mean error
over the entire set of conducted simulations in the experimental design, e.g.
ε̄ < 1 × 10−3, with the smallest number of NARX terms. For instance, if two
NARX candidates lead to the same level of mean error over the experimental
design, the one comprising less NARX terms will be selected. In other words,
the appropriate model is the simplest candidate that is capable of capturing
the underlying system dynamical behaviour.
To refine the estimated coefficients, a nonlinear optimization for minimizing
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the simulation error (Eq. (5.16)) may be conducted afterwards (Spiridonakos
and Chatzi, 2015a). However, this is not used in the current work due to the
fact that LARS allows one to detect the appropriate NARX terms, therefore
the models estimated by ordinary least-squares appear sufficiently accurate.
If no appropriate NARX model is obtained, i.e. the initial assumption that
the full NARX model includes an appropriate candidate is not satisfied, the
process is re-started from Step 1.1 (choice of model class), when different op-
tions for the full NARX model should be considered. For instance, one may
use more complex models with larger time lags, different basis functions, etc.
This basically introduces a loop for selecting the best NARX model.

• Phase 2: Representation of the NARX coefficients by means of PCEs using the
sparse adaptive PCE scheme which is based on LARS (see Section 2.2). The NARX
coefficients obtained from Phase 1 are used together with the corresponding sample
set of the uncertain input parameters for training the PC expansions. Note that the
marginal distributions and the correlation between the input parameters have been
defined.

The proposed approach for computing a PC-NARX model is summarized by the
flowchart in Figure 5.1.

5.2.2 Use of the surrogate model for prediction

The PC-NARX surrogate model can be used for the prediction1 of the response for a
set of input parameters ξ′. Given the excitation x(t, ξ′x) and the initial conditions of
the response y(t = 1, ξ′) = y0, the output time history of the system can be recursively
obtained as follows:

ŷ(t, ξ′) =
ng∑

i=1

nψ∑

j=1
ϑi,jψj(ξ′) gi(ẑ(t, ξ′)), t = 2, . . . , T, (5.18)

in which

ẑ(t, ξ′) =
(
x(t, ξ′x), . . . , x(t− nx, ξ

′
x), ŷ(t− 1, ξ′), . . . , ŷ(t− ny, ξ′)

)T
. (5.19)

Currently, no close-form formulation for computing the time-dependent statistics of the
output quantity is available as opposed to time-frozen PCEs. However, the evolutionary
response statistics can be straightforwardly obtained by means of Monte Carlo simulation
using the PC-NARX model.

1In what follows, the term “prediction” is employed to refer to the NARX model’s so-called “simulation
mode” as addressed in signal processing literature, which stands for the estimation of the response relying
only on its initial condition and feedback of the excitation. The term “prediction” is used however because
it is the standard wording in the surrogate modelling community.
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Phase 1 Selection of candidate terms for the NARX model
Selection of experiment #i exhibiting strong nonlinearitySelection of the corresponding sparse NARX model by LARS
Computation of NARX coefficients for each experiment by OLSComputation of reconstruction error for each experimentSelection of the most appropriate NARX model

Accuracy satisfaction
Build PCEs of the NARX coefficientsPhase 2

Step 1.1
Step 1.2
Step 1.3
Step 1.4

No
Yes

Figure 5.1 – Computation of LARS-based PC-NARX model

5.2.3 Validation of the surrogate model

The PC-NARX model is computed using an ED of limited size. The validation process
is conducted with a validation set of large size which is independent of the ED. A large
number, e.g. nval = 104, of input parameters and excitations is generated. One uses
the numerical solver to obtain the response time histories sampled at the discrete time
instants t = 1, . . . , T . Then the PC-NARX model (Eq. (5.18)) is used to predict the time
dependent responses for the excitations and uncertain parameters of the validation set.
The accuracy of the computed PC-NARX model is validated by comparing its predictions
with the actual responses in terms of the relative errors and the evolutionary statistics of



5.3. Numerical applications 129

the response. For prediction #i, the relative error reads:

εval,i =

T∑
t=1

(y(t, ξi)− ŷ(t, ξi))2

T∑
t=1

(y(t, ξi)− ȳ(t, ξi))2
, (5.20)

where ŷ(t, ξi) is the output trajectory predicted by PC-NARX and ȳ(t, ξi) is the mean
value of the actual response time series y(t, ξi). The above formula is also used to calculate
the accuracy of the time-dependent statistics (i.e. mean, standard deviation) predicted
by PC-NARX. The mean value of the relative errors over nval predictions reads:

ε̄val = 1
nval

nval∑

i=1
εval,i. (5.21)

The relative error for a quantity y, e.g. the maximal value of the response (resp. the
response at a specified instant) is given by:

εval,y =

nval∑
i=1

(yi − ŷi)2

nval∑
i=1

(yi − ȳ)2
, (5.22)

where yi is the actual response, ŷi is the prediction by PC-NARX and ȳ is the mean value
defined by ȳ = 1

nval

nval∑
i=1

yi.

5.3 Numerical applications

The use of the LARS-based PC-NARX model is now illustrated with four nonlinear dy-
namical systems with increasing complexity, namely a quarter car model subject to a
stochastic sinusoidal road profile, a single degree-of-freedom (SDOF) Duffing, a SDOF
Bouc-Wen oscillator and a three-story steel building subject to non-stationary stochastic
excitation. In all considered numerical examples, uncertainties arising from the system
properties and from the excitation are taken into account. PC-NARX models are com-
puted using a small number of numerical simulations as experimental design. The val-
idation is conducted by comparing their response predictions with the reference values
obtained by using Monte Carlo simulation (MCS) on the numerical solvers.

5.3.1 Quarter car model

5.3.1.1 Problem statement

In the first numerical example, a quarter car model of a vehicle suspension represented
by a nonlinear two DOF system (Kewlani et al., 2012) (Figure 5.2) is considered. The
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displacements of the masses are governed by the following system of ordinary differential
equations (ODEs):

{
ms ÿ1(t) = −ks (y1(t)− y2(t))3 − c (ẏ1(t)− ẏ2(t)),
mu ÿ2(t) = ks (y1(t)− y2(t))3 + c (ẏ1(t)− ẏ2(t)) + ku (x(t)− y2(t)), (5.23)

in which the sprung mass ms and the unsprung mass mu are connected by a nonlinear
spring of stiffness ks and a linear damper of damping coefficient c. The forcing function
x(t) is applied to mu through a linear spring of stiffness ku. y1(t) and y2(t) are the dis-
placements of ms and mu respectively. A sinusoidal function road profile with amplitude
A and frequency ω is considered:

x(t) = A sin(ω t). (5.24)

The parameters of the quarter car model and of the excitation
ξ = {ks, ku, ms, mu, c, A, ω} are modelled by independent random variables with
marginal distributions given in Table 5.1. Gaussian distributions are used as in the
original publication, although it would be more appropriate to use e.g. lognormal
variables to ensure the positivity of mass and stiffness parameters. Kewlani et al. (2012)
addressed this numerical example with the multi-element PCE approach.

Figure 5.2 – Quarter car model – Mechanical system.

Table 5.1 – Parameters of the quarter car model and of the road excitation

Parameter Distribution Mean Standard deviation
ks (N/m3) Gaussian 2000 200
ku (N/m) Gaussian 2000 200
ms (kg) Gaussian 20 2
mu (kg) Gaussian 40 4
c (N s /m) Gaussian 600 60
A (m) Uniform 0.1 0.01/

√
3

ω (rad/s) Uniform 2π 0.2 π/
√

3

5.3.1.2 PC-NARX model

We now aim at building the metamodel for representing the displacement time histories
y1(t) of the sprung mass ms. For this purpose, N = 100 analyses of the system are
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conducted with 100 samples of the uncertain input parameters generated by Latin hyper-
cube sampling. The system of ODEs are solved with the Matlab solver ode45 (explicit
Runge-Kutta method) for the total duration T = 30 s and the time step dt = 0.01 s. In
the first place, a NARX model structure is chosen, in which the model terms are poly-
nomial functions of past values of the output and excitation gi(t) = yl1(t − j)xm(t − k)
with l + m ≤ 3, 0 ≤ l ≤ 3, 0 ≤ m ≤ 1, j = 1, . . . , 4, k = 0, . . . , 4. The specified full
NARX model contains 86 terms. It is worth noticing that the initial choice of the NARX
structure was facilitated by the knowledge of the dynamical nonlinear behaviour of the
system of interest. For instance, polynomial functions of order up to 3 are used because of
the cubic nonlinear behaviour in Eq. (5.23). As a rule of thumb, the maximum time lags
nx = ny = 4 are chosen equal to twice the number of degrees of freedom of the considered
system.

Next, the candidate NARX models were computed. To this end, we selected the
simulations with maximum displacement exceeding a large threshold, i.e. max(|y1(t)|) >
1.2 m and retained 15 experiments. For each selected simulation, LARS was applied
to the initial full NARX model to detect the most relevant NARX terms constituting a
candidate NARX model. This procedure resulted in 10 different candidate NARX models
in total.

For each candidate NARX model, we computed the NARX coefficients for all sim-
ulations by ordinary least-squares to minimize the sum of squared errors (Eq. (5.13)).
We then reconstructed all the output time histories with the computed coefficients and
calculated the relative errors εk of the reconstruction (Eq. (5.16)).

Among the 10 candidates, we selected the most appropriate NARX model which
achieves a sufficiently small overall error with the smallest number of terms. The se-
lected model results in a mean relative error ε̄ = 3.56×10−4 for 100 simulations in the ED
and contains 6 terms, namely the constant term, x(t− 4), y1(t− 4), y1(t− 1), y3

1(t− 1),
y2

1(t − 4)x(t − 4). LARS proves effective in selecting the appropriate NARX model by
retaining only 6 among the 86 candidate terms available to describe the system.

In the next step, we expanded the 6 NARX coefficients by adaptive sparse PCEs of
order p ≤ 20 with maximum interaction rank r = 2 and truncation parameter q = 1. The
NARX coefficients computed in the previous step were used for training the metamodel.
PCE models that minimize the LOO errors were selected. This led to LOO errors smaller
than 10−7. The optimal PCE order selected by the adaptive scheme is up to 6.

For the sake of comparison, we represent the response y1(t) by means of time-frozen
sparse PCEs. For this purpose, adaptive sparse PCEs are used with an ED of size N =
500. The best PCE with maximum degree 1 6 p 6 20, maximum interaction rank r = 2
and truncation parameter q = 1 is selected The PC-NARX and time-frozen PCEs are used
to predict the output time histories for an independent validation set of size nval = 104

which is pre-computed by the numerical solver (Matlab ode45 algorithm). The accuracy
of the two PCE approaches are compared in the following.
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5.3.1.3 Prediction of instantaneous and maximal displacements

We compare the predictions of the mass displacement at an early time instant t = 5 s
and a late instant t = 30 s (Figure 5.3). The instantaneous responses y1(t) predicted
by two PCE approaches are plotted in Figure 5.3(a) and Figure 5.3(c) versus the actual
responses obtained by numerically solving the considered system of ODEs. One observes
that PC-NARX outperforms time-frozen PCEs. At t = 30 s, PC-NARX is still capable
of providing highly accurate predictions (εval = 4.21 × 10−3) whereas time-frozen PCEs
show large inaccuracies already from t = 5 s. In terms of statistics, the probability
density functions (PDFs) of the instantaneous responses are depicted in Figure 5.3(b)
and Figure 5.3(d). The reference PDF is obtained from MCS using the validation set of
size nval = 104. One notices that the instantaneous PDFs computed by time-frozen PCEs
do not differ significantly from the reference function, whereas the predictions are actually
of poor quality. Indeed, it is always possible that two sets of samples provide identical
PDFs while their pair-wise comparison shows large discrepancies. This example shows a
problem that is overlooked in the literature on surrogate models for dynamical systems,
when conclusions are commonly drawn only based on the statistics (for instance, PDFs,
mean and standard deviation) of the predicted quantities. This might be misleading for
judging the accuracy of the metamodel under investigation in predicting specific output
values. The PDFs computed by PC-NARX show perfect agreement with the reference
functions, which is obvious because every single PC-NARX-based prediction is highly
accurate.

We investigate now the effect of the sample size on the MCS estimates. PC-NARX is
used to predict the responses for a different validation set of size nval = 106. Figure 5.3(b)
and Figure 5.3(d) show that the PDFs obtained with 106 runs differ slightly from the
PDFs obtained with 104 runs. For instance, the peaks of the 106 runs-based PDFs become
marginally higher. It is believed that the PDF obtained with 106 runs of the PC-NARX
surrogate is the most accurate, although this cannot be validated by running 106 times
the computationally expensive model. In general, it is prohibitive to obtain the true PDFs
with MCS on the original numerical model, however it is feasible using PC-NARX model.

Next, we compare the maximal displacements max (|y1(t)|) predicted by the two PCE
approaches with the actual values. Note that the maximal displacements from the ED
are retrieved, then used as ED to directly compute the sparse adaptive PCE of that
quantity. The same options as in time-frozen PCEs are used. Figure 5.4 clearly show that
PC-NARX outperforms the usual PCE approach in predicting the maximal response.
The former provides predictions with great accuracy indicated by the validation error
εval = 3.12 × 10−3, resulting in a PDF that is consistent with the reference one. In
contrast, the PCE of the maximal displacement gives poor results, as it is expected.
It has already been observed that the instantaneous responses are increasingly complex
functions of the input parameters as time evolves. Consequently, the maximal value, which
does not occur at the same time instant for different trajectories, is not a smooth function
of the input random variable and cannot be approximated accurately with regular PCEs.
As shown in Figure 5.4(b), the PC-NARX technique provides the PDF of this maximum
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Figure 5.3 – Quarter car model – Instantaneous displacements: comparison of the two ap-
proaches.

with remarkable accuracy.

5.3.1.4 Prediction of new trajectories and statistical moments

Let us evaluate the overall performance of the two PCE approaches in predicting the
entire response time histories. Figure 5.5 depicts two specific time dependent response
trajectories for two distinct samples of the uncertain input parameters. The predictions
by the two PCE metamodels are compared with the reference responses obtained by the
numerical solver. It is shown that the accuracy of time-frozen PCEs degenerates relatively
quickly as time progresses. Around t = 5 s, time-frozen PCEs start showing signs of insta-
bility and the predictions become inaccurate. In contrast, PC-NARX provides predictions
that are indistinguishable from the actual responses. Over 104 validation trajectories, PC-
NARX leads to a mean relative error ε̄val = 0.17 × 10−2, and only 5 simulations among
them exhibit a relative error εval,i exceeding 0.1.
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Figure 5.4 – Quarter car model – Maximal displacement: comparison of the two approaches.

The two PCE approaches are now compared in terms of predicting the evolutionary
response statistics. Figure 5.6 shows that time-frozen PCEs can represent relatively well
the mean trajectory, except for the late instants (t > 20 s) where the discrepancy is notice-
able. However, time-frozen PCEs fail to capture the oscillatory behaviour of the standard
deviation when the prediction starts deviating significantly from the actual trajectory at
t = 5 s. The improvement in accuracy of PC-NARX is outstanding, in particular because
it can represent in detail the oscillatory response statistics. The relative errors are re-
spectively εval,Mean = 0.73 × 10−2 and εval,Std = 0.91 × 10−2 for the mean and standard
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Figure 5.5 – Quarter car model – Two particular trajectories and their predictions by means
of time-frozen PCEs and PC-NARX.

deviation time-histories.

5.3.1.5 Effect of the size of the experimental design

It has been shown that using an experimental design of size 100 led to remarkably accurate
PC-NARXmodel. Let us now investigate the case when only few simulations are available,
for instance assume that an ED of size 30 is given. The same procedure as presented above
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Figure 5.6 – Quarter car model – Mean and standard deviation of the trajectories: comparison
of the two approaches.

is applied to compute the PC-NARX model, which is validated on the same independent
validation set of size 10, 000. Among the validation set, 876 predictions exhibit a relative
error larger than 0.1.

In Figure 5.7, we compare the displacements predicted by PC-NARX with the actual
values at two instants t = 5 and t = 30 s. One notices a clear deterioration in terms
of the accuracy of PC-NARX when compared to the previous study conducted with a
larger experimental design. The relative error of the predictions increases by one order of
magnitude. The effect of the inaccuracy on the PDFs is, however, not pronounced. The
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predicted PDFs can even be considered highly accurate as conventionally accepted in the
literature.
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Figure 5.7 – Quarter car model – Instantaneous displacements.

Figure 5.8(a) depicts the maximal displacements predicted by the PC-NARX model in
comparison with the actual values. For large values, the predictions exhibit considerable
discrepancies from the actual responses, which is indicated by the large error εval = 6.77×
10−2. Therefore, the PDF predicted by the PC-NARX model differs from the reference
function (Figure 5.8(b)). The discrepancy is, however, not large. It showcases again
the problem that specific predictions by metamodels might be not sufficiently accurate,
however the resulting PDF does not deviate significantly from the reference function.
Regarding the evolutionary statistics of the response, Figure 5.9 shows that the mean
trajectory is well captured by the PC-NARX model. In addition, only a minor discrepancy
is observed for the standard deviation curve.

This numerical case study illustrates the effectiveness of the LARS-based PC-NARX
model with respect to the usual time-frozen sparse PCE approach. It is worth noting that
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Figure 5.8 – Quarter car model – Maximal displacement: comparison of the two approaches.

the process was conducted using the uncertainty quantification software UQLab (Marelli
and Sudret, 2014a), more specifically the polynomial chaos expansion toolbox (Marelli
and Sudret, 2015). The following case studies will be more complicated, in particular
because the excitations are non-stationary stochastic processes with varying intensity and
frequency content that are generated by means of a probabilistic model presented in the
following section.
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Figure 5.9 – Quarter car model – Mean and standard deviation of the trajectories.

5.3.2 Probabilistic ground motion model

In earthquake engineering, it is common practice to use recorded ground motions for struc-
tural dynamic analysis. Although the databases of recorded accelerograms are constantly
enriched with recent events occurring worldwide, the number of motions with characteris-
tics corresponding to a design scenario under investigation is commonly not sufficient for
statistical analysis. This led to the development of synthetic ground motions models in
the last few decades, which aim at generating artificial accelerograms with characteristics
similar to seismic records.



140 Chapter 5. PC-NARX model

Various stochastic ground motion models in the literature can be classified in three
types (Douglas and Aochi, 2008): record-based parameterized models that are fit to
recorded motions (Pousse et al., 2006; Rezaeian and Der Kiureghian, 2010a; Yamamoto
and Baker, 2013), source-based models that consider the physics of the source mecha-
nism and wave travel-path (Pitarka and Irikura, 1998; Boore, 2003), and hybrid models
that combine elements from both source- and record-based models (Graves and Pitarka,
2010). The record-based stochastic models do not allow to take into consideration physical
phenomena such as surface waves, travel path of the earthquake. This is, however, not a
major issue in the context of structural engineering, when the analysts usually do not have
knowledge about the source, path and site, and are more interested in the acceleration
time-histories that excite the structures. Moreover, the record-based stochastic models
are usually straightforward to use with only a handful of required input parameters.

Rezaeian and Der Kiureghian (2010a) proposed a probabilistic model depending on 6
parameters that govern the spectral and temporal contents of the motions. This model
is employed in the present work to generate a large suite of synthetic ground motions
used for non-linear dynamic analysis of the structures. The ground motion acceleration
is represented as a non-stationary process by means of a modulated filtered white noise
process as follows:

x(t) = q(t,α)




1
σh(t)

t∫

−∞
h[t− τ,λ(τ)]ω(τ) dτ



 . (5.25)

The white-noise process denoted by ω(τ) passes a filter h[t− τ,λ(τ)] which is selected as
an impulse-response function:

h[t− τ,λ(τ)] = ωf (τ)√
1− ζ2

f (t)
exp (−ζf (τ)ωf (τ)(t− τ))

× sin
(
ωf (τ)

√
1− ζ2

f (τ)(t− τ)
)

for τ ≤ t,

h[t− τ,λ(τ)] = 0 for τ > t,

(5.26)

where λ(τ) = (ωf (τ), ζf (τ)) is the vector of time-varying parameters of the filter h. ωf (τ)
and ζf (τ) are respectively the filter’s frequency and bandwidth at time instant τ . They
represent the evolving predominant frequency and bandwidth of the ground motion. A
linear model is assumed for ωf (τ) and ζf (τ) is constant during the entire signal duration:

ωf (τ) = ωmid + ω′(τ − tmid) and ζf (τ) = ζf . (5.27)

In the above equation, tmid is the instant at which 45% of the expected Arias intensity
Ia is reached, ωmid is the filter frequency at instant tmid and ω′ is the slope of linear
evolution of ωf (τ). After being normalized by the standard deviation σh(t), the integral
in Eq. (5.25) becomes a unit variance process with time-varying frequency and constant
bandwidth, which represents the spectral non-stationarity of the ground motion.

The non-stationarity in intensity is then captured by the modulation function q(t,α).
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This time-modulating function determines the shape, intensity and duration of the motion
as follows:

q(t,α) = α1t
α2−1exp(−α3 t). (5.28)

The vector of parametersα = (α1, α2, α3) is directly related to the physical characteristics
of the ground motion, namely the expected Arias intensity Ia, the time interval D5−95
between the instants at which the 5% and 95% of Ia are reached and the instant tmid.

In the discrete time domain, the synthetic ground motion in Eq. (5.25) becomes:

x̂(t) = q(t,α)
n∑

i=1
si(t, λ(ti))Ui, (5.29)

where the standard normal random variable Ui represents an impulse at instant ti and
si(t, λ(ti)) is given by:

si(t, λ(ti)) = h[t− ti, λ(ti)]√∑k
j=1 h

2[t− tj, λ(tj)]
for ti < tk, tk ≤ t < tk+1, (5.30)

= 0 for t ≤ ti.

Table 5.2 lists the probabilistic distributions associated with the uncertain parameters.
The six parameters describing the ground motion are considered dependent with a Nataf
distribution (a.k.a Gaussian copula) (Liu and Der Kiureghian, 1986; Lebrun and Dutfoy,
2009). The correlation matrix is given in Table 5.3.

Table 5.2 – Marginal distributions of the stochastic ground motion model (after Rezaeian and
Der Kiureghian (2010a)).

Parameter Distribution Support Mean Standard deviation
Ia (s.g) Lognormal (0, +∞) 0.0468 0.164
D5−95 (s) Beta [5, 45] 17.3 9.31
tmid (s) Beta [0.5, 40] 12.4 7.44

ωmid/2π (Hz) Gamma (0, +∞) 5.87 3.11
ω′/2π (Hz) Two-sided exponential [-2, 0.5] -0.089 0.185
ζf (.) Beta [0.02, 1] 0.213 0.143

Table 5.3 – Correlation matrix of the Nataf distribution of the stochastic ground motion model
(after Rezaeian and Der Kiureghian (2010a)).

Ia D5−95 tmid ωmid ω′ ζf
Ia 1 -0.36 0.01 -0.15 0.13 -0.01

D5−95 -0.36 1 0.67 -0.13 -0.16 -0.2
tmid 0.01 0.67 1 -0.28 -0.2 -0.22
ωmid -0.15 -0.13 -0.28 1 -0.2 0.28
ω′ 0.13 -0.16 -0.2 -0.2 1 -0.01
ζf -0.01 -0.2 -0.22 0.28 -0.01 1
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5.3.3 Bouc-Wen oscillator subject to Northridge ground mo-
tions

5.3.3.1 Problem statement

Let us consider the SDOF Bouc-Wen oscillator (Kafali and Grigoriu, 2007) subject to
stochastic excitation. The equation of motion of the oscillator reads:

{
ÿ(t) + 2 ζ ω ẏ(t) + ω2(ρ y(t) + (1− ρ) z(t)) = −x(t),
ż(t) = γẏ(t)− α |ẏ(t)| |z(t)|n−1 z(t)− β ẏ(t) |z(t)|n , (5.31)

in which ζ is the damping ratio, ω is the fundamental frequency, ρ is the post- to
pre-yield stiffness ratio, γ, α, β, n are parameters governing the hysteretic loops. In
this example, the excitation x(t) is a ground motion generated by means of the prob-
abilistic model presented in Section 5.3.2 with deterministic properties extracted from
the component 090 of the Northridge earthquake recorded at the LA 00 station, i.e.
(Ia, D5−95, tmid, ωmid, ω

′, ζf ) = (0.109, 7.96, 7.78, 4.66 × 2π,−0.09 × 2π, 0.24) (Rezaeian
and Der Kiureghian, 2010b). More precisely, this set of parameters is used together with
random white-noise processes to generate a series of artificial motions.
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Figure 5.10 – Bouc Wen oscillator – Example synthetic motions generated using the parame-
ters of a single recorded motion (Northridge earthquake, LA 00 station).
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Deterministic values are used for the following parameters of the Bouc-Wen model:
ζ = 0.02, ρ = 0, γ = 1, n = 1, β = 0. The remaining parameters are considered
independent random variables with associated distributions given in Table 5.4, which
constitute the vector of uncertain parameters ξ = (ω, α).

Table 5.4 – Marginal distributions of the Bouc-Wen model parameters

Parameter Distribution Support Mean Standard deviation
ω (rad/s) Uniform [5.373, 6.567] 5.97 0.3447
α (1/m) Uniform [45, 55] 50 2.887

5.3.3.2 PC-NARX model

We first build the metamodel for representing the velocity time histories v(t) of the os-
cillator. 50 simulations are conducted with 50 samples of the input parameters gener-
ated by Latin hypercube sampling. The system of ODEs are solved with the Matlab
solver ode45 (explicit Runge-Kutta method with relative error tolerance 1 × 10−5) with
the total duration T = 30 s and time step dt = 0.005 s. In the first place, a NARX
model structure is chosen, in which the model terms are gi(t) = x(t− k)l |v(t− 1)|m and
gi(t) = v(t − j)l |v(t− 1)|m with l = 0, 1, m = 0, 1, j = 1, . . . , 4, k = 0, . . . , 4. The use
of absolute terms has proven effective in capturing the hysteretic behaviour of nonlinear
systems in Spiridonakos and Chatzi (2015a). The initial NARX model contains 19 terms
in total.

Next, the candidate NARX models are computed. For this purpose, we selected
the simulations with maximum velocity exceeding a large threshold, i.e. max(|v(t)|) >
0.25 m/s and obtained 17 experiments. LARS was applied to the initial full NARX model
to detect the most relevant NARX terms constituting a candidate NARX model from each
simulation previously selected. This procedure resulted in 9 candidates in total, which is
due to the fact that the same NARX candidate is obtained from different simulations. Or-
dinary least squares (Eq. (5.13)) is used to determine the NARX coefficients corresponding
to each NARX candidate model for all the simulations. To evaluate the accuracy of the
NARX candidate, Eq. (5.16) is used to compute the error indicators. The most appropri-
ate NARX model achieves a mean relative error ε̄ = 4.1× 10−4 over 50 experiments and
contains 12 terms, namely constant term, x(t− 4), x(t− 3), x(t− 2), x(t− 2) |v(t− 1)|,
x(t− 1), x(t− 1) |v(t− 1)|, x(t), v(t− 4), v(t− 4) |v(t− 1)|, v(t− 1) |v(t− 1)|, v(t− 1).
Figure 5.11 depicts the experiment from which the most appropriate NARX model is
selected. Note that the nonlinear behaviour is noticeable and the oscillator exhibits a
residual displacement after entering the domain of nonlinearity.

Then we represented the NARX coefficients by sparse adaptive PCEs with degree up
to 20, maximum interaction order r = 2 and truncation parameter q = 1. The PCEs of
the NARX coefficients have LOO errors smaller than 5 × 10−6. The PC-NARX model of
the velocity was obtained and used for predicting the velocity on the validation set. The
displacement time history is then obtained by integration.
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Figure 5.11 – Bouc Wen oscillator – Experiment leading to the selected NARX structure.
ξ = (6.486, 50.9247)

5.3.3.3 Prediction of new trajectories and statistical moments

Figure 5.12 depicts two specific velocity and displacement trajectories for distinct valida-
tion sets of parameters. One observes that the velocity trajectories are perfectly predicted
by PC-NARX. Indeed, the mean relative error over 104 validations is ε̄val = 1.1 × 10−3.
Despite the high accuracy of the PC-NARX model for the velocity, the displacements
obtained with the integration might exhibit some slight discrepancies with respect to the
actual trajectories. The inaccuracies occur when the peak values of the velocity are not
well predicted and the error is accumulated through integration in time. Over the valida-
tion set, the mean relative error is ε̄val = 7.7× 10−3. Note that predicting the response of
a mechanical system subject to nonstationary excitation is never an easy task. From our
experience, it is thus of no interest to apply time-frozen PCEs to this type of problems.

Figure 5.13 compares the time-dependent standard deviation of the two response quan-
tities predicted by PC-NARX with those obtained from Monte Carlo simulation. The
standard deviation of the velocity and the displacement is remarkably well captured by
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First example trajectory ξ = (6.5164, 47.9249)
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Second example trajectory ξ = (5.38, 45.0578)

Figure 5.12 – Bouc-Wen oscillator – Two particular trajectories of velocity v(t) and displace-
ment y(t) and their predictions by means of PC-NARX.

PC-NARX, with relative errors being εstd,vel = 2.43 × 10−4 and εstd,disp = 3.84 × 10−5,
respectively. For the displacement, the standard deviation increases in time, reaches its
peak before stabilizing in a plateau, which is related to residual displacements. This
plateau at the late instants is not observed for the standard deviation of the velocity,
which always returns to zero after the shaking. In addition, the displacement’s standard
deviation reaches its maximum 2 seconds later than the velocity. It can be concluded that
the different response quantities of a system might experience their largest variabilities at
different instants. Given the time-dependent statistics of a response quantity, one cannot
derive the time instant at which the other response varies the most. Most interestingly, the
standard deviation trajectories for both the velocity and the displacement are relatively
smooth with only minor perturbations recorded around their peaks.
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(a) Standard deviation of velocity v(t)
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(b) Standard deviation of displacement y(t)

Figure 5.13 – Bouc-Wen oscillator – Standard deviation trajectories of the responses.

5.3.3.4 Prediction of maximal values of the responses

It has been shown that the PC-NARX surrogate model provide excellent predictions of
the oscillator’s response time histories. Consequently, it is expected that the maximal
values of the responses can be captured at a high level of accuracy. Figure 5.14 (resp.
Figure 5.15) plots the maximal velocities (resp. displacements) predicted by PC-NARX
against the actual values obtained with the numerical solver. The figures show an excellent
agreement between the predictions and the true values. As a result, the predicted PDFs
of the maximal values perfectly match the reference functions.
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(b) Probability density function of maximal values of velocity

Figure 5.14 – Bouc Wen oscillator – Maximal responses.

In this example, we considered an oscillator with random mechanical properties sub-
ject to seismic motions mimicking a real accelerogram. Therein, the time histories of the
excitations are not exactly the same, however they incorporate similar features regarding
the evolution of frequency, the energy content, etc. In practical applications, it is of ut-
most importance to also take into account the effect of uncertainties from the excitations
corresponding to various earthquake scenarios. This can be obtained by randomizing the
parameters of the probabilistic seismic ground motion model in accordance with their dis-
tributions obtained from statistical analysis on real events. This topic will be investigated
in the following applications.
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(b) Probability density function of maximal values of displace-
ment

Figure 5.15 – Bouc Wen oscillator – Maximal responses.

5.3.4 Duffing oscillator subject to synthetic ground motions

5.3.4.1 Problem statement

For the sake of variety, let us consider a SDOF Duffing oscillator (Kafali and Grigoriu,
2007). Note that the vibration of a Duffing oscillator is a commonly used benchmark
in the literature, see e.g. Orabi and Ahmadi (1987); Lucor and Karniadakis (2004);
Kougioumtzoglou and Spanos (2009); Spiridonakos and Chatzi (2015a); Chouvion and
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Sarrouy (2016) in which an oscillator subject to either periodic or white-noise external
force is considered. The dynamics of the oscillator can be described by the following
equation of motion:

ÿ(t) + 2 ζ ω ẏ(t) + ω2 (y(t) + ε y(t)3) = −x(t), (5.32)

in which y(t) is the oscillator displacement, ζ is the damping ratio, ω is the fundamental
frequency, ε is the parameter governing the nonlinear behaviour and x(t) is the excitation
which is herein generated by the probabilistic ground motion model proposed by Rezaeian
and Der Kiureghian (2010a).

The parameters ζ and ω of the SDOF oscillator are considered deterministic with
values ζ = 0.02 and ω = 5.97 rad/s whereas ε is modelled by a uniform random variable
on the support domain [90, 110]. The uncertain input vector contains parameters of the
oscillator and parameters representing the intensity and frequency features of the ground
motion model ξ = (ε, Ia, D5−95, tmid, ωmid, ω

′, ζf ), as described in the previous section.

5.3.4.2 PC-NARX model

We now aim at building the metamodel for representing the displacement time histories
y(t). For this purpose, N = 200 analyses of the system were conducted with the input
parameters generated by Latin hypercube sampling. The equation of motion was solved
with the Matlab solver ode45 (explicit Runge-Kutta method). Note that for the sake of
consistency, all the synthetic motions were generated with the total duration T = 30 s and
time step dt = 0.005 s. In the first place, a NARX model structure was chosen in which
the model terms are polynomial functions of past values of the output and excitation
gi(t) = yl(t− j)xm(t− k) with l+m ≤ 3, 0 ≤ l ≤ 3, 0 ≤ m ≤ 1, j = 1, 2, k = 0, 1, 2. The
chosen full NARX model contains 10 terms.

Next, candidate NARX models were computed. To this end, we selected the simula-
tions with maximum displacement exceeding a large threshold, i.e. max(|y(t)|) > 0.07 m,
leading to 19 selected experiments. Figure 5.16 depicts the nonlinear behaviour of the
oscillator in two experiments selected for extracting NARX candidates. For each simu-
lation previously selected, LARS was applied to the initial full NARX model to detect
the most relevant NARX terms constituting a candidate NARX model. This procedure
resulted in 12 candidates in total. The NARX coefficients corresponding to each candi-
date model are then computed for each simulation in the ED by means of ordinary least
squares (Eq. (5.13)). The responses are reconstructed using the computed coefficients,
leading to the errors εk (Eq. (5.16)). The best NARX model achieves a mean relative
error ε̄ = 7.4 × 10−4 over 200 experiments and contains 7 terms, namely the constant
term, x(t− 2), x(t), y(t− 2), y(t− 1), y2(t− 2), y3(t− 1).

In the next step, we represented the NARX coefficients by adaptive sparse PCEs of
order up to 20 with maximum interaction rank r = 2 and truncation parameter q = 1.
The PCEs of the NARX coefficients have LOO errors smaller than 7.34 × 10−4. The
optimal PCE selected by the adaptive scheme is of total degree 3.
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(b) Nonlinear behaviour exhibited in a different
experiment

Figure 5.16 – Duffing oscillator – Nonlinear behaviour of the oscillator in the selected experi-
ments.

5.3.4.3 Prediction of new trajectories and statistical moments

A validation set of size nval = 104 was pre-computed by the numerical Matlab solver. The
displacements were then predicted by the PC-NARX model. Figure 5.17 depicts three
specific excitations and the corresponding response time histories. PC-NARX provides
predictions that are in remarkable agreement with the actual responses. Over 104 vali-
dation trajectories, the mean relative error is ε̄val = 3.53 × 10−2. Less than 5% of those
simulations exhibit a relative error εval,i exceeding 0.1.

Figure 5.18 presents the evolutionary standard deviation of the displacement. It is
noticeable that this function is no longer smooth, especially the high frequency content
is manifest from early instants until the end of the considered time range. This might
be related to the varying properties of the excitations, which lead to strong differences
between the motions and consequently variabilities between the responses regarding their
important phases, their amplitudes, etc. In addition, the Duffing oscillator does not
exhibit residual displacement, thus after reaching its peak the standard deviation tends
to decrease constantly and does not show a plateau as the Bouc-Wen oscillator. In general,
the curve computed by PC-NARX is in good agreement with the reference one with a
relative error εval,Std = 0.5 × 10−2. The mean trajectory, which is slightly fluctuating
around zero, is not informative, therefore not presented herein.

5.3.4.4 Prediction of maximal values of the response

Finally, we compare the maximal displacements predicted by PC-NARX with the actual
values computed by the numerical solver. Figure 5.19 shows that overall the predictions
are quite accurate with a relative error εval,max = 0.7× 10−2. The simulations with large
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First example trajectory ξ = (106.30, 0.05, 6.53, 5.47, 55.16,−1.02, 0.31)
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Second example trajectory ξ = (105.84, 0.05, 9.08, 4.53, 19.76,−0.11, 0.28)
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Third example trajectory ξ = (90.68, 0.18, 15.86, 7.98, 19.5376,−0.37, 0.07)

Figure 5.17 – Duffing oscillator – Three particular excitations (left column), associated re-
sponse trajectories and their prediction by means of PC-NARX (right column).

discrepancies between the prediction and the actual values correspond to large displace-
ments, i.e. they belong to the domain of rare events (the upper tail of the distribution)
that was not well represented in the small training set of size 200.
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Figure 5.18 – Duffing oscillator – Standard deviation trajectory of the displacement.



5.3. Numerical applications 153

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Numerical model

P
C

E

 

 

PC−NARX, ε
val,max

 = 0.0076

(a) PCE-based predictions vs. actual values

0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

30

35

max|y(t)|

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y
 f

u
n

c
ti
o

n

 

 

Reference

PC−NARX

(b) Probability density function

Figure 5.19 – Duffing oscillator – Maximal displacements.
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5.3.5 Bouc-Wen oscillator subject to synthetic ground motions

5.3.5.1 Problem statement

In this application, we re-investigate the SDOF Bouc-Wen oscillator (Kafali and Grig-
oriu, 2007). The difference compared to the previous study is that, the stochastic ex-
citations are generated by the probabilistic ground motion model with the governing
parameters being randomly sampled in accordance with their distributions reported by
Rezaeian and Der Kiureghian (2010a). One assumes the same random properties of the
oscillator, i.e. ω ∼ U [5.373, 6.567] and α ∼ U [45, 55]. The uncertainties in the consid-
ered system is therefore characterized by means of the vector of uncertain parameters
ξ = (ω, α, Ia, D5−95, tmid, ωmid, ω

′, ζf ).

5.3.5.2 PC-NARX model

We first build the metamodel for representing the velocity time histories v(t) of the oscilla-
tor. 200 simulations are conducted with 200 samples of the input parameters generated by
Latin hypercube sampling. The system of ODEs are solved with the Matlab solver ode45
(explicit Runge-Kutta method with relative error tolerance 1 ×10−3) with the total dura-
tion T = 30 s and time step dt = 0.005 s as in the previous example. In the first place, a
NARX model structure is chosen, in which the model terms are gi(t) = x(t−k)l |v(t− 1)|m
and gi(t) = v(t − j)l |v(t− 1)|m with l = 0, 1, m = 0, 1, j = 1, . . . , 4, k = 0, . . . , 4. The
initial NARX model contains 19 terms in total.

Next, the candidate NARX models are computed. For this purpose, we selected
the simulations with maximum velocity exceeding a large threshold, i.e. max(|v(t)|) >
0.25 m/s and obtained 15 experiments. LARS was applied to the initial full NARX
model to detect the most relevant NARX terms constituting a candidate NARX model
from each simulation previously selected. This procedure resulted in 11 candidates in
total. Ordinary least squares (Eq. (5.13)) is used to determine the NARX coefficients
corresponding to each NARX candidate model for all the simulations. To evaluate the
accuracy of the NARX candidate, Eq. (5.16) is used to compute the error indicators. The
most appropriate NARX model achieves a mean relative error ε̄ = 6.27 × 10−4 over 200
experiments and contains 12 terms, namely constant term, x(t − 4), x(t − 4) |v(t− 1)|,
x(t − 3), x(t − 3) |v(t− 1)|, x(t − 2), x(t − 1), x(t), v(t − 4), v(t − 4) |v(t− 1)|, v(t −
3) |v(t− 1)|, v(t−1). Figure 5.20 depicts the experiment from which the most appropriate
NARXmodel is selected. Note that the nonlinear behaviour is noticeable and the oscillator
exhibits a residual displacement after entering the domain of nonlinearity.

Then we represented the NARX coefficients by sparse PCEs. The optimal polynomial
of order p = 2 was found adaptively with maximum interaction order r = 2 and truncation
parameter q = 1 so that the resulting PC-NARX model led to the smallest error when
reconstructing the responses in the ED. The PCEs of the NARX coefficients have LOO
errors smaller than 1.68 × 10−4. The PC-NARX model of the velocity was obtained and
used for predicting the velocity on the validation set. The displacement time history is
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then obtained by integration.
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Figure 5.20 – Bouc-Wen oscillator – Experiment leading to the selected NARX structure.

5.3.5.3 Prediction of new trajectories and statistical moments

Figure 5.21 depicts two specific velocity and displacement trajectories for distinct val-
idation sets of parameters. One observes that the velocity trajectories are relatively
well predicted by PC-NARX. Indeed, the mean relative error over 104 validations is
ε̄val = 1.82×10−2 and only 3% of those time-histories have a relative error εval,i exceeding
0.1. Despite the high accuracy of the PC-NARX model for the velocity, the predicted
displacements exhibit some slight discrepancies with respect to the actual trajectories.
The inaccuracies are slightly large in the later phase of the considered time domain due
to the occurrence of residual displacements, but remain acceptable.

Figure 5.22 compares the time-dependent standard deviation of the two response quan-
tities predicted by PC-NARX with those obtained from Monte Carlo simulation. The high
frequency content is observed in the evolutionary response statistics. This phenomenon
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was also reported in the literature when applying Monte Carlo simulation to a nonlinear
structure (Kougioumtzoglou and Spanos, 2013). It shows how the varying features of the
seismic excitations can strongly affect the systems’ responses. The standard deviation of
the velocity is remarkably well captured by PC-NARX (relative error εstd,vel = 0.39×10−2).
For the displacement, the standard deviation tends to increase in time, which is different
from the Duffing oscillator that does not exhibit residual displacement. The discrepancy
between the prediction and the actual time histories is also increasing in time. However,
the resulting relative error remains rather small (εstd,disp = 1.57× 10−2).
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First example trajectory ξ = (6.35, 46.54, 0.05, 6.53, 5.47, 55.16,−1.02, 0.31)
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Second example trajectory ξ = (6.32, 48.24, 0.05, 9.08, 4.53, 19.76,−0.11, 0.28)

Figure 5.21 – Bouc-Wen oscillator – Two particular trajectories of velocity v(t) and displace-
ment y(t) and their predictions by means of PC-NARX.

5.3.5.4 Prediction of maximal values of the responses

Figure 5.23 and Figure 5.24 compare the maximum values of velocity and displacement
predicted by PC-NARX with those values computed by the numerical solver. Despite the
complexity of the problem, the predictions are remarkably consistent with the true values,
with sufficiently small validation errors of εval,max(|v(t)|) = 9 × 10−3 and εval,max(|y(t)|) =
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(a) Standard deviation of velocity v(t)
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(b) Standard deviation of displacement y(t)

Figure 5.22 – Bouc-Wen oscillator – Standard deviation trajectories of the responses.

1.9×10−2. The accurate predictions allow one to obtain the probability density functions
of the maximum responses that are in good agreement with the reference functions, as
shown in Figure 5.23(b) and Figure 5.24(b).
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(b) Probability density function of maximal values of velocity

Figure 5.23 – Bouc-Wen oscillator – Maximal responses computed by numerical solver and
predicted by PC-NARX model.
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(b) Probability density function of maximal values of displace-
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Figure 5.24 – Bouc-Wen oscillator – Maximal responses computed by numerical solver and
predicted by PC-NARX model.
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5.3.6 Steel frame subject to synthetic ground motions

5.3.6.1 Problem statement

We consider a 3-storey 3-span steel frame structure with the following dimensions: storey-
height H = 3 m, span-length L = 5 m (see Figure 5.25). The distributed load on the
beams is q = 10 kN/m. The standard European I beams with designation IPE 300 A and
IPE 330 O are chosen respectively for beams and columns. The steel material has non-
linear isotropic hardening behavior following the uniaxial Giuffre-Menegotto-Pinto steel
model as implemented in the finite element software OpenSees (Pacific Earthquake Engi-
neering and Research Center, 2004). The Young’s modulus E0 and the yield strength fy of
the steel S235 are considered uncertain parameters with lognormal marginal distributions
specified in Table 5.5 and are uncorrelated as recommended by the Joint Committee on
Structural Safety (2001b). The strain hardening ratio, i.e. ratio of the post-yield tangent
to the initial value, is b = 0.01. The parameters governing the shape of the hysteretic
behavior are R0 = 18, cR1 = 0.925, cR2 = 0.15 (Filippou et al., 1983). The structural
components are modelled with nonlinear force-based beam-column elements which allow
distributed plasticity along their lengths. The connections between structural elements
are modeled by rigid nodes. Rayleigh damping model is used for the structure, in which
a damping ratio equal to 2% is assigned to the first two modes of the frame. When
considering the material properties equal to their mean values, the vibration periods of
the frame for the first three modes are respectively T1 = 0.434 s, T2 = 0.129 s and
T3 = 0.070 s. Note that the empirical formula for estimating the fundamental vibration
period of steel moment-resistant buildings in Eurocode 8 (2004) and ASCE 7-98 (2000)
reads T = CtH

3/4 with Ct = 0.035 and H = 9 m = 29.52 ft. This leads to the em-
pirical fundamental period for the considered frame T = 0.443 s which is approximately
the value of T1. In addition, one obtains T1/T2 = 3.4 and T1/T3 = 6.2. The periods of
vibration of higher modes roughly decreases as the inverse of the odd integers, i.e. 1/3
and 1/5, as suggested by Housner and Jennings (1982). The first three eigenmodes of
the structure are depicted in Figure 5.25. The frame is subject to in-plane stochastic
excitation modelled by the probabilistic ground motion model described in Section 5.3.2
(Rezaeian and Der Kiureghian, 2010a).

Table 5.5 – Marginal distributions of the steel material properties(Joint Committee on Struc-
tural Safety, 2001b)

Parameter Distribution Mean Standard deviation Coefficient of variation
fy (MPa) Lognormal 264.2878 18.5 0.07
E0 (MPa) Lognormal 210, 000 630 0.03

A sample set of size N = 300 of the parameters ξ = (fy, E0, Ia, D5−95, tmid, ωmid, ω
′, ζ)

governing the uncertainties in the structure and excitation is obtained by means of Latin
hypercube sampling. The corresponding synthetic motions are generated with the total
duration T = 30 s and time step dt = 0.01 s. Dynamic analyses of the finite element
model subject to 300 synthetic motions are conducted and the structural responses are
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Figure 5.25 – Steel frame structure and its first three eigenmodes computed with OpenSees

used for training the metamodel. We aim at computing the metamodel for the first floor
displacement.

5.3.6.2 PC-ARX model

For this example, a linear ARX model structure is selected, which
includes the past values of the excitation and the response
{1, x(t), x(t− 1), . . . , x(t− 15), y(t− 1), . . . , y(t− 15)}. The chosen full ARX model
contains 32 terms in total. Note that all the ARX terms are linear functions, while the
specified time lags are large nx = ny = 15. In this case study, the use of more
complicated NARX functions, e.g. with absolute terms or higher polynomial degrees,
unfortunately did not lead to good results. This means that the non-linear behavior of
this system should be represented by a different type of NARX functions, which is so far
not known, thus requiring further investigations. It is worth noting that linear ARX
models with large time lags were also used by Spiridonakos and Chatzi (2012);
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Spiridonakos et al. (2015) to surrogate non-linear structures. This practice is, however,
only acceptable when the considered structure mainly exhibits slight non-linearity. In
the current numerical application, the steel frame responses remain mainly in the linear
and slightly nonlinear range with the inter-story drifts hardly exceeding 1.5%.

We selected 15 simulations with maximum displacement exceeding a large threshold,
i.e. max(|y(t)|) > 0.015 m. Candidate ARX models were obtained by LARS from each
experiment. The ARX coefficients are computed using OLS, then used to reconstruct
the responses and compute the relative error εk. The best candidate contains 18 terms
namely: constant term, x(t), x(t− 1), ..., x(t− 13), y(t− 1), y(t− 5), y(t− 6), y(t− 15),
which leads to the mean relative error ε̄ = 4.61× 10−2. Figure 5.26 depicts the excitation
and corresponding response from the simulation which led to the selected ARX model.
Different levels of nonlinearity that the frame structure exhibits during the earthquake
excitations are illustrated in Figure 5.27. We represented the ARX coefficients by adaptive
OLS-based PCEs with optimal total degree p equal to 2.

5.3.6.3 Prediction of new trajectories and statistical moments

The PC-ARX model is then validated by MCS (104 independent simulations of the finite
element model). Two specific validations are shown in Figure 5.28, where the responses
computed by FEM are compared with those predicted by the PC-ARX model. Over 104

validations, 1049 simulations have the error εval,i exceeding 0.1 and the mean error is
ε̄val = 4.78 × 10−2. The time-dependent standard deviation of the response computed
by FEM is plotted versus the trajectory predicted by the PC-ARX model in Figure 5.29
with the relative error εval,std = 10.19 × 10−2. The maximal displacement is depicted in
Figure 5.30, in which discrepancies between FEM-based and PC-ARX-based values are
observed in the range of large values. In particular, the relative error of the maximal
displacement prediction is εval,max = 3.8 × 10−2. The figure also shows that the PDF of
the maximal displacement is predicted quite accurately with the PC-ARX model.
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Figure 5.26 – Steel frame – Experiment leading to the selected ARX model.
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Figure 5.27 – Steel frame – Force-displacement responses for the first story illustrating differ-
ent levels of nonlinearity.
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First example trajectory ξ = (286.62, 205901.1, 0.09, 7.43, 4.63, 17.95, 0.25, 0.15)
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Figure 5.28 – Steel frame – Two particular excitations (left column), associated response tra-
jectories and their prediction by means of PC-ARX (right column).
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Figure 5.29 – Steel frame – Standard deviation of the first floor displacement trajectory.
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Figure 5.30 – Steel frame – Maximal displacements.
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5.4 Discussion

In this section, we discuss certain features of the PC-NARX approach. It is clear that
PC-NARX outperforms traditional time-frozen PCEs. The latter are found to fail in
representing the random response of dynamical systems. The reason is that PCEs are
designed for propagating uncertainties, but not for capturing the evolutionary behaviour
in time domain. In order to use PCEs in this context, one should utilize a specific tool
to tackle the dynamical aspect of the problem. For instance, one can use the available
system of equations describing the model in an intrusive way. This approach is, however,
also known to deteriorate in long term integration due to the accumulation of error in
time (Wan and Karniadakis, 2006; Ghosh and Iaccarino, 2007). One also apprehends
the remarkable performance of PC-NARX approach, which handles separately the two
aspects of the problem, namely dynamics and uncertainties with the specific tools of
NARX modelling and PCEs, respectively.

PC-NARX can also be considered to belong to a class of approaches where a pre-
processing of the response time histories is conducted before applying PCEs. The response
trajectories are first projected onto a different space, for instance phase-space (Desai et al.,
2013), transformed time space (Le Maître et al., 2010) or space of NARX functions (Spiri-
donakos and Chatzi, 2015a). In the case of PC-NARX, the NARX functions form a “coor-
dinate system” that moves along the trajectory. Due to the projection of the trajectories
on the suitably selected set of basis functions, the projection coefficients become smooth
functions of the uncertain parameters, therefore they can be represented effectively by
low order PCEs. It is worth emphasizing that a linear projection of the trajectories on
deterministic basis functions, namely principal components, wavelet, trigonometric func-
tions will not help to overcome the problems that face time-frozen PCEs. Such a linear
projection certainly allows one to reduce the computational cost associated with comput-
ing PCEs at each time instant by representing only a few relevant projection coefficients
with PCEs. However, the complexity of the problem remains the same after this step of
data compression.

The PC-NARX approach also has its own limitations. It uses data observed in discrete
time. When the recorded data is sparse in the time domain, i.e. the time step is too large,
the mechanism that relates the current state with the previous state and excitation cannot
be revealed. In addition, the recursive form of the PC-NARX formulation renders it more
difficult for post-processing. For instance, closed-form solutions for time-dependent statis-
tics and sensitivity analysis are currently not available. Most importantly, the problem
of specifying and selecting appropriate NARX models for a non-linear structure is so far
a major challenge in system identification. For the considered numerical applications, we
could specify appropriate nonlinear functions, e.g. cubic polynomials and absolute func-
tions, for the candidate NARX models given the knowledge of the nonlinear behaviour of
the mechanical systems. However, this might not be so straightforward for many other ap-
plications. Nonetheless, the use of versatile polynomial chaos functions for NARX terms is
potentially a remedy for the issue of specifying appropriate NARX models. Luchtenburg
et al. (2014) have recently proved the effectiveness of using of polynomial chaos functions
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for constructing flow maps in computational fluid dynamics. Regarding the selection of
relevant NARX terms, for the considered numerical applications, the LARS-based tech-
nique performs comparably well in comparison with the genetic algorithm formerly used
by Spiridonakos and Chatzi (2015a) in terms of the required computational effort and
the accuracy of the resulting metamodels. It proves that correlation-based techniques can
be used for selecting NARX models. However, given a complex engineering system, it is
not always obvious that one can easily find the appropriate form of NARX functions and
retain only the relevant terms. This requires a strong expertise of the investigator. The
steel frame case study illustrates the difficulties that one might have to face.

In general, we are convinced that approaches which make use of interdisciplinary tools
such as PC-NARX are promising. In other words, PCEs should be combined with tools
designed for predicting non-linear time series in uncertainty quantification of stochastic
dynamical systems. In particular, the use of generalized frequency response function for
non-linear structures, which is the equivalent of NARX model in the frequency domain,
deserves investigation in the future.

5.5 Summary

In this section the least angle regression (LARS) based polynomial chaos non-linear au-
toregressive with exogenous (PC-NARX) models were introduced as metamodels of non-
linear systems with uncertainties subject to stochastic excitations. In particular, the
approach relies on solving two linear regression problems, namely selecting the relevant
NARX functions and the important PC basis. To this end, LARs proves effective in
handling both regressors selection problems. The LARS-based PC-NARX approach is il-
lustrated in predicting the response time histories of four benchmark engineering systems
subject to non-stationary stochastic excitation. In the next chapter, PC-NARX surrogate
models will be used for computing seismic fragility curves of structures.





6
Applications of surrogate modelling to earthquake
engineering

In the previous chapter, the use of polynomial chaos-based surrogate models for represent-
ing time-history responses of structures subject to earthquake excitations was introduced.
The objective of the current chapter is to explore the application of surrogate models in
seismic risk assessment.

In modern engineering, seismic risk assessment is a key element not only in the design
process of structures but also in the decision-making process regarding risk-mitigation
strategies. This allows engineers and managers to determine the potential life safety
and socio-economic losses due to damages of components, structures and infra-structures
caused by earthquake scenarios. It is nowadays obligatory to conduct seismic risk as-
sessment for facilities of major importance, for instance nuclear power plants and electric
power systems. In the context of civil engineering, the assessment of seismic risk for struc-
tures is also an important issue which has attracted a large attention from researchers and
engineers for several decades. This led to the development of the so-called performance-
based earthquake engineering (PBEE) framework (Cornell and Krawinkler, 2000; Mackie
and Stojadinovic, 2001), which is the most advanced and thorough approach for risk as-
sessment in civil engineering. This framework is the aggregate of several elements namely
seismic hazards analysis, structural analysis, damage and loss analysis which are gathered
using the total probability theorem. In PBEE, a significant element is the computation
of seismic fragility curves, which represent the likelihood that the considered components
or structures fail to fulfil a prescribed earthquake-resistance criterion. Such curves are
commonly obtained using data from structural analysis or post-earthquake survey with
simplifying assumptions, for instance the curves are presented by lognormal cumulative
distribution functions. This chapter aims at clarifying the effect of this assumption by
using surrogate modelling.

The chapter is organized into 6 sections. Section 6.1 introduces the framework of
performance-based earthquake engineering. Section 6.2 will be devoted to the commonly
used parametric approaches for computing seismic fragility curves, which are based on
simplifying assumptions. In Section 6.3, two non-parametric approaches are introduced
to establish the fragility curves. The proposed methods are not utilizing assumptions
on the shape of the curves. In Section 6.4, the assessment of epistemic uncertainties of
fragility curves by means of the bootstrap resampling method is described. Section 6.5
presents three numerical case studies in which parametric and non-parametric curves are
obtained with data from numerical simulations of the actual model or from predictions
by the surrogate model. Based on the obtained results, discussions on the validity of
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parametric curves and the applicability of non-parametric approaches are given in Section
6.6. Finally, Section 6.7 concludes the chapter with a summary. Note that the review
of the classical lognormal fragility curves and the theory of non-parametric curves were
partially presented by Mai et al. (2014) and constitute a report recently submitted for
publication (Mai et al., 2016a).

6.1 Seismic risk assessment

6.1.1 Performance-based earthquake engineering

The development of seismic design codes is closely related to the history of major earth-
quakes that occurred worldwide. In the early 1990’s, after the 1908 Messina earthquake
(Italy) and the 1923 Great Kanto earthquake (Tokyo, Japan), guidelines were introduced
for civil engineers to design buildings taking into account the effects of horizontal exci-
tations. The 1925 Santa Barbara earthquake (California, USA) led to the first seismic
regulations as a voluntary appendix in the 1927 Uniform Building Code. Since then,
seismic deign codes are under constant evolution. Every time a major earthquake oc-
curs, lessons are learnt through post-earthquake surveys and analyses, thus the codes are
updated accordingly.

The scope of the modern seismic design codes are clearly defined. For instance, Eu-
rocode 8 requires that:“In the event of earthquakes, human lives are protected, damage is
limited and structures important for civil protection remain operational”. In other words,
the current seismic design philosophy focuses on assuring that no damage occurs during
minor earthquakes, limiting damages during moderate ground motions, preventing struc-
tures from collapse during strong earthquakes, thus assuring life safety and maintaining
the operation of important structures.

From a technical point of view, the current codes are based on the so-called load
and resistance factor design (LRFD), which aims at assuring the strength of structural
elements such as columns, beams, slabs. This constitutes a limitation of the codes, which
was revealed in the 1994 Northridge earthquake in California and in Kobe (Japan, 1995).
After the events, it was observed that structures designed in accordance with the codes
survived the earthquakes, however, the socio-economic consequences due to reparation and
loss of services were excessive (Lee and Mosalam, 2006). In particular, after recent events
like the L’Aquila (Italy, 2009) and Chile (2010) earthquakes, those observations were once
again confirmed. Some traditionally designed hospitals, which are extremely important for
saving human lives after natural disasters, had to be evacuated after the earthquakes due
to the non-structural damages (Holmes, 2010; Günay and Mosalam, 2013). In addition,
many residents were not willing to continue living in their houses after the earthquake
due to the visible damages, although the seismic performance of those buildings was
satisfactory according to the available codes (Holmes, 2010). In summary, current codes
exhibit shortcomings when focusing only on the strength at the element level.

Therefore, it is of utmost importance to design structures with emphasis on the global
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performance in terms of casualty prevention, economy and post-earthquake operability. In
other words, this highlights the need for proper performance-based earthquake engineering
(PBEE) as a basis for robust structural design, efficient decision making on mitigation
actions and disaster planning.

For that reason, the first-generation PBEE framework was investigated with the Vision
2000 report (SEAOC Vision 2000 Committee, 1995) being one of the earliest documents.
In this report, the system’s performance is classified into four levels, namely fully opera-
tional, operational, life safety and near collapse. The performance levels are defined by
the element force and deformation acceptability criteria, which are deterministic. The
hazard levels are classified as frequent, occasional, rare and very rare events with return
periods equal to 43, 72, 475 and 949 years respectively. Based on the public resilience
requirements or the private property owners expectations, the intended performance level
of the structure corresponding to a hazard level is determined (see Figure 6.1) and used as
the design criterion. The performance-based design process is depicted in Figure 6.2. Fol-
lowing Vision 2000, subsequent documents namely ATC-40 (Applied Technology Council,
1996), FEMA-273 (Building Seismic Safety Council, 1997) and FEMA-356 (American So-
ciety of Civil Engineers, 2000) introduced similar frameworks in which the descriptions
of performance levels and seismic hazard levels are slightly different. As one can see, the
first generation PBEE approaches do not take into account uncertainties in the evalua-
tion of performances. Moreover, the methods provide only criteria at element level, e.g.
displacement, deformation, which are rarely meaningful for the stakeholders. These are
the shortcomings of the first generation PBEE framework.System performance

Fully operatio
nal

Operati
onal Life safe
ty Near collapseFrequent(43 years)Occasional(72 years)Rare(475 years)Very rare(949 years)Hazard 

levels
(return 

period) unacceptable performancebasic safety objectiveessential hazardous objectivesafety critical objective
Figure 6.1 – Recommended seismic performance objectives for building (after SEAOC Vision

2000 Committee (1995))

To overcome the limitations of the first generation approaches, the Pacific Earth-
quake Engineering Research Center (PEER) has been developing a probabilistic PBEE
framework (Cornell and Krawinkler, 2000), which allows explicit evaluation of perfor-
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Select performance objective
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Performance objectives satisfied?

Done
Revise design and/or objectives

Figure 6.2 – First generation performance-based earthquake engineering design process (after
Günay and Mosalam (2013))

mance measures that serve as decision variables (DV) (e.g. monetary losses, casualties,
downtime) accounting for the prevailing uncertainties (e.g. arising from ground motion
characteristics, structural properties, damage occurrence). The key steps in the PBEE
framework comprise seismic hazard identification, structural response evaluation, damage
analysis and eventually, consequence assessment. The four steps allow one to take into
account the uncertainties, thus the outcome of each step is characterized by a probabilis-
tic quantity. Details on the four steps of the framework are given below (Mackie and
Stojadinovic, 2003; Günay and Mosalam, 2013):

• Hazard analysis: this aims at computing a seismic hazard curve representing the
mean annual frequency of exceedance versus the ground motion intensity measure
(IM). This analysis takes into account the uncertainties from the seismic activities,
e.g. the fault location, magnitude-reoccurance rate, etc. At the end of the analysis,
a set of ground motions compatible with the hazard curves is selected.

• Structural analysis: in this step, nonlinear time-history simulations of the structure
subject to previously selected ground motions are conducted. This step aims at rep-
resenting the structural responses, a.k.a. engineering demand parameters (EDP),
e.g. displacement, interstory drift, as a probabilistic quantity conditioned on the
motion IM. This allows one to take into consideration the uncertainties in the struc-
ture, e.g. material properties, geometry, damping ratio and also characteristics of
the ground motions, e.g. temporal and frequency content.

• Damage analysis: in this step, one represents the damage measures (DM) as a prob-
abilistic quantity conditioned on the different levels of EDP. The damage measures
are commonly associated with the repair measures required to rehabilitate the struc-
ture. This step allows one to consider uncertainties from the pattern and history of
the structural responses.
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• Loss analysis: this step is done to convert the damage measures from the previous
step to decision variables (DV), such as number of injuries and fatalities, monetary
loss due to repair and downtime.

In the step of loss analysis, the mean annual frequency of exceedance of a DV is
evaluated as (Mackie and Stojadinovic, 2005; Baker and Cornell, 2008):

λ(DV ) =
∫ ∫ ∫

P (DV |DM) dP (DM |EDP ) dP (EDP |IM) |dλ(IM)| , (6.1)

in which P (x|y) is the conditional probability of x given y, DM is a damage measure
typically defined according to repair measures (e.g. light, moderate or severe damage),
EDP is an engineering demand parameter obtained from structural analysis (e.g. force,
displacement, drift ratio), IM is an intensity measure characterizing the ground motion
severity (e.g. peak ground acceleration, spectral acceleration) and λ(IM) is the annual fre-
quency of exceedance of the IM . Determination of the probabilistic model P (EDP |IM)
constitutes a major challenge in the PBEE framework. The present chapter is concerned
with this step of the analysis.

It is worth noting that in the nuclear engineering, there is a framework named prob-
abilistic seismic risk assessment (PSRA) which shares important features with PBEE in
civil engineering. First used in the late 1970’s for assessing the seismic risk of nuclear
facilities, some technical details of the framework were then published by Kennedy et al.
(1980). In 1981, the first complete PSRA study was conducted on a commercial nu-
clear power plant (Pickard Lowe and Garrick Inc., 1981). Nowadays PSRA still plays
an important role in the nuclear industry. The PSRA framework provides the following
outcomes which are meaningful for stakeholders, e.g. seismic fragilities of components,
seismic accident sequence frequencies and the risk curves showing the annual frequency
of exceeding certain damage levels, e.g. number of deaths, cancer fatalities, damage. The
PSRA framework includes the following steps:

• Seismic hazard analysis which results in a family of seismic hazard curves relating
the frequency of exceedance to different levels of ground motion intensity measure.

• Seismic fragility evaluation, which evaluates the vulnerability of each component
under ground motions, e.g. the failure probabilities with respect to some prescribed
safety criteria. The analysis leads to a family of seismic fragility curves for each
component.

• System/accident sequence analysis, which models all the possible combinations of
component failures, in other words, all the scenarios that may result in the global
failure of the system. The analysis may be carried out by means of fault trees using
logical structures.

• Risk quantification, which assembles seismic hazard analysis, seismic fragility anal-
ysis and system analysis to provide information such as the annual frequency of
exceedance of a prescribed damage level (e.g. number of deaths, repair costs).
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One can observe that PSRA does not differ significantly from PBEE, except that the
former is used for assessing the seismic risk of nuclear facilities, therefore system/accident
sequence analysis is an important step whereas it is not needed in the context of civil
engineering. Both frameworks are based on the total probability theorem for estimating
the seismic risk of structures. To conclude, the underlying principle of PBEE can be
easily generalized and applied to different natural and non-natural disaster scenarios e.g.
hurricane, flood, tsunami, snow avalanche, rock fall, landslide, fire and terrorist attacks. It
is obvious that each disaster scenario has its own characteristics. However, the experiences
learnt from the development of PBEE, in particular the probabilistic framework behind
it, will be certainly relevant for the other frameworks.

6.1.2 Seismic fragility curves

The conditional probability P (EDP ≥ edp|IM), where edp denotes an acceptable de-
mand threshold, is commonly represented graphically in the shape of the so-called de-
mand fragility curves (Mackie and Stojadinovic, 2005). Thus, a demand fragility curve
represents the probability that an engineering demand parameter exceeds a prescribed
threshold conditioned on the intensity measure of the ground motion. For the sake of sim-
plicity, demand fragility curves are simply denoted fragility curves hereafter, which is also
typical in the literature, see e.g. Ellingwood and Kinali (2009); Seo et al. (2012). We note
however that the term fragility may also be used elsewhere to indicate P (DM ≥ dm|IM)
or P (DM ≥ dm|EDP ), i.e. the conditional probability of the damage measure exceeding
a threshold dm given the ground motion intensity (Banerjee and Shinozuka, 2007) or the
engineering demand parameter (Baker and Cornell, 2008; Günay and Mosalam, 2013),
respectively.

Originally introduced in the early 1980’s for nuclear safety evaluation (see e.g.
Kennedy et al. (1980); Richardson et al. (1980); Kennedy and Ravindra (1984)), fragility
curves are nowadays widely used for multiple purposes, e.g. loss estimation (Pei and Van
De Lindt, 2009), assessment of collapse risk (Eads et al., 2013), design checking (Dukes
et al., 2012), evaluation of the effectiveness of retrofit measures (Güneyisi and Altay, 2008),
etc. Several novel methodological contributions to fragility analysis have been made in
recent years, including the development of multi-variate fragility functions (Seyedi et al.,
2010), the incorporation of Bayesian updating (Gardoni et al., 2002) and the considera-
tion of time-dependent fragility (Ghosh and Padgett, 2010). In particular, in the context
of seismic risk assessment, fragility curves are a popular tool with relevant applications
on various type of structures, such as irregular buildings (Seo et al., 2012), underground
tunnels (Argyroudis and Pitilakis, 2012), pile-supported wharfs (Chiou et al., 2011), wind
turbines (Quilligan et al., 2012), nuclear power plant equipments (Borgonovo et al., 2013).
Estimating fragility curves constitutes a major cornerstone in the PBEE framework.

Fragility curves are typically classified into four categories according to the data
sources, namely judgment-based, empirical, analytical and hybrid fragility curves (Ros-
setto and Elnashai, 2003). Judgment-based curves are estimated by expert panels spe-
cialized in the field of earthquake engineering, thus they are strongly dependent on the
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personal opinions of the expert consulted. Empirical fragility curves are based on the
observation of earthquake-induced damage reported in post-earthquake surveys. Due to
the rarity of strong ground motions, the damage data tends to be scarce in the range
of large IM and clustered in the range of low-damage low-ground motion severity. To
circumvent the problem related to limited data set, one can use analytical fragility curves
which are derived from data obtained by numerical analyses of structural models. The
structure is subject to a series of ground motions, which is chosen in accordance with
the seismic hazard of the construction site, then the damages are estimated based on
the recorded structural responses. Finally, by combining data from different sources, one
obtains hybrid curves. For instance analytical curves can be adjusted using damage data
from real events. In this chapter, analytical fragility curves based on data collected from
numerical structural analyses are of interest.

The typical approach to compute analytical fragility curves assumes that the curves
have the shape of a lognormal cumulative distribution function (Shinozuka et al., 2000;
Ellingwood, 2001; Mackie and Stojadinovic, 2003). This approach is therefore considered
parametric. The parameters of the lognormal distribution are determined either by max-
imum likelihood estimation (Shinozuka et al., 2000; Zentner, 2010; Seyedi et al., 2010) or
by fitting a linear probabilistic seismic demand model in the log-scale (Ellingwood and
Kinali, 2009; Gencturk et al., 2008; Jeong et al., 2012; Banerjee and Shinozuka, 2008).
The assumption of lognormal fragility curves is almost unanimous in the literature due to
the computational convenience as well as due to the ease of combining such curves with
other elements of the PBEE framework. The computation of parametric curves will be
described in details in the next section.

6.2 Parametric fragility curves

Fragility curves represent the probability of failure of a system, which is associated with
a specified criterion, for a given intensity measure (IM) of the earthquake motion. The
term “failure” herein indicates that the engineering demand parameter, denoted by ∆,
attains or exceeds a prescribed demand limit δ0. Thus, the fragility function is cast as
follows:

Frag(IM ; δo) = P[∆ ≥ δo|IM ], (6.2)
in which Frag(IM ; δo) denotes the fragility at the given IM for a threshold δo of ∆. In or-
der to establish the fragility curves, a number N of transient finite element analyses of the
structure under consideration are used to provide paired values {(IMi,∆i) , i = 1, . . . , N}.
The classical approach for establishing fragility curves consists in assuming a lognormal
shape for the curves described in Eq. (6.2). Two techniques are typically used to estimate
the parameters of the lognormal fragility curves, namely maximum likelihood estimation
and linear regression. These techniques are presented in the following.
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6.2.1 Maximum likelihood estimation-based approach

One assumes that the fragility curves can be written in the following general form:

F̂rag(IM ; δo) = Φ
(

ln IM − lnα
β

)
, (6.3)

where Φ(·) denotes the standard Gaussian cumulative distribution function (CDF), α is
the “median” and β is the “log-standard deviation” of the lognormal curve. Shinozuka
et al. (2000) proposed the use of maximum likelihood estimation to determine these
parameters as follows. Given a threshold δ0, for each simulation corresponding to IMi,
the event {∆ ≥ δ0} is modelled by a Bernoulli variable Yi with P (Yi = 1) = P (∆ ≥ δ0) =
F̂rag(IMi; δo) and P (Yi = 0) = P (∆ < δ0) = 1 − F̂rag(IMi; δo). Considering a set of
i = 1, . . . , N analyses, the likelihood function reads:

L (α, β, {IMi, i = 1, . . . , N}) =
N∏

i=1

[
F̂rag(IMi; δo)

]yi [1− F̂rag(IMi; δo)
]1−yi

, (6.4)

where IMi is the intensity measure of the ith seismic motion and yi represents a realization
of the Bernoulli random variable Y . The latter takes the value 1 or 0 depending on whether
the structure under the ith ground motion exceeds the demand threshold δo or not. The
parameters (α, β) are obtained by maximizing the likelihood function. In practice, a
straightforward optimization algorithm is applied on the log-likelihood function:

{α∗; β∗}T = arg min
(α, β)

(− lnL (α, β, {IMi, i = 1, . . . , N}))

= arg min
(α, β)

−

 ∑

i:∆i≥δ0

ln Φ
(

ln IMi − lnα
β

)
+

∑

i:∆i<δ0

ln
(

1− Φ
(

ln IMi − lnα
β

))
 .

(6.5)

6.2.2 Linear regression-based approach

One first assumes a probabilistic seismic demand model, which relates a structural response
quantity of interest to an intensity measure of the ground motion. Specifically, the demand
∆ is assumed to follow a lognormal distribution of which the log-mean value is a linear
function of ln IM , leading to:

ln ∆ = A ln IM +B + ζ Z, (6.6)

where Z ∼ N (0, 1) is a standard normal variable. Parameters A and B are determined
by means of ordinary least squares estimation in a log-log scale. Parameter ζ is obtained
by:

ζ2 =
N∑

i=1
e2
i / (N − 2) , (6.7)
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where ei the residual between the actual value ln ∆ and the value predicted by the linear
model: ei = ln ∆i − A ln (IMi)−B. Then, Eq. (6.2) rewrites:

F̂rag(IM ; δo) = P [ln ∆ ≥ ln δo] = 1− P [ln ∆ ≤ ln δo]

= Φ
(

ln IM − (ln δo −B) /A
ζ/A

)
.

(6.8)

The median and log-standard deviation of the lognormal fragility curve in Eq. (6.8) are
α = exp ((ln δo −B) /A) and β = ζ/A respectively. This approach to fragility estimation
is widely employed in the literature, see e.g. Ellingwood (2001); Mackie and Stojadinovic
(2001); Choi et al. (2004); Padgett et al. (2008); Zareian and Krawinkler (2007) among
others.

The two methods described in this section are parametric because they impose the
shape of the fragility curves (Eq. (6.3) and Eq. (6.8)), which is that of a lognormal
CDF when considered as a function of IM . We note that by using the linear-regression
approach, one accepts two additional assumptions, namely the linear function for the
log-mean value of ∆ and the constant dispersion (or homoscedasticity) of the residuals
independently of the IM level. Effects of these assumptions have been investigated by
Karamlou and Bocchini (2015). In the sequel, we propose two non-parametric approaches
to compute fragility curves without relying on the lognormality assumption.

6.3 Non-parametric fragility curves

6.3.1 Binned Monte Carlo simulation-based approach

Having at hand a large sample set {(IMj,∆j) , j = 1, . . . , N}, it is possible to use
binned Monte Carlo simulation (bMCS) to compute the fragility curves, as described
next. Let us consider a given abscissa IMo. Within a small bin surrounding IMo, say
[IMo − h, IMo + h] one assumes that the structural response ∆ is linearly related to the
IM . This assumption is exact in the case of linear structures, but would only be an
approximation in the nonlinear case. Therefore, the maximal drift ∆j, which is related
to IMj ∈ [IMo − h, IMo + h], is converted into the response ∆̃j(IMo), which is related
to the jth input signal scaled to have an intensity measure equal to IMo:

∆̃j(IMo) = ∆j
IMo

IMj

. (6.9)

This procedure is illustrated in Figure 6.3. The fragility curve at IMo is then obtained
by a crude Monte Carlo estimator:

F̂rag(IMo) = Nf (IMo)
Ns (IMo)

, (6.10)
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Figure 6.3 – Scaling of ground motions and corresponding responses in binned Monte Carlo
simulation (the bin is enlarged to facilitate visualization).

where Nf (IMo) is the number of points in the bin such that ∆̃j(IMo) > δo and Ns(IMo)
is the total number of points that fall into the bin [IMo − h, IMo + h].

We note that the bMCS approach bears similarities to the stripe analysis introduced by
Shome et al. (1998). However, when using stripe analysis, one scales all ground motions
to the intensity level of interest. As a result, certain signals are scaled with factors that are
considerably larger or smaller than unity, which may lead to gross approximations of the
corresponding responses (Luco and Bazzurro, 2007; Cimellaro et al., 2009; Mehdizadeh
et al., 2012). The reader is referred to Mehdizadeh et al. (2012) for some illustrations
of the effects of the scale factor on the introduced bias, with the latter represented by
the ratio of the median nonlinear response of the considered system subject to the scaled
motions to the respective median response of the system subject to natural motions with
all motions characterized by the same IM level. In general, the bias ratio tends to become
larger with the scale factor significantly differs from unity. On the other hand, the scaling
in binned MCS is confined in the vicinity of the intensity level IMo, where the vicinity is
defined by the bin width 2h chosen so that the scale factors are close to unity. Accordingly,
the bias due to ground motion scaling is negligible in bMCS.

Following the above discussion, it should be noted that bias from scaling can be avoided
by a proper selection of ground motions. For instance, Shome et al. (1998) showed that
the scaling of motions that correspond to a narrow interval of earthquake magnitudes and
source-to-site distances does not introduce bias into the nonlinear response estimates.
Furthermore, Luco and Bazzurro (2007) concluded that the bias can be reduced by se-
lecting records that have appropriate response spectrum shapes. According to Bazzurro
et al. (1998) and Vamvatsikos and Cornell (2002), the existence of scale-induced bias also
depends on several other factors, such as the structural characteristics and the consid-
ered intensity and damage measures. The topic of ground motion scaling is complex and
falls outside the scope of this chapter. It should be underlined that by using the bMCS
approach, one avoids introducing bias in the results independently of the ground mo-
tion characteristics or other factors. In the following case studies, the resulting fragility
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curves serve as reference for assessing the accuracy of the various considered techniques
for fragility estimation.

6.3.2 Kernel density estimation-based approach

The fragility function defined in Eq. (6.2) may be reformulated using the conditional
probability density function (PDF) f∆|IM as follows:

Frag(a; δo) = P (∆ ≥ δo|IM = a) =
+∞∫

δo

f∆(δ|IM = a) dδ. (6.11)

By definition, this conditional PDF is given as:

f∆(δ|IM = a) = f∆,IM(δ, a)
fIM(a) , (6.12)

where f∆,IM(·) is the joint distribution of the vector (∆, IM) and fIM(·) is the marginal
distribution of the IM . If these quantities were known, the fragility function in Eq. (6.11)
would be obtained by a mere integration. In this section, we propose to determine the
joint and marginal PDFs from a sample set {(IMi,∆i) , i = 1, . . . , N} by means of kernel
density estimation (KDE).

For a single random variable X for which a sample set {x1, . . . , xN} is available, the
kernel density estimate of the PDF reads (Wand and Jones, 1995):

f̂X (x) = 1
Nh

N∑

i=1
K
(
x− xi
h

)
, (6.13)

where h is the bandwidth parameter and K(·) is the kernel function which integrates to
one. Classical kernel functions are the Epanechnikov, uniform, normal and triangular
functions. Wand and Jones (1995) suggested that the choice of the kernel does not affect
strongly the quality of the estimate provided the sample set is large enough. In case a
standard normal PDF is adopted for the kernel, the kernel density estimate becomes:

f̂X (x) = 1
Nh

N∑

i=1

1
(2π)1/2 exp

(
−1

2

(
x− xi
h

)2)
. (6.14)

On the other hand, the choice of the bandwidth h is crucial since an inappropriate value
of h can lead to an oversmoothed or undersmoothed PDF estimate (Duong, 2004).

Kernel density estimation may be extended to a random vector X ∈ Rd given an i.i.d
sample {x1, . . . ,xN} (Wand and Jones, 1995):

f̂X (x) = 1
N |H|1/2

N∑

i=1
K
(
H−1/2(x− xi)

)
, (6.15)
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where H is a symmetric positive definite bandwidth matrix with determinant denoted
by |H|. When a multivariate standard normal kernel is adopted, the joint distribution
estimate becomes:

f̂X (x) = 1
N |H|1/2

N∑

i=1

1
(2π)d/2

exp
(
−1

2(x− xi)TH−1(x− xi)
)
, (6.16)

where (·)T denotes the transposition. For multivariate problems (i.e. X ∈ Rd), the
bandwidth matrix typically belongs to one of the following classes: spherical, ellipsoidal
and full matrix, which respectively contain 1, d and d(d + 1)/2 independent unknown
parameters. The matrix H can be computed by means of plug-in or cross-validation
estimators. Both estimators aim at minimizing the asymptotic mean integrated squared
error (MISE):

MISE = E



∫

Rd

[
f̂X(x; H)− fX(x)

]2
dx


 . (6.17)

However, the two approaches differ in the formulation of the numerical approximation of
MISE. For further details, the reader is referred to Duong (2004). In the most general
case, when the correlations between the random variables are not known, the full matrix
should be used.

Eq. (6.14) is used to estimate the marginal PDF of the IM , namely f̂IM(a), from a
sample {IMi, i = 1, . . . , N}:

f̂IM(a) = 1
(2π)1/2NhIM

N∑

i=1
exp

(
−1

2

(
a− IM i

hIM

)2)
. (6.18)

Eq. (6.16) is used to estimate the joint PDF f̂∆,IM(δ, a) from the data pairs
{(IMi, ∆i), i = 1, . . . , N}:

f̂∆,IM(δ, a) = 1
2πN |H|1/2

N∑

i=1
exp


−1

2

(
δ −∆i

a− IMi

)T

H−1
(
δ −∆i

a− IMi

)
 . (6.19)

The conditional PDF f∆(δ|IM = a) is eventually estimated by plugging the estimations
of the numerator and denominator in Eq. (6.12). The proposed estimator of the fragility
function eventually reads:

F̂rag(a; δo) = hIM

(2π |H|)1/2

+∞∫
δo

N∑
i=1

exp

−1

2

(
δ −∆i

a− IMi

)T

H−1
(
δ −∆i

a− IMi

)
 dδ

N∑
i=1

exp
(
−1

2

(
a− IM i

hIM

)2) . (6.20)

The choice of the bandwidth parameter hIM and the bandwidth matrix H plays a
crucial role in the estimation of fragility curves, as seen in Eq. (6.20). In the above
formulation, the same bandwidth is considered for the whole range of the IM values.
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However, there are typically few observations available corresponding to the upper tail of
the distribution of the IM . This is due to the fact that the annual frequency of seismic
motions with IM values in the respective range (e.g. PGA exceeding 1g) is low (see e.g.
Frankel et al. (2000)). This is also the case when synthetic ground motions are used, since
these are generated consistently with statistical features of recorded motions. Preliminary
investigations have shown that by applying the KDE method on the data in the original
scale, the fragility curves for the higher demand thresholds tend to be unstable in their
upper tails (Sudret and Mai, 2013b). To reduce effects from the scarcity of observations
at large IM values, we propose the use of KDE in the logarithmic scale, as described
next.

Let us consider two random variables X, Y with positive supports, and their logarith-
mic transformations U = lnX and V = ln Y . One has:

+∞∫

y0

fY (y|X = x) dy =
+∞∫

y0

fX,Y (x, y)
fX(x) dy =

+∞∫

ln y0

fU,V (u, v)
x y
fU(u)
x

y dv =
+∞∫

ln y0

fV (v|U = u) dv.

(6.21)
Accordingly, by substituting X = IM and Y = ∆, the fragility function in Eq. (6.11) can
be obtained in terms of U = ln IM and V = ln ∆ as:

F̂rag(a; δo) =
+∞∫

δo

f̂∆(δ|IM = a) dδ =
+∞∫

ln δo

f̂V (v|U = ln a) dv. (6.22)

The use of a constant bandwidth in the logarithmic scale is equivalent to the use of a
varying bandwidth in the original scale, with larger bandwidths corresponding to larger
values of IM . The resulting fragility curves are smoother than those obtained by applying
KDE with the data in the original scale.

6.4 Epistemic uncertainty of fragility curves

In the context of reliability and risk analysis, uncertainties from multiple sources can be
categorized into two classes, namely aleatory and epistemic uncertainties (Der Kiureghian
and Ditlevsen, 2009). The first category corresponds to the uncertainties that can not be
reduced. In contrast, by gathering more data, one can reduce the epistemic uncertainties.
Der Kiureghian and Ditlevsen (2009) showed that neglect or improper characterization
of uncertainties could lead to inaccurate reliability assessment, for instance the failure
probability of the system might be underestimated by orders of magnitude.

Therefore, it is of major importance in fragility analysis to investigate the effects of
both aleatory and epistemic uncertainties. In terms of aleatory randomness, the inherent
variabilities of material properties and earthquake excitations must be properly accounted
for and propagated to structural responses. This has been intensively investigated in
the previous chapters. Hereafter, we are interested in quantifying the variability in the
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estimated fragility curves which is due to epistemic uncertainty associated with a limited
number of finite element runs. A fragility curve is commonly computed based on a limited
amount of data, i.e. few structural analyses. Large epistemic uncertainties in fragility
curves may affect significantly the total variability of the seismic risk assessment outcomes.
Characterizing and propagating epistemic uncertainties in seismic loss estimation has also
attracted attention from several researchers, see e.g. Baker and Cornell (2008); Bradley
and Lee (2010); Liel et al. (2009).

The theoretical approach to determine the variability of an estimator relies on re-
peating the estimation with an ensemble of different random samples. However, this
approach is not feasible in earthquake engineering because of the high computational
cost which is required. In this context, the bootstrap resampling technique originally in-
troduced in statistics by Efron (1979) is deemed an appropriate tool for estimating the
effects of epistemic uncertainties (Baker and Cornell, 2008). Given a set of observations
X = (X1, . . . ,Xn) of X following an unknown probability distribution, the bootstrap
method allows estimation of the statistics of a random variable that depends on X in
terms of the observed data X and their empirical distribution.

To estimate statistics of the fragility curves with the bootstrap method, we first
draw M independent random samples with replacement from the original data set{(
IM

(b)
i ,∆(b)

i

)
, i = 1, . . . , N, b = 1, . . . ,M

}
. These represent the so-called bootstrap

samples. Each bootstrap sample has the same size N as the original sample, but the
observations are different: in a particular sample, some of the original observations may
appear multiple times while others may be missing. Next, we compute the fragility curves
for each bootstrap sample using the approaches previously presented. Finally, we perform
statistical analysis of the so-obtainedM bootstrap curves. In the subsequent case studies,
the above procedure is employed to evaluate the median and 95% confidence intervals of
the estimated fragility curves and also, to assess the variability of the IM value corre-
sponding to a 50% probability of failure. To clarify the effects of gathering more data
on reducing epistemic uncertainties, two data sets comprising respectively a small and a
large number of simulations (respectively 200 and 10, 000) will be used. Note that the
final fragility curves will exhibit aleatory uncertainties from the structure and earthquake
ground motions as well as epistemic uncertainties due to the limited information. It is
also worth emphasizing that epistemic uncertainties can be of different nature. Herein we
investigate only the statistical uncertainty of the estimated fragility curves due to the fact
that one uses 100 or 200 simulations instead of 10, 000. The epistemic uncertainties from
other sources, e.g. the computational model and the selection of the form of probabilistic
models describing the distribution of input parameters, are not taken into account.
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6.5 Applications of surrogate modelling to computa-
tion of fragility curves

In this section, three numerical case studies, namely a Duffing, a Bouc-Wen oscillator
and a steel frame, are investigated. It is worth noting that use of single-degree-of-freedom
(SDOF) system is common in earthquake engineering. For instance, the roof displacement
of a multistory building is determined from the earthquake-induced deformation of an
inelastic SDOF system derived from the push-over curve (Building Seismic Safety Council,
1997; Applied Technology Council, 1996), which has been further investigated by Gupta
and Krawinkler (2000); Chopra et al. (2003). In the context of PBEE, Christopoulos
et al. (2003) considered a nonlinear SDOF to clarify the factors with largest influences on
the residual deformations of structures. Recently, Kafali and Grigoriu (2007) computed
seismic fragility curves of Duffing and Bouc-Wen oscillators, which are investigated in the
current work.

For each case study, the following process is applied. First, one computes the fragility
curves by means of the parametric lognormal approaches using data from a few simula-
tions, typically 200 or 300 dynamic analyses of the system subject to synthetic ground
motions which were used as an experimental design in the previous chapter. Such com-
putation of fragility curves is commonly done in practice when only a few numerical
analyses are conducted. Second, one computes the curves by means of parametric and
non-parametric approaches using data from a large number of simulations (10, 000), which
constitute the validation set used in the previous chapter. Third, one computes the curves
using KDE with data being predictions of the PC-NARX metamodel that was built us-
ing an experimental design of size 200 or 300. Fourth, one estimates the uncertainties
of the curves when using small and large numbers of simulations together with different
approaches.

The obtained results allow one to validate the accuracy of the commonly used paramet-
ric approaches and to clarify the effect of epistemic uncertainties on the resulting curves.
Furthermore, one can examine the validity of the proposed non-parametric methods and
the applicability of surrogate modelling in this context.

6.5.1 Duffing oscillator

6.5.1.1 Computation of fragility curves

Let us consider the Duffing oscillator which was investigated in the previous chapter. Two
limit states for the maximal oscillator’s displacement are considered, namely δ0 = 0.03 m
and δ0 = 0.08 m (Kafali and Grigoriu, 2007). First, one computes the fragility curves
by means of the parametric approaches. As described in Section 6.2, the parametric
approaches rely on assuming that the fragility curves have the shape of a lognormal CDF.
Using the maximum likelihood estimation (MLE) method, the observed failures for each
limit state are modeled as outcomes of a Bernoulli experiment and the parameters (α, β)
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of the fragility curves are determined by maximizing the respective likelihood function.
Using the linear regression (LR) technique, the parameters of the lognormal curves are
derived by fitting a linear model to the paired data (ln IM, ln ∆). Figure 6.4(a) and
Figure 6.4(b) depicts the paired data together with the fitted linear regression models
when using respectively 200 and 10, 000 simulations. The coefficient of determination of
the fitted linear model is R2 = 0.611 and R2 = 0.665, respectively. Next, one computes the
reference curves by means of bMCS and KDE method using data from 10, 000 simulations.
For bMCS method, the bandwidth hbMCS is set equal to 0.25 IMo. The resulting scale
factors vary in the range [0.75, 1.25] corresponding to a bias ratio approximately equal to
1. The KDE approach requires estimation of the bandwidth parameter and the bandwidth
matrix. Using the cross-validation estimation implemented in R (Duong, 2007), these are
determined as h = 0.175 g, H =

[
0.0495 g 0.0387 g; 0.0387 g 0.0436 g

]
. Finally, the

curves are computed with 10, 000 responses ∆ predicted by the PC-NARX model which
was built with an experimental design of 200 simulations. The bandwidth parameter and
matrix are h = 0.175 g, H =

[
0.045 g 0.0343 g; 0.0343 g 0.0387 g

]
respectively.

Figure 6.5 shows the lognormal curves obtained with the LR and MLE methods using
200 simulations. They are plotted against the bMCS- and KDE-based non-parametric
curves using 10, 000 simulations. One first observes a remarkable consistency between the
curves obtained with the two non-parametric approaches despite the distinct differences
in the underlying algorithms. This validates the accuracy of the proposed non-parametric
methods. In order to investigate the efficiency of the metamodel, the KDE-based curves
obtained with 10, 000 predictions of the PC-NARX model are depicted on the same fig-
ure. The plot suggests that the PCE-based curves are in great agreement with the curves
obtained with 10, 000 analyses of the original model. This is explained by the high accu-
racy of the metamodel’s predictions. On the contrary, when using only 200 simulations
without surrogate modelling, the parametric curves are in good agreement with each
other but exhibit strong discrepancies in comparison to the non-parametric ones. The
dissimilarities are particularly pronounced in the range of large IM (PGA > 0.8 g) and
higher failure threshold (δ0 = 0.08 m). Figure 6.6 indicates that when using the full set of
10, 000 simulations, the lognormal curves tend toward non-parametric ones. Use of large
number of simulations helps to reduce drastically the discrepancies between parametric
and non-parametric curves.

6.5.1.2 Estimation of epistemic uncertainty by bootstrap resampling

In the following, the bootstrap resampling technique (see Section 6.4) is used to investigate
the epistemic uncertainty in the fragility curves estimated with the different approaches.
We examine the variability in the estimation by computing bootstrap confidence intervals.
Figure 6.7 depicts the median lognormal fragility curves and the 95% confidence intervals
obtained by bootstrap resampling with 100 replications together with the respective esti-
mated curves when 200 simulations are used. Large confidence intervals are observed in
MLE-based curves, which indicates a high level of epistemic uncertainties. This also sug-
gests that MLE-based curves are considerably sensitive with respect to the change of the
small data set used for their computation. In other words, when a different small data set
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Figure 6.4 – Duffing oscillator – Paired data and fitted linear regression model in the logarith-
mic scale (R2 = 0.611 (a) and R2 = 0.665 (b)).

is used, the resulting MLE-based curves might change largely and might eventually differ
from the LR-based ones. The LR-based curves exhibits epistemic uncertainties which
are less severe. It is worth noting that significant epistemic uncertainties in estimated
fragility curves were also reported by Liel et al. (2009); Zentner et al. (2011); Rajeev and
Tesfamariam (2012). In both MLE and LR curves, the confidence interval increases with
the demand limit δ0 and the IM value.

The epistemic uncertainties of the curves can be reduced by using a sufficiently large
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Figure 6.5 – Duffing oscillator – Fragility curves. Lognormal curves (LR, MLE) are computed
with 200 simulations. bMCS and MCS-based KDE curves are obtained with
10, 000 simulations. PC-NARX-based KDE curves are calculated with 10, 000
predictions of the surrogate model fitted with 200 simulations.
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Figure 6.6 – Duffing oscillator – Fragility curves. Lognormal curves (LR, MLE), bMCS and
MCS-based KDE curves are obtained with 10, 000 simulations. PC-NARX-based
KDE curves are computed with 10, 000 predictions of the surrogate model fitted
with an ED of size 200.

data set. Figure 6.8 depicts the median curves and the confidence intervals of LR, MLE,
bMCS-based curves when 10, 000 simulations are used. This figure also presents the
confidence intervals of the KDE curves when 10, 000 PCE-based predictions are utilized.
The graph indicates that with a large data set, the variability of the parametric and non-
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Figure 6.7 – Duffing oscillator – Median bootstrap fragility curves and 95% confidence inter-
vals for the lognormal approaches using 200 simulations.

parametric curves are negligible as expected. For a specified IM and demand limit, the
confidence intervals in non-parametric curves have similar width and are slightly larger
than in lognormal curves. This is due to the fact that non-parametric approaches do not
impose a strict condition on the form of the curves as parametric approaches do. It is
also observed that the variability tends to increase with increasing demand limit and IM
value.
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(c) Binned Monte Carlo simulation
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Figure 6.8 – Duffing oscillator – Median bootstrap fragility curves and 95% confidence inter-
vals for the lognormal approaches, binned Monte Carlo simulation using 10, 000
runs and for the kernel density estimation approach using 10, 000 predictions by
the surrogate model.

In order to quantify the effects of epistemic uncertainty, one can estimate the variabil-
ity of the median IM50% defined as the IM value corresponding to 50% probability of
exceedance. Assuming that the median IM50% follows a lognormal distribution (Choun
and Elnashai, 2010), the median IM50% is determined for each bootstrap curve and the
statistics of the median is computed. Table 6.1 lists the mean, standard deviation and
coefficient of variation of IM50% when using LR, MLE, bMCS and KDE methods. Note
that the bootstrap resampling is applied with the parametric methods using the original
experimental design of size 200. For all the methods, the epistemic uncertainty of the
estimated medians IM50% is increasing with the threshold δo. The variability of IM50%
resulting from the MLE method is systematically larger for the LR method. The coeffi-
cients of variation obtained with the parametric methods are several times higher than
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those obtained with non-parametric approaches. Using bMCS and KDE approaches, the
coefficients of variation for the two levels of δo are similar and relatively small (< 0.04.) It
is worth noting the KDE curves were obtained at the cost of only 200 simulations which
were used as an experimental design for training the PC-NARX metamodel.

Table 6.1 – Duffing oscillator – Statistics of the IM50% (IM such that the probability of failure
is 50%).

δo Approach Mean Standard deviation COV

0.03 m

LR 0.1763 g 0.0111 g 0.0630
MLE 0.1761 g 0.0153 g 0.0868
bMCS 0.1646 g 0.0021 g 0.0130
KDE 0.1651 g 0.0016 g 0.0097

0.08 m

LR 0.5708 g 0.0576 g 0.1008
MLE 0.6082 g 0.1832 g 0.3012
bMCS 0.5216 g 0.0194 g 0.0372
KDE 0.5290 g 0.0162 g 0.0305

6.5.1.3 Summary

The findings in this numerical application can be summarized as follows. First, the usual
practice in which only a small number of simulations is used results in fragility curves
that are inaccurate, in particular for the high level of the safety threshold. In addition,
the epistemic uncertainties in the estimated curves are considerable. In order to obtain
more reliable curves with the parametric methods, it is important to have a sufficiently
large data set, which is commonly infeasible with the computationally expensive numer-
ical model, however can be achieved with surrogate models. Second, the non-parametric
methods provide the same curves with negligible epistemic uncertainty. It is worth not-
ing that the PC-NARX method requires only 200 simulations to attain the same level
of accuracy and epistemic uncertainties as the MCS-based method which makes use of
10, 000 simulations. This numerical application showcases the effective use of PCE-based
surrogate models to reduce the epistemic uncertainties in the estimation of the quantity
under investigation with a significant computational efficiency in a measurable way.
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6.5.2 Bouc-Wen oscillator

6.5.2.1 Computation of fragility curves

In the second case study, let us consider the Bouc-Wen oscillator which was also inves-
tigated in the previous chapter. Two demand limits are considered, namely δ0 = 0.03 m
and δ0 = 0.08 m (Kafali and Grigoriu, 2007). Two data sets (PGA, ∆) are obtained
from the respective 200 and 10, 000 dynamical analyses of the oscillator subject to syn-
thetic ground motions. The paired data are depicted in Figure 6.9 together with the
fitted linear regression models which have the coefficient of determination R2 = 0.659
and R2 = 0.671, respectively. The small data set of size N = 200 is used to com-
pute the PC-NARX model, which then allows one to predict the 10, 000 responses of
the oscillator without running the original numerical model. The fragility curves are
computed in the following cases: (i) using parametric approaches with data from 200
simulations, (ii) using parametric and non-parametric approaches with 10, 000 simula-
tions and finally (iii) using KDE method with 10, 000 responses predicted by the PC-
NARX model fitted from the ED of size 200. Note that the bandwidth parameter h
and matrix H of the KDE method when using 10, 000 simulations (resp. predictions)
are h = 0.175 g and H =

[
0.0399 g 0.0309 g; 0.0309 g 0.0362 g

]
(resp. h = 0.175 g and

H =
[
0.0423 g 0.0355 g; 0.0355 g 0.0431 g

]
).

Figure 6.10 plots the parametric curves obtained from 200 simulations together with
non-parametric curves using 10, 000 simulations. It is noticeable that the non-parametric
curves computed with bMCS and KDE methods are in great agreement with each other.
In contrast, the parametric curves differ significantly from the reference non-parametric
counterparts, in particular for the limit state δ0 = 0.08 m.

The discrepancies between parametric and non-parametric curves might be associated
with the small number (200) of simulations used to compute the parametric curves. By
using a large number of simulations, it is expected that the resulting parametric curves
will become consistent with the reference ones. Figure 6.11 depicts the parametric curves
obtained with 10, 000 simulations, which are compared with the non-parametric coun-
terparts. One observes that the MLE-based curves are now in good agreement with the
reference curves, whereas the LR-based curve for the limit state δ0 = 0.08 m still exhibits
slight discrepancies. It is also worth underlying the good accuracy of the KDE-based
curves obtained with 10, 000 predictions of the PC-NARX model. The latter was built
using only an ED of size 200.

6.5.2.2 Estimation of epistemic uncertainty by bootstrap resampling

The effects of epistemic uncertainties are investigated by means of the bootstrap resam-
pling technique. Figure 6.12 shows the median lognormal curves and the confidence
intervals for the parametric approaches using 200 simulations. From this figure it can
be seen that at one IM and one demand limit δ0, the confidence interval of MLE-based
curves is significantly larger than that of the LR-based curves. For both methods, the
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Figure 6.9 – Bouc-Wen oscillator – Paired data and fitted linear regression model in the log-
arithmic scale (R2 = 0.659 (a) and R2 = 0.671 (b)).

variability increases with the value of IM and δ0.
Figure 6.13 shows the small variabilities of lognormal curves and bMCS curves when

using 10, 000 simulations. Figure 6.13(d) depicts the confidence interval of KDE-based
curves which are computed with 10, 000 predictions of the PC-NARX model. The con-
fidence intervals are small, i.e. the estimated curves are more reliable and they are not
strongly dependent on a specific data set.

In Table 6.2, the statistics of the median IM50% obtained by bootstrap resampling are
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Figure 6.10 – Bouc-Wen oscillator – Fragility curves. Lognormal curves (LR, MLE) are com-
puted with 200 simulations. bMCS and MCS-based KDE curves are obtained
with 10, 000 simulations. PC-NARX-based KDE curves are calculated with
10, 000 predictions of the surrogate model built on the same ED of size 200
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Figure 6.11 – Bouc-Wen oscillator – Fragility curves. Lognormal curves (LR, MLE), bMCS
and MCS-based KDE curves are obtained with 10, 000 simulations. PC-NARX-
based KDE curves are computed with 10, 000 predictions of the surrogate model
built on an ED of size 200

presented. The remarks are similar to the Duffing oscillator case study. It is noticeable
that the parametric methods result in fragility curves corrupted with large uncertainties.
The coefficients of variation of the estimated IM50% reachs 32.51% with MLE for the high
level of δo. Using the parametric methods, the coefficients of variation for the two levels
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Figure 6.12 – Bouc-Wen oscillator – Median bootstrap fragility curves and 95% confidence
intervals for the lognormal approaches using 200 simulations.

of δo are relatively small (< 0.04.) It is worth noting that the PC-NARX metamodel
requires only 200 simulations of the original model.



196 Chapter 6. Surrogate modelling in earthquake engineering

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

PGA (g)

P
ro

b
a
b
ili

ty
 o

f 
fa

ilu
re

 

 

δo = 0.03 δo = 0.08

Estimated curve
Median curve
95% confidence interval

(a) Linear regression

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

PGA (g)

P
ro

b
a
b
ili

ty
 o

f 
fa

ilu
re

 

 

δo = 0.03 δo = 0.08

Estimated curve
Median curve
95% confidence interval

(b) MLE

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

PGA (g)

P
ro

b
a

b
ili

ty
 o

f 
fa

ilu
re

 

 

δo = 0.03 δo = 0.08

Estimated curve
Median curve
95% confidence interval

(c) Binned Monte Carlo simulation
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Figure 6.13 – Bouc-Wen oscillator – Median bootstrap fragility curves and 95% confidence
intervals for the lognormal approaches, binned Monte Carlo simulation using
10, 000 runs and the kernel density estimation approach using 10, 000 predictions
by the surrogate model.

6.5.2.3 Summary

The investigation above is concluded as follows. First, the fragility curves obtained by
parametric methods with 200 simulations differ significantly from the true curves. Fur-
thermore, they exhibit considerable epistemic uncertainties, in particular with MLE. The
inaccuracy of the parametric fragility curves and associated epistemic uncertainties can
be reduced at a large computational cost, when 10, 000 simulations are used. The non-
parametric methods provide similarly reliable curves. Most importantly, at the cost of
only 200 simulations the PC-NARX surrogate model allows us to obtain the estimations
comparable to MCS regarding the accuracy and the reduced epistemic uncertainties.
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Table 6.2 – Bouc-Wen oscillator – Statistics of the IM50% (IM such that the probability of
failure is 50%).

δo Approach Mean Standard deviation COV

0.03 m

LR 0.2845 g 0.0210 g 0.0737
MLE 0.2932 g 0.0344 g 0.1172
bMCS 0.2499 g 0.0033 g 0.0130
KDE 0.2507 g 0.0031 g 0.0125

0.08 m

LR 0.9201 g 0.1354 g 0.1471
MLE 0.8321 g 0.2705 g 0.3251
bMCS 0.5916 g 0.0203 g 0.0343
KDE 0.6092 g 0.0204 g 0.0335

6.5.3 Steel frame

Let us consider the steel frame which has already been investigated in the previous chapter.
Two demand limits of the inter-story displacement are of interest, namely δ0 = 0.021 m
and δ0 = 0.045 m. The two limit states correspond to the damage limitation recommended
by American Society of Civil Engineers (2000) and Eurocode 8 (2004). An experimental
design of size 300 is used on the one hand. 10, 000 simulations of the steel frame subject
to synthetic ground motions are conducted for reference solutions. Figure 6.14 depicts
the paired (lnPGA, ln ∆) and the resulting linear regressions in the probabilistic seismic
demand models, in which the coefficients of determination are respectively R2 = 0.695
and R2 = 0.687.

First, one computes the parametric fragility curves using 300 simulations. They are
compared with the reference non-parametric curves using 10, 000 simulations in Fig-
ure 6.15. It is shown that the lognormal curves are in good agreement with the reference
ones, except for δ0 = 0.045 m when LR method (resp. MLE) overestimates (resp. under-
estimates) the failure probability. Figure 6.16 shows that using 10, 000 simulations, the
lognormal curves approach the reference ones. In particular, the KDE-based curves using
predictions of the PC-NARX model built with 300 simulations are in good match with
the reference.

Figure 6.17 depicts the variability of the lognormal curves by bootstrap resampling of
the 300 simulations. It is clear that MLE-based curves exhibit excessively large uncer-
tainties for both levels of limit states. This indicates that the resulting lognormal curves
are indeed strongly sensitive to the specific data set used for their computation.

By using 10, 000 simulations, the variability of lognormal curves is reduced drastically,
as shown in Figure 6.18. At the same IM level and demand limit, the MLE curves exhibit
larger variability than the LR curves. Regarding non-parametric approaches, the KDE-
curves using predictions of the PC-NARX model exhibit similar confidence intervals as
the bMCS-based curves using 10, 000 simulations.
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Figure 6.14 – Steel frame – Paired data and fitted linear regression model in the logarithmic
scale (R2 = 0.695 (a) and R2 = 0.687 (b)).
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Figure 6.15 – Steel frame – Fragility curves. Lognormal curves (LR, MLE) are computed
with 300 simulations. bMCS and MCS-based KDE curves are obtained with
10, 000 simulations. PC-NARX-based KDE curves are calculated with 10, 000
predictions of the surrogate model fitted with the same ED of size 300.
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Figure 6.16 – Steel frame – Fragility curves. Lognormal curves (LR, MLE), bMCS and MCS-
based KDE curves are obtained with 10, 000 simulations. PC-NARX-based KDE
curves are computed with 10, 000 predictions of the surrogate model fitted with
the ED of size 300.
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Figure 6.17 – Steel frame – Median bootstrap fragility curves and 95% confidence intervals
for the lognormal approaches using 300 simulations.
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(c) Binned Monte Carlo simulation
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Figure 6.18 – Steel frame – Median bootstrap fragility curves and 95% confidence intervals for
the lognormal approaches, binned Monte Carlo simulation using 10, 000 runs and
the kernel density estimation approach using 10, 000 predictions by the surrogate
model.
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6.6 Discussion

Based on the obtained results, one can draw the following conclusions on the accuracy of
the parametric approaches and the applicability of non-parametric approaches for com-
puting seismic fragility curves.

The results suggest that the lognormal curves built with a few hundred simulations
(200 or 300) might differ significantly from reference non-parametric curves obtained with
a large number of simulations (10, 000). Most importantly, with a small data set, the
lognormal curves exhibit large epistemic uncertainties, which are more pronounced for
MLE than LR method. It indicates that the lognormal curves are strongly dependent on
a small data set. This conclusion on the effects of epistemic uncertainties is consistent
with findings reported by Liel et al. (2009); Zentner et al. (2011); Rajeev and Tesfamariam
(2012). This highlights the need to use a sufficiently large data set even when using
parametric approaches.

When using a larger data set, the lognormal curves tend to approach the non-
parametric curves. However, slight discrepancies can still be observed in some cases.
In general, given a sufficiently large data set, the MLE-based lognormal approach yields
fragility curves that are overall close to the non-parametric ones; however, it smooths out
some details of the curves that can be obtained with the non-parametric approaches. As
noted in Section 6.2.2, the LR approach assumes that the residuals of the fitted model in
the log-scale (Eq. (6.6)) follow a normal distribution with a constant standard deviation
independently of the IM level. Figure 6.19 shows histograms and KDE-based probability
density functions of ln ∆ at two example levels of PGA together with the fitted normal
distributions according to Eq. (6.6). The responses ∆ at each IM level are obtained con-
sistently with the bMCS approach. Obviously, the assumption of a normal distribution
is not exactly correct. However, in the numerical examples considered herein, the effects
of the assumptions on homoscedasticity and constant error are not pronounced.

As a summary, using the non-parametric fragility curves as reference, the accuracy of
the lognormal curves is found to depend on the method used to estimate the parameters of
the underlying CDF and the drift threshold of interest. In most cases, given sufficient data
the MLE-based curves are fairly close to the non-parametric ones, whereas the LR-based
curves might exhibit non-negligible deviations. The lognormal curves tend to deviate
more from the non-parametric ones for larger drift limits.

As noted in Section 6.3.1, the bMCS approach bears similarities with the so-called
stripe analysis (Shome et al., 1998; Bazzurro et al., 1998; Jalayer and Cornell, 2009). To
some extents, the KDE approach can be considered as a cloud analysis method. This is
due to the fact that KDE method also uses the entire data set to compute the required
probability density functions. The difference with the classical cloud approach is that
no assumption on the probability density functions is taken. A comparison between the
stripe and cloud analyses, where the latter corresponds to the LR-based lognormal ap-
proach (Cornell et al., 2002; Baker, 2007; Jalayer et al., 2014), was carried out by Celik
and Ellingwood (2010). In the mentioned study, concrete structures were subject to 40
synthetic ground motions. Differences in the response statistics obtained with the two
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Figure 6.19 – Bouc-Wen oscillator – Histograms, fitted normal distributions and kernel density
estimates for ln ∆ at two levels of PGA.

methods for three IM levels were found insignificant and hence, use of the cloud analysis
was justified. In contrast, Baker (2007) showed that cloud analysis can significantly under-
estimate the mean annual rate of exceeding a large maximum interstory drift. Karamlou
and Bocchini (2015) recently conducted large-scale simulations on bridge structures in
order to investigate the underlying assumptions of the cloud analysis. Their results indi-
cated that, in general, the conditional distribution of a demand parameter for a given IM
level is not lognormal. In addition, it was found that the assumptions of a linear function
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for the probabilistic seismic demand model in the log-scale (power function in the normal
scale) and of constant dispersion of the respective errors can lead to significant errors in
fragility analysis. The limitations of the LR-based approach have also been mentioned by
Jalayer et al. (2014). All those findings corroborate our current results.

Based on the results of our case studies and the above discussion, we recommend the
use of the MLE approach if fragility curves are developed in a parametric manner and
most importantly, a sufficiently large data set is available. In any case, it is recommended
that the epistemic uncertainties of fragility curves are quantified and used as an indicator
of the reliability of the curves. However, when a detailed description of the fragility func-
tion is important, a non-parametric approach should be used. The non-parametric bMCS
and KDE methods require a large number of simulations, which can be typically obtained
by conducting structural analyses with synthetic ground motions. Note that thanks to the
PC-NARX metamodelling techniques, this can be obtained at a reduced computational
cost of 200-300 simulations. The metamodels naturally take into account the aleatory un-
certainties induced by the structures properties and earthquake excitations. In addition,
the use of metamodels offers the possibility to reduce significantly the epistemic uncer-
tainties in the resulting fragility curves with a considerable measurable computational
efficiency. We again emphasize that the two proposed non-parametric approaches lead to
almost identical curves in the case when they could be applied independently with the
same large dataset.

6.7 Summary

The current chapter provided a brief review on the use of seismic fragility curves in the
context of performance-based earthquake engineering. Different methods for computing
these curves were presented. First, two commonly used parametric approaches were re-
viewed. To provide an alternative and a reference to validate the parametric curves, two
non-parametric approaches were introduced. The analysis on three numerical case studies
indicated that parametric curves might exhibit significant inaccuracies when only a small
number of dynamical analyses of the system is performed. The applications of surrogate
modelling in this context was investigated. It was shown that use of surrogate models
allows one to overcome the problem related to a limited number of dynamical analyses,
thus accurate non-parametric curves can be obtained.



7
Conclusions and outlook

7.1 Summary and scientific achievements

The present manuscript aims at developing polynomial chaos expansions-based methods
to solve selected problems of stochastic dynamics. The targeted applications include
systems with uncertain governing parameters subject to stochastic excitations, namely
chemical systems and structures under seismic motions. This is by nature a challenging
task because one has to deal at once with two tough topics, namely the dynamics (in
most cases, nonlinear dynamics) and uncertainty quantification.

To this end, it is important to conduct in the first place a thorough literature review
of the methods proposed to handle the uncertain dynamics. Chapter 3 has focussed on
presenting these methods in an unprecedented way. Instead of putting emphasis on the
detailed formulations and equations, the review shed light on the ideas behind the utilized
techniques. Surprising methodological similarities between methods that look apparently
different at first glance were revealed. For the sake of comprehensiveness and clarity, these
methods were classified into two groups according to their closeness.

The first group is characterized purely by the direct consideration of the visible ef-
fects of the dynamics. More precisely, the increasingly strong nonlinearity in the random
space, which is the consequence of the dynamics, is handled directly by different tech-
niques, namely using high-degree polynomial chaos expansions (PCEs) or local functions.
Therefore, the stochastic dynamics is handled uniquely by the uncertainty propagation
tool. The second group gathers the methods which clearly distinguish the two aspects
of the problems. The dynamics is taken into account by specific representations. These
techniques usually rely on representing future responses as functions of its past values, e.g.
adding random variables on-the-fly and using autoregressive models. In special cases in-
volving oscillatory behaviours, the dynamics is captured by a time transformation scheme
or a nonlinear pre-processing of the responses. With the approach of the second group,
the consideration of uncertainties tends to be less complex than with methods in the first
group where effects of dynamics and uncertainties are mixed up. After a careful consider-
ation of the existing methods, the conclusion was that it is more promising to follow the
approach advocated by the latter group. Inspired by two original ideas, two non-intrusive
PC-based methods were investigated.

Chapter 4 considers the use of a PC-based stochastic time-warping method which
aims at solving problems of random responses of oscillatory systems that are common in
mechanical and chemical engineering. The time-warping approach exploits the oscillatory
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feature of the response. In this approach, first a similarity measure, which indicates the
closeness between different time-histories in frequency and phase contents, is introduced.
The random response time-histories are then projected on an auxiliary time scale by a
stochastic time-warping process, which is determined by maximizing the similarities be-
tween the responses and a predefined reference trajectory. In the auxiliary time scale,
the responses exhibit the dynamics which is close to a referent mechanism. The uncer-
tain magnitudes of the responses are finally represented by PCEs. The approach was
applied successfully to various chemical and mechanical systems with uncertain governing
parameters, initial conditions and stochastic periodic excitations. Some of the applica-
tions exhibit complex physical phenomena like hysteretic behaviour, chaotic behaviour
and bifurcation.

Chapter 5 aims at solving the stochastic responses of mechanical systems with uncer-
tain properties subject to non-stationary excitations with varying temporal and spectral
contents. To this end, an original approach is investigated which tackles step-by-step the
two aspects of dynamics and uncertainties. First, the dynamical behaviour of the system
is captured by a stochastic nonlinear autoregressive with exogenous input (NARX) model
which consists in representing the future responses as functional forms of past values of
excitations and responses. Second, the stochastic NARX parameters are represented with
PCEs. The originality is that a regression-based technique is used to select both NARX
terms and polynomial functions. The approach was used to solve various structural dy-
namic problems in earthquake engineering where uncertainties from the structures and
the excitations are accounted for. In particular, in the considered applications the excita-
tions are synthetic stochastic non-stationary ground motions generated by a probabilistic
model. The obtained PC-NARX surrogate models were used to predict responses of the
systems and study their statistics (i.e. instantaneous and maximal responses, evolutionary
statistics). The obtained results were superior to those reported so far in the literature.

The conducted investigations in Chapters 3, 4 and 5 lead to the following conclusions.
First, the traditional approach to handle the uncertain dynamics with PCEs might not be
the optimal solution. The classical formulation of PCEs with polynomial functions and
deterministic time-dependent coefficients, which is convenient for computation and post-
processing, is indeed not suitable for representing the stochastic dynamics. The reader is
referred to Chapter 3 for longer discussions. Second, a different strategy should be used
instead of the traditional approach, in which the constituents of the problems, i.e. the
dynamics and uncertainties, are handled by corresponding tools which are designed for
that particular purpose. The time-warping and NARX modelling techniques are good
options to capture the dynamics. There are, however, various techniques in this class to
be investigated.

Using PC-NARX-based surrogate models, one can obtain the results of a large number
of structural simulations at a reduced computational cost, which is the cost of computing
the experimental design of limited size. This allows the use of recently proposed non-
parametric methods for computing seismic fragility curves as shown in Chapter 6. The
commonly used assumption of the lognormal shape of the curves was assessed. It was
shown that the lognormality assumption has significant effects on the resulting curves,
which might differ largely from non-parametric counterparts in some cases, in particular



7.2. Limitations and outlook 207

when only a few hundred simulations are used to compute the lognormal curves. This em-
phasizes the need for metamodels, which can be used as substitutes of the original models
to obtain accurate fragility curves and reduce significantly their epistemic uncertainties.

7.2 Limitations and outlook

It was shown through theoretical discussions and various numerical applications that the
proposed methods outperform the classical PCEs in handling stochastic dynamics. The
difference lies on the formulations of the utilized time-dependent PCEs. In the classical
representation, the PC time-dependent coefficients are deterministic instant-wise whereas
a different strategy is advocated by the proposed methods. In the PC-NARX approach,
the PC coefficients are not considered deterministic but functions of the responses’ past
values. In the time-warping approach, the PC representation takes deterministic coeffi-
cients in the transformed time scale. However, the stochastic inverse time warping process
imposes that the PC coefficients in the physical time scale are dependent on the uncer-
tain parameters. In summary, we endorse the use of PCEs that are different from the
classical representation to solve stochastic dynamics. This remedy constitutes, however, a
limitation for the proposed methods. By discarding the classical time-dependent PC rep-
resentation, one can no longer make use of the associated straightforward post-processing.
Instead of using analytical formulations, one currently has to perform Monte Carlo simu-
lation on the surrogate model to obtain the responses’ statistical moments. For the sake
of completeness of the proposed methods, it would be relevant to derive rigorous analyt-
ical solutions for post-processing the time-warping and PC-NARX models. It is worth
noting that in Chapter 2, a derivative-based sensitivity measure was introduced as a mere
post-processing of PCEs. However, the technique was not applied to case studies in the
following chapters featuring PCE techniques designed for uncertain dynamics. This is also
due to the fact that the proposed PCE schemes rely on formulations that are different
from conventional approach. The missing link constitutes a limitation for the conducted
work.

The effectiveness of the proposed methods were demonstrated with various engineering
applications, which are the most complicated benchmark problems found in the literature.
It is worth noting that modifications were made so as to increase the complexity of the case
studies. For instance, longer time ranges and additional uncertain parameters were con-
sidered, non-trivial nonlinear dynamical behaviours were investigated and non-stationary
excitations were used instead of white-noise time-series. For the considered case studies,
a remarkable performance of the proposed methods was recorded. However, the author is
well aware that it remains challenging to apply these methods to large numerical models
in engineering, as seen in the last applications in Chapters 4 and 5. Future adaptation
and improvement are expected to improve the performance of the proposed methods. For
instance, when a large DOF system is under consideration, it might be advantageous to
couple the proposed methods with model order reduction techniques which can help lower
the computational complexity of the problem. When complex nonlinear behaviours are
of interest, it is of utmost importance to understand the characteristics of the dynamical
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phenomenon, thus being capable of mimicking its evolution.
Furthermore, the algorithms proposed in this manuscript are designed only to solve

problems in the time domain. It is worth noting that considering a dynamical system in
the frequency domain is also of common practice. The approach advocated herein, i.e.
representing the dynamics (resp. the uncertainties) by a specific tool (resp. PCEs), can
be extended easily to the investigations in the frequency domain.

In a general case, e.g. in stochastic fluid dynamics, the random responses are functions
of not only the time variable but also the spatial coordinates. This is actually an extension
of the problem investigated in the current manuscript, when the spatial variables are
additionally taken into account. The dynamics of the system is therefore dependent on
both time and space, which makes the problem even more challenging. Based on the
current understanding, the author is convinced that the commonly used approach, which
relies on projecting the responses on deterministic time- and/or space-dependent basis
functions, is not effective except for very simple case studies. A novel approach, which
accounts for the dynamics in time and space and handles the uncertainties in a separated
manner, is needed.

To close the discussions, the author would like to emphasize once again the strategy
promoted in the manuscript: give back to PCEs only what are uncertainties’, and to an-
other specific tool what are dynamics’. May this strategy be useful for future researches.
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A
First order derivative of polynomial chaos functions

A.1 Hermite polynomials

The classical Hermite polynomials {Hen, n ∈ N}, where n determines the degree of the
polynomial, are defined on the set of real numbers R so as to be orthogonal with respect
to the Gaussian probability measure and associated inner product:

〈Hem, Hen〉 def=
∫

R
Hem(z)Hen(z)e

−z2/2
√

2π
dz = n! δmn (A.1)

The Hermite polynomials satisfy the following differential equation (Abramowitz and
Stegun, 1970, Chap. 22):

d
dzHen(z) = nHen−1(z) (A.2)

From Eq. (A.1) the norm of Hermite polynomials reads:

〈Hen, Hen〉 = n! (A.3)

so that the orthonormal Hermite polynomials are defined by:

H̃en(z) = 1√
n!
Hen(z) (A.4)

Substituting for Eq. (A.4) in Eq. (A.2), one gets the derivative of orthonormal Hermite

polynomial H̃e
′

n(z) def= dH̃e(z)
dz :

H̃e
′

n(z) =
√
n H̃en−1(z) (A.5)

For computational purposes the following matrix notation is introduced:
{
H̃e

′

1(z), . . . , H̃e
′

n(z)
}T

= CH · {H̃e0(z), . . . , H̃en−1(z)}T (A.6)

which allows one to cast the derivative of the orthonormal Hermite polynomials in the
initial basis. From Eq. (A.5), CH is obviously diagonal:

CHi,j =
√
i δij (A.7)
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A.2 Legendre polynomials

The classical Legendre polynomials {Len, n ∈ N} are defined over [−1, 1] so as to be
orthogonal with respect to the uniform probability measure and associated inner product:

〈Lem, Len〉 def=
∫ 1

−1
Lem(z)Len(z)dz

2 = 1
2n+ 1 δmn (A.8)

They satisfy the following differential equation (Abramowitz and Stegun, 1970, Chap.
22):

d
dz [Len+1(z)− Len−1(z)] = (2n+ 1)Len(z) (A.9)

Using the notation Le′n(z) def= dLen(z)
dz one can transform Eq. (A.9) into the equation:

Le
′
n+1(z) = (2n+ 1)Len(z) + Le

′
n−1(z)

= (2n+ 1)Len(z) + (2(n− 2) + 1)Len−2(z) + Le
′
n−3(z)

= · · ·
(A.10)

From Eq. (A.8), the norm of Legendre polynomials reads:

〈Len, Len〉 = 1
2n+ 1 (A.11)

so that the orthonormal Legendre polynomials read:

L̃en(z) =
√

2n+ 1Len(z) (A.12)

Substituting for Eq. (A.12) in Eq. (A.10) one obtains:

L̃e
′

n+1(z) =
√

2n+ 3
[√

2n+ 1 L̃en(z) +
√

2(n− 2) + 1 L̃en−2(z)

+
√

2(n− 4) + 1 L̃en−4(z) + . . .
] (A.13)

Introducing the matrix notation:
{
L̃e
′

1(z), . . . , L̃e
′

n(z)
}T

= CLe · {L̃e0(z), . . . , L̃en−1(z)}T (A.14)

the matrix CLe reads:

CLe =




√
3 0 0 0 . . .

0
√

5
√

3 0 0 . . .√
7 · 1 0

√
7
√

5 0 . . .
...
0

√
4p+ 1

√
3 0

√
4p+ 1

√
7 . . .

√
4n+ 1

√
4n− 1




(A.15)
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when n = 2p is even and

CLe =




√
3 0 0 0 . . .

0
√

5
√

3 0 0 . . .√
7 · 1 0

√
7
√

5 0 . . .
...√

4p+ 3 · 1 0
√

4p+ 3
√

5 0 . . . 0
√

4p+ 3
√

4p+ 1




(A.16)

when n = 2p+ 1 is odd.

A.3 Generalized Laguerre polynomials

Consider a model Y =M(X) where the input vectorX containsM independent random
variables with Gamma distributionXi ∼ Γ(αi, βi), (αi, βi > 0) with prescribed probability
density functions:

fXi(xi) = βi
αi

1
Γ(αi)

xαi−1e−βixi (A.17)

where Γ(·) is the Gamma function. We first use an isoprobabilistic transform to convert
the input factors into a random vector Z = {Zi, . . . , ZM} as follows:

Zi = βiXi (A.18)

One can prove that:

fZi(zi) =
∣∣∣∣∣
dxi
dzi

∣∣∣∣∣ fXi(xi) = 1
Γ(α)zi

α−1e−zi (A.19)

which means Zi ∼ Γ(αi, 1).

By definition, the generalized Laguerre polynomials
{
L(α−1)
n (z), n ∈ N

}
, where n is

the degree of the polynomial, are orthogonal with respect to the weight function w(z) =
zα−1e−z over (0,∞):

〈L(α−1)
n (z), L(α−1)

m (z)〉 def=
+∞∫

0

zα−1e−zL(α−1)
n (z)L(α−1)

m (z)dz = Γ(n+ α)
n! δmn (A.20)

The derivative of L(α−1)
n reads:

L
′(α−1)
n (z) = −

n−1∑

k=0
L

(α−1)
k (z) (A.21)

Recall that one obtains the Gamma distribution by scaling the weight function w(z) by
1/Γ(α). Therefore in the context of PCE, we use the generalized Laguerre polynomials
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functions orthonormalized as follows:

L̃(α−1)
n (z) =

√√√√ n!Γ(α)
Γ(n+ α)L

(α−1)
n (z) =

√
nB(n, α)L(α−1)

n (z) (A.22)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the beta function. Substituting for Eq. (A.22) in Eq. (A.21)

one obtains:

L̃
′(α−1)
n (z) = −

n−1∑

k=0

√√√√Γ(k + α + 1)n!
Γ(n+ α + 1) k! L̃

(α−1)
k (z) = −

n∑

k=1

√√√√B(n+ 1, α)
B(k, α) L̃

(α−1)
k−1 (z) (A.23)

Introducing the matrix notation:
{
L̃
′
1(z), . . . , L̃′n(z)

}T
= CLa · {L̃0(z), . . . , L̃n−1(z)}T (A.24)

the constant matrix CLa is a lower triangular matrix whose generic term reads:

CLai,j = −
√√√√B(i+ 1, α)

B(j, α) (A.25)
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