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Abstract

Quantum simulation of condensed matter systems is a versatile tool to advance the under-

standing of complex many-body systems which are governed by the interplay of interactions,

geometry and the dimension of the system. This thesis reports on the various experiments

conducted on our quantum simulator with ultracold fermionic 40K atoms loaded in a tun-

able optical lattice. The key aspects of our setup are the large variety of available lattice

geometries as well as the possibility to adjust the interactions between different spin states.

The thesis is divided into two parts, which both address specific open questions of solid

state physics. The first part focuses on the different low-temperature phases of the Fermi-

Hubbard model in static systems, where charge ordering as well as local spin-correlations

are observed. Here, the change of double occupancies during the metal to Mott insulator

crossover in a honeycomb lattice is measured. A comparison of our results to theoretical

calculations characterizes the adiabaticity of the lattice loading. If we additionally break

inversion symmetry in the honeycomb we realize the Ionic Hubbard model and investigate

how the interplay of competing energy scales changes our observation. By measuring nearest-

neighbor spin-spin correlations for a large variety of lattice geometries we further reveal the

microscopic processes at the onset of magnetic ordering.

The second part of the thesis is devoted to the realization of periodically driven optical

lattice structures and their description within the Floquet formalism. Here, we show the

broad applicability of Floquet engineering which allows to modify existing energy scales in

the Hamiltonian or induce completely new terms. By periodically modulating a magnetic

field gradient we provide a new mechanism to realize spin-dependent band structures. The

tunneling of different spin states can be individually tuned, thereby opening the possibility

to fully localize one of the spin states. Instead, using an elliptical phase modulation of the

hexagonal lattice we can break time-reversal symmetry and induce a staggered flux. In com-

bination with a broken inversion symmetry, we realize Haldane’s phenomenological model of

a Chern insulator. We probe the changing Berry curvature of the lowest band for different

topological regimes and map out the topological phase transition with the closing of the band

gap.

While realizing Floquet engineering in interacting systems we show that heating can remain

under control. The implementation of an adiabatic ramp protocol allows us to access a desired

Floquet state for a periodically driven two-body system. When driving at a frequency close to

the interactions we can tune the magnetic exchange energy and even revert its sign. Finally, we

investigate a many-body system in the off- and near-resonantly driven regime. Our quantum

simulation proves that the dynamics of this Fermi-Hubbard model are well described by

an effective Hamiltonian. Furthermore, we can tune the strength of antiferromagnetic spin-

correlations and even switch to ferromagnetic correlations with a near-resonant drive.
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Zusammenfassung

Die Quantensimulation von Festkörpersystemen ist ein vielseitiges Instrument, um das Ver-

ständnis über komplexe Viel-Teilchensysteme voranzubringen. Die Eigenschaften solcher Sys-

teme werden von deren Geometrie und Dimension in Zusammenspiel mit den Wechselwirkun-

gen der Elektronen bestimmt. Diese Arbeit präsentiert verschiedene Experimente, die mit

unserem Quantensimulator, bestehend aus ultrakalten 40K Fermionen und einem variablen

optischen Gitter, durchgeführt wurden. Die Charakteristika unseres Aufbaus bestehen aus

der grossen Vielfalt verschiedener, realisierbarer Geometrien und den verstellbaren Wechsel-

wirkungen zwischen den Spin-Zuständen.

Die vorliegende Arbeit ist in zwei Teile gegliedert, die unterschiedliche Aspekte konden-

sierter Materie betrachten. Der erste Teil legt den Fokus auf verschiedene Phasen des Fermi-

Hubbard Modells bei niedrigen Temperaturen. Hier beobachten wir sowohl eine Ordnung

der Dichte als auch lokale Spin-Anordnungen. Unter anderem messen wir das Verhalten der

Doppelsetzung im hexagonalen Gitter am Übergang zwischen metallischer Phase und einem

Mott-Isolator. Durch einen direkten Vergleich mit theoretischen Simulationen bestimmen wir,

wie adiabatisch das Füllen des Gitters mit Atomen verläuft. Wenn zusätzlich die Inversions-

Symmetrie des hexagonalen Gitters gebrochen wird, kann das Ionic Hubbard Modell realisiert

werden. Dieses System erlaubt es uns, das Wechselspiel von verschiedenen Energieskalen an-

hand von Veränderungen unserer Observablen zu beobachten. Zusätzlich untersuchen wir die

Spin-Spin-Korrelationen benachbarter Gitterplätze und erforschen damit die mikroskopischen

Prozesse und die Entstehung von magnetischer Ordnung.

Der zweite Teil beschreibt die Implementierung von periodisch getriebenen optischen Git-

tern und ihre Charakterisierung durch den Floquet-Formalismus. Mit Hilfe von getriebenen

Systemen können sowohl einzelne Terme im Hamiltonoperator modifiziert als auch vollkom-

men neue Terme induziert werden. Beispielsweise lassen sich spin-abhängige Bandstrukturen

durch einen modulierten Magnetfeldgradienten erzeugen. Mit dieser neuen Methode kann die

Tunnelrate verschiedener Spins frei eingestellt und dabei unter anderem einer der Zustände

komplett lokalisiert werden. Wird stattdessen ein hexagonales Gitter auf einer elliptischen

Bahn bewegt, so ist die Symmetrie der Zeitumkehr gebrochen. Im Zusammenspiel mit einer

gebrochenen Inversions-Symmetrie des Gitters realisieren wir dadurch Haldane‘s phänome-

nologisches Modell des Chern Isolators. Damit können verschiedene topologische Phasen

beobachtet und mit Hilfe der charakteristischen Berry-Krümmung untersucht werden. Durch

eine Messung der Bandlücke, die sich beim Übergang in ein anderes topologisches Regime

schliesst, wird der topologische Phasenübergang bestimmt.

Zusätzlich zeigen unsere Ergebnisse, dass Heizen in getriebenen wechselwirkenden Syste-

men kontrollierbar bleibt. In einem Zwei-Teilchensystem führen wir adiabatische Protokolle

ein, um an einen bestimmten Floquet-Zustand zu koppeln. Durch nahresonantes Modulieren
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kann die Spin-Wechselwirkung des Systems kontrolliert und sogar das Vorzeichen umdreht

werden. Schliesslich demonstrieren wir ein getriebenes Vielteilchen-System im resonanten und

nicht-resonanten Fall. Unsere Quantensimulation zeigt, dass die Dynamik des getriebenen

Fermi-Hubbard Modells mit einem effektiven Hamiltonoperator beschrieben werden kann.

Ausserdem bietet dieses Modell die Möglichkeit mit einer Modulation nahe der Resonanz die

anti-ferromagnetischen Spin-Korrelationen zu verstärken und darüber hinaus eine ferromag-

netische Spin-Wechselwirkung zu induzieren.

iv



Contents

1. Introduction 1

1.1. Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. The toolbox of quantum simulation: Experimental setup and Hamiltonians 9

2.1. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Preparing and measuring a degenerate Fermionic cloud . . . . . . . . . . . . . 11

2.2.1. Preparation of a degenerate Fermionic cloud . . . . . . . . . . . . . . 11

2.2.2. New preparation scheme - Evaporation with Rubidium in the optical

trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3. Evaporation with a magnetic gradient . . . . . . . . . . . . . . . . . . 17

2.3. Tunable optical lattice setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1. Calibration of the visibility α . . . . . . . . . . . . . . . . . . . . . . . 22

2.4. Tight-binding model and band structure of the Honeycomb lattice . . . . . . 23

2.5. The Fermi-Hubbard Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1. The phase diagram of the Fermi-Hubbard model . . . . . . . . . . . . 29

2.6. The ”Hubbard” model on two sites - spectrum of interacting fermions on a

double well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7. Atomic limit calculation and high-temperature series expansion . . . . . . . . 32

I. Quantum simulation in static systems 35

3. Metal to Mott insulator transition in artificial graphene 37

3.1. Metal to Mott-insulator transition on a honeycomb lattice . . . . . . . . . . . 38

3.2. Adiabatic loading of fermionic atoms in optical lattices . . . . . . . . . . . . . 39

3.3. Crossover from metallic to Mott insulating regime in 2D . . . . . . . . . . . . 46

3.4. Inter-layer coupling: From 2D to 3D . . . . . . . . . . . . . . . . . . . . . . . 47

3.5. Excitation spectrum: Mott gap . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4. Observing the charge density wave in the ionic Hubbard model 55

4.1. The ionic Hubbard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2. Noise correlations - theoretical description . . . . . . . . . . . . . . . . . . . . 57

4.3. Probing the charge density wave with noise correlations . . . . . . . . . . . . 61

4.4. Density ordering in the ionic Hubbard model . . . . . . . . . . . . . . . . . . 62

4.5. Excitation spectrum of the ionic Hubbard model . . . . . . . . . . . . . . . . 65

v



Contents

4.6. Simulation of the excitation spectrum on four sites . . . . . . . . . . . . . . . 68

4.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5. Observing short-range correlations in the Fermi-Hubbard model 71

5.1. Simulating quantum magnetism with optical lattice systems . . . . . . . . . . 72

5.2. Detecting nearest-neighbor spin-spin correlations . . . . . . . . . . . . . . . . 75

5.2.1. Freezing into the detection lattice . . . . . . . . . . . . . . . . . . . . . 76

5.2.2. Merging adjacent sites and final detection . . . . . . . . . . . . . . . . 77

5.2.3. Singlet-Triplet oscillations . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3. Characterizing the adiabaticity of the lattice loading with correlations . . . . 80

5.4. Local spin correlations vs geometry . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5. Spin correlations in a geometric crossover . . . . . . . . . . . . . . . . . . . . 86

5.6. Dynamics and formation of correlations . . . . . . . . . . . . . . . . . . . . . 88

5.7. Adiabaticity and thermalization of the Fermi-Hubbard system . . . . . . . . . 91

5.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

II. Floquet engineering and time periodic systems 95

6. Introduction to Floquet theory 97

6.1. Floquet formalism and effective Hamiltonians . . . . . . . . . . . . . . . . . . 98

6.2. Effective Hamiltonian for a periodically modulated optical lattice . . . . . . . 99

6.3. Effective band structure in momentum space . . . . . . . . . . . . . . . . . . 103

6.4. Quasi-energy and Floquet states . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5. Micromotion - fast evolution within the driving period . . . . . . . . . . . . . 105

7. Floquet engineering of spin-dependent lattices 107

7.1. Spin-dependent optical lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2. Floquet formalism for a spin-dependent force . . . . . . . . . . . . . . . . . . 109

7.3. Applying a magnetic field gradient . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4. Observing Fermions in spin-dependent bands . . . . . . . . . . . . . . . . . . 116

7.4.1. Measurement of the quasimomentum distribution . . . . . . . . . . . . 116

7.4.2. Dipole oscillations as a direct probe of the effective tunneling . . . . . 119

7.5. Localization of spins and expansion measurements . . . . . . . . . . . . . . . 120

7.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8. Experimental realization of the topological Haldane model 125

8.1. The Haldane model on a hexagonal lattice . . . . . . . . . . . . . . . . . . . . 126

8.2. Topological properties - Berry phase, Berry curvature and Chern number . . 128

8.3. Implementation of an effective Hamiltonian with complex tunneling . . . . . 129

8.3.1. Derivation of the effective Hamiltonian . . . . . . . . . . . . . . . . . . 130

8.4. Broken time-reversal symmetry and gap opening . . . . . . . . . . . . . . . . 132

8.4.1. Results for an ideal brick-wall lattice . . . . . . . . . . . . . . . . . . . 134

8.5. Experimental setup - circular lattice modulation . . . . . . . . . . . . . . . . 137

8.5.1. Elliptical modulation of the optical lattice . . . . . . . . . . . . . . . . 138

8.5.2. Static and effective parameters of the driven honeycomb lattice . . . . 140

vi



Contents

8.6. Probing gaps at the Dirac points . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.7. Measurement of the Berry curvature . . . . . . . . . . . . . . . . . . . . . . . 144

8.7.1. Drift measurement as a probe of Berry curvature . . . . . . . . . . . . 146

8.7.2. Differential drift as a measurement to probe distinct topological regimes149

8.8. Topological phase transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9. Floquet state preparation in a periodically driven two-body quantum system 159

9.1. Experimental challenges of interacting driven systems . . . . . . . . . . . . . 160

9.2. The ”Hubbard” model on two sites - experimental implementation . . . . . . 160

9.2.1. Preparation of the ground state in an array of double wells . . . . . . 160

9.3. Periodically modulated double well system . . . . . . . . . . . . . . . . . . . . 162

9.4. Off-resonant modulation of an interacting two-body system - experimental

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.5. Theoretical description of the effective Hamiltonian for the off-resonant mod-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.5.1. Analytic description - high frequency expansion . . . . . . . . . . . . . 166

9.5.2. Numerical comparison for the off-resonant modulation . . . . . . . . . 168

9.6. Near-resonant driving of the two-body system . . . . . . . . . . . . . . . . . . 171

9.6.1. Adiabaticity measurement for the resonantly driven double well . . . . 171

9.6.2. Numerical simulation of the quasi-energy spectrum and the state coupling173

9.6.3. Analytical description in the near-resonantly shaken regime . . . . . . 175

9.6.4. Higher order corrections and kick operators . . . . . . . . . . . . . . . 177

9.7. Preparing a desired Floquet state in a resonantly driven system . . . . . . . . 178

9.8. Observation of micromotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.9. Controlling the exchange interactions . . . . . . . . . . . . . . . . . . . . . . . 185

9.9.1. Measurement of the the magnetic exchange interaction . . . . . . . . . 185

9.9.2. Off-resonant modulation . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.9.3. Resonant modulation - enhancement and sign reversal of the magnetic

exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.Tuning and switching magnetic correlations in a driven quantum many-body

system 193

10.1. Loss Features - Coupling to higher bands . . . . . . . . . . . . . . . . . . . . 194

10.2. Heating measurements in driven three-dimensional optical lattices . . . . . . 196

10.2.1. Magnetic gradient modulation . . . . . . . . . . . . . . . . . . . . . . 197

10.2.2. Circular lattice modulation . . . . . . . . . . . . . . . . . . . . . . . . 199

10.3. The driven Fermi-Hubbard model - a Floquet many body system . . . . . . . 200

10.3.1. Uni-directional driving of the many-body system and corrections to the

tight-binding description . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.3.2. Preparation and detection . . . . . . . . . . . . . . . . . . . . . . . . . 203

10.4. Verification of the effective Hamiltonian in the off-resonant modulation regime 204

10.5. Resonant modulation - creation of density assisted tunneling . . . . . . . . . 206

10.6. Enhancement and sign-reversal of magnetic correlations . . . . . . . . . . . . 208

vii



Contents

10.7. Micromotion of the resonantly driven Fermi-Hubbard model . . . . . . . . . . 209

10.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

11.Outlook 213

11.1. Dynamics in driven many-body systems . . . . . . . . . . . . . . . . . . . . . 213

11.2. Measuring topological edge states . . . . . . . . . . . . . . . . . . . . . . . . . 215

11.3. Topology and interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Bibliography 220

Acknowledgments 256

viii



1 Introduction

Condensed matter physics is governed by the complex interplay between the geometry of the

lattice structure, interactions of the electrons and dimensionality of the system which leads

to many fascinating states of matter [1, 2, 3]. Especially, the understanding of the underlying

microscopic processes, as well as the analysis of phase transitions is one of the current research

topics. Here, new experimental measurements sometimes coincide with surprising, unexpected

results and demand for a more advanced theory. For example, the band theory provides a good

description to determine if a material has a metallic or insulating behavior. However, new

concepts and experiments, like the discovery of the Quantum-Hall effect [4, 5] showed that

the quantum mechanical description of bands is incomplete and an extension to a topological

band theory is needed for their explanation [6, 7].

Another prominent example is Landau’s phenomenological theory of phase transitions

which provides a general formalism to describe the change of the system into a different phase

indicated by an order parameter. The states at this phase transition are characterized by a

change in symmetry. Although, this concept has proven to be versatile and is able to explain

different phase transitions in condensed matter, e.g. magnetic order, the measurement of the

Quantum Hall effect has shown that also phase transitions occur that are not described by

an order parameter [6, 8]. Such states are described by a topological invariant, which implies

that certain properties of the material, such as the quantized conduction of the Quantum-Hall

effect are insensitive to small perturbations [6, 8]. This topological order was first introduced

by D.J. Thouless, M. Kohmoto, M.P. Nightingale and M. den Nijs in their seminal paper on

the quantized Hall conductance [9].

We can illustrate this conceptional idea of topology by using a Möbius band, which is named

after its inventor A. F. Möbius, a German mathematician. He constructed a non-orientable

surface with a single edge by twisting a rectangular band by 180◦ and subsequently gluing the

a b

Figure 1.1.: Topology of the Möbius band. (a) A normal band does not contain

a twist. (b) In contrast, the Möbius band is twisted by 180◦ and features a single edge.

Both systems are topologically protected, in a sense that we can only introduce or remove

additional twists by opening the bands and closing them again. For a small perturbation,

like tilting or stretching the system, the number of twists is conserved.
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1. INTRODUCTION

two ends of the band together [10]. This geometry which does neither possess a beginning nor

an ending is widely known and can be found for example as a realization in M. C. Escher’s

fascinating combination of mathematical objects and arts [11]. The twisted topology of the

system is protected and no matter how we stretch, turn and tilt the system, we will not

change its topology. Only if we cut the band open, remove the twist and re-glue it again, we

can change the topology. This is in analogy to topology in physics. For example in order to

change the topology of an electronic band structure we have to close a gap and reopen it in

order to change its topological invariants (for more details see Chapter 8).

Topological phase transitions as well as the description of the Quantum-Hall effect with

topological band theory has shown that a surprising discovery requires new theoretical con-

cepts. By following the same conceptual ideas F.D.M. Haldane proposed a mechanism which

allows to implement the Quantum-Hall effect without external magnetic field [12]. In his

phenomenological model on a honeycomb lattice he realized that the quantization of the

Hall conductance can be an intrinsic property of the band structure if time-reversal sym-

metry is broken [6, 12]. Although he thought that a physical realization might be unlikely

[12] exactly this model could be implemented with our experimental setup during the work

of this thesis [13]. The development of those concepts has opened a new field in physics -

topological phases of matter. Therefore, it provides the basis for ongoing theoretical as well

as experimental research on topological insulators and superconductors [8, 14]. Among other

theoretical concepts on topology, D.J. Thouless, F.D.M. Haldane and J.M. Kosterlitz were

awarded the Nobel prize 2016 in physics for these pioneering works.

The joint effort of experimentalists and theoreticians makes it possible to improve the gen-

eral understanding of topological as well as correlated many-body systems. However, many

microscopic processes as well as conceptual questions like a theoretical description of high-

temperature superconductivity remain open. Another difficulty of experimental measure-

ments arises due to the additional complexity, like defects, impurities or the influence of the

measurements by the substrates. On the same time, the theory of complex systems is bound

to idealized models. Those might be computationally difficult to solve and are additionally

bound to small system sizes (more severe for fermionic models) [15]. Here, physical systems,

which are described by the same Hamiltonian as the original problem can be employed as

quantum simulators, as originally proposed by R. Feynman [16, 17]. Quantum simulation

can provide a new perspective and bridge between experimentally observed results and more

general, simplified theoretical models, since it simulates single Hamiltonians. Especially, the

’slow’ dynamics in optical lattice systems can shed light on the nature of strongly correlated

systems out of equilibrium. Within the past 20 years many different platforms for quantum

simulation have been developed and successfully tested for various fields in physics. In addi-

tion to implementations with cold atoms, which obviously will be the focus in the discussion

of this thesis, also systems of trapped ions, photonic systems (rf- and visible light) as well

as super-conducting qubits have been implemented for quantum simulation. The interested

reader will finde a more detailed overview on those setups and additional platforms in Ref.

[18].

While, the tunability of quantum simulation is promising and provides the tools to imple-

ment various Hamiltonians, we should not forget that state preparation in quantum simu-

lation is limited. Although recent progress improved the situation, for example systems of

trapped ions are still bound to rather small system sizes [19] and cold atoms setups are

2



limited in their low temperature regimes (compared to their solid state counterparts) [20,

21]. However, we should rather call those aspects future challenges instead of limits, as there

is no general limit to their implementation. Step by step, technically improved setups and

new ideas can develop the field towards building better quantum simulators. This is directly

evident if we briefly analyze the past 20 years of research with ultracold atomic gases. Since

the field of cold atoms is constantly evolving and too vast I will only give a brief review

here, while research relevant to individual chapters is presented throughout the thesis. The

interested reader is referred to Refs. [22, 23, 24, 25, 26, 27] for a general overview.

Not even 20 years ago, and shortly after the realization of a Bose-Einstein condensate [28,

29, 30] the first degenerate Fermi gas was prepared [31]. Around the same time theorists pro-

posed to mimic condensed matter systems by loading ultracold atoms into an optical lattice

setup [32]. Following this approach, pioneering experiments have successfully implemented a

quantum phase transition from superfluid to Mott insulating behavior using bosonic atoms in

optical lattices [33]. In more recent years, fermionic atoms have been used to implement the

Fermi-Hubbard model in simple cubic optical lattices and investigated the Mott insulating

behavior [34, 35]. Only recently, a local entropy redistribution scheme allowed to reach low

enough temperatures for fermionic atoms in optical lattices to observe short-range magnetic

correlations and started the investigation of the spin-sector [20] .

Meanwhile, different preparation schemes and selective addressing and manipulation of the

atoms have been developed and added to the cold atoms toolbox [36, 37, 38]. One example

is the experimental implementation of tunable and more complex lattice structures, such as

honeycomb, triangular or Kagome lattices [39, 40, 41, 42, 43, 44]. Here, the implementation

of a tunable optical lattice in our setup provides a versatile tool and is a demonstration of the

flexibility of cold atom systems. Another powerful scheme, to mention here, is the realization

of single-site resolution in microscope-setups which allows for individual adressing of single

sites and a controlled realization of optical lattice setups in two-dimensions [26, 45]. The

ability to tune the interactions of the atoms with Feshbach resonances offers an additional

parameters knob which is not available in condensed matter systems [46]. A combination of

all these developments provide the tools to realize different and well controllable quantum

many-body systems which can mimic the properties of real materials.

Quantum simulation with cold atoms has also provided interesting insights and a novel

understanding in setups without optical lattices. By using degenerate fermionic clouds, cold

atom experiments can investigate regimes which have been not accessible before. The imple-

mentation of strongly interacting fermionic clouds with attractive interactions allowed for a

detailed study of the BEC-BCS crossover and led to a precise understanding of Fermi gases

in the unitarity regime (a = ∞) and the theory of superfluidity [24, 47]. A more recent

development leading to experiments beyond the condensed matter counterparts is offered by

the implementation of transport measurements with ultracold fermions [48, 49]. The trans-

port measurements of strongly correlated fermions in a quantum point contact revealed a

breakdown of the universal quantization of the conductance and offer a controlled platform

for further studies [50, 51].

During the work of my thesis we put a focus on two topics. The first part is devoted to the

investigation of the static properties of the Fermi-Hubbard model including extensions like

the Ionic Hubbard model [52, 53, 54]. We analyze the charge and spin degree of the model in

various lattice geometries and characterize the dynamics of nearest-neighbor spin correlations
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during the lattice loading process and how it changes with lattice geometry [54]. In combi-

nation with other recent developments which are outlined in the corresponding chapters, like

for example the first detection of long-ranged antiferromagnetic order [21, 55] the results of

the experimental quantum simulation reach the current limit of numerical calculations in the

Fermi-Hubbard model [20, 54, 56, 57, 58, 59]. This allows to crosscheck both experiment and

theory and will lead to more detailed understanding of the low-temperature phases in the

Fermi-Hubbard model.

The second part, which is dedicated to a broader range of topics takes advantage of Flo-

quet engineering. This method allows to implement novel Hamiltonians and opens up new

research directions. Although pioneering experiments have shown the reliability of driven

optical lattices more than 10 years ago [60, 61, 62, 63] only recently, these tools have reached

more attraction. The quantum states of a periodically modulated system can be described

in Floquet theory on slow timescales by an evolution of an effective Hamiltonian and fast

dynamics on timescales below one driving period [64, 65]. Thus, driven optical lattices offer

the possibility to implement a large variety of model Hamiltonians [66]. It allowed to imprint

phases on tunneling elements and in general to realize artificial gauge fields [67].

The work carried out with driven optical lattices throughout my thesis focuses on the

implementation of the novel Hamiltonians. Here, two examples are the topological Haldane

model [13] and a new scheme to realize spin-dependent lattices [68]. The implementation

of the topological Haldane model constitutes the first realization of a non-trivial topological

band structure and is achieved by elliptical modulation of the honeycomb lattice which breaks

time-reversal symmetry [69, 70]. In addition, we focus on the realization of driven interacting

systems which so far have not been studied in detail [62, 71, 72, 73].

Although, driven interacting systems are ultimately linked to a state with infinite temper-

ature [74, 75] we show that on intermediate timescales (relevant for experimental investiga-

tions) interesting effects arise. In a detailed study of a four level system of two interacting

fermions in a double well we show the versatile control of driven systems and implement a

scheme which allows to prepare a desired Floquet state [72]. In addition, in my thesis I present

a quantum simulation of the periodically modulated Fermi-Hubbard model which proves the

description of driven interacting systems by an effective Hamiltonian [73]. Moreover, our

implementation of the near-resonantly driven Fermi-Hubbard model reveals a novel method

to tune the effective interactions even in the absence of a Feshbach resonance. Furthermore,

near resonant periodic modulation allows to switch and tune local spin-correlations. Here,

analyzing these processes can help to gain a better understanding of ultrafast manipulation

with terahertz radiation in condensed matter systems [76, 77, 78]. Observations, such as the

possible light-induced superconductivity at room temperature in out-of equilibrium systems

ask for thought-provoking impulses and are still poorly understood [79]. The understanding of

non-equilibrium dynamics of strongly interacting driven systems promises to shed light into

unsolved problems and allows to find suitable materials for future applications in material

science.

In general, the field of Floquet engineering is advancing in huge steps, partially due to de-

velopments in our experiment, as well as achievements realized in other groups1. For example

a successful implementation of the Harper-Hofstadter model and promising new techniques

1In the single chapters I will reference all relevant recent developments, which were achieved during the work

of this thesis.
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for a momentum-resolved detection of the Berry-curvature [80, 81, 82, 83]. Finally, period-

ically driven lattice systems promise to realize novel states of matter which have no static

counterpart, such as for example exotic topological states [84, 85, 86] and time crystals [87,

88, 89].

1.1. Outline of the thesis

This thesis is split into two parts, each of them describing the measurements we have per-

formed during the past years. Our results have been subsequently published throughout

the work of this thesis. The corresponding publications are named at the beginning of each

chapter. The first part of the thesis describes our measurements and results of the static

Fermi-Hubbard model realized with our tunable optical lattice setup. In contrast, the second

part presents our experiments in periodically driven optical lattices and summarizes the novel

tools of Floquet engineering implemented in our setup.

The experiments, theoretical calculations and results presented in this thesis were carried

out in collaboration with current and former members of the ’lattice’ team: Gregor Jotzu,

Rémi Desbuquois, Daniel Greif, Frederik Görg, Kilian Sandholzer, Thomas Uehlinger, Mar-

tin Lebrat and Tilman Esslinger. Additional theoretical calculations (as pointed out in the

relevant Chapters) were performed by our collaborators Ulf Bissbort and Walter Hofstetter

(Universität Frankfurt), Sebastian Huber (ETH Zürich) and Nathan Goldman (Université

Libre de Bruxelles).

The thesis is structured as follows:

� Chapter 2 presents an overview of the experimental setup and explains the relevant

details on the preparation of degenerate fermions. The tunable optical lattice, which

is the key part of all our measurements is explained. In addition a short theoretical

description of the Fermi-Hubbard model is presented.

� The first part of the thesis on static Hamiltonians starts with the investigation of the

metal to Mott insulator transition on a honeycomb lattice in Chapter 3. Here, detailed

measurements of the double occupancy during the lattice loading are compared to a

high-temperature series expansion and reveal the adiabaticity of the loading process.

We measure the compressibility of the system as a function of the interaction strength

and atom number. In addition, we use this artificial graphene system with tunable

interactions to detect the charge gap by amplitude modulation of the optical lattice.

Furthermore we change the dimension by introducing coupling between the layers.

� In Chapter 4, we add an additional energy scale to the Fermi-Hubbard model on a

honeycomb lattice by introducing a site offset between the two sublattices which leads

to a broken inversion symmetry. This allows us to realize the Ionic Hubbard model where

we identify distinct density ordered phases. Using noise correlations in combination with

measurements of the double occupancy, we detect a transition from a charge-density

ordering to a Mott-insulating state.

� In addition to the previous measurements we also investigate the spin-degree of freedom

and measure nearest-neighbor antiferromagnetic correlations. Chapter 5 presents our

results for a large variety of lattice geometries and geometrical crossovers. Here we use
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the local observable of spin correlations to analyze quantum magnetism on the onset of

the phase transition to a long range ordered state. In addition we analyze the formation

and redistribution of antiferromagnetic correlations in response to a dynamical change

of the lattice connectivity and geometry.

� The second part of the thesis starts with a general introduction to the Floquet formalism

in Chapter 6. Here I introduce the concepts which are relevant for the following chapters

and discuss the overall strengths as well as challenges of Floquet engineering.

� A first application of Floquet engineering is presented in Chapter 7 where we apply

a sinusoidal current to a single magnetic coil to apply a periodically modulated spin-

dependent force. We will show that this scheme allows for a state-selective tuning of the

amplitude and sign of the tunneling, therefore implementing a novel method to create

spin-dependent lattices. Furthermore, our measurements prove that this scheme can be

used to create a Fermi-surface mismatch and to fully localize one of the spins.

� In Chapter 8 we present the experimental realization of Haldane’s famous model of the

Chern insulator on a honeycomb lattice. I will show how we can use periodic driving to

break time-reversal symmetry which in combination with the broken inversion symme-

try (as implemented already in the Ionic Hubbard model) leads to a phase diagram with

distinct topological regions. We probe the resulting changes of the band structure as well

as the changing Berry curvature arising from the broken symmetries. Measurements in

analogy to Hall currents reveal the changing distribution of the Berry curvature and

allow for an experimental differentiation of trivial and non-trivial topological bands.

By analyzing the closing of gaps at the Dirac points we can experimentally map out

the topological phase transition.

� An extension of Floquet driving to interacting systems follows in Chapter 9. I present

our detailed study of an interacting two-body system, which is implemented on an

array of double wells. We investigate different modulation regimes and drive either

off-resonant or near-resonant to the interaction energy. With our driving scheme we

can implement a full control over Floquet states and realize an adiabatic coupling of

the static ground state to desired Floquet states. Furthermore, a detailed numerical

and analytical comparison shows the validity of effective Hamiltonians in our driving

regime. In addition, we investigate the short-time dynamics (micromotion) not covered

by the description of an effective Hamiltonian. The chapter ends with the experimental

investigation of a tunable magnetic exchange. Depending on the detuning of the near-

resonant drive we can change the sign and value of the magnetic exchange in the driven

system.

� In Chapter 10 I finally present our results on the driven Fermi-Hubbard model. Our

investigation constitutes the first measurement of spin-correlations in driven optical

lattices. In the off-resonant regime a comparison to a tunable static optical lattice

proves the description of the driven model with an effective Hamiltonian. Furthermore,

I will present how we can use near-resonant periodic driving to independently tune

the single particle tunneling and the exchange. The engineering of density-dependent

tunneling processes leads to an increase of correlations compared to the static case for a
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red-detuned drive. In contrast for blue detuned driving (driving frequency larger than

the interactions) we can flip the sign of the magnetic exchange and create a system

with ferromagnetic correlations.

� Finally, in the Outlook (Chapter 11) future directions for the experiment are consid-

ered. Having shown that driven Fermi-Hubbard models can be implemented we can

perform further measurements and quantitatively compare our results to state of the

art theoretical calculations to improve the understanding of complicated many-body

dynamics. I will show, how the combination of different Floquet tools implemented

throughout the work of this thesis paves the way to analyze novel quantum states.

I furthermore present our proposed detection scheme of topological edge states and

discuss possible future realizations of interacting topological systems.
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2 The toolbox of quantum simulation: Experimental

setup and Hamiltonians

In the first part of this chapter I review our experimental tools and the experimental setup

which is used throughout the thesis work. The experimental setup has been in use since many

years and progressively additions and changes have been implemented. Throughout this time

the experiment has been described in different PhD theses from former group members.

Therefore, I will focus on the changes implemented throughout the work of this thesis and

refer the reader to the former PhD theses for further details of the experimental setup. A

general overview of the initial design, especially the vacuum chamber and laser schemes for

the trapping and cooling lasers are presented in [90, 91] 1. More details on changes made to

the experiments to also include fermionic 40K atoms can be found in [91, 92]. For a detailed

overview of the first measurements with fermionic atoms in simple cubic lattices the reader

is referred to [93, 94]. A detailed description of the implementation and realization of the

tunable lattice geometry is found in [95]. See [96] for a more recent detailed overview of the

experimental setup, including up-to-date descriptions of the imaging techniques. The most

recent PhD thesis [97] presents a detailed overview of the Floquet formalism. In this chapter,

I will additionally present briefly some of the main theoretical techniques and conceptual

ideas which are used for the implementation of optical lattice systems and the experimental

realization of the Fermi-Hubbard model.

2.1. Experimental setup

Our ideal quantum system of cold fermionic 40K atoms is realized within a cold atoms setup

and then loaded into an optical lattice. The whole sequence cycle from preparation to realiza-

tion of the model Hamiltonian and final measurement takes approximately 50 s. The general

detection of cold atoms with resonant imaging light destroys the degenerate atomic cloud

and a ’new sample’ needs to be prepared for each measurement. Subsequently a stable and

reproducible experiment is needed with small fluctuations in atom number and temperature

of the cloud remaining below the few percent level. This goal is reached in cold atoms experi-

ments with active and passive stabilization of all relevant parameters. The whole experiment

is timed and controlled with a computer software to realize a specific experimental sequence.

Such a stable environment allows to systematically scan experimental parameters in order to

implement different realizations of model Hamiltonians to study the underlying physics.

Our experiment is performed in a vacuum chamber consisting of two main parts: The

1Obviously, the described original laser design and lasers are outdated, however the same transition frequen-

cies are still used.
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Figure 2.1.: Experimental setup. (a) Schematic top view of the vacuum chamber,

showing the MOT chamber where we load the atomic cloud (left) and the experimental

science chamber (right). All experiments are performed in the glass cell which is reached

after a magnetic transport (blue arrow). Figure adapted from [90]. (b) Picture with a side

view of the actual experimental setup. Although all relevant parts of the vacuum chamber

are shown, the surrounding optics and shielding prevents direct visual access, e.g. the glass

cell is covered below a mu-metal shielding for stray fields.

magneto-optical trap (MOT) chamber in which the initial cloud is prepared and the glass

cell where all the measurements take place. A schematic view and a real picture of the

experiment with all relevant parts is shown in Fig. 2.1. Connected to the MOT chamber are

the two ovens containing the ampules with atomic sources of both the Rubidium atoms and

Potassium atoms. From each source we use a specific isotope in order to prepare both bosonic

and fermionic clouds. While Rubidium has a reasonable vapor pressure at room temperature

we have to heat the Potassium oven to temperatures of approximately 60◦ C in order to

create a high enough background gas pressure. The natural abundance of 87Rb is about 28%,

which is high enough to use a sample of purified natural Rubidium for the cloud preparation.

In contrast, 40K natural abundance is below 120 ppm [98], which is well below any usable

source. Therefore we use an enriched sample with approximately 14% of atoms in the correct

isotope2.

The background gas of the two sources is used to load a cloud in the MOT chamber.

In order to keep ultra-high vacuum in the science chamber with the glass cell, there is a

differential pumping tube connecting the MOT chamber. Due to the background gas the

2During the whole thesis it was not necessary to exchange the atomic sources.
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pressure is higher in the MOT chamber, however, the differential pumping stage allows to

maintain a large pressure difference and ultra high vacuum in the glass cell. Ion pumps both

in the MOT chamber and the science chamber maintain the vacuum pressure. The atomic

cloud is transported between the two chambers using a sequence of eleven pairs of coils

which are consecutively switch on and off one after the other. More details on the actual

preparation of our degenerate fermionic clouds follow in the next section. In addition to

the optical table containing the experimental setup, there is a second optical table with the

optics and lasers for controlling, manipulating, preparing and measuring the atomic sample.

All laser beams are transferred to the experimental table using optical fibers. Fast shutters

and acousto-optical modulators allow for fast switching and computer control of each beam.

2.2. Preparing and measuring a degenerate Fermionic cloud

2.2.1. Preparation of a degenerate Fermionic cloud

The following Section presents a short overview on the different steps to prepare and measure

a cold quantum gas3. Due to the fermionic nature of 40K and the use of magnetic traps in

our setup, we have to use also bosonic atoms (87Rb) to sympathetically cool the fermions

during the evaporation scheme [37]. Therefore the whole sequence starts by loading a dual

species cloud of 40K and 87Rb into our magneto-optical trap [99] which is red-detuned from

the D2-transition line of both atoms. Due to loss from atomic collisions, we first load the 40K

alone for approximately 12s and in a second step add the 87Rb atoms for another 2-3s while

still leaving the MOT-laser beams on for Potassium [100]. The lasers for the magneto-optical

trap are commercial diode lasers (Toptica DLpro) and operate at a wavelength of λ ≈ 767 nm

(λ ≈ 780 nm) in case of Potassium (Rubidium) for the cooling transition4. For 40K we use the

F = 9/2 hyperfine manifold of 42S1/2 and for 87Rb the F = 2 hyperfine manifold of 52S1/2.

To increase the available cooling power we use commercial tapered amplifiers for each

species 5. While we use a fiber coupled Toptica BoosTA as the cooling laser for Potassium we

use a fiber coupled tapered amplifier from Thorlabs (TPA780P20) for Rubidium. In addition

we include a repumping beam during the MOT to retain an efficient loading and cooling cycle,

which keeps all atoms in the desired state. The detuning from resonance is usually a few line-

widths. All parameters, like the detunings, the laser powers as well as the loading duration

are optimized experimentally. At the end of the loading procedure we reach atom numbers

of the cloud with ≈ 1.5 · 109 87Rb atoms and ≈ 2 · 106 40K atoms at temperatures of < 1mK.

Subsequently we include a sub-Doppler cooling step with optical molasses [99] which further

reduces the temperature to ≈ 100µK without additional atom loss. An additional pumping

step ensures to optimize the loading into the magnetic trap by transferring all atoms into

the |F = 9/2,mF = +9/2〉 and |F = 2,mF = +2〉 states6. Those states are low field seeking

and thus trapped in a quadrupole field generated by a pair of coils in the MOT chamber.

The atomic cloud is then transported with a movable quadrupole field towards the science

chamber through the differential pumping tube. We achieve this by subsequently switch-

3A general and detailed overview of the preparation techniques for ultracold gases can be found in [36, 37].
4A detailed level scheme for the lasers can be found in [90].
5We replaced our self-build tapered amplifiers during the work on the thesis for these new commercial lasers.
6The lasers for the MOT, pumping and imaging of each species are frequency locked to a reference laser

using an offset lock scheme [101].
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Figure 2.2.: Evaporation in the magnetic QUIC trap. Usual evaporation in the

magnetic QUIC trap as a function of the endpoint of the rf-frequency ramp from the DDS

source. This rf-frequency is mixed with a 6.63 GHz microwave source in order to reach the

correct transition frequency for the evaporation. The evaporation is performed within a fixed

time for all data points. (a) Independent measurement of the atom number N of the Rb

cloud in |F = 2,mF = +2〉 and K cloud in |F = 9/2,mF = +9/2〉. The Rubidium can be

completely evaporated out in order to sympathetically cool the fermions. (b) Measurement

of the temperature TK (TRb) of the Potassium (Rubidium) cloud after evaporation to a given

final rf-frequency. The temperature curve of the fermions nicely follows the temperature of the

Rb atoms. The increase in temperature TK for too low endpoints results from an inefficient

evaporation as the measurements where performed at fixed time. Interestingly, in the case

of sympathetic cooling we never reach a BEC in the Rb cloud. In contrast, if we load a pure

Rubidium cloud the same parameters for the evaporation allow us to realize a BEC in the

magnetic trap. The error bars denote the standard deviation of the measurement.

ing on and off 11 different pairs of coils which transport the atoms in roughly 1.5 s to the

glass cell. The atoms are then loaded into a QUIC trap [102] (see Fig. 2.5(a) for the coil

setup), which has a finite off-set field to prevent Majorana spin-flip losses in the trap cen-

ter when approaching degeneracy [37]. Due to the Pauli principle a spin-polarized cloud of

fermions is not thermalizing by its own during the evaporation. However, the large inter-

species scattering length between 40K and 87Rb allows to sympathetically cool the fermions

when evaporating the Rubidium atoms. The bosonic cloud serves as a cooling agent and is in

thermal contact with the fermionic cloud. To reach degeneracy we therefore evaporate 87Rb

with a resonant microwave signal for the |F = 2,mF = +2〉 → |F = 1,mF = +1〉 transition.

By slowly decreasing the microwave frequency within 30 s we selectively remove the hottest

atoms from the trap and the overall temperature of the cloud is decreased. During the evapo-

ration we clean out other magnetically trappable states of Rubidium (|F = 1,mF = −1〉 and

|F = 2,mF = 1〉) with additional microwave frequencies to avoid losses of 40K due to spin-

changing collisions. The advantage of sympathetic cooling is that almost no 40K atoms are

lost during the cooling scheme while we completely evaporate the Rubidium cooling agent7.

At the end of the rf-evaporation in the magnetic trap the Rb cloud is completely evaporated

and we are left with approximately 1− 2 · 106 40K atoms at a temperature T ≈ 0.2TF , where

TF is the Fermi-Temperature (see Fig. 2.2).

For the final cooling step, the spin-polarized cloud of 40K is then transferred into a crossed

beam optical dipole trap (ODT) which creates a harmonic confinement. We use two laser

beams in x and y-direction at a frequency of 826.05 nm which are red-detuned compare to

7Later in the thesis work, this evaporation scheme was changed, as will be described in the next subsection.
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the D1 and D2-line of both atomic resonances. The laser light of the dipole trap is produced

by pumping a Coherent MBR Ti:Sapphire resonator with a Coherent Verdi V18 laser at

532 nm. Due to the frequency dependence of the AC-Stark effect, the optical dipole trap

creates different harmonic potentials for each species8. However, each hyperfine state of either

Rubidium or Potassium obtains the same light shift and the trapping potential is independent

of the final spin-mixture9. The two beams have anisotropic waists (1/e2-radius) of 150µm in

horizontal direction (x or y) and of 50µm in z-direction to compensate for the gravitational

sag.

After loading the fermionic cloud into the optical trap we are no longer limited by magnet-

ically trappable states. We transfer 40K to the absolute ground state |F = 9/2,mF = −9/2〉
with a Landau-Zener sweep across all Zeeman levels at a small bias field. In order to prepare

an interacting spin-mixture10 of fermions we ramp the offset field of our Feshbach coils to

values around 230 G. At this field we then prepare a balanced spin-mixture by using rf-

radiation to drive a series of fast Landau-Zener transfers |mF = −9/2〉 → |mF = −7/2〉. We

can adjust the balance between the two spins with the magnitude of the applied rf-transition.

Probably due to inhomogeneities of the offset field and collisions during the process we lose

coherence. This allows us to create an incoherent spin-mixture of |F = 9/2,mF = −9/2〉 and

|F = 9/2,mF = −7/2〉. Subsequently we ramp close to the Feshbach resonance at 202 G, but

stay on the attractive side to reach scattering lengths around −1000a0. Using an exponential

ramp of the dipole trap laser power, we slowly reduce the trap depth within 2 s and evaporate

the fermionic mixture in a final cooling step. We slightly recompress the dipole trap and allow

for an additional wait time to reach a thermalized cloud.

Our preparation protocol allows us to reliably produce degenerate clouds of fermions with

total atom numbers 3 · 105 and temperatures below 0.1TF . At this point we then load the

spin-mixture into the optical lattice, which is explained in further detail in Section 2.3. We

experimentally determine the loading time to minimize heating during the lattice loading

allowing us to reach a quasi adiabatic loading process. An overview of those measurements

using local observables of the many-body system are presented in Section 3.2 and 5.3. De-

pending on the exact measurement we perform several additional preparation and detection

steps as will be explained at the relevant parts in the thesis. Finally, we perform an ab-

sorption image from the atomic cloud for the detection. For this the cloud is released from

the lattice and trap and evolves freely during a time of flight (TOF) expansion (≈ few ms).

Applying an additional magnetic gradient allows to perform a spin-selective detection after a

Stern-Gerlach separation during this time of flight. For our detection we usually use resonant

light and image in the fast kinetics mode of the Andor iXon Ultra camera. The imaging

process is described in detail in the PhD thesis of Thomas Uehlinger [96].
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Figure 2.3.: New evaporation scheme in the optical dipole trap with a mix-

ture of Rubidium and Kalium atoms. In our new evaporation scheme we prepare

a mixture of Rb |F = 1,mF = +1〉 with K in the two states |F = 9/2,mF = −9/2〉 and

|F = 9/2,mF = −7/2〉. (a) Loading a mixture of Rb and K atoms in the optical dipole trap

we observe that the lifetime of the mixture depends on the scattering length of the two hy-

perfine states of K. The data points show the remaining atom number in the fermionic cloud

after a hold time of 200 ms in a deep optical trap of 110 mW in the x and y-beam. For weak

attractive interactions the lifetime is strongly suppressed. The inset shows an exemplary

lifetime measurement as a function of the hold time for a scattering length of ≈ −560a0.

(b) Investigating the optimal loading ratio of bosonic and fermionic atoms. The endpoint

of the rf-evaporation is varied in order to vary the number of Rb atoms which are loaded

together with k into the ODT. The values given in the plot are mixed with a 6.63 GHz mi-

crowave source which allows to address the correct transition frequency for the evaporation.

We measure the atom number NK and the temperature TK of the fermions in the optical

dipole trap with 38 mW. An optimal evaporation can be achieved when the atom number of

K and Rb is similar (compare individual measurements in Fig. 2.2). Error bars in (b) show

the standard deviation of 5 measurements.

2.2.2. New preparation scheme - Evaporation with Rubidium in the optical trap

In contrast to the old evaporation scheme, where all bosonic atoms are evaporated in the

magnetic trap, we implement a different protocol where bosonic atoms are loaded into the

optical dipole trap. In the following I only describe the differences during the evaporation since

the rest of the preparation is equivalent to the previous method. Fig. 2.4(a) shows a schematic

overview of the different steps and the relevant ramps for the optical power of the dipole trap

and the strength of the magnetic field. Usually the fermionic cloud reaches high temperatures

(≈ 1TF ) after loading into the ODT and the subsequent preparation of the spin-mixture. In

order to reduce this heating we additionally load bosonic atoms into the optical dipole trap.

This is achieved by increasing the endpoint of the rf-frequency during the evaporation in the

QUIC trap (step 1O) to values where bosonic atoms remain (see Fig. 2.2(a)). We therefore

load a mixture of Rb |F = 2,mF = +2〉 and K |F = 9/2,mF = +9/2〉 into the ODT.

In a second step 2O we transfer the 87Rb to the |F = 1,mF = +1〉 state using a Landau-

Zener sweep at a small bias field of ≈ 13 G. Since the microwave source at 6.63 GHz is mixed

8This can be a problem if Rubidium is used for calibration and alignment purposes. In addition, the mass

difference between the atoms causes a distinct gravitational sag in the trap. For alignment purposes, we

levitate the 87Rb atoms to compensate this position shift.
9This is an approximation and only holds for far detuned laser beams

10Note, for some experiments in the following chapters we prepare spin-polarized clouds, where the preparation

sequence is different and will be explained in the relevant sections.
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with the DDS (direct digital synthesis) frequency source for our usual evaporation we can

just perform a sweep of the DDS frequency in the MHz-regime to overcome the transition

frequency of ≈ 6.96 GHz. We experimentally optimize the center frequency, the frequency

scan and the total time of the sweep to increase the efficiency. Remaining atoms in the

|F = 2,mF = +2〉 are then optically cleaned out using a resonant imaging pulse along the z-

direction11. Subsequently, we transfer 40K to the absolute ground state |F = 9/2,mF = −9/2〉
and prepare the final |F = 9/2,mF = −9/2〉 and |F = 9/2,mF = −7/2〉 spin mixture using

a series of Landau-Zener sweeps, as is described above (see step 3O). Since the lifetime of this
40K−87 Rb mixture at strong negative scattering lengths is strongly reduced (only ≈ 100ms;

see inset Fig. 2.3(a)) we ramp the magnetic offset field away from the Feshbach resonance.

Fig. 2.3(a) presents an independent measurement which shows that the mixture is stable and

almost no atom loss occurs for positive scattering lengths which are close to the background

value. Consequently, after the creation of the spin-mixture we remain far away from the

Feshbach resonance.

Finally, in step 4O we evaporate the Bose-Fermi mixture by exponentially decreasing the

trap depth of the optical dipole trap within 3 s. During the whole evaporation in the optical

trap the scattering length is set to ≈ 120a0. The final trap depth of this evaporation ramp is

chosen such that all 87Rb atoms are evaporated and only the mixture of fermions remains.

This is possible since 87Rb has a higher mass and needs stronger harmonic confinement to

compensate gravity. However, we expect the efficiency of the sympathetic evaporative cooling

to decrease since the overlap between the fermionic and bosonic cloud is constantly reduced

due to the gravitational sag12. An additional ramp (step 5O) further reduces the trap depth

which is used for further evaporation and allows for a control of the final atom number and

temperature. Afterwards, we slightly increase the trap depth in order to stop the evaporation

and allow for final thermalization of the cloud (step 6O). We experimentally determine the

optimal ratio of bosons in the optical evaporation by measuring the temperature and atom

number of the thermalized degenerate cloud with spin-mixture |F = 9/2,mF = −9/2〉 and

|F = 9/2,mF = −7/2〉. The results are shown in Fig. 2.3(b) as a function of the rf-endpoint

of the evaporation in the QUIC trap13. We clearly see that an optimum is reached for a

final rf-frequency between 6.75 and 6.8 MHz. This corresponds to roughly equal numbers of

bosons and fermions at the beginning of the optical evaporation as can be seen in Fig. 2.2(a).

A final comparison of the old and new evaporation scheme is shown in Fig. 2.4(b-d). We

vary the hold time during the thermalization process in the optical dipole trap and compare

the final atom number, temperature and isotropy of the degenerate cloud. For both schemes

the we set an equal final trap depth during the thermalization. Usually, in the old scheme

we thermalize using attractive interactions (red data points) for a better comparison we also

set the same offset field during the thermalization (blue data points) as is used in the new

evaporation protocol with Rubidium (green data points). As can be seen, using similar set

points we can reach comparable atom numbers with both protocols and the loss of atoms

11This cleaning step is crucial, since remaining atoms in the |F = 2,mF = +2〉 state induce large losses of

the 40K atoms during the spin sweep and creation of the final spin mixture.
12An alternative cooling scheme could use bosonic 39K or 41K for which this problem is minimized. The

scattering length between the different isotopes suggests efficient cooling [103].
13Note, in order to reach the correct transition frequency the DDS source providing the rf-ramp is mixed with

a microwave source at a constant frequency of 6.63 GHz.
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Figure 2.4.: Comparison of the old evaporation scheme and the new scheme

with Rubidium evaporation in the optical dipole trap (ODT). Results of the

new evaporation scheme as a function of the thermalization time are shown as green data

points. For comparison, we prepare similar clouds with the old evaporation scheme and

let the cloud thermalize at a scattering length of −171a0 (119a0), as is indicated by the

red (blue) data points. (a) Illustration of the ramps for the rf-frequency, the power in the

ODT, and the strength of the magnetic offset field. Different steps during the evaporation

process in the new evaporation scheme are labeled by numbers and are explained in the text.

The gray dotted lines indicate the ramps of the old evaporation scheme. Note, timings and

values of each parameter are not to scale but drawn such, that the difference is visible. (b)

Comparison of the final atom number in the degenerate Fermi cloud for a variable hold time.

(c) Temperature TK and heating rate in the final trap configuration as a function of the

hold time. Solid lines are linear fits to the data. (d) To indicate the degree of thermalization

of the cloud the ratio of the fitted temperatures Tx/Ty is shown for all data sets. After a

reasonable time of flight an isotropic cloud is an evidence for a fully thermalized cloud. Error

bars show the standard deviation of 5 measurements.
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is similar and not depending on the cloud preparation14. However, with the new scheme

we can reach overall lower temperatures at similar atom numbers. Although we reach lower

temperatures the heating curve is steeper for the colder cloud which could be an indication of

incomplete thermalization directly after the evaporation. Alternatively, for a constant entropy

increase due to the heating process we expect a colder cloud to increase its temperature faster

than the hotter cloud. In order to get an indication of the thermalization of the cloud we

plot the isotropy of the cloud shape after time of flight for the different thermalization times

(see 2.4(d)). From this measurement the new method seems to be rather improved compared

to the old protocol, although a difference is hardly visible. Overall, it looks like the new

protocol allows to reach colder temperatures. At least, it is now possible to prepare atomic

clouds with small atom numbers with a higher reliability, which is used for the measurements

of the driven Fermi-Hubbard model (see Chapter 10 ). By using additional measurements

with observables in the optical lattice we will explore the thermalization in a more direct

manner (see Section 5.7 for more details).

2.2.3. Evaporation with a magnetic gradient

In addition to loading 87Rb atoms together with the fermionic spin-mixture we can also try

to improve the evaporation using magnetic field gradients. This seems to be particularly

helpful in order to create a cold cloud with low atom numbers. Usually we reach those

low atom numbers by reducing the trap depth to a minimal value which leads to problems

in the thermalization since the density is more and more reduced. Therefore, we apply a

magnetic field gradient using a varying current in the Gradient coil (see Fig. 2.5(a) for the

coil setup and naming convention). In usual operation, especially in the optical lattice we use

the Gradient coil in combination with the lower Quadrupole coil and the Transport coil in

order to compensate gradients in all three dimensions. Applying a different current from this

configuration leads to a magnetic field gradient mainly along the x-direction. We expect the

gradient to form a sharper evaporation edge and to increase the evaporation already in deeper

optical dipole traps. Since the force of the magnetic field gradient depends on the hyperfine

state and is stronger for mF -states with higher magnetic moments we have to adjust the

spin balance of the cloud carefully. In order to achieve a perfect spin-mixture of 50:50 for the

|F = 9/2,mF = −9/2〉 and |F = 9/2,mF = −7/2〉 states we start the evaporation with an

imbalanced spin-mixture. We can adjust this initial value with the power of the rf-frequency

of the spin-mixture Landau-Zener sweep which is set with a voltage controlled attenuator.

We can therefore adjust the initial imbalance in such a way that the final spin-mixture after

evaporation is balanced for any gradient. Fig. 2.5(b-d) shows the results of the evaporation

for three different values of the magnetic field gradient after a thermalization time of 200

ms. A current of Igrad = 3.5A corresponds to a perfect compensation of the gradients. We

clearly see that for increased magnetic gradients the atom number after evaporation to a

constant final trap depth is decreasing significantly. Our measurements also show that the

temperatures we reach are comparable and do not seem to depend too much on the gradient.

As we have seen, it is also important to analyze the isotropy of the cloud after time of flight.

Here, there are clearly some distinctions and for low values of the ODT only the intermediate

value of the gradient seems to be thermalized.

14This is expected since the lifetime is limited by collisions with the background gas and noise in the optical

trap.
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Figure 2.5.: Using magnetic gradients during the evaporation to prepare

fermionic clouds. (a) Illustration of the coil setup that is surrounding the glass cell.

Only the final transport coil of the 11 pairs is shown. The offset field to adjust the scat-

tering length is created with the pair of Feshbach coils. The magnetic QUIC trap consists

of the pair of Quadrupole coils and a single Ioffe coil. To compensate magnetic gradients

in strong offset fields we use a combination of the Gradient coil, lower Quadrupole coil and

the last pair of Transport coils in all our measurements. During evaporation we apply a

magnetic field gradient using the Gradient coil at different currents. For a better visibility

the upper Quadrupole and upper Transport coil is omitted. Schematics adapted from [96].

(b) Comparison of the atom number after evaporation for different magnetic field gradients

as a function of the final ODT depth. Experimentally we find that a current of Igrad = 3.5A

cancels completely the magnetic field gradient at our field. (c) Final temperature of the

degenerate cloud after evaporating with a magnetic field gradient. Different gradients allow

us to reach a different range of atom numbers while keeping the overall temperature in a

similar range. (d) Crosscheck of the isotropy of the cloud after time of flight. The degree of

thermalization is given by the ratio of the fitted temperatures Tx/Ty and varies strongly for

different gradients which is most dramatic for low dipole trap depths. Error bars show the

standard deviation of 4 measurements.
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Figure 2.6.: Schematic view of the setup. Optical lattice setup to create the three-

dimensional geometry with tunable optical potentials. All optical beams have a wavelength

of λ = 1064 nm and are retro-reflected at the mirrors to form standing waves. The X and

Z-lattice beams are interfering, while X and Ỹ are frequency-detuned. The X and X beam

originate from the same optical fiber and therefore are exactly overlapped. Since the lattice

beams are red-detuned to the atomic transition an additional harmonic confinement is cre-

ated for the atomic cloud. The laboratory coordinates are used for the labeling of the lattice

beams throughout the whole thesis (gravity points along �z).

We have seen that a gradient can be used during the evaporation in order reach lower

atom numbers. This seems to be more reliably than just ramping to the sensitive trap bot-

tom where temperature increases and thermalization is questionable (compare the red and

green data points). Noticeably, our measurement shows that an evaporation with perfect

gradient compensation is overall less efficient and leads to higher temperatures and worse

thermalization. By adjusting the initial ratio of the Rubidium 87Rb and Potassium 40K we

can also reach better thermalization for larger gradients. If we control the number of bosons

the evaporation with magnetic gradients is improved and is reliably producing degenerate

Fermi clouds around 0.05-0.1 TF with NK = 30� 300 · 103 in a controllable manner.

2.3. Tunable optical lattice setup

The core of our experiment is the tunable three-dimensional optical lattice [42] into which we

load a degenerate cloud of fermionic 40K. While the original setup of the tunable lattice was

built before my PhD work some upgrades and changes have been implemented throughout

the work. Therefore, I only give a short overview and present the new implementations

in more detail. A complete overview and accurate explanation of the lattice setup and its

implementation is given in the PhD thesis [95]. The tunable three-dimensional lattice setup is

created by a combination of interfering and non-interfering counter-propagating laser beams

at a wavelength of λ = 1064 nm. We use a Nd:YAG laser (Coherent, Mephisto MOPA) with

a total power of 55 W and a specified linewidth of ≈ 1 kHz, to create all lattice beams15. A

schematic overview of the setup is presented in Fig. 2.6. Each laser beam is retro-reflected at

a mirror of 0◦ in order to form a standing wave optical potential. All lattice beams intersect at

angles of 90◦ which are slightly tilted compared to the glass cell to avoid multiple reflections.

15Some of the experiments were still performed with the old 42 W version of the same laser type Mephisto

MOPA.
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Square Dimer 1D chain 

Chequerboard Honeycomb

Figure 2.7.: Examples for the optical potential in the xz-plane achievable in our

tunable lattice setup. The combination of interfering and non-interfering lattice beams

allows us to tune the optical potential to various different geometries. Minima of the potential

are shown in bright color, maxima with dark red color and contour lines indicate regions with

same potential energy. While a standard square lattice is formed by the two non-interfering

beams X and Z, a pure chequerboard potential is formed using the two interfering beams X

and Z. Depending on the optical power of all three beams we can also realize a dimer and

honeycomb lattice or different forms of 1D chains. The different potential plots are created

using the lattice depths specified in Table 5.1, which are the geometries mainly used in our

experiments. An exemplary three-dimensional plot of the lattice potential is shown for a

honeycomb lattice. Although the distance of neighboring sites is not equal we can adjust the

barrier height such that the tunneling within the honeycomb plane can be isotropic. The

additional lattice beam in y-direction (not shown) couples the planes and creates a stacked

three-dimensional potential landscape.

In standard simple cubic lattices [104] all counter-propagating laser beams are frequency

detuned and do not interfere with each other. In order to obtain a tunable geometry we follow

a different approach where some of the optical lattice beams interfere in order to create more

complex lattice structures [42]. Also other schemes allow to create complex lattice structures.

One example is the intersection of interfering lattice beams at an angle of 120◦, which creates

various geometries like triangular, hexagonal or Kagome structures [40, 41, 43, 44]. Additional

beams and different angles allow even to realize optical quasicrystals [105, 106]. In our setup,

all lattice beams are counter-propagating and therefore interfere with the retro-reflected

counterpart. In addition, the X and Z lattice beams have exactly the same frequency and

thus interfere with each other. The two other beams X and Ỹ are frequency detuned and

form independent non-interfering standing waves.

For equal intensity in the incoming and retro-reflected laser beams16 we obtain the following

three-dimensional optical lattice potential

Vopt(x, y, z) = �VX cos2(klatx+ θ/2)� VX cos2(klatx)

�V
Ỹ

cos2(klaty)� VZ cos2(klatz)

�2α
√
VXVZ cos(klatx) cos(klatz) cosϕSL, (2.1)

16We compensate for losses in the glass cell and other optical elements by tuning the polarization before and

after the glass cell to adjust the interference.
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with klat = 2π/λ and V
X,X,Ỹ ,Z

as the individual lattice depths of each beam17. The phase

between the interfering beams X and Z is interferometrically stabilized to ϕSL = 0.00(3)π

by independently stabilizing each beam to a common reference using a ’frequency tagging

method’. Our locking is based on a heterodyne technique of the interference between the

reference beam and the weak ’tag’ beam of the retro-reflected lattice beam. The ’tag’ beams

are additional frequency-detuned weak non-interfering lattices along the x and z axis with

a lattice depth below 0.5ER, where ER = h2

2mλ2 is the recoil energy. The mix down of this

signal with a harmonic oscillator enables us to lock the interference phase ϕSL but also to

continuously tune it18.

The visibility α of the interference term is calibrated using amplitude modulation of the

lattice depth (see Section 2.3.1 for more details). Usually, the phase θ = 1.000(1)π, which is

directly controlled by the frequency difference between the beams X and X. Setting θ 6= π

will break the inversion symmetry of the lattice and allows to control the energy offset ∆AB

between the A and B sub-lattice. A detailed discussion follows in Section 2.4 where also

the calibration protocol for ∆AB is explained. In contrast to the interference phase ϕSL we

do not need to actively stabilize the phase θ, since the small frequency difference and the

macroscopic distance between atomic cloud and retro-reflecting mirror guarantees passive

stability19.

Finally, for a steady optical potential we need to stabilize the intensity of each lattice

beam. The control for the Ỹ and Z is straight forward and uses the standard technique

of a PID-feedback on the rf-power of the acousto-optical modulators (AOM). Here, a small

fraction of the optical power is picked up using a photodiode on the experimental table and

used in the feedback loop. Overall, the whole procedure is more difficult for the two lattice

beams X and X, since they need to be exactly overlapped and are transmitted through the

same fiber, but have the same polarization and a frequency offset by only ≈ 400MHz. We

use an additional frequency ’tagging’ technique in which the DC value of the rf-power for the

X and X AOM is mixed with an ’intensity’ tag in the low MHz-regime, but at a different

frequency for both beams. This leads to a small amplitude modulation of each beam at the

frequency of the ’intensity tag’. A rf-photodiode is then used to pick up the combined signal

of the two beams in x-direction. We use a Zurich Instruments HF2LI Lock-in Amplifier to

digitally demodulate the beat signal with each ’intensity tag’ frequency and extract a DC

signal which is proportional to the single lattice depths VX,X . A detailed derivation and the

exact values of the used frequencies can be found in [95]20.

Fig. 2.7 presents an overview of optical potentials achievable in the xz-plane of our ex-

periment. Each potential can be reached with a definite combination of lattice beam powers

VX,X,Z . While the square (chequerboard) lattice is realized by a combination of two lattice

beams with intensity VX = VZ (VX = VZ) the dimer and honeycomb lattice is a combination

of all three beams. By controlling the individual intensities we can dynamically change the

geometry and connectivity of the lattice and obtain a tunable setup. To calibrate the individ-

17Note, within the whole thesis the same axis convention is used, which means that values of lattice beams

and the naming convention deviates from some of our publications.
18All experimental details of the method are explained in [95].
19Possible fluctuations of the mirror position should be below 10−4. However, we observe small day to day

fluctuations in the experiment which require frequent calibrations.
20Note, this description does not include the digital demodulation with the Lock-in Amplifier, which was

introduced during the work of this thesis.
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ual lattice depths we perform Raman-Nath diffraction on the Bose-Einstein condensate [107,

108, 109, 110] with short pulses of each lattice beam21. We implement an automatic readout

of the real lattice depths using a Picoscope 4824 which is embedded in our sequence. As a

result, we can actively address small drifts during long-term measurements and increase the

reproducibility of our measurements which are separated by a longer time span. As will be

shown throughout the thesis, we use this control of the lattice geometry to realize a variety

of different experiments and to perform advanced detection protocols.

2.3.1. Calibration of the visibility α

Usually, we calibrated the visibility α of the interference term using the Raman-Nath diffrac-

tion pattern of a BEC. However, this method seems to not be perfectly accurate and is bound

to a certain value of deep optical lattices ≈ 30ER. In contrast, we have been using a different

technique for our more recent papers. Here, we perform amplitude modulation of the lattice

depth for different configurations of the optical potential, which is even possible in shallower

lattices. By modulating the optical lattice with varying frequencies we couple states of the

lowest bands to higher bands [111, 112]22. We can exactly measure the bandgap to the higher

bands, by loading a 87Rb BEC into our modulated optical potential. However, for an accurate

determination of the visibility we need to know exactly the order of the transition and the

index of the resonantly excited band. In our regime this is experimentally challenging, since

the resolution of the band mapping technique is not perfect for such deep optical lattices.

Therefore, experimentally we cannot extract the transition index of a given higher band, as

well as the order of the transition.

To overcome this problem we perform a series of measurements with similar optical po-

tentials. Fig. 2.8(a) shows the general idea. An increasing value of VX at constant VX,Z =

[1, 14]ER affects the transition energies to higher bands by a different amount. As a result, if

we perform several measurements with varying VX but constant VX,Z = [1, 14]ER it is pos-

sible to distinguish the order of the transition, even if we cannot extract the band index of

the excited band. Experimentally we find that amplitude modulation strongly couples to the

third band (1→ 3). An exemplary measurement of the excitation to higher bands is shown in

Fig. 2.8 for the lattice configuration VX,X,Z = [8.3, 1.05, 13.94]ER. For an accurate calibra-

tion we detect the optical beam powers with the Picoscope and also include the additional

weak lattice beams of the ’tags’. The measurement directly reveals that we cannot resolve the

band index, but we rather observe an increase of atoms in higher bands. Nevertheless, with

our method we doubtlessly find the transition to be of third order from the lowest band to the

third band (1→ 3). By using this data, we can calibrate α by calculating the expected band

gap as a function of the visibility (see Fig. 2.8(d)). From a series of measurements we obtain

our calibration α = 0.92(1) which is in a similar regime as the value of the Raman-Nath

diffraction method23.

21More recently, we switched to amplitude modulation of the lattice depths and use the transition frequencies

to higher bands as a calibration parameter.
22Similarly, phase modulation of the optical lattice will also excite atoms to higher bands [113, 114].
23This value is only used for our most recent publications. Other values arise from old calibration methods

and are indicated in the relevant chapters of the thesis.
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Figure 2.8.: Calibration of the visibility α of the interfering term. To calibrate α

we perform amplitude modulation to excite atoms of the 87Rb BEC to higher bands. (a)

By using an optical lattice potential realized with a combination of all three lattice beams

VX,X,Z we can tune the band gap of the higher bands. We show the transition frequency

to the second (1 → 2) and third band (1 → 3) for a momentum state q = 0, which is the

relevant one for a BEC. An increasing value of VX at constant VX,Z = [1, 14]ER reduces both

transition frequencies with a characteristic slope. (b) Exemplary measurement for a distinct

optical potential on the remaining atoms in the 1st Brillouin zone (1BZ) as a function of the

modulation frequency. A clear reduction is visible for a certain frequency at which we couple

to a higher band. (c) When states in the lowest band are coupled via modulation to the

higher band we observe a higher fraction of atoms in higher Brillouin zones 2BZ and 3+BZ.

(d) We can scale down the energy gap in order to match the resonance frequency (dotted

line) and extract an exact value for α. Due to a series of measurements we identify a third

order transition (1 → 3) and find in the exemplary measurement a value α = 0.925. Solid

lines in (b,c) represent a Lorentzian fit to the data, error bars show the standard deviation

of 3 measurements.

2.4. Tight-binding model and band structure of the Honeycomb lattice

The previous section has shown that we can realize a variety of different lattice potentials

with our tunable setup. In the following we want to analyze the honeycomb geometry and

its Hamiltonian in more detail24. By implementing this setup, we can directly mimic the key

properties of graphene, like Dirac fermions and a hexagonal structure [115]. In general, engi-

neering such systems is gaining interest in an increasing number of disciplines in physics [116].

The artificial structures are created by confining photons in hexagonal lattices [117, 118], by

nanopatterning of ultra-high-mobility two-dimensional electron gases [119], and by scanning

probe methods to assemble molecules on metal surfaces [120]. Also different experiments

in ultracold atoms have implemented honeycomb geometries in optical lattices [41, 42, 44,

24Parts of this section are presented in the supplementary of our publication [13].
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Figure 2.9.: Tight-binding model of a bipartite lattice. The honeycomb lattice

contains two sites per unit cell and is therefore described by two sublattices A and B. (a)

Definition and labeling of the Bravais lattice vectors u1, u2, intra-sublattice vector u3 and

the inter-sublattice vectors v0,v1,v2,v3 for the honeycomb lattices considered in our setup.

(b) Labeling convention of the tight binding parameters in the honeycomb lattice. Arrows

indicate the definition of possible phases along the next-nearest neighbor tunneling links.

In our setup the tunneling t3 can be completely canceled by a correct choice of the lattice

depths.

121, 122]. Throughout this thesis we will see which intriguing properties can be revealed by

simulating graphene and how it allows to implement topological band structures.

In the following we want to briefly describe the main properties and analyze their origin by

describing the tight-binding model of the honeycomb lattice. A general and detailed discussion

on graphene can be found in Refs. [6, 115]. The honeycomb lattice contains two sites per unit

cell A and B shifted by v3 (see Fig. 2.9). It therefore features nearest neighbor tunnelings tj
connecting sites between sublattices A and B. In our general description we include an energy

offset ∆AB between the sites of the two sublattices. Furthermore we allow for a imaginary

next-nearest neighbor tunneling t′Aj′ and t′Bj′ linking sites within a single sublattice A and B.

The resulting tight-binding Hamiltonian is then given by [6, 13, 123]:

Ĥ =
∑
u∈A

[∆AB

2
â†uâu −

∆AB

2
b̂†u+v0

b̂u+v0 (2.2)

+
∑
j

(tj b̂
†
u+vj

âu + h.c.)

+
∑
j′

(t′Aj′ â
†
u+uj′

âu + t′Bj′ b̂
†
u+v0−uj′ b̂u+v0 + h.c.)

]
where the vectors vj connect A –B site pairs and the vectors uj′ connect A –A/B –B site

pairs (see Fig. 2.9). Here, âr, â†r (b̂r, b̂†r) denote the annihilation and creation operators on a

site belonging to the A (B) sublattice. We define the phases of the complex t′Aj′ and t′Bj′ along

the arrows shown in Fig. 2.9b. A more intuitive picture arises if we define the tight-binding

Hamiltonian in quasi-momentum space. This is achieved by using the Fourier transform of

the annihilation and creation operators on each sublattice,

âq =
1√
N

∑
u∈A

e−iq·uâu, b̂q =
1√
N

∑
u′∈B

e−iq·u
′
b̂u′

The tight-binding Hamiltonian can then be rewritten (in quasi-momentum space) as:

24



2.4. TIGHT-BINDING MODEL AND BAND STRUCTURE OF THE HONEYCOMB
LATTICE

qx

qz

E

Figure 2.10.: Bandstructure of the honeycomb lattice. (a) Exemplary energy spec-

trum of the two lowest bands in a honeycomb lattice. The spectrum features two Dirac points

with a linear dispersion relation.

Ĥ(q) = (â†q b̂
†
q)

(
hAA h∗AB
hAB hBB

)(
âq
b̂q

)
= hiÎ + hxσ̂x + hyσ̂y + hzσ̂z (2.3)

where we define the operators Ô = (â†q, b̂
†
q)O (âq, b̂q)T acting on the space spanned by the

Bloch waves residing on the two sublattices â†q |0〉 and b̂†q |0〉, with I the 2× 2 identity matrix

and σx,y,z the Pauli matrices satisfying the commutation relations [σα, σβ] = 2iεαβγσγ . The

coefficients hi,x,y,z are expressed as:

hi =
∑
j′

Re(t′Aj′ + t′Bj′ ) cos(q · uj′) + Im(t′Aj′ � t′Bj′ ) sin(q · uj′) (2.4)

hx = Re
�∑

j

tje
iq·vj

)
, hy = Im

�∑
j

tje
iq·vj

)
(2.5)

hz =
∆AB

2
+
∑
j′

Re(t′Aj′ � t′Bj′ ) cos(q · uj′) + Im(t′Aj′ + t′Bj′ ) sin(q · uj′) (2.6)

The energies of the associated energy bands are

ε±(q) = hi ±
√
h2
x + h2

y + h2
z. (2.7)

Let us consider two different cases. First, if we describe our Hamiltonian by only nearest

neighbor tunneling terms (hz = 0) we get a band degeneracy (ε+(qD) = ε�(qD)) for two

points of the quasi-momentum space. They are located at the quasi-momenta qD where the

two bands ’touch’ and are defined via hx(qD) = hy(qD) = 0. These two Dirac points appear

at opposite quasi-momentum ±qD, as hx(�qD) = hx(qD) and hy(�qD) = �hy(qD). These

degeneracy points make graphene so unique and results in its description as a semi-metal.

We can calculate the non-interacting band structure of our honeycomb lattice using direct

diagonalization of the Hamiltonian. Fig. 2.10 shows the resulting band structure and nicely

shows the linear dispersion relation around the Dirac points. Although we have no perfect

hexagonal lattice we can still obtain isotropic Dirac points – as is the case in real graphene.
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This is achieved by tuning the potential barriers such that even though the wells of the

honeycomb lattice are not equidistant the tunneling along the x and y axis of the brick-like

structure are the same, tx = ty. In the tight-binding model the condition for the existence

of Dirac points was found to be tx < 2ty [124] (assuming t3 = 0). Basically, as long as

the inversion symmetry and time-reversal symmetry are both satisfied the Dirac points will

remain closed for any small perturbation or anisotropy of the tunneling links [6]. In previous

measurements this transition, where the two Dirac points merge, has been explored in our

experiment [42]. Furthermore, Dirac points and their linear dispersion relation have been

observed and characterized using Bloch-Zener transfers, in excellent agreement with theory

[42, 124, 125]. In the experiment, the amplitude of t3, which corresponds to a next-next-

nearest-neighbor tunneling, can in general be significant. However, it does not qualitatively

change the band-structure of the system. Its main contribution is to move the position of the

Dirac points, in the same way as a larger value of t0 would.

In contrast, if we break one of the two symmetries the whole picture changes. By including

either a site offset (broken inversion symmetry) or complex next-nearest neighbor tunneling

terms (broken time-reversal symmetry) the term hz leads to an opening of the gap and lifts

the degeneracy of the two bands25. One prominent example in solids it the boron nitride

structure which is built of different atoms on the A and B sublattice sites and therefore is

defined as a gaped insulator. In this general case, the gaps at two opposite Dirac points ±qD
are given by

G± = ε+(±qD)− ε−(±qD) = |∆AB ±∆T|, (2.8)

where ∆AB is the gap induced by breaking inversion symmetry through a site offset and |∆T|
is the gap induced by the complex tunnelings.

As we will see in Chapter 8 breaking time-reversal symmetry does not only lead to a gapped

excitation spectrum but also realizes a topological Chern insulator [6, 12]. By periodically

driving the honeycomb system on elliptical trajectories [69] we can experimentally realize

this model and probe its topological properties.

We can experimentally break inversion symmetry when tuning the phase θ 6= π as it moves

the position of the standing wave of the interfering lattice with respect to standing wave of

the non-interfering lattice. Since the phase θ is directly controlled by the frequency difference

of the X and X lattice beams, we can accurately tune the energy offset ∆AB between the

A and B sub-lattice. Fig. 2.11 presents the two-dimensional band structure and a cut along

the two sites of the honeycomb lattice. Different methods are used to calibrate the inversion

symmetric point θ = π. One possibility is to use Bloch-Zener transfers through the Dirac

points [13, 42, 125] of a polarized fermionic cloud to determine the frequency detuning which

results in ∆AB = 0 26. In Chapter 8 we will use the Landau-Zener transfer to directly reveal

the gap opening in the Haldane model. Another possibility is to load a system of double wells

with two interacting fermions of opposite spin. The probability to find a double occupancy

is then dependent on ∆AB = 0 and we can extract the point of minimal creation of double

occupancies.

Breaking inversion symmetry allow allows for interesting studies in static Hamiltonians. In

Chapter 4 we introduce the broken inversion symmetry as an additional energy scale which

25Therefore, this term is often called Dirac mass since it changes the linear dispersion relation to an effective

mass.
26A recent experiment has probed the band structure during the gap opening by microwave spectroscopy [122].
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Figure 2.11.: Breaking inversion symmetry in the Honeycomb lattice. The hon-

eycomb lattice is formed by two sub-lattices and forms a unit cell with two sites A and B.

We can adjust the detuning between the two lattice beams X and X to break the inversion

symmetry between the two sites. As a result the potential energy is reduced on one sub-

lattice compared to the other sub-lattice. A cut through of the optical potential (in arbitrary

units) in the xz-plane for klatz = π shows the broken inversion symmetry. Wannier states of

atoms on neighboring lattice sites will be shifted by the energy ∆AB .

tz

ty

tx t'x

x
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z

Figure 2.12.: Naming convention of the tunneling links in the tight binding

model. The tunable optical lattice allows us to independently control the strength of each

tunneling link. The exact value of tx, t′x and tz depends on the strength of the lattice beams

in the xz-plane. In order to reach a dimerized lattice we increase tx while decreasing t′x. The

strength of the y-lattice beam defines the coupling ty out of the plane.

competes with the kinetic energy as well as the interaction energy of the many-body system.

In this way we implement an Ionic Hubbard model on the honeycomb lattice [53], which

allows us to investigate a transition from a charge-density wave to a Mott insulating state.

2.5. The Fermi-Hubbard Hamiltonian

When we extend the discussion from the previous section to three-dimensional lattice struc-

tures with tunable geometry and include also interactions of the fermions we can describe

our system in a general form by the Fermi-Hubbard Hamiltonian [23, 126, 127, 128]. Here,

we will only briefly mention the most important properties as a basis for the experimental

chapters which follow. The Fermi-Hubbard Hamiltonian is defined as:

Ĥ = �
∑
〈ij〉,σ

tij(ĉ
†
iσ ĉjσ + h.c.) + U

∑
i

n̂i↑n̂i↓ +
∑
i,σ

Vin̂iσ , (2.9)
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where ĉ†iσ and ĉiσ denote the fermionic creation and annihilation operators at lattice site i

for atoms in either of the two spin states σ ∈ {↑, ↓}.
The properties of the quantum mechanical system of the Fermi-Hubbard Hamiltonian is

defined by three different characteristic energies27. The kinetic energy is thereby given by a

sum of nearest neighbor tunneling terms denoted with 〈ij〉. As we have seen in Section 2.3

we can freely tune the values of the tunneling tij and can have anisotropic as well as isotropic

systems with varying geometry. The tunneling on the different bonds is in general not set

to equal values. Fig. 2.12 presents the labeling scheme which will be used throughout the

whole thesis. We should keep in mind that higher order tunneling process (e.g. next-nearest

neighbor) are not strictly zero and will contribute to higher order corrections. As we have just

seen for the honeycomb lattice such higher order tunneling processes can have a significant

impact and might lead to new physical properties.

The other two relevant energy scales are the onsite-interactions U for two particles of

opposite spin sitting on the same lattice site. Here, n̂iσ = ĉ†iσ ĉiσ is the density operator on

site i. The last term in the Hamiltonian describes the energy of the harmonic trap Vi which is

defining the local chemical potential in the optical lattice. The tight-binding parameters and

the on-site interaction U is determined in the usual way by calculating the overlap integrals

of the Wannier states w0(r) [129]:

tij = −
∫
d3r w0(r− ri)

[
− 1

2m
∇2 + V (r)

]
w0(r− rj) (2.10)

U =
4πas
m

∫
d3r |w0(r)|4 , (2.11)

where V (r) is the potential defined by the optical lattice in combination with the harmonic

trap. As stated above, since we use 40K atoms we can tune the (s-wave) scattering length as
by a Feshbach resonance, which allows to tune from strongly attractive to strongly repulsive

interactions28. The resonance is located at 202.10(7) G in case of the mF = −9/2,−7/2

mixture and at 224.21(5) G for the mF = −5/2,−7/2 mixture [130, 131]. In contrast, if we

load a spin-polarized gas the interaction term vanishes since the s-wave scattering is forbidden

by Pauli blocking.

The usual approach to calculate Wannier functions is based on the Marzari-Vanderbilt

scheme [132, 133], which numerically minimizes their spatial variance [134, 135, 136]. How-

ever, for more complex lattice structures (such as the honeycomb lattice) this direct mini-

mization may get stuck in local minima and becomes numerically expensive, requiring lattice-

specific adaptations [52, 135]. In our experiment we instead calculate the Wannier functions

as eigenstates of the band projection operators [137] 29. This alternative approach has been

developed by our collaborators Ulf Bissbort and Walter Hofstetter and was shared with

us. For details on the calculation, see the supplementary of our joint publication [52] and

especially the PhD thesis of Ulf Bissbort [138].

27In general, we will not consider any extended Hubbard terms and higher band corrections and only mention

them in short when necessary.
28Note, we do not include higher orbitals in the scattering properties.
29For the calculation of the tight-binding parameters we always include corrections of the additional ’tag’-

beams arising from the locking scheme described above.
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2.5.1. The phase diagram of the Fermi-Hubbard model

The physics of the Fermi-Hubbard model is governed by the interplay of the kinetic energy,

the interactions of the system, the chemical potential and the overall temperature we reach

in our quantum system. In the next paragraph I will summarize the main features of the

model and describe the relevant quantities which are needed throughout the thesis. For a

detailed discussion on the phase diagram and all its intriguing physics, the reader is referred

to Refs. [23, 127, 128] 30. Let us first consider the repulsive side (U > 0) of the phase

diagram. For finite temperatures (which is the relevant regime when considering atoms in

optical lattices) we find two relevant excitations in the system. At half-filling (one particle

per site) and for strong repulsive interactions (U � t) the energy spectrum is gaped and

we realize a Mott insulating state. If the on-site interactions are the dominant energy scale

the atoms will localize on lattice sites since the excitations are suppressed. A significantly

high temperature leads to ’charge’ excitations at energy U and creates doublon-holon pairs31,

however, at the usual temperatures reached in cold atom experiments these excitations are

highly suppressed. Subsequently, if the interactions are decreased this insulator will exhibit an

increased number of doublons and a crossover to a metallic state occurs if the kinetic energy

becomes dominant. In this case the atoms are delocalized over many-sites. This crossover

region and the Mott insulating state has been experimentally observed and characterized in

pioneering experiments with fermions in optical lattices [34, 35].

The second energy scale is given by spin-excitations which at large interactions are de-

scribed by a super-exchange process. Here, neighboring atoms feature an anti-ferromagnetic

coupling which arises from an exchange process that is coupled via an (intermediate) ex-

cited double occupancy. In the Heisenberg limit (U � t) this exchange process is given

by J = 4t2/U . Below a critical temperature the Fermi-Hubbard model therefore features

a phase transition to a long-range ordered antiferromagnet32. This magnetic ordering can

be destroyed again when tuning to weaker interaction as charge fluctuations become more

dominant. As expected from the picture described above, the critical temperature for this

transition will be dependent on the value of U/t and has a maximum at intermediate lev-

els [139]. In the experiment, we will investigate both temperature regimes and look at the

occupation of the ’charge’ defined as double occupancies (Chapters 3 and 4) as well as on

local spin-correlations. Although we do not reach temperatures below the quantum phase

transition the current regime is cold enough to detect local magnetic correlations for differ-

ent geometries (for more details see Chapter 5). Both observables are used to explore the

properties of periodically driven optical lattices (see Chapters 9 and 10). At even lower tem-

perature and in the doped 33 repulsive regime of the two-dimensional Fermi-Hubbard model

a d-wave superfluid phase is claimed which might be connected to the high-temperature

superconductivity in cuprates [140].

We will also briefly consider the attractive side (U < 0) of the Fermi-Hubbard model,

although it was only investigated in few experiments of the charge sector throughout the

30A review on realizations of the Hubbard model also including more complex lattice structures can be found

in [27].
31We refer to the excitations as charge, although the atoms are charge neutral. Nevertheless, we use this term

to illustrate the mapping to condensed matter systems.
32In the general case, we describe the isotropic simple cubic lattice. However, in lower dimensions this de-

scription changes, which is discussed in more detail in Chapter 5.
33A particle number which differs from half-filling.
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work of this thesis. In general the attractive Fermi-Hubbard model features as many exciting

properties as the repulsive site. In the same temperature regime where the repulsive model

features antiferromagnetic ordering the attractive side is governed by a BCS-BEC crossover

at the interactions are increased. The system exhibits a superfluid ground state with bound

pairs which eventually are described by hardcore bosons deep in the BEC-regime. As on the

repulsive side, we can identify two temperature scales, a higher one defined by U where we

start to form pairs on individual sites and a temperature scale below a critical value for which

the system becomes superfluid.

So far we have focused on the half-filled model, however the external harmonic confinement

will lead to varying filling within the optical lattice system and different phases coexist.

Throughout the whole thesis we will refer to the properties of the central region (e.g. a Mott

insulator) although the lower filled region will be a metallic state with increased charge-

density fluctuations. Here, we should note, that recently experiments have implemented box-

like potentials which allow for a control of the exact filling throughout the whole cloud

[141]. In addition, experiments with single site microscopes can focus their analysis on the

central region with half-filling (or other filling) in order to investigate the properties of their

model [21, 55, 142, 143, 144, 145]. However, if we perform measurements our observables (like

double occupancies or spin correlations) are averages over all filling regions of the cloud. In

our parameter regime we can approximate the effect of the harmonic trap with a local density

approximation (LDA) by assuming a locally varying chemical potential which includes the

trapping potential µloc(i) = µ0 − Vi, with µ0 as the chemical potential in the center of the

trap [146]. The LDA also has to be included if we want to compare our experimental results

with theory (see for example the discussion on the high-temperature series expansion below).

2.6. The ”Hubbard” model on two sites - spectrum of interacting fermions

on a double well

We can gain more insight into the Hubbard model by analyzing and deriving the behavior

and states on its smallest building block - a symmetric double well filled with two fermionic

atoms of opposite spin [39, 72, 147, 148]. The two fermions can hop to the opposite site with a

tunneling amplitude t and experience an one-site interaction U (see schematics of Fig. 2.13).

To derive the tight binding Hamiltonian we consider two distinguishable fermions with spin ↑
and ↓ 34. We start with a continuum Hamiltonian for fermions with two spin states σ and zero

range interactions Vint(r) = 4πa/mδ(r), where m is the mass of the atoms and a the s-wave

scattering length35. The tight-binding Hubbard Hamiltonian is obtained upon replacing the

field operators with Ψ̂†σ(r) =
∑

l=L,Rwl(r)c†lσ. Here, c†Lσ (c†Rσ) denote the fermionic creation

operators for a particle with spin σ on the left (right) side of the double well and wL(r)

(respectively wR(r)) are the (real) Wannier functions of the underlying extended lattice. As

described in the previous section they are determined as eigenstates of the band projected

position operator [52].

34The following derivation is based on the Appendix A of our publication [72].
35Note, we set ~ = 1 in the derivation of this section.
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Figure 2.13.: Spectrum of two interacting fermions in the double well. (a)

Schematic view of the energy scales in the double well structure. We prepare a system

of two fermions with opposite spin within the double well. Atoms can hop on the other site

with tunneling energy t and exhibit an on-site interaction energy U . (b) The interacting

two-body system is fully described by four eigenstates. We show their energy spectrum as

a function of the interaction energy U . We refer to the lowest energy state as the Hubbard

singlet which smoothly evolves from |D+〉 to |s〉 as the interactions are tuned from strongly

attractive to strongly repulsive. The two components are equally populated for U = 0, and

the width of the crossover region is given by 4t.

We choose to work in the Fock basis of the left and right sites.

|↑, ↓〉 = c†R↓c
†
L↑ |0〉 ; |↑↓, 0〉 = c†L↓c

†
L↑ |0〉

|↓, ↑〉 = c†R↑c
†
L↓ |0〉 ; |0, ↑↓〉 = c†R↓c

†
R↑ |0〉

(2.12)

in which the Hamiltonian takes the form

H0 =


U �t t 0

�t 0 0 �t
t 0 0 t

0 �t t U

 (2.13)

Here, we have introduced again the tunneling amplitude t and the on site interaction U .

Since we consider a symmetric double well (∆AB = 0), the Wannier functions are symmetric

around the center of the wells wL(r) = wR(�r) and the interaction U is equal on the left and

the right site.

Again, we exclude any higher band corrections, like the correlated tunneling Vct describing

the hopping of atom pairs, the nearest-neighbor interaction Vnn and the direct spin exchange

Vde which is connected to spin flips between the two Fermions on adjacent sites. Furthermore,

we exclude the density assisted hopping term δt, which accounts for a correction to the

tunneling amplitude when there is another particle of opposite spin present in the double

well. In the double well the first three of these terms are equal and defined as

Vct = Vnn = Vde =
4πas
m

∫
d3r |wL(r)|2 |wR(r)|2 (2.14)

while the density assisted hopping is given by

δt = �4πas
m

∫
d3r |wL,R(r)|2wL(r)wR(r) (2.15)
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All the corrections are negligible in the usual regime of static lattices which we realize in our

experiments. We can estimate their value by determining the Wannier functions as eigen-

states of the band-projected position operator [52] and calculate the corrections according

to Eqs. (2.14) and (2.15). For example in the double well configuration used in Chapter 9 we

find that Vct/U, Vnn/U, Vde/U ≈ 10−3 and δt/U ≈ 10−2, which justifies the exclusion of those

terms.

By choosing a new basis we can now obtain an intuitive understanding of the model.

The basis consists of a singlet state |s〉, a triplet state |t〉 and two states containing double

occupancies |D±〉 given by

|t〉 =
1√
2

(|↑, ↓〉+ |↓, ↑〉) ; |D+〉 =
1√
2

(|↑↓, 0〉+ |0, ↑↓〉)

|s〉 =
1√
2

(|↑, ↓〉 − |↓, ↑〉) ; |D−〉 =
1√
2

(|↑↓, 0〉 − |0, ↑↓〉)
(2.16)

In this new basis, the Hamiltonian takes the simple form

H
′
0 =


0 0 0 0

0 U 0 −2t

0 0 U 0

0 −2t 0 0

 (2.17)

We see that |t〉 and |D−〉 are eigenstates with energies 0 and U , respectively. The other two

eigenstates are superpositions of |s〉 and |D+〉 with eigenenergies

E1,4 =
1

2

(
U ∓

√
16t2 + U2

)
(2.18)

The resulting energy spectrum is shown in Fig. 2.13b. For large repulsion, the singlet is the

ground state, whereas for strong attractive interactions it is the |D+〉 state containing double

occupancies. We will refer to the ground state of the double well on the repulsive side as the

”Hubbard singlet” although it contains a admixture of doublons36. We can now also easily

obtain the magnetic exchange energy for repulsive U , which is the energy two particles gain

if they form a singlet state (with anti-ferromagnetic coupling). The energy of the singlet is

given by the lowest energy state and has to be compared to the triplet state (which is at

energy 0). The magnetic exchange energy is therefore given by J = 1
2

(
U −

√
16t2 + U2

)
. In

the Heisenberg limit of U � t this results in a magnetic exchange energy J = 4t2/U which

is exactly the result we discussed above.

2.7. Atomic limit calculation and high-temperature series expansion

A detailed overview of all theoretical tools and experimental detection schemes are beyond

the scope of this thesis. Nevertheless, in the following section we will briefly discuss some

important techniques which will be used in the different chapters of the thesis. A general

overview of techniques is given in different reviews and books on quantum gas experiments

[22, 23, 24, 26, 129]. All experimental observables will be explained as they are introduced

for the first time in the thesis.
36This is why we label the corresponding state in the large U -limit with a tilde in Fig. 2.13.
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A simple theoretical model to describe the Fermi-Hubbard model is the high-temperature

series expansion (HTSE) [149], which includes in lowest order also the atomic limit. The

general idea of the high-temperature series is to expand one part of the Hamiltonian in

powers of βE, where E is the perturbative energy scale of the system and β = 1/(kBT ).

This approach is valid, as long as the temperature is larger than the term of the Hamiltonian

treated as a perturbation. In our case this is true in most of the experiments for the kinetic

energy of the Fermi-Hubbard model, since the tunneling energy t is lower or equivalent for

the best parameters than the temperatures we reach in the optical lattice. We can therefore

split the Hamiltonian in a perturbed term of the tunnel coupling Ĥp and the unperturbed

Hamiltonian Ĥ0 containing the interactions and harmonic trap:

Ĥ = Ĥ0 + Ĥp = U
∑
i

n̂i↑n̂i↓ +
∑
i,σ

Vin̂iσ +−t
∑
〈ij〉,σ

(ĉ†iσ ĉjσ + h.c.), (2.19)

where we have assumed an isotropic tunneling of the system for simplicity. The general scheme

of the expansion series is now to find the partition function Z by expanding the partition

function of the unperturbed Hamiltonian Z0 = Tr{e−βĤ0} in powers of βt [95, 149]:

Z = Tr{e−βĤ} (2.20)

= Z0

{
1 +

∞∑
n=1

(−1)n
∫ β

0
dτ1

∫ τ1

0
dτ2 ...

∫ n−1

0
dτn

〈
Ĥ ′p(τ1)Ĥ ′p(τ2)...Ĥ ′p(τn)

〉
0

}
, (2.21)

where we have introduced the representation Ĥ ′p(τ) = eτĤ0Ĥpe
−τĤ0 and 〈...〉0 is evaluated

in the unperturbed Hamiltonian:

〈...〉0 = Tr{e−βĤ ...}/Z0 (2.22)

We should keep in mind that the expansion is only valid for the temperature range U �
kBT � t. The thermodynamic quantities can then be computed via the definition of the

grand canonical potential −βΩ = logZ. For example the fraction of doubly occupied sites

is given by D = ∂UΩs and the local density per site n = −∂µΩs, with the grand canonical

potential per lattice site Ωs/l of a system with a total amount of l sites [95]. We will not go into

further detail and refer the interested reader to Ref. [95] where a derivation for experimentally

relevant observables in the simple cubic as well as in dimerized lattice is given in great detail.

The atomic limit is in that sense the lowest order of the high temperature series expansion

as it assumes that atoms do not tunnel on different sites (t = 0). This approximation is valid

if the tunneling is small compared to the temperature in the lattice system. The relevant

energy scales at a given site i of the Hamiltonian are therefore given by the interplay of the

chemical potential µi, temperature T and the interactions U . In the atomic limit we can

therefore directly write down the partition function for a single site. Note, possible states

occupying a single site are |0〉, | ↑〉, | ↓〉, | ↑↓〉):

Z0 = Tr{e−βĤ0} = 1 + 2ζ + ζ2w, (2.23)

where we have introduced the fugacity ζ = exp(βµ) and the scaled interactions w = exp(−βU).

As a result we obtain for the probability to find a double occupancy on that site:

∂UΩ = w · ∂w log(Z0) = wζ2/Z0 (2.24)

33



2. THE TOOLBOX OF QUANTUM SIMULATION: EXPERIMENTAL SETUP AND
HAMILTONIANS

We can directly extend this atomic limit description for lattices with a two site unit cell and

include a site-offset ∆AB. This allows us to also theoretically compare measurements for the

honeycomb lattice with broken inversion symmetry. We can follow the same procedure and

define the partition function for both lattice sites A and B:

ZA0 = Tr{e−βĤ0} = 1 + 2ζ + ζ2δw (2.25)

ZB0 = Tr{e−βĤ0} = 1 + 2ζ + ζ2w (2.26)

ZAB0 = ZA0 · ZB0 , (2.27)

where we have introduced the scaled site-offset δ = exp(−β∆AB). The partition function is

now given by a sum of different Boltzmann factors for the two site system which correspond

to states between zero |0, 0〉 and four atoms | ↑↓, ↑↓〉 which are distributed on the two sites37.

We can now compute the thermodynamic quantities in a similar way as above38.

One additional challenge is that we do not know the temperature and the chemical potential

of the atomic cloud in the optical lattice system. However, we know the atom number N

and can assume an entropy per lattice site si. For the entropy we can obtain a lower and

upper bound from measurements in the harmonic trap before loading the optical lattice and

after reverting the loading process. Using those two quantities and our expansion model,

including the LDA we can iteratively compute the solutions of S =
∫∞

0 4πr2s(µ(r), T )dr and

N =
∫∞

0 4πr2n(µ(r), T )dr. This allows us to find the temperature of the system and the

chemical potential in the center of the trap.

In the experiment we use the high-temperature series expansion up to second order of the

grand canonical partition function [149] to compare our results of the double occupancy in

the honeycomb model (see more details in Chapter 3). A direct comparison of the HTSE

and the atomic limit in case of the honeycomb model shows that the higher order only

slightly corrects the results obtained from the atomic limit (see Fig. 4.5a). As we will see,

the calculations agree quite well with the experiments, which shows that the HTSE is a

good description when exploring quantities connected to charge excitations. Furthermore,

we use an atomic limit calculation for a theory-experiment comparison of the charge dis-

tribution measured in the Ionic Hubbard model on a honeycomb model (broken inversion

symmetry ∆AB 6= 0, for more details see Chapter 4). In previous experiments the HTSE

has been also used to quantitatively determine the temperature in the optical lattice [150]

and to compare anti-ferromagnetic correlations in anisotropic and dimerized lattices [20].

However, when considering spin-excitations the high-temperature expansion is limited as

overall lower temperatures are needed to observe nearest-neighbor spin correlations. As we

will see in Chapter 5 more sophisticated theoretical methods are needed in order to compare

experimental and theoretical results.

37To keep the discussion short, we do not explicitly indicate all possible combinations of one (four different

states), two (six different states) and three particles (four different states) distributed on the two sites.
38Note, since we now consider a two-site unit cell we have to divide Ω by 2 to obtain Ωs. Or in other words

we have to divide by two to not count the particles twice.
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3 Metal to Mott insulator transition in artificial

graphene

This chapter is based on our publication [52]:

T. Uehlinger, G. Jotzu, M. Messer, D. Greif, W. Hofstetter, U. Bissbort, and T.

Esslinger, Artificial Graphene with Tunable Interactions, Phys. Rev. Lett. 111,

185307 (2013)

In the previous chapter, I presented our setup to implement ultracold fermions in optical

lattices, gave an overview on the implemented theoretical models, and described all relevant

tools for quantum simulation. Realizing the Fermi Hubbard model allows us to explore many

interesting questions in strongly correlated quantum systems. In the three following chapters,

the focus lies on the static properties of the Fermi Hubbard model, which are observed for

different parameters and geometries in our tunable optical lattice.

In this chapter, I present our study on the density properties of the Hubbard model realized

with fermions and tunable interactions. By loading a two-component spin mixture into a

hexagonal optical lattice we can create an artificial graphene system. I will first show our

studies on the dynamics of the lattice loading process where we investigate the equilibration

of the double occupancy (D) as a function of lattice loading time. By directly comparing

the experimental results to a high temperature series expansion (HTSE) calculation, we can

analyze the adiabaticity of the loading ramp to find an optimal loading procedure. The overall

time scale is determined by the density redistribution process of the atoms when transferring

them from the harmonic trap into the lattice system.

Additionally, I will show our results on the crossover from metallic to Mott insulating

regimes, both in isolated two-dimensional honeycomb layers and coupled honeycomb layers

that form a three-dimensional system. We perform a study of the compressibility by measur-

ing the fraction of double occupancies as a function of the interaction strength and total atom

number. For strong repulsive interactions and a filling close to one atom per lattice site we

find a Mott insulating regime with a suppression of double occupancy. A HTSE calculation

allows for a quantitative comparison to the experiment for the case of isolated as well as

coupled honeycomb layers.

Furthermore, we probe the gapped excitation spectrum with amplitude modulation of the

lattice depth. This allows us to experimentally measure the on-site interaction as a function

of the applied scattering length. Our results show that the approximate calculation using

non-interacting Wannier functions of the lowest bands as presented in Section 2.5 is not

sufficient. As I show in the final part of this chapter, an extended theoretical calculation is

needed for large scattering lengths, especially in the two-dimensional honeycomb layers. Our

work constitutes the first study of a fermionic Mott insulator in a two-dimensional lattice
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Figure 3.1.: Experimental setup and honeycomb geometry. We realize independent

2D layers of the honeycomb geometry using a tunable-geometry optical lattice. The interlayer

tunneling ty is controlled by the intensity of the Ỹ lattice beam. The optical lattice potential

of a single layer and a sketch of the tunneling structure is shown on the right. The potential

barriers between the sites are chosen such that the nearest-neighbor tunneling tx,z = t

in the hexagonal planes is equal along all bonds, resulting in a band structure containing

two isotropic Dirac points (see Section 2.4). A repulsively interacting two-component spin

mixture (red and blue spheres) is loaded into the lattice.

system. In recent years two-dimensional fermionic Mott insulators have also been investigated

with single site resolution in new types of experiments. This new technique allowed a direct

observation of the metal to Mott insulator transition on a site-resolved level [151, 152]

A discussion of our results on artificial graphene can also be found in the PhD theses of

former team members Thomas Uehlinger [96] and Gregor Jotzu [97].

3.1. Metal to Mott-insulator transition on a honeycomb lattice

The properties of a Hubbard model realized on a honeycomb lattice will be different from

the presented phase diagram of square lattices. Unlike the square lattice, which exhibits

Fermi-surface nesting [153], a honeycomb lattice features a vanishing density of states due to

the Dirac points. For T = 0, this results in a stabilization of the semi-metal phase at weak

interactions U and a phase transition to an antiferromagnetic state at finite values of U [3,

154, 155]; the most recent large-scale quantum Monte Carlo simulations predict a critical

value of Uc/t ≈ 3.8 [156, 157]. Strongly correlated phases have attracted particular interest

in the honeycomb geometry away from half filling, where different exotic states have been

predicted, e.g. superconducting phases [158, 159, 160]. Apart from those interesting phases

experimental quantum simulation on a honeycomb lattice might also give further insight into

a controversial debate of a possible intermediate spin-liquid phase [161] which is currently

thought to be a numerical artifact due to the limited cluster size in caculations [156, 162,

163].

To experimentally realize our artificial graphene system we follow the procedure described

in the previous Chapter 2. In the following, I only briefly mention the specific parameters

used in this experiment. A balanced spin mixture of 40K atoms in the mF = �9/2 and

�7/2 magnetic sublevels of the F = 9/2 hyperfine manifold is evaporatively cooled in a

crossed beam optical dipole trap to 15(2)% of the Fermi temperature. We prepare Fermi

gases with total atom numbers between N = 25 × 103 and 300 × 103, with 10% systematic

uncertainty [150]. We either set the scattering length to 86(2)a0 or transfer to a mF =
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t

ty

t = ty

Figure 3.2.: Schematics of the coupled honeycomb layers. Detail of the coupled

layer structure with interlayer tunneling ty = t. To match the exact value of ty we adjust

the lattice depth to VỸ /ER = 7.

(�9/2,�5/2) mixture, where we access more repulsive interactions in the range of a =

242(1)a0 to 632(12)a0 (the Bohr radius is denoted with a0).

We then load the atoms into our tunable-geometry optical lattice as explained in Section 2.3

of the previous chapter. For the measurements presented in the following, the final lattice

depths in units of the recoil energy are V
X,X,Ỹ ,Z

/ER = [14.0(4), 0.79(2), 30(1), 6.45(20)],

unless explicitly stated otherwise. Note, for consistency in the whole thesis a different axis

convention is used as compared to the actual publication [52], namely the labeling of the

lattice beams in the y- and z-direction are switched. The experimental setup and a schematics

of the actual honeycomb potential is presented in Fig. 3.1. As we have shown, the resulting

potential of several independent 2D honeycomb layers realize a band structure containing two

isotropic Dirac points (see Section 2.4 and [42]). The inter-layer tunneling rate ty is below

2 Hz. For the combined external confining potential of the dipole trap and the lattice laser

beams we measure harmonic trapping frequencies of ωx,y,z/2π = [86(2), 57(1), 122(1)] Hz.

From the overall trapping frequency we can roughly estimate that around 80 layers are

populated by the atoms.

We can also realize coupled honeycomb layers stacked as shown in Fig. 3.2 by changing the

lattice depth V
Ỹ

, which directly controls the tunneling between sites of adjacent layers ty.

Using a single optical lattice beam to realize layers of graphene inherently produces AA-

stacking. In condensed matter systems, bilayer graphene often exhibits AA-stacking [164].

Interestingly, in contrast to the AB-stacking, the spectrum of two AA-stacked layers is de-

scribed by a superposition of two single layer spectra and a linear dispersion around the Dirac

points mimicking a similar behavior to pure graphene [165]. This additionally opens the pos-

sibility to simulate multi-layer systems with tunable interactions and properties comparable

to real graphene.

3.2. Adiabatic loading of fermionic atoms in optical lattices

A realistic quantum simulation of the Fermi-Hubbard model requires adiabatic preparation

of the underlying many-body ground states. In the following section we experimentally in-

vestigate the dynamics during the loading process of the quantum system and investigate
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Figure 3.3.: Equilibrium density profiles. (a) Comparison of the calculated equilibrium

density profiles for the atomic cloud in the optical dipole trap (ODT) and in the two-

dimensional (2D HC) or three-dimensional (3D HC) honeycomb layers. The density profiles

(in units of atoms per site) are calculated for an atom number of 150000, enropy per particle

of 1.7kB and U/h = 5 kHz, realizing a Mott insulating regime in the center. (b) Calculated

maximal local density in the center of the cloud nmax as a function of the interaction strength.

We show two different total atom numbers of 150000 and 350000 corresponding to the regime

explored in this chapter. The circles indicate the interaction regime of the measurements with

strongest scattering length a = 632(12)a0. For all calculations we assume an entropy of 1.7kB
per particle.

the adiabaticity of the equilibration process as a function of lattice loading time. Reaching

an equilibrium involves a change of the quantum many-body state during the lattice loading

process. Any non-adiabaticity during the lattice loading will therefore hinder the formation

of low entropy states and exotic phases [166]. In contrast, an adiabatic loading process may

redistribute entropy between different regions of the harmonic trap but keeps the total en-

tropy constant [23, 54, 151]. While we reach temperatures as low as ≈ 0.05T/TF in the

harmonic trap we will see that experiments in optical lattices are above this limit (see results

in Chapter 5). An adiabatic protocol is especially important when loading a two-dimensional

system since the single layers are decoupled in the final state.

So far, equilibration dynamics have been investigated experimentally for bosonic atoms

in optical lattices [167, 168, 169], whereas for strongly correlated fermions, the results we

present in this section have been the first to study the time evolution from the continuum to

the Hubbard regime. We investigate the equilibration of the double occupancy as a function

of lattice loading time for various interaction strengths in two-dimensional honeycomb layers

and coupled three-dimensional honeycomb systems1. More recently, nearest-neighbor spin-

spin correlations have been used to also probe thermalization dynamics during lattice loading

[142] and to investigate their formation time when dynamically changing the lattice geometry

[54]; see also Chapter 5 on the latter.

We can estimate the required density redistribution during the loading process by cal-

culating the local density n(r)/(λ/2)3 in the bare optical dipole trap and comparing it to

the expected density per lattice site ni. The local density distribution of a Fermi gas in a

harmonic trap is given by the following formula [37]:

1Note, for the loading process of a Hubbard system we do not expect any fundamental differences of honey-

comb systems compared to simple cubic lattices concerning the observables in the density order.
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n(r) = − 1

λ3
dB

Li3/2

(
−e

µ0−V (r)
kBT

)
, (3.1)

with the de Broglie wavelength λdB =
(

h2

2πmkBT

)1/2
and Lin(...) as the nth-order polyloga-

rithm. For our calculation we express the harmonic potential in terms of the geometric mean

of the trapping frequency as V (r) = 1
2mω

2r2. The chemical potential in the center of the

trap µ0 is directly related to the total atom number N and temperature of the Fermi cloud

by [37]:

N = −
(
kBT

~ω

)3

Li3

(
−eµ0/(kBT )

)
. (3.2)

For the calculation we use the experimentally measured value of the external confining

potential of the harmonic trap ωODT/2π = 46.5(4) Hz. By solving the two Equations 3.1 and

3.2 we estimate the local density profile for the atomic cloud just before the lattice loading

process. In Fig. 3.3 we directly compare this result with a typical density distribution in

the optical lattice configurations at U = 5 kHz calculated with a HTSE as described in the

previous Section 2.7. Due to the combined external confining potential of the dipole trap

and the lattice laser beams the geometric mean of the trapping frequency changes and is

measured to be 2π 85(1) Hz (2π 70(1) Hz) for the two (three) dimensional honeycomb system.

By comparing the different curves, it is obvious that a significant density redistribution is

needed during the lattice loading process. For weaker interactions we expect an even larger

effect since the central filling increases above one particle per site in the metallic regime. In

Fig. 3.3(b) we show the difference between a two-dimensional and three-dimensional system

in the central filling as a function of the interactions. Due to the increased trapping potential,

the two-dimensional layers have an increased central filling at the same value of U . However,

for the largest scattering length chosen in the experiments, both systems are expected to be

well within the Mott insulating regime, as is indicated by the black circles2.

For our experiments we load the atomic cloud from the optical dipole trap into the lattice

using an S-shaped intensity ramp to the final lattice depth V0 with a total ramp time τL:

V (τ) = 3V0

(
τ

τL

)3

− 2V0

(
τ

τL

)2

. (3.3)

We experimentally determine the time necessary for the global density redistribution by

measuring the resulting fraction of doubly occupied sites D after a lattice loading ramp of

varying time3 from τL = 5 ms to τL = 600 ms. Both for intermediate (a = 242(1) a0) and

strong interactions (a = 632(12) a0), we observe a fast rise ofD within roughly 200 ms followed

by a slow decay (see Fig. 3.4). When comparing the observation with the nearest-neighbor

tunneling time of 6 ms in the honeycomb layers, this suggests that 200 ms is sufficient for

density redistribution within the 2D layers. The calculated density profiles for the exact

experimental parameters and atom numbers confirm that the core density has to increase

2In addition to the changing trap frequency, there is also a difference for the two lattice configurations

in average tunneling and interaction for the same scattering length. The increase in U therefore partly

compensates the increasing external confinement.
3Both the independently determined offset in D of 2.2(3)% due to an imperfect initial spin mixture, as well

as the calibrated detection efficiency of 89(2)% for double occupancies, are taken into account [20].
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Figure 3.4.: Thermalization timescale - 2D honeycomb layers. The panels show

the fraction of double occupancy D after loading ramps with varying duration τL for two

interactions and an initial atom number N0 = 350000. The insets show the calculated equi-

librium density profiles for the atomic cloud in the optical dipole trap (dashed) and in the

lattice (solid lines), illustrating the required density redistribution during the loading. Here,

the initial atom number and entropies before loading into the lattice were used. Errorbars

in D show the standard deviation of 3 measurements.

when loading the atoms from the dipole trap into the lattice. For very short ramp times this

density redistribution fails and leads to densities in the trap center, which are too low. This

is confirmed by the observed low values of D for small τL.

A more quantitative measure of the equilibration process can be reached by directly com-

paring our results to the theoretically expected D as derived from the high temperature

series expansion4. Due to the finite lifetime of atoms in the optical lattice we need to take

into account an experimentally determined atom loss and a heating rate. While we can ex-

tract the atom number from the measurements of the double occupancy (see Fig. 3.5(a)),

we independently measure the heating process. To extract precise numbers, we reverse the

loading procedure and transfer the atoms with the same variable ramp duration τL back to

the dipole trap to extract the resulting entropy. We model the heating process by splitting

it in two components. On the one hand, the non-adiabaticity of the lattice loading process is

contained in the temperature we initially measure after reverting the lattice ramp Tout and,

on the other hand, the heating rate is given by the long time behavior. As shown in Fig. 3.5(b)

for ramp durations larger than 200 ms, we find a roughly linear increase in temperature with

time, which we use to fit the heating rate.

The theoretical predictions for the double occupancy versus loading time are then obtained

using the exact parameters we realize in our experiment. For the calculation we use a nearest-

neighbor tunneling of t/h = 172(20) Hz within the layers. The model assumes a connectivity

of three within the two-dimensional planes and no inter-layer tunneling, as well as a globally

thermalized cloud. Both finite temperature and the harmonic trap are taken into account,

as described in Section 2.7. Since we expect deviations of the calculated on-site energy

(see Section 3.5), we use the separately measured on-site interaction energy obtained from

the excitation spectra (see Fig. 3.11) U/h = 2.96(3) kHz at the chosen scattering length

a = 242(1) a0.

In Panel (c) of Fig. 3.5 we compare our experimental results for two different starting values

4Note, for the calculation we have to assume global thermal equilibrium of the Hubbard system.
5The factor 1/2 appears, since we revert the lattice ramping process. The heating rate is therefore effectively

reduced by a factor of two.
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Figure 3.5.: Loading Procedure - heating and atom loss. (a) Exemplary atom loss

during the loading process as a function of the loading ramp duration at weak interactions

of U/3t = 5.7. The solid line is a fitted exponential decay curve resulting in a 1/e-lifetime

of 1.66(7) s. (b) Independently measured temperature in the dipole trap after loading the

lattice and reverting the lattice loading process as a function of τL. From the linear fit (solid

line) we obtain a heating rate5of 1
2×0.12(1)T/(TF s). (c) Comparing the experimental values

of D for two different atom numbers N0 with a calculation of the HTSE taking atom loss

during lattice loading into account. For the low atom number case we include an independent

measurement of the heating rate and atom loss (not shown). (solid) Theoretically expected

D, assuming a starting entropy per particle resulting from the free fitting to D versus N

as described in Section 3.3. (dotted) Theory curve with an entropy per particle obtained

from the initial temperature Tin. (dashed-dotted) Calculation of D estimating an increase

of entropy due to the loading process. For the starting entropy we use the average value of

1/2(Tin + Tout). Errorbars in D are as in Fig. 3.4.

of the atom number N0 with three different theory curves. While all three theory curves in the

same sub-panel are determined using the same heating rate and atom loss, they differ in their

initial entropy at τL = 0. We perform the calculation with three different starting values, as

it is quite challenging to extract an exact temperature for Fermions in the Hubbard regime.

The dotted line assumes a fully adiabatic loading process and is therefore calculated with

the initial starting temperature Tin as measured in the dipole trap before loading the optical

lattice. In contrast, we assume a non-adiabatic lattice loading process for the dashed-dotted

line and use the average value of 1/2(Tin + Tout) as the actual temperature in the lattice,

assuming that the non-adiabatic entropy increase is created equally during both ramps. Tout

is measured in the dipole trap directly after reverting the lattice loading. Finally, for the

solid line we assume an entropy per particle that results from the free fitting to the double

occupancy data as a function of the atom number, see Section 3.3 for the extracted values.

Especially for large atom numbers it is evident that the dotted line is above the data
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Figure 3.6.: Thermalization timescale 2D - strong interactions. Additional loading

data for an intermediate interaction regime U/3t = 7.7 and deep in the Mott-insulating

regime with strong interactions U/3t = 13. Analog to the measurements in Fig. 3.5, we

independently evaluate a heating rate and atom loss for each set of interactions and atom

number and calculate the expected fraction of D with a HTSE. Lineshapes of the theory

and errorbars in D are as in Fig. 3.5. Negative values of D are caused by the subtraction of

an independently measured offset.

points which verifies that for any duration of the loading ramp there is an increase of entropy

during the density redistribution process. For τL & 200 ms, the measured double occupancy

agrees with the theoretical models that include a non-adiabatic part of the loading procedure.

Specifically the low atom number seems well suited to extract an optimized loading ramp

duration, since the theoretical curves hardly depend on the initial entropy in the given regime.

To investigate if there is any dependence on the optimized loading time when approaching

the Mott insulating regime additional measurements are performed and compared to theoreti-

cal expectations. Fig. 3.6 displays additional data for interactions U/h = [3.95(2), 6.52(3)] kHz

at the chosen scattering lengths a = [347(3), 632(12)]a0. For each data set we include sepa-

rately measured heating rates, atom loss, as well as the non-adiabatic increase of the temper-

ature in the optical lattice. While the theory matches the results quite well for the strongest

interactions deep in the Mott insulating regime, there is some disagreement in the intermedi-

ate regime. For the solid line at N0 = 350000 we extract an entropy of 3.4kB from the D versus

atom number measurements, which is significantly higher than the entropy (sout = 2.7(1)kB)

measured after reversing the loading process. This discrepancy can be also observed when

comparing to the other theory lines that directly include the individually measured temper-

atures Tin and Tout. In the case of the lower atom number, no theory line can accurately

describe the data. The loading measurement indicates that our theory does not adequately

represent the experimental results for U/3t = 7.7 both for low and high atom numbers. A

possible explanation could be the incomplete thermalization of the two-dimensional system

in this interaction regime. In contrast, the comparisons at strong and weak interactions con-

firm our assumption that the tunneling timescale is sufficiently fast for equilibration within
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3
  

Figure 3.7.: Thermalization timescale in three-dimensional systems. Evaluation

of the adiabaticity of the lattice loading by comparing the measured values of D with the

theoretical prediction in coupled honeycomb layers for three different sets of interactions

at low and high initial atom total number N0. We independently evaluate a heating rate

and extract decay constant for the atom loss which is included in the theory calculation.

Lineshapes of the theory and errorbars in D are as in Fig. 3.5.

layers. However, a more detailed theory would be necessary for a comparison in this regime.

To complete the study of dynamics during the lattice loading process we perform similar

measurements for coupled honeycomb layers. In comparison to the measurements before

the role of dimensionality can be analyzed. The panels in Fig. 3.7 show D after loading

ramps with varying duration for three interactions and two initial atom numbers together

with a direct comparison to theory. In analogy to the two-dimensional measurements we

include in our theoretical calculation using the HTSE atom loss, heating rate and different

starting entropies. We also take into account a reduced frequency of the harmonic trap

and an interlayer tunneling ty = 172 Hz. We obtain similar results and observe for τL &
200 ms good agreement of the measured double occupancy with the theoretical model. Our

results show that the overall dimension is not changing the dynamics during the lattice

loading which is also expected due to the similarity of the density profiles in the two and

three-dimensional honeycomb (see Fig. 3.3). As a consequence, we choose to ramp up all

lattice beams simultaneously to their final intensities within 200 ms for all the following

measurements in this chapter.
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Figure 3.8.: Observing the metal to Mott insulator crossover in 2D. Measured

double occupancy D versus atom number N for two different interaction strengths U . For

strong interactions (U/3t = 13(1)) an incompressible Mott insulating core forms, leading

to a strong suppression of D. Errorbars in D and N show the standard deviation of 5

measurements. Negative values of D are caused by the subtraction of an independently

measured offset.

3.3. Crossover from metallic to Mott insulating regime in 2D

To analyze both the metallic behavior and the Mott insulating regime with suppressed density

fluctuations we tune to weak (U/3t = 1.8(3)) or strong repulsive interactions (U/3t = 13(1))

and measure the double occupancy D as a function of the atom number N in the lattice,

see Fig. 3.8. For weak interactions, the system is in a metallic state, which is compressible,

as signaled by an initial strong increase of D [34, 146, 170, 171]. Here, creating more double

occupancies requires less energy than placing additional atoms in the outer regions of the

harmonic trap where the potential energy is larger. For high atom numbers D saturates

as the system enters a band insulating state. When repulsive interactions are strong, an

incompressible Mott insulating state forms in the center of the trapped system. Therefore,

D is strongly suppressed and does not increase as more atoms are added to the system [146,

150, 172]. Only for the highest atom numbers the chemical potential becomes comparable to

the on-site interaction, which allows the creation of double occupancies [34].

As explained in the previous section (Sec. 3.2), we can directly compare our experimental

measurements to a HTSE calculation to determine the expected D. The results for six differ-

ent interactions strengths of U/3t = [1.8(3), 5.7(7), 6.2(7), 7.7(9), 13(1)] are shown in Fig. 3.9

(including additional interactions compared to Fig. 3.8). We obtain overall good agreement

with theory for weak and strong interactions when keeping the entropy per atom in the lattice

s = S/N as a free fit parameter [150]. While the description with the HTSE seems well suited

in the limit of weak and strong interactions, there are deviations in the intermediate inter-

action regime, as we have seen already in the dynamics of the loading measurements. The

fitted entropies s = [2.1, 2.2, 2.7, 3.4, 2.7, 1.7] kB are only comparable to sin = 1.5(2) kB and

sout = 2.5(1) kB measured in the dipole trap before loading and after reversing the loading

procedure for the weakest and strongest interactions. From these parameters, we compute

that for the strongest interaction about 50 layers contain Mott insulating cores, each of which

consists of up to 2000 atoms. The temperatures kBT/t calculated from the fitted entropies

range from 1.7 to 3.69, depending on atom number and interaction. Although we optimized
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Figure 3.9.: Comparison of measurements with a high temperature series calcula-

tion. The measured double occupancyD versus atom numberN is shown for various interac-

tions using different scattering lengths a = [86(1), 242(1), 270(1), 347(3), 429(4), 632(11)]a0.

Solid lines are theoretical predictions from the high-temperature series expansion up to sec-

ond order with the entropy as a free fit parameter. Errorbars in D and N show the standard

deviation of 5 measurements.

the loading procedure (Sec. 3.2), remaining deviations from theory are likely to arise because

of incomplete thermalization. Especially when loading a 2D system the inter-layer tunneling

decreases to negligible values and hinders the formation of a globally thermalized state on the

considered timescales. We rather expect that thermalized layers, which are initially coupled,

to reach different temperatures in the final configuration. A more detailed analysis would

require a full non-equilibrium model.

3.4. Inter-layer coupling: From 2D to 3D

The coupling between 2D layers is known to alter their physical properties as compared to

mono-layer systems. For the case of condensed matter systems, e.g. bilayer graphene is used

to modify the dispersion relation around the Dirac points [173] and to realize a widely tunable

electronic band gap [174]. Using coupled honeycomb layers stacked as shown in Fig. 3.2, we

can simulate multi-layer systems with tunable interactions. In the following we set the inter-
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(

(

Figure 3.10.: Observing the metal to Mott insulator crossover in coupled hon-

eycomb layers. The measured double occupancy D versus atom number N is shown for

various interaction values U/5t = [2.5(3), 3.1(4), 4.0(5), 4.9(6), 5.6(7)]. Solid lines are theo-

retical predictions based on the high-temperature series expansion. Errorbars as in Fig. 3.9.

layer tunneling6 ty = 172(2) Hz and investigate the dependence of D on atom number. Using

a connectivity of 5 for all nearest neighbors we can compare the results of the coupled layers

to a HTSE up to second order, see Fig. 3.10.

The scattering length is set to different values a = [242(1), 314(2), 418(4), 534(8), 632(12)] a0

compared to the 2D case7. The values for the 3D case are chosen in order to keep the ab-

solute interaction U comparable to the individual 2D measurements, except for the weakest

interaction energy which was not measured for the coupled honeycomb layers. Due to the

weaker lattice in y-direction, the measurements are performed in a different trapping poten-

tial of ωx,y,z/2π = [55.7(7), 57(1), 106(1)] Hz. For weak repulsive interactions (U/5t = 2.5(3)),

the system is metallic, whereas for large interactions (U/5t = 5.6(7)) the half-filled system

is in the Mott insulating regime, which is signaled by a strong suppression of D. We find

excellent agreement in the full interaction range with the theoretical predictions. We obtain

entropies of s = [1.8, 2.5, 2.4, 1.7, 1.8] kB from the fit. The temperatures kBT/t calculated

from the fitted entropies range from 1.5 to 12.3, depending on atom number and interaction.

As compared to the 2D measurements, we find only negligible deviations from the calculated

6The same setting was used for loading 3D systems in Section 3.2 which corresponds to VỸ = 7ER.
7Note, this is in contrast to the wrong statement in the supplementary of our publication [52].
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4 H M / a

Figure 3.11.: Excitation spectra - 2D layers. Measured D after sinusoidal modulation

of the lattice depth VZ . The solid lines are gaussian fits to the spectra. Errorbars in D show

the standard deviation of 5 measurements.

double occupancy for the whole range of interactions. We attribute this to the fast tunneling

time between layers leading to equilibration between the honeycomb planes.

Both the uncoupled- and coupled-layer systems show a crossover from the metallic to

the Mott insulating regime. However, quantitative differences are observed in the double

occupancy dependence compared to coupled layers. These differences originate in the altered

lattice structure, which changes both the lattice connectivity and the on-site interaction U .

In addition, the local chemical potential is varied, due to the changed harmonic confinement

in deeper lattices.

3.5. Excitation spectrum: Mott gap

So far we have investigated the compressibility of the density states in the Fermi Hubbard

model. However, another characteristic feature of a Mott insulator is a gapped excitation

spectrum [175]. We probe this Mott gap by recording the creation of D in response to mod-

ulating the lattice depth at different frequencies ν [34, 176, 177]. After loading the fermions

into the lattice, we sinusoidally modulate VZ for 40 ms by ±10%. As VZ interferes with VX ,

this leads to a modulation in tunneling tx (tz) of ±7% (∓17%), as well as an additional

modulation of U by ±3% caused by the changing width of the Wannier functions.

For all lattice potentials sampled during the modulation the Dirac points are retained in

the band structure, as the tunneling still fullfils the condition tx < 2tz [124]. For the whole

parameter range, the response of the system is within the linear regime of D creation [178],

where the creation rate is proportional to the energy absorption rate [179]. We experimentally

verify to work in this regime by measuring the induced double occupancy as a function of

the modulation time.

The excitation spectrum of the 2D honeycomb layers is measured for the same interactions

as above and an atom number of N = 80(2) × 103 (see Fig. 3.11). When entering the Mott

insulating regime we observe a gapped spectrum with a pronounced peak at ν = U/h,

corresponding to the excitation of localized double occupancies. In contrast, for the weakest

interaction there is almost no detectable response, which proves that the gap in the excitation

spectrum approaches zero.
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4 H M / a

Figure 3.12.: Excitation spectra - stacked honeycomb layers. The measurement

procedure is equivalent to the 2D case. The solid lines are gaussian fits to the spectra.

Errorbars as in Fig. 3.11.
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Figure 3.13.: Comparison of Uexp with theory. We compare the experimentally de-

termined values Uexp to Utheo obtained from calculations of the non-interacting Wannier

functions of the lowest band in the honeycomb lattice. (a) Data points show the experimen-

tal determined peak position for the 2D honeycomb (HC) layers (red) and coupled 3D layers

(blue) as a function of the scattering length a. Solid lines show the theoretical expectation.

The uncertainty in a and the fit error for the peak positions are smaller than the displayed

data points. (b) Direct comparison of experimental and theoretical value of U . The solid

line is a guide to the eye for Uexp = Utheo. Error bars in Utheo reflect the uncertainty of the

lattice calibration.

Using the same method that was applied for the 2D data, we measure the lattice modulation

spectra for the coupled honeycomb layers, see Fig. 3.12. When comparing the excitation peak

for the maximal scattering length of a = 632(11)a0, we find a reduction by about 25% for the

value of U compared to the 2D layers. This is not surprising, since the increased inter-layer

tunneling changes the overlap of the Wannier functions on the lattice sites. In the coupled

system we also find a gapped excitation spectrum for strong interactions, as expected for a

Mott insulating state.

Additionally, we compare the experimentally determined peak position at ν = U/h ob-

tained from gaussian fits to modulation spectra for all scattering lengths with the on-site

interaction energy calculated using non-interacting Wannier functions of the lowest band,

as was explained in Section 2.5. The results are summarized for both honeycomb lattice

configurations in Fig. 3.13. While the experimental measurements in the 2D layers for weak

interactions (small scattering length a) agree well with the ab initio calculation of the Hub-

bard parameter U , we observe deviations for the strongest interactions (red data points,
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Figure 3.14.: Limitations of the Wannier state calculation and corrections of U

in deep lattices at strong interactions. (a) Results of additional excitation spectra

measured in 2D and 3D simple cubic lattices. Error bars in Utheo as in Fig. 3.13. (b-d)

Comparison of different theoretical approaches to calculate the interactions in the large

scattering limit. Data is shown for the 2D honeycomb layers (b), 3D coupled honeycomb

layers (c) and as a comparison for the 2D square lattice (d). The widely used calculation

with non-interacting Wannier functions of the lowest band is shown as a black solid line. The

gray dotted line displays the solution of the harmonic oscillator approach. An exact numerical

solution for two particles in an optical lattice, including higher bands and an exact modeling

of the two-particle bound states, is represented with the red (blue) dashed-dotted line. The

inset shows an extension of the theory to higher scattering lengths.

Fig. 3.13(a)). We attribute this effect to the deep optical lattice in one direction leading to

a size of the Wannier function comparable to the scattering length. In contrast to the 2D

measurements, the experimental results of the coupled 3D honeycomb system do not deviate

from the values obtained from lowest-band Wannier functions, not even for the largest scat-

tering lengths. To investigate the overall limitations, we perform additional measurements

in non-interfering 3D simple cubic and 2D square lattices Fig. 3.14(a). We observe a similar

behavior, which excludes a honeycomb specific correction to the Wannier functions.

Our measurement has shown that a more detailed theory is necessary for a quantitative

comparison in the regime of large scattering lengths. Here, the description by single band

Wannier functions breaks down and higher band effects occur. Theory offers two different

approaches, which we compare to our data in Fig. 3.14(b-d). One possible method for deep

optical lattices is to describe each lattice site with interacting particles as a two-body problem

of a single harmonic oscillator [180]. As can be seen from the data (dotted and solid lines),

the interaction energy is systematically overestimated compared to the calculations from the

single band Wannier functions and therefore fails to describe the correct behavior [94].

Another approach is interpolating the exact numerical results obtained for two atoms in a
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three-dimensional optical lattice in the vicinity of a Feshbach resonance [181]. This calculation

of the Hubbard parameters includes all higher bands and correctly models the two-particle

bound states. An approximate equation for the on-site interaction is given by:

U3D SC
corr =

g

d3

(∫
|w1D

norm(r)|4 dr

)3

≈ W |w0|2
1 +Wγ

, (3.4)

with the numerator W |w0|2 as the dominant part for weak interactions and γ as correction

for larger scattering lengths. The factor W is linear in the scattering length a and given

by W = (8/π)Era/d. The effective parameters |w0|2 and γ in the Hubbard model for a 3D

simple cubic lattice are given in Table I of Ref. [181] and used to interpolate for any given

lattice depth8. To calculate the corrected U2D HC
corr in the 2D layers, we assume the corrections

of Wannier states occur only along the one direction where the Wannier function reaches a

comparable size to the scattering length. Since the single cubic lattice is separable, we can

determine the corrected Wannier functions in 1D w1D
norm(r) with equation 3.4. This allows us

to construct the interactions for the 2D honeycomb system in the following way:

U2D HC
corr =

g

d3

∫
|w1D

norm(y)|4 dy︸ ︷︷ ︸
U1D SC

corr

·
∫
|wx,z

norm(x, z)|4 dxdz︸ ︷︷ ︸
U2D HC

wann

, (3.5)

Here, U2D HC
wann is given by our usual calculation of non-interacting Wannier states from

the lowest band in the interfering plane. Compared to the single-band approximation, the

expected interaction is reduced for large scattering lengths. In Fig. 3.14(b-d) we directly

compare Ucorr with our experimental data in different lattice configurations. The exact solu-

tion with corrections to the single-band approximation agrees quite well with the measured

data. While it seems to overestimate the reduction slightly in the case of a three-dimensional

honeycomb system, it fits nicely for the two-dimensional honeycomb and square lattice. The

inset shows that the expected correction to the naive calculation increases drastically for

larger scattering lengths.

3.6. Conclusion

In this Chapter, we have investigated the properties of an artificial graphene system as a

function of interactions, atom number, and dimensionality. The comparison to a high tem-

perature series expansion (HTSE) allowed us to optimize the loading procedure and to study

the equilibration dynamics during the density redistribution. Overall, the measured dou-

bly occupancy is in good agreement with the theoretical prediction, which allowed us to

quantitatively compare the metal to Mott insulator transition on a honeycomb lattice. De-

viations of the measured gapped excitation spectra from the simple calculation of U from

non-interacting Wannier states in the lowest band could be explained with an exact numerical

solution including higher bands and an exact modeling of the two-particle bound states.

At the temperatures studied in this chapter we did not find any unexpected features in

the density observables and the behavior is comparable to the metal to Mott insulator in

8For the calculation in this thesis a linear interpolation of both effective parameters as a function of the

lattice depth is used. This results in the following values of |w0|2 = 23.62 and γ = 5.12 at a lattice depth

of 30Er.
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a simple cubic lattice. However, we could prove with our quantitative comparison that the

implementation of a Fermi Hubbard model on a hexagonal lattice was successful. This re-

alization of a two-dimensional fermionic Mott insulator on a honeycomb lattice provides a

platform for further studies of the strongly correlated phases, where spin-liquid and super-

conducting phases are debated [156, 158, 159, 160, 161, 162, 163]. Furthermore our results

can be directly extended to study short range correlations as a signature of low entropy states

in a honeycomb geometry, as will be described partly in Chapter 5.
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4 Observing the charge density wave in the ionic

Hubbard model

This chapter is based on our publication [53]:

M. Messer, R. Desbuquois, T. Uehlinger, G. Jotzu, S. Huber, D. Greif, and T.

Esslinger, Exploring Competing Density Order in the Ionic Hubbard Model with

Ultracold Fermions, Phys. Rev. Lett. 115, 115303 (2015)

In this chapter I will describe the different regimes of the ionic Hubbard model, present our

measurement of this specific model on a honeycomb lattice, and analyze its general character-

istics. After a short introduction to the ionic Hubbard model I will first explain in detail how

we can use noise correlation measurements of the atomic momentum distribution to identify

distinct density-ordered phases. As we will see, the geometry induces a charge density wave

for weak interactions. For strong repulsive interactions, we detect a strong suppression of

doubly occupied sites, as expected for a Mott insulating state, and the externally broken

inversion symmetry is not visible anymore in the density distribution. In addition, I will

present our direct measurements of the double occupancy characterizing the local density

distributions as a function of interaction and energy-offset. This is followed by results on

the excitation spectrum in the ionic Hubbard model. Using direction dependent modulation

spectroscopy, we discover a complex spectrum, which we compare with a theoretical model.

A discussion of our results on the ionic Hubbard model can also be found in the PhD thesis

of Gregor Jotzu [97] and a discussion on the implementation of noise correlations in the PhD

thesis of Thomas Uehlinger [96].

4.1. The ionic Hubbard Model

In the previous chapter we have shown, that ultracold atoms in optical lattices are an excellent

platform for studying competing energy scales, as they allow for tuning various parameters

and the geometry of the Hamiltonian [34, 35, 41, 42, 52, 148, 182, 183, 184, 185, 186]. Changes

in the fundamental properties of interacting many-body systems are often determined by the

competition between different energy scales, which may induce phase transitions. Until now,

we have investigated the crossover from a metallic to a Mott insulating state and compared

their local density profile using the double occupancy as an observable. Compared to our

measurements on artificial graphene, we now add an additional energy scale to the system

and implement a staggered energy-offset that explicitly breaks the inversion symmetry. As a

result, we can realize and study the ionic Hubbard model using an interacting two-component

gas of fermionic atoms loaded into an optical honeycomb lattice.
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Figure 4.1.: Phase diagram of the ionic Hubbard Model. Schematic view of the

ionic Hubbard model on a honeycomb lattice at half-filling. Circles denote lattice sites A
and B, where larger circles indicate lower potential energy. The phase diagram exhibits two

limiting cases: For ∆ � U, t a charge density wave ordered (CDW) state is expected with

two fermions of opposite spin (red, blue) on lattice sites B, and empty sites A. In the other

limit (U � ∆, t), a Mott insulator (MI) with one fermion on each lattice site should appear.

The numbers label the three distinct regimes explored with noise correlation measurements

in Fig. 4.3.

This model captures key aspects of the physics of a competing geometry and interactions

in the density sector. In general, if the geometry of a system sets an energy scale that

competes with the scale given by the interaction of its constituents, a particularly intriguing

situation arises. One prominent example of the importance of geometry is apparent in reduced

dimensions, which influence the interacting many-body system in its evolution from one phase

to another [2]. Another model where geometry plays a strong role is the ionic Hubbard model,

which has a staggered energy-offset on a bipartite lattice, such that geometry supports a band

insulating charge density wave (CDW) for one particle per site. Conversely, as we have seen

in the previous Chapter 3 strong repulsive on-site interactions favor a Mott insulating state

(MI) at half-filling, which does not reflect the broken symmetry of the underlying lattice. By

implementing such a model, we observe the consequences of the broken inversion symmetry

and directly detect density ordering in the system for a specific parameter regime. The model

was first introduced in the context of charge-transfer organic salts [187, 188] and has been

proposed to explain strong electron correlations in ferroelectric perovskite materials [189].

The ionic Hubbard model has been studied theoretically in 1D chains [190, 191, 192, 193,

194, 195] and on the 2D square lattice [196, 197, 198, 199]. More recently, these studies have

been extended to a honeycomb lattice, motivated by possible connections to superconduc-

tivity in layered nitrides [200] and strongly correlated topological phases [201, 202, 203, 204,

205, 206]. For this work, we consider the ionic Hubbard model on a honeycomb lattice:

Ĥ = �t
∑
〈ij〉,σ

ĉ†iσ ĉjσ + U
∑
i

n̂i↑n̂i↓ + ∆
∑
i∈A,σ

n̂iσ +
∑
i,σ

Vin̂iσ, (4.1)

where the operators are defined as in Section 2.5. The system is characterized by four energies:

In addition to the the kinetic energy denoted by the tunneling amplitude t, the on-site

interaction U and the harmonic trapping potential Vi which where introduced with the Fermi-

Hubbard model, we add a staggered energy-offset between sites of the A and B sub-lattice

∆, with ∆ > 0 (see Section 2.4). By construction, for ∆ = 0 we return to the Fermi-Hubbard

and the system implemented in the previous Chapter.

The interplay between the interaction energy U , the energy-offset ∆, and tunneling t

leads to quantum phases which differ by their density ordering. A schematic view of the
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Figure 4.2.: Schematics of anticorrelation detection of Fermions in an optical

lattice. The wave function of atoms in the optical lattice is given by Bloch waves with

different quasi-momenta ~q for each particle (shown as red points in the first Brillouin Zone

(1st BZ). A single state is a superposition of momenta equally spaced by 2~k, as indicated

for one specific example by the green points. After releasing the atoms from the optical

lattice and a free evolution during the time of flight, the pulse of the imaging light maps

each momentum to a real space position on the CCD chip. Due to the fermionic character of

the atoms, each Bloch state is singly occupied and only a single pixel detects a corresponding

atom with one of the possible momenta. It cannot be detected simultaneously at pixels of

distance ∆x corresponding to momenta shifted by multiples of 2~k. Adapted from [209].

qualitative phase diagram and the different regimes is given in Fig. 4.1. The two limiting

cases can be qualitatively understood in the atomic limit at half-filling. For U � ∆, the

system is described by a Mott insulating state. For a large energy-offset ∆� U , we expect a

band insulator with staggered density and two fermions on lattice site B [196]. The resulting

CDW pattern reflects the broken inversion symmetry of the underlying geometry. We can

characterize the transition by an order parameter NA �NB, which is zero in the MI state or

when ∆ = 0. Here, NA(B) is the total number of atoms on sub-lattice A(B).

4.2. Noise correlations - theoretical description

Measurements of noise correlations in the density distribution of atomic clouds have been

proposed to gain insight into fundamental properties of strongly correlated quantum systems

[207]. Pioneering experiments have been performed to explore the bunching (antibunching) of

bosons (fermions) released from an optical lattice [208, 209] and to probe the pair correlations

of fermionic atoms [210]. For bosonic atoms they have been further used to investigate the

Mott transition [211, 212] and to prove the magnetic domain formation in one-dimensional

spin chains [213]. A detailed overview of the measurement of noise correlations with ultracold

atoms in optical lattices can be found in the book chapter [214].

The anti-correlations in the fluctuations of the momentum distribution of fermionic atoms

in an optical lattice can be understood when considering the detection of Bloch states [209].

To illustrate this, we consider the case of two identical fermions, that occupy the lowest band

of a one-dimensional optical lattice of periodicity λ/2, see Fig. 4.2. Bloch’s theorem states

that we can construct the wave function of a single fermionic particle with quasi-momentum

~q as a superposition of plane waves with momenta pq,i = ~q + i2~k, with integer i and
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wave vector k = 2π/λ. After its release from the optical lattice, the wave function will freely

evolve during the time of flight τTOF. During the imaging pulse, the momentum of the atom

is projected on the CCD chip of the camera, which then maps the initial momentum pq,i
to a real space position on the pixels xq,i = pq,iτTOF/m. The particle can be detected at

any pixel that corresponds to position xq,i. Due to the Pauli principle, only a single particle

occupies a distinct quasi-momentum ~q. This results in an anticorrelation of the detection

process for real space positions at a distance ∆x = 2~kτTOF/m on the CCD. In other words,

if the momentum of a first particle is measured to be ~q1, then the second particle cannot

be detected in any of the momenta ~q1 + i2~k.

In the experiment, the momentum distribution n(p, τ = 0) is accessed by suddenly releasing

the atomic cloud from its confinement. After an expansion time which is sufficiently long to

neglect the initial size of the cloud, the momentum distribution has been converted to the

spatial atomic density ñ(x, τ) which is then directly measured by taking an absorption image.

These two quantities are related by

ñ(x, τTOF) = n(p =
mx

τTOF
, τ = 0) (4.2)

In general, we are interested in the probability to detect two particles at momenta q1 and

q2 simultaneously, which is given by (here we closely follow the derivation in [214]):

P (q1, q2) = 〈n(q1)n(q2)〉 − 〈n(q1)〉〈n(q2)〉 (4.3)

We can rewrite this equation using the field operators Ψ̂†α(q) (Ψ̂α(q)) that create (annihi-

late) a particle with internal state α at momentum q:

P (q1, q2) =
∑
α,β

〈Ψ̂†α(q1)Ψ̂α(q1)Ψ̂†β(q2)Ψ̂β(q2)〉

− 〈Ψ̂†α(q1)Ψ̂α(q1)〉〈Ψ̂†β(q2)Ψ̂β(q2)〉 (4.4)

Each field operator can be expressed in terms of Bloch waves and the creation (annihilation)

operators b̂†α,l (b̂α,l) for a particle at lattice site l with an internal state α:

Ψ̂α(q) =
∑
l

W (q)e−i λ/2 ql b̂α,l, (4.5)

where W (q) is the slowly varying envelope of the Bloch wave. As a result, we obtain the

following equation for the probability to detect the two particles:

P (q1, q2) = |W (q1)|2|W (q2)|2
∑
α,β

∑
k,l,m,n

ei λ/2(q1(k−m)+q2(l−n))

×
(
−〈b̂†α,k b̂

†
β,l b̂α,m b̂β,n〉 − 〈b̂

†
α,k b̂α,m〉〈b̂

†
β,l b̂β,n〉

)
+ δ(q1 − q2)

∑
α

〈Ψ̂†α(q1)Ψ̂α(q2)〉. (4.6)

The last term concerns the correlation of an atom with itself1, which we will not consider

from now on. To calculate the four-operator expectation value, we assume that the atomic

1The minus sign of the first term and the autocorrelation term result from the anticommutation of the

fermionic particle operators: b̂†α,k b̂α,m b̂
†
β,l b̂β,n = b̂†α,k

(
δα,βδk,l − b̂†β,l b̂α,m

)
b̂β,n.
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distribution is well described by Fock states (〈b̂†α,k b̂β,l〉 = δk,lδα,βnα,l), where nl is the number

of particles on site l. This assumption is valid since we release the atoms from a deep optical

lattice (see the next Section 4.3) with localized Wannier states2. Thus, we have

P (q1, q2) = −|W (q1)|2|W (q2)|2

×
∑
α

∑
k,l

nα,knα,le
i λ/2(k−l)(q1−q2) (4.7)

P (q0, d) = −|W (q0 + d/2)|2|W (q0 − d/2)|2

×
∑
α

∑
k,l

nα,knα,le
i λ/2(k−l)d, (4.8)

where we have introduced the center of mass q0 = (q1 + q2)/2 and the relative momentum

d = q1− q2. The correlations in momentum space are given by the integral of the probability

to detect particles with center of mass q0 at a relative momentum position d normalized by

the expectation value of uncorrelated particles:

C(d) =

∫
dq0P (q0, d)∫

dq0〈n(q0 + d/2)〉〈n(q0 − d/2)〉

=

∫
dq0〈n(q0 + d/2)n(q0 − d/2)〉∫

dq0〈n(q0 + d/2)〉〈n(q0 − d/2)〉 − 1 (4.9)

The slowly varying dependence in q0 can be rewritten in terms of the momentum distri-

bution

〈n(q1)〉〈n(q2)〉 = |W (q1)|2|W (q2)|2N2 (4.10)

with N being the total atom number. Thus, the correlations in momentum are fully charac-

terized by

C(d) = −
∑
α

∑
k,l

nα,knα,l
N2

ei λ/2(k−l)d (4.11)

In the following we show that this quantity is not only sensitive to the periodicity imposed

by the lattice, but can also reveal underlying order in the density distribution. Consider the

case where, for each internal state, the density takes the value nA/M on even-numbered sites

and nB/M on odd numbered sites, where M is the number of internal states. The correlation

signal then takes on the form

C(d) = −n
2
A + n2

B + 2nA nB cos(λ/2 d)

M N2

∑
k,l

ei λ(k−l)d (4.12)

The sum is equal to N2 if d = m 2π/λ with m an integer and zero otherwise. The correlation

signal is then simply

C(m 2π/λ) = −(nA + (−1)m nB)2

M
(4.13)

2The measurement of noise correlations requires to always release the atoms from a deep optical lattice and

does not work for example when releasing directly in the metallic phase with fermions delocalized over

many sites.
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4. OBSERVING THE CHARGE DENSITY WAVE IN THE IONIC HUBBARD MODEL

As a result, anti-correlations always appear at relative momenta 2m×2π/λ, which correspond

to the reciprocal lattice vector. Additional anti-correlations at relative momenta (2m+ 1)×
2π/λ signal a staggering of the atomic density between the even- and odd-numbered sites.

While this derivation was carried out for a one-dimensional lattice, it can be generalized to

higher dimensions, provided the full information on the momentum density can be accessed.

In our experiment we want to deduce the correlator from the fluctuations of the atomic

momentum images, which are released from a three-dimensional lattice system. Note, since

our imaging technique integrates the density along the line of sight, we do not have access to

the full information, but rather to the column density. Thus, the derivation presented above

should be generalized to two dimensions, while the occupancy along the third direction can

be treated as an internal degree of freedom. Analog to the one-dimensional case, we obtain

the correlator of the fluctuations of the momentum distribution [214],

C(d) =

∫
〈n(q0 − d/2) · n(q0 + d/2)〉dq0∫
〈n(q0 − d/2)〉〈n(q0 + d/2)〉dq0

− 1, (4.14)

where q0 and d are vectors of the two-dimensional momentum space in the xz-plane. Due

to the fermionic nature of the particles, this quantity exhibits minima when the relative

momentum d = m2π/λ, with m being a vector of integers. Due to the integration along the

line of sight, the depth of the anti-correlation minima for a two-component Fermi gas will

be divided by 2Ny, where Ny is the typical number of sites populated along the integrated

direction.

In the experiment, we measure the momentum distribution of the absorption images by

following a three step detection protocol. After preparing the system in a shallow honeycomb

lattice with a given U and ∆, the lattice depth is suddenly increased in 1 ms, which prevents

any further evolution of the atomic density distribution. In addition, this step localizes the

Wannier states on each site and ensures the validity of the approximation that our system

can be described by Fock states. Subsequently, the lattice geometry is then converted to

a simple cubic lattice within 1 ms. Measuring the density distribution in the honeycomb

lattice would lead to additional peaks at m = (±1,±1) due to the displacement of the

lattice sites with respect to a square lattice. We can estimate the strength of these additional

peaks with a simple model for a hexagonal lattice with ∆ = 0 by placing Gaussian wave

packets at the position of each lattice site of the real potential. By calculating the Fourier

transform of this system, we find that the strength of the m = (±1,±1) peaks is a factor of

6 smaller than the minima of the correlator at position m = (0,±2) and m = (±2, 0) [96].

Therefore, always ramping to a simple cubic configuration ensures our observable probes

correlations of the underlying density order rather than a specific lattice structure. In a

next step of the detection process, the strength of the interactions is reduced within 50 ms

using the Feshbach resonance. The atoms are released from the lattice and left to expand

ballistically for 10 ms. Finally, we measure the density distribution, which is proportional to

the momentum distribution of the initial state n(q) by absorption imaging.

To achieve an optimal signal-to-noise ratio, we follow different steps during the data analy-

sis. The expectation values 〈〉 of the correlator can be calculated by statistical averaging over

many absorption images taken under the same experimental conditions. A detailed descrip-

tion of the data analysis can be found in [96]. In short, we only consider atomic densities above

20 % of the maximum density. Furthermore, we remove short-range correlations induced by

the readout noise of the CCD chip of the camera by convoluting the density distribution with
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4.3. PROBING THE CHARGE DENSITY WAVE WITH NOISE CORRELATIONS

a Gaussian of width ∆q = k/25. Finally, we take advantage of the reflection symmetry of

the momentum distribution, and average together C(dx, dz) with C(dx,−dz). Note that, by

definition, C(dx, dz) = C(−dx,−dz).

4.3. Probing the charge density wave with noise correlations

In order to realize the ionic Hubbard model experimentally3, we prepare a balanced fermionic

spin mixture with total atom numbers between 1.5× 105 and 2.0× 105. A mF = −9/2,−5/2

(mF = −9/2,−7/2) mixture with 16(2)% (13(2)%) of the Fermi-temperature, is then loaded

into our three-dimensional optical lattice within 200 ms. Analog to the measurements of

artificial graphene, we create a honeycomb potential in the xz-plane, which is replicated

along the y-axis. The tunable lattice allows us to independently adjust the energy-offset ∆ =

[0.00(4), 41(1)]t between the A and B sub-lattices. In the case of ∆ = 0, the lattice depths4 are

set to V
X,X,Ỹ ,Z

= [14.0(4), 0.79(2), 7.0(2), 6.45(20)]ER to prepare isotropic tunneling bonds

with t/h = 174(12) Hz. When breaking inversion symmetry (∆ 6= 0), we adjust the final

lattice depths in order to keep t on all lattice bonds constant. Depending on the desired

interaction strength, we either prepare a mF = −9/2,−7/2 mixture to access an interaction

range of U = [−24.6(13), 4.91(9)]t or a mF = −9/2,−5/2 mixture to reach strongly repulsive

interaction strengths U = [11.7(2), 29.1(7)]t. The overall harmonic confinement has trapping

frequencies of νx,y,z = [55.6(7), 57(1), 106(1)] Hz.

As described in the previous section, we probe the spatial periodicity of the density dis-

tribution in the interacting many-body state by measuring correlations in the momentum

distribution that are obtained after time-of-flight expansion and absorption imaging. From

this, we compute the correlator C as given in equation 4.14. Due to the fermionic nature of

the particles, C exhibits minima when d = m2π/λ. This is illustrated by the anti-correlations

of a repulsively interacting, metallic state with U = 4.85(9)t and ∆ = 0.00(4)t (see Fig. 4.3,

left panel). Due to the freezing into a deep optical lattice, the state is projected onto the

localized Wannier states. As a result, the spatial periodicity of the atomic density follows the

structure of the simple cubic lattice potential and minima in the correlator are observed for

m = (0,±2) and m = (±2, 0).

We can also explore the region of the phase diagram where we expect the ordering as a

charge density wave, by setting ∆ = 39.8(9)t and staying at a low value U = 5.16(9)t. In

this regime we observe additional minima at m = (±1,±1), see Fig. 4.3, central panel. For

the Fock states in a simple cubic lattice potential of periodicity λ/2, the amplitude of these

minima can be deduced from equation 4.13:

C

(
±2π

λ
,±2π

λ

)
∝ (NA −NB)2

(NA +NB)2
, (4.15)

where we replaced the density nA,B on sublattices by the total number of atoms on each

sublattice NA,B. The observation of additional minima allows us to conclude the presence of

CDW-ordering with NA 6= NB.

3In the following, only the experiment specific parameters are given, a more detailed description on the

preparation steps is found in Chapter 2.
4To be consistent in each chapter of the thesis the same axis convention is used and the labeling of the lattice

beams in the y- and z-direction is switched as compared to the actual publication [53].
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Figure 4.3.: Probing the charge density wave with noise correlations. Measured

noise correlation pictures obtained from absorption images of the atomic momentum dis-

tribution. The labeling of each panel is representing the position in the phase diagram as

shown in Fig. 4.1. When comparing panel 1 with panel 2, additional correlations appear in

panel 2 due to broken inversion symmetry in the CDW ordered phase. By introducing strong

interactions, these correlations are not observed anymore (panel 3), and the broken inversion

symmetry of the lattice potential is not reflected anymore in the density distribution. Below

each panel horizontal and diagonal cuts of the noise correlation image are shown. For the

three different ratios of ∆ and U , between 165 and 201 measurements were taken each. We

show the average of C(dx, dz) and C(dx,−dz), which reflects the symmetry of the system.

Finally, we can now increase the interactions and reduce the site offset to explore the Mott

insulating regime. As Fig. 4.3 shows on the right panel for ∆ = 20.3(5)t and U = 25.3(5)t, the

additional minima at m = (±1,±1) are not observed any more. With large repulsive on-site

interactions, the correlations in the density distribution does not reflect the externally broken

inversion symmetry. This signals the suppression of the CDW-order due to large repulsive

on-site interactions, despite the presence of a large ∆.

4.4. Density ordering in the ionic Hubbard model

Based on the noise correlation measurements, we expect the local distribution of atoms on

each lattice site to depend on the exact values of U and ∆. Especially in the two regimes

of Mott insulator and CDW we expect drastically different behaviors, since the number of

doubly occupied sites compared to the number of singly occupied sites is directly related to

the nature of the insulating states [146, 172]. As was shown in the previous Chapter 3, the

Mott insulator is governed by a suppressed number of double occupancies [34, 52, 170]. The

observed additional minima in the CDW regime indicate that the number of atoms NA is

different from the number of atoms on the other sublattice site NB (see equation 4.15). For

fermions at a fixed filling one obvious possibility is to form alternating doubly occupied sites,

which breaks the inversion symmetry of the density order.

In the experiment we set an energy-offset ∆ and measure the double occupancy5 D for

different attractive and repulsive interactions U = [−24.6(13),+29.1(7)]t. Fig. 4.4a shows D

5For the measurement of the double occupancy D, both the independently determined offset in D of 2.2(3)%

due to an imperfect initial spin mixture as well as the calibrated detection efficiency of 89(2)% are taken

into account [20].
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Figure 4.4.: Double occupancy as an observable for the charge density wave

to Mott insulator transition. (a) The measured double occupancy D as a function

of the on-site interaction U for a fixed energy-offset ∆ = 16.3(4)t. (b) For different val-

ues of ∆ (different colors) we obtain the double occupancy for a range of interactions

U = [−24.6(13), 29.1(7)]t. Hollow (full) circles represent attractive (repulsive) interactions.

Vertical error bars show the standard deviation of 5 measurements and horizontal error bars

the uncertainty on our lattice parameters.

as a function of U at constant ∆ = 16.3(4)t. For strong attractive interactions we observe

a large fraction of doubly occupied sites, which continuously decreases as U is increased.

When tuning from attractive to weak repulsive interactions (∆� U), we still observe a large

D as is expected for the CDW. However, for strong repulsive interactions (U � ∆), the

measured double occupancy vanishes. Therefore, the density pattern no longer reflects the

broken inversion symmetry of the lattice, confirming the suppression of the CDW ordering.

Fig. 4.4b shows D as a function of the energy scale U−∆ for different values of ∆/t. In the

atomic limit (t = 0), this scale is the energy difference between the population of a double

occupancy on the energetically lower lattice site with an empty site next to it or a filling with

two singly occupied sites. For the largest negative value of U − ∆, we observe the highest

D for all ∆. For positive values of U −∆, the double occupancy continuously decreases and

vanishes for the largest positive U − ∆. This is consistent with a Mott insulating state. In

contrast, for the intermediate regime, the measured D depends on the individual values of U

and ∆. There is no universal data collapse of our measurements, which shows that a more

detailed analysis is required. In this regime, other energy scales of the system, like the finite

temperature and chemical potential, seem to play an important role.

We can qualitatively estimate the double occupancy of our system from an atomic limit

calculation (t = 0, high-temperature series expansion of the partition function in 0th order)

including the harmonic trap via a local density approximation. The theoretical concept is

introduced in Section 2.7 for a bi-partite lattice with a site offset ∆. While this is not an exact

theory capturing all details and not suitable for a precise experiment-theory comparison, this

calculation gives a qualitative estimate for the typical system parameters. In the case of

∆ = 0, we can directly compare the theoretical calculation with the high-temperature series

expansion up to second order, as was introduced in the previous chapter 3.

For a qualitative comparison of our measurements of the double occupancy, we calculate

the fraction of double occupied sites D for various values of U and ∆ using our simplified

model at constant entropy per particle of 1.5kB. As can be seen in Fig. 4.5a, our results

qualitatively confirm our observations that for increasing U the double occupancy is reduced
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Figure 4.5.: Theory comparison. For the calculation we use an entropy per particle of

1.5kB (as measured before loading the atomic gas into the lattice) and a total atom number of

190000. (a) For different values of ∆ (different colors) we calculate the double occupancy in

the atomic limit (t=0, high-temperature series expansion in 0th order) using a local density

approximation and compare it to the measured data points. For ∆ = 0 we can compare

the atomic limit calculation (green) with a high-temperature series expansion up to second

order (grey). Points show the measured double occupancy as plotted in Fig. 4.4. (b) Density

per site calculated for U = 25t and ∆ = 0 or ∆ = 25t using an atomic limit calculation

and a local density approximation to include the harmonic trap. For ∆ = 0 we can directly

compare the high-temperature series (HTS) expansion up to second order (grey) with the

atomic limit calculation in blue.

well before reaching the point U = ∆. This calculation shows that a change in the chemical

potential and temperature for different values of U and ∆ are indeed important to consider

in the intermediate regime. Finally, by comparing the atomic limit calculation with the high

temperature series expansion for ∆ = 0 we confirm that the tunneling t does not seem to

play an important role. In essence, this proves that the atomic limit calculation is a good

approximation for the given system.

Using the atomic limit calculation, we can additionally calculate the local density per site

and estimate the fraction of half-filling (one atom per site) and quarter-filling in our trapped

system. Fig. 4.5b illustrates two distinct density profiles of the atomic cloud for the same

value U = 25t, either in the usual honeycomb lattice, or with a site offset ∆ = 25t. For

∆ = 0t, we compare the density profile to the one obtained from the HTSE. As was expected

from the comparison of D, we only observe a small deviation between the two results. From

the atomic limit calculation we estimate that a fraction of 46% of the atoms are within 10%

of half-filling for values U = 25t and ∆ = 0t. The nature of the system totally changes

for U = ∆ = 25t, as a large fraction of the atoms (45%) consists of a quarter filled region

(red theory curve). Deep in the two limiting cases (U � ∆ and ∆ � U), we expect the

approximation to provide better results. Given an entropy per particle of 1.5kB (as measured

before loading the atomic gas into the lattice), and assuming adiabatic loading into the lattice,

we find for the calculated temperature T values 3.3t (5.5t), for parameters of U = 30t and

∆ = 0 (U = 10t and ∆ = 40t). As ∆ and U are much larger than t, this confirms that the

temperature is well below the charge gap for the MI and CDW states. We will investigate in

the next section how this gap evolves as a function of ∆ and U .
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4.5. Excitation spectrum of the ionic Hubbard model

Using the amplitude-modulation technique [34, 176, 177] already introduced in the mea-

surements of the artificial graphene system, we probe the gapped excitation spectrum and

its characteristics for the charge density wave, as well as the Mott insulating regime. We

sinusoidally modulate the intensity of the lattice beam in z-direction6 by ±10% for 40 ms.

The interlayer tunneling ty is not affected and the excitations only occur in the honeycomb

plane. We set U = 24.4(5)t and measure D after the modulation for frequencies up to

ν = 11.6 kHz (≈ 67 t).

Fig. 4.6a shows the measured spectra for different values of ∆. The Mott insulator state

(∆ = 0) exhibits a gapped excitation spectrum, which is directly related to a particle-hole

excitation with a gap of size U , as we have seen in Section 3.5. In response to the modulation

at frequency ν = U/h, a double occupancy is formed on either sublattice. With increasing

∆, the single excitation peak splits into two peaks, that correspond to different excitation

energies7. We can understand the nature of the excitations in a simple picture (see Fig. 4.6b):

The transfer of one particle costs approximately an energy of U −∆ if a double occupancy

is created on a B site and U + ∆ if it is created on an A site. The excitation of additional

double occupancies shows that atoms were initially populating both sub-lattices, as is to be

expected in the Mott insulating regime. For small ∆/U , the system shows a clearly identifiable

charge-gap, which vanishes if U ∼ ∆. For large ∆, the charge gap reappears and a dip in the

spectra reveals the breaking of double occupancies as a response to amplitude modulation.

As expected, this minimum is observed at a frequency hν = ∆−U and is in agreement with

the band insulating behavior of the charge density wave, where double occupancies are on

the B sub-lattice and A sites are empty.

The situation changes for amplitude modulation of the y-lattice beam intensity by ±10%.

In this case, excitations are created along links perpendicular to the honeycomb plane. Since

the honeycomb lattice is replicated along the y-axis, we observe a single peak at ν = U/h,

independent of the energy-offset ∆ (see Fig. 4.6c). The inset of Fig. 4.6c shows the direction

dependent modulation spectrum for ∆ = 8.5(2)t, which allows us to independently determine

the energy scales of the system in different spatial directions.

We extract the excitation energies by fitting multiple Gaussian curves to our experimental

data and compare our results with the values of |U−∆|, U+∆ expected from the local picture

in Fig. 4.6d. We observe a vanishing peak at U + ∆ for the largest ∆. This is expected, as

there are fewer and fewer atoms on the A sub-lattice in the system for an increasing energy-

offset. The position of the maxima and minima of the excitation spectrum agree quite well

with this picture based on nearest-neighbor dynamics. However, we observe additional peaks

at ν ≈ U/h if U ∼ ∆, which can not be understood in this two-site model.

In order to explain the nature of the ’unexpected’ peak, we perform additional measure-

ments. To rule out any higher-order contribution, we measure the doublon production rate

ΓDO as a function of the modulation amplitude Amod [178]. With higher order contribu-

tions, the doublon production rate should deviate from a quadratic response since more than

6Since the honeycomb lattice is created from several beams interfering in the xz-plane, this leads to a

modulation in tunnel coupling tz of 20% and tx of 8%, as well as a modulation of U by 4% and ∆ by up

to 6%.
7Related excitations have been observed with bosons in tilted optical lattices [182, 183, 185] and for two

fermions in a single double-well [148]
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Figure 4.6.: Measurement of the excitation spectrum. (a) Excitation spectra ob-

served by measuring the double occupancy D from amplitude modulation spectroscopy of

the lattice beam in z-direction for different energy-offsets ∆ at repulsive on-site interaction

U = 24.4(5)t. Solid lines are multiple Gaussian fits to the modulation spectra. (b) Schemat-

ics for the relevant energy scales |U −∆| and U + ∆ as a response to the lattice modulation.

(c) Modulation spectroscopy of the lattice beam in y-direction. The measured excitation fre-

quencies are shown as a function of ∆ and compared to the value of U = 24.4(5)t (horizontal

line). The inset shows the spatially dependent excitation spectrum. (d) Comparison of the

measured excitation resonances (points) with the values of |U −∆|, U + ∆ (lines). The area

of the marker indicates the strength of the response (peak height) to the lattice modulation.

Full (empty) circles represent a positive (negative) response in double occupancy. Error bars

as in Fig. 4.4, vertical error bars in (c),(d) show the fit error for the peak position.
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Figure 4.7.: Quadratic response regime and excitation spectrum of the two-

dimensional ionic Hubbard model. (a) Measurement of the quadratic response for the

’unexpected’ peak using a modulation frequency of ν = 4400 Hz which resonantly probes the

intermediate regime for ∆ = U = 24.4(6)t. The result of the response signal is shown on a

double logarithmic plot of as a function of the modulation amplitude Amod. For each data

point we perform a measurement with varying modulation length in the linear regime of the

buildup for double occupancies and extract a doublon production rate �DO to characterize

the response function. Error bars represent the uncertainty of the linear fit for each mod-

ulation amplitude. (b) Excitation spectrum observed by measuring the double occupancy

D after sinusoidal modulation of the lattice depth Vz in the two-dimensional honeycomb

system. The parameters of the measurement are set to ∆ = 24.3(6)t and repulsive on-site

interaction U = 24.1(4)t, thereby realizing the intermediate regime |U �∆| ∼ t. Error bars

show the standard deviation of at least 3 measurements.

a single tunneling event is needed to create a double occupancy. In the experiment we set

∆ = U and modulate with a frequency that corresponds to the maximum of the ’unexpected’

peak. For each modulation amplitude we perform a separate measurement within the linear

regime of the doublon production and extract the rate �DO by a linear fit as a function of

the modulation time. The result is shown in Fig. 4.7a on a double logarithmic plot. Using a

linear fit, we extract a slope of 1.93(16) indicating that our response signal has a quadratic

dependence on the modulation parameters, as expected for quadratic response [178].

Another possibility to explain the unexpected peak is a residual cross-coupling during

the modulation8 between honeycomb layers along the y-direction where we always observe a

response at hν = U . To exclude such a possibility we realize a two-dimensional ionic Hubbard

model9 with suppressed tunneling ty < 2 Hz. By analyzing a pure two-dimensional system,

we only probe energy scales that are realized within the xz-honeycomb planes. Fig. 4.7b,

shows the observed excitation spectrum for the intermediate regime ∆ ≈ U . Even with

suppressed tunneling ty, we observe a clear peak for modulation frequencies hν = U . From

this measurement we can exclude that our response signal gets a contribution of excitations

along the third direction.
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Figure 4.8.: Simulated response on a four site model. Theoretical result for the

kinetic energy response function χ(ν) of the double occupancy on a modulated four site

model as a function of ∆ at constant U = 25t. Circular (diamond) data points represent the

response for the half filled (quarter filled) case. The area of the marker shows the relative

size of the calculated response, whereas full (empty) data points have a positive (negative)

response signal.

4.6. Simulation of the excitation spectrum on four sites

Our investigation has shown that we need to go beyond the local picture of two sites to

interpret the nature of the response at hν ≈ U . Therefore, we perform an exact numerical

calculation of the kinetic energy response function on a four site cluster. The code was

implemented by our collaborator and co-author Sebastian Huber (ETH Zürich). The kinetic

energy response function is defined as

χ(ν) =
∑
m

〈m|δD|m〉|〈m|K|0〉|2δ(hν � εm0), (4.16)

where the sum runs over all many-body states m, δD = D�〈0|D|0〉 is the induced change

in double occupancy, K =
∑
〈ij〉,σ ĉ

†
iσ ĉjσ and εm0 denotes the excitation energy measured

above the ground state |0〉. We evaluate χ(ν) in exact diagonalization for varying filling

fractions, which allows us to mimic the excitation spectrum.

The result shown in Fig. 4.8 for U/t = 25 clearly indicates that the peak at hν ≈ U around

U = ∆ originates from regions of the lattice where the filling deviates from one particle

per site. As shown by the atomic limit calculation of the local density profile in Section 4.4

large regions with quarter filling exist especially in the intermediate regime U ≈ ∆, due

to the character of the local chemical potential. In particular, for a configuration with two

particles on four sites, the ground state at U = ∆ is a configuration with negligible double

occupancy and only the lower sub-lattice sites are filled. The lattice modulation at hν ≈ U

then moves one particle to an energetically costly site. For U = ∆, this configuration is

resonantly coupled to a state where both particles are on the same low-energy site. Hence,

this process leads to an increase in the measured double occupancy and an additional peak

8The cross-coupling might be caused by the modulation of ∆ or U or the minimal deviation from a perpen-

dicular beam setup and could be therefore caused by our use of the interfering beams.
9The honeycomb planes are decoupled by setting the lattice depth to VỸ = 30(1)ER.
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in the excitation spectrum. The analysis of such a four-site cluster qualitatively agrees with

the observed signal at energy U in the intermediate (U ≈ ∆) regime.

4.7. Conclusion

To summarize, we have successfully realized and studied the ionic Hubbard model with ul-

tracold fermions in an optical honeycomb lattice. On its own, the results from individual

observables do not directly prove the existence of a charge density wave with doubly oc-

cupied sites. However, the combination of the measurements with noise correlations, double

occupancy and excitation spectra is only compatible with such an ordering. Furthermore, our

observations show that increasing interactions suppress the CDW order and restore inversion

symmetry of the density distribution. To our best knowledge, our measurement of the noise

correlations is the first with ultracold fermions in the optical lattice to observe the structure

of the state itself rather then the overall lattice structure10.

The results on the amplitude modulation show that it is possible to measure specific

excitations depending on the direction, which is a useful tool for more exotic lattice structures.

Additionally, going beyond the local picture with atoms on two sites, we probed correlations

beyond nearest-neighbor, which had not been accessible so far [20]. Future work should be

able to address open questions concerning the nature of the intermediate regime between the

two insulating phases, which is theoretically debated and should depend on the dimensionality

of the system [197, 215]. Additionally including a mass-imbalanced term by implementing

a spin-dependent hopping amplitude t↑ 6= t↓ further increases the complexity of competing

energy scales and allows to investigate different transitions [216]. Finally, we can extend our

studies of the ionic Hubbard model to include topological phases by introducing complex

next nearest-neighbor tunneling where interesting phases have been predicted [201, 202, 203,

204, 205, 206].

10In [213] noise correlations were used for bosonic atoms to prove magnetic domain formation in one-

dimensional spin chains.
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5 Observing short-range correlations in the

Fermi-Hubbard model

The results in this chapter are partly presented in our publication [54]:

D. Greif, G. Jotzu, M. Messer, R. Desbuquois, and T. Esslinger, Formation and

Dynamics of Antiferromagnetic Correlations in Tunable Optical Lattices, Phys.

Rev. Lett. 115, 260401 (2015)

In the previous chapters I described how we have measured and characterized different

observables to analyze the density degree of freedom in the Fermi-Hubbard model. To study

the Hubbard model in the low temperature regime we can furthermore observe the spin degree

and study the arising quantum magnetism using ultracold fermionic atoms in optical lattices.

In this chapter, I present the magnetic properties of the Fermi-Hubbard model and report

on the observation of nearest-neighbor anti-ferromagnetic correlations of ultracold fermions

in a variety of optical lattice geometries, that are well described by the Hubbard model. Our

new results [54], which I present in this thesis go beyond the previous work in anisotropic

lattices [20] and investigate the formation of correlations for various geometries, as well as the

local formation and dynamics of spin-spin correlations for geometric crossovers and geometry

ramps. After a short overview on the current status of research in quantum magnetism with

ultracold atoms in optical lattices, I will give a brief description on our detection method for

nearest-neighbor spin correlations.

In the following sections I cover our experimental studies of the dependence of the strength

of spin correlations on specific geometries. This is achieved by measuring the correlations

along different lattice tunneling links for distinct three-dimensional geometries, which include

dimers, 1D chains, ladders, isolated and coupled honeycomb planes, as well as square, and

cubic lattices. By measuring the correlations in a crossover between distinct geometries,

we demonstrate an effective reduction of the dimensionality in our experimental regime. In

addition, the dynamic control over the geometry enables us to study formation dynamics

and redistribution times of spin-correlations. We dynamically change the lattice geometry

and explore timescales from sudden quenches to adiabatic ramps to study the resulting

time-evolution of correlations on different lattice links. Finally, we investigate the ’cooling

challenge’ for ultracold atoms in optical lattices further and try to analyze the limitations in

our current setup. In the future, this should allow us to get closer to interesting many-body

states, which have not been reached so far.

A discussion of our results on short-range magnetic correlations in different geometries

can also be found in the PhD thesis of Gregor Jotzu [97], while a detailed discussion on the

detection for nearest-neighbor correlations is presented in the PhD theses of Daniel Greif and

Thomas Uehlinger [95, 96].
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evolution: τ

Jx Jx Jx

J'x

Jx >> J'x 

Jx = J'x 
J'x Jx

Figure 5.1.: Formation of correlations - Schematic view. Simple illustration on the

formation of correlations in a simplistic Heisenberg model (U � t) with magnetic exchange

J and a spin-balanced mixture at half filling. At T = 0, the ground state of each double well

forms a singlet state since its energy is reduced compared to the triplet state by the magnetic

exchange J (see Section 2.6). Considering the whole one-dimensional lattice structure we thus

have a product state of singlets. Removing the double well characteristics by lowering every

other link leads to a novel situation with isotropic magnetic exchange on all links Jx = J ′x.

Obviously, we cannot have singlet states on each of the links in the isotropic 1D chain. In

contrast, we expect a quasi-long range ordered state to form at zero temperature.

5.1. Simulating quantum magnetism with optical lattice systems

Understanding the mechanisms underlying quantum magnetism is among the most thought-

provoking challenges of quantum many-body physics and is an important research topic

in condensed matter systems. Even one of the simplest models of quantum magnetism, the

three-dimensional Fermi-Hubbard model, is demanding to solve theoretically and can only be

accessed numerically [217]. Extensive research has been carried out using different materials,

as well as theoretical and numerical methods, which furthered our understanding and also

triggered unforeseen questions [2, 218, 219, 220]. At the center of these efforts is the interplay

between the emergence of magnetic correlations and the underlying lattice geometry [1]. As

presented in Section 2.5, the ground state of the Fermi-Hubbard model in three dimensions

consists of a long-range ordered antiferromagnet.

The complexity of the ground states and their magnetic correlations originates from quan-

tum fluctuations in the system [219]. However, exactly these intrinsic properties make the

systems intriguing to study, using our quantum simulation tools. The challenging, yet fasci-

nating quantum nature of magnetism can be seen already in a simple gedankenexperiment

(see Fig. 5.1): Let us consider a series of uncoupled (tx � t′x) double wells at half-filling. At

zero temperature and in the limit of dominant repulsive interactions U � t this system is

described by a product state of Heisenberg singlets with an exchange energy J = 4t2

U between

pairs of opposite spin. We now subsequently increase the tunneling on every other link to

a final isotropic lattice system Jx = J ′x. The ramp changes the situation completely and
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we have to ask ourselves: which properties does the new ground state obey and how will it

evolve? It is impossible for a spin-1/2 particle to be maximally entangled with more than

one other spin-1/2 particle in a quantum system. Due to this monogamy of entanglement,

we cannot just form singlet states on all the links [221]. As a result, our considered system

will evolve into a complicated longer range-ordered state rather than a system of maximal

number of singlets. This entanglement originates from quantum fluctuations in the form of

magnetic exchange1.

In fact, the ground state of the one-dimensional spin-1/2 Heisenberg chain2 is an antifer-

romagnet with quasi-long range order, which is limited by quantum fluctuations [219, 225].

Those quantum fluctuations generally prevent the long-range order and lead to enhanced

short-range spin correlations [226]. While the system in our illustrative model is exactly solv-

able using the Bethe ansatz [219], this is not generally true for more complicated models and

higher dimensions3. So far we have only discussed the case of zero temperature. However, in

any real experimental realization the temperature will play an important role. This effect is

actually most dramatic for systems with lower dimensions (≤ 2), where the Mermin-Wagner

theorem states that no long-range ordered state is possible for systems with continous sym-

metry [228]. Overall, the ’thermal’ state of a system will be characterized by an interplay

of quantum fluctuations, thermal excitations, and local magnetic correlations. In addition,

geometric frustration of the quantum system can lead to different exotic states, such as spin

liquids and valence bond states [220, 229].

The focus of our research lies on the Fermi-Hubbard model with repulsive interactions,

which in itself offers a large range of interesting physics. The ground state of the three-

dimensional Fermi-Hubbard model undergoes a phase transition from a paramagnetic state to

a long-range ordered antiferromagnet for temperatures in the range of 0.1−0.4T/t, depending

on the exact value of U/t [139]. While these temperatures are beyond reach of our experiment,

we can nevertheless provide new insights into quantum magnetism. We will make use of the

dynamic control over the lattice parameters and geometry [39, 41, 42, 43, 230], which can

give an entirely new perspective on out-of-equilibrium properties of quantum spin systems

[231].

So far, ultracold atoms in optical lattices have accessed a variety of magnetic models.

The magnetic exchange coupling and the energy levels have been explored with bosons, as

well as fermions in a system of isolated double wells, [72, 73, 148, 232] and on a four site

plaquette [233]. Quantum gas microscopes with bosonic atoms offer an ideal control on the

experimental setting and allow to prepare small systems to realize one-dimensional chains

of the Ising and Heisenberg model [213, 234, 235], where the latter has been also realized

with four fermions in a trap [236]. In two dimensions, bosonic atoms in optical lattices have

been used to explore the spin transport in Heisenberg systems [237], the relaxation dynamics

associated with the superexchange [238], as well as classical magnetism on a triangular lattice

with frustration and an Ising-XY spin model [184, 239]. Only recently, the temperatures

1Only recently entanglement propagation in spin-full quantum many-body systems has been measured with

a bosonic quantum gas microsope as well as a chain of ions [222, 223]. In addition, the entanglement

entropy of a four site Bose-Hubbard system has been characterized [224].
2In the last step of our illustration we end up in the spin-1/2 Heisenberg chain.
3Only a limited number of models are exactly solvable. A more detailed understanding is also possible for

variations from the Heisenberg chain mentioned above, like anisotropic Heisenberg chains, Ising chains and

the two-dimensional Ising model [225, 227].
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accessible in experiments with fermionic atoms allowed to explore the low-temperature regime

of the three-dimensional Fermi-Hubbard model, by observing short range antiferromagnetic

spin correlations in an anisotropic [20] and later in an isotropic simple cubic geometry [240]

and a two-dimensional system [241]. In related fields, quantum magnetism and spin-exchange

interactions have also been explored with polar molecules loaded into a three-dimensional

optical lattice [231], with trapped ions [242, 243, 244, 245] and Rydberg atoms [246, 247,

248, 249, 250].

Since our publication, additional research gropus have tired to realize the Fermi-Hubbard

model in different experimental setups and, very recently, single site resolution in an opti-

cal lattice has been implemented with quantum gas microscopes of fermionic atoms [151,

152, 251, 252, 253, 254, 255, 256]. By improving their preparation scheme, similar low tem-

peratures in the optical lattice have been reached and it was also possible to detect local

spin-correlations with antiferromagnetic coupling and canted antiferromagnetism with single

site resolution [142, 143, 144, 145]. However, only a more advanced cooling technique finally

allowed to detect the long-awaited long-range ordered antiferromagnet in two dimensions [21]

and in one-dimensional chains [55]. The high control over the doping in their systems is a huge

step towards the high-temperature superconducting phase expected in the Fermi-Hubbard

model [257, 258]. Another approach towards superconductivity in quantum gas microscopes

is to investigate superfluid pairing in the attractive Fermi-Hubbard model [259, 260, 261].

Different numerical approaches have been used to analyze the magnetic phases of the

Fermi-Hubbard model, such as Quantum Monte Carlo (QMC) methods, dynamical cluster

approximation (DCA), and dynamical mean field theory (DMFT). Those calculations in-

vestigated different thermodynamic quantities in order to obtain the phase diagram of the

three-dimensional Hubbard model and to calculate the critical Néel temperature for the anti-

ferromagnetic phase transition [139, 262, 263], as well as the local spin correlations [263, 264,

265]. For a quantitative comparison of short-range anti-ferromagnetic correlations between

experiment and theory, highly sophisticated computational methods were required [56, 57,

58, 240]. In those calculations, the local chemical potential of the trapped system needs to be

included in the local density approximation (LDA), which is still valid in our low temperature

regime [146, 266, 267].

In general, any of the numerical and approximate theoretical analyses are computationally

challenging and demanding in computation power at such low temperatures. Just to sum-

marize a few examples: Quantum Monte Carlo methods suffer from the sign problem at low

temperatures, exact diagonalization is highly limited to the system size, and all numerical

approaches can feature strong finite-size effects [217]. Thus, quantum simulations of ultra-

cold atoms in optical lattices in combination with theoretical studies are an ideal platform to

study quantum magnetism and to set new benchmarks with numerical methods. Our results

on dynamics of correlations in three-dimensional geometries with varying connectivity (see

Section 5.6) are even more challenging to calculate theoretically [268, 269, 270] and so far

have not been quantitatively compared to numerical results.

In order to observe nearest-neighbor correlations in various static and dynamical systems,

we take advantage of our tunable optical lattice. The different lattice geometries are realized

experimentally by independently adjusting the specific values of tij for each of the six nearest

neighbor links per lattice site of an underlying simple cubic lattice. Their strength is controlled
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Z=6 - CubicZ=5 - coupled HC planesZ=4 - Square

Z=3 - LadderZ=3 - 2D HC planesZ=2 - 1D chainsZ=1 - Dimer

Figure 5.2.: Realization of the different geometries. A schematic view of the dif-

ferent three-dimensional lattice structures, which differ in the number of strong nearest

neighbor links Z. The strong tunneling links are indicated by a bar, while all weak bonds

are dashed (note that the ladder geometry has been rotated for clarity). In the experimental

realization of each geometry the bandwidth W/h = 2.6(1) kHz and the on-site interaction

U/h = 0.87(2) kHz is constant. In addition we tune all lattice beam powers such that all

weak and all strong tunneling links have equal values in each configuration (see Table 5.1 for

details on all parameters). The colored ellipsoids mark the tunneling link along which the

spin correlations are measured for the various geometries (see Section 5.4).

via the power of the lattice laser beams, as described in Section 2.3 4. Starting from an

underlying simple cubic lattice, the tunneling is enhanced along Z nearest neighbor links

and takes the value ts, whereas the tunneling along the remaining 6-Z links is ts/5. The

geometries realized in this manner are, sorted by increasing number of strong nearest neighbor

links Z: dimerized (Z = 1), 1D chains (Z = 2), honeycomb planes and ladders (Z = 3),

square (Z = 4), coupled honeycomb planes (Z = 5), and cubic (Z = 6), see Fig. 5.2 for

the schematics. Additionally, we can realize any intermediate regime in order to measure

a geometric crossover, and to ramp from one lattice geometry to another on a variable

timescale, which is used for the dynamics measurement (Section 5.5 and 5.6). We measure

the magnetic spin-correlations along a specific set of strong links, see Fig. 5.2. In each of the

following experiments we always choose to merge the same strong links in x-direction for a

given geometry. In case of the one-dimensional chain, as well as the square and cubic lattice,

we independently verified that the signal strength of the spin correlator does not depend on

the exact choice of the merged strong link.

5.2. Detecting nearest-neighbor spin-spin correlations

We want to reveal information on the spin-ordering of many-body states in low tempera-

ture regimes by measuring magnetic spin correlations emerging on neighbouring sites. In

the following, I will give a brief overview of the detection technique (a detailed discussion

4Analog to the previous chapters, we calculate all Hubbard tight binding parameters from the lattice potential

using Wannier functions, which are obtained by using band-projected position operators [52].
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Figure 5.3.: Detection scheme for probing nearest neighbor spin correlations.

Schematic overview of the different steps used for the measurement of the singlet ps and

triplet pt fraction. After preparing the system in a desired (many-body) state with varying

geometry, we freeze the evolution by converting into a deep simple cubic lattice configuration.

In a second step we apply a magnetic field gradient which causes coherent oscillations between

the singlet and the triplet state on neighboring sites. In another step we remove the magnetic

field gradient and merge pairs of neighboring sites into a single site. After merging we perform

our usual interaction-dependent rf-spectroscopy to detect the number of double occupancies

in the lowest band. Depending on the oscillation time we detect either the number of singlets

or the number of triplets corresponding to the initial many-body state.

can be found in Ref [95]). The detection scheme for nearest-neighbor anti-ferromagnetic spin

correlations consists of several steps, which are shown schematically in Fig. 5.3. The spin cor-

relations are measured on every second lattice link, between nearest neighbours i and i+ 1,

and along the transverse spin axis, as illustrated in Fig. 5.2 for all geometries. The detec-

tion protocol allows us to measure both anti-ferromagnetic and ferromagnetic configurations,

corresponding to positive and negative values of Ci,i+1, which is given by:

Ci,i+1 = �〈Ŝxi Ŝxi+1〉 � 〈Ŝyi Ŝ
y
i+1〉. (5.1)

Here, Ŝx,y,zi denote the standard spin vector operators for a spin-1/2 system on site i, and

〈...〉 denotes the trap average. For a SU(2) symmetry it can be shown that Ci,i+1 is equal to

�2〈Ŝzi Ŝzi+1〉 [20]. Our method for detecting correlations of many-body states loaded thermally

in a three-dimensional Fermi-Hubbard model is a direct extension to a previously developed

technique with bosons in double wells [271]. For the detection, we take advantage of our highly

tunable optical lattice setup to map the initial spin correlations on singlets and triplets of

isolated double wells.

5.2.1. Freezing into the detection lattice

After preparing the many-body state in the desired lattice geometry, we perform a sudden

ramp of the lattice depth into a deep simple cubic lattice5 to freeze out the atomic motion.

The detection lattice is described by the Heisenberg limit of the Hubbard model, as the in-

teractions are large compared to the tunneling (U/t > 1000). Fermions with opposite spin on

neighboring sites are therefore described by the singlet |s〉 = (|↑, ↓〉 � |↓, ↑〉)/
√

2 and triplet

5In the following we refer to this lattice as the ’detection lattice’. Usual lattice depths of the detection lattice

are VX,X,Ỹ ,Z = [30, 0, 35, 30]ER.
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|t0〉 = (|↑, ↓〉+ |↓, ↑〉)/
√

2 state in the detection lattice. The timescale of the freeze ramp de-

termines the measurement basis. We can adiabatically transform6 the initial Hubbard singlet

|sHub〉 into a Heisenberg singlet by transforming the contribution of the double occupancies.

In the following, we will refer to this adiabatic mapping as a measurement of the ’Hubbard

singlet’. In contrast, for a fast, non-adiabatic freeze ramp, the initial Hubbard singlet |sHub〉
is projected on the Heisenberg singlet in the detection lattice |s〉 = (|↑, ↓〉− |↓, ↑〉)/

√
2, which

is referred to as the measurement of the ’Heisenberg singlet’. This differentiation is only nec-

essary if the initial state does contain a significant fraction of double occupancies, whereas if

initially U � t, the measured state is already a Heisenberg state.

Due to the fermionic nature of the particles, two atoms sitting on neighboring sites with the

same spin will occupy a triplet state |t↑〉 = |↑, ↑〉 or |t↓〉 = |↓, ↓〉. All three triplet states |t0,↑,↓〉
are unaffected by the freeze ramp as they are independent of the value U/t. If not stated

otherwise in the following chapters, we perform a sudden freeze ramp of 100µs independent

of the starting geometry of the optical lattice to project the initial state and detect the

fraction of atoms forming singlets ps and triplets pt0 on neighboring sites. An imbalance in

these two fractions corresponds to local magnetic correlations on neighboring sites, since it

is proportional to the transverse spin correlator [20]

Ci,i+1 = −〈Ŝxi Ŝxi+1〉 − 〈Ŝyi Ŝ
y
i+1〉 = (ps − pt0)/2. (5.2)

As remaining doubly occupied sites do not contribute to the spin correlator and hinder

the final detection process, they are removed in the deep cubic lattice, by using a series

of Landau-Zener transfers before detecting the singlet and triplet fractions. The removal is

based on atoms sitting on the same lattice site with two different mF states that are unstable

against spin-changing collisions [272]. Starting from an initial spin-mixture with magnetic

sublevels mF = −9/2,−7/2 we transfer via the mF = −9/2,−5/2 to a final mixture of

mF = −9/2,−3/2 using two separate adiabatic Landau-Zener transfers. The released energy

during the spin-changing collision of the initial double occupancy at mF = −9/2,−3/2 to

mF = −7/2,−5/2 is much larger than the lattice confinement and both atoms escape from

the entire trap system within less than 10 ms. We return to the initial spin-mixture by

applying two additional adiabatic Landau-Zener transfers in reverse order. Experimentally,

we find that this cleaning sequence is an efficient method to remove all double occupancies,

while the small tunneling in the deep detection lattice prohibits any spin-changing collisions

of single atoms. Single occupied sites are not affected, preventing any loss of information

concerning the magnetic correlations7.

5.2.2. Merging adjacent sites and final detection

After the cleaning procedure, each state containing two atoms on neighboring sites is either

given by a singlet or a triplet configuration. In the next detection step we adiabatically merge

pairs of adjacent sites into a single site. Usually, we implement a 10 ms linear ramp from the

deep cubic lattice into a deep checkerboard lattice (V
X,X,Ỹ ,Z

= [0, 25, 35, 30]ER), where all

6Here, the timescale for an adiabatic transformation is given by the inverse tunneling h/t of the link on

which the correlation signal is measured.
7For measurements with an initial spin-mixture mF = −9/2,−5/2 we omit the first of the four Landau-Zener

transfers. This allows to still remove all double occupancies while the final detection following after the

clean is independent of the starting mixture
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tunneling links are still suppressed and the number of sites is divided by two. During this

merging ramp, the |s〉 and |t0〉 states are mapped onto different bands due to their distinct

symmetry of the two-particle wave function. The spatially symmetric singlet state is mapped

to two atoms in the lowest band of the final state, while the spatially anti-symmetric triplet

state evolves into a final state with one atom in the first excited band and one atom in the

lowest band. Due to the Pauli exclusion principle, the two triplet states with atoms of equal

spin on neighboring sites |t↑,↓〉 also populate the first excited band with one atom. We can

now finally detect the singlet state by measuring the fraction of doubly occupied sites in

the merged lattice configuration. This is accomplished using our usual interaction-dependent

rf-spectroscopy for double occupancies (see Chapter 3).

To define which of the two possible combinations of links are merged, we control the phase

ϕ between the interfering X and Z lattice beams. While still staying in the detection lattice

(when VX = 0), just before the merging ramp, the phase ϕ can be shifted by π. The phase shift

is generated by an active feed-forward on the phase lock using the acousto-optical modulator

of the lattice beam. This ensures that we can merge either combination of the two adjacent

sites along the x-direction.

5.2.3. Singlet-Triplet oscillations

The measurement of |t0〉-triplet fraction pt0 is more complicated since the other triplet states

and single atoms occupy the higher band fraction. We therefore use an intermediate detection

step and induce a coherent oscillation between the singlet state |s〉 and triplet state |t0〉 before

merging the adjacent lattice sites. By suddenly applying a magnetic field gradient8, we lift

the energy degeneracy between the states |↑, ↓〉 and |↓, ↑〉 and create an energy bias ∆STO.

In the limit of U > ∆STO, the states |↑, ↓〉 and |↓, ↑〉 are eigenstates, which lead to a coherent

singlet-triplet oscillation (STO) with the frequency ∆STO/h of the singlet and triplet state:

|Ψ (τ)〉 =
1√
2

(
|↑, ↓〉 − ei∆STOτSTO/h |↓, ↑〉

)
(5.3)

We remove the magnetic field gradient after a variable STO time τSTO and subsequently

merge the adjacent sites. The time evolution of the singlet and the triplet state are exactly

out of phase. For an unequal amount of singlets and triplets, this oscillation is therefore

migrated into an oscillation of the detected double occupancy after merging. By adjusting

the oscillation time to a maximum or minimum of the STO, we can then detect the fraction of

atoms in the singlet and triplet state by measuring the fraction of atoms on doubly occupied

sites with both atoms in the lowest band.

To test and calibrate the performance of the detection scheme for measuring spin cor-

relations using singlet-triplet oscillations, we prepare an initial state with a large number

of singlets and very small number of triplets. To prepare such an artificial state, we load

an attractive spin-mixture at a = −770(50) a0 into a checkerboard lattice with V
X,X,Ỹ ,Z

=

[0, 3, 7, 3]ER, which leads to a large number of doubly occupied sites. We first freeze this

geometry and then ramp to repulsive interactions with a = 106.5(9) a0. In a second step we

adiabatically split the sites of the checkerboard lattice by ramping to the usual detection

lattice, which converts the doubly occupied sites to singlets. Although this initial state may

be far from equilibrium, due to its preparation, it is well suited for calibration purposes. It

8Typically we use the right Ioffe coil with a current of ≈ 4 A to create the magnetic field gradient.
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Figure 5.4.: Artificial singlet-triplet oscillation. Measured fraction of double occu-

pancy pDO after merging as a function of oscillation time during a singlet-triplet oscillation.

For this calibration a far-from-equilibrium initial state was prepared with a large number of

singlets. The points with a maximum in the double occupancy fraction correspond to the

singlet point ps, while the minima are mapped to the triplet fraction pt0 . Two fits of the

atomic cloud after Stern-Gerlach separation and time of flight are shown exemplary for the

detection of the singlet and triplet state. Error bars show the standard deviation of three

measurements.

contains a very large imbalance in the singlet and triplet fractions, and hence has a large

value for the nearest-neighbor spin correlator. After the initial preparation, we apply the

entire detection protocol and measure the double occupancy after merging as a function of

oscillation time τSTO with magnetic field gradient, see Fig. 5.4. The fraction of atoms forming

singlets (triplets) is then given by the maximum (minimum) value of the measured double

occupancy of the STO, which is obtained from a sinusoidal fit to the data. We use this mea-

surement to calibrate the magnetic field gradient and determine the singlet-triplet oscillation

frequency.

Residual magnetic gradients will shift the actual phase of the STO depending on the

absolute measurement time [95]. We therefore need to crosscheck the phase of the STO for

each measurement at the corresponding measurement time in the sequence. The actual phase

is usually calibrated by preparing a thermal many-body state in the dimerized geometry of the

measurement sequence. From this we determine the maximum and minimum oscillation time,

which is used for all measurements in the same sequence. In addition, we take into account

a separately calibrated decay of the singlet-triplet oscillations during the entire detection

sequence [20]. Our method is based on the detection of double occupancies and therefore all

correlation signals are averaged over the entire atomic cloud.

79



5. OBSERVING SHORT-RANGE CORRELATIONS IN THE FERMI-HUBBARD
MODEL

(a) (b)

(c) (d)

tx

tz

ty

t'x

®
®

10−2 10−1

Loading ramp duration ¿L (s)

0.00

0.02

0.04

0.06

0.08

−
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Figure 5.5.: Thermalization timescale - nearest neighbor correlations.

(a) Schematic view of the dimerized lattice geometry which is used to measure the correla-

tions as a function of the lattice loading time. While the tunneling tz = ty = 135(8) Hz the

tunneling along the strong (weak) link in x-direction is tx = 606(38) Hz (t′x = 59(2) Hz). (b)

Measured spin-spin correlator as a function of the lattice loading time τL of the dimerized

lattice. (c) Individual dependence of the singlet ps and triplet pt0 fraction on the lattice

ramp. (d) Nearest-neighbor density correlator to detect the fraction of atoms occupying

neighboring sites as a function of the lattice ramp duration. Error bars show the standard

deviation of at least three measurements.

5.3. Characterizing the adiabaticity of the lattice loading with correlations

In the following we want to explore the emergence of anti-ferromagnetic spin correlations

in different lattice geometries of varying dimensionality, whixh also includes crossover con-

figurations between different geometries. To reach the highest possible correlations in our

measurement, we need to minimize the heating of the experiment and start lowest temper-

ature of the atomic cloud achieved in the dipole trap. As a starting point we prepare a

spin-balanced mixture in the two magnetic sub-levels mF = �9/2, �7/2 of the F = 9/2

hyperfine manifold9. In addition, we adjust the atom number such that the filling in the

center is no higher than one particle per site and the correlations are maximized. As a result,

we prepare initial clouds with an atom number10 of ≈ 50 × 103 and temperatures as low as

0.09(1)TF. This corresponds to an entropy of 0.87kB per particle in the harmonic trap.

To minimize the heating during the lattice loading we perform similar measurements to

the thermalization measurements with the double occupancies (described in Section 3.2). An

exemplary measurement is shown in Fig. 5.5 for a dimerized lattice, where a good signal

9In general we reach lower temperatures in the mF = �9/2,�7/2 spin mixture compared to the mF =

�9/2,�5/2, where an additional spin transfer is needed.
10This atom number is different from the quoted number in our publication [54] since there was a typo.

80



5.3. CHARACTERIZING THE ADIABATICITY OF THE LATTICE LOADING WITH
CORRELATIONS

to noise ratio is expected (see Section 5.4). Since this measurement was not part of the

publication sequence, the tunneling parameters are slightly changed as indicated in the figure

caption. We tune the interactions to weakly repulsive (U = 754(14) Hz) and perform a

measurement of the correlations on the strong dimer link as a function of the lattice ramp

duration τL. As can be seen in Fig. 5.5b the spin correlations show a clear maximum for ramp

times of τ = 50 ms for our exemplary measurement. It is important to adjust the lattice ramp

to be nearly adiabatic, as is to be expected for correlations. For the shortest lattice ramps we

clearly lose atoms during the loading ramp (not shown in the Figure), while for the longer

ramp times the heating is already severe and drastically reduces the spin correlations due to

excitations.

We can further analyze this heating process by individually looking at the singlet ps and

triplet pt0 fraction on the strong link (see Fig. 5.5c). For the shortest ramp times, which

are clearly non-adiabatic, we equally populate the singlet and triplet, as is expected for a

highly excited state. When approaching a more adiabatic regime we significantly increase the

singlet fraction while pt0 decreases subsequently. Finally, for longer ramp times, the external

heating decreases ps, while the fraction of triplets slowly increases as additional excitations

are created. The exact time scale for an optimal loading depends on the lattice geometry, the

interactions of the system, and the lattice parameters, e.g. the tunneling times in the final

configuration11.

Finally, we can analyze the nearest-neighbor density-density correlator Cnn = 〈n̂i n̂i+1〉 =

ps+3pt0 , which represents the probability of finding two atoms on neighboring sites12. Fig 5.5d

shows the density correlator as a function of the loading ramp duration. Even for the shortest

ramp times, Cnn already approaches a high level and only slightly rises for intermediate ramp

times. For the longest ramp times, Cnn stays constant, thereby confirming the above statement

that thermal excitations occur due to the heating process and singlets are transformed into

triplet states. The almost constant value of the density correlator over the whole parameter

range indicates a quite good matching of the initial density in the dipole trap and the final

density in the lattice system.

Similar measurements from the one shown in Fig. 5.5 were also performed in other lattice

geometries. From this we deduce an optimized loading time of 100 ms which guarantees

nearly adiabatic loading for all different lattice geometries. We choose a global loading time

to improve the comparability of the measurement in the following sections. To verify the

validity of this approach we can crosscheck if our measurements are performed at a similar

entropy in each geometry. For this we determine the entropy per particle sout after loading

into the lattice, reverting the loading procedure, and letting the cloud equilibrate in the

dipole trap for 200 ms. The entropy is then extracted from a fit of the Fermi distribution to

time of flight images13. The corresponding entropies for each geometry are shown in Table

5.1. For comparison, the entropy per particle after this additional hold time is 0.94(12) kB in

the absence of a lattice. Depending on the geometry, the total increase of entropy per particle

is between 0.29 kB and 0.73 kB. As the lattice ramp is reverted and counted twice, we assume

11Therefore, it is not surprising that we observe a faster population of the singlets in the dimerized lattice in

comparison to the ideal loading times for the double occupancies observed in the honeycomb lattice (see

Section 3.2).
12This formula implies SU(2) symmetry and equal population of all three triplet states [20].
13Note that this measurement was performed in a slightly different optical setup than the other measurements

in this chapter. However, we do not expect this to affect the measured outcome.
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half of the heating occurs during the initial lattice ramp. Our lattice ramp is therefore nearly

adiabatic, and the entropy it creates does not significantly depend on the chosen geometry.

5.4. Local spin correlations vs geometry

In the previous section we have seen that an increase of entropy remains due to the lattice

loading process. In the following sections we will explore how this finite entropy of our isolated

system is distributed on excitations, and how magnetic correlations form in our system. The

lowest temperatures reachable in the different lattice geometries are above the transition

temperature to long-range antiferromagnetically ordered states. However, the temperature

is low enough to form and detect local nearest-neighbor correlations. Due to the constant,

but finite entropy of the system, most of the excitations are placed into the spin degree

of freedom, as the interaction energy is the higher energy scale (see exemplary schematics

of Fig. 5.6a). However, in the regime considered in our measurements, charge fluctuations

cannot be ignored and theoretical calculations are quite demanding [57]. While we have two

distinct energy scales in the isotropic lattice, this picture is changed when enhancing the

tunneling bonds for certain links of the lattice. In this case a third energy scale is introduced

and in a subset of the links the magnetic exchange energy is stronger compared to the rest of

the links (Js vs J). The number of those strong links varies from Z=1 (dimer) to Z=6 (cubic

lattice with equal tunneling along all bonds, see also Fig. 5.2 and Table 5.1).

We can understand this mechanism as a local entropy redistribution on certain links [20,

57]. Due to the isolated nature of the system, the total entropy rather than the temperature

is constant for different Z [226]. With finite entropy, the presence of two different energy

scales associated with different tunnelings directly affects the magnetic correlations and leads

to a redistribution of spin correlations between the strong and the weak links. For a large

number of weaker tunneling links, more low-energy states are accessible. Thus, a finite entropy

mainly leads to thermal fluctuations within theses states. As a result, the entropy is stored

predominantly on the weak links, while the magnetic correlator on the strong links is high.

In combination with the local quantum fluctuations mentioned in Section 5.1, we expect a

complex interplay of geometry, interactions, and temperature leading to the formation of

local spin-correlations.

A simplified illustration of the formation of correlations is shown in Fig. 5.6b for the simple

cubic and dimerized lattice. On the one hand, we expect local correlations to form equally

on all links in the simple cubic lattice, which is built from equal tunneling bonds leading to

a single magnetic exchange J . Here, thermal fluctuations of holes and spin excitations are

likewise equally populated. On the other hand, in the extreme case of Z=1 for a dimerized

lattice we expect the entropy redistribution to be maximally effective. Respectively, we expect

singlets to form mainly on the strong bonds with minor thermal excitations in form of triplets

and holes, but almost no correlations along the other links.

To experimentally investigate this complex interplay, we prepare a two-component spin-

mixture, close to half filling in the center. We consecutively load the fermionic cloud into all

different geometries and measure the nearest-neighbor spin-spin correlations across a subset

of the strong bonds. To set the correct lattice depths we calculate all Hubbard parameters

numerically from the lattice potential using Wannier functions. For all our measurements

we choose the lattice depths in such a way that the total bandwidth of the single orbital
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Figure 5.6.: Short range nearest neighbor spin-spin correlations in different ge-

ometries. (a) Comparison of the energy scales: interaction U , magnetic exchange J and

temperature T . Most of the excitations are placed in the spin degree of the system and

only a few local spin-spin correlations are expected in an isotropic system. In contrast, when

enhancing the tunneling for some links we introduce an additional energy scale. Assuming

fixed entropy per particle the temperature is below this strong exchange energy Js and spin

correlations form along the strong links. (b) Schematic view of the local spin-spin correla-

tions observed in the two limiting cases with Z=6 (isotropic cubic lattice) and Z = 1 (dimer

lattice). In the cubic lattice with isotropic exchange J antiferromagnetic correlations form

equally on all links. In comparison, for a dimerized lattice with strong Js and weak J mag-

netic exchange singlets and triplets will form on the strong bond. Since the temperature is

low we expect a surplus of singlets compared to triplets. Due to the finite entropy thermal

excitation in form of spin-excitations and holes are prominent. (c) The trap averaged corre-

lator �〈Ŝxi Ŝxi+1〉�〈Ŝyi Ŝyi+1〉 is measured along the strong links for various lattice geometries,

which differ in the number of strong nearest neighbour links Z. An overview of the lattice

structures is shown in Fig. 5.2. For all data points the bandwidth W/h = 2.6(1) kHz and the

on-site interaction U/h = 0.87(2) kHz are constant. Error bars denote the standard error of

50 measurements.
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tight-binding model is always W/h = 2.60(6) kHz, independent of the particular lattice ge-

ometry. The expression is given by W = 2
∑

i t0i, where i denotes the sum over all 6 nearest

neighbors of any given lattice site in the underlying simple cubic lattice. Since the Wannier

functions depend on the exact geometry and lattice depths, we have to adjust the scattering

length by tuning the magnetic field of the Feshbach resonance to ensure a constant on-site

interaction U/h = 867(15) Hz. The exact parameters for all the lattice geometries with dif-

ferent connectivities realized in the experiment are summarized in Table 5.1. Additionally, in

all measurements a three-dimensional harmonic confinement is present, originating from the

lattice beams and dipole trap. Due to the changing harmonic confinement, as a result of the

intensity variation of the lattice beams, we have to adjust the optical power of the additional

dipole trap to set a constant geometric mean trapping frequency of ω̄/2π = 57(1) Hz for all

measurements. However, the individual trapping frequencies in x-, y- and z-direction of the

harmonic confinement are changing for each lattice geometry.

In a first measurement, we investigate the strength of spin correlations by enhancing the

tunneling ts on Z nearest neighbor links of the underlying simple cubic lattice with Z ranging

between 1 and 6, while the tunneling on the remaining links is set to smaller values of ts/5.

If all tunneling links are set to the same value ts/h = 217(10) Hz we realize a simple cubic

lattice. In the experiment we always merge the same strong links. As shown in Fig. 5.6c, the

strength of the correlations depends on the specific geometry with values ranging between

0.084(1) and 0.010(1) for the trap averaged value, and is generally smaller for a larger number

of strong tunneling links. As expected, the correlations are highest for the dimerized lattice

(Z=1), but we detect anti-ferromagnetic correlations in the system even for an isotropic cubic

lattice (Z=6).

The observed dependence of the spin correlator on Z can be understood in a homogeneous

system with the model presented above. As predicted for a finite entropy, the magnetic

correlator on the strong links is high when thermal excitations are allowed on an increased

number of weak links. However, if this number decreases, thermal fluctuations along the

weak links alone are not sufficient to account for the total entropy, and additional thermal

fluctuations are also distributed on the strong links, therefore reducing the correlations on the

strong link. Additionally, we have to take into account that even at zero entropy, quantum

fluctuations play a significant role, which in general leads to destruction of long-range order

and enhanced short-range spin correlations [2, 226, 273]. In both cases the correlator is

expected to decrease as Z is increased as is observed in our measurements. This is also in

accordance with previous measurements in the specific cases of dimerized lattices (Z=1) and

1D chains (Z=2) [20, 57].

While this simple consideration predicts a dependence only on Z, the lattice geometry itself

(for the same value of Z) will also affect the strength of the spin correlations, especially at low

temperatures. At low enough temperatures quantum fluctuations in lower dimensions, e.g. on

triangular lattices, can even lead to the formation of exotic phases like quantum spin liquids

[220] due to the frustration. In fact, in the limit of vanishing temperatures the state of the

system and its phase diagram will be entirely determined by the interplay between geometry

and magnetic ordering. The different values observed for the two Z=3 geometries (ladder and

honeycomb planes in Fig. 5.6) could suggest that effects of the lattice geometry are already

starting to play a role at the temperatures reached in the experiment. However, in our

measurements of the heating we found that the entropy sout between the two configurations
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Lattice Z V
X,X,Ỹ ,Z

[ER] a [a0] U/h [Hz] tx/h [Hz] t′x/h [Hz] ty/h [Hz] tz/h [Hz] W/h [kHz] sout [kB]

Dimer 1 [4.925, 0.073, 8.19, 7.9] 136.4(5) 866(15) 635(30) 136(4) 130(7) 130(8) 2.60(8) 1.33 (10)

1D 2 [3.205, 0, 9.6, 9.6] 139.1(5) 867(15) 464(12) 464(12) 93(6) 93(6) 2.60(4) 1.38 (12)

2DHC 3 [7.545, 0.258, 10.7, 3.93] 137.5(5) 868(15) 352(24) 75(3) 72(5) 363(12) 2.60(8) 1.44 (10)

Ladder 3 [7.345, 0.081, 4.16, 10.45] 136.9(5) 867(15) 354(23) 73(3) 361(12) 73(5) 2.60(6) 1.67 (9)

2D 4 [4.93, 0, 11.6, 4.93] 140.9(4) 867(15) 295(11) 295(11) 59(5) 295(11) 2.60(6) 1.30 (7)

3DHC 5 [9.025, 0.219, 5.57, 5.37] 143.5(4) 867(16) 248(19) 51(3) 250(11) 250(11) 2.60(8) 1.48 (13)

3D 6 [6.128, 0, 6.128, 6.128] 149.0(3) 867(16) 217(10) 217(10) 217(10) 217(10) 2.60(6) 1.23 (13)

Table 5.1.: Lattice parameters for each geometry. We list the individual lattice pa-

rameters for all lattice geometries of the measurements in Fig. 5.6: dimer, one-dimensional

chains (1D), two-dimensional honeycomb planes (2DHC), two-leg ladder, square (2D), cou-

pled honeycomb planes (3DHC), and simple cubic lattice (3D). For the calculation of the

tight binding parameters we use a calibrated visibility of α = 0.81(1). The tunneling links

are labeled according to the graph in Fig. 2.12. Note, compared to our publication [54]

the y and z-axis are flipped for a consistent labeling in the thesis. The different lattice

geometries are listed in increasing order of the connectivity Z. To set a constant value of

the on-site interaction U we vary the scattering length a. With increasing Z the number

of strong nearest-neighbor links is increasing accordingly (i.e. for the dimerized lattice the

strong tunneling is ts/h = 635 Hz, while all other links have a much weaker tunneling rate

of 130 Hz). Due to the exact choice of the individual tunneling links we ensure that the total

bandwidth W is constant. The entropy per particle sout characterizes the heating induced

by a given lattice geometry. The respective errors on the lattice parameters are a result of

the systematic uncertainty on the lattice beam powers. The error on sout is the standard

deviation over 10 measurements.

varies and a similar result could be explained by a higher entropy in the ladder geometry.

Although we keep the bandwidth, the interactions, and the mean trapping frequency fixed,

there are still differences in the local chemical potential due to the different implementations.

Overall, a single data point for each geometry is not sufficient to make a strong claim, and

further measurements of the two configurations are needed in combination with an exact

theoretical comparison for a final conclusion.

Motivated by our publication of the results on spin correlations in different geometries [54],

the theorists Jakub Imrǐska, Emanuel Gull and Matthias Troyer extended their previously

implemented DCA method to investigate anisotropic honeycomb and square lattices [57, 59]

(see also [265]). They numerically solve the equation of state for different lattice geometries

at various fillings using clusters up to a size of 116 cells. Fig. 5.7 shows their results for an

atom number close to the one used in our measurements, and thus allows for a qualitative

comparison. The harmonic trapping potential is included using a local density approximation.

Qualitatively, we obtain a similar behavior as explored in our experiment. While the exact

value of the correlator depends on the entropy per particle, the tendency of lower C for higher

numbers of strong links Z in the geometry is obvious. By construction, the center with half-

filling represents the region of highest correlations, while the edge of the trap with reduced

filling will carry parts of the entropy (see Fig. 5.7b). While both experiment and theory find

an increase of short range correlations for anisotropic lattices, the critical Néel temperature

of the phase transition is estimated to decrease [57, 59], therefore making it unfavorable to

reach a long-range ordered antiferromagnet in anisotropic lattices.

In addition to the aforementioned contributions, the underlying harmonic confinement also
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Figure 5.7.: Numerical results of the Hubbard model in different geometries.

(a) Numerical fraction of spin correlations on the strong tunneling bonds C using a DCA

calculation for different lattice geometries. The harmonic trap is modeled by a local density

approximation (LDA), with a chemical potential chosen in such a way to fulfill half-filling

in the center. For each geometry C is plotted as a function of the entropy s per particle in

the lattice for a total atom number of N = 100000. (b) Nearest-neighbor spin correlation

on the strong bond as a function of the distance from the center of the trap in units of the

lattice site. Using the same assumption for the chemical potential, the same atom number

and an entropy per particle of s = 1.4 kB as indicated by the gray line in (a). Adapted from

[59] with numerical data of the publication [59] and additional data from [57, 264].

plays a central role for the value of the trap-averaged correlator. Within the local density

approximation, both the chemical potential at the center of the trap and the temperature are

determined by the total atom number and entropy. As the equation of state of the system

depends on the lattice geometry and Z, both the density and entropy distribution change

with the geometry, which directly affects the magnetic correlator. Therefore, for a quantitative

comparison all parameters, the atom number, mean trapping frequency, anisotropy ts/t, and

interactions U/ts need to be set to the exact experimental values. Nevertheless, our results

show that ultracold atoms and numerical calculations can be used to understand the low

temperature behavior of local spin correlations in various geometries.

5.5. Spin correlations in a geometric crossover

To further study the impact of geometry on magnetic correlations, we measure their strength

for a crossover regime between two lattice geometries with different numbers of strong links

Z. In the experiment, geometries with a different Z can be smoothly connected by adjusting

the strength of the individual tunneling links. We perform two different scans - one between

a square (Z=4) and 1D chain (Z=2) geometry, and a second scan between a 1D chain and

dimerized (Z=1) geometry (see Fig. 5.8). The change of connectivity is obtained by gradually

weakening half of the initially strong links while increasing the other links. Following this

procedure we vary the strong-to-weak tunneling ratio ts/t from 1 to 5, thus allowing us to

continuously scan between two geometries. During the scan we always adjust the tunneling

in the orthogonal direction to a value of ts/5. In addition, we keep the total bandwidth, the

geometric mean trapping frequency, and the on-site interaction constant.

To analyze the evolution of the nearest-neighbor correlations, we need to measure the

correlations on both the weak and the strong link of each lattice geometry. As explained

above, the experimental setup of the tunable optical lattice only allows to merge adjacent
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Figure 5.8.: Distribution of correlations in anisotropic three-dimensional lattices.

We measure spin correlations in a crossover between two different lattice geometries with

varying connectivity Z. (a) This plot shows a scan between a square (Z=4) and a 1D chain

(Z=2) geometry and (b) a scan from a 1D chain (Z=2) to a dimerized (Z=1) geometry.

In both cases, the strong to weak tunneling ratio ts/t varies between 1 and 5. Note that

for simplicity, the schematics of the geometries have lower dimension. Blue and red symbols

denote the measured spin correlations along the strong and weak links respectively. Gray

symbols indicate the sum of correlations on both links. The error bar on the tunneling

ratio denotes the uncertainty on the lattice parameters, while the errorbar on the correlator

indicates the standard error of at least 25 measurements.

sites along the x-direction of the laboratory. Therefore, we need to play a little trick in order to

measure the spin correlations on neighboring sites along the perpendicular direction (merging

the tz-link) as shown in Fig. 5.8a. For this, we load the atoms into a lattice geometry that

is rotated by 90◦, which is achieved by exchanging the values for the lattice depths VX and

VZ . By merging along the x-direction of the laboratory we then effectively merge along the

perpendicular direction of the physical system. Due to the rotation of the lattice pattern, the

effective trapping frequencies along all directions of the harmonic confinement are different

for the two lattice geometries. However, the local density approximation (LDA), which has

been shown to be accurate in the temperature regime of our experiment [146], entails that

only the geometric mean of the trap frequency matters. This implies that the measured result

does not depend on our rotation in the xz-plane.

Fig. 5.8 shows the results obtained by measuring the spin correlations either along the

strong or the weak tunneling links. In both cases, correlations on each link start from the

same value, as expected for an initial isotropic square or one-dimensional lattice. As ts/t is

increased, the correlations along the strong links are enhanced whereas the correlations along

the weak links decrease. Interestingly, the correlations change more rapidly with increasing

ts/t for the 2D square to 1D chain scan as compared to 1D chain to dimer crossover. This
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behavior is most likely a direct consequence of the underlying lattice geometry. For the final

configuration ts/t = 5, the correlations on the weak link have nearly vanished, whereas the

correlations on the strong links have saturated at a high value. This indicates that the thermal

fluctuations occur predominantly on the weak links and supports our illustrative model of

the two magnetic exchange levels Js and J with the temperature as an intermediate energy

scale (Fig. 5.6). Consequently, the weaker couplings can be neglected for strong anisotropies,

and the dimensionality of the lattice is effectively reduced. Interestingly, the reduction of the

dimensionality occurs at different ratios of ts/t, depending on the considered geometry. For

our total entropy and atom number, we find that the distribution of correlations is directly

related to the connectivity Z even at finite tunneling of the weak links.

These measurements demonstrate that spin correlations redistribute between the strong

and weak links when changing Z. Yet, this does not necessarily imply that the sum of spin

correlations is constant. We find the sum of correlations to be approximately constant in

the scan of Fig. 5.8a, whereas it increases significantly with dimerization in the scan of

Fig. 5.8b. This observation might be related to the opening of a finite energy gap in the

energy spectrum for a strongly dimerized lattice, which causes entropy redistribution within

the trapped system and enhances the overall spin correlation strength.

5.6. Dynamics and formation of correlations

The tunability of our lattice also allows us to experimentally measure the timescales for

the formation and redistribution of spin correlations when dynamically changing the lattice

geometry. In order to observe spin dynamics, we first load the fermions into the starting lattice

geometry of 1D chains in the x-direction (same configuration as in Table 5.1). In contrast

to the previous measurements, we then, in a second step, change the lattice geometry on a

variable time scale τ before detecting the spin correlations. For simplicity, we start with a

ramp where the initial and final lattice geometry are the same up to a rotation: starting from a

1D chain geometry, we ramp via a square lattice to a 1D chain lattice again14, but with strong

tunneling along the perpendicular direction (ts = tz). We always include an additional wait

time before the ramp such that the total time in the optical lattice is constant τtot = 80 ms,

see Fig. 5.9. The spin correlations are measured immediately after the ramp along the two

different directions15.

The observed dependence of the spin correlations on the total ramp time τ is shown

in Fig. 5.9. For the fastest ramps, τ < 1ms, the spin correlations remain unchanged, and

correlations are still detected on the former strong link. Here, a non-equilibrium state is

formed with several charge and spin excitations, which decay when allowing for an additional

wait time after the ramp of 50 ms - thus changing the detected value of spin correlations

(open symbols in the graph). We actually detect ferromagnetic correlations on the initial

weak bond for the shortest time scale, which might be connected to a fast decay of double

occupancies in short quenches [274]. On intermediate ramp times, τ ∼ 2 − 4 ms, the spin

correlations change symmetrically along the two directions. This timescale is comparable to

14This is achieved by linearly ramping the lattice depths within the ramp time τ from VX,X,Ỹ ,Z =

[3.205, 0, 9.6, 9.6]ER to VX,X,Ỹ ,Z = [9.6, 0, 9.6, 3.205]ER (at exactly half of the ramp time the potential is

hence in a square lattice geometry with equal tunneling strengths in the xz-plane).
15To measure correlations along the tz-links we follow the same procedure as described in the Section of the

geometric crossover 5.5.
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Figure 5.9.: Dynamics and formation of correlations at fixed lattice geometry.

The lattice is ramped within a time τ from a 1D chain geometry to the same 1D chain

geometry rotated by 90◦. In order to be independent from heating effects, we always include

an additional wait time before the ramp such that the total time in the optical lattice is

constant. Blue and red data points denote the measured spin correlations along the previously

and new strong links. For all closed symbols the correlations are measured immediately after

the ramp, whereas open symbols include an additional wait time of 50 ms. The gray solid

lines indicate the reference value for the correlations of the strong link when loading directly

to the final lattice geometry, and the shading denotes the error on this value. The schematics

of the geometries do not show the third dimension for simplicity. Error bars are the standard

error of at least 25 measurements.

the underlying tunneling time between h/ts = 2 ms and h/t = 10 ms during the ramp. For

very slow ramp times, we observe - within error bars - a 100% transfer of spin correlations

from the previously strong to the new strong links. When waiting 50 ms in this case, the

magnetic correlations decrease (most likely due to underlying heating of the gas), but agree

with the value when loading directly from the harmonic trap to the final lattice geometry and

waiting for the same total time. These observations are in agreement with a fully adiabatic

ramp to an equilibrated final state for the slowest ramp times, as the initial and final lattice

geometries are the same, particularly regarding density and entropy distributions.

The situation changes considerably for a ramp with different initial and final lattice geome-

tries. Here, we start from a dimerized lattice with a ratio of ts/t = 5 for adjacent tunneling

links and ramp to a 1D geometry without dimerization16. Identically to the previous mea-

surement, we measure the spin correlations on the initially strong and weak links along the

1D direction immediately after the lattice ramp, without additional wait time, see Fig. 5.10.

For the fastest ramps (τ ≈ 0.1 ms) the spin correlations cannot redistribute and are nearly

unchanged in comparison to the dimerized case without ramp (see Fig. 5.8b). When adding

an additional wait time of 50 ms after the fastest ramp, the spin correlations change, signal-

16Here, the initial and final geometry correspond to the lattice configuration used for the other measurements

and is listed in Table 5.1
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Figure 5.10.: Evolution of correlations - From dimer to 1D-lattice. The lattice is

ramped within a time τ from a dimerized chain (Z = 1) to a 1D chain geometry (Z = 2).

We follow the same procedure as before with the only difference that the total time in the

shallow lattice is now set to 100 ms to allow for increased ramp times τ . Blue and red data

points denote the measured spin correlations along the initial strong and weak links. For

all closed symbols the correlations are measured immediately after the ramp, whereas open

symbols include an additional wait time of 50 ms. The gray solid lines indicate the reference

value for the correlations when loading directly to the 1D-lattice geometry, and the shading

denotes the error on this value. Note, for simplicity the schematics of the geometries do not

show the third dimension. Error bars are the standard error of at least 25 measurements.

ing a decay of the created excitations in this case. The behavior is different for intermediate

ramp times: while the correlations on the initially strong links decrease very quickly, slower

ramp times τ ∼ 1 ms are necessary for the correlations on the initially weak links to change.

This may originate from the difference in the overall tunneling timescale during the ramp for

the two links.

For the slowest ramps, the correlators along the original strong and weak link are identical.

With an additional wait time, they both decay to the same value, again due to finite heating

in the system. This indicates a final state close to equilibrium. In contrast to the previous

measurement, the gap between the ground and excited states closes during the ramp, since

the singlet-triplet gap has vanished in the non-dimerized geometry. Yet, the observed spin

correlation value agrees with a reference when loading directly into the final lattice geometry

and holding the remaining time. Consequently, ramp times corresponding to a few tunneling

times are already sufficient to reach equilibrium. Furthermore, the observed dynamics for

varying ramp times τ indicate that a local redistribution of correlations happens on timescales

faster than the global redistribution during the lattice loading.
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Figure 5.11.: Observed double occupancy as a function of the preparation tem-

perature. Measurement of the double occupancy D as a function of the initial temperature

Tin before loading the optical lattice. The temperature is independently calibrated and mea-

sured in the dipole trap before the lattice loading takes place. We always start from the

coldest temperature and then subsequently heat the atomic cloud. We finally measure D in

a simple cubic lattice with a lattice depth of 8ER (a) with tunneling in the usual regime

(t/h = 144(8) Hz) or in a weak simple cubic lattice with 2ER (b). In case of the deep simple

cubic lattice we compare two different scattering lengths which correspond to a repulsive

interaction U/h = 1082(19) Hz (blue) and a non-interacting system U/h = 76(20) Hz. Error

bars in y are the standard deviation of at least 4 measurements and in x the uncertainty of

the temperature calibration.

5.7. Adiabaticity and thermalization of the Fermi-Hubbard system

In the previous sections we have seen that local spin-correlations can reveal interesting insight

into the low temperature behavior of the Fermi-Hubbard model. However, the lowest entropy

we reach is still above the critical value to reach a long-range ordered state. In the following

we want to investigate possible hurdles in the quest torwards lower temperatures and analyze

possible improvements17.

In a first set of measurement we investigate the observed double occupancy D as a function

of the initial temperature before loading the atoms into the optical lattice. As we have

seen above, the correlations for a simple cubic lattice are quite small, even for the lowest

temperatures. However, increasing the temperature will lead to a fast loss of the signal. We

therefore use double occupancies as an observable (in contrast to the measurements before)

which also improves the signal to noise ratio. Fig. 5.11 shows the results for two different

interaction strengths. The optical lattice is loaded within 200 ms which was found to be

sufficiently slow to minimize any non-adiabaticity (see Section 3.2). We immediately realize

that the detected double occupancy seems to saturate for the lowest temperatures. This is in

clear contrast to our theoretical expectations, which suggests a monotonic increase of D as

the global temperature is decreased in this regime (compare also the increase of correlations

as a function of entropy in the theoretical calculations shown in Fig. 5.7). Here we should

state that a similar behavior was observed with correlations in the anisotropic simple cubic

lattice [20], which was attributed to the non-adiabaticity of the lattice loading for the coldest

17Note, this section is not part of our publication [54].
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temperatures18.

To investigate this increased non-adiabaticity we perform an additional measurement also

for a weak optical lattice at 2ER (see Fig. 5.11b). For such weak lattices we expect to

minimize the non-adiabaticity of the loading process. Even in this regime we observe a similar

behavior and find a saturation of the measured ’double occupancy’ for low interactions19. This

measurement seems to show that saturation for low temperatures might not be a result of

an increased non-adiabaticity but might be rather connected to a different limitation.

In order to differentiate between the non-adiabaticity of the lattice loading or other possible

limitations we perform additional tests. Assuming the problem arises due to the lattice loading

scheme it should be experimentally possible to qualitatively determine this contribution. This

can be achieved by directly comparing the measured double occupancy at different points

during the lattice loading process with equivalent measurements of the double occupancy

after reverting the lattice loading process (see schematics in Fig. 5.12a). When we stop

the loading process at different times we reach distinct lattice depths and can measure the

resulting double occupancy. Any non-adiabaticity of the lattice ramp should be equally bad

for the loading as well as the unloading process.

Fig. 5.12b,c presents the results for the cases of two different interaction strengths. Our

measurements show a slight asymmetry and it looks as if the unloading ramp is shifted

to lower values. However, for those measurements the overall time in the optical lattice is

increased and we have to correct for the finite lifetime of the double occupancies, which we

independently calibrate. We determine an effective time for the unloading-measurement which

we obtain by integrating the shape of the lattice intensity ramp and include an additional

hold time of 100 ms in the deep lattice (see Section 3.2). As a result, when comparing the

loading and unloading process as a function of the final lattice depth we obtain D which are

similar within the error bar of the measurement. This measurement is an indication that the

lattice ramp itself does not seem to add a significant amount of entropy.

Our results suggest that there might be a problem even before we load the fermionic

atoms into the optical lattice. One possibility is a non-perfect thermalization of the initial

cloud after evaporation. The final trap depth is quite low which results in dilute clouds

and correspondingly slow thermalization20. Therefore, we analyze the thermalization in our

usual harmonic trap as a function of the hold time after evaporation in the dipole trap. As

observable we use the ratio Tx/Ty which we extract from the Fermi fit after time of flight.

Tx (Ty) thereby correspond to the two different axes of the camera and should be equivalent

in case of a perfect thermalized cloud for sufficiently long time of flight.

Exemplary measurements are shown in Fig. 5.12d for three different scattering lengths.

If the interactions are weak (red data points) the thermalization process is very slow. In

contrast, for strong attractive interactions, a thermal configuration is reached quite fast.

Unfortunately, the regime we usually work in (weak repulsive interactions, blue data) still

has some finite thermalization time. We extract a time scale from an exponential decay for

18Although the observables differ, the regime U/t of the Fermi-Hubbard model is similar in both measure-

ments. In general, we expect that both observables are a good measure to indicate the temperature of the

system.
19As usual, for the detection of double occupancies we freeze the evolution of the particles and project into

a deep simple cubic lattice. Even for those shallow lattice we can therefore accurately determine the

occupation of the sites.
20This is the reason why our evaporation process is lasting several seconds.
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Figure 5.12.: Adiabaticity of the loading ramp and thermalization of the initial

cloud. (a) Measurement scheme of the adiabaticity during the lattice loading process. The

double occupancy is detected at different intermediate lattice depths during the lattice ramps

(indicated by the markers). (b) Measurement of D for two different interaction strengths.

Full data points correspond to measurements during the lattice loading process, hollow data

points to the equivalent measurement during the unloading process when lowering the lattice

depth. (c) Results from b plotted as a function of the final lattice depth. The hollow data

points measured during the unloading process are corrected (compared to the raw data in

b) for a finite lifetime of D, which is independently calibrated). (d) Thermalization of the

fermionic cloud in the dipole trap with a mean trapping frequency ω = 47 Hz for different

scattering lengths. Exemplary measurements at a scattering length of a ≈ −452 a0 (green),

a ≈ 150 a0 (blue) and a ≈ 30 a0 (red). Here, the blue and red data have equivalent scattering

length as in b,c. The ratio Tx/Ty is extracted from the Fermi fit. Solid lines are exponential

fits to determine the thermalization time. (e) Results of the thermalization time scale as

extracted from individual measurements (partly shown in d). The inset presents the same

results on a double logarithmic plot as a function of the absolute scattering length. Error

bars in b-d (e) denote the standard deviation of at least 3 measurements (the fit error of

the exponential decay).

93



5. OBSERVING SHORT-RANGE CORRELATIONS IN THE FERMI-HUBBARD
MODEL

different interaction strengths (see Fig. 5.12e). As expected, we get a speed-up for increased

scattering lengths which is independent of the sign of the interactions (see inset).

In our usual preparation of the atomic cloud we take care that the initial imbalance ratio

Tx/Ty is minimal which we claim to be ’thermal’. However, if we use weak repulsive in-

teractions, our measurements in the optical lattice seem to indicate that this might not be

correct. Our findings might also explain, why so far the only experiments with Lithium atoms

could experimentally reach long-range ordered states [21, 55]. Lithium can be easily tuned to

much stronger scattering lengths and might be advantageous in preparing perfectly thermal

clouds. However, this claim is quite speculative and further investigation is needed in order

to quantify the limitations. I am sure the next years will bring forward exciting results as all

the observed results do not present a rigorous limit which cannot be overcome. Nevertheless,

we can state that a careful preparation of the initial cloud is needed in order to reach lower

temperatures in combination with the implementation of entropy redistribution schemes.

5.8. Conclusion

In conclusion, our experiments on quantum magnetism show that ultracold atoms in optical

lattices are an ideal platform to characterize the spin degree of the Fermi-Hubbard model. In

combination with theoretical models and numerical methods, quantum simulation of mag-

netism is on the route to investigate many exotic and intriguing phases of various models, such

as the possible d-wave superconducting state in the doped Hubbard model [140]. Further-

more, our results on the spin dynamics demonstrate that ultracold fermions in optical lattices

are well suited to study open questions in out-of-equilibrium many-body spin systems, where

theoretical methods become extraordinarily difficult [269, 270]. The observed rapid formation

timescales of spin correlations offer very promising perspectives for the implementation of

sophisticated entropy redistribution schemes based on trap shaping and dynamically chang-

ing lattice geometries, which are expected to result in overall lower temperatures [275, 276,

277] and have been partially implemented in one quantum gas microscope [21]. Yet, reaching

a nearly adiabatic ramp remains a great challenge as has been shown in the final section.

Finally, when combining our observed anti-ferromagnetic correlations in a variety of lattice

geometries with low entropy schemes, it should be possible to address open questions on the

low-temperature phase diagram of the Hubbard model in complex lattice geometries. In this

way, the nature of the ground state in a spin ladder geometry with tunable couplings can

be investigated [2]. It may also be possible to study quantum criticality in the vicinity of

the phase transition from a semi-metal to an anti-ferromagnetic Mott insulator in the 2D

honeycomb lattice [156].
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6 Introduction to Floquet theory

In this chapter, I will review some general concepts of Floquet theory, which are needed as

a basis for the second part of this thesis. In addition to our experiments with static systems

and investigations of different static models, the second part will focus on periodic time-

modulated systems. On the one hand, we need new concepts and considerations in order to

describe such driven systems. On the other hand, creating systems modulated periodically in

time is a powerful tool which allows us to engineer additional terms and new Hamiltonians

that are beyond reach in static systems. Using the concepts of Floquet theory we can analyze

non-interacting as well as interacting systems and try to possibly understand such complex

many-body dynamics.

The introduction will focus on important concepts and will be kept short. Interested readers

find detailed reviews on Floquet theory which discuss the concept for generic Hamiltonians

and provide a general understanding [64, 65]. In the context of cold atoms, a recent review

provides a great overview on theoretical proposals and experimental implementations [66]
1. A periodically modulated system is described by the Floquet formalism on two different

timescales, a slow evolution of the states under the effective Hamiltonian and a fast dynamics

within one driving period, which we will refer to as micromotion. Floquet engineering provides

a tunable and controlled environment if heating processes and dissipation happens on larger

timescales than the underlying physical processes in the effective Hamiltonian [66]. Moreover,

our experimental results in Floquet engineering and the realization of concrete Floquet states

provide a platform to directly compare measurements with effective theoretical models that

allow to interpret the underlying physics.

The second part of this thesis will be divided in four chapters each describing the measure-

ments and details of one publication. In Chapter 7 I will describe how Floquet engineering

can be used to realize spin-dependent optical lattices. Furthermore, periodic modulation has

proven to be an ideal tool to implement artificial gauge fields and topological systems in

optical lattice setups. Therefore, I will present our result on the experimental realization of

the topological Haldane model, which is achieved by breaking time-reversal symmetry in a

modulated system (see Chapter 8). While the first two examples focus on the creation of

specific effective Hamiltonians, we also investigate how to prepare a distinct Floquet state

in a shaken system with interacting fermions in an optical lattice. In a first set of measure-

ments, we show the full control over a four-level system of two interacting spin states in a

double well. As described in Chapter 9, we use this controlled environment and demonstrate

a preparation scheme that allows us to address specific Floquet states and to control the

coupling between Floquet states. We will show that coupling to higher bands and heating

1A nice overview on periodically driven quantum systems with relevance to cold atoms can be also found in

the PhD theses [97, 278].
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processes can be minimized such that we can explore the effective Hamiltonian on useful

experimental timescales. Finally, we show how periodic driving can be used to coherently

control the properties of a many-body state, which allows us to enhance nearest-neighbor

antiferromagnetic spin-spin correlations or even switch to ferromagnetic correlations as a

function of the driving parameters (see Chapter 10).

6.1. Floquet formalism and effective Hamiltonians

The overview on the Floquet formalism will follow the argumentation in the review [64] which

uses a generalized approach first introduced in [279]. One aim of Floquet theory is to derive

an effective time-independent Hamiltonian2, which describes the system on timescales longer

than the oscillation period [64, 65, 279, 280, 281]. In Floquet theory, we treat a Hamiltonian

that is periodic in time Ĥ(τ + T ) = Ĥ(τ) 3 with period T and a modulation frequency of

ω = 2π/T . We can rewrite the Hamiltonian in a static part Ĥ0 and an additional periodic

modulation V̂ (τ) such that the total time dependent Hamiltonian is given by

Ĥ(τ) = Ĥ0 + V̂ (τ). (6.1)

We can now describe the evolution of states under such a time periodic Hamiltonian from an

initial time τi to a final time τf using the time evolution operator [64, 65]

Û(τf , τi) = e−iK̂(τf )e−(i/~)(τf−τi)ĤeffeiK̂(τi), (6.2)

where the effective Hamiltonian Ĥeff describes the long term dynamics of the system and is

time independent. In contrast, the evolution within one period of the drive (micromotion)

is governed by the time periodic kick operator K̂(τ) = K̂(τ + T ), which averages to zero

over one full driving period. Here, we use the non-stroboscopic scheme where the effective

Hamiltonian and the kick operator are independent of the starting phase of the modulation.

Equation 6.2 directly reveals that we can separate the evolution into three parts. A first initial

kick at the starting time τi, which is defined by operator K̂(τi), a long time evolution of the

state for time τf − τi under the time independent effective Hamiltonian Ĥeff , and finally a

kick at time τf defined by K̂(τf ). The kick operator can be therefore understood as a unitary

transformation to a frame in which the system evolves under Ĥeff . The effective Hamiltonian

and kick operator can be calculated perturbatively in a high frequency expansion [64, 65]

Ĥeff =

∞∑
n=0

Ĥ
(n)
eff , K̂(τ) =

∞∑
n=1

K̂(n)(τ). (6.3)

Ĥeff is constructed in powers of (1/ω) as infinite sums of the commutators from the Fourier

coefficients V̂ (j) of the periodic modulation V̂ (τ) and the static Hamiltonian Ĥ0:

Ĥeff = Ĥ0 +
1

~ω

∞∑
j=1

1

j

[
V̂ (j), V̂ (−j)

]
+

1

2(~ω)2

∞∑
j=1

1

j2

([[
V̂ (j), Ĥ0

]
, V̂ (−j)

]
+ h.c

)
+O

(
1

ω3

)
,

(6.4)

2A complete analytical description of the Floquet formalism in different driving regimes for the case of two

interacting particles in a double well can be found in Appendix A of our publication [73].
3To differentiate between tunneling t and experimental timescales we always use the variable τ for times.
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where second-order terms in the (1/ω2) component have been omitted4 and we have used

the coefficients of the Fourier expansion of the periodic modulation:

V̂ (τ) =
∞∑
j=1

V̂ (j)ei jωτ + V̂ (−j)e−i jωτ . (6.5)

In an analogous manner we can expand the kick operator

K̂(τ) =
1

i~ω

∞∑
j=1

1

j
V̂ (j)ei jωτ +O

(
1

ω2

)
. (6.6)

One theoretical challenge is to find an appropriate order of expansion for which the ef-

fective Hamiltonian converges. Depending on the difference of the modulation frequency ω

from other experimental energy scales (e.g. tunneling or interaction) such a truncation might

change drastically the effective Hamiltonian and therefore the theoretical model used for

the experimental comparison. In the following chapters we derive and specify an effective

Hamiltonian for each of our experimental realizations. As will be shown, we can verify ex-

perimentally that those Hamiltonians are a good description of the modulated optical lattice

system.

6.2. Effective Hamiltonian for a periodically modulated optical lattice

In the following, we will consider a periodically modulated Hamiltonian of non-interacting

atoms in a one-dimensional optical lattice in order to explain the basic concept. In our

experiments, we either use a magnetic field gradient to directly apply a force or instead a

phase modulation of the standing wave optical lattice by physically moving the final mirror

to create the retro-reflected lattice beam. For the latter, we can describe the shaken lattice

potential VOL(x, τ) = VOL(x − x0(τ)) with a time-periodic displacement of the lattice sites

x0(τ+T ) = x0(τ) = x0cos(ωτ)ex. The modulation can instead be described in the co-moving

frame of the lattice with a sinusoidal force, which is acting on the atoms. We can rewrite

the potential in the frame co-moving with the lattice as VOL(x) − x · F(τ) with the force

F(τ) = −mẍ0 = mω2x0cos(ωτ)ex [282, 283]. We can then define the full time-dependent

Hamiltonian of the one-dimensional lattice in the co-moving frame by

Ĥ(τ) =
p̂2
x

2m
+ VOL(x̂) +mω2x0cos(ωτ)x̂. (6.7)

We can rewrite this Hamiltonian in a tight-binding model of a single-band and get

Ĥ(τ) = −t
∑
j

(
ĉ†j ĉj+1 + h.c

)
+ amω2x0cos(ωτ)

∑
j

jĉ†j ĉj , (6.8)

where ĉ†j (ĉj) denotes the creation (annihilation) operator of a fermion at lattice site j, a = λ/2

is the spacing between two lattice sites and t defines the tunneling energy. By using this

notation, we assume that the modulation only creates a time-dependent energy offset ∆(τ) =

amω2x0cos(ωτ) between neighboring sites but does not modify the Wannier functions itself.

4A full derivation and all expansion terms up to second-order are given in Appendix C of Ref. [64].
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Basically, we ignore any coupling to higher bands, which would lead to a different description

of the tight-binding Hamiltonian. In the following chapters, we therefore have to clarify if this

approximation holds for our shaken systems and if such regimes are experimentally accessible

in the required modulation times. Note, even multiple photon processes can couple atoms in

the lowest band to higher bands, which is relevant especially for long measurement timescales

[114].

In order to derive the effective Hamiltonian, we do not directly follow the formal approach

in equation 6.4 but first use a rotating frame transformation5. Our system is given by the

static Hamiltonian Ĥ0 and the time-modulated part V̂ (τ) = ∆(τ)
∑

j jĉ
†
j ĉj = ∆(τ)Ĥ∆. A

transformation to a rotating frame is especially useful if the modulation amplitude scales

with the driving frequency as the high frequency expansion might diverge in the lab frame

(see Chapter 3.4 of Ref. [65]). We can therefore find a rotating frame using the unitary

transformation.

R̂(τ) = exp

(
− i
~

∫
∆(τ)Ĥ∆dτ

)
= exp

(
−iκ sin(ωτ)Ĥ∆

)
, (6.9)

where we have introduced the dimensionless shaking amplitude κ = amωx0/~. In the rotating

frame, the Hamiltonian is then given by

Ĥrot(τ) = R̂†(τ)Ĥ0R̂(τ) + R̂†(τ)∆(τ)Ĥ∆(τ)R̂(τ)− iR̂†(τ)
∂

∂τ
R̂(τ)

= R̂†(τ)Ĥ0R̂(τ)

= −t
∑
j

(
eiκsin(ωτ)ĉ†j ĉj+1 + e−iκsin(ωτ)ĉ†j+1ĉj

)
, (6.10)

where the tunneling acquires a time-dependent phase factor [64]. The time-periodic modula-

tion is now described by the Peierl’s phase ϕ(τ) = κ sin(ωτ), which originates from a phase

evolution of the Wannier functions localized on different sites due to the energy offset created

by the modulation. We can derive the effective Hamiltonian (to lowest order)

Ûrot(T ) = exp

(
− i
~

∫ T

0
Ĥrot(τ)dτ

)
= exp

(
− i
~
TĤeff

)
(6.11)

from the evolution operator after a full modulation period T in the rotating frame. Finally,

we get the effective time-independent Hamiltonian for the modulated one-dimensional lattice

as

Ĥeff =
1

T

∫ T

0
Ĥrot(τ)dτ

= −tJ0(κ)
∑
j

(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
, (6.12)

where we have used the relation
∫ T

0 exp (iκsin(ωτ)) dτ = TJ0(κ) for the zero order Bessel

function of the first kind J0. As a final result for the effective Hamiltonian, we get a renormal-

ization of the tunneling teff = tJ0 , where the strength can be controlled via the dimensionless

shaking amplitude κ. This renormalization of the kinetic energy has been shown first theoret-

ically [284] and then proven experimentally with pioneering Floquet experiments of bosons

5For a full derivation using the rotating frame see Appendix B of Ref. [64].
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6.2. EFFECTIVE HAMILTONIAN FOR A PERIODICALLY MODULATED OPTICAL
LATTICE

in one-dimensional lattices [60, 61, 62, 63] 6. As we have seen, for a phase modulation via

lattice shaking the dimensionless shaking parameter is proportional to the shaking frequency

κ = amωx0/~. In contrast, if we directly apply a modulated force F (τ) = Fmaxcos(ωτ) to the

atoms the dimensionless shaking parameter is inversely proportional to the shaking frequency

(κ = aFmax/(~ω)).

An exemplary measurement for the renormalization of the tunneling is shown in Fig. 6.1a

where we measure the expansion of the atomic cloud in a driven one-dimensional optical

lattice. The expansion is directly proportional to the effective tunneling (for more details see

Section 7.5). As expected, the effective tunneling teff is independent of the shaking frequency

ω if we plot it versus the dimensionless shaking amplitude κ. In other words, we have to

decrease the amplitude of the piezo displacement x0 if the shaking frequency increases. By

measuring the effective tunneling for different frequencies and comparing it to the theoretical

expectation, we can therefore test our piezo calibration7.

In our exemplary derivation, we obtain the renormalization of the kinetic energy in a one-

dimensional optical lattice with modulation along the x-direction. However, it is straight

forward to extend this scheme to three-dimensional optical lattices or shaking along other

directions. In such a scenario, we have to consider the projection of the applied force along

each tunneling direction within the lattice.

Using the derivation in a rotating frame, we consider the high frequency expansion (ω � t)

in lowest order, which results in the exact result presented above. In case of a more complex

lattice shaking or lower modulation frequencies for which this limit does not hold, we have to

follow the truncation approach specified in equation 6.4 and derive higher order corrections.

We then derive the effective Hamiltonian and kick operators in the high frequency expansion

in the transformed frame

Heff =

∞∑
n=0

H
(n)
eff,rot, Krot(τ) =

∞∑
n=1

K
(n)
rot (τ). (6.13)

Here, the individual summands of the expansion H
(n)
eff,rot are different from the definition in

the lab frame (see equation 6.3), although the total effective Hamiltonian Heff is identical in

both frames.

As will be shown in Chapter 8, for the implementation of the topological Haldane model,

the shaking frequency is close to the bandwidth of the honeycomb lattice and in addition we

have more than a single site per unit cell of the honeycomb lattice. In such a case, higher order

terms play a crucial role and actually lead to the creation of complex next-nearest-neighbor

tunneling. Another difficulty arises when adding interactions to the system as the simple

rotating wave approximation fails as soon as the driving frequency is close to the interaction

scale. In Chapter 9, a derivation including interactions is combined with our experimental

implementation of interacting time-modulated Hubbard models. There, we will show how to

realize density dependent tunneling processes with resonant driving.

6Similar results have been achieved using the diffraction of an atomic beam in periodically driven double

wells [285].
7See Section 8.5 for more details on the piezo setup.
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Figure 6.1.: Effective Hamiltonian and quasi-energy in Floquet systems. (a) Mea-

surement of the renormalization of the tunneling in a driven one-dimensional optical lattice.

The lattice is phase modulated using a piezo actuator to displace the retro-mirror position.

We measure the in situ expansion dynamics of the atomic cloud while modulating the lattice

with various shaking amplitudes κ. We extract the expansion rate using a linear fit to the

gaussian width of the cloud and normalizing it with the expansion rate without modulation.

As a result, we obtain data points for teff/t which are proportional to the expansion ratio.

Error bars denote the fit uncertainty. The gray line shows the 0th order Bessel function. (b)

Illustrative figure of the renormalization of the band structure in a momentum space picture.

The modulated force leads to a time-periodic shift in quasi-momentum and we obtain the

effective band structure as a time-average. (c) A driven system has no well defined ground

state and is represented by a quasi-energy spectrum with energies defined by integer multi-

ples of ~ω. In the high frequency limit, the band structure (here, represented by two bands)

reappears in steps of ~ω in quasi-energy. Obviously, in this schematic we ignore the existence

of even higher bands, which might be coupled. (d) Representation of the band structure

in the first reduced quasi-energy zone (�~ω/2 ≤ εα < ~ω/2). If the shaking frequency is

close to the next higher band we can resonantly couple the atomic state. Depending on the

occupation of the lowest band and the interactions between the particles this can lead to

new physical phenomena or just to atom loss and heating (for more details see Section 10.2).
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6.3. EFFECTIVE BAND STRUCTURE IN MOMENTUM SPACE

6.3. Effective band structure in momentum space

A more intuitive picture arises if we consider the effect of the modulation in momentum space

[66]. The lowest band of our one-dimensional optical lattice is defined as ε(k) = −2tcos(akx).

In a similar approach to the consideration above, we intuitively realize that the modulated

force leads to a time-periodic shift of the quasi-momentum of the atoms in the band structure

q0(τ) = −m
~
ẋ0(τ) =

mωx0

~
sin(ωτ). (6.14)

Basically we move the atoms back and forth within the quasi-momentum space. Similarly,

if we transform to a co-moving frame (of the atoms) in momentum-space we obtain time-

modulated energy bands. We can think of this as an energy band which is literally moving

back and forth (see Fig. 6.1b). As a result, a particle in state kx will pick up a time-dependent

dynamical phase and we get a time-modulated dispersion relation:

ε(k + q0(τ)) = −2tcos (akx + κsin(ωτ)) (6.15)

We can therefore find the effective band structure of the modulated optical lattice as

εeff(k) =
1

T

∫ T

0
ε(k + q0(τ))dτ

= −2t
1

T

∫ T

0
cos (akx + κsin(ωτ)) dτ

= −2tJ0(κ)cos(akx). (6.16)

As a result, we retrieve the renormalization of the tunneling with the zero order Bessel

function and therefore a reduced bandwidth of the dispersion relation.

6.4. Quasi-energy and Floquet states

So far, we have concentrated on the derivation of an effective Hamiltonian, which describes

the system on long timescales. However, we also have to consider the actual states of our

system and how the modulation affects them. Additional care has to be taken since we always

measure in the laboratory frame, which means that we have to consider the micromotion that

is described via the kick operators introduced in Section 6.1 8. To extract information on the

Floquet states, we analyze the solution of the time-dependent Schrödinger equation for the

time-periodic Floquet Hamiltonian Ĥ(τ) [280] 9

i~
∂

∂τ
|Ψ(τ)〉 = Ĥ(τ) |Ψ(τ)〉 . (6.17)

In analogy to the Bloch theorem, where we find solutions to the problem that are themselves

periodic in real space (in the same way as the Hamiltonian), we take a similar approach - the

8A detailed discussion on the micromotion is presented in the next section. In addition, we analyze the

micromotion of our measured observables in driven interacting systems also experimentally (see Chapter 9

and 10).
9Here we follow the argumentation of Ref. [286].
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6. INTRODUCTION TO FLOQUET THEORY

Floquet state solution [286, 287] for time-periodic Hamiltonians. According to the Floquet

theorem, we can find time-periodic wave functions as solutions of the form

|Ψα(τ)〉 = exp (−i εατ/~) |Φα(τ)〉 , (6.18)

with the time-periodic Floquet mode |Φα(τ + T )〉 = |Φα(τ)〉 and the quasi-energy εα [66]. By

inserting the Floquet mode in the time-dependent Schrödinger equation, we directly obtain

the eigenvalue equation for the quasi-energy.(
Ĥ(τ)− i~ ∂

∂τ

)
|Φα(τ)〉 = εα |Φα(τ)〉 , (6.19)

From this equation we directly see that also the Floquet modes |Φn
α(τ)〉 = einωτ |Φα(τ)〉

(n ∈ Z) are solutions with quasi-energy

εnα = εα + n~ω. (6.20)

However, due to the construction of the Floquet modes, solutions for any n are equivalent

|Ψn
α(τ)〉 = exp (−i(εατ/~ + nωτ)) |Φn

α(τ)〉
= exp (−i(εατ/~ + nωτ)) exp (inωτ) |Φα(τ)〉
= exp (−iεατ/~) |Φα(τ)〉 = |Ψα(τ)〉 . (6.21)

Consequently, we have a whole set of solutions that are indexed by n which are all solutions

to the time-periodic Schrödinger equation and differ only in their quasi-energy by integer

multiples of ~ω [280]. In other words, there is not only a single eigenvalue for a given state

but an infinite number of quasi-energies. In analogy of the Bloch theorem10, we can define the

quasi-energy in a reduced zone of −~ω/2 ≤ εα < ~ω/2. Our result shows, that a driven system

does not have a well defined ground state and we can basically absorb or emit ”shaking”

photons in order to move by ~ω in quasi-energy. This process is illustrated in Fig. 6.1c.

A relevant question is therefore to which degree we can control the preparation of given

Floquet states and how we can couple the ground state of the static Hamiltonian to a desired

Floquet state. A detailed discussion on the controlled preparation of Floquet states follows

in Chapter 9. Furthermore, including interactions, we expect for infinitely long shaking times

a mixture of exponentially many eigenstates of the undriven Hamiltonian that describe the

Floquet eigenstate [74, 75]. Here, the driving leads to a state of maximum entropy or in

other words an infinite temperature state. However, we can look at shorter timescales at

which hopefully exciting new phases arise and can be measured. Consequently, we exper-

imentally prove the existence of an intermediate time scale on which we can describe the

driven interacting system with an effective Hamiltonian and observe states that are not in

the infinite temperature regime (see Chapters 9 and 10).

Another challenge arises from the folding of bands within the first Floquet zone. So far, we

have ignored coupling to higher bands and derived the above results under the assumption

that we can describe the system with a tight-binding model of the lowest band. As Fig. 6.1d

shows, this assumption is only valid if our driving frequency is chosen in such a way that we

10In momentum space, this corresponds to the well known first Brillouin zone as the reduced quasi-momentum

zone.
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cannot drive interband and intraband transitions. However, if the frequency allows to couple

the ground state in the lowest band to other available states, we will be governed with atom

loss and heating. The strength of the coupling to higher bands depends on the overlap of

the wave functions, the order of the process and the interactions of the atomic cloud [66,

114, 288]. As a result, we have the experimental quest to find frequencies that minimize both

coupling to higher bands and heating, in order to realize an effective Hamiltonian.

While the coupling to higher bands might hinder the realization of certain Floquet states

in Floquet-Hubbard models, it can be also desired to engineer new types of systems. For

example it has been used to hybridize the first two bands of a shaken optical lattice in order

to create ferromagnetic domains and analyze the mechanism in the symmetry breaking, as

well as a Roton-Maxon like excitation spectrum [289, 290, 291, 292, 293]. Furthermore, there

are theoretical proposals of systems shaken closely resonant to higher bands, explicitly using

the hybridization of Bloch bands to induce interesting phenomena [294, 295, 296, 297, 298,

299, 300]. For our system, we present detailed measurements in Section 10.1, which show

that it is still possible to find suitable regimes without coupling to higher bands. If heating

and interband coupling is minimized, we can tackle new physics with Floquet engineering

in interacting systems (see Chapter 9 and 10). As we will show, it is possible on usual

experimental timescales to analyze the driven system before the unavoidable heating takes

over.

6.5. Micromotion - fast evolution within the driving period

So far, we have focused on the effective Hamiltonian and its underlying Floquet states. How-

ever, we have to also consider the fast evolution within the driving period. The micromotion

is defined by the kick operators (see equations 6.2 and 6.6). This is actually most relevant for

any measurement observable, since the measurement takes place in the static lab frame. We

will show that the micromotion tends to become negligible for infinite driving frequencies,

however, it alters the states significantly for near-resonant and low-frequency modulation [64,

65, 301, 302, 303]

As we have shown above, by using a transformation to the rotating frame, we can derive

the effective Hamiltonian. While the effective Hamiltonian by definition is independent of the

frame, this is not true for our observables, the states and the operators (including the time

evolution operator) 11. In equation 6.10 we have transformed the time-dependent Hamiltonian

in the rotating frame, similarly all observables Ôlab and states |ψlab(τ)〉 are transformed to

the rotating frame and given by [65]

Ôrot(τ) = R̂†(τ)ÔlabR̂(τ) (6.22)

|ψrot(τ)〉 = R†(τ) |ψlab(τ)〉 . (6.23)

The time evolution operator (6.2) in the rotating frame can be written as [65, 302]

Ûrot(τf , τi) = e−iK̂rot(τf )e−(i/~)(τf−τi)ĤeffeiK̂rot(τi), (6.24)

11This is only true for the full effective Hamiltonian, individual summands in the high frequency expansion

are different in the lab and the rotating frame (see equation 6.13)
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with the relation to the evolution operator in the laboratory frame

Û(τf , τi) = R̂(τf )Ûrot(τf , τi)R̂
†(τi)

= R̂(τf )e−iK̂rot(τf )e−(i/~)(τf−τi)ĤeffeiK̂rot(τi)R̂†(τi). (6.25)

This shows that the micromotion operator M̂(τf ) is given by

e−iM̂(τf ) = R̂(τf )e−iK̂rot(τf ). (6.26)

Here, we define the micromotion according to the definition in [64, 302] as the fast time

evolution in the final kick. In general, we realize that there are two contributions to the

micromotion. The first one originates from the kick operator in the rotating frame Krot(τf )

whose amplitude scales as 1/ω by definition (see 6.6). As a result, the contribution from

the final kick operator vanishes at high frequencies. Second, the transformation from the lab

frame to the rotating frame R(τf ) also induces an oscillation, which is present as long as the

modulation amplitude is non-zero, even for infinite frequency.

Using the micromotion operator we can also rewrite the time-periodic Floquet mode as

obtained in 6.18 [66]

|Φα(τf )〉 = e−iM̂(τf ) |Φα〉 . (6.27)

This allows us to construct the eigenstates of the time periodic Hamiltonian in the lab frame

for any given time τ (6.1):

|Ψα,lab(τ)〉 = e−iM̂(τ) |Ψα(τ)〉 = e(−i εατ/~)e−iM̂(τ) |Φα〉 . (6.28)

If we measure the time dependent expectation value of an observable Ô in such an eigen-

state

〈Ô〉Φα(τ) = 〈Φα| eiKrot(τ)R†(τ)ÔlabR(τ)e−iKrot(τ) |Φα〉 , (6.29)

it will be governed by the micromotion and may oscillate at the same frequency as the

modulation12.

Finally, let us note, that the initial kick at starting time τi can also have a relevant effect

on the dynamics of the system [64]. However, we can completely cancel the starting kick by

adiabatically ramping on the modulation [304]. In the experiment we have to ramp on the

modulation sufficiently slow and prove that this condition is indeed fulfilled.

12We measure the micromotion experimentally at low shaking frequencies for a system of isolated double wells

(see Section 9.8), as well as an interacting many-body system (see Section 10.7).
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7 Floquet engineering of spin-dependent lattices

This chapter is based on our publication [68]:

G. Jotzu, M. Messer, F. Görg, D.Greif, R. Desbuquois, and T. Esslinger, Creating

State-Dependent Lattices for Ultracold Fermions by Magnetic Gradient Modula-

tion, Phys. Rev. Lett. 115, 073002 (2015)

In this chapter I will describe how we can use Floquet engineering in order to realize spin-

dependent optical lattices. In contrast to the approach for a phase modulated one-dimensional

optical lattice described in the previous chapter, we apply a magnetic field gradient modulated

in time to create a spin-dependent force. Consequently, we can can engineer a system that

allows for tuning the relative amplitude and sign of the tunneling in a distinct manner for

different internal states. In a detailed explanation of the setup, I will show, that we can

implement spin-dependent band structures by sinusoidally modulating a current in a single

coil. As a function of the modulation strength, we observe substantially different momentum

distributions depending on the exact spin-state. In addition, we can use dipole-oscillations

in the harmonic trap to probe the effective tunneling and directly compare it with theory.

Those measurements prove that our scheme allows us to tune both the Fermi-surface as well

as the effective mass of the atoms in a wide range. Finally, I will show that our method offers

the possibility to completely localize one of the states whilst others remain itinerant. We

demonstrate this effect with in-situ expansion-dynamics of the atomic cloud. A discussion

of our results on Floquet engineered spin-dependent optical lattices can be also found in the

PhD thesis of Gregor Jotzu [97].

7.1. Spin-dependent optical lattices

When the tunneling in the lattice depends on the internal spin state, SU(2) symmetry is ex-

plicitly broken and novel quantum phases emerge, such as unconventional superconductivity

owing to a Fermi-surface mismatch, or exotic forms of magnetism arising from anisotropic spin

exchange [1, 305]. Both the static properties and the dynamics of particles in the lattice will

then depend on their internal state. The general procedure to realize such a state-dependent

tunneling in an optical lattice requires a coupling between internal and external degrees of

freedom and is achieved via the differential coupling of the lattice laser field to different

atomic transition lines. The potential of the ac Stark shift for a linear polarized laser beam

in its general form is given by [306, 307, 308]

V (r) ∝
(

2

∆D2

+
1

∆D1

)
I(r) + gFmF

(
1

∆D1

− 1

∆D2

)
I(r), (7.1)
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where the first term is the scalar light shift, which is not depending on the internal spin

and the second term is depending on the Zeeman level mF of the atoms (vector light shift).

Here, ∆D2 and ∆D1 are the detunings from the D2 and D1 transitions of the atomic level

structure, gF the gyromagnetic ratio, and I(r) the laser light intensity. By using an orthogonal

polarization of the retro-reflected laser beam (lin-perp-lin configuration), we can create a

standing wave optical lattice for which the scalar potential is completely canceled and only

the vector light shift remains. In such a configuration we are left with

V (r) ∝ gFmF
∆D2 −∆D1

∆D1∆D2

I(r) ≈ gFmF
∆D2 −∆D1

∆2
I(r), (7.2)

where the approximation holds for far detuned laser beams (with detuning ∆).

Its range of applicability is however limited by the intrinsic problem of heating by sponta-

neous emission. While the heating from spontaneous emission is reduced by a factor 1/∆2,

the effect of the vector light shift is reduced in the same fashion. Since both effects scale

with 1/∆2 we have to increase the intensity in order to realize strong spin-dependent optical

lattices or work with close detuned laser beams. As a consequence heating is always limiting

possible realizations, in particular for fermionic alkali atoms as the fine-structure splitting

∆D2−∆D1 is quite small. For the case of 40K the fine-structure splitting between the D1 and

D2 line is 3.4 nm [309] and even smaller for fermionic Lithium 6Li with ≈ 0.03 nm [310]. This

small fine-structure splitting has hindered the realization of state-dependent optical lattices

for fermions so far. In contrast the fine-structure splitting of 87Rb is 14.7 nm [311] which is

large enough such that the heating rate is in a regime that allows for experimental measure-

ments. Therefore, bosonic atoms have been used to realize spin dependent optical potentials,

allowing for quantum computation and simulation [41, 306, 308, 312, 313, 314, 315, 316, 317,

318, 319]. Equation 7.2 shows that the vector light shift completely vanishes for spins with

mF = 0 and therefore can be also used for thermometry in the optical lattice [308].

Other proposed methods to realize state dependent optical lattices rely on earth-alkaline

and similar atoms [320, 321, 322, 323], where long-lived metastable states are involved in

order to minimize spontaneous emission. Only this year, the first experiment has reported an

implementation of state dependent optical lattices using the metastable 3P0 state of fermionic
173Yb [324]. Furthermore, one can directly realize state dependent optical lattices by choos-

ing different atomic species, however, then also the mass-imbalance needs to be taken into

account. So far, the focus of such experiments [316, 325, 326, 327, 328, 329, 330, 331] has been

to realize specific physical models [332, 333, 334, 335, 336] rather than implementing tunable

state dependent lattices. An obvious disadvantage in such measurements is the fixed ratio of

the atomic masses and increased technical requirements when working with spin mixtures.

Finally, one can implement local magnetic traps using atom chips [337, 338] where the dif-

ferent Zeeman states of the atoms experience a spin-dependent tunneling [339, 340, 341, 342,

343, 344], however creating local magnetic potentials are experimentally quite challenging.

Here, we present the implementation of a spin-dependent lattice for ultracold fermions using

a different method. Following the proposal in Ref. [13], our method relies on the application

of an oscillating force to the particles in the lattice, with an amplitude that depends on

their internal state. We propose to realize such a system by applying a modulated current

in a single coil (in our experimental setup we use the right Ioffe coil) which creates a time-

periodic magnetic field gradient on atoms in a one-dimensional optical lattice (see schematics

of the setup in Fig. 7.1. Similar schemes were proposed [345, 346, 347] to create spin-orbit
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Figure 7.1.: Schematic view of the setup to realize spin-dependent Floquet bands.

The fermionic 40K cloud (blue) is trapped in a retro-reflected laser beam, realizing a one-

dimensional optical lattice along the x-direction. An oscillating current I(τ) in a single

coil (green) creates the time-periodic magnetic field gradient ∂x|B|. For the measurements

presented in the following we choose the right Ioffe coil (see Fig.2.5a). A uniform external

offset field Bext is provided by the pair of Feshbach coils (not shown).

coupling, and very recently demonstrated with bosons in a harmonic trap [348]. Summarizing

our idea, we try to implement a Floquet engineering scheme in order to create an effective

Hamiltonian with spin-dependent tunneling. In the following sections, we will present the first

realization of a spin-dependent optical lattice for fermionic atoms and analyze the resulting

band structure of the effective Hamiltonian.

7.2. Floquet formalism for a spin-dependent force

As we will show in the following, the lattice system modulated with a magnetic field gradient

can be be well described by an effective time-independent Hamiltonian as a direct extension of

the modulation scheme in a one-dimensional lattice presented in Section 6.2. We have seen,

that a periodic modulation of the atoms in the lattice system will lead to a renormalized

tunneling in the effective band structure. This general idea can be extended to create a spin-

dependent renormalization of the tunneling by applying a force which has a different strength

depending on the individual internal state. In cold atoms experiments the internal states are

given by the Zeeman sublevels1. To individually address the different Zeeman levels via a

spin-dependent force we apply a magnetic field gradient ∂x|B|. In our setup we apply the

spin-dependent force along the x-direction which is given for a the spin state σ as

Fx,σ = � dEσ
d|B|∂x|B| (7.3)

where Eσ is the energy of the state as a function of the magnitude of the external magnetic

field |B|. Throughout this work we try to operate in a regime where the Larmor-frequency

is sufficiently high, such that the spin is always aligned with the external field2. For the

F = 9/2 hyperfine-manifold of 40K used in our experiment, the force resulting from a given

gradient can be fully tuned and depends on the Zeeman-sublevel |mF 〉 (see Fig 7.2a). While

1Here, we label the spins with their corresponding angular momentum projection in z-direction σ = mF .
2We will see that this assumption is not generally true, which will be explained in more detail in Section 7.4
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Figure 7.2.: Realizing a spin-dependent force. (a) Magnetic moments of the F = 9/2

hyperfine manifold of 40K as a function of the external magnetic field B. Blue, red and green

denote the |mF = �9/2〉, |�5/2〉 and |�1/2〉 sub-levels throughout the whole chapter. The

magnetic moments are calculated with the Breit-Rabi formula. While the magnetic moments

are proportional to mF for weak magnetic fields (Zeeman regime), their amplitude becomes

equal for strong magnetic fields (Paschen-Back regime). (b) Exemplary calibration of the

difference in the acceleration of each spin state at a constant current IIoffe = 5.4 A through

the Ioffe coil (orange data points). We measure the generated force via the Bloch oscillation

frequency in a one-dimensional optical lattice at a magnetic offset field of 208.15(1) G. We

can compare the measurement with a theoretical calculation at the given offset field (black

crosses). The dashed gray line indicates a pure ”Zeeman” behavior for low magnetic fields.

(c) Theoretical calculation of the renormalized spin-dependent tunneling tσeff as a function

of the shaking strength. Due to the varying magnetic moment, the effective reduction of the

tunneling is strongest for the |�9/2〉 state, which we use to parametrize the shaking strength.

While the measurements of the expansion of the cloud was performed at this offset field, other

measurements where implemented at weaker offset field more closely to the Zeeman-regime.

(d) Illustration of the spin-dependent tunneling for the specific strength κ�9/2 = 2.4 at

which the |�9/2〉 is fully localized (indicated by the black vertical line in (c)).
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the magnetic moment
dEσ
d|B| is directly proportional to mF in the Zeeman regime at weak

magnetic fields, it can take various positive or negative values and even vanish for some of the

states as a function of the magnetic field. At strong magnetic fields (Paschen-Back regime)

the magnetic moments are all equal and we cannot create a spin-dependent force anymore.

By measuring the frequency of the Bloch oscillations, we can experimentally determine the

applied spin-dependent force to each spin state (for more details see Section 7.3). The results

are shown in Fig. 7.2b for different spin states at a magnetic offset field of 208.15(1) G at

a fixed current through of 5.4 A in the right Ioffe coil. From the measurement, it is directly

visible that we are not in the perfect Zeeman regime (gray dotted line) but the applied force

for different states is reduced. The measurement only slightly deviates from the theoretical

expectation, which might be caused by a changing offset field due to the gradient modulation

(see Section 7.3).

In analogy to the example of the one-dimensional lattice, we can write down a single-band

tight-binding model for the lattice system with a spin-dependent time-modulated force:

Ĥ(τ) = −t
∑
j,σ

ĉ†j,σ ĉj+1,σ + H.c.− a
∑
σ

Fx,σ(τ)
∑
j

jĉ†j,σ ĉj,σ

where ĉ†j,σ and ĉj,σ are the creation and annihilation operators of one fermion with spin σ on

site j, τ is time, a the lattice constant and t the tunneling energy. The last term describes

the sinusoidally oscillating force Fx,σ(τ) = κσhνS/a · sin (2π νSτ), with frequency νS. The

dimensionless modulation amplitude is therefore defined as κσ =
aFmax

x,σ

hνS
. As a result, we

obtain the following effective Hamiltonian:

Ĥeff = −t
∑
σ

J0(κσ)
∑
j

ĉ†j,σ ĉj+1,σ + H.c. (7.4)

In contrast to the simple renormalization of the phase modulation, we obtain a tunneling

which is renormalized to a spin-dependent value

teff
σ = tJ0(κσ), (7.5)

given by a 0th-order ordinary Bessel function J0. Fig. 7.2c shows the spin-dependent effective

tunneling as a function of the shaking strength for the three different states |mF = −9/2〉,
|−5/2〉 and |−1/2〉. Due to a smaller magnetic moment, the force is reduced for the |−5/2〉
and |−1/2〉 spin states compared to the |−9/2〉 state and the Bessel functions are broadened

when plotting them as a function of the applied gradient. We parametrize the modulation

strength with the dimensionless modulation amplitude of the |−9/2〉 state κ−9/2, which is

linear to the applied gradient. As a result of the gradient modulation, we therefore obtain a

spin-dependent tunneling in the one-dimensional lattice, where we can control the value of

the tunneling with κ−9/2. The illustration in Fig. 7.2d shows a specific shaking strength of

κ−9/2 = 2.4 at which the tunneling of the |−9/2〉 is completely canceled and only the other

two spin states remain itinerant.

An intuitive picture of the spin-dependent renormalization of the tunneling can be gained

by considering the time-dependent band energy as a function of quasimomentum qx in a

co-moving frame (see analog in the optical lattice in Section 6.3). As illustrated in Fig.7.3a,
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Figure 7.3.: Tunability of spin-selective Floquet systems - realizing spin-

dependent band structures. (a) In an simple picture in momentum space, we can

understand the effective energy bands as a time-average of the time-dependent bands. Since

the force depends on the internal state, the effective band structure will be different for the

two spin states |mF = �9/2〉 and |�5/2〉. The illustration presents the special case for which

the |mF = �9/2〉 is fully localized and the effective band structure becomes completely flat

(κ�9/2 = 2.41), while the other spin state remains itinerant. (b) Possible tunneling ratio of

the two spins as a function of modulation amplitude κ�9/2.

the average of the shaken band energy over one period then gives the effective band:

εeff
σ (qx) =

〈
�2t cos

(
aqx � a

∫ τ

0
Fx,σ(τ)dτ

)〉
τ

(7.6)

Going beyond the non-interacting single-band regime, the effective Hamiltonian can contain

additional terms such as longer-range tunneling, as recently observed [13, 70, 289], which could

then also be made state-dependent. By tuning the modulation amplitude, the tunneling ratio

of the two spins can be set to any positive or negative value, as shown in Fig. 7.3b. Obviously,

our proposed scheme can be directly extended to mixtures of different atomic species and also

used to create spin-dependent artificial gauge fields when shaking in more complex lattices.

7.3. Applying a magnetic field gradient

We follow the idea and proposal from our previous publication [13] and realize the magnetic

field gradient by a sinusoidally modulated current in a single coil (see schematics in Fig. 7.1).

Since we want to apply a strong offset field for some of the measurements3, we can only

produce a strong gradient along the direction of this offset field. The Ioffe coil is the coil

closest to the atomic cloud and has a small winding number of NIoffe = 16, which allows us

to modulate the current at reasonable frequencies and to implement strong gradients at the

same time. The uniform external field Bext is provided by the Feshbach coils (see Fig.2.5a

for the coil setup).

In general, by measuring Bloch oscillations of the |�9/2〉 and |�5/2〉 atoms, which arise

from static gradients, we can calibrate their applied strength. If a single coil is used, as is the

case in our setup, we have to carefully calibrate the gradient as a function of the modulation

strength. The single Ioffe coil itself creates a magnetic field BIoffe, which will overlap with the

external magnetic field and can cause a change in the quantization axis. The resulting force of

the gradient can therefore show a non-linear behavior and will depend on the alignment of the

coil axis with respect to the atomic cloud and direction of the external magnetic field. Due to

3As always, this allows us to control the interactions via the Feshbach resonance.
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the time averaging, the non-linearity results in a remaining constant gradient, which depends

on the modulation amplitude and requires a calibrated offset of the modulated current.

In the following, we present how a combination of a single coil used to create a magnetic

field gradient and a constant external offset field causes such non-linearities (see also [97])

and how they can be compensated for. In addition, we present the calibration for our specific

setup and directly compare it to theory. Using the Biot-Savart law, we can write down the

magnetic field and field gradient of a single coil on the symmetry axis perpendicular to the

coil at a distance x:

Bx
Ioffe(x) =

INIoffeR
2µ0

2(x2 +R2)3/2
and ∂x |BIoffe(x)| = −|I| 3NIoffeR

2xµ0

2(x2 +R2)5/2
, (7.7)

with the coil radius R and the winding number NIoffe. The resulting gradient of the single

Ioffe coil is plotted in Fig. 7.4a as a gray line as a function of the applied current IIoffe.

The magnetic field gradient is always negative, since the quantization axis is defined by the

coil itself and changes direction as soon as the current changes its sign. Or in other words,

independent of the applied current an atom in a high field seeking state (e.g. mF = −9/2)

will be always pushed towards the Ioffe coil.

When adding an external magnetic field Bext along the x-direction, the formula for the

gradient slightly changes and we obtain

∂x |Btot| = ∂xB
x
tot · sgn(Bx

tot) = −3INIoffeR
2xµ0

2(x2 +R2)5/2
· sgn (Bx

ext +Bx
Ioffe) , (7.8)

since the gradient is obtained from the derivative of the absolute value of the total magnetic

field Btot = Bext + BIoffe. As a result, the gradient will show a sudden jump from a positive

to a negative value since the quantization axis will change above a critical negative current

in the Ioffe coil (see Fig. 7.4a). However, for strong external offset fields we can obtain also

positive gradients, and as long as we stay within a reasonable IIoffe, we reach a linear behavior

of the applied gradient. Fig. 7.4b illustrates the changing direction of the total magnetic field

as a function of the distance to the Ioffe coil. At a fixed cloud position, when increasing the

applied current to produce the gradient, the magnetic field will suddenly change direction

and the quantization axis will flip the sign. Especially for weak offset fields this results in a

strong non-linear behavior of the shaking gradient and needs to be taken into account when

calibrating the modulation strength.

In our experimental setup the situation is even more complicated. In general, we cannot

assume that the offset field is perfectly aligned with the axis of the additional field created

by the single Ioffe coil. This is especially the case for some of the measurements, where we

levitate the atomic cloud against gravity and therefore need to apply a constant gradient

perpendicular to the offset field (along the z-direction). In a more general form, where we

assume the external field to point along a random direction in the xz-plane Bext = Bx
extêx +

Bz
extêz, we can thus describe the magnetic gradient by:

∂x |Btot| = ∂x

√(
Bx

Ioffe +Bx
ext

)2
+Bz

ext
2 = −3INIoffeR

2xµ0

2(x2 +R2)5/2

Bx
ext +Bx

Ioffe√(
Bx

Ioffe +Bx
ext

)2
+Bz

ext
2
.

(7.9)

As a result, the non-linearity is smoothed but the gradient still has a non-linear behavior

and changes its direction for an increasing negative current. As soon as the total field in
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Figure 7.4.: Magnetic field gradient produced with a single coil. (a) Calculated

magnetic field gradient as a function of the current through a single coil IIoffe of 16 windings

with the same dimensions as the Ioffe coil (radius 1.1 cm) at a distance of 1.1 cm. The

gradient for a single coil (gray dotted line) is always negative, as the resulting magnetic

field flips sign for negative currents and changes the direction of the quantization axis. In

contrast, for a combination of the single coil with an additional, external magnetic field

Bxext this behavior is shifted towards more negative currents and we also reach positive

gradients (orange line). The discontinuity of the magnetic gradient occurs as soon as the

field becomes zero in x-direction, which is plotted in more detail in (b). The field of a single

coil can create a field in opposite direction to the external field Bxext. Atoms at a constant

distance (indicated by the dotted line) to the coil will experience a flip of the magnetic field

direction as soon as a critical current is running through the Ioffe coil. (c) Data points show

the measured acceleration ax of the cloud in the |mF = −9/2〉 spin state when applying a

gradient along x with different strength. In contrast to the measurement in Fig. 7.2b we use

a weak magnetic offset field with an additional vertical gradient to levitate the cloud against

gravity (IIoffe = 0). The solid line is a fit to the data including an additional external offset

field, which is not aligned with the magnetic field created by the Ioffe coil but at an angle

β. (d) Observed additional force along the z-direction which is most severe as soon as the

total magnetic field changes its sign. This force is caused by the applied current in the Ioffe

coil.
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x-direction Bx
tot is canceled by the combination of the external field and build-up field of the

Ioffe coil, the force therefore changes its direction4.

If this non-linear behavior is large, a symmetric modulation of the current around zero will

lead to an asymmetric force and an effective dynamic gradient on the cloud. We therefore

calibrate the gradient for all different offset fields used in our measurements by performing

Bloch oscillations. The relation of the force created with the gradient and the frequency of

the Bloch oscillation νBO is given by F σmax =
2hνσBO
λ . The dimensionless modulation amplitude

κσ is found by dividing the Bloch-oscillation frequency by the modulation frequency νS .

κσ =
λF σmax

2hνS
=
νσBO

νS
(7.10)

Fig. 7.4c, shows an exemplary calibration as a function of the modulation current. For positive

currents, we obtain an almost linear behavior, which drastically changes for small negative

currents and reaches a maximum value around −10 A. We can fit the data with the model

of equation 7.9 and the absolute value of the external magnetic field and the angle between

the two magnetic fields as free parameters. For the fit we assume realistic values for the

distance between the atoms and the Ioffe coil of x = 1.1 cm and a radius of the Ioffe coil of

R = 1.1 cm. We obtain a total magnetic field of Bfit
tot = 58.8(4) G and an angle of 61.9(4)◦

between the BIoffe and Bext. The fitted offset field is close to the independently determined

value of 57.53(1) G calibrated by spin-flips from the |−7/2〉 to the |−5/2〉 states.

However, Fig. 7.4d, indicates that even this model is not fully describing our setup. As a

result of the modulation, we also obtain a force along the perpendicular z-direction, which

is drastically increasing as soon as the total magnetic field becomes small and changes its

sign. We attribute this effect to deviation of the atomic cloud position from the axis of

the Ioffe coil and additional effects from the mu-metal shielding and stray fields. When

working at low external offset-fields, we actively compensate for the dynamic gradients along

the x direction by asymmetrically modulating around an amplitude dependent offset of the

current. In addition, we remove the dynamic gradients along y and z by applying static

gradients in two additional coils as a compensation. We calibrate those additional gradients

by minimizing the position change of the atomic cloud in an in-situ measurement. As a

result, any static gradient which would arise from the non-linearity is compensated. The

non-linearity also introduces higher harmonics in the modulated force. However, it does not

modify the effective tunneling by more than 2%. For stronger offset fields (e.g. when loading

an interacting cloud close to the Feshbach resonance without levitation) this non-linearity

will become less pronounced but is still required to be calibrated.

In our setup we use a bi-polar power supply Kepco BOP20-20ML 400W (20 A, 20 V) which

is optimized for inductive loads. The fast switching of the coil circuit is performed with a

pair of drain-to-drain MOSFETs at both outputs of the power supply. In a test setup, with

a coil comparable to the Ioffe coil used in the actual measurement (similar inductance and

resistive load) we find a 3 dB bandwidth of ≈ 15 kHz (the gain was reduced by less than

3 dB in this range)5. From the dependence of the inductive voltage as a function of the

4A change of the total magnetic field due to the modulation of the current will also lead to a time-dependent

magnetic moment.
5If large frequencies are required we can calibrate the changing gain as a function of the gradient. Conse-

quently we are then limited in the modulation strength by the maximal amplitude in current and the

voltage needed to drive the inductive load.
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modulation frequency we obtain a resistive load R ≈ 0.1 Ω and an inductance of L ≈ 25µH

for the Ioffe coil. The inhomogeneity of the gradient may lead to a spatially varying κ. For

an offset field of 208.15 G, we use the damping of singlet-triplet oscillation performed as in

[20] to determine the variation of the gradient and find it to be below 1 % over the extent of

the cloud.

We have seen, that a careful calibration and compensation is needed if a magnetic gra-

dient is implemented with a single coil. Overall, we can conclude that it is possible to in-

troduce modulated gradients which allow us to create spin-dependent Hamiltonians. In a

more advanced modulation scheme the time-dependence of the external magnetic field and

non-linearities could be avoided by modulating the current of more than a single coil. For

example, by using a combination of two coils the minimal change in magnetic field is then

given by the applied gradient multiplied by the size of the cloud, which is typically less than

0.1 G.

7.4. Observing Fermions in spin-dependent bands

7.4.1. Measurement of the quasimomentum distribution

In a first experiment, we study how the changing band structure of the effective Hamilto-

nian affects the quasimomentum distribution of two different spin states. In contrast to the

previous chapters, we perform most of the measurements for the spin-dependent lattices by

using spin-polarized fermionic clouds of different internal states. Therefore we start with

1.4(4)× 106 non-interacting spin-polarized fermionic 40K atoms which are cooled to temper-

atures of about 28(2)%TF by sympathetic cooling with 87 Rb in the QUIC-trap. The atoms

are subsequently loaded into the optical dipole trap and transferred to the required spin-

state using radio-frequency transitions. For measurements with interacting spin mixtures

(Fig. 7.7b), a mixture of |−9/2〉 and |−7/2〉 atoms is evaporated in the optical dipole trap

and the |−7/2〉 atoms are then transferred to the |−5/2〉 state. For all other measurements

we lower the depth of the optical dipole trap until the desired atom number (1.9(4) × 104)

and a narrow momentum distribution is reached for spin-polarized clouds6.

Accordingly, the atoms are loaded into the lowest band of a one-dimensional optical lattice

with a lattice constant of a = 532 nm and a tunneling energy of t/h = 174(9) Hz. We addi-

tionally levitate the atomic cloud using a static magnetic gradient (gravity points along the

z-direction). The levitation helps to reduce the required harmonic confinement to a minimum

and ensures more narrow quasimomentum distributions after lattice loading. To create the

spin-dependent effective band structure, we then ramp up an oscillating current in the Ioffe

coil with a frequency of νS = 750 Hz within 100ms 7. Reaching the first zero of teff
−9/2 at

κ−9/2 ≈ 2.4 requires a gradient amplitude of ≈ 24 G/cm corresponding to a current ampli-

tude of 6.4 A. Finally, we measure the quasimomentum distribution using a band-mapping

technique. During this procedure, we ramp down the modulation amplitude in 10 ms and

turn off the lattice in 0.5 ms, slow enough that higher bands are not populated in this ramp,

but fast enough that the harmonic trapping potential does not change the quasimomentum

6This process is not a real evaporation, since the spin-polarized fermionic cloud cannot thermalize. However,

we only populate the lowest band when loading such clouds into the optical lattice.
7In an independent measurement, we confirmed that a ramp time of 100ms is sufficient to reach an equilibrium

state in the effective band structure.
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Figure 7.5.: Momentum distribution of Fermions in spin-dependent bands. (a)

Quasimomentum distribution in the lattice, summed over the orthogonal directions qy and qz,

for the |�9/2〉 (left) and |�5/2〉 (right) state. For both spins we apply the same current in the

Ioffe coil in order to create the time-dependent magnetic field gradient. Due to the varying

magnetic moments of the spin states they experience different effective band structures,

which can be directly observed in the momentum distribution. We parametrize the strength

of the gradient by the modulation amplitude κ�9/2. In a levitated setup, the same current

in the Ioffe coil can lead to different gradients depending on the exact direction of the total

magnetic field (see Fig. 7.4). Since the levitation parameters differ for |�9/2〉 and |�5/2〉
the maximal current does not create the same maximal value of κ�9/2. The effective band

structures for each spin state (|�9/2〉 in blue, |�5/2〉 in red) are shown as diagrams for

the values of κ�9/2 = 0, 1.2, 2.4 and 3.0. (b) Second moment wq of the quasimomentum

distribution summed over qy and qz. Blue circles (red diamonds) denote |�9/2〉 (|�5/2〉
atoms). Data points show mean ± s.d. of 5 measurements.

distribution during the ramp. After 15 ms of ballistic expansion, an absorption image of the

cloud is taken.

Fig. 7.5a shows the resulting quasimomentum distributions (summed over qy and qz) in the

effective band structures for two different spin states |�9/2〉 (left) and |�5/2〉 (right). We

parametrize the strength of the magnetic gradient by the calibrated modulation amplitude

κ�9/2. To levitate the cloud we need to apply a distinct static gradient, which is dependent

on the internal spin state. This varies the direction of the total external magnetic field and

therefore changes the effective gradient in the modulation process (see Section 7.3 for more

details). As a result, for the same maximal current through the Ioffe coil we do not reach the

same effective κ�9/2 for the two spin states and the plots of the quasimomentum (Fig. 7.5a)

do not extend to the same value of κ�9/2.

As expected, the distribution broadens when the modulation is increased, because the

width of the lowest band decreases and the band gradually flattens. In addition, we observe

a double-peak feature for atoms in the |�9/2〉 above the critical value of κ�9/2 ≈ 2.4. This

occurs because teff
�9/2 becomes negative and therefore the band has minima at quasimomenta

qx = ±π/a rather than at qx = 0. The situation is very different when using the |�5/2〉 state.

At the offset-field of 57.53(1) G used here, κ�5/2 = 0.636(2)× κ�9/2 for the same amplitudes

of the magnetic field gradient. Therefore, when the |�9/2〉 atoms experience a completely flat
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Figure 7.6.: Observing dipole oscillations in spin-dependent bands. (a) Dipole os-

cillations in the spin-dependent bands are a measure of the renormalization of the tunneling

for each spin. The oscillations are normalized relative to the oscillations without modulation

ν0. As illustrated in the insets, the |−9/2〉 atoms oscillate at a lower frequency since the

effective tunneling is more strongly reduced compared to the |−5/2〉 atoms. The oscillation

frequency squared is proportional to the tunneling and is determined from damped sine fit

functions to the peak position to at least 60 measurements of the time-dependent quasimo-

mentum. Error bars show the fit uncertainty and solid lines the Bessel-functions for each

spin, calculated without free parameters. When applying an oscillating gradient to |−9/2〉
atoms in a harmonic trap, we observe no reduction of the oscillation frequency (single ’star’

data point). (b) Exemplary dipole oscillations for each spin state of the quasimomentum

peak position (shown for the strongest magnetic gradient). Solid lines are fitted, damped

sine functions and error bars show the standard deviation of 3 measurements.

band, those in the |−5/2〉 state still tunnel with teff
−5/2 = h× 86(4) Hz. We can also realize a

tunneling with equal strength, but opposite sign, by shaking with an amplitude of κ−9/2 ≈ 3

(see also the effective band structures of the two spin states on the left of the plots).

In addition, we can analyze the second moment wq of the quasimomentum distribution

n(qx) (summed over qy and qz), indicating the width of the cloud in momentum space. The

second moment is determined according to

w2
q =

1

N

∫
(qx − 〈qx〉)2n(qx)dqx, (7.11)

where 〈qx〉 = 1
N

∫
qxn(qx)dqx is the mean of the quasimomentum and N the total number

of atoms. As can be seen in Fig. 7.5b, their spread continuously increases with increasing

shaking strength. The value of wq for the |−9/2〉 spin state saturates as soon as we reach a

critical gradient strength κ−9/2 > 2.4.

Our measurements show that we can indeed tune the effective band structure in a spin-

dependent manner using a modulated magnetic gradient. Basically, for a certain shaking

amplitude, the two states experience very different effective band structures, which allows

for creating a tunable Fermi-surface mismatch. As is shown, we can control both, the position

of the spin-dependent band minima, as well as the width of the quasi-momentum distribution.

By applying a pulsed magnetic gradient modulation, the position of the band-minima can be

fully tuned and used to realize spin-orbit coupling in driven lattices [347].
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7.4.2. Dipole oscillations as a direct probe of the effective tunneling

In order to directly measure the effective tunneling of each spin teff
σ , we excite dipole oscilla-

tions in the harmonic trap in presence of the modulated gradient and a one-dimensional opti-

cal lattice. The dipole oscillations in the harmonic trap are initiated by displacing the atoms

by qAmp = 0.31(4)π/a in quasimomentum space. As a result of the tight-binding dispersion,

the equation of motion for the quasimomentum is equivalent to the one of a mathematical

pendulum. The square of the oscillation frequency is proportional to the tunneling energy t.

The oscillation frequency ν is given by

ν2 = ν2
ODT α(qAmp)

π2

ER
t (7.12)

where νODT is the trap frequency without lattice along the excitation direction [349]. The

parameter α(qAmp) describes the effect of the anharmonicity of the dispersion and depends on

the initial displacement qAmp. For qAmp → 0, the time evolution can be seen as an oscillation

in a quadratic dispersion with an effective mass meff = ER/(π
2t)m and α(qAmp = 0) = 1.

For a finite displacement with qAmp = 0.31(4)π/a, α can be calculated numerically and has a

value of 0.89(4). We therefore expect a dependence of the oscillation frequency on the shaking

strength ν(κσ)2 ∝ teff
σ . However, to be completely independent of numerical values and the

exact lattice parameters, we can normalize the frequency with the undriven value and get

the following behavior8:
teff
σ

t
=

(
ν(κσ)

ν(0)

)2

(7.13)

After displacing the atoms by qAmp = 0.31(4)π/a in qx-direction we allow for a variable

evolution time in the driven system with variable amplitude of the modulated magnetic

gradient for up to 350 ms. The oscillation frequency is then extracted from the time-dependent

peak position of the quasimomentum-distribution. Since the atomic cloud has a finite width

in quasimomentum space our experimental case is more subtle. The atoms which are closer

to the edge of the Brillouin zone have a longer oscillation period since α(q0) decreases as

the displacement increases. While the dynamics of the peak of the distribution still follows

the simple evolution described above, the motion of the center of mass depends on the

exact quasimomentum distribution. In particular, the center of mass oscillates with a lower

frequency than the peak.

To correctly interpret the dipole oscillations we therefore determine the oscillation fre-

quency by fitting the peak of the quasimomentum distribution in the lattice, summed over

qy and qz. Within this procedure we first obtain a smoothed quasimomentum distribution

by applying a Savitzky-Golay filter to the raw absorption image. In a second step we de-

termine the peak position of the cloud by performing a center of mass evaluation for data

points which are above a threshold of 0.85 of the maximum atomic density. The oscillation

frequency is subsequently extracted from a damped sine fit function to the peak position at

different waiting times in the shaken lattice. We obtain the error on the frequency by fitting

the oscillation frequency for a threshold of 0.7 and 1.0 of the maximum atomic density and

following the same procedure. Two exemplary oscillations for the |−9/2〉 and |−5/2〉 spin

states are shown in Fig. 7.6b.

8This is accurate, as long as the displacement in quasimomentum space is the same both with and without

gradient modulation. As a result, the anharmonicity factor α cancels completely.
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State |−9/2〉 |−5/2〉 |−1/2〉
κσ 2.41(4) 1.86(3) 1.19(5)

teff
σ (Hz) 0(4) 53(3) 117(6)

Table 7.1.: Comparison of the modulation parameters in the expansion exper-

iment. By using Bloch oscillations, we calibrate the shaking strength at an offset-field of

208.15(1) G. While the effective tunneling of the |−9/2〉 state is fully localized, we obtain a

remaining tunneling of the other states for the same modulation strength.

The maximum oscillation frequency of ν = 8.4(3) Hz 9 is much smaller than the modulation

frequency of 750 Hz, meaning that the dynamics should be well described by Ĥeff . As shown

in Fig. 7.6a, the oscillations for |−9/2〉 atoms become slower when the modulation amplitude

is increased, as expected from the renormalization of the tunneling. The |−5/2〉 atoms, on the

other hand, experience a weaker modulation force and their oscillation frequency therefore

changes much less. Both spin states follow closely the expectation from the zeroth-order

Bessel function (Eq. 7.5). The spin-dependent oscillation frequency shows that the atoms

behave as though they had different masses in the lattice. The effect is expected to vanish

in the absence of a lattice, as a quadratic dispersion is not changed by an oscillating force

[350]. Indeed, Fig. 7.6a shows that we observe no reduction of the oscillation frequency when

applying an oscillating gradient in a harmonic trap. By using the method of the dipole

oscillations, we can quantitatively verify the theoretical behavior, however we are limited to

positive tunneling values and oscillation frequencies above 1 Hz. The reason is the broadening

of the quasi-momentum distribution as the band becomes flat and finite resolution times of

the oscillations due to experimental losses and damping.

7.5. Localization of spins and expansion measurements

We now focus on the case where κ−9/2 ≈ 2.4 and the |−9/2〉 atoms experience a completely

flat band with zero tunneling. They are therefore pinned to the lattice, whilst atoms in other

states remain itinerant, see Fig. 7.7a. Such a configuration directly realizes impurity models

and can be extended in three dimensions to realize the Falicov-Kimball model [351]. In order

to observe the localization of spins we measure the in-situ expansion of the atomic cloud

in real space. We work at a uniform magnetic offset-field of 208.15(1) G, as typically used

for experiments with interacting 40K, to include also measurements with spin-mixtures in

addition to the spin-polarized clouds. At such a strong field, we cannot levitate the atomic

cloud against gravity and are required to increase the harmonic confinement to trap the cloud.

Starting from a harmonic trap with frequencies ωx,y,z/2π = (67.8(3), 60.4(4), 233.5(3) Hz we

suddenly switch off the confinement along the lattice direction (x-directon) and measure the

width of the cloud as a function of time [63, 352] (ωx,y,z = 2π × (0, 58(1), 124(2)) Hz during

the expansion). The increased offset field brings us closer to the Paschen-Back regime. From

the calibrated modulation strength we obtain the effective spin-dependent tunneling of each

state (see Section 7.4 and Table 7.1). The ratio in the magnetic moments between |−9/2〉
9Theoretically, we expect a frequency of ν0 = 9.2(2) Hz for our lattice configuration without gradient mod-

ulation. This is in close agreement with the measurement and we attribute the residual deviations to an

uncertainty in the calibration of the lattice depths, which however cancels when considering teff
σ /t.
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Figure 7.7.: Expansion dynamics of spin-dependent Floquet systems. We consider

the special case of κ�9/2 = 2.41(4) for which the |�9/2〉 spin is fully localized. (a) Illus-

tration of the expansion process in a one-dimensional lattice after removing the orthogonal

confinement. Whilst the effective tunneling for the |�9/2〉 atoms is suppressed in the shaken

system, atoms in the |�5/2〉 state remain itinerant. As a result, we expect an expansion of

the cloud for the latter state. (b) Gaussian width wx of the real-space density distribution

of spin-polarized non-interacting |�9/2〉 (blue circles), |�5/2〉 (red diamonds) and |�1/2〉
(green squares) atoms, compared to their initial values. As expected, for localized spins the

|�9/2〉 does not expand within the experimental time scale. (c) In addition, we measure

the expansion of a repulsively interacting mixture of |�9/2〉 and |�5/2〉 atoms for the exact

same modulation parameters. Data show mean ± s.d. of 5 (b) or 9 (c) measurements. Solid

lines are linear fits to the data.

and |�5/2〉 states is reduced to ≈ 0.77. We additionally include the |�1/2〉 state for the

expansion measurements for which this ratio is decreased to ≈ 0.49.

For the expansion data, we take an absorption image of the in-situ cloud and observe the

real-space density and its expansion without switching off the lattice or the modulation. As

a result, we can explore the expansion rate, which depends on the spin-dependent effective

tunneling teff
σ . Since the imaging resonance is given by the total magnetic field and we keep

modulating the gradient during the measurement, we have to choose the exact measurement

time such that it corresponds to a zero-crossing of the magnetic field modulation. We mea-

sure the different spin-states separately by making use of the differential shift of the optical

transition frequency used for imaging at strong external magnetic fields. The width of the

cloud wx is determined as the square root of the variance of a Gaussian fit to the in-situ

density profile. A remaining experimental difficulty is to perfectly compensate the static and

dynamic gradients in order to observe small expansion velocities. Any remaining gradient

larger than h · 0.1 Hz per lattice site will lead to Bloch-oscillations in the lattice instead of

an expansion of the cloud [97].

Fig. 7.7b summarizes the expansion measurements for spin-polarized clouds exposed to the

effective spin-dependent lattice. We clearly observe no expansion of the cloud for the |�9/2〉
state, where κ�9/2 = 2.41(4) and teff

�9/2 = h × 0(4) Hz. Even after 2.5 s the atomic cloud is

still localized and has not changed its width. In contrast, a broadening of the cloud is clearly

visible for the |�5/2〉 state (where κ�5/2 = 1.86(3) and teff
�5/2 = h× 53(3) Hz), as well as the

|�1/2〉 state (where κ�1/2 = 1.19(5) and teff
�1/2 = h× 117(6) Hz). This measurement directly
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7. FLOQUET ENGINEERING OF SPIN-DEPENDENT LATTICES

proves the spin-selective pinning in our shaken system.

Furthermore, we study the expansion of an interacting spin-mixture, by simultaneously

loading atoms in the |−9/2〉 and |−5/2〉 state into the one-dimensional lattice system mod-

ulated with the magnetic gradient. At the offset field of 208.15(1) G we obtain a scattering

length of 257(1)a0. We observe that the expansion is still very different for the two states,

however, in contrast to the spin-polarized measurements, the |−9/2〉 component now shows

a slight broadening (Fig. 7.7c). While the increase of the width is linear for the spin-polarized

clouds there might be a more complicated behavior in the interacting system. The broaden-

ing of the |−9/2〉 spin could be caused by two different mechanisms, which will be shortly

explained in the following. At the shaking frequency of ω = 750 Hz we are not in the far

off-resonant regime since ~ω/t = 4.31 and additional terms in Ĥeff might change the simple

picture discussed so far. A more detailed description of those terms and the experimental real-

ization of density-dependent tunneling for a phase-modulated three-dimensional honeycomb

system is shown in Chapter 10. Additionally, due to the vicinity of the Feshbach resonance

we also modulate the value of the interactions. As explained in Section 7.3 realizing the

magnetic field gradient with a single coil, we additionally modulate the total magnetic field

itself. Correspondingly, this leads to a large modulation of the scattering length, which varies

between 1280(80)a0 and 217.0(1)a0. Although we are not in a three-dimensional Hubbard

model, additional terms might arise due to a modulated interaction [71, 353, 354, 355].

7.6. Conclusion

In conclusion, we have demonstrated a versatile method for creating widely tunable state-

dependent lattices with minimal heating10 and atom loss, which should be easy to implement

for many existing experimental setups. We have studied the static and dynamic behaviour of

fermions in spin-dependent lattices in both real- and momentum-space. This method makes

numerous many-body Hamiltonians accessible for ultracold atoms, including limiting cases

of the spin-anisotropic Hubbard model such as the XXZ model [356, 357, 358, 359, 360, 361,

362]. The effects of an explicitly broken SU(2) symmetry may in fact already become visible

at the level of short-range magnetic correlations observed in the Fermi-Hubbard model so

far [20, 54, 56, 57, 240].

Our effective Hamiltonian is mapped on mass-imbalanced Hubbard model, since the spin-

dependent tunneling leads to a tunable effective mass in the optical lattice [216, 335, 363,

364, 365, 366]. Furthermore, by choosing a specific parameter set, we have implemented a

spin-selective pinning of atoms which is a crucial ingredient for the Falicov-Kimball model,

the Kondo (lattice) model and other models for impurities or disordered systems [351, 367,

368, 369, 370, 371, 372].

We have shown that the quasi-momentum distribution of the atomic cloud can be tuned

with a modulated magnetic gradient, which allows us to create a tunable Fermi-surface mis-

match. Such an approach could be a promising route towards realizing and investigating

Fulde-Ferrel-Larkin-Ocvhinnikov states in optical lattices [336, 373, 374]. In addition, inter-

esting extensions of topologically non-trivial Hamiltonians can be accessed, such as interpo-

10The heating measurements for the gradient shaking are presented together with our implementation of

modulated interacting systems in Chapter 10.
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lating between the Haldane and Kane-Mele models [12, 375] 11. With minor modifications

our scheme could also be used to engineer gauge fields and spin-orbit coupling [345, 346, 347,

348], where circumventing spontaneous emission has been identified as a major challenge for

future work [376].

Our implementation is based on applying a magnetic gradient to a spin-mixture loaded into

an optical lattice. It is therefore straightforward to extend our scheme to higher dimensions,

by including additional coils to modulate gradients in more than a single axis. To summarize,

our implemented Floquet engineering to realize spin-dependent band structures allows to

investigate a large variety of theoretical models.

11More details on how topological models can be engineered using periodic modulation will follow in the next

chapter, where our experimental realization of the topological Haldane model is described in detail.
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8 Experimental realization of the topological

Haldane model

This chapter is based on our publication [13]:

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T.

Esslinger, Experimental realization of the topological Haldane model with ultracold

fermions, Nature 515, 237-240 (2014)

Floquet engineering is a versatile tool to realize a large variety of model systems. In the

previous sections we have seen that it allows to modify terms of the Hamiltonian and that we

could implement a spin-dependent effective Hamiltonian. Using Floquet engineering, it has

been also possible to control tunneling phases [377, 378] and higher-order tunneling [289].

Additionally, periodic modulation allowed for studying phase transitions [62, 184] in higher

dimensions.

In this Chapter, I will present how periodic driving can be used to implement topologi-

cal band structures. Our measurements constitute the first experimental realization of the

topological Haldane model [12] 1. Our work is part of a great effort to implement topological

systems and artificial gauge potentials for neutral (ultracold) atoms [379, 380]. Early experi-

ments could realize uniform flux configurations of a Bose-Einstein condensate by rotation of

a two-dimensional optical lattice [381]. In addition, topologically trivial fluxes and artificial

magnetic fields have been achieved [239, 382, 383, 384, 385].

In our setup we could realize non-trivial topological band structures for the first time,

by periodically modulating an optical honeycomb lattice. Our model is based on breaking

time-reversal symmetry as well as inversion symmetry. We achieve a broken time-reversal

symmetry through circular modulation of the lattice position, which induces imaginary next-

nearest neighbor tunneling [69]. Here, this scheme is related to theoretical studies and pro-

posals aiming at engineering a non-trivial topological system from static Hamiltonians that

have a trivial band structure, for example [386, 387, 388, 389, 390, 391]. To break inversion

symmetry, we follow the same scheme as used in the implementation of the Ionic Hubbard

model and create an energy offset between neighboring sites.

After a short introduction of the topological Haldane model on a honeycomb lattice, I

will present a detailed derivation of the modulation scheme. In particular, I will show that

an elliptic modulation of the honeycomb lattice leads to an effective Hamiltonian, which

directly represents the Haldane model. This analytical description allows us to compare all

experimental results. In addition, we can numerically calculate the effective Hamiltonian and

derive the Berry curvature distribution and Chern numbers for our parameter regime.

1Using arrays of coupled waveguides, a classical version of this proposal was realized to study topologically

protected edge modes in the inversion-symmetric regime [70].
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In the following, I will present the setup and the experimental implementation of the phase

modulation with piezo-electric actuators. Our measurements show, that breaking either of

the two symmetries opens a gap in the band-structure. Using momentum-resolved interband

transitions, we can directly resolve this gap at the Dirac points. Furthermore, we will explore

the different topologically regimes of the Haldane model. We can use the atomic cloud as

a probe to sample the resulting Berry-curvatures in quasi-momentum space and observe

orthogonal drifts analogous to a Hall current, when applying a constant force. Finally, we

can directly explore the transition between two different topological regimes. By identifying

the vanishing gap at a single Dirac point, we map out this transition line experimentally and

quantitatively compare it to calculations using Floquet theory without free parameters. A

detailed discussion on the experimental realization of the topological Haldane model can be

also found in the PhD thesis of Gregor Jotzu [97]. A first calculation and numerical study

of the effective band structure for our experimental implementation can be further found in

the Master thesis of Martin Lebrat [392].

Since our experimental realization also other driven experiments in cold atoms have im-

plemented both non-trivial as well as trivial topological systems [44, 80, 81, 82, 83, 393, 394,

395, 396, 397, 398, 399, 400, 401, 402]. The implementation of interferrometric measurements

and mapping on dressed bands allowed to probe Berry curvature distribution and geometric

phases of honeycomb-like systems [44, 82, 395, 400, 401] In addition, recent experiments re-

ported the measurement of non-zero Chern numbers [80, 398], topological charge pumping,

as well a microscopic realization of the Harper-Hofstadter model [83]. Pioneering experiments

with magnetic flux systems in synthetic dimensions allowed to investigate uni-directional mo-

tion along the edge [393, 394]. In general, topological systems are additionally implemented

in other platforms, such as photonic lattices [70, 403, 404, 405, 406, 407], superconducting

qubits [408, 409], mechanical systems [410, 411, 412, 413], as well as rf-circuits [414, 415].

8.1. The Haldane model on a hexagonal lattice

The Haldane model on the honeycomb lattice is a typical example of a Hamiltonian featuring

topologically distinct phases [12]. Historically, it was the first model to describe a topological

insulator, which we nowadays refer to as a Chern insulator. It describes a mechanism through

which a quantum Hall effect can appear as an intrinsic property of a band-structure, rather

than being caused by an external magnetic field [416]. As we have seen in Section 2.4 in a

honeycomb lattice symmetric under time-reversal and inversion, the two lowest bands are

connected at two Dirac points. However, each broken symmetry leads to a gapped energy-

spectrum [6]. F. D. M. Haldane realized that the resulting phases are topologically distinct. In

literature, this system is referred to the Haldane model (on a honeycomb). Since the general

idea had a huge impact, it started together with other theoretical concepts on topological

order a completely new field [8, 9, 14].

Its phase diagram is shown in Fig. 8.1b: A broken inversion symmetry (IS), caused by an

energy offset ∆AB between the two sublattices, leads to a trivial band-insulator at half-filling.

In contrast, if time-reversal symmetry (TRS) is broken, by applying a magnetic flux through

a triangular plaquette, the system is described by a topological Chern insulator, where a

non-zero Hall conductance appears despite the absence of a net magnetic field [12, 416].

When both symmetries are broken, a topological phase transition connects two regimes with
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Figure 8.1.: The Haldane model on a hexagonal lattice. (a) Tight-binding model of

the honeycomb lattice realised in the experiment. An energy offset ∆AB between sublattice

A and B breaks inversion symmetry (IS). Nearest-neighbor tunnel couplings tij are real-

valued, whereas next-nearest-neighbor tunneling eiΦij t′ij carries tunable phases indicated by

arrows. i and j indicate the indices of the connected lattice sites. For a detailed discussion of

anisotropies and higher order tunneling terms see Supplementary Material. Corresponding

staggered magnetic fluxes (sketched on the right) sum up to zero but break time-reversal

symmetry (TRS). (b) Topological regimes of the Haldane model, for isotropic t, t′ij = t′

and Φij = Φ. The trivial (Chern number ν = 0) and Chern-insulating (ν = ±1) regimes are

connected by topological transitions (black lines), where the band-structure (shown on the

right) becomes gapless at a single Dirac point.

a distinct topological invariant, the Chern number, which changes from 0 to ±1. As will be

shown in the next sections, exactly at the phase transition the gap closes at a single Dirac

point. This is a direct consequence of the changing topological invariant, as a gap in the band

structure has to close and reopen again to change the Chern number. These transitions have

attracted great interest, as they cannot be described by Landau’s theory of phase transitions,

owing to the absence of a changing local order parameter [8].

We can break time-reversal symmetry (TRS) by inducing complex next-nearest-neighbor

tunnel couplings which are connecting sites of the same sublattice on the honeycomb (Fig. 8.1a).

The corresponding staggered magnetic fluxes sum up to zero in one unit-cell, thereby preserv-

ing the translation symmetry of the lattice. This was historically the impulse for Haldane to

propose such a model, since he wanted to show that rather a broken time-reversal symmetry

than a non-zero flux per unit cell can be responsible for the Hall effect [6]. The tighbinding

Hamiltonian of the Haldane model on a honeycomb is given by

Ĥeff =
∑
〈ij〉

tij ĉ
†
i ĉj +

∑
〈〈ij〉〉

t′ije
iΦij ĉ†i ĉj + ∆AB

∑
i∈A

ĉ†i ĉi, (8.1)

where tij and t′ij are the real-valued nearest- and next-nearest-neighbor tunneling ampli-

tudes. The next nearest neighbor tunneling contain additional complex phases Φij which

are defined along the arrows shown in Fig. 8.1a. An energy offset ∆AB ≷ 0 between sites

of the A and B sublattice breaks the inversion symmetry and opens a gap |∆AB| [42] (see

also Chapter 4). Although an implementation in a material was considered unlikely, it has
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8. EXPERIMENTAL REALIZATION OF THE TOPOLOGICAL HALDANE MODEL

provided the conceptual basis for theoretical and experimental research exploring topological

insulators and superconductors [8, 375, 416, 417, 418]. In order to experimentally realize the

Haldane model, we therefore need to fulfill the requirements for the two broken symmetries.

As we will describe in the following sections, this achievement is possible by periodically

modulating a honeycomb lattice.

8.2. Topological properties - Berry phase, Berry curvature and Chern

number

In the following, we will only very briefly introduce the major concepts of topology in the con-

text of band structures. The interested reader will find full details and summarizing reviews

for example in the following references [6, 8, 14]. A detailed discussion for the topological

properties of Dirac materials can be also found in [123]. We will concentrate our discussion to

the Dirac points on a hexagonal lattice, since this is the relevant context for our implemen-

tation. The closed Dirac points are connected with a specific topological feature. A particle

restricted to an energy band n, that is adiabatically performing a closed loop C in momentum

space will end up in its original state and acquire a so-called Berry phase, which is given by

[419, 420]

γn(C) = i

∮
C
dk · 〈un(k)|∇kun(k)〉. (8.2)

Here, un(k) is an eigenstate of the underlying Hamiltonian (Bloch function). For the case

of graphene, an atom encircling either of the two Dirac points on a closed trajectory will

therefore pick up a phase factor. The sign of the Berry phase is opposite for the two Dirac

points and its total value is ±π (mod 2π) 2. Using Stokes theorem, we can redefine the

contour integral 8.2 as an integral over the area Γ enclosed by C [419, 420]:

γn(C) = −
∫

Γ
dSΩn(k), (8.3)

called the Berry curvature. The integrand Ω(k) is analogous to a magnetic field and corre-

sponds to the geometric phase picked up along an infinitesimal loop. It is defined as [419,

420]:

Ωn(k) = Im

[ ∑
m6=n

〈un(k)|∂kĤ(k)|um(k)〉 × 〈um(k)|∂kĤ(k)|un(k)〉
(εm(k)− εn(k))2

]
. (8.4)

Since each Dirac point is associated with a Berry phase, we can instead also think of each

Dirac point as a region with finite Berry curvature. As we will realize later, the spread of the

distribution of the Berry curvature in momentum space is connected to the size of the gap

which opens between the Dirac points and is fully localized to a single point in case they are

closed [423].

We can now finally define a topological invariant for each single band n. The Chern number

νn is obtained by integrating the Berry curvature over the entire Brillouin zone

νn =
1

2π

∫
k∈BZ

d2kΩn(k). (8.5)

2For a detailed derivation see for example [6, 421, 422].
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TUNNELING
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Figure 8.2.: Shaking setup and tight-binding model on a honeycomb lattice.

(a) Laser beam setup forming the two-dimensional optical lattice. X is frequency-detuned

from the other beams. Piezo-electric actuators sinusoidally modulate the retro-reflecting

mirrors, with a controllable phase difference ϕ. Acousto-optic modulators (AOMs) ensure

the stability of the lattice geometry (see Section 8.5). Since we do not apply a lattice beam

along the y-direction, we realize a two-dimensional setup with harmonic confinement in the

third direction. (b) Tight-binding model of the honeycomb lattice realized in the experiment.

An energy offset ∆AB (indicated by the different size of the lattice sites) between sublattice

A and B breaks inversion symmetry (IS). Nearest neighbor tunneling ti connects sites of

different sublattices, while next-nearest neighbor tunneling t′A,B2 connects sites within each

sublattice. The actual parameters in our experimental realization are given in Table 8.1 for

each tunneling link.

In case of a normal hexagonal lattice and two closed Dirac points with opposite Berry phase

±π we remain in a trivial band structure. However, if time-reversal symmetry is broken the

Berry phase of a single Dirac point flips its sign and the band is characterized by a non-trivial

topology [6]. We can summarize our discussion, by stating the energy spectrum itself is not

sufficient to reveal the topology of the band. It is rather characterized by the associated

eigenstates.

8.3. Implementation of an effective Hamiltonian with complex tunneling

A crucial experimental challenge for the realization of the Haldane model is the creation

of complex next-nearest-neighbor tunneling. However, as we will show in the following, by

periodically modulating a hexagonal lattice on a circular trajectory in time it is possible to

induce such an imaginary next-nearest neighbor tunneling. As we have seen in the previous

chapters, a uni-directional modulation leads to a renormalization of existing tunneling am-

plitudes. By implementing a more advanced modulation scheme, we can nevertheless create

the desired tunneling. Our approach follows the proposal by T. Oka and H. Aoki [69], who

realized that a rotating force applied in a honeycomb lattice induces the required complex

tunneling. Using arrays of coupled waveguides, a classical version of this proposal was used to

study topologically protected edge modes in the inversion-symmetric regime [70]. Note, there

are related proposals for Floquet engineering, that are following a similar idea and also allow

for a possible realization of topological systems [387, 388, 389, 390, 391]. We can access the

full phase diagram of the Haldane model in our setup, by extending the proposal to elliptical

modulation of the lattice position and by inducing a site-offset between the two sublattices

∆AB to additionally break inversion symmetry.
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8.3.1. Derivation of the effective Hamiltonian

By extending the discussion of the linearly shaken one-dimensional optical lattice (see Sec-

tion 6.2) to an elliptic modulation in two dimensions, we can derive the general form of the

effective Hamiltonian and directly map it to the Haldane model. We therefore consider a phase

modulation along a periodic trajectory rlat(τ), leading to an inertial force F (τ) = −mr̈lat(τ)

acting on the atoms. Analog to the one-dimensional case this time-dependent system can be

described by a tight-binding Hamiltonian in the co-moving (lattice) frame, this amounts to

adding a linear, site-dependent potential to the tight-binding Hamiltonian at rest:

Ĥlat(t) =
∑
〈ij〉

tij

(
ĉ†i ĉj + H.c

)
+
∑
i

(
F (τ) · ri

)
ĉ†i ĉi (8.6)

where ĉi, ĉ
†
i denote the annihilation and creation operators on the lattice sites at positions

ri in the lattice frame, and tij the tunneling amplitudes of the static lattice 3. Following

the derivation of the one-dimensional lattice shaking in Section 6.2, we can use a unitary

transformation to the rotating frame

Û(τ) = exp
[ i
~
∑
i

(
−mṙlat(τ) · ri

)
ĉ†i ĉi

]
. (8.7)

Similarly, this leads to description of the Hamiltonian in the rotating frame

Ĥrot(τ) = Û †(τ)Ĥlat(τ)Û(τ)− iÛ †(τ)∂τ Û(τ)

=
∑
〈ij〉

(
e
i
~qlat(τ)·rij tij ĉ

†
i ĉj + H.c.

)
, (8.8)

where the tunneling acquires a phase factor depending on the relative vector connecting two

sites rij = ri − rj . Here, the lattice momentum is again defined as −qlat(τ) = −mṙlat(τ).

The elliptical trajectories are created by modulating the lattice position along two orthogonal

axes (ex, ez) with equal amplitude A and a relative phase ϕ,

rlat(τ) = −A
(

cos(ωτ)ex + cos(ωτ − ϕ)ez

)
. (8.9)

Changing ϕ allows for continuously changing both the aspect ratio of the trajectory (from

linear, ϕ = 0◦ or 180◦, to circular, ϕ = ±90◦) and its rotation direction (anticlockwise for

0◦ < ϕ < 180◦, clockwise for −180◦ < ϕ < 0◦). The phase factors in Eq. (8.8), which essen-

tially indicate how the lattice velocity ṙlat projects onto the lattice bonds rij , are therefore

sinusoidal functions of time: introducing the modulation parameters

ρije
iφij = rij · ex + rij · ez e−iϕ

κij =
1

~
mωAρij (8.10)

with the convention ρij ≥ 0 and a more general form of the dimensionless shaking parameter

κij which is depending on the site spacing ρij . The Hamiltonian can then be written as

Ĥrot(τ) =
∑
〈ij〉

(
tije

iκij sin(ωτ+φij)ĉ†i ĉj + H.c.
)
. (8.11)

3Note, we have omitted the minus sign in front of the kinetic energy term. As result, in this chapter the

static tunneling terms are definite as negative values (compare Table 8.1).
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8.3. IMPLEMENTATION OF AN EFFECTIVE HAMILTONIAN WITH COMPLEX
TUNNELING

To derive the effective Hamiltonian, we follow the general approach as introduced in Eq. 6.13

and perform a high frequency expansion in the rotating frame

Heff =
∞∑
n=0

H
(n)
eff,rot (8.12)

where the terms in the effective Hamiltonian are defined according to Eq. 6.4. As defined in

Chapter 6 the first two orders of the expansion are given by

Ĥ
(0)
eff,rot = Ĥrot

0 (8.13)

Ĥ
(1)
eff,rot =

1

~ω

∞∑
j=1

1

j

[
Ĥrot
j , Ĥrot

−j

]
(8.14)

To determine the different expansion orders of the effective Hamiltonian we thus need to

find the Fourier components Ĥrot
n of the time-dependent Hamiltonian in the rotating frame

Ĥrot(τ) =
∑∞

n=−∞ Ĥ
rot
n einωτ (Eq. 6.5). By using the Jacobi-Anger expansion 4, we obtain

this Fourier components from the Hamiltonian in the rotating frame (Eq. 8.11) as:

Ĥrot
n =

∑
〈ij〉

Jn(κij)e
inφij tij ĉ

†
i ĉj (8.15)

Every Ĥrot
n features the same space periodicity and underlying geometry as the tight-binding

lattice at rest, but with modified tunneling amplitudes and phases. The Bessel functions of

negative order are related to the positive ones through J−n(κij) = (−1)nJn(κij).

As a result, we find the lowest order of the effective Hamiltonian as

Ĥ
(0)
eff,rot =

∑
〈ij〉

J0(κij)tij ĉ
†
i ĉj =

∑
〈ij〉

t
(0)
ij ĉ
†
i ĉj (8.16)

which is the generalized form of the renormalization of the tunneling in two dimensions, and

can be compared to our result in one-dimension (see Section 6.2). In general, the dimensionless

shaking parameter κij is depending on the exact modulation direction and on the spacing

between two sites of the considered link. The next higher order proportional to 1/ω is given

by [424]:

Ĥ
(1)
eff,rot =

∑
〈〈kl〉〉

1

~ω
tkmtmlĉ

†
k ĉl

∞∑
n=1

2i
(−1)n

n
Jn(κkm)Jn(κml) sin(n(φkm − φlm)) (8.17)

which describes an induced next-nearest neighbor (NNN) tunneling connecting the site k

and l which is purely imaginary. We can understand this process as two individual tunneling

events via an intermediate lattice site m on the other sublattice. One important feature

is that the size of this induced next-nearest-neighbor tunneling depends only on the static

nearest-neighbor tunneling, meaning that we do not require any static next-nearest-neighbor

tunneling at the beginning. We can rewrite this in a more compact form [424]

Ĥ
(1)
eff,rot =

∑
〈〈kl〉〉

t′
(1)
kl ĉ
†
k ĉle

iΦkl , (8.18)

4The Jacobi-Anger expansion in its general form is defined as e(iz sin(ωτ+φ)) =
∑∞
n=−∞ Jn(z)e(in(ωτ+φ)), with

Jn(z) as the nth order Bessel function of the first kind.
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8. EXPERIMENTAL REALIZATION OF THE TOPOLOGICAL HALDANE MODEL

with real valued NNN tunneling t′
(1)
kl and the sign of the phase Φkl, which reverts for clockwise

or anticlockwise modulation direction, as it depends on the relative phase of the modulation

ϕ.

Finally, we can write an approximate effective Hamiltonian of our system in the phase-

modulated honeycomb lattice in a compact form, giving us exactly the Hamiltonian of Eq. 8.1

Ĥeff =
∑
〈ij〉

t
(0)
ij ĉ
†
i ĉj +

∑
〈〈kl〉〉

t′
(1)
kl e

iΦkl ĉ†k ĉl + ∆AB

∑
i∈A

ĉ†i ĉi, (8.19)

where t
(0)
ij and t′

(1)
kl are the real-valued nearest- and next-nearest-neighbor tunneling am-

plitudes. As we have derived, the NNN tunneling contain additional complex phases Φij

which are defined along the arrows shown in Fig. 8.1a. We have added an additional term

with energy offset ∆AB ≷ 0 between sites of the A and A sublattice, that breaks the in-

version symmetry and opens a gap |∆AB|. This term is not changed during the modulation,

as is shown in the derivation in the next section. The induced complex phase Φkl breaks

time-reversal symmetry and is controlled via the relative phase ϕ between the two modu-

lated lattices. For linear shaking (ϕ = 0◦ or 180◦) this phase vanishes and the time-reversal

symmetry of the underlying static Hamiltonian is restored. As a result, we obtain a pure

renormalization of the real parts of the tunneling terms. In the following we will analyze the

effects of the elliptical modulation on the band structure and how it leads to gap opening at

the Dirac points.

To demonstrate the kinetic terms of the effective Hamiltonian, we assume an ideal ’brick-

wall’ lattice. It is defined with horizontal and vertical bonds (at square angle) of equal length

(|v0| = |v1| = |v2| = λ/2) and is described by equal tunneling amplitudes (t0 = t1 = t2 = t

and t3 = t′1 = t′2 = t′3 = 0, for naming convention see Fig. 8.2b). We can then analytically

calculate the resulting effective tunneling as a function of the modulation strength. The results

are shown in Fig. 8.3 for the renormalized NN tunneling, as well as the induced imaginary

NNN tunneling. As expected from the derivation, all NN tunnelings are evenly renormalized

according to the zero-order Bessel function, independent of ω. To a good approximation, the

t′1, t
′
2 tunnelings are purely imaginary and display a complicated ω, κ dependence. In the next

section, we will further analyze this behavior which leads to an opening of the gaps at the

two Dirac points.

8.4. Broken time-reversal symmetry and gap opening

In order to derive an analytic expression for the gap at the Dirac points let us consider the

effective Hamiltonian in momentum space. To simplify the derivation, we assume that the

next-nearest neighbor couplings of the static lattice show A − B symmetry, t′Aj′ = t′Bj′ = t′j′ .

This symmetry may be broken experimentally but the size of this effect is negligible for the

lattices in our setup (see Table 8.1). In addition, all tunneling couplings of the static lattice

are real. Similar to the description of the static Hamiltonian (see Section 2.4) we can also

transform the Fourier components of the Jacobi-Anger expansion (Eq. 8.15) and rewrite the

expressions in momentum space q using Pauli matrices as Ĥn = hniÎ+hnxσ̂x+hnyσ̂y+hnzσ̂z.

The only difference to the static Hamiltonian on the honeycomb lattice is the renormalization
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Figure 8.3.: Tunneling as a function of the modulation strength for the idealized

brick-wall lattice. (a) Nearest-neighbor tunneling t0,1,2 versus modulation amplitude κ.

(b) Imaginary next-nearest neighbor tunneling for circular modulation ϕ = 90◦ at different

frequencies ω = 30t, 10t, 6t. The contribution from the 1/ω2 term [13] to the tunnelings

between A and B sublattices is below 10−3t at ω = 6t. The sum of Bessel functions for the

NNN-tunneling is truncated at n = 10.

of the tunneling and the additional phase factors which we include and obtain

hni =
∑
j′

2Jn(κj′)tj′ cos(q · uj′) (8.20)

hnx =
∑
j

1

2
[eiq·vj + (−1)ne−iq·vj ]Jn(κj)e

inφj tj (8.21)

hny =
∑
j

1

2i
[eiq·vj − (−1)ne−iq·vj ]Jn(κj)e

inφj tj (8.22)

hnz =
∆AB

2
δn. (8.23)

Here, δn denotes the Kronecker delta. Note that hnx and hny are complex, which is related

to the fact that Ĥn = Ĥ†−n is in general not Hermitian. Inserting these expressions into Eqs.

(8.13, 8.14) we obtain for the zero order term in the expansion

Ĥ
(0)
eff =

∑
j′

2t′0,j′ cos(q · uj′)Î +
∑
j

t0,j
[

cos(q · vj)σ̂x + sin(q · vj)σ̂y
]

+
∆AB

2
σ̂z (8.24)

with renormalized tunneling on the nearest- and NNN links

t0,j = J0(κj) tj t′0,j′ = J0(κj′) t
′
j′ (8.25)
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We obtain the same results as above. At the lowest order, Ĥ0ω, all inter-sublattice tunnel

couplings t0,j and intra-sublattice tunnel couplings t0,j′ are renormalized according to the

zeroth order Bessel function J0(κj). In addition, our derivation in momentum space reveals

that the sublattice offset ∆AB remains unaffected in lowest order. In a similar way, we obtain

the next term5 in the expansion as

Ĥ
(1)
eff =

∑
j1>j2

2t1,j1j2 sin(q · vj1j2) σ̂z (8.26)

with the imaginary next-nearest neighbor tunneling of sites (j1, j2) connected by the vector

vj1j2 = vj1 − vj2

t1,j1j2 =
2tj1tj2
ω

∞∑
n=1

(−1)n

n
sin[n(φj1 − φj2)]Jn(κj1)Jn(κj2) (8.27)

In general, the prefactors hni of the identity matrix will not contribute to higher-order terms

in the effective Hamiltonian, as all commutators [I, σα] vanish. Importantly, this means that

the NNN tunnelings of the static lattice do not appear in any higher terms of the expansion

and therefore do not affect the gap at the Dirac points. Note, this also implies that our

approach works equally well in deep optical lattices. Depending on the lattice geometry, if

there are several two-step paths linking two next-nearest neighbor sites all possible terms

have to be summed. One illustrative example is the square lattice, where this effect leads to

destructive interference and there is no induced phase [97, 424]. In general the higher-order

terms vanish when considering (non-interacting) 6 atoms on lattices with a single orbital per

unit cell and the system is fully described by H(0).

As we have seen in Section 2.4 the gaps at the two opposite Dirac points ±qD are given

by

G± = ε+(±qD)− ε−(±qD) = |∆AB ±∆T|, (8.28)

where |∆T| is the gap resulting from the induced complex tunnelings. Assuming inversion

symmetric NNN tunnelings (∆AB = 0) we find |∆T| as

∆T = −
∑
j′

wj′t
′
j′ sin(Φj′). (8.29)

Here, we sum over the imaginary parts of the complex amplitudes t′j′e
iΦj′ weighted by wj′ =

−4 sin(qD.uj′). The weights are positive for the lattice used in our experiment. Their norms

are sensitive to the position of the Dirac points, given by the identity
∑

j tje
qD.vj = 0, and

therefore depend on the NN tunnel couplings tj and the vectors vj setting the geometry of

the lattice.

8.4.1. Results for an ideal brick-wall lattice

In the following, we will analyze a brick-wall lattice as the idealized version of our honeycomb

lattice. As stated above, the horizontal and vertical bonds are then all of equal length (|v0| =
|v1| = |v2| = λ/2) and connected at square angles. This results in the three main NN tunnel

5See the supplemental material of our publication [13] for all expansion terms up to order 1/ω2.
6In Chapters 9 and 10 we will see that interactions lead to higher order corrections.

134



8.4. BROKEN TIME-REVERSAL SYMMETRY AND GAP OPENING

a

b

∙
0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

G
ap

 (t
)

n =1
n =3
n =5

-180° -135° -90° -45° 0° 45° 90° 135° 180°
φ

0.00

0.05

0.10

0.15

0.20

G
ap

 (t
)

Figure 8.4.: Analytically and numerically computed gap in the ideal brick-wall

lattice. (a) Analytically (line) and numerically (crosses) computed gap versus relative

phase ϕ between the horizontally and vertically modulated lattice beam. We assume an

ideal brick-wall lattice and use the shaking frequency ω = 10t and κ = 0.7778. (b) Absolute

gap versus modulation amplitude κ, for circular modulation ϕ = ±90◦ at ω = 10t. The

analytic line is plotted for an expansion of order 1/ω (see Eq. 8.33) and increasing number

n of the expansion in Bessel functions. For κ > 2 we need to include higher orders of n to

correctly describe the numerically Haldane gap (crosses).

couplings, with equal tunneling amplitudes t0 = t1 = t2 = t (see Fig. 8.2b) and all other

links t3 = t′1 = t′2 = t′3 = 0. In the brick-wall lattice the Dirac points are located at quasi-

momenta ±qD = ∓4π/(3λ2)u1∓4π/(3λ2)u2. We therefore obtain for the weights in Eq. 8.29

w1 = w2 = w3 = 2
√

3. Since v0 is horizontal and v1,v2 are exactly vertical, the modulation

amplitudes κij of the NN bonds are always κ = m/~ωAλ/2. As we have seen in the previous

section, all effective NN tunnelings are renormalized (teff
0,1,2 = tJ0(κ)) and are independent

of ϕ (see Fig. 8.3a). The acquired modulated phases projected on each link are defined as

φ0 = 0, φ1 = −ϕ and φ2 = π − ϕ. This leads to the effective complex NNN tunneling bonds

(see Fig. 8.3b)

t′eff
1 = i

2t2

ω

∞∑
n=1

(−1)n

n
sin(nϕ)[Jn(κ)]2 (8.30)

t′eff
2 = −i2t

2

ω

∞∑
n=1

1

n
sin(nϕ)[Jn(κ)]2 (8.31)

t′eff
3 = 0. (8.32)

As a result, we can define the gap at the Dirac points induced by elliptical modulation in
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the presence of inversion symmetry (∆AB = 0).

∆T =
8
√

3t2

ω

∑
n odd

1

n
sin(nϕ)[Jn(κ)]2

≈ ∆max
T sin(ϕ). (8.33)

Due to the elliptical modulation, we can directly control the mass of the Dirac point by the

relative phase ϕ. We will refer to this opening of the Dirac point resulting from the complex

phases which are induced on the NNN links as the ’Haldane’ gap. The approximation used

in the formula above corresponds to keeping only the n = 1 term of the infinite sum of Bessel

functions, with ∆max
T = 8

√
3[tJ1(κ)]2/ω. For κ = 0.7778 (as used in the experiment), this

approximation deviates by less than 0.1% from the asymptotic value of the maximum gap

obtained for n→∞.

We can compare this result to numerical calculations for which we approximate Ĥ(τ) by

an operator Ĥ(τi) that is piece-wise constant on N consecutive time intervals [τi, τi+1[, where

τi = i T/N , i = 0 ... N − 1. This allows us to rewrite the time-evolution operator over one

period ([0, T [) as the product of N shorter time-evolution operators:

Û(T, 0) =

N−1∏
i=0

U(τi+1, τi) =
N−1∏
i=0

e−iĤ(τi)T/(~N). (8.34)

Here, Ĥ(τi) is evaluated for every q separately according to Eq. (8.11). The effective Hamil-

tonian Ĥτ
eff is then computed according to,

Ĥτ
eff =

i

~T
log Û(T, 0). (8.35)

Note, the numerical approach chosen here uses a stroboscopic frame and therefore depends

on the starting phase. While this affects the numerically calculated eigenvectors7, the energy

spectrum itself is independent of the starting phase, as expected from Eq. 6.2.

In Fig. 8.4, we compare the analytical result of the Haldane gap to our numerical calcula-

tion. As expected, if the relative phase ϕ is in the linear regime, we do not induce a gap and

the Dirac points are fully closed (assuming ∆AB = 0). However, the Haldane gap is maximal

for circular modulation (ϕ = ±90◦). Overall the two results show an excellent agreement with

a relative difference of approximately 1%. Using our numerical results, we can investigate the

gap as a function of the modulation strength κ. Fig. 8.4b shows the gap is a non-monotonic

function of the modulation amplitude κ (as expected from Eq. 8.33). While the lowest order

n of the expansion in the Bessel functions is sufficient to describe the Haldane gap this is

not the case for κ > 2 8. If we compare the results of the renormalized static tunneling (see

Fig. 8.3a) with the calculated Haldane gap we immediately realize that the gap remains open

even if the static tunneling t0,1,2 ≈ 0. This is expected from the different order of the Bessel

functions and allows to tune the ratio between the Haldane gap ∆T and the bandwidth de-

fined mainly by t0,1,2. For amplitudes up to κ ≈ 7 expanding to at least n = 5 is necessary to

7As a result, the numerically calculated Berry curvature will be dependent on the numerically chosen starting

phase.
8The usual modulation regime is in the range 0 < κ < 2.5, which is mainly limited by the atom loss due to

coupling to higher bands. Really large modulation strengths are also limited technically as the amplitude

of the piezo is finite.
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Figure 8.5.: Calculation of the induced Haldane gap and bandwidth of the band

structure. (a) Absolute gap as a function of the modulation frequency ω, for circular

modulation ϕ = ±90◦ and κ = 0.7778. The line shows the analytical result truncated at first

order in 1/ω (truncated for n = 10) and describes quite well the numerically expected be-

havior (crosses). (b) Bandwidth (defined as the energy splitting at q = 0) versus modulation

frequency ω, for circular modulation ϕ = ±90◦ at κ = 0.7778. The blue line (analytic result

in order 1/ω) is compared to the numerical result (black, dotted line). The dashed grey line

indicates f(ω) = ω which is the maximal possible bandwidth of the quasi-energy spectrum.

describe the result. Interestingly the sign of ∆T changes around κ = 4, which is not predicted

by the first order theory. As we will see in the following sections, this results in a change of

the topological Chern number as the gap at the Dirac points is closed and then reopened.

Additionally, we can analyze the dependence of the Haldane gap and the bandwidth of the

effective quasi-energy band-structure on the modulation frequency (see Fig. 8.5). As expected

from Eq. 8.33, the gap increases as the modulation frequency ω decreases. Note, the depen-

dence 1/ω of the Haldane gap, which we derived above only holds as long as ω � t. If ω ≈ t
the high frequency expansion breaks down and cannot describe the exact behavior. In our

parameter regime (κ = 0.78) the comparison to the numerical results additionally indicates

that the truncation at order (1/ω) is valid. In general, our comparison with numerical results

therefore proves that the analytic description truncated at first order in 1/ω is justified and

Ĥeff is fully described by the Haldane Hamiltonian (Eq. 8.19).

In contrast, the analytic description of the bandwidth (at q = 0) is independent of the

modulation frequency and remains close to its static value, but is renormalized by the zeroth-

order Bessel function (6tJ0(κ = 0.78) ≈ 5.13t). However, in Chapter 6 we have seen, that the

quasi-energy spectrum is limited to a region of ~ω and therefore the description obviously does

not hold anymore for smaller modulation frequencies. In addition, modulating at frequencies

below the static bandwidth can lead to a multiple folding of the band structure. This can even

lead to interesting effects, where the Chern number rises to values above 1 [425]. This effect

is already visible as oscillations of the gap in the effective bandstructure in our numerical

calculation. In this case, the point q = 0 does not represent the minimum of the band

structure anymore.

8.5. Experimental setup - circular lattice modulation

The starting point of our experiment is a non-interacting, spin-polarized cloud prepared in the

lowest band of a honeycomb optical lattice with atom numbers N = 4− 6× 104. To perform
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accurate Bloch oscillations with high resolution we minimize the harmonic confinement and

levitate the atomic cloud against gravity. In order to prepare a spin-polarized cloud at low

magnetic fields, we deviate from the usual preparation scheme. In contrast to the usual evap-

oration, we remain on the left side of the Feshbach resonance and evaporate the |9/2,−9/2〉
and |9/2,−7/2〉 mixture at a magnetic field of 197.6(1) G 9. The field is subsequently reduced

and a magnetic field gradient is used to selectively remove the |9/2,−7/2〉 component, while

levitating the atoms in the |9/2,−9/2〉 state against gravity.

The atoms are then loaded into a two-dimensional honeycomb lattice (xz-plane) 10 within

200 ms using an S-shaped intensity ramp, and the dipole trap is subsequently turned off in

100 ms. Note, in the y-direction we do not include a lattice beam which results in hexagonally

arranged tubes. The final lattice depths are set to VX,X,Z = [5.0(3), 0.45(2), 2.3(1)]ER, which

results in a band structure, where the two lowest bands have a total bandwidth of h ×
3.9(1) kHz, with a gap of h× 5.4(2) kHz to the next higher band. In addition, the two lowest

bands contain two Dirac points at opposite quasi-momenta (see also discussion in Section 2.4).

The static NN and NNN tunneling parameters of the honeycomb lattice are calculated from

the Wannier functions [52] and listed in Table 8.1. We minimise the intensity imbalance

between the incoming and reflected lattice beams in the xz-plane such that the remaining

imbalance between left and right vertical tunneling is less than 0.3%, as determined from

Raman-Nath diffraction on a 87Rb Bose-Einstein condensate. A remaining weak underlying

harmonic confinement with trapping frequencies ωx,y,z/2π = [14.4(6), 30.2(1), 29.3(3)] Hz is

present in all measurements.

8.5.1. Elliptical modulation of the optical lattice

In contrast to the previous chapter, where we have used a magnetic field gradient to induce

a time-modulated force on the atoms, we implement a phase modulation scheme to realize

an elliptical force in two-dimensions. In our setup we use two piezo-electric actuators, which

are mounted between the holder and the retro-reflecting mirror of the lattice beam in x

and z directions. The displacement of the mirror position creates a controlled phase shift of

the reflected beams with respect to the incoming lattice beams. This modulation leads to a

time-periodic force in the co-moving frame (see general discussion in Section 6.2). We use a

pre-stressed mounted stacked piezo crystal (Pickelmann PSt150/4/20 ), which has the advan-

tage of lower driving voltages and large possible displacements. However, the disadvantage

of stacked piezo crystals are many resonances (in phase and amplitude) and a high capacity.

As a result, a frequency sweep is not possible with our current piezo and is limiting future

experiments. The high capacity limits the possible amplitude, which is determined by the

maximal current delivered by the piezo driver. However, with our model we can reach mod-

ulation amplitudes up to κ ≈ 2.5 in the whole frequency regime relevant to our experiment.

Because the resonances are fairly stable in amplitude and phase, it is possible to ’remove’

9We obtain typical temperatures of 0.2TF , which is slightly worse compared to the usual preparation.

However, for the measurements in the topological Haldane model the overall temperature does not play a

critical role (see discussion further below).
10To be consistent throughout the whole thesis the axis convention remains in the laboratory frame. Therefore,

I use the usual directions x, z of the interfering lattice unless stated otherwise, a convention that differs

from our publication [13].
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the resonances by calibrating the piezo response11.

As shown in Section 2.3, the geometry of the optical potential realized in our interfering

lattice depends on the the relative phase ϕSL of the two orthogonal retro-reflected beams

X and Z. The bandwidth of our active stabilization (ϕL = 0◦) is limited to 1 kHz, which

means we have to ensure this phase relation is maintained during the lattice modulation.

Since typical modulation frequencies are on the order of few kHz, we have to counteract

the phase modulation to guarantee a stable lattice geometry. We solve this problem by

phase modulating the respective incoming beams at the same frequency as the piezo-electric

actuators using acousto-optical modulators (AOM) (see setup in Fig. 8.2a). As a result, the

standing wave still moves and acts on the atoms, but the geometry of the lattice potential

is stabilized. In addition, this feed forward provides a direct calibration of the amplitude

and relative phase of the mirror displacement. For the stabilization, we measure the phase

of each lattice beam compared to a reference beam. This allows us to apply a sinusoidal

modulation via the AOMs at a given frequency and we can tune the amplitude and phase of

the piezo until we completely cancel the modulated phase difference signal. The calibration

is confirmed by measuring both the reduction of tunneling [60] and the effective atomic mass

around q = 0 in a modulated simple cubic lattice (see Fig. 6.1a).

Experimentally, we find a frequency regime where the coupling to higher bands is minimized

and atom loss is maximally reduced (a detailed discussion on possible loss features follows in

Section 10.1). Since our detection scheme requires Bloch oscillations, we are bound to shallow

lattices with weak harmonic confinement. Therefore the possible frequency window without

exciting atoms to higher bands is quite small. To improve the modulation scheme we follow a

more advanced ramp and use the fact that the effective band structure is effectively reduced

as we start modulating. Initially, the atoms are loaded into a lattice with 30% larger single-

beam lattice depths than the final values used for the actual measurements. Experimentally.

we find that this suppresses resonant transfer of atoms to higher bands. Here, the relevant

energy scale is the time-averaged Hamiltonian in the rotating frame (0th-order in 1/ω, see

Eq. 8.13) [68, 426]. Theoretical calculations for bosons in driven optical lattices have recently

confirmed this picture [426].

In a next step, the modulation amplitude in both lattice beams is linearly increased within

20 ms to reach a normalised drive of κ = 0.78. As desired, the time-dependence of the lattice

position rlat(τ) is then given by Eq. 8.9 and can be controlled in amplitude and phase12.

For all measurements presented in this chapter we keep the dimensionless driving amplitude

constant (κ = 0.78). The renormalized NN tunneling decreases the effective bandwidth to

Weff/h = 3.3(1) kHz. The lattice depths are then reduced in 10 ms to their final values.

Although we minimize the coupling to higher bands, the modulation scheme is not perfect

and the small band gap to the next higher band leads to a transfer of atoms to the second

band. After linearly ramping on the lattice modulation we detect 16% of the atoms in the

second Brillouin zone (BZ) and 21% in even higher bands. However, part of this transfer

is not resulting from the modulation itself, since we already detect 14% of the atoms in

the second BZ and 8% in even higher BZs without lattice modulation. This fraction might

result from a residual non-adiabaticity of the lattice ramps for a spin-polarized cloud and the

11This is not the case if we want to use a frequency which is exactly on resonance, where a more frequent

calibration is needed.
12The phase ϕ is set with an accuracy of 3◦.
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Static ϕ = 0◦ ϕ = 180◦ ϕ = ±90◦

t0 (Hz) −746 −662 −662 −662

t1 (Hz) −527 −467 −431 −449

t2 (Hz) −527 −431 −467 −449

t3 (Hz) −126 −103 −103 −103

t′1 (Hz) 14 14 7 10∓ 18i

t′2 (Hz) 14 7 14 10∓ 18i

t′3 (Hz) 61 29 29 29∓ 5i

Table 8.1.: Tight-binding parameters of the static and driven honeycomb lattice.

The static parameters are obtained through an ab initio computation of the Wannier function

[52]. See Fig. 8.2b for an overview of the labeling convention for all tunneling links. All

parameters in the driven optical lattice include the analytically derived modifications to

the static tunneling bonds using a modulation frequency ω/2π = 4000 Hz, κ = 0.78 and

|v0| = 0.876 d. When changing the linear modulation to the orthogonal one (ϕ = 0◦ ↔ 180◦),

tunneling energies are swapped according to a x 7→ −x reflection. Reverting the circular

modulation from clockwise (ϕ = −90◦) to anticlockwise (ϕ = +90◦) replaces the NNN

couplings by their complex conjugates.

limited sharpness of the Brillouin zones due to the finite resolution in the harmonic trap.

To minimize any micromotion effects, we also adiabatically ramp off the modulation (lin-

early within 2 ms) before detecting the momentum space distribution. We experimentally

varied the time-scale on which the modulation is ramped on and off to confirm that these

ramps are sufficiently slow and the measurements are not affected by switch-on or switch-

off effects. In addition, we have verified that our experimental findings are not affected by

the global phase of the lattice modulation or changes in the total modulation time smaller

than a modulation period. This means that the description of the time-independent effective

Hamiltonian can safely be used.

8.5.2. Static and effective parameters of the driven honeycomb lattice

In the theoretical description presented above, we have used an idealized brick-wall lattice

to derive all quantities. However, in our experimental implementation of the honeycomb the

NN tunneling bonds are not all equal and t3 6= 0. This results in slightly different strengths of

the induced imaginary tunnel couplings and the varying weights contributing to the Haldane

gap. Furthermore, the static real NNN tunnel couplings are not zero, which affects the shape

of the band-structure. However, as we have derived above the energy difference between the

two bands or the induced complex tunneling does not depend on the real values of the NNN

tunnel coupling and therefore the topological transition line and gap remains unaffected.

Finally, the lattice has a slightly shorter lattice spacing |v0| = 0.876 d along x, implying

that the bond angle departs from 90◦. The tunneling parameters of the static lattice are

summarized in Table 8.1.

We immediately realize that |v0| 6= |v3| leads to t′eff
3 6= 0. Moreover, as we have derived

in the general form in Eq. 8.16 the NN tunnelings tj are renormalized with individual κj
as the projections depend on the orientation and length of the tunneling vectors. When the

modulation trajectory is not circular, this weakly breaks the x 7→ −x reflection symmetry of
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the lattice, leading to a minor displacement of the Dirac points away from the qx = 0 line of

the Brillouin-zone. Which for ϕ = 0◦ or ±180◦ amounts to a movement of the Dirac point by

about 1% of the Brillouin-zone size. This effect creates a slight ϕ dependence for the weights

wj′ in Eq. (8.29) [13].

Finally, we can compute the maximal Haldane gap for a modulation frequency ω/2π =

4000 Hz and amplitude κ = 0.78. As expected, circular modulation (ϕ = ±90◦) leads to a

maximum gap of ∆max
T /h = 88+10

−34 Hz for our parameters, whereas the gap vanishes for linear

modulation (ϕ = 0◦,±180◦), where time-reversal symmetry is preserved. Analytically, we

find a value of 91 Hz, which means deviations from the sinusoidal dependence on ϕ owing to

higher-order terms of the perturbative expansion remain below 2%.

8.6. Probing gaps at the Dirac points

We will first present measurements which confirm that breaking either symmetry is sufficient

to open a gap in the band structure. For this, we restrict ourselves to either ϕ = 0◦ or

∆AB = 0, corresponding to the two axes of the Haldane diagram (see Fig. 8.1b). In order to

probe the opening of gaps in the system, we drive Landau-Zener transitions through the Dirac

points [42, 124, 125]. Applying a constant force along the x-direction by means of a magnetic

field gradient causes an energy offset Ex/h = 103.6(1) Hz per site, thereby inducing a Bloch

oscillation (see schematics in Fig. 8.6). After one full Bloch cycle (τB = h/E = 9.85 ms),

the magnetic gradient is removed and the lattice modulation amplitude is linearly lowered

to zero within 2 ms to circumvent effects of the micromotion. The cloud serves as a sampling

probe of different trajectories in quasi-momentum space and therefore probes the dispersion

relation of the two lowest bands. In the vicinity of the Dirac point the transfer probability

to the second band is given by the probability of a Landau-Zener transition [42, 124, 125].

When applying a force Fx = Ex/d (with d = λ/2) we can therefore define the Landau-Zener

probably ξ(qy) as a function of the quasi-momentum qy as [124, 125]13:

ξ±(qy) = exp

(
−π

c2
yq

2
y +G2

±/4

cxFx

)
(8.36)

Here, G± = |∆AB±∆T| is the gap at the Dirac points and cx (cy) are the dispersion relations

at the Dirac points along quasi-momentum qx (qy). This formula also reveals why a small

harmonic confinement is needed to detect finite gaps at the Dirac points. If the applied force

is on the same order as the restoring force of the harmonic trap, we will end up in a dipole

oscillation rather than a Bloch oscillation. However, if the applied force is too large, compared

to the relevant gap, also trajectories further away from the Dirac point will be transferred to

the higher band and we are insensitive to the gap. Therefore, the applied force is limited to

a certain range (in our case around 100 Hz per lattice spacing). As a result, we need to use

a levitated cloud with minimal harmonic confinement, such that we can apply weak forces

that still lead to a Bloch oscillation of the cloud.

From Eq. 8.36 we also immediately see that as soon as the time-reversal symmetry is

broken (∆T 6= 0), the transfer probability of each Dirac point is distinct. In addition, our

13Note, since the full physics of the Haldane model is described in a two-dimensional model we use for clarity

the description of quasi-momentum with labels of qx and qy (although it corresponds to the real space

lattices X and Z).
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qx

qy

Dirac points

1st BZ

2nd BZ

1st BZ
2nd BZ

1st BZ

2nd BZ
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2nd BZ

a

b 0     τB/2 τB/2     τB

Figure 8.6.: Bloch oscillations as a tool to detect the gap at the Dirac points.

(a) Illustrative drawing of the Brillouin zones (BZ) in quasi-momentum space. Each BZ

features two Dirac points, which are indicated in orange and green. Note, that the exact

position of the Dirac point depends on the exact tight-binding parameters and also slightly

on the shaking parameters (for details see Supplementary of our publication [13]). An applied

magnetic gradient leads to a Bloch oscillation and can be seen as a forced movement of the

cloud through momentum space. Atoms in the cloud will sample the quasi-momentum space

region and, depending on the trajectory, some of them will cross the position of the Dirac

point (red arrow). (b) Sketch of the quasi-momentum space in the extended zone scheme with

first BZ and second BZ and corresponding schematic cut of the band structure (center). The

left column present the trajectories for the first half of the Bloch oscillation (0↔ τb/2) and

the right column the second half. Atoms moving on trajectories away from the Dirac points

(blue) will remain in the lowest band for a sufficiently slow movement through momentum

space. They are therefore Bragg reflected and reappear on the other side of the BZ. In

contrast, atoms that are crossing a Dirac point (red trajectory) are transferred to the second

band. As a result, we can detect them in the quasi-momentum space of the second BZ. In

general, all trajectories will be Bragg reflected in quasi-momentum space, as indicated by

the dashed lines. Figure adapted from Ref. [97].
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Figure 8.7.: Probing the gap for broken inversion symmetry (IS) and broken

time reversal symmetry (TRS). (a) Fraction of atoms in the second band ξ after one

Bloch-oscillation in the qx-direction. We break either IS (a) by introducing a sublattice

offset ∆AB or TRS (b) via elliptical modulation (see diagrams above). This corresponds to

individually scanning the two axes of the Haldane model. A gap opens at both Dirac points,

given by |∆AB| or |∆max
T sin (ϕ) |, respectively, thereby reducing the transfer to the second

band ξ. Numbers indicate the different regimes of effective Hamiltonian (see corresponding

Fig. 8.12). Error bars denote the standard deviation of at least 6 measurements.

detection method is quite sensitive since the transfer probability depends exponentially on

the squared gap. This will be useful for the detection of the topological phase transition,

where the gap is calculated to be maximally ∆T = 88 Hz in our modulation regime (see the

previous section).

During the Bloch oscillation the quasi-momentum changes by a reciprocal lattice vector

and is Bragg reflected to the other side at the boundary of the Brillouin zone. For a large gap

and a reasonable force, the whole atomic cloud will stays within the lowest band and returns

to its starting point in quasi-momentum space after a full Bloch oscillation. However, if atoms

of the cloud are on a trajectory close to a Dirac point with small or vanishing gap a finite

transfer probability will bring them to the second band (see schematics in Fig. 8.6b). After

a full Bloch oscillation, the atoms will partly populate the second band and can therefore

be detected at quasi-momenta corresponding to the second Brillouin zone. We probe the

quasi-momentum distribution of the atoms by using a band mapping technique, where all

lattice beams are ramped down within 500µs, which is much shorter than the time-scales

of the harmonic trap, meaning that the original q-space distribution is conserved [42]. An

absorption image of the atomic distribution is then recorded after 15 ms of ballistic expansion.

The fraction of atoms populating each band is determined by integrating the atomic density

in the corresponding Brillouin-zone on the absorption image 14. Our observable averages

over all quasi-momenta qy, which are initially populated by the cloud and therefore sampled

during the Bloch oscillation.

Fig. 8.7 presents the experimental measurements of the observed gap at the Dirac points.

For broken inversion symmetry, the gap is given by |∆AB| and opens at both Dirac points15.

In this case, ξ reaches a maximum at ∆AB = 0 which indicates a vanishing energy gap, and

14We calibrate the size of the Brillouin zone independently by using Bloch oscillations of a non-interacting

Fermi gas in a one-dimensional lattice.
15To control the energy offset ∆AB, we follow the same method as used for the implementation of the Ionic

Hubbard model and vary θ around π by changing the frequency detuning between the X and X lattice

beam.
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decays symmetrically around this point. In a static lattice we can determine the resolution

of the transfer measurements and find the point where ∆AB = 0 with an accuracy of 7 Hz.

Furthermore, we can detect the gap opening in the case of broken time-reversal symmetry

(see Fig. 8.7b). We find a transfer fraction which is well described by the theoretical expec-

tation and shows a maximal gap (minimal transfer) for circular modulation and maximal

transfer for linear modulation. However, when looking at the results more closely, we realize

that the transfer probability is not fully symmetric and shifted in the modulation phase ϕ.

For example, the transfer at a modulation phase ϕ = ±60◦ are significantly different (it is

higher for the counter clockwise modulation), although we expect the same induced Haldane

gap ∆T. A possible explanation is given by effect of the Berry curvature which leads to a drift

in momentum space and can therefore change the transfer probability in the vicinity of the

Dirac points. As we will show, the Berry curvature has opposite sign for the two modulation

phases (see Section 8.7).

8.7. Measurement of the Berry curvature

As we have seen in the previous section, breaking either IS or TRS gives rise to similar, gapped

band structures which remain point-symmetric around quasi-momentum q = 0. However, the

energy spectrum itself is not sufficient to reveal the changing topology of the band, which

is given by the associated eigenstates (see Section 8.2). We can therefore characterize the

topology by using the Berry-curvature Ω(q) as a local geometrical property of the bands [8].

We can directly calculate this quantity using our numerical calculations of the elliptically

driven honeycomb lattice. From the numerically calculated effective Hamiltonian (Eq. 8.35)

we can deduce its eigenvectors |u±q 〉 and energies ε(q). Those quantities allow us to numerically

compute the Berry curvature for the lowest energy band [420]:

Ω(q) = 2Im

[
〈u−q |∂q1Ĥ0

eff(q)|u+
q 〉 〈u+

q |∂q2Ĥ0
eff(q)|u−q 〉

(ε+(q)− ε−(q))2

]
. (8.37)

approximating the partial derivatives along the axes of the Brillouin zone by their first order

finite-difference expressions. The Chern number of the lowest band is obtained by integrating

the Berry curvature over the entire Brillouin zone:

ν =
1

2π

∫
q∈BZ

d2q Ω−(q), (8.38)

where we replace the integral in our numerical simulation by a sum over a discrete grid.

Numerically, we discretize time and q-space choosing the grid such that a higher resolution

does not further change the results.

Fig. 8.8 shows the resulting Berry curvature distribution in quasi-momentum space for

different parameter regimes and the corresponding band structures. Immediately, we realize

that indeed all band structures are equivalent in their spectrum and it is impossible to

differentiate between broken inversion symmetry or broken time-reversal symmetry. However,

as expected, the Berry curvature distribution allows for a distinction between the topological

regimes. When only IS is broken, the Berry-curvature is point-antisymmetric, and its sign

inverts for opposite ∆AB. The spread of Ω(q) increases with the size of the gap and is

completely localized in the case the Dirac points are fully closed (see panel 1O in Fig. 8.8).

144



8.7. MEASUREMENT OF THE BERRY CURVATURE

ϕ = 0°

Broken IS

2

3

4

5

max∆AB = ∆ T

Broken IS

ϕ = 0°
∆AB = -∆ T

Broken TRS

ϕ = -90°
∆AB = 0

Broken TRS

ϕ = 90°

∆AB = 0

qy

E

0
Berry curvature (10-3)

1-1 3-3

qy

qx

max

ϕ = 0°

Graphene

1

∆AB = 0

Figure 8.8.: Theoretical calculation of the Berry curvature and band structure in

the elliptically driven honeycomb lattice. The calculation shows different parameter

regimes for either a broken inversion symmetry (IS) or broken time-reversal symmetry (TRS)

using real experimental parameters (see Table. 8.1). (left) Analytic calculation of the two

lowest bands shown as a cut of the band structure for qx = 0 through the position of the Dirac

points. (right) Numerical calculation of the Berry curvature Ω(q). The Berry curvature is

normalized such that a sum over all discretized pixels of the Brillouin zone results in a

quantized Chern number (0 or± 1). To allow for a clear visualization of the Berry curvature

distribution the color-scale is double logarithmic (symmetric scale for positive and negative

directions from the origin) with an intermediate linear range since the logarithm of zero is

not defined. The numbering represents the different regions as labeled in our measurements.
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Figure 8.9.: Schematics of the drift measurement. Theoretically expected phase

diagram for our experimental realization of the Haldane model. Schematics on the sides

show the expected orthogonal drifts caused by driving the atoms through the Berry curvature

distribution. Red (blue) indicates positive (negative) Berry curvature. If only IS is broken

( 2 and 3 ), the Berry curvature distribution is point-antisymmetric and changes sign when

changing the sign of the sublattice offset. For opposite forces this leads to the same direction

of the drift, as indicated by the white arrows. If only TRS is broken ( 4 and 5 ), the Berry

curvature distribution at each Dirac point has the same sign, which is changed when reverting

the rotation direction. In this case opposite forces lead to opposite directions of the drift.

Its integral over the first Brillouin-zone, the Chern number ν, is zero, corresponding to a

topologically trivial system. In contrast, with only TRS broken, Ω(q) is point-symmetric,

and its sign changes when reverting the rotation direction of the lattice modulation. In this

modulation regime, the integral over the first Brillouin-zone is determined as ν = ±1, with

the sign depending on the sign of the relative phase ϕ. Note, in our implementation we

numerically calculate a Chern number ν = �1 for anti-clockwise shaking (ϕ = 90◦) and a

positive Chern number ν = 1 for shaking clockwise.

8.7.1. Drift measurement as a probe of Berry curvature

In order to determine the topology of the lowest band, we move the atoms along the y-

direction such that their trajectories sample the regions where the Berry-curvature is con-

centrated, and record their final position. As atoms move through regions of q-space with

non-zero curvature, they acquire an orthogonal velocity proportional to the applied force and

Ω(q) [423, 427, 428, 429]. This is in analogy of the Lorentz force, which arises for particles

moving through a magnetic field. In a semi-classical approximation, the equations of motion

for atoms moving in momentum-space under a constant force Fy are then given by16:

ẋ =
1

~
∂qxε(qx, qy)� q̇y · Ω(qx, qy) (8.39)

ẏ =
1

~
∂qyε(qx, qy) + q̇x · Ω(qx, qy) (8.40)

~q̇x = �∂xVtrap(x, y, z) (8.41)

~q̇y = Fy � ∂yVtrap(x, y, z), (8.42)

where we have included the harmonic trap Vtrap(x, y, z) = 1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) and

corrections arising from the dispersion relation ε(qx, qy) of the band. As a result, it is possible

to detect the real-space displacement of the atomic after a full Bloch oscillation, which samples

16Here, we remain in the coordinate system of the quasi-momentum space. The careful reader should keep in

mind that the y and z-directions are actually flipped in the laboratory frame.
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the Berry curvature in momentum space. However, our detection resolution is limited and it

is not possible to directly detect the real space displacement, which is smaller than a lattice

site. In recent experiments, this has been possible by using a sequence of multiple Bloch

oscillations which allowed to determine the anomalous velocity and reconstruct the Chern

number in the band structure of the Harper-Hofstadter-Hamiltonian [80].

Although we are limited in the detection of real space displacement, we can use the de-

scribed effect, since the harmonic trap couples real and momentum-space. The resulting

change in real space position induces a transverse force in opposite direction of the dis-

placement, which arises from the underlying harmonic confinement. However, we obtain an

amplified drift in quasi-momentum space in the same direction as the anomalous velocity,

due to the negative curvature of the dispersion relation close to the Dirac points. In our

measurements, we prepare an initial cloud at quasi-momentum q = 0 and apply an accel-

erating force along the y-direction with strength Fy = ±∆E/d, where ∆E/h = 114.6 Hz is

the energy offset per site17. The width of the fermionic cloud is sufficiently large such that

we completely sample the relevant region of Berry curvature of the Brillouin-zone during

the Bloch oscillation. We subsequently measure the center of mass of the quasi-momentum

distribution in the lowest band after one full Bloch cycle18. The drift is then given by the

displacement of the atoms with respect to the position before the Bloch oscillation and is

obtained by calculating the center of mass within the first Brillouin zone. All drifts are given

in units of qB = 2π/λ, with 2qB as the size of the first BZ. As a result, we can detect a

displacement qx in quasi-momentum space with a sign that is depending on the sign of the

Berry curvature (see schematics in Fig. 8.9).

If our parameter regime corresponds to a point with trivial topology the local Berry cur-

vature of each Dirac point has opposite sign (corresponding to an overall integral to Chern

number 0). During a full Bloch oscillation the drift obtained when moving across the Berry

curvature of the first Dirac point is therefore canceled by the opposite shift of the second

Dirac point. Consequently, for broken IS we should not observe a displacement after a full

oscillation cycle. In contrast, when TRS is broken the two contributions add up and an overall

drift is remaining after a full Bloch oscillation. Subsequently we will present measurements

in which we explore the distinct topology of the lowest band by probing the Berry-curvature.

One difficulty in the observation of relative drifts is, that they are already observed if only

inversion symmetry is broken (see Fig. 8.10). Experimentally, we find for the topologically

trivial case (ϕ = 0◦, 180◦) that the observed drift is independent of the direction of the

applied force (red, blue) for the whole parameter regime of ∆AB. Although the integrated

Berry curvature should be zero, we measure a drift which increases with increasing gap and

changes sign with ∆AB. We can understand this effect as a measurement of the local Berry

curvature around the first Dirac point. The Berry curvature of the first Dirac point already

leads to velocity in real-space. However, due to the induced coupling between real- and

quasi-momentum space the trajectory of the atomic cloud is shifted in qx. When successively

reaching the second Dirac point, the shifted part of the cloud does then not experience

the same Berry curvature distribution. As expected from this picture, opposite oscillation

directions give rise to the same drift, since not only the direction of the force changes but

17Due to the description of quasi-momentum space in xy this actually corresponds to a Force along the

laboratory z-direction.
18For our parameters a single Bloch cycle lasts 8.72 ms.
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Figure 8.10.: Relative drift of the atomic cloud after a full Bloch cycle. We

measure the center of mass position of the atomic for broken inversion symmetry. Data for

positive (negative) force leading to a Bloch oscillation along qy is shown in blue (red). (a,

b) We break IS by introducing a sublattice offset and show measurements with modulation

frequency of 4.0 kHz and 3.75 kHz (φ = 0, linear modulation). Although the opposite Berry-

curvatures at the two Dirac points sum up to zero within the first Brillouin-zone (BZ),

we clearly see a drift depending on the size of ∆AB. Data show mean ± s.d. of at least

6 (4.0 kHz) or 2 (3.75 kHz) measurements. (c) Numerical simulation of the relative drift

implemented via the semi-classical equations of motion (Eqs. 8.42). If we include a cutoff

to simulate transfer to higher bands the sharp slope around ∆AB = 0 flattens. Black data

corresponds to a simulation without threshold and the blue data to a cutoff at ∆E. For

details of simulation parameters see the description in the text. Data are mean ± s.d. of

three simulations containing each 4× 104 trajectories. (d) Measurement of the relative drift

in the undriven lattice as a function of ∆AB. Error bars denote the standard deviation of 3

measurements.

also the sign of the Berry curvature corresponding to the first Dirac point on the trajectory

(see schematics in Fig. 8.9). Only for the largest ∆AB the measured drift decreases again,

indicating an increasing spread of the Berry-curvatures distributions at each Dirac point,

which then start to overlap and gradually cancel each other.

To verify this picture we use the semi-classical equations of motion and simulate the orthog-

onal drifts observed for Bloch oscillations along the y-direction, using the same parameters as

in the experiment. We compute trajectories in quasi-momentum space starting from a zero-

temperature Fermi distribution around q = 0 with 40000 atoms19. We include the harmonic

trap and determine the q-space center-of-mass position after one Bloch cycle. Fig. 8.10c shows

the results which qualitatively agree with our measurements. Obviously this simulation only

captures part of the complicated dynamics of the quantum system, as it completely ignores

19For a detailed discussion of the semi-classical model see also [97].
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Figure 8.11.: Relative and differential drift in case time-reversal symmetry is

broken. By changing the modulation phase difference ϕ we break TRS and the system

enters the topologically non-trivial regime, where opposite drifts for ϕ ≷ 0 are expected.

Panels (a,b) show the differential drift D obtained from Bloch-oscillations in opposite qy-

directions at a modulation frequency ω/2π = 4 kHz, or ω/2π = 3.75 kHz respectively. The

individual relative drifts, corresponding to the measurement of the differential drift are shown

in (c,d). Data points for positive (negative) force are shown in blue (red). Data show mean

± s.d. of at least 21 (a,c) or 6 (b,d) measurements.

the Landau-Zener transition to the second band, when atoms sample the region close the

Dirac point. For a rough estimate of these effects, we record the minimum band-gap experi-

enced by each trajectory and exclude trajectories below a chosen cut-off value. This approach

will not capture the complex quantum-mechanical dynamics of the real transfer process, but

may serve to indicate in which direction the measured drift-curves will be deformed (see also

discussion below). As is shown in the simulation, when excluding some of the trajectories,

the steep slope around ∆AB = 0 flattens and the qualitative agreement between data and

theory significantly improves. Furthermore an independent measurement of the drift in the

unshaken honeycomb lattice shows exactly the same behavior (see Fig. 8.10d) and confirms

our intuitive picture.

8.7.2. Differential drift as a measurement to probe distinct topological regimes

As we have seen, the velocity caused by the Berry-curvature inverts when inverting the force.

As a result, we subtract the two measurements of opposite gradients to obtain the differen-

tial drift D in qx. This quantity is more suitable for distinguishing trivial from non-trivial

Berry-curvature distributions than the response to a single gradient [423]. From the previous

measurements where only IS is broken, we observe that D vanishes and is independent of

∆AB (see Fig. 8.12a). In contrast, when only TRS is broken we can explore the topological

regime of the Haldane model with ∆AB = 0 (indicated by the orange arrow in Fig. 8.9).
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Figure 8.12.: Revealing different topological regimes in the effective Hamiltonian.

For the exact same experimental parameters where we have also measured the gap opening

at the Dirac points (see Fig. 8.7) we measure the differential drift. (a) Differential drift

D obtained from Bloch-oscillations in opposite qy-directions. For broken IS (a), opposite

Berry-curvatures at the two Dirac points cancel each other, whilst for broken TRS (b) the

system enters the topological regime (same data as Fig. 8.11a), where opposite drifts for

ϕ ≷ 0 are expected. Data show mean ± s.d. of at least 6(a) or 21 (b) measurements. Data

in (a) corresponds to the measurements of the relative drift presented in Fig. 8.10a.

The results are shown in Fig. 8.11(a,b) for two different shaking frequencies. As expected for

circular modulation, we observe a maximal differential drift, which is opposite for ϕ = −90◦

compared to ϕ = 90◦. This is a direct consequence of the Berry curvature being point-

symmetric, with its sign given by the rotation direction of the lattice modulation. As the

relative phase of the modulation changes, the drift disappears and completely vanishes for

linear modulation. We can directly see that the signal for a lower modulation frequency is

much more pronounced. A possible explanation is the increased Haldane gap (see Fig. 8.5

and Eq. 8.33) which distributes the Berry curvature over a larger region in momentum space.

Thus, more atoms of the cloud sample a trajectory that experiences a significant Berry

curvature. On the same time the ’loss’ mechanism through Landau-Zener transitions to the

second band is reduced and more of these atoms stay within the lowest band.

A related behavior is observed when looking at the individual relative drifts as a function

of the modulation phase (see Fig. 8.11c,d). We find opposite drifts along qx for each of the

oscillation directions. For circular modulation both successively passed Dirac points cause a

drift in the same direction since the Berry curvature is point-symmetric. Therefore, changing

the sign of the applied gradient leads to a drift in the opposite qx-direction. As expected,

the drift changes sign for the opposite modulation phase difference ϕ, directly revealing the

changing sign of the Berry curvature distribution. Obviously, also here, a larger gap (when

ϕ is closer to ±90◦ or the modulation frequency is lower) leads to a larger drift.

As the underlying band structure possesses several symmetries, the possible values of the

differential drift D are strongly constrained by the topology of the lowest band. If one of the

two symmetries is broken, the band structure is point symmetric, ε(qx, qy) = ε(−qx,−qy). In

addition, the Berry-curvature is point symmetric if time-reversal symmetry is broken, which

results in a topological non-trivial lowest band. In contrast, for a broken inversion symmetry

the Berry-curvature is point anti-symmetric, which leads to a trivial band structure (compare

also to the theoretical calculations in Fig. 8.8). If we assume the system is also reflection

symmetric, ε(qx, qy) = ε(−qx, qy), the equation of motion for q̇x remains unchanged when

inverting the direction of the force in the topologically trivial case. As a result, a non-zero D
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Figure 8.13.: Semi-classical simulations of the drift measurement. We can compare

the experimentally determined differential drift with a calculations from the semi-classical

equations of motion. The upper panel shows the measured D when either IS (a) or TRS (b)

is broken with error as the standard deviation of at least 6 measurements for a modulation

frequency of 3.75 kHz. Data in (b) is identical to Fig. 8.11b. The lower panel presents the

numerically computed comparison for the same parameter regime. The atomic ensemble is

modeled by a zero-temperature Fermi distribution. Data are mean ± s.d. of three simulations

containing 4× 104 trajectories. The differential drift D is calculated when breaking either IS

(c) or TRS (d). For the case of broken TRS we exclude trajectories passing through regions

where the band-gap lies below a certain threshold as a fraction of ∆E.

can only originate from a non-zero integrated Berry-curvature and is a direct measurement of

the non-trivial topology of the lowest band. In the experiment, these symmetries are strictly

present when ϕ = ±90◦. The elliptical modulation weakly breaks reflection symmetry, but it

can be restored by considering the average of D(ϕ) and D(π − ϕ).

We can also directly simulate the differential drift D, by using the semi-classical equations

of motion. Fig. 8.13 presents the direct comparison of the experimental and theoretical data.

As expected and also observed in the experiment, when only IS is broken, no differential drift

is observed. In particular, even though reflection symmetry is weakly broken in the system its

effect remains smaller than the numerical error on D. In contrast, when only TRS is broken,

a differential drift which changes sign with the modulation phase ϕ is computed, which is

smaller but comparable to the measured values. The sudden change of D around ϕ = 0◦ is

smoothed when taking into account transfer to higher bands. As explained before, for small

gaps at the Dirac points the spread of the Berry-curvature is very small, meaning that atoms

which would contribute most to the drift are likely to be transferred to the higher band. If

this transfer is not taken into account (purple line), the differential drift varies sharply around

ϕ = 0◦ where the Chern number changes. However, as the threshold is raised to 0.5 ∆E (red

line) and ∆E (green line) 20, this sharp feature progressively smoothens and qualitatively

20As stated above, ∆E/h = 114.6 Hz is the energy offset per site, which drives the Bloch oscillation.
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8. EXPERIMENTAL REALIZATION OF THE TOPOLOGICAL HALDANE MODEL

max∆AB = ∆ T

Broken TRS 
and IS

ϕ = 90°

ϕ = 90°

qy

E

0
Berry curvature (10-3)

1-1 3-3

qy

qx

max∆AB = 3∆ T

Figure 8.14.: Theoretical calculation of the Berry curvature and band structure

in case both symmetries are broken. (left) Analytic calculation of the band dispersion

shown as a cut through the band structure for qx = 0. (right) Numerical calculation of the

Berry curvature Ω(q). The Berry curvature is normalized such that a sum over all discretized

pixels of the Brillouin zone results in a quantized Chern number (0). To allow for a clear

visualization of the Berry curvature distribution the color-scale is double logarithmic with

an intermediate linear range, since the logarithm of zero is not defined.

reproduces the experimental measurements. We attribute the quantitative difference of the

measurements to the in general complex dynamics of driven the cloud. In the experiment,

atoms in the second band can also be transferred back to the first band when reaching the

second Dirac point.

Finally, we can also analyze the Berry curvature for a situation where both symmetries are

broken simultaneously. Fig. 8.14 shows the numerically calculated distribution of the Berry

curvature in this case. Exactly on the topological phase transition, one of the Dirac points

is closed (negative qy, which we will denote as the G�) and the Berry curvature around this

point is maximally located with opposite sign compared to the Dirac point at positive quasi-

momentum (G+). This point corresponds to the topological phase transition (see discussion

below) and the integral of the Berry curvature reduces to 0. For even larger site offset ∆AB

both Dirac points have a finite gap and the Berry curvature broadens in the region around

the Dirac point. We immediately realize that the symmetry of band structure as well as the

Berry curvature vanish.

Additionally, we can experimentally probe the differential driftD for all topological regimes,

allowing for simultaneously broken IS and TRS (see Fig. 8.15a). To improve the signal to

noise ratio we use a modulation frequency of 3.75 kHz. The differential drift D is non-zero

only for broken TRS and shows the expected antisymmetry with ϕ and symmetry with ∆AB.

However, the region of significant differential drift reaches far beyond the topological non-

trivial regime and non-zero values of D extend well beyond the transition lines when IS and

TRS are both broken. Only for large ∆AB, deep inside the topologically trivial regime, D
vanishes for all ϕ. For smaller ∆AB, the differential drift shows precursors of the regimes with

non-zero Chern number which we can be explained in a similar way as before.
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Figure 8.15.: Drift measurement for the full parameter regime. (a) Measured

differential drift D as a function of relative modulation phase ϕ and site offset ∆AB. Each

pixel corresponds to at least one pair of measurements, where the modulation frequency was

set to 3.75 kHz. Data points for ϕ = ±120◦, ∆AB/h = 503(7) Hz were not recorded and are

interpolated. (b) Numerical simulation of the differential drift D by using the semi-classical

equation of motion as a function of the site offset (purple). We exclude trajectories of atoms

experiencing a minimum gap below a chosen threshold of ∆E (green line) or 3 ∆E (blue line).

The topological phase transition is indicated by the gray dashed line. (c) Influence of the

transverse trapping frequency ωx/2π on the explored differential drift in quasi-momentum

space. The frequency used in the experiment is indicated by a purple arrow. Erros bars as

in Fig. 8.13c,d.

Again, semi-classical simulations (see Fig. 8.15b) suggest that the main contribution to this

effect arises from the transfer to the higher band. When TRS is maximally broken (ϕ = 90◦)

and ∆AB varies, the transfer is also responsible for the differential drift extending beyond

the topological phase. Without transfer, our simulations predict a sudden change in D at

the topological transition (purple line). However, when removing trajectories of atoms which

experience a small gap to the next higher band (green, blue), the region of differential drift

significantly extends outside of the non-trivial regime. If we take a transfer into account, the

Dirac point with the smaller gap contributes less, so the drifts observed in the topological

regime extend beyond the transition-line, as measured in the experiment21. As a result, the

combined dependence of the drift on the size of the gap, as well as the predominance of the

first Dirac point on the trajectory explains the extend of D beyond the topological phase

21In order to reduce this transfer we could apply weaker gradients to the atomic cloud, which would however

require removing completely the harmonic trapping potential along the y-direction.
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Figure 8.16.: Detection scheme of the topological phase transition. (a) Topological

phase diagram as a function of the experimental parameters. We can drive through the

topological phase transition by changing the site offset ∆AB at constant modulation phase

ϕ = 90◦ (circular modulation). The Chern number changes by 1 if the gap at the Dirac point

closes and reopens during this process. (b) Calculation of the individual gap at each Dirac

point as a function of ∆AB for circular modulation ϕ = 90◦. Solid line shows the analytical

result for our lattice parameters at a modulation frequency ω/2π = 4 kHz and κ = 0.78. The

numerical results are shown as triangular data points.

transition.

We have seen that the underlying harmonic trap in the x-direction is also of particular

importance, as it is responsible for transforming displacements in real space into momentum-

space drifts. This behavior can be simulated with the semi-classical equations of motion (see

Fig. 8.15c). The differential drift D initially increases as ωx increases, however for larger

frequencies the differential drift can vanish, as the transverse oscillation time becomes com-

parable to the Bloch period. Eventually the signal shows an oscillatory behaviour. In our

parameter regime (ωx/2π = 14.4(6) Hz) the drift in quasi-momentum is amplified and im-

proves for the detection process.

8.8. Topological phase transition

Within the Haldane model, the competition of simultaneously broken TRS and IS is of

particular interest, as it features a topological transition between a trivial band insulator

and a Chern insulator. As we have described above, in this regime, both the band structure

and Berry curvature are no longer point-symmetric and the energy gap G± at the two Dirac

points is given by

G± = |∆AB ±∆max
T · sin(ϕ)|. (8.43)
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Figure 8.17.: Exemplary measurement of transferred atomic cloud. Atomic

quasi-momentum distribution (averaged over 6 runs) after one Bloch-oscillation for ϕ =

+90◦,∆AB/h = 292(7) Hz. A line-sum along qx shows the atomic density in the first

Brillouin-zone in grey; atoms transferred at the upper (lower) Dirac point are shown in

orange (green) throughout. The fraction of atoms in the second Brillouin-zone differs for

qy ≷ 0. This is a direct consequence of simultaneously broken IS and TRS, which leads to

band-structures that are not point-symmetric.

On the transition lines the system is gapless with one closed and one gapped Dirac point,

G+ = 0 or G− = 0 (see Fig. 8.16a). Breaking only TRS opens an energy gap |∆T| at

the Dirac points given by a sum of the imaginary part of the three NNN tunnel couplings

connecting the same sublattice (see Eq 8.29). Circular modulation (ϕ = ±90◦) leads to

a maximum gap (h × 88+10
−34 Hz for our parameters), whereas the gap vanishes for linear

modulation (ϕ = 0◦,±180◦), where TRS is preserved. Fig. 8.16b shows the theoretically

expected value of the gaps at each Dirac point as a function of the site offset ∆AB.

In the previous section, we have seen that the differential drift can reveal the under-

lying topology of the band structure, however, is not suited to determine the topological

phase transition. In contrast, the band structure shows a characteristic feature exactly at

the topological phase transition. Therefore, we can map out the topological phase transition

by measuring the transfer ξ± through each Dirac point separately. We use a modulation fre-

quency of ω/2π = 4 kHz which is more suited for a quantitative comparison of the transfer

ξ, as the lattice modulation ramps are expected to be more adiabatic. For the measurements

of the gaps in Section 8.6 we counted all atoms in the second Brillouin zone. However, we

have additional information resulting from the detection scheme presented in Fig. 8.6. We

can individually detect the atoms transferred through either of the two Dirac points, as the

atoms populate different regions in momentum space in the second BZ. Fig. 8.17 shows an ex-

emplary measurement of ξ+ (ξ−), which is the fraction of atoms occupying the upper (lower)

half of the second Brillouin-zone after one Bloch oscillation along the x-direction. Here, ξ+

(ξ−) corresponds to the atoms transferred at the Dirac point G+ (G−).

We observe a difference between ξ+ and ξ−, which shows that the band structure is no

longer point-symmetric, allowing for the parity anomaly predicted by F. D. M. Haldane [12].

When the topology of the band changes, the gap at one of the Dirac point closes. We identify

the closing of a gap with the point of maximal measured transfer when varying ∆AB. For

linear shaking (ϕ = 0◦) we find, as expected for preserved TRS, that the maxima of both

ξ+ and ξ− coincide (see Fig. 8.18a). In contrast, when breaking time-reversal symmetry the

maxima are shifted in opposite directions, showing that the minimum gap for each Dirac point

occurs at different values of ∆AB. In between these values the system is in the topologically
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Figure 8.18.: Mapping out the topological phase transition. (a) Fractions of atoms

ξ± in each half of the second Brillouin-zone. For linear modulation (left) the gap vanishes at

∆AB = 0 for both Dirac points, whilst for circular modulation (right) it vanishes at opposite

values of ∆AB. Gaussian fits (solid lines) are used to extract the maximum of transfer, which

signals the topological transition. Data are mean ± s.d. of at least 6 measurements. (b)

Solid lines show the theoretically computed topological transitions, without free parameters.

Dotted lines represent the uncertainty of the maximum gap |∆max
T |/h = 88+10

�34Hz, originating

from the uncertainty of the lattice parameters. Data are the points of maximum transfer for

each Dirac point, ± fit error, obtained from measurements as in (b) for various ϕ. Data

points for ϕ = ±180◦ correspond to the same measurements. Between the lines, the system

is in the topologically non-trivial regime.

non-trivial regime. This allows us to map out the full topological phase transition by exploring

the position of each maximum for varying ϕ. Fig. 8.18b shows that we find opposite shifts

for negative ϕ and a closing of the Dirac points as predicted by Eq. (8.43). We can directly

compare our experimental results to the analytically expected result for the gap (using the

experimental parameters), which is shown as solid lines in the phase diagram.

8.9. Conclusion

The presented work together with other recent experiments [80, 83, 393, 394, 398, 402] has

shown, that it is possible to create non-trivial topological systems using modulated optical

lattices. By using differential drift measurements, we could reveal the properties of the Berry

curvature and differentiate between trivial and non-trivial topological bands. In addition, we

could show that a topological phase transition can be mapped out by looking at the transfer of

atoms through Dirac points. Our measurements show, that we can induce imaginary complex

NNN tunneling bonds that allow for an independent control of the Haldane gap.
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8.9. CONCLUSION

Our implementation constitutes a possible way to realize a Chern insulator, which so far has

not been implemented experimentally. In addition extending our work to interacting systems

requires a full control of the driven Fermi-Hubbard model and sufficiently low heating. As

will be shown in Chapter 9 and 10, quite recently we could implement an interacting driven

system (with trivial topology). Furthermore we investigate the heating rate and lifetime of

interacting atoms in a circularly shaken honeycomb lattice for a broad parameter regime (see

Section 10.2). This opens the possibility to study topological models with interactions in a

controlled way.

In addition, we can combine the presented results of spin-dependent lattice modulation

(see Chapter 7) with broken time-reversal symmetry. For example, time-reversal symmetric

topological Hamiltonians, such as the Kane-Mele model [375], can be implemented by simul-

taneously modulating the lattice on one axis and a magnetic field gradient on the other. In

the Outlook of this thesis 11, I will present our proposed scheme to create and detect chiral

topological edge modes within the bulk of driven two-dimensional systems. Our method is

based on the implementation of topological interfaces in the Haldane model, which enables

tunable topologically protected edge modes [430].
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9 Floquet state preparation in a periodically driven

two-body quantum system

This chapter is based on our publication [72]:

R. Desbuquois, M. Messer, F. Görg, K. Sandholzer, G. Jotzu, and T. Esslinger,

Controlling the Floquet state population and observing micromotion in a periodi-

cally driven two-body quantum system, Phys. Rev. A 96, 053602 (2017)

The last section of this chapter is partly presented in our publication [73]:

F. Görg, M. Messer, K. Sandholzer, G. Jotzu, R. Desbuquois, and T. Esslinger,

Enhancement and sign change of magnetic correlations in a driven quantum

many-body system, Nature 553, 481–485 (2018)

Near-resonant periodic driving of quantum systems promises the implementation of a large

variety of novel quantum states, though their preparation and measurement remains challeng-

ing. I will present our experimental results in an interacting two-body system, implemented

on an array of double wells, where we show how to prepare and analyze distinct Floquet

states in the driven system. We experimentally investigate different driving regimes, both

an off-resonant modulation, as well as a resonant modulation to the interaction energy. We

demonstrate full control of the Floquet state population and find suitable ramping proto-

cols and timescales, which adiabatically connect the initial ground state to different targeted

Floquet states.

Additionally, a numerical description and a complete analytical derivation of the peri-

odically modulated double well system is performed, where the latter is treated by a high

frequency expansion. In this context, the effective static Hamiltonians are presented in the

off- and near-resonant modulation scheme. As a result, we can compare the quasi-energies

and observables between experiment and theory. The singlet and triplet fractions and the

double occupancy of the Floquet states are measured, and their behavior as a function of

the interactions and modulation strength is analyzed in the high- and low-frequency regimes.

Furthermore, we observe the micromotion which exactly describes the time evolution of the

system within one driving cycle. As a final result, I will show, how we can use resonant

modulation to experimentally control and tune the magnetic exchange energy.
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9. FLOQUET STATE PREPARATION IN A PERIODICALLY DRIVEN TWO-BODY
QUANTUM SYSTEM

9.1. Experimental challenges of interacting driven systems

Until now the discussed realizations of Floquet engineering were implemented using spin-

polarized clouds1. As we have seen, Floquet engineering allows to create novel quantum

states through periodic driving, by realising effective Hamiltonians that are beyond the reach

of static systems [64, 65]. These effective Hamiltonians have been implemented not only with

ultracold gases in optical lattices [66], but also in photonic systems [70, 431], and in solid

materials [432]. So far, most experimental realizations concentrate on the creation of a specific

Hamiltonian or additional terms. However, preparing and controlling a specific quantum state

in a driven system remains in general a challenge.

This is particularly the case for many interesting schemes, which were realised by driving

at low frequencies [13, 70] or even close to a characteristic energy scale of the underlying

static Hamiltonian. Indeed, driving near-resonantly with respect to the band structure was

used to modify kinetic terms in the Hamiltonian [80, 81, 82, 114, 289, 433, 434, 435]. While

the Hamiltonian was realized and shown experimentally in many cases the equivalent to a

ground state in a static system was not reached in the driven system2.

Here, we will consider the modulation close to the interaction energy, which was proposed to

engineer novel interaction terms [436, 437, 438, 439, 440]. For all these schemes, the periodic

drive strongly couples the static eigenstates. Therefore, it is demanding to prepare a desired

Floquet state and to gain full control of the population of the different states in the driven

system. One important aspect lies in the fundamental differences between Floquet-engineered

systems and static Hamiltonians. As we have seen in Chapter 6, a periodically driven system

is described by a periodic quasi-energy spectrum, and thus has no ground state. Its absence

raises an important experimental challenge: How to adiabatically connect the ground state

of the initial static Hamiltonian to the targeted Floquet eigenstate? Theory suggests that

the population of Floquet states has a non-trivial dependence on the ramp speed and on the

exact trajectory which is used in parameter-space [441, 442, 443, 444, 445, 446]. Particularly,

in the case of near-resonant driving different static states might couple, which leads to the

formation of avoided crossings between quasi-energy levels [286].

In addition to this aspect, to measure a given Floquet state we have to deal with observ-

ables that are affected by micromotion describing the dynamics of the Floquet system within

a driving period (see Section 6.5). Whilst this micromotion tends to become negligible for in-

finite driving frequencies, it alters the states significantly for near-resonant and low-frequency

modulation [64, 65, 70, 178, 301, 302, 303]. All this aspects make the full control of Floquet

states and the analysis of their exact time evolution demanding.

9.2. The ”Hubbard” model on two sites - experimental implementation

9.2.1. Preparation of the ground state in an array of double wells

In this chapter, we address those challenges in a tractable way, by realizing a periodically

driven array of double wells [285] occupied by pairs of interacting atoms [20, 39, 147, 148].

1This is true, except for the single expansion measurement of the spin-dependent modulation scheme.
2One prominent example is the experimental preparation of a Chern insulating state. Although topological

Hamiltonians with a non-zero Chern number have been realized, an experimental investigation of the

underlying states is still missing.
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9.2. THE ”HUBBARD” MODEL ON TWO SITES - EXPERIMENTAL
IMPLEMENTATION

This allows for a full control of the Floquet state population [286]. As we have seen in Section

2.6, the symmetric double well system is described by two sites containing two opposite spins.

It is a basic building block of the Hubbard model with a tunneling amplitude t, and an on-site

interaction U . The resulting Hilbert space is spanned by the singlet |s〉 = (|↑, ↓〉 − |↓, ↑〉)/
√

2

and triplet state |t〉 = (|↑, ↓〉 + |↓, ↑〉)/
√

2 where both sites are occupied, and by the states

|D±〉 = (|↑↓, 0〉±|0, ↑↓〉)/
√

2 where one site is doubly occupied. In this basis, the Hamiltonian

is given by

H = −2 t
(
|s〉 〈D+|+ |D+〉 〈s|

)
+ U

(
|D−〉 〈D−|+ |D+〉 〈D+|

)
. (9.1)

The ground state smoothly evolves from |D+〉 to |s〉 as the interactions are tuned from

strongly attractive to strongly repulsive3 (see also the spectrum shown in Fig. 2.13b). The

two components are equally populated for U = 0, and the width of the crossover region is

given by 4t.

To prepare the ground state of an array of double wells with a pair of fermions with

opposite spin, we initially follow our usual preparation scheme 2.2. We evaporatively cool

a mF = −9/2,−7/2 mixture to a quantum degenerate cloud with repulsive interactions

of 115.6(8) a0 consisting of an atom number of 159(10) × 103 (15% systematic error) at a

temperature of 0.06(1) T/TF. Before loading the fermions into the optical lattice we tune the

interactions to a large attractive value of −3000(600) a0. We use an S-shaped lattice ramp,

lasting 200 ms, to load the atoms into the lowest band of a checkerboard configuration4 with

lattice depths of V
X,X,Ỹ ,Z

= [0, 3, 7, 3]ER. This is followed by a linear lattice ramp with a

duration of 30 ms to a V
X,X,Ỹ ,Z

= [0, 30, 30, 30]ER deep checkerboard lattice. Due to the large

attractive interactions, 68(3) % of the atoms form double occupancies during this loading

process. For the splitting of the lattice sites, we first tune the scattering length to either

−120(6) a0 or 105.5(9) a0 for measurements in the final lattice with attractive or repulsive

interactions.

Each lattice site is then subsequently split into a double well within 10 ms by a linear

ramp, which increases VX and decreases VX simultaneously, while the lattice depths in y, z-

direction are kept constant. The final lattice depths V
X,X,Ỹ ,Z

and thus the tunneling rate

t inside the dimer slightly vary and are given explicitly in Table 9.1 for each measurement.

The splitting process allows us to create an array of double wells with a tunneling amplitude

to neighboring dimers below h× 3 Hz. On the same time, the tunneling amplitude t between

the two sites can be tuned by changing the depth of the lattice, while keeping the tunneling

amplitude to neighboring dimers at a negligible value. During this creation of dimers, the

initially prepared double occupancies are smoothly transformed into the ground state of the

double wells. In a final step, we ramp the on-site interactions in 5 ms to the desired final value

U , which allows us to prepare the lowest state of the static double well for all values of U/t

(compare the energy spectrum in Fig. 2.6). Note, this preparation is artificially increasing

the number of dimers occupied by two atoms, since the final state is not equilibrated in its

density compared to the chemical potential. In addition, due to the initial preparation of a

band insulator and the fermionic nature of the atoms we ensure a loading of two fermions

3As stated in Section 2.6, we label the energy levels by the corresponding state in the large U -limit with a

tilde. For example in our notation, the ground state of the double well is thus labeled |D̃+〉 for negative U

and |̃s〉 for positive U .
4In this set of measurements the visibility α = 0.92(1) is measured via amplitude modulation spectroscopy

with a 87Rb Bose-Einstein condensate in different interfering lattice configurations (see Subsection 2.3.1).
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Figure 9.1.: Shaking a three-dimensional optical lattice setup - Driven interacting

Hubbard model. (a) Setup of the shaken three-dimensional optical lattice. In contrast

to the previous chapter, we add a beam in the y-direction and only shake along the x-

direction, such that we can realize a driven Hubbard system. The optical lattice is tuned to

a dimer configuration, where only tx is remaining and all other tunneling links are below 3

Hz. (b) The driven regime is reached by ramping up a sinusoidal modulation of the lattice

site position. In the co-moving frame, this corresponds to a modulation of the potential bias

within a dimer ∆(τ) = κ ~ω cos(ωτ) with the dimensionless driving amplitude κ = amωx0/~
(see Section 6.2). (c) By quenching the tunneling to zero during the modulation (at point

Heff), we freeze the evolution of the quantum states to measure their population in the

effective Floquet Hamiltonian Heff . Reverting the modulation ramp and then subsequently

quenching the tunneling allows to determine the adiabaticity of the Floquet engineering

process Hst (at point H
(R)
st ).

with opposite spin. Using our standard loading scheme of slowly ramping on the final lattice

configuration, not including the intermediate checkerboard configuration, we do not reach

such a high fraction of dimers loaded into the ground state.

9.3. Periodically modulated double well system

We follow a similar shaking scheme as used for the realization of the topological Haldane

model. In contrast to the previous measurements, we only shift the position of a single mirror

used for retro-reflecting the X and X lattice beams, by using a piezo-electric actuator. This

allows us to apply a shaking force only along the x-direction of the lattice. In addition, we also

add a lattice beam in the y-direction to implement a full three-dimensional Hubbard model

(see Fig. 9.1a). To enter the driven regime, we linearly ramp up a sinusoidal modulation of

the lattice position with the piezo-electric actuator, with frequency ω/2π. The ramp up is

followed by a modulation at a fixed displacement amplitude x0. This phase modulation acts
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9.3. PERIODICALLY MODULATED DOUBLE WELL SYSTEM

Measurement Fig. 9.2 Figs. 9.5, 9.10, and 9.13 Fig. 9.15 Fig. 9.16

VX/ER 17.3 (5) 17.6 (5) 17.9 (5) 17.9 (5)

VX/ER 1.16 (3) 0.96 (3) 0.81 (2) 1.21 (4)

V
Ỹ
/ER 27.4 (8) 26.4 (8) 33.9 (10) 33.9 (10)

VZ/ER 26.7 (9) 28.4 (9) 29.2 (9) 29.2 (9)

tth/h (Hz) 680 (100) 490 (70) 350(50) 640(90)

texp/h (Hz) 550 (20) 450 (10) - -

a/(λ/2) 0.72(1) 0.76(1) 0.79 (1) 0.73 (1)

Table 9.1.: Lattice parameters used for the measurements in this chapter. In

this range of lattice depths, a systematic error on the potential can strongly influence the

predicted dimer tunnelling tth. For this reason, we also give the measured tunnelling texp,

which we obtain from the measurement of pDO as a function of U in the static lattice. Error

bars denote the standard error, systematic in the case of the lattice depths, and statistical in

the case of texp. Furthermore, the residual uncertainty on the phase θ may lead to a potential

bias between the two wells ∆. The distance a is then evaluated as the difference between

the eigenvalues of two neighboring Wannier states. The uncertainty of a follows from the

systematic error on the lattice depths.

in the direction of the dimers such that V (x, y, z, τ) ≡ V (x− x0 cos(ωτ), y, z). Similar to the

shaking in two-dimensions, we have to maintain the phase relation ϕ between the X and Z

lattice beams during modulation in order to not change the interfering lattice potential. We

achieve this by modulating the phase of the respective incoming X beam at the same frequency

as the piezo-electric actuator using an acousto-optical modulator, such that ϕ = 0.0(1)π is

constant. The modulation of the position of the lattice also leads to a residual modulation

of the lattice depth of ±2 %, which in turn modifies the tunneling amplitude by ±10 %.

As derived in Section 6.2 for the co-moving frame, the phase modulation of a single lattice

beam corresponds to a modulation of the potential bias of two neighboring sites. In the current

lattice setup, this corresponds to a potential bias within a dimer of ∆(τ) = κ ~ω cos(ωτ),

where κ = amωx0/~ is the normalized drive amplitude, with a as the distance between

the two sites of the dimer (see Fig. 9.1b). In general, the distance between two sites of a

simple cubic lattice is given by λ/2. However, in our lattice configuration, the two sites of

the double well are closer to each other. Consequently, we have to include a correction of the

lattice spacing to obtain the correct shaking amplitude κ for each individual configuration.

To estimate a, we determine the Wannier functions located on the left and right sites of the

double well 5. The distance a is then evaluated as the difference between the eigenvalues of

two neighboring Wannier states. The exact values of the correction depend on the lattice

parameters and are given in Table 9.1 for each measurement. As shown in Chapter 6 we can

describe the Hamiltonian in the lab frame as the sum of the static Hamiltonian H0 and a

periodic modulation V (τ), such that it has the form

Hlab(τ) = H0 + V (τ) = H0 + ∆(τ)H∆, (9.2)

5The Wannier functions are derived as the eigenstates of the band-projected position operator (see Section

2.5).
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where the time-dependent part V (τ) couples the states |D±〉 via

V (τ) = ∆(τ)(|D+〉 〈D−|+ |D−〉 〈D+|). (9.3)

Since the modulation creates an offset between the two sites of the double well, we can more

intuitively define H∆ in the Fock basis (Eq. 2.12),

H∆ =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

 (9.4)

To enter the driven regime, we linearly ramp up a sinusoidal modulation of the lattice

position with frequency ω/2π along the direction of the dimers, and then maintain a fixed

displacement amplitude x0 (see Fig. 9.1c). The atomic state is given by |Ψ〉 =
∏
i |ψi〉,

where 1 ≤ i ≤ ND with ND as the number of doubly occupied dimers and |ψi〉 as the

atomic state on dimer i. We characterize |Ψ〉 by measuring either the ensemble average of

the singlet fraction ps = 1/Ntot
∑

i |〈s |ψi〉 |2 , the triplet fraction pt = 1/Ntot
∑

i |〈t |ψi〉 |2
or the double occupancy pDO = 1/Ntot

∑
i

(
|〈D+ |ψi〉 |2 + |〈D− |ψi〉 |2

)
. The maximal possible

values of p
(max)
DO and p

(max)
s are therefore limited by the initial preparation of the system and

given as horizontal grey lines in Figs. 9.2 and 9.10. We can measure those observables before

switching on the shaking of the optical lattice in order to measure the static Hamiltonian.

Additionally, we can measure pDO and ps during the modulation in order to analyze the

effective Hamiltonian. Finally, the shaking ramp can be inverted to go back to the static

Hamiltonian, which allows us to measure the adiabaticity of the Floquet engineering process.

9.4. Off-resonant modulation of an interacting two-body system -

experimental results

To analyze the effect of the periodic modulation, we begin the experiment by characterizing

the change in the Floquet state originating from the undriven ground state for a drive fre-

quency ω/2π = 8 kHz, larger than both the tunneling amplitude t/h = 548(18) Hz and the

strength of the on-site interaction |U |/h. This specific frequency is selected to avoid resonant

coupling to higher bands of the optical lattice [114]. In this lattice configuration the first ex-

cited band is h× 26(3) kHz higher in energy. More details on the transition to higher bands

and heating effects are presented in Sections 10.1 and 10.2. The on-site interaction U/h is

set between −2.4(2) kHz and 2.8(1) kHz. As we have seen in Section 3.5, our lattice configu-

ration can have a typical extension of the Wannier function which can be comparable to the

scattering length for the strongest interactions. Thus, the on-site interaction strength U may

differ from the calculated value, as was observed in a previous experiment [52]. Therefore,

we experimentally calibrate the strength of the interactions by modulating the lattice depth

VZ at a frequency Ω. This modulation can resonantly create or destroy double occupancies

(depending on the sign of the interactions) when hΩ matches the energy difference between

two states.

In our calibration measurement in the a double well, we can drive two possible tran-

sitions, either between |̃s〉 and |D̃+〉 at hΩ =
√
U2 + 16 t2 or between |̃s〉 and |D̃−〉 at
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Figure 9.2.: Off-resonant lattice modulation of a double well array. (a) Measure-

ment of the double-occupancy fraction pDO as a function of U of the static Hamiltonian

(blue open-dotted points) and the effective Hamiltonian for off-resonant driving at ω/2π = 8

kHz at shaking amplitude κ = 1.8(3) (blue filled points). (b) Singlet ps (blue) and triplet

fraction pt (orange) measured for the static Hamiltonian (open-dotted data points) and the

effective Hamiltonian (filled data points). The grey horizontal lines indicate the maximal

possible fractions of p
(max)
DO and p

(max)
s resulting from the initial preparation of the system.

Error bars denote the standard deviation of 5 measurements.

hΩ = (
√
U2 + 16 t2 + U)/2 6. By measuring the location of these resonances for various

scattering lengths, we then determine U(a) over the full range of scattering lengths.

If we prepare the static ground state of the double well and vary the interaction strength, we

prepare a state with a varying admixture of |D̃+〉 and |̃s〉. As expected, for the static dimers,

pDO decreases whilst ps increases when the on-site interactions are varied from attractive

to repulsive (see Fig. 9.2). To detect the fraction of double occupancies pDO, or singlets ps

and triplets pt we follow our usual procedure as described in the previous chapters. We now

want to compare those measurements to a driven system. For this, we ramp up the periodic

drive in 5 ms, let the system evolve for another 5 ms while the amplitude of the drive is

kept constant before the detection steps follow to measure all observables. Once the desired

state has been prepared, we ramp up the lattice depth to V
X,X,Ỹ ,Z

= [30, 0, 30, 30]ER within

100µs, in order to freeze the evolution of the state. This freezing time is now comparable

to the modulation period. For such a timescale we therefore might partly average out the

micromotion of the states (for a detailed discussion on the micromotion see Section 9.8).

In the case of the driven dimers, the same qualitative behavior is observed, however, the

change in pDO and ps with U is much steeper, which can be understood as a consequence of a

reduced tunneling. A detailed derivation, of the effective Hamiltonian which we obtain in the

high-frequency expansion in a rotating frame is given in the next section. Furthermore, we

experimentally observe, that the periodic drive leads to an increase in the triplet fraction pt

of 0.06(1) at most, indicating that most of the atoms remain in the Floquet state connected

to the undriven ground state of the double wells.

To complement our measurement, we also determine the dependence of our observables

on the shaking strength and quantify the adiabaticity of the driving scheme. To character-

ize this adiabaticity, we ramp up the drive in 5 ms, wait for 5 ms, revert the ramp and

6Here again, we refer to the states by their majority component in the large U limit. In the absence of

an energy bias between the two wells, only the first transition is allowed. However, the presence of the

harmonic confinement in our experiment leads to a space-dependent energy bias, which restores the second

transition.
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Figure 9.3.: Amplitude dependence and adiabaticity for the off-resonant modu-

lation. The measurement is performed for a modulation frequency of ω/2π = 8 kHz and at

interaction U/h = 1.5(1) kHz. (a) The double-occupancy fraction pDO (filled symbols) and

the associated return fraction p
(R)
DO after reverting the modulation ramp (open symbols) as a

function of the modulation strength κ. (b) Comparing the adiabaticity of the singlet fraction

p
(R)
s (open symbols) to the singlet fraction ps of the effective Hamiltonian (filled symbols).

measure the final state in the static dimers (see the schematics of the modulation ramp in

Fig.9.1) 7. Fig. 9.3 shows the dependence of the double-occupancy pDO and singlet fraction ps

on the shaking amplitude κ for an off-resonant modulation frequency of ω/2π = 8 kHz at an

interaction U/h = 1.5(1) kHz. The double occupancy is decreasing as the tunneling is renor-

malized by the modulation, while the singlet fraction does not show a strong dependence up

to κ ≈ 2.0. The return fractions p
(R)
DO and p

(R)
s are comparable to the static observables apart

from the regime of very strong driving with κ > 2.0. For example, at drive amplitudes as large

as κ = 1.8(3), the return fractions p
(R)
DO and p

(R)
s differ from their original static values by

∆pDO = 0.03(2) and ∆ps = 0.14(4). For the strongest shaking amplitudes, a significant loss

of singlets and also atoms is observed, which we attribute to a residual coupling to higher

bands. Our measurement proves that we can connect the static and driven Hamiltonians

nearly adiabatically at a ramp time corresponding to roughly 3h/t.

9.5. Theoretical description of the effective Hamiltonian for the

off-resonant modulation

9.5.1. Analytic description - high frequency expansion

In analogy to the derivation of the phase modulated one-dimensional optical lattice, we can

treat the driven system with a high-frequency expansion in the rotating frame. This allows

us to derive explicit expressions for the effective static Hamiltonian and kick operators,

describing the time dynamics of the system within one period. Here, we focus on the off-

resonant modulation of the double wells, while the resonant modulation is captured in Section

9.6. In Chapter 2 we have introduced the Hamiltonian of the interacting double wells in the

7We indicate the results of such an ’adiabaticity’ measurement with an (R) superscript and use this notation

in the whole chapter.
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Fock basis (see 2.12)

H0 =


U −t t 0

−t 0 0 −t
t 0 0 t

0 −t t U

 . (9.5)

For the off-resonant driving (ω � U, t) we now transform into the rotating frame via the

unitary transformation

Roff−res(τ) = exp

[
− i
~

∫
V (τ)dτ

]
= exp [−iκ sin(ωτ)H∆] . (9.6)

As a result, the effective Hamiltonian in the rotating frame (6.10) reads

Hrot(τ) =


U −t(τ) t(τ) 0

−t∗(τ) 0 0 −t(τ)

t∗(τ) 0 0 t(τ)

0 −t∗(τ) t∗(τ) U

 , (9.7)

where (...)∗ denotes the complex conjugation. Similar to the discussion in Section 6.2, the

time dependent site offset in the lab frame has been converted to a time dependent phase of

the tunnelings

t(τ) = t exp [iκ sin(ωτ)] . (9.8)

In the rotating frame, we can now calculate the effective Hamiltonian perturbatively in a

high frequency expansion (see Section 6.2). As expected, we find that the effective Hamilto-

nian is to lowest order given by

H
(0)
eff,rot =


U −tJ0(κ) tJ0(κ) 0

−tJ0(κ) 0 0 −tJ0(κ)

tJ0(κ) 0 0 tJ0(κ)

0 −tJ0(κ) tJ0(κ) U

 (9.9)

which describes the renormalization of the static tunneling t by a 0-th order Bessel function

J0(κ) (compare to the static Hamiltonian 9.5). To lowest order we can therefore obtain the

spectrum and the eigenstates of the driven double well from the ones of the static Hamiltonian

H0 by replacing t −→ tJ0(κ). This result confirms our observed change in the crossover

regime, where the state smoothly evolves from |D+〉 to |s〉 as the interactions are tuned from

strongly attractive to strongly repulsive. In the driven system, the width of the crossover

region is therefore reduced to 4tJ0(κ) which leads to a steeper change of pDO and ps. Fig. 9.4a

shows this change of the quasienergy spectrum which results from the lattice shaking.

We can also derive the higher order corrections to the result presented so far, by considering

more terms in the high frequency expansion. The next order proportional to 1/ω vanishes

identically H
(1)
eff = 0 and the leading corrections are obtained from H

(2)
eff . In the higher order

correction several new terms arise, which are not present in the static Hamiltonian (see Table

9.2). The corrections start to play a role for the largest interaction (U/h = 3000Hz) that was

used in the measurement with off-resonant shaking.
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Quantity 1/ω2 correction Value (U/h=3000 Hz)

t −4t3/(~ω)2J0(κ)J 2
1 (κ) −h× 1.2 Hz

U −4t2U/(~ω)2J 2
1 (κ) −h× 19.0 Hz

Vnn,Vde,Vct 4t2U/(~ω)2J 2
1 (κ) h× 19.0 Hz

Table 9.2.: Summary of the leading corrections to the lowest order expansion of

the effective Hamiltonian in the off-resonant case. Terms containing Bessel functions

Jn(κ) with n > 1 were omitted. The last column gives the values of the correction terms

at tunneling t/h = 548 Hz and shaking strength κ = 1.8 for the largest interaction U/h =

3000 Hz that was used in the measurement of the spectrum.

The two lowest orders of the kick operator are given by

K
(1)
rot(τ) = 2i

t

~ω
J1(κ) cos(ωτ)


0 1 −1 0

−1 0 0 1

1 0 0 −1

0 −1 1 0

 (9.10)

and

K
(2)
rot(τ) = 2 tU

(~ω)2J1(κ) sin(ωτ)


0 1 −1 0

1 0 0 −1

−1 0 0 1

0 −1 1 0



+8 t2

(~ω)2J0(κ)J1(κ) sin(ωτ)


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 (9.11)

As a result, the leading order of the micromotion amplitude, which is described by the

kick operators is given by the ratio tJ1(κ)/(~ω). For the next higher order also the ratio

U/(~ω) becomes important. However, the micromotion is expected to be quite small since we

measure in the off-resonant regime (~ω � t). Indeed, experimentally we find no detectable

micromotion at a shaking frequency of ω/2π = 8kHz 8.

9.5.2. Numerical comparison for the off-resonant modulation

Finally, we can also compare our analytic results to an exact numerical calculation on the

double well system. Here, we use a Trotter decomposition to evaluate the evolution operator

over one period Û(T + τ0, τ0), which evolves a quantum state from an initial time τ0 to time

τ0 +T . The time-dependent Hamiltonian Ĥ(τ) is approximated by Ĥ(τj), which is piece-wise

constant on N consecutive time intervals [τj , τj+1[, with τj = j T/N + τ0 and 0 ≤ j < N .

The time evolution operator can then be expressed as

Û(T + τ0, τ0) = e−iĤ(τN−1)T/(~N) × ...× e−iĤ(τ0)T/(~N) (9.12)

8The observed behavior changes completely if we modulate at lower frequencies (see Section 9.8).
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Figure 9.4.: Analytical and numerical description of the off-resonant lattice mod-

ulation. (a) Quasienergy spectrum of the undriven (dotted line) and driven double well

(line). We show the numerical calculation of the spectrum for t/h = 550 Hz in the off-resonant

regime (ω/2π = 8000 Hz). While the |̃t〉 and |D̃�〉 states are unaffected, the crossover between

|D̃+〉 and |̃s〉 changes due to the renormalization of the tunneling. The crossover is given by

4tJ0(κ) (see the analytical derivation). (b) Analytically (dashed line) and numerically (full

line) calculated quasi-energy spectrum. To compare the two methods, we set the same pa-

rameters t/h = 550 Hz, ω/2π = 8000 Hz and κ = 1.8 as were used in the experimental

measurement. Only for larger interactions, we need to include the higher order terms (1/ω2)

but the analytical description finally starts to deviate from the numerical calculation when

approaching the resonance. (c) Direct comparison of the experimental measurement with

the numerical expectation of pDO for the driven (red) and static case (blue). The shaded

region includes the uncertainty of the tunneling energy (t/h = 550± 100 Hz). The theoreti-

cal calculation includes a normalization by the maximal possible fraction p
(max)
DO , taking into

account the limitation from the initial preparation of the system. Data points of the double

occupancy are as in Fig. 9.2a. (d) Difference between the numerical and analytic predictions

of the observables pDO (orange) and ps (violet). We only show the Floquet state originating

from the static ground state (|D̃+〉 for U < 0, |̃s〉 for U > 0), as a function of the interaction

strength (t/h = 550 Hz and κ = 1.8). The comparison to the analytical expansion up to first

order (1/ω) is shown in full lines, and to order 1/ω2 in dashed lines.
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For a typical evaluation of the Hamiltonian we choose N = 50 steps. The eigenvalues λv of

this operator Û(T + τ0, τ0) are directly related to the quasi-energies εv by

λv = exp(− i
~
εvT ) (9.13)

However, the eigenvectors |v(τ0)〉 are not uniquely defined, and depend on the starting phase

τ0 of the periodic drive. To fully describe the driven system, we additionally need to ob-

tain the evolution of the quantum state during the modulation cycle, which is given by

|v(τj)〉 = Û(τj , τ0) |v(τ0)〉. As we have seen in Section 6.4, |v(τN )〉 = |v(T + τ0)〉 = |v(τ0)〉
by construction. By using this time-dependent state, we can then evaluate the instantaneous

expectation value of any observable Ô in a Floquet state of the driven system

〈Ô〉(τj) = 〈v(τj)| Ô |v(τj)〉 (9.14)

This equation contains the full information on the evolution of the observables (e.g. dou-

ble occupancy) at any desired time τj . In particular, we can extract the amplitude of the

micromotion from the Fourier components at the modulation frequency and its multiples.

As the numerical prediction is not limited to a certain range of interactions, we can compute

the exact spectrum and expectation values of the observables and compare it to the analytic

derivation presented above. We consider the off-resonant modulation for the experimental

parameters used in Fig. 9.2. Here, the modulation frequency ω/2π = 8000 Hz is much higher

than the tunneling t/h = 550 Hz and the interaction U/h is varied between ±6000 Hz. A

direct comparison of the numerical and analytic result for the quasi-energy spectrum is shown

in Fig.9.4b. For the analytic solution we include terms up to order 1/ω2 (see Table 9.2).

Both methods agree quite well in the interaction range used in the experiment. Only for

larger interactions, we need to include the higher order terms (1/ω2) to match the numerical

description. Finally, around U/h = 3 kHz even the higher order starts to deviate from the

numerical calculation. The analytic description for the off-resonant case becomes invalid when

approaching the resonance at ω/2π = U/h (as we will see in the next section). Note that even

for interactions as low as U/h ≈ 3000 Hz, the singlet state becomes higher in energy than the

triplet state, which is clearly beyond the scope of the lowest order effect that simply replaces

t −→ tJ0(κ). However, it might explain why we do not observe an increase of singlets in

the driven Hamiltonian for repulsive interactions (see Fig. 9.2b). Due to the inversion of the

lowest two energy levels, it is possible that singlets are converted into triplets if there are

symmetry breaking terms 9.

Nevertheless, this deviation has a negligible effect on the expectation value of our observ-

ables in the measured regime. We can directly compare the analytical and numerical expecta-

tion value of pDO and ps for the driven Floquet state. Here, the Floquet state originates from

the static ground state represented by |D̃+〉 for attractive interactions or |̃s〉 for repulsive

interactions. For the whole range of interactions, the difference between the two predictions

is negligible and increases as U approaches the resonance conditions U/h ≈ ω/2π. Even if

the effective Hamiltonian is approximated by the lowest order (9.9), the double occupancy

and singlet fraction differ by less than 0.01 from the exact result.

9Symmetry breaking might arise in our experimental setup because of remaining magnetic field gradients

and a residual coupling to higher bands.
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9.6. Near-resonant driving of the two-body system

9.6.1. Adiabaticity measurement for the resonantly driven double well

So far we have concentrated on off-resonant shaking, where the measurements have shown

that the leading effect of the periodic drive renormalizes the tunneling, independent of the

interaction strength. In a next step we want to gain a better understanding for near-resonant

driving of the two-body system in a double well. To investigate the interplay between interac-

tions and modulation, we select a driving frequency ω/2π = 2 kHz which can be comparable

to U . In this regime, the periodic drive has been predicted to generate density-dependent

tunneling processes [436, 437, 438, 447]. In this section we show, that setting the modulation

frequency close to the on-site interactions (i.e. U ≈ ~ω) significantly changes the resulting

Floquet eigenstates compared to their static counterparts, even for weak driving. At this

lower frequency, also the micromotion at the timescale of the periodic drive will become vis-

ible. Here, we first concentrate on the slow dynamics governed by the effective Hamiltonian,

while the dependence of the micromotion on the interaction strength will be studied further

below (see Section 9.8). To this end, we remove the fast dynamics by averaging measurements

over one modulation cycle [301], and denote the averaged quantities by p̄.

In the near resonantly driven regime, it is particularly interesting to study the timescales

required for creating modulation-induced changes in the state of the system without irre-

versibly driving it out of equilibrium. In Fig. 9.5a, we analyze how the double occupancy

in the driven system depends on interactions. The measurement shows the resulting double

occupancy of the effective Hamiltonian p̄DO as a function of repulsive on-site interactions U

for a 10 ms ramp time to reach the final modulation amplitude. We can directly compare

this measurement to the values observed in the static case pDO without modulation. When

the repulsive on-site interactions are set to values close to U = ~ω, we obtain an increased

number of double occupancies, with a maximal change in p̄DO around U/h ≈ 1.5 kHz. At

this interaction strength, the states |̃s〉 and |D̃−〉 are separated by roughly ω/2π = 2 kHz (see

Fig. 9.7). Fig. 9.5b presents an intuitive picture in the tight binding model. If the shaking

frequency is close to the interaction energy U , then double occupancies can be created due

to the modulation.

In order to distinguish the contribution of the effective Hamiltonian from non-adiabatic

processes, we also measure the return fraction p̄
(R)
DO, when reverting the modulation ramp to go

back to a static Hamiltonian. Therefore, we can directly compare the final double occupancies

to the one from the initial state (pDO). Contrarily to the off-resonant driving, where we have

shown a fully reversible process (see Fig. 9.3) the initial level of double occupancies cannot be

recovered in the resonant case for all interactions. A peak remains visible around U/h ≈ 1.5

kHz, although it is less pronounced than in the driven lattice (see Fig. 9.5a).

We perform similar measurements for a full range of different modulation ramp times, to

characterize the adiabaticity of the process as a function of the detuning from the resonance.

For a given ramp time, we analyze the response to the resonant driving by calculating the

area a between the initial pDO and its value in the driven lattice p̄DO. We compare this area

to the area a(R) between the static initial value pDO and the return values p̄
(R)
DO. While the

area a does not depend on the ramp time, the area a(R) decreases for longer ramp times

(see Fig. 9.5c). For the shortest ramp times (1 ms), we are completely non-adiabatic and the

return fraction does not differ at all from the measurement in the effective Hamiltonian. Even
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Figure 9.5.: Adiabaticity of the resonantly driven two-body system (U ≈ ~ω).

(a) An exemplary resonance peak of the double occupancy for a ramp time of 10 ms in the

lattice driven with ω/2π = 2 kHz at κ = 1.14(2). The data points are measured in the driven

system p̄DO (filled black diamonds), after reverting the loading ramp p̄
(R)
DO (open diamonds),

and in the static lattice pDO (open-dotted diamonds). The variation of color in the connecting

lines indicates the changing content of the static eigenstates in the target Floquet state as

the interactions are varied (see Fig. 9.7). (b) Schematics of the near resonantly driven two-

body system. The driving introduces an offset ∆(τ) = κ~ω cos(ωτ) between to sites in

the double well. If the shaking frequency is resonant to the interaction energy scale it is

possible to enhance the number of doubly occupied sites. (c) For different ramp times, the

adiabaticity of the near resonant driving can be quantified by comparing a and a(R) defined

as the area between the static and the other curves respectively. (d)Two different behaviors

are observed in the return fraction p̄
(R)
DO − pDO(κ = 0) depending whether the interaction

strength is chosen on the resonance peak (U/h = 1.5(1) kHz, blue filled points) or away from

it (U/h = 2.5(1) kHz, red points). Error bars in (a,c,d) denote the standard deviation of at

least 4 measurements.

for the longest measurement times, the process is not fully adiabatic and a finite excitation

of double occupancies remains.

We can further characterize the system by differentiating the behavior between the resonant

and near-resonant case. The adiabaticty can be also estimated at a fixed single interaction

energy as a function of the ramp time by considering the quantity p̄
(R)
DO− pDO(κ = 0). For an

interaction with a finite detuning from the resonance, a nearly adiabatic transfer becomes

possible for longer ramp times (see Fig. 9.5d). In contrast for an interaction energy U/h = 1.5

kHz, we are never completely reverting to the static case on the observed timescales. This

measurement therefore determines the required ramp time (for a given distance from the

resonance) in order to allow for adiabatic transfer to the Floquet state in the driven system.

Using a ramp time of 10 ms, we find values for the interactions left of the resonance (U/h =

0.87(5) kHz) and right of the resonance (U/h = 2.8(1) kHz ) that show a large change in the

Floquet states, while their return fraction does not differ from its initial value by more than

0.06.
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Figure 9.6.: Resonance peak and adiabaticity for singlet and triplet fractions in

the case of resonant modulation. (a) Singlet and (b) triplet fractions for a shaking

ramp time of 10 ms in the resonantly driven lattice with ω/2π = 2 kHz and κ = 1.14(2)

as a function of the interactions. Analog to the measurement of the double occupancy, we

determine the fractions in the driven system (filled symbols), after reverting the modulation

ramp (open symbols) and as a reference in the static lattice (open-dotted symbols). Again,

the deviation of the return fraction from the static values is indicative of a non-adiabatic

process. Error bars in (a,b) denote the standard deviation of at least 4 measurements.

In addition to the double occupancy, we also measure the singlet and triplet fractions

ps,t for the case of resonant modulation with a frequency of ω/2π = 2 kHz (see Fig. 9.6).

Unlike the double occupancy (see Fig. 9.5a), the singlet fraction decreases compared to the

static case when modulating with ~ω ≈ U . This is resulting from the resonant coupling of

the singlet to a doubly occupied state. We observe exactly the same behavior as for the

double occupancies. The return fraction p̄
(R)
s reaches the static level only far away from the

resonance. This confirms our observation that it is not possible to connect adiabatically to

the Floquet states on the resonance by a simple ramp of the modulation strength. The triplet

fraction stays low for all interactions, both in the static and driven systems, which is expected

since the phase modulation does not couple to the triplet state.

9.6.2. Numerical simulation of the quasi-energy spectrum and the state coupling

The remaining peak in p̄
(R)
DO can be explained by considering the change in the effective

Hamiltonian. In a driven system, the energy is not conserved, and must be replaced by

the quasi-energy, which is only defined modulo ~ω (see Section 6.4). When representing all

four eigenstates of the spectrum in the first reduced quasi-energy zone they are folded and

reappear at negative quasi-energy 10. Thus, two eigenstates of the static Hamiltonian can

possess the same quasi-energy, such as the pairs |̃s〉 (dashed line) and |D̃+〉 (full line), or |̃s〉
and |D̃−〉 (dotted line), as shown in Fig. 9.7a.

When the drive is switched on, the first pair is unaffected, as states |̃s〉 and |D̃+〉 are not

coupled to each other by the periodic drive. However, the degeneracy between states |̃s〉 and

|D̃−〉 is lifted as soon the driving amplitude becomes non-zero (see the numerical calculation in

Fig. 9.7b). Not surprisingly, the drive is thus never perturbative exactly at the level crossing.

Here, an avoided crossing forms in the quasi-energy levels, and the system cannot remain in

an eigenstate when switching on the modulation. Conversely, by setting U away from the

10This is completely analog to the representation of the band structure in momentum space within the first

Brillouin zone as defined in the Bloch theorem.
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Figure 9.7.: Numerical calculation of the quasi-energy spectrum and resonant

coupling of states. We numerically calculate the spectrum for t/h = 450 Hz and a shaking

frequency ω/2π = 2 kHz. (a) The time-periodic Hamiltonian is described by a quasi-energy

spectrum. When the amplitude of the drive is zero it is given by the static spectrum modulo

~ω (grey lines). It is apparent, that different crossings of the 4 levels appear when representing

them within the first reduced quasi-energy zone. (b) Switching on a driving amplitude in

the resonant case (U ≈ ~ω) leads to a mixing of the static energy levels |̃s〉 (grey dashed in

(a)) and |D̃−〉 (grey dotted in (a)) and creates an avoided crossing (shown for κ = 0.2). The

emerging gap in the quasi-energy spectrum is to lowest order given by 4t·J1(κ). Each Floquet

state is represented with a distinct color. (c) For an increased modulation amplitude κ = 0.5

the gap between the two states increases. The triplet state |̃s〉 is completely unaffected by the

modulation, as it does not couple to the phase modulation. (d) At U/h ≈ 2ω/2π = 4 kHz

we obtain a second order resonance. In contrast to the first order gap, here a mixing of |̃s〉
(grey dashed in (a)) and |D̃+〉 (grey line in (a)) occurs. The gap of the avoided crossing is

reduced and given by 4t · J2(κ).

resonance condition, the static and driven states can be connected adiabatically provided that

the driving amplitude is ramped up sufficiently slowly. This explains the observed behavior

of the two regimes shown in Fig. 9.5d.

When increasing the modulation strength we numerically find an increased gap of the

avoided crossing (see Fig. 9.7c). As we will show in the analytical description below, the gap

between the two resulting states is given by 4tJ1(κ) (to leading order in 1/ω), where J1 is the

first order Bessel-function. Similarly, the |D̃+〉 starts to deviate from its static counterpart

for increased shaking strength, but is not coupled to the other states. This behavior changes

when analyzing higher interactions U . Fig. 9.7d shows a second order resonance at which the

interactions match twice the shaking frequency (U ≈ 2~ω). Here, the degeneracy between

states |̃s〉 and |D̃+〉 is lifted and forms an avoided crossing in the quasi-energy spectrum.

We immediately realize that the gap of this second order resonance is reduced compared to

the first order resonance (shown for κ = 1.0). The gap of the higher order resonance can
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be also found analytically and is given by 4t · J2(κ), where J2 is the second order Bessel-

function. We can summarize, the numerical simulation has shown that the drive couples

three different static states and creates avoided crossings which depend on their behavior on

the shaking strength κ and the order of the resonance. Only the triplet state is completely

unaffected, which however would change by using a different driving protocol including a

magnetic gradient.

9.6.3. Analytical description in the near-resonantly shaken regime

In order to understand the observed behavior, we formulate the analytic result for the res-

onant case, where ~ω ≈ U � t. In the following, we will derive an effective Hamiltonian

that describes the observed experimental behavior and agrees with the numerical simulation.

Compared to the analytical description of the off-resonant case, we have to deal with an ad-

ditional complication. Here, not only the amplitude of the modulation becomes large in the

high frequency limit, but also the interaction term proportional to U . Therefore, in addition

to the transformation introduced for the off-resonant case 11 we perform a second rotation

according to [302]

Rres(τ) = exp [−iωτhU ] (9.15)

where the interaction operator hU is given by

hU =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 (9.16)

We directly follow the approach of the off-resonant case (see Section 9.5), replacing the

operator Roff−res(τ) by the product R(τ) = Rres(τ)Roff−res(τ). As a result, we obtain the

Hamiltonian (9.5) in this rotating frame

Hrot(τ) =


U − ~ω −t+(τ) t+(τ) 0

−t∗+(τ) 0 0 −t−(τ)

t∗+(τ) 0 0 t−(τ)

0 −t∗−(τ) t∗−(τ) U − ~ω

 (9.17)

with time-dependent tunneling

t±(τ) = t exp [i(±ωτ + κ sin(ωτ))] (9.18)

As before, the oscillating site offset ∆(τ) has been converted to a phase factor in the tunneling.

Furthermore, the second transformation (Rres) adds an additional phase factor. Its sign is

depending on the involved states |D+〉 or |D−〉 creating a double occupancy in the tunneling

process. Finally, the interaction U has been replaced by the detuning from the resonance

δ = ~ω −U , meaning that we have a reduced effective on-site interaction Ueff = ~ω −U . We

can now perform again a high frequency expansion in the rotating frame, when t/ω and δ/ω

are both small parameters.

11See Section 6.2 for the general case and equation 9.6 for the specific case of the driven double well.
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To lowest order the effective Hamiltonian in the resonant case is given by,

H
(0)
eff,rot =


U − ~ω tJ1(κ) −tJ1(κ) 0

tJ1(κ) 0 0 −tJ1(κ)

−tJ1(κ) 0 0 tJ1(κ)

0 −tJ1(κ) tJ1(κ) U − ~ω

 (9.19)

In contrast to the off-resonant case, the tunneling matrix elements are renormalized with the

first order Bessel function tJ1(κ). This can be interpreted as density assisted tunneling in-

troduced by the resonant modulation [436, 437, 438, 447], since the resonant hopping process

can only occur if a particle has a neighbor on the adjacent side with which it interacts at

energy U .

One important difference compared to the static Hamiltonian (9.5) and the off-resonant

modulation (9.9) is the sign change for the tunneling matrix elements. As a consequence, the

singlet now couples to the state which is adiabatically connected to the state |D−〉 in the

static Hamiltonian rather than |D+〉. This becomes evident if we rewrite the lowest order of

the effective Hamiltonian (9.19) in a different basis using the eigenstates of the Hamiltonian
12 which yields

H
′(0)
eff,rot =


0 0 0 0

0 U − ~ω 0 0

0 0 U − ~ω 2t J1(κ)

0 0 2t J1(κ) 0

 (9.20)

Comparing this result to the static Hamiltonian (9.5) shows that the singlet is resonantly

coupled to the other double occupancy state |D−〉. The coupling around the resonance leads

to the opening of a gap with size 4t J1(κ) (see Fig. 9.7d).

It is straight forward to show that a higher order resonance (U ≈ l~ω) leads to a time-

dependent tunneling in the rotating frame of

t±(τ) = t exp [i(±lωτ + κ sin(ωτ))] (9.21)

Note, for this we have to replace the second transformation to the rotating frame by

Rres(τ) = exp [−ilωτhU ] (9.22)

As a result, we obtain a renormalization of the tunneling matrix element tJl(κ) by the lth

order Bessel function. Each resonance leads to an avoided crossing between the |̃s〉 state and

one of the two double occupancy states which is alternating between |D̃−〉 and |D̃+〉. For

example, the second order resonance at U ≈ 2~ω opens a gap between |̃s〉 and |D̃+〉 with a

size of 4t J2(κ) 13. Finally, notice that the interaction for the resonantly driven system has

been replaced by δ = l~ω − U . Apart from the convergence criterion of the high frequency

expansion which was mentioned before, this also has the physical consequence that the sign of

the detuning to the resonance determines whether the system effectively exhibits an attractive

or repulsive interaction. In addition, this also has the consequence, that the superexchange

process leading to spin-spin interactions involves two virtual hopping processes determined

by Jl(κ), in which a double occupancy at energy U eff is created and annihilated.

12This basis consists of the singlet state |s〉, the triplet state |t〉 and the two states containing double occu-

pancies |D±〉, as is defined in 2.16.
13In general, all resonances that involve an odd number of ’photons’ couple to |D̃−〉, while all even resonances

couple to the |D̃+〉 state.
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Quantity 1/ω

t± -

U − ω t2/(~ω)[2J 2
0 (κ) + J 2

1 (κ)]

Vnn,Vde −t2/(~ω)[2J 2
0 (κ) + J 2

1 (κ)]

Vct t2/(~ω)[2J 2
0 (κ)− J 2

1 (κ)]

Quantity 1/ω2

t± ±t3/(~ω)2J1(κ)[2J 2
0 (κ) + J 2

1 (κ)]

U − ω t2/[2(~ω)2](~ω − U)[4J 2
0 (κ) + J 2

1 (κ)]

Vnn,Vde −t2/[2(~ω)2](~ω − U)[4J 2
0 (κ) + J 2

1 (κ)]

Vct t2/[2(~ω)2](~ω − U)[4J 2
0 (κ)− J 2

1 (κ)]

Table 9.3.: Summary of the leading corrections to the lowest order expansion

of the effective Hamiltonian Eq. (9.19) in the resonant case. All energy scales of the

Hubbard model on a double well obtain a higher order correction. While the correlated

hopping Vct is equal to the nearest-neighbor interaction Vnn and the direct spin exchange Vde

this is not the case anymore in the resonantly driven system. The density assisted tunneling

has no correction in order 1/ω. Corrections containing Bessel functions Jn(κ) with n > 1

were omitted. The terms proportional to 1/ω reproduce the Schrieffer-Wolff transformation

for the case κ = 0 and ω = U .

9.6.4. Higher order corrections and kick operators

The higher order corrections to Heff up to terms 1/ω2 are listed in Table 9.3 including terms

containing Bessel functions Jn(κ) with n ≤ 1. In contrast to the off-resonant case, the first

order proportional to 1/ω does not vanish. In fact, this order reproduces the Schrieffer-Wolff

transformation for the case κ = 0 and ω = U , which allows to describe the Hubbard model

with an effective spin Heisenberg model in the limit of large interactions U � t [447]. That

the series is expanded in the two small parameters t/ω and δ/ω = (~ω − U)/ω is revealed

in the second order proportional to 1/ω2. Obviously, the analytical expansion breaks down

if the detuning from the resonance is too large and δ/ω is not a small quantity anymore.

Furthermore, the first order in the expansion of the kick operator is given by

K
(1)
rot(τ) = i

t

~ω
J0(κ)


0 eiωτ −eiωτ 0

−e−iωτ 0 0 −e−iωτ
e−iωτ 0 0 e−iωτ

0 eiωτ −eiωτ 0



+ i
t

2~ω
J1(κ)


0 e2iωτ −e2iωτ 0

−e−2iωτ 0 0 e−2iωτ

e−2iωτ 0 0 −e−2iωτ

0 −e2iωτ e2iωτ 0


(9.23)

As in the off-resonant case (9.10), the micromotion amplitude is to lowest order determined

by the ratio tJ1(κ)/ω. The first term in the kick operator proportional to tJ0(κ)/ω results

from the rotation (9.15). It reproduces the Schrieffer-Wolff transformation matrix for κ = 0

and ~ω = U

K
(1)
rot(τ)

∣∣∣
κ=0,~ω=U

= −i t
U

(
eiUτ/~h+ − e−iUτ/~h−

)
(9.24)

where the matrices h± are given by

h+ =


0 −1 1 0

0 0 0 0

0 0 0 0

0 −1 1 0

 , h− =


0 0 0 0

−1 0 0 −1

1 0 0 1

0 0 0 0

 (9.25)
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Figure 9.8.: Comparing the analytical and numerical description of the reso-

nantly driven double well. Calculated quasi-energy spectrum of the driven double well

with tunneling t/h = 450 Hz, shaking strength κ = 0.5 and a modulation frequency of

ω/2π = 2000 Hz. In case of resonant modulation U ≈ ~ω the off-resonant analytic deriva-

tion (left) does not apply anymore. To describe the resonant coupling of different states

and the creation of an avoided crossing the analytic description must be replaced by the

near-resonant prediction (right, using corrections up to 1/ω2).

They describe hopping processes between the Mott bands where the double occupancy

is increased or reduced by one, respectively. The next order in the expansion of the kick

operator contains terms which scale like t2/ω2 and t(ω � U)/ω2.

Finally, we can compare our analytic derivation of the resonantly driven double well system

to the exact numerical calculation, which is not limited to a certain range of interactions.

Apart from the qualitative agreement which we deduce from Fig. 9.7 we can quantitatively

compare the two results. We numerically calculate the quasi-energy spectrum with a tunneling

t/h = 450 Hz, shaking strength κ = 0.5 and a modulation frequency of ω/2π = 2000 Hz

(see Fig. 9.8). We immediately realize that the analytic description of the off-resonant case

completely fails when approaching a resonance. Instead, the near-resonant description must

be used, which agrees well with the numerical evaluation in the vicinity of the resonance

U ≈ ~ω (see Fig. 9.8 right). Only for large detunings from the resonance, the analytic

description starts to deviate from the numerical calculation. This is expected since the high

frequency expansion fails as soon as δ/ω is not a small parameter anymore.

To summarize, we have seen, that the resonant driving allows to couple different states in

the Floquet spectrum. Furthermore using a resonant driving scheme we can induce density

dependent tunneling processes. This opens the possibility to simulate systems that go beyond

the static Hubbard model.

9.7. Preparing a desired Floquet state in a resonantly driven system

In the previous measurements, we have seen that it is not possible, at least on useful experi-

mental timescales, to adiabatically connect to a certain Floquet state directly on resonance.

We rather create a superposition of the two states that are mixed due to the avoided crossing,

which results from the resonant modulation. In general, simply ramping up the modulation

may therefore not be the fastest protocol for reaching a desired final state with maximal

fidelity. Given the appearance of an avoided crossing, it is preferable to start driving the sys-
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Figure 9.9.: Preparation scheme of Floquet states for U ≈ ~ω. (a) Quasi-energy

spectrum for t/h = 445 Hz, κ = 0.6 and shaking frequency ω/2π = 2000 Hz. The grey dashed

line marks the ground state in the absence of modulation. Depending on the initial interaction

Uload when switching on the modulation, we connect to a specific Floquet state (indicated

with the arrows and circles). We can prepare the driven system in a single Floquet state

and characterize its nature by measuring the fraction of double occupancies and singlets.

(b) To enter a specific Floquet state, we have to first adiabatically switch on the driving

amplitude at a fixed Uload (this is the regime obtained from the measurement in Fig. 9.5).

In a second step, we tune the interactions to U while staying in the effective Hamiltonian.

The corresponding trajectories in the (U, κ) parameter space are schematically illustrated

in (c). Once the desired value of κ is reached, the interaction strength can be freely tuned.

Thus, the same point in parameter space can be accessed by two different trajectories. This

results in coupling to different Floquet states, which are however prepared at the exact same

interaction and shaking strength.

tem off-resonantly. Therefore, we use a more ’advanced’ preparation protocol (see Fig. 9.9b),

where we switch on the modulation away from the resonance and only afterwards tune the

interactions in the driven system14. Here, we either start above (Uload/h = 2.8(1) kHz) or be-

low (Uload/h = 0.87(5) kHz) the resonance at ω/2π = 2 kHz and ramp to the final modulation

strength within 10 ms.

This allows us to couple to the corresponding driven red (blue) Floquet state, as illustrated

in Fig. 9.9a. Then, in a second step, the interactions are linearly ramped to the desired final

value of U in 10 ms and the state can be transferred adiabatically along the avoided crossing.

For a given final interaction strength U , two distinct Floquet states can be accessed depending

on the choice of the initial on-site interaction Uload (see schematics in Fig. 9.9c). In this final

driven state, we can measure the time-averaged fraction of double occupancies p̄DO as well

as the singlet fraction p̄s, which correspond to the Floquet state describing the effective

Hamiltonian. However, the population of a distinct Floquet state is depending on the exact

14In our experimental realization, we change the interactions after reaching the final Floquet state. However,

in general any given parameter can be changed in the driven Hamiltonian (e.g. also the static tunneling t,

or a site offset ∆).

179



9. FLOQUET STATE PREPARATION IN A PERIODICALLY DRIVEN TWO-BODY
QUANTUM SYSTEM

1

2

−4 −2 0 2
U/h (kHz)

0.0

0.2

0.4

0.6

̄ p D
O

p (max)
DO

K0 =0.57(1)

Hst Heff H(R)
st

−4 −2 0 2
U/h (kHz)

0.0

0.2

0.4

0.6

̄ p s

p (max)
s

Hst Heff H(R)
st

−4 −2 0 2
U/h (kHz)

0.0

0.2

0.4

0.6
̄ p D

O

−4 −2 0 2
U/h (kHz)

0.0

0.2

0.4

0.6

̄ p s

(b)

(a)

Figure 9.10.: Observation of Floquet states for the resonantly driven two-body

system. We modulate resonantly at 2 kHz with a shaking amplitude κ = 0.57(1). This

allows us to prepare two distinct Floquet states with Uload/h = 2.8(1) kHz (a) and

Uload/h = 0.87(5) kHz (b) (corresponding respectively to trajectories 1O and 2O in Fig.

9.9c). Subsequently, we can we measure the double occupancy fraction p̄DO and singlet frac-

tion p̄s for the red (a) and blue (b) Floquet states as a function of U . Depending on the

interaction, the effective states are characterized either by a high double occupancy or sin-

glet fraction. This represents the nature of the prepared Floquet state, which is governed by

crossovers of different static states. The hollow points indicate the return fraction, obtained

by reverting the whole preparation scheme. The open-dotted data points represent the value

of the static system at Uload. Error bars denote the standard deviation of 4 measurements.

trajectory we choose in the parameter space.

For example, when Uload/h = 2.8(1) kHz the atomic state is initially a |̃s〉 state. By

switching on the modulation on the right side of the resonance, we couple to the Floquet

state 1O (red line, red data points) which is still represented by the |̃s〉 state as it has only

a negligible mixing of the |D̃−〉 state. This is observed also experimentally when measuring

p̄DO and p̄s in the driven system (see right most data point in Fig. 9.10a). Following the filled

data points in Fig. 9.10a, we see that the state is first transferred to a doubly-occupied state,

when reducing the interactions while staying in the driven system. As we have seen from the

analytical and numerical description, by tuning over the avoided crossing the Floquet state is

transferred to |D̃−〉. Finally, when U < −~ω we go back to |̃s〉 after crossing another resonance

at U ≈ −~ω. Correspondingly, p̄s decreases at first with decreasing U , but is restored to its

initial level as U/h ≈ −3 kHz.

In Floquet state 2O obtained with Uload/h = 0.87(5) kHz, the opposite behavior is observed

(blue trajectory and blue data points in Fig. 9.10b). Due to the avoided crossing the initial

singlet is transferred to |D̃−〉 when increasing the interactions. In contrast, when the interac-

tions are decreased and become attractive the singlets are transferred to double occupancies

which is a result of the crossover between |s〉 and |D+〉 in the underlying static Hamiltonian.

We observe a high double-occupancy for large |U | which are connected through a state with a

high singlet fraction p̄s. Our measurements show that despite the final parameters being iden-

tical, the state of the system is determined by the path taken to reach these parameters. Our
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procedure of ramping the interaction strength can be generalized by ramping the frequency

of the drive, which would therefore be an equivalent route in other physical systems.

To quantify the fidelity of this preparation protocol, we measure the return fractions p̄
(R)
DO

and p̄
(R)
s for each initial interaction strength, by reverting first the interaction ramp, and

then the drive ramp (see schematics in Fig. 9.9b). For a perfect adiabatic preparation we

should observe the double occupancy and singlet fraction at this interaction energy of the

static Hamiltonian. We observe a change in the return fraction, which increases smoothly as

the interactions are varied, and differ by 0.2 at most from the initial corresponding quantity.

This indicates that the observed increase of population of the unwanted states is gradual,

rather than linked to a closing gap in the effective Hamiltonian. One possible explanation of

this gradual increase the fixed ramp time of the interactions independent of the final value

of U . As a result, the further we ramp away from the starting value Uload the faster we tune

through one or even two avoided crossings which can lead to a mixing of the other state.

Overall, the peak associated to the resonance observed in Fig. 9.5 has vanished using this

protocol. An extension of this scheme could be used to prepare specific excited states of the

static double wells by removing the periodic drive at a desired U after crossing the resonance.

For example, by starting at Uload/h = 2.8(1) kHz, then ramping the interactions to U/h ≈ −3

kHz, and subsequently ramping down the periodic drive (see Fig. 9.10a, right), a singlet |̃s〉
can be prepared at attractive interactions.

We can directly compare the experimental results of p̄DO and p̄s with the numerical cal-

culations of these observables in the Floquet states. A qualitative comparison is shown in

Fig. 9.11a using the experimental data for both Uload/h = 870 Hz and Uload/h = 2800 Hz,

along with the corresponding numerical prediction. The numerical response is rescaled by

the maximally and minimally achievable values of pDO and ps, to account for the starting

conditions of the experiment. The data agrees on a qualitative level, however some of the

observations (e.g. the reduced double occupancy around U = 0 Hz of Floquet state 1O) are

not governed in the calculation.

However, we found that for large interaction ramps the adiabaticity is not perfect which

creates an excess of double occupancies and singlets in the investigated Floquet state. We try

to mimic this imperfection by considering a corrected value of the observed double occupancy

or singlet fraction p∗ = p̄−(p̄(R)−p̄(R)(Uload))/2, where p can designate either pDO or ps. Here,

we assume that the excess of double occupancies and singlets observed in the return fractions

p̄
(R)
DO and p̄

(R)
s is generated uniformly during the interaction ramps (see Fig. 9.10). The effect

of this correction on the experimental data is shown in Fig. 9.11b. We can directly see that

this modification leads to a more symmetric distribution between positive and negative values

of U .

Furthermore, the deviation between numerical prediction and experiment around U = 0

can be qualitatively explained by the presence of a residual site offset between the two wells

of the system. We therefore show the numerical calculation with a potential bias ∆/h =

800 Hz in Fig. 9.11c. Even though the mean potential bias may not be as large, the harmonic

confinement of the trap introduces an inhomogeneous potential bias. It can be modeled with

an average bias given by ∆̄ =
∫
n(r)mω2

harm |r| a dr/
∫
n(r) dr, with n(r) the probability that

a double well located at distance r from the center of the harmonic trap is populated. Here, a

is the distance between the two sites of the double well and ωharm/2π = 114 Hz the geometric

mean trapping frequency of the harmonic confinement. We calculate for our system, at zero
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Figure 9.11.: Numerical comparison of the resonantly prepared Floquet states.

The experimental data of the driven system shown in Fig. 9.10 is directly compared to a

numerical calculation of the system’s response. We include an average over the micromotion

(full lines), both for the double occupancies p̄DO (left) and for the singlet fraction p̄s (right).

For the calculation we use the experimentally determined tunneling t/h = 450 Hz and a

modulation strength κ = 0.57. The red data corresponds to Uload/h = 2800(80) Hz (Floquet

state 1O), and the blue data to Uload/h = 890(50) Hz (Floquet state 2O). The simulated

response is rescaled to range between 0.018 and 0.66 p̄DO, and between 0.011 and 0.5 p̄s, to

account for the starting conditions of the experiment. In panel (a), the raw experimental

data is shown, and a balanced double well with ∆ = 0 is used for the calculation. (b) We

include the finite fidelity of the ramps which we observed for the experimental data and plot

a corrected value p∗ = p̄−
[
p̄(R) − p̄(R)(Uload)

]
/2 instead. (c) To imitate a correction from

the harmonic trap we perform the calculation with an energy bias ∆/h = 800 Hz between

the double wells.

temperature, ∆̄ = h × 360 Hz. This value can be increased by the finite temperature of the

fermionic cloud. Furthermore, the residual uncertainty on the lattice phase θ may lead to a

potential bias and gives a lower bound of ∆/h = 0(200) Hz.

We can also analyze the possibility to connect to either of the states containing double

occupancies by using our resonant driving scheme. Our numerical calculation allows us to

distinguish the projection on the states |D−〉 and |D+〉 which we reach by preparing the two

Floquet states introduced above (see Fig. 9.12). When the drive is ramped up at Uload/h =

2800 Hz (red curve) followed by an interaction ramp to the attractive side, the initial |s〉
state is first transferred to the |D−〉 state when U = ~ω, and then back to the |s〉 state at the

next resonance (U = −~ω). Similarly, when the drive is ramped up at Uload/h = 890 Hz, the

initial |s〉 state is transferred to the |D−〉 state as interactions are increased on the repulsive

side and reach the resonance (U = ~ω).

In contrast, when the interactions are decreased and become attractive the singlet state

is transferred to the |D+〉 which is a result of the crossover between |s〉 and |D+〉 in the

underlying static Hamiltonian. When reaching the second order resonance on the attractive
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Figure 9.12.: Numerical simulation of the coupling to the double occupancy

states. We show the projection of the state onto |D−〉 (a) and |D+〉 (b) when shaking

at ω/2π = 2 kHz. The red line corresponds to the Floquet state 1O accessed by setting

Uload/h = 2800 Hz, and the blue line corresponds to Uload/h = 890 Hz (state 2O). In this

parameter regime, the |D+〉 state can only be accessed by choosing Uload/h = 890 Hz or by

using a higher order resonance. In contrast the |D−〉 state can be accessed with both Floquet

states, at least for U > 0.

site U = −2~ω we get a direct coupling of the |D+〉 with the singlet due to the avoided

crossing between the ’red’ and ’blue’ Floquet states (see also Fig. 9.9a). The order of the

avoided crossing is also apparent in the crossover region. While the 0 order crossover of the

static system has a slowly changing transfer (blue line in Fig. 9.12b), it is reduced for the

first order crossover of the positive and negative resonance |U | = ~ω and is smallest for the

second order resonance.

9.8. Observation of micromotion

So far we have averaged our observables over one driving cycle, which directly refers to the

effective Hamiltonian. We now turn to analyzing the micromotion itself, which is describing

the fast dynamics on sub-cycle timescales and is not captured by the picture of an effective

Hamiltonian. Due to technical limitations of the piezo we can not ramp down the modulation

within a fraction of the oscillation period by switching off the piezo itself. Therefore, we adopt

the following procedure to measure the micromotion of our observables. The tunneling is

quenched below h×3 Hz in 100µs to freeze the evolution of the quantum state. This ramp time

is shorter than the oscillation period 2π/ω = 500µs, allowing us to probe the fast dynamics

of the system. When we freeze the evolution by ramping up the lattice depth, the phase of

the modulation is given by φM = ωτM + φ0, where φ0 is the launching phase of the periodic

drive, and τM the duration of the modulation. To vary φM in a more controlled way, we keep

τM fixed, and instead vary φ0. When the drive is ramped up sufficiently slowly, the launching

phase does not play any role in the subsequent evolution [304]. We are exactly following this

procedure and ramp up the periodic drive over many modulation cycles. Therefore, we are

not sensitive to the launching phase φ0 itself, but only to the change of φM when we freeze

the evolution. We verify this experimentally, by simultaneously changing φ0 and τM while

keeping φM fixed and as expected, do not obtain any change in our observables.

In Fig. 9.13b, we show the evolution of the instantaneous pDO, ps and pt, when varying

φ between 0 and 2π, for U/h = 2.8(1) kHz and shaking at frequency ω/2π = 2 kHz. All

observables oscillate at twice the driving frequency, with the oscillations in pDO and ps being
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Figure 9.13.: Observation of micromotion in the effective Floquet Hamiltonian.

We modulate the system at a frequency ω/2π = 2 kHz. (a) During a modulation cycle, the

imbalance between the wells reaches a maximum at ωτM+φ = 0, π, while it cancels at ωτM+

φ = π/2, 3π/2. The double occupancy is maximal in the former, while the singlet is favored

in the latter, which both occur twice per period. Thus, the micromotion in our observables

has a frequency of 2ω. (b) This is confirmed experimentally by stopping the evolution of the

atomic state at different phases Φ within a full Floquet period and subsequently measuring

ps, pt and pDO to observe the micromotion at U/h = 2.8(1) kHz and κ = 1.19(7). (c)

The different Floquet states accessed as in Fig. 9.10 can be distinguished by the phase of

their micromotion measured with κ = 1.19(7) and final U/h = 2.8(1) kHz. (d) Measured

micromotion amplitude at frequency 2ω and ω for the two Floquet states vs interaction U

at modulation strength κ = 1.19(7). Error bars in (b,c) denote the standard deviation of

3 measurements, error bars in (d) are the standard deviation of the amplitude given by a

bootstrap method.

opposite in phase. This is expected, as during the full drive cycle illustrated in Fig. 9.13a,

the site offset between the wells is maximal twice (ωτM + φ = 0, π), and cancels twice

(ωτM + φ = π/2, 3π/2). Those times correspond respectively to the maxima and minima

in pDO and ps. Although |t〉 should be unaffected by the periodic drive, a much weaker

oscillation is observed in pt, which can be caused by a residual weak magnetic field gradient.

The existence of micromotion shows that the effective static Hamiltonian is not sufficient to

fully describe the driven system at arbitrary times any more, as the observed time-dependence

cannot be ignored for this lower frequency.

We now measure the micromotion for the two Floquet states 1 and 2 which are accessed

using Uload/h = 2.8(1) kHz or Uload/h = 0.87(5) kHz. For this measurement we tune the final

interaction for both states to U/h = 2.8 kHz. We observe in in Fig. 9.13c, that these states

are not only differentiated by the averages p̄s and p̄DO (see results in Fig. 9.10), but also by

the relative phase of their micromotion.

Furthermore we measure the micromotion for both Floquet states as a function of the

interaction strength and observe a signal for all U (see Fig. 9.13d). While the amplitude

184



9.9. CONTROLLING THE EXCHANGE INTERACTIONS

(b)(a) s|

t|

1
2

3

Jex

π/2

τevol

π/2

Jex Drive 
amplitude

Lattice
depth τevol

Figure 9.14.: Measurement scheme of the magnetic exchange energy scale. (a)

The exchange Jex is measured by preparing local singlet states |s〉 on isolated double wells. In

a Ramsey-type sequence, a superposition between the singlet and triplet state |t〉 is created by

performing a π/2-pulse with a magnetic field gradient. The exchange oscillation is triggered

by suddenly lowering the barrier in the lattice depth to allow for a finite tunneling t between

the sites of the double well (see (b)). After a variable evolution time τevol, a second π/2-pulse

is applied and the final singlet fraction is measured, which oscillates at a frequency |Jex|.

of the micromotion differs between the two states the overall signal of the micromotion at

frequency 2ω does not depend much on U . However, as the interaction strength is reduced,

an oscillation appears at the driving frequency ω, and even becomes dominant for U = 0.

This additional frequency component can be explained by a remaining finite site-offset ∆ or

a residual amplitude modulation of the lattice depth. In the case of a finite ∆, the points

ωτM + φ = 0 and ωτM + φ = π of the modulation cycle are not degenerate in energy, and an

oscillation at ω/2π can be observed. This behavior will be most pronounced when U is close

to 0 and the imbalance between the wells becomes the dominating energy scale. Another

possible explanation is a residual amplitude modulation of the lattice depth which can be

introduced in our modulation scheme. Such an additional modulation leads to a modulation

of the tunneling amplitude t, which causes an oscillation of our observables at the drive

frequency ω.

9.9. Controlling the exchange interactions

In Section 9.6 we have seen, that resonantly driving the double well couples the ground state

to double occupancy states. Furthermore the resonant drive opens a gap and creates density

assisted tunneling. So far we have concentrated on the direct consequences of the driving

on the observables and the preparation of specific states. However, we also influence the

magnetic properties of the system with the modulation. By influencing the energy level of

the singlet we can directly tune the magnetic exchange energy Jex, since the triplet state is

unaffected by the phase modulation 15. In the following, we will therefore investigate how

we can alter the magnetic exchange of the driven system, which will depend both on the

modulation amplitude κ and the detuning δ.

9.9.1. Measurement of the the magnetic exchange interaction

To directly measure Jex between neighboring sites we use a Ramsey-type protocol [232, 433]

and the ability to dynamically tune the sites and tunneling in the double well (see Fig. 9.14

15As described in Section 2.6, the exchange energy is defined as the energy difference between the singlet and

triplet state.
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for the measurement scheme). We initially prepare a singlet state |s〉 on adjacent sites in a

deep cubic lattice with V
X,X,Ỹ ,Z

= [30, 0, 30, 30] ER, where the tunneling within the double

well is completely suppressed. By applying a π/2-pulse with a magnetic field gradient we

generate a coherent superposition between the singlet and triplet state |t〉. This preparation

step is followed by a ramp of the magnetic field (to control the final interaction U), a ramp

of the interfering lattice VX
16 and a change of the driving amplitude κ to the desired value

within 2 ms. Since the modulation is switched on, but the tunneling within the double

well is completely negligible, we are still in the initial superposition of |s〉 and |t〉. In the

next step, we trigger an exchange oscillation by suddenly lowering the barrier in the double

well by decreasing VX to the final value in the double well within 100 µs. After a variable

evolution time τevol in the driven system, we freeze the dynamics of the exchange oscillation

by increasing VX back to 30 ER within 100 µs. Subsequently we revert the ramps of the

magnetic field, the interfering lattice VX and the driving amplitude κ and perform a second

π/2-pulse with a magnetic field gradient. Finally, we measure the fraction of singlets on

adjacent sites, which is given by ps(τevol) = [1− cos(Jexτevol/~)]/2 after the evolution.

9.9.2. Off-resonant modulation

For the off-resonant case we have seen, that the effect of the modulation is a pure renormal-

ization of the tunneling (teff = tJ0(κ)). Therefore, the exchange energy defined as the energy

difference between the triplet and singlet state becomes (see also Section 2.6)

Jex, off-res =
1

2

(
−U +

√
16t2J 2

0 (κ) + U2

)
(9.26)

In the Heisenberg limit of large interactions (t � U), keeping in mind that the off-resonant

case still requires U � ~ω we find

Jex,off-res
U�t−→ 4

t2

U
J 2

0 (κ) (9.27)

Fig. 9.15a shows the quasi-energy spectrum of the off-resonantly driven double well with

the same parameters as we use in the experimental realization. We choose a constant value

of the interactions and measure the magnetic exchange energy as a function of the shaking

strength. We can compare our results to an exact numerical calculation of the exchange

energy (shown in Fig. 9.15b), which proves the analytic description from above. As expected,

Jex(κ) is decreasing as the modulation strength is increased. The experimental results of

the exchange measurement is shown in Fig. 9.15b and compared to a numerical calculation.

For the measurement, we vary the evolution time and detect the singlet fraction for each

modulation amplitude κ for at least 9 different values of τevol with at least 27 measurements

in total.

We fit each data set of κ with a damped sine function ps(τevol) = α[1 − cos(Jexτevol/~)]

× exp[−βτ ] + γ and extract the exchange energy from the fitted frequency (exemplary fits

are shown in Fig. 9.17b). To estimate the error in Jex(κ), we use a resampling method

which assumes a normal distribution of measurements for each evolution time. The standard

deviation of this distribution is determined by the measured standard deviation or, if we

16This is needed to be able to create double wells. Table 9.1 lists the final values of the lattice depths for the

exchange measurement in the off- and near-resonantly driven system.
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Figure 9.15.: Magnetic exchange energy for the off-resonant driving. We use a

shaking frequency of ω/2π = 8 kHz both for the experimental as well as the theoretical

results. (a) Quasi-energy spectrum for two particles in a double well as a function of the

onsite interaction U for off-resonant driving (using the experimental parameters t/h = 350Hz

and κ = 1.2). The gray lines show the energy spectrum without modulation (see also results

in Fig. 9.4). For U � t, the ground state is the spin singlet |s〉 and the first excited state the

triplet |t〉. The tunneling is renormalized by t → teff(κ) = tJ0(κ) ≈ 0.67t. Panel (b) shows

the two lowest energy states as a function of the modulation strength κ with t/h = 350Hz and

U/h = 2.1kHz. The exchange energy Jex(κ) is defined as the energy difference between singlet

and triplet state and can be controlled via the modulation strength. (c) Measurement of the

magnetic exchange in the off-resonant driving regime for ω/2π = 8 kHz, tx/h = 350(50) Hz

and U/h = 2.1(1) kHz as a function of the driving amplitude. Jex decreases with κ as

expected for a renormalized tunneling rate teff
x . Mean values are derived from a sinusoidal

fit to the oscillation data, errors denote the standard deviation obtained from a resampling

method. The solid line is an exact numerical calculation using the experimental parameters

with a shaded region to account for the uncertainty of the tunneling. (d) Comparison of

the analytical and numerical derivation for the exchange energy in the off-resonant regime,

with parameters as in (c). The dashed line is the analytical result at different order of the

high-frequency expansion of the effective Hamiltonian, while the solid line is a numerical

calculation. For large modulation amplitudes, deviations from the result obtained from an

expansion up to order 1/ω can be observed. Here, the exchange already becomes weakly

ferromagnetic due to the finite value of the interaction.
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measured the singlet fraction at this τevol only once, by the residual from the fitted curve.

Afterwards, we randomly sample a value for the singlet fraction at each evolution time and

refit the resulting data set. At the same time, the initialization values of the fit parameters Jex

and β are varied by ±10%. This procedure is repeated 1000 times and the mean ± standard

deviation of the resulting distribution of frequencies determine the asymmetric error bars for

the fitted exchange frequency, as shown in Fig. 9.15c and 9.16d.

The data qualitatively agrees with the numerical calculations, however, the overall level of

the exchange interaction does not match quantitatively to the numerics. While the theory

includes an uncertainty of the tunneling, we do not include an error of the interactions and

modulation parameters. Another possibility is a slightly incorrect lattice calibration, since the

tunneling in the double well is quite sensitive to an uncertainty in the lattice depths. Finally

we can also compare the analytical and numerical calculations directly (see Fig. 9.15d). In

the whole parameter regime the description agrees quite well. The deviation at large κ results

from the finite interactions which leads to a relevant correction in the order 1/ω2 to describe

the changing sign in Jex.

9.9.3. Resonant modulation - enhancement and sign reversal of the magnetic exchange

For near-resonant driving (t � U ≈ ~ω), we have seen that the effective Hamiltonian is

described by a single particle tunneling t0 = tJ0(κ), the density assisted tunneling t1 = tJ1(κ)

and the effective interactions U −~ω. Considering terms up to order O(t2/U, tδ/U, δ2/U) the

exchange energy is given by

Jex, res =
1

2

δ + 4
t20
U
∓
√

16t21 +

(
δ − 4

t20 + t21
U

)2
 (9.28)

for δ ≷ 0, which reproduces the Heisenberg limit (9.27) for the case of no driving κ = 0. For

large detunings (t� δ � U, ~ω), the exchange takes the form

Jex,res
δ�t−→ −4

t21
δ

+ 2
2t20 + t21
U

(9.29)

The leading term of this expansion is proportional to J 2
1 (κ) and changes sign with the detun-

ing δ. In addition to the analytical description we can also perform a numerical simulation

and directly calculate the quasi-energy spectrum and the splitting between the singlet and

the triplet state. From the discussion in Section 9.6 we know that the resonant modulation

leads to an avoided crossing of the singlet state with a double occupancy state (see Fig. 9.16a

for a numerical calculation using the experimental parameters of the exchange measurement).

For a reasonable detuning away from the resonance, the prepared Floquet state is described

by a |s〉 singlet state (red and blue vertical dashed lines). For such a large detuning only a

small admixture of the double occupancy is added in the effective Hamiltonian 17. For a fix

detuning we can directly calculate the dependence of the singlet state on the modulation

strength κ. The numerical result is shown in Fig. 9.16b for the case of a red-detuned driving

(δ = ~ω − U < 0) and in Fig. 9.16c for an interaction U/h = 6.5 Hz (blue detuned drive

δ > 0). In contrast to the off-resonant regime, we can either increase the exchange energy

17In some of the double wells we therefore create a doublon-holon pair. However, a majority of the double

wells remains in the singlet state, which are the addressed states in the exchange measurement
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Figure 9.16.: Magnetic exchange energy for a resonantly driven two-body system.

We use a shaking frequency of ω/2π = 8 kHz both for the experimental as well as the

theoretical results. (a) Floquet spectrum of the double well system as a function of the

interactions U for near-resonant driving (t/h = 640 Hz and κ = 0.75). The gray lines show

the energy spectrum without periodic modulation (see Fig. 9.7). The drive couples the singlet

state to a state containing double occupancy, which leads to an avoided crossing at U ≈ ~ω.

(b) Dependence of the exchange energy Jex,res on the modulation amplitude in the near-

resonant regime with t/h = 640 Hz and ω/2π = 8 kHz on the right side of the resonance

(U/h = 9.1 kHz). The dashed line is the analytical result, while the solid line is the result of a

numerical calculation. Because of the gap opening the singlet state can be controlled via the

modulation strength at negative detuning δ = ~ω�U . The exchange energy can be enhanced

with an increasing modulation strength. (c) In contrast, on the left side of the resonance at

U/h = 6.5 kHz (positive δ) the exchange energy changes its sign to a ferromagnetic behavior.

(d) Measurement of the exchange energy for near-resonant modulation with ω/2π = 8 kHz,

tx/h = 640(90) Hz and U/h = 9.1(1) kHz (red) or U/h = 6.5(1) kHz (blue), respectively,

as a function of κ. As expected from theory, red detuned driving (U > ~ω) enhances the

magnetic exchange for increasing driving amplitude. For U < ~ω, Jex vanishes at a critical

value κ ≈ 0.7 and becomes negative for stronger driving (open symbols). Mean values are

derived from a sinusoidal fit to the oscillation data, errors denote the standard deviation

obtained from a resampling method. The solid line is an exact numerical calculation using

the experimental parameters with a shaded region to include the uncertainty of the tunneling.
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Figure 9.17.: Observation of the sign reversal in the magnetic exchange. We use

a shaking frequency of ω/2π = 8 kHz both for the experimental as well as the theoretical

results. (a) Illustration of the detection method. After an initial quarter oscillation at Jex

without modulation we suddenly switch on the modulation at a strength κ > 0.7 to observe

the sign change. (b) Measured singlet fraction as a function of evolution time for the param-

eters in Fig. 9.16 with U/h = 6.5(1) kHz in the static case (black, gray) and after a sudden

switch on of the modulation with κ = 0.88(1) (cyan) or κ = 1.31(2) (brown). For κ ≈ 0.7,

the oscillation is too slow to determine the sign of Jex. Due to the sign reversal of Jex, the

rotation direction on the Bloch sphere is reversed. Solid lines are damped sine fits to the

data. Error bars denote the standard deviation of 3 measurements.

(red-detuned) or even switch the sign for a reasonable shaking strength (blue-detuned) [436,

437, 438]. In both driving regimes, we can compare to the analytical result and find very

good agreement with the exact numerics.

We also experimentally verify the tunable exchange energy with the same measuring pro-

tocol as introduced above. We observe an increasing exchange energy as a function of the

modulation strength for δ < 0 (see Fig. 9.16d). At κ ≈ 1.6 it reaches a level about three

times higher than in the static case. On the other hand, if δ > 0, Jex vanishes at a critical

modulation amplitude of κ ≈ 0.7 and changes sign for stronger driving. Our measurements of

the exchange energy in the resonant case agree well on a qualitative level with the numerical

expectation.

In order to demonstrate a negative exchange for large κ with blue-detuned driving, we

first let the system evolve for a time τ0 with a non-driven exchange J
(0)
ex , until a quarter

exchange oscillation has been performed (i.e. J
(0)
ex τ0 = π/2). After that, we suddenly switch

on the sinusoidal modulation18 at the desired value of κ, which projects the system on to a

Hamiltonian with a negative Jex [232] (see schematics in Fig. 9.17a). Since the exchange in the

driven double well is ferromagnetic, it inverts its rotation direction on the Bloch sphere, which

leads to an oscillation phase shifted by π compared to the static case. The full oscillation

behavior of the sign reversal is shown in Fig. 9.17b for two distinct shaking modulations.

For all of the derivations above, we assumed that the static double well can be simply

described by the tunneling t and the onsite interaction U . However, if the Wannier func-

tions on the two sites have a significant overlap, the description needs to be extended to a

two-band Hubbard model (see Section 2.6). In this case, higher order corrections like density

assisted tunneling δt as well as nearest neighbor interactions, direct exchange and correlated

pair tunneling V (the last three are all equal for the two-band Fermi-Hubbard model) be-

18Here, we have to make sure that the starting phase is equivalent for all measurement such that we are

not goverened by difficulties arising from the initial kick of the modulation. Experimentally we choose the

starting phase such, that the piezo is moving through its equilibrium position.
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come significant. For the experimental parameters in the off-resonant case, their values are

V/h = 2.4(7) Hz, δt/h = 22(3) Hz in the static lattice. In the near-resonant driving regime,

interactions are stronger and the corrections in the static lattice increase to V/h = 26(8) Hz,

δt/h = 120(10) Hz for U/h = 6.5(1) kHz and V/h = 40(10) Hz, δt/h = 170(20) Hz for

U/h = 9.1(1) kHz. To lowest order, the density assisted tunneling will increase the effective

tunneling to be t + δt, and V decreases the exchange interaction by 2V , both in the static

and driven cases.

9.10. Conclusion

In conclusion, we have demonstrated the full control of a periodically driven few-level system.

We could adiabatically connect the initial state to a targeted Floquet state when setting

the drive frequency away from any resonant coupling. As the drive frequency approached a

resonance between energy levels, the ramp time required for adiabatic transfer increased, and

even diverged directly on the resonance. However, the ground state of the static Hamiltonian

could nevertheless be adiabatically connected to the desired Floquet state by changing the

interaction strength in the driven system. Furthermore, the local observables developed for

static systems could be used directly, by freezing the evolution of the driven state before

measuring it. In addition, the micromotion on the timescale of the periodic drive was directly

visible, confirming the need for a characterization beyond an effective static Hamiltonian.

Finally, we have shown that the induced density-dependent hopping results in a tunable

exchange energy. Our experimental results show, that it is possible to tune the level of the

magnetic exchange and its sign as a function of the detuning to the resonance and the

modulation strength.

The versatility of cold atoms experiments offers the possibility to perform similar mea-

surements in a fully connected lattice, and realize a many-body driven system in a future

experiment. It has been demonstrated theoretically that density-dependent hopping signif-

icantly alters the properties of many-body phases [436, 437, 438], and could be applied to

enhance anti-ferromagnetic correlations in the Hubbard model, or even probe regimes of mag-

netic order not accessible within the static model [436, 448]. In the next chapter I will present

our experimental results on the driven many-body system and show that such a control of

the magnetic correlations is indeed possible.

Furthermore, the creation of an effective interaction which is given by the detuning from

the resonant drive opens the possibility to tune the interacions even in the absence of a

Feshbach resonance. This might not only be relevant for cold atoms experiments with atoms

that miss a Feshbach resonance, but also for other fields (e.g. solid state physics) where

resonant modulation can drastically change the interaction energy.
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10 Tuning and switching magnetic correlations in a

driven quantum many-body system

Parts of this chapter have been published in [73]:

F. Görg, M. Messer, K. Sandholzer, G. Jotzu, R. Desbuquois, and T. Esslinger,

Enhancement and sign change of magnetic correlations in a driven quantum

many-body system, Nature 553, 481-485 (2018)

As we have shown in the previous chapters, periodic driving can be used to coherently

control the properties of quantum states and to realize new phases which are not accessible

in static systems. So far we have concentrated on spin-polarized clouds or few level systems.

In the final chapter, I will now present our experimental realization of a driven many-body

system. In many fields periodic driving has been implemented as a versatile tool to manipulate

many-body states. For example, exposing materials to intense laser pulses makes it possible

to induce metal-insulator transitions, to control the magnetic order and generate transient

superconducting behavior well above the static transition temperature [76, 77, 78, 79, 449,

450]. However, pinning down the responsible mechanisms is often difficult, since the response

to irradiation is governed by complex many-body dynamics. While extensive calculations

have been performed for static systems to explain phenomena such as high-temperature

superconductivity [451], theoretical analyses of driven many-body Hamiltonians are more

demanding. Yet, new theoretical approaches for such systems have been inspired by recent

observations [436, 437, 438]. Here, we perform an experimental quantum simulation in a

periodically modulated hexagonal lattice and show that anti-ferromagnetic correlations in a

fermionic many-body system can be reduced, enhanced, or even switched to ferromagnetic

correlations. The measurements I will present in the following constitute the first experimental

investigation of spin-spin correlations in driven optical lattices.

After an initial discussion on possible loss mechanisms and heating channels, I will present

heating measurements in a three-dimensional Hubbard model subjected to magnetic gradient

shaking and phase modulation. Afterwards, I will focus on the experimental realization of the

driven Fermi-Hubbard model on a honeycomb lattice. First, our results for an off-resonantly

driven quantum many-body system are compared to equivalent measurements in a static

lattice. This quantum simulation validates the description of the driven many-body system by

an effective Floquet-Hamiltonian with a renormalized tunneling energy in the high frequency

regime. In addition, we follow the idea of the tunable exchange presented in the context

of the driven double well system and perform measurements in the near-resonantly driven

many-body system. The independent control of the single particle tunneling and magnetic

exchange energies, allows us to tune the magnitude and sign of the correlations. Furthermore,

we analyze the micromotion and the evolution dynamics of correlations in the near-resonantly
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Figure 10.1.: Atom loss and heating - Coupling to higher bands. (a) Theoretically

calculated spectrum of a simple cubic lattice as a function of the lattice depth. The energy gap

from the first to the second band is shown in blue (∆12). Higher order processes to the second

band (see Panel (c)) can also lead to a loss of atoms (shown in red, yellow, green). In addition

possible transitions to the third band (gray) and intraband excitations (purple) can occur.

All these excitations reduce the choice of possible modulation frequencies without coupling

(white empty space). (b) Exemplary measurement of the atom loss for different lattice

configurations as a function of the modulation frequency ω. We vary the lattice depth along

the shaking direction VX and keep the other two directions constant (VỸ = VZ = 7ER). The

total modulation time is 200 ms at a modulation strength of κ = 1.0. (c) Schematic drawing

of the transitions to the second band with multi-photon processes at varying frequency νinter.

The maximally possible intraband excitation within the lowest band is shown with an arrow

νintra. (d) Calculated tunneling in the simple cubic lattice as a function of the lattice depth.

driven system.

10.1. Loss Features - Coupling to higher bands

In the previous chapters we have successfully engineered different Hamiltonians by mod-

ulating our optical lattice setup. Although loss mechanisms can hinder the detection and

preparation of those systems they do not influence the physical properties. This is com-

pletely different if we want to realize a driven many-body system with strong correlations.

Since the energy is not a conserved quantity and only defined modulo ~ω, driving the system

can couple states far away from the lowest band. While for static system the lowest band

approximation always holds, as long as the entropy of the system is small enough, this is not

necessarily the case for driven system. Thus, an experimental difficulty lies in the heating

associated with the periodic modulation of a many-body system [452, 453, 454] which may
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destroy correlations, in particular in the near-resonant regime [68, 455, 456]. From a theoret-

ical point of view, we expect to create an infinite temperature state in the Floquet system

for long modulation times [74, 75]. In analogy to the goal in static systems, where we need to

prepare low temperature states to reach magnetic long-range order, we need to minimize loss

channels in driven systems. Only then, it is possible to analyze the driven system on usual

experimental timescales before the unavoidable heating takes over [457]. In the following, I

will present how we can benefit from the tunable optical lattice to minimize the coupling to

higher bands.

In most implementations with optical lattices the aim is to describe the time-dependent

Hamiltonian with an effective Hamiltonian approximated by a single band tight binding

model. Obviously, if we want to prepare a state in a strongly interacting driven three-

dimensional system we have to adiabatically couple the driven states to the static ground

state of the initial system. Any additional coupling to higher bands can be regarded as heat-

ing, or if the coupling is more severe, it will lead to atom loss out of the desired engineered

Floquet state. In general, if loss channels cannot be neglected a direct comparison to theory

and a description by an effective Hamiltonian is difficult1. Coupling to higher bands and

the loss channels in driven one- and two-dimensional lattice systems [114] as well as driven

interacting one-dimensional lattice systems [288] have been recently compared between ex-

periment and theory. However, a full theoretical description for a driven Hubbard model

governed with loss channels remains challenging.

In addition to the difficult theoretical comparison, coupling to higher bands also drastically

changes the physical behavior. Although this is sometimes intended [289, 290, 291, 292, 293],

we need to remain in a single band description for many theoretical proposals [66]. In all of

our experimental measurements we want to avoid any coupling to higher bands. This is quite

challenging, because coupling to higher bands is also possible with higher-order processes

[114, 457]. In Fig. 10.1a we show the resulting energy gaps to the next higher bands in a

simple cubic lattice as a function of the lattice depth. We immediately realize that it is

challenging to find a useful shaking frequency for shallow lattices (assuming also higher order

processes lead to a loss feature). If the lattice depth is increased the window of possible

shaking frequencies without loss mechanism becomes larger. Panel c presents an illustrative

description of multi-photon processes which lead to the coupling to the second band. The

frequency range is given by the minimal and maximal gap of the first to the second band

(νinter). In addition, if the band is only partially filled intra-band transitions can also lead

to excitations within the lowest band and subsequently heat the system. Note, even for

the measurements in the previous chapters, we have performed test measurements to find a

parameter regime which minimizes the coupling to higher bands.

An exemplary measurement for the loss mechanism due to coupling of higher bands is

shown in Fig. 10.1b for a three-dimensional lattice system. Here, we analyze the remaining

atoms in the system for a spin-polarized cloud after a modulation of 200 ms 2. While basically

the whole measured frequency window can be used for a deep optical lattice, only narrow

frequency bands remain for the most shallow lattice. Experimentally we find that processes

with forth order or higher are strongly suppressed. However, we cannot circumvent this prob-

1Here, the difficulty lies in the unknown details of the experimental loss channels.
2Here, our detection even includes atoms that remain in the lattice but are transferred to a higher band.

The undetected atoms are completely lost and not trapped anymore.

195



10. TUNING AND SWITCHING MAGNETIC CORRELATIONS IN A DRIVEN
QUANTUM MANY-BODY SYSTEM

a b

0 2 4 6 8
VX (ER )

0

5

10

15

Δ g
ap

 (k
H

z)
0 2 4 6 8

VX (ER )

0

200

400

600

800

tu
nn

el
in

g 
(H

z)

tx

ty

tz

1st order
2nd order

3rd order
all - higher bands

Figure 10.2.: Independently tuning band gaps and tunneling in dimer lattices.

(a) Including the interfering lattice beam VX allows us to tune the band structure and the

tunneling. We plot the gaps as a function of VX for VX,Ỹ ,Z = [22, 8.35, 6.67]ER (these are

the same parameters as are used in the near-resonant modulation in Section 10.6). Due to

the additional beam we create a honeycomb (dimer) geometry and increase the gap to the

next higher band. In addition the bandwidth is reduced which allows for a better choice of

modulation frequencies. (b) While the tunneling ty is completely independent of VX we can

tune tx and tz over a wide range.

lem by choosing a deep optical lattice, because the tunneling in deep lattices is significantly

reduced (see Fig. 10.1d). First, the overall experimental timescales are slowed down and the

preparation of a thermally equilibrated ground state in the static Hamiltonian is hindered.

Second, many engineered terms in the effective Hamiltonian include the static tight-binding

parameters as prefactors, which are therefore simultaneously decreased.

Here, our tunable optical lattice is an ideal tool to decouple the static tunneling in the

modulation direction from the gap to the band structure. Instead of preparing a simple cubic

lattice we can include the interfering lattice beams and create a dimerized or honeycomb

lattice. Due to the more complex lattice structure the band splits in subbands and a large

window of modulation frequencies are possible (see the calculation of the band structure in

Fig. 10.2a). In addition, the band gap is shifted to higher values. We can find parameters

with a reasonable gap to the higher bands which still have a remaining tunneling on the

order of ≈ 200 Hz (see Fig. 10.2b). Using this preparation scheme we can realize a full three-

dimensional system with the only drawback that the single tunneling link t′x is canceled3.

10.2. Heating measurements in driven three-dimensional optical lattices

As we have mentioned previously, an important question when studying driven many-body

systems concerns the change from a static to a modulated (effective) Hamiltonian, as well

as the stability of interacting Floquet systems [62, 64, 458]. From an experimental point of

view, excitations created by modulating the system can be observed as heating and atom loss,

both of which are detrimental. To study those heating processes in more detail we perform

measurements in different lattice configurations as a function of the modulation strength and

shaking frequency. We use the following protocol to detect the heating rate and atom loss

3For all implementations of the topological Haldane model as well as the dimer system, it is actually required

that t′x ≈ 0.
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Figure 10.3.: Heating measurements in a three-dimensional optical lattice with

a periodically modulated magnetic gradient. (a) Schematic of the ramp protocol.

We modulate in a three-dimensional simple cubic optical lattice the magnetic field gradient

(see Chapter 7 for the one-dimensional realization). After ramping on the modulation within

100 ms we vary the waiting time τW at a constant modulation amplitude to extract the

heating rate and lifetime of the driven system. Finally the loading ramp is reverted and

the cloud is allowed to thermalize in the dipole trap. We extract the temperature and atom

number from Fermi fits to the momentum distribution. (b) Temperature after the full ramp

(τW = 0), heating rates and lifetimes as a function of modulation amplitude. Grey circles

(orange diamonds) indicate a lattice with tunnelling t/h = 174 Hz (67 Hz). The line (shaded

region) shows the results (error bars) in the dipole trap without the optical lattice and

gradient modulation. (c) Same quantities measured as a function of modulation frequency,

for κ−9/2 = 1.0. Zero frequency indicates no modulation. Data and error bars in (b,c) are

mean± s.d. of 10 measurements (upper panels), or the results of linear (center) or exponential

(lower) fits to the temperature and atom number as a function of τW.

as a function of the modulation time in the three-dimensional lattice systems. After loading

the atoms into the optical lattice (S-shaped loading ramp lasting 200 ms) and subsequently

ramping on the modulation, we use a variable waiting time τW before the loading procedure

is reverted (see Fig. 10.3a). The final temperature and atom number is then extracted from

Fermi fits to the momentum distribution.

10.2.1. Magnetic gradient modulation

In a first measurement we load a three-dimensional simple cubic optical lattice with an

isotropic tunneling energy of either t/h = 174(9) Hz (7ER per lattice beam) or 67(3) Hz

(11ER) within 200 ms 4. We subsequently ramp up the modulation of the Ioffe current (see

4This measurement is part of our publication [68].
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all experimental details in Chapter 7), which creates a time-periodic spin-dependent force in

x-direction. We have observed that losses become very large when the magnetic offset-field

reaches the Feshbach resonance5 at 224.21(5) G. Therefore, all heating measurements were

taken at a static field of 160.44(1) G, where the scattering length of 194.8(1)a0 is modulated

by less than ±7a0. Before the detection process in the harmonic trap is started, we allow for

a 200 ms thermalization of the system to ensure that any residual excitations of the cloud

have thermalized.

The heating of the atoms caused by ramping into the lattice and reverting the loading

procedure gives an estimate of the actual temperature in the lattice6. Here, we use the same

measurement as for the heating rate in Section3.2, where we have found that the heating

caused by the first half of the ramp is describing the temperature in the lattice reasonably

well. When measuring the heating for long waiting-times τW, we observe a saturation of

T/TF. To extract a heating rate we therefore fit linear slopes to times up to 300 ms, which

are the relevant timescales for the majority of optical lattice experiments. Fitting to longer

times would result in lower heating-rates, but the fitting function would not capture the time-

dependence well. The 1/e-lifetimes are extracted from exponential fits to the atom numbers

for waiting-times up to 2 s.

Fig. 10.3b shows how the ramp-induced heating depends on the modulation amplitude,

when setting a frequency of 750 Hz. We first analyze the temperature increase resulting from

the loading process (τW = 0). For small modulation amplitudes, almost no additional heating

compared to the effects of the lattice-ramp itself (κ−9/2 = 0) are observed, especially for the

deeper lattice (orange data points). For larger amplitudes, additional heating appears, which

interestingly seems to saturate when κ−9/2 & 2.4, where the effective tunneling becomes

small. In addition, the heating rate (detected as a function of the wait time τW) in the

modulated lattice is negligible considering the experimentally relevant timescales, even for

strong modulation. Exponential fits to the atom number show that the modulation decreases

the lifetimes in the lattice. However, even when completely localizing one species, very long

lifetimes of several seconds are still observed, which correspond to values several orders of

magnitude larger than the interaction and tunnelling times.

Further insight into the relevant excitations of the system can be gained by studying the

dependency on modulation frequency. The excitation of doubly occupied sites is predicted to

have a resonance around 1.3 kHz (2.0 kHz), given by the on-site interaction energy. The width

of the lowest band is h× 2.1 kHz (0.8 kHz) in the shallower (deeper) lattice. For frequencies

directly above the sum of these two frequencies (marked with arrows) such excitations should

be strongly suppressed [178], and the modulation ramp seems to cause no heating at all, see

Fig. 10.3c. For lower frequencies the heating rate remains at a low level and the lifetime of

atoms is large. For higher frequencies, the ramp-induced heating, heating rate and lifetime

rapidly become worse for the shallower optical lattice (gray data points). In contrast, there is

no detectable effect in the deeper lattice which has a larger bandgap. We therefore attribute

this feature to excitations of higher bands. Although the direct gap of the non-interacting

band structure has a value of h × 14.7 kHz (21.8 kHz) for the shallower (deeper) lattice,

higher-order processes remain possible.

5As mentioned in Chapter 7 the offset field also varies during the modulation.
6The starting point of our measurement is a balanced mixture of |−9/2〉 and |−5/2〉 with 233(10) × 103

atoms at a temperature of 0.19(1)TF.
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Figure 10.4.: Heating measurements in a phase modulated three-dimensional

optical lattice. We use a lattice with final depths VX,X,Ỹ ,Z = [14.0(4), 0.79(2),

6.45(20), 7.0(2)]ER which corresponds to a system consisting of coupled isotropic honeycomb

layers with a nearest-neighbour tunnelling t/h = 172(20) Hz. The optical lattice is circularly

modulated at ω/2π = 1080 Hz with a modulation strength κ = 0.78 (see Chapter 8 for de-

tails). Heating measurements are performed for two different interactions U/h = 2.19(5) kHz

(blue) and U/h = 4.18(2) kHz (red). (a) Entropy increase associated with loading into the

modulated lattice and reverting the loading procedure. (b) Entropy increase rate in the

modulated lattice for long holding times. The dashed lines show the measured heating in a

lattice without modulation at the same interaction strengths.

10.2.2. Circular lattice modulation

In an additional measurement we investigate the heating in the circularly modulated honey-

comb lattice7. We prepare 2.0(2) × 105 atoms in a balanced spin mixture of the |F,mF 〉 =

|9/2,−9/2〉 and |9/2,−5/2〉 states. The atoms are then loaded into a lattice with final depths

V
X,X,Ỹ,Z

= [14.0(4), 0.79(2), 7.0(2), 6.45(20)]ER within 200 ms. This corresponds to coupled

isotropic honeycomb layers with a nearest-neighbor tunneling t/h = 172(20) Hz 8. The two

lowest bands have a total bandwidth of h × 1.0 kHz, with a gap of h × 14 kHz to the next

higher band (excluding the y-direction). We start to circularly modulate the optical lattice

with κ = 0.78 (for all details see the realization of the topological Haldane model in Chap-

ter 8). At a frequency ω/2π = 1080 Hz the modulation opens a gap of h × 44 Hz in the

non-interacting band-structure. These values, in units of the tunneling, are similar to the

measurements in Chapter 8.

After turning on the lattice modulation, we reverse the loading procedure and measure

the final temperature of the sample and compare the results to the case where the lattice is

not modulated. From the difference in temperature before loading the lattice and after the

procedure, the corresponding entropy increase can be determined. We measure the entropy

increase for different interaction strengths and modulation frequencies. In the Mott-insulating

regime with U/h = 4.18(2) kHz (U/5t = 4.9(6)) and for a frequency of ω/2π = 1.08 kHz we

find an entropy increase that is 25% larger when modulating the lattice compared to the

situation without modulation (see Fig. 10.4a). In the metal-to insulator crossover regime

at lower U/h = 2.19(5) kHz (U/5t = 2.5(3)) we find the same final entropy. However, this

now corresponds to a 40% increase, which possibly originates from the creation of low-energy

charge excitations in this configuration. In the measurements versus frequency, we recover the

7This measurement is presented in the extended data of our publication [13].
8We have used the same optical lattice for the realization of the artificial graphene system (see Chapter 3).
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doublon excitation peak in the insulating phase, whose frequency is given by U/h = 4.18(2)

kHz, as seen in the increase of entropy creation rate.

We have furthermore measured the heating rate induced by holding the atoms in the mod-

ulated lattice for longer times (see Fig. 10.4b)9. For all parameters we find a linear increase

of entropy with time. For timescales relevant for studying dynamics as in the measurements

of the Haldane model, this contribution is much smaller than the one associated with the

modulation ramp.

To summarize, we find the heating induced by either of the two modulations can be avoided

for a smart choice of parameters. Overall, this demonstrates that the circular modulation

scheme is well suited for studying many-body states in topological lattices and that it can

be combined with spin-dependent modulation. However, our measurement only analyzes the

temperature of the whole atomic cloud, which does not cover the full picture and does not

give any information on possible excitations. To show that driven many-body systems can be

indeed realized we have to measure observables directly revealing the effective Hamiltonian,

which will be presented in the following sections.

10.3. The driven Fermi-Hubbard model - a Floquet many body system

In the previous sections we have shown that it is possible to find suitable modulation regimes

even for three-dimensional systems. Our tunable optical lattice offers us an ideal platform

to investigate driven many-body systems. The implementation of a resonantly driven double

well system (see Chapter 9) has shown that it is possible to create additional terms in the

Hamiltonian and to directly measure observables connected to well-defined Floquet states in

the driven system. Especially, we have shown that it is possible to induce density dependent

hopping processes that allow for a tunable magnetic exchange energy. In the following we

want to experimentally analyze the behavior of a resonantly driven many-body system. We

perform our experiments with 3.0(2)×104 (10% systematic error) ultracold fermions prepared

in a balanced mixture of two internal states, denoted as ↑ and ↓. The atoms are loaded into a

honeycomb lattice with anisotropic tunneling rates, where the horizontal links in x-direction

tx are stronger than in the y- and z-directions ty,z (see Fig. 10.5c and Table 10.1). In this

configuration t′x is below a few Hz and completely negligible. In order to achieve a three-

dimensional setup a lattice beam in y-direction creates a stacking of the hexagonal planes.

Our experimental system is therefore well described by the driven Fermi-Hubbard model

Ĥ(τ) = −
∑
〈i,j〉
σ

tijĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ +
∑
i,σ

(fi(τ) + Vi) n̂iσ (10.1)

where ĉ†iσ (ĉiσ) are the fermionic creation (annihilation) operators and n̂iσ the number op-

erator at lattice site i = (ix, iy, iz) in spin-state σ =↑, ↓. Here, tij denotes the tunneling rate

between nearest neighbors 〈i, j〉, U the repulsive onsite interaction and Vi an overall harmonic

trapping potential. The time-dependent force is expressed as fi(τ) = mAω2xi cos(ωτ), where

m is the mass of the atoms, A the modulation amplitude and xi = 〈x̂〉i the x-position of the

Wannier function on site i (see Chapter 6). We implement the driving in a uni-directional

9Note, for this set of measurements the detection of the temperature is performed immediately after switching

off the lattice within 200 ms. As a result, remaining excitations are maybe not fully thermalized.
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Figure 10.5.: Experimental setup of the uni-directionally modulated many-body

system. (a) Optical lattice setup to create the three-dimensional anisotropic honeycomb

geometry. The beams X and Z are interfering, while X and Ỹ are frequency-detuned. A

piezoelectric actuator sinusoidally modulates the position of the retroreflecting mirror in

x-direction. (b) Lattice potential (arbitrary units) in the x-z-plane consisting of A and B
sublattices with superimposed hexagonal unit cell. Lighter red corresponds to lower potential,

while darker red indicates maxima of the lattice potential. (c) Tight-binding representation

of the lattice potential in the x-z-plane. The system is described by a driven Fermi-Hubbard

model, with anisotropic tunneling energies tx > tz due to a shorter length dx of the horizontal

bonds. Atoms in different spin states interact via an onsite interaction U . In a co-moving

frame, the modulation of the lattice position corresponds to a linear force F(τ) in x-direction

with an amplitude ~ωκ/dx, which primarily influences the horizontal bonds.

manner and use a single piezo which allows for a controlled phase shift of the reflected X

and X lattice beam with respect to the incoming beams (see Fig. 10.5a). We choose the

modulation at frequency ω/2π to be along the direction of the horizontal bonds such that

V (x, y, z, τ) ≡ V (x�A cos(ωτ), y, z).

10.3.1. Uni-directional driving of the many-body system and corrections to the
tight-binding description

As derived in Chapter 6 the amplitude of the lattice displacement A is defined by the normal-

ized drive amplitude κ = mAω dx/~, where dx is the distance between the two sites along

the x-direction. For our lattice potential, dx 6= λ/2, and must be calculated for each indi-

vidual configuration as the difference between the eigenvalues of two neighboring Wannier

states. Since the lattice geometry in the x-z-plane is not an ideal brick configuration (see

real honeycomb potential in Fig. 10.5b), the bonds connecting two sites in the z-direction

are also slightly affected by the modulation along x. The effective driving strength can be

determined by the projected bond length on the modulation direction, which for our case is

the x-displacement dvert
x = λ/2�dx between neighboring sites in the vertical z-direction. The

modulation amplitude along the z-direction is then given by κvert = dvert
x /dxκ. The values

for dx and dvert
x are summarized in Table 10.1 for all measurement configurations.
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Measurement off-resonant modulation near-resonant modulation

Atom number (103) 28(2) 32(2)

Initial T/TF 0.07(1) 0.12(2)

ω̄trap/2π (Hz) 84(2) 84(2)

tx/h (Hz) 810(150) 570(110)

ty/h (Hz) 125(8) 125(8)

tz/h (Hz) 78(8) 85(8)

dx/(λ/2) 0.71(2) 0.74(2)

dvert
x /(λ/2) 0.29(2) 0.26(2)

δt0(κmax, ωmax)/tx 0.085(1) 0.102(1)

Table 10.1.: Summary of experimental parameters for the measurements. Values

given for the off-resonant modulation correspond to the initial static configuration with κ = 0.

The initial temperature is measured before loading the atoms into the lattice. dx is the length

of the horizontal bonds, while dvert
x is the horizontal distance between two sites forming the

vertical bonds in z-direction, resulting from a non-rectangular lattice unit cell. The effective

modulation amplitude is given by the projection of each bond on the x-direction. δt0 describes

the change of the mean value of tx in the driven lattice due to a time-dependent modification

of the Wannier functions. The values given here are an upper bound corresponding to the

maximum modulation amplitude κmax and frequency ωmax used in each lattice configuration.

The visibility of the interference term is calibrated to be α = 0.92(1). For the calculation of

tight-binding parameters, we include a systematic error of 3% for all lattice depths.

In addition, the piezo modulation also leads to a residual periodic reduction of the inter-

ference amplitude of the lattice by at most 2 %. For the lattice configurations presented in

this chapter, the mean tunneling energy tx is shifted down by about 2.5 % and introduces a

modulation of the tunneling energy at twice the driving frequency 2ω/(2π) with an ampli-

tude of δt = 0.025 tx. However, this modulation is negligible, since its amplitude has to be

compared to the driving frequency. The effective driving strength is given by δt/(2~ω), which

is always smaller than 3× 10−3 in our case.

In our derivation of the thight-binding Hamiltonian 10.1 we assume that the Wannier

functions are not modified themselves by the modulation (see also the general discussion

in Section 6.2). However, as we have seen, the driving amplitude leads to a tilt between

neighboring sites ∆(τ) = κ~ω cos(ωτ) in the co-moving frame, which can become significant

for large driving amplitudes. As a result we get modifications of the Wannier functions due to

the admixture of higher-band Wannier functions which change the tight binding parameters

tx and U in time. We can estimate these corrections by considering a cut through the tilted

lattice potential along the shaking direction (x-direction). We can approximately calculate

the Wannier functions of this tilted potential by using a phase θ 6= π between the X and

X beams of our tunable lattice10. Therefore, we can compute the Wannier functions for any

given time-dependent energy bias and calculate the corresponding tight-binding parameters.

The modulated lattice potential is then described by a tight-binding Hamiltonian as in

10Here, we ignore the overall tilt due to the harmonic potential. However, this is well justified since the

tunneling t′x is zero and the Wannier states can be fully described in a double well, with sites A,B
representing the two sublattices.
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Eq. 10.1, with additionally time-dependent terms tx(τ) and UA,B(τ) 11. We can decompose

these parameters into their Fourier components, which take the form tx(τ) = tx(κ = 0) +

δt0(κ, ω) + δt2(κ, ω) cos(2ωτ) + ... and UA(τ) = U(κ = 0) + δU0(κ, ω) + δU1(κ, ω) cos(ωτ) +

δU2(κ, ω) cos(2ωτ) + ..., while UB(τ) = UA(τ + π/ω). Due to the periodicity tx(τ) = tx(τ +

π/ω), the expansion of tx(τ) features only even harmonics of ω. The main effect of this

modulation is a shift of the static tunneling energy by δt0(κ, ω) (see Table 10.1 for an upper

bound). Although the relative change of the tunneling energy is on the order of 10% for

the largest values of κ, the absolute change is much smaller since the hopping amplitude is

additionally renormalized by the Bessel functions J0(κ) or J1(κ) (see Chapter 9). We find

that the shift of the mean value of U is much smaller with values δU0(κ, ω)/U < 0.006 even

for the strongest driving.

The additional time-modulation of tx and U is negligible. Here the same argument, as

for the time-modulated tx holds due to the residual periodic reduction of the interference

amplitude as a result of the piezo modulation. We have to compare both modulations to the

driving frequency. Therefore, the dimensionless modulation strength for the lowest Fourier

components will be given by κt = δt2(κ, ω)/(2~ω) and κU = δU1(κ, ω)/(~ω). Even for the

maximum values of κ and ω, we find κt < 6× 10−3 and κU < 0.02 for the lattice geometries

used in the measurements presented below.

10.3.2. Preparation and detection

The preparation scheme closely follows the description presented in Section 2.2. For mea-

surements in the off-resonant driving regime we use a mixture of the F = 9/2,mF = −9/2

and F = 9/2,mF = −7/2 hyperfine states to access attractive or weak repulsive interactions

with scattering lengths −3000 a0 < a < 150 a0. In contrast for the resonant modulation we

transfer the mF = −7/2 state to the mF = −5/2 state to access large repulsive scattering

lengths above 200 a0. In Section 10.1 we showed that a tuning of the band gaps is useful

to avoid coupling to higher bands. For a faster thermalization of the many-body state in

the final hexagonal lattice, we first ramp up the power of all lattice beams within 50 ms to

intermediate values. In this configuration, the tunneling energies are close to the final con-

figuration with (tx, ty, tz)/h = (550(30), 143(8), 156(9)) Hz but the horizontal link across the

hexagonal unit cell has still a finite value of 70(3) Hz. In addition, the mean trap frequency

is only ω̄trap = 68(2) Hz. In a second step, we ramp up the power in all beams in 20 ms to

the final configuration.

To characterize the many-body state in the driven lattice, we measure the fraction of atoms

on doubly occupied sites D = 2/N
∑

i∈A,B 〈n̂i↑n̂i↓〉 as well as the nearest neighbor spin-spin

correlator C = −1/N
∑

i∈A(〈Ŝxi Ŝxi+ex
〉 + 〈Ŝyi Ŝ

y
i+ex
〉) on the horizontal links along the x-

direction (N is the total atom number and ex the unit vector in x-direction). The observables

are averaged spatially over the inhomogeneous density distribution in the harmonic trap. In

addition, we average all observables over one period T = 2π/ω of the drive to be insensitive

to the micromotion (indicated by 〈...〉.). This is achieved by sampling different phases of one

modulation cycle as we vary the modulation duration in multiples of T/4 (or T/10). The

detection scheme of the double occupancies and correlations follows exactly the techniques

11UA,B(τ) becomes obviously sub-lattice dependent.
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Figure 10.6.: Experimental verification of the effective Hamiltonian in the high-

frequency regime. (a) Double occupancy D as a function of effective horizontal tunneling

energy teff
x (κ) = txJ0(κ) for a driven system (green) and results obtained through an exper-

imental quantum simulation in a static configuration with horizontal tunneling tx (black).

The inset shows a cut through the non-interacting bandstructure as a function of the quasi-

momentum in x-direction qx. The reduction of the bandwidth W leads to a lower double

occupancy, indicating the crossover to a Mott-insulating state. (b) Spin correlations C as

a function of the (effective) horizontal tunneling energy for the driven case (green) and an

equivalent static configuration (black). The renormalization of the tunneling energy leads

to a reduction in lattice anisotropy teff
x /ty,z (see inset), which reduces the magnetic corre-

lations on the horizontal link. The transverse tunneling energies are ty/h = 125(8) Hz and

tz/h = 78(8) Hz and the interaction is set to U/h = 0.93(2) kHz. Horizontal error bars reflect

the uncertainty in the lattice depth, data points and vertical error bars in a (b) denote the

mean and standard error of 4 (10) individual measurements at different times within one

driving period.

presented in the previous chapters 12.

In Section 3.5 we have seen, that the extension of the Wannier function can be compa-

rable to the scattering length for strong interactions in the optical potentials realized in

our measurements. We therefore determine U experimentally by driving the lattice at a fre-

quency ω/2π, and measure the amount of double occupancies as a function of U . However,

in the three-dimensional hexagonal lattice, the resonance position is in good agreement to

the numerical value for U determined from the Wannier function.

10.4. Verification of the effective Hamiltonian in the off-resonant

modulation regime

In a first experiment, we investigate the regime where the driving frequency is much higher

than all microscopic energy scales of the system, i.e. the tunneling and interaction energies

(~ω � t, U). In the previous chapters we have seen, that in the non-interacting case, the

off-resonant modulation renormalizes the tunneling rate by a zeroth order Bessel function.

The system can be described by an effective tunneling energy along the shaking direction

teff
x (κ) = txJ0(κ). (10.2)

However, it is not a priori clear if this simple description remains accurate in the many-

body context [65]. To verify this description of the effective Hamiltonian, we can compare

12Here, the merging transition is performed within 10 ms to adiabatically map to the ’Hubbard singlet.
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Figure 10.7.: Lifetime of correlations in the off-resonantly driven system. The

measurement is performed in a slightly different lattice configuration compared to Fig. 10.6.

We use a modulation frequency ω/2π = 6 kHz and interaction U/h = 1570(30) Hz. The

tunneling links are given by tx = 550(110) Hz, ty = 75(5) Hz, tz = 71(7) Hz. Panel (a) shows

two exemplary measurements of the spin correlator C as a function of the modulation time.

Without shaking (κ = 0) we observe a finite lifetime of correlations due to heating and loss

processes. When shaking, the lifetime of correlations is further reduced. Error bars denote

the standard error of at least 5 measurements. (b) Extracted lifetime from exponential fits

to measurements of the correlations with varying shaking amplitude κ. Error bars represent

the uncertainty of the exponential fit.

our measurements in the driven many-body system to results obtained using an experimental

quantum simulation in a static lattice with a variable tunneling rate tx. We can therefore

prepare static systems with a reduced tunneling tx while keeping all other tunneling val-

ues and U constant. In the previous sections, we have shown that our tunable lattice offers

the possibility to realize a large variety of effective Hamiltonians. Especially, we have shown

the reliability of our experiment as a quantum simulator for the magnetic properties of the

Hubbard model (see Chapter 5). Additionally, this has been benchmarked through quantita-

tive comparisons with state-of-the-art numerical calculations [56, 57, 59]. To enter the driven

regime in the experiment, we linearly ramp up the lattice modulation amplitude to a final

value κ within 2 ms, at a frequency of ω/2π = 6 kHz. We have experimentally verified that

all measurements in the off-resonant case are not affected by the launching phase of the drive.

Afterwards, we allow for an additional equilibration time of 5 ms before the measurement,

during which we maintain a fixed modulation amplitude κ.

Fig. 10.6 shows the results of the driven Hamiltonian, and its ’quantum simulation’ repro-

duced in a static system. The resulting double occupancies and spin correlations agree well

for the driven (green) and static (black) cases. In both cases, we observe a decrease of the

double occupancy for lower tunneling energies, due to the reduction of the total bandwidth

W = 2(teff
x (κ) + ty + tz). Therefore, for increasing driving amplitude, the system is entering

the Mott regime [62]. Additionally, since the modulation mainly acts on the x lattice bond

we also change the anisotropy of the lattice. For an increasing driving amplitude the ratio

teff
x (κ)/ty,z decreases and the lattice becomes less anisotropic. As we have seen in Chapter 5

this effect manifests itself in the spin correlator on the horizontal link, which decreases for

a weaker anisotropy of the underlying lattice. Our direct comparison with a static system

(with variable tx) validates the description of the driven many-body system by an effective

Hamiltonian with a tunneling rate teff
x (κ).

In addition, we can also analyze the lifetime of correlations in the driven system as a
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Figure 10.8.: Resonant modulation of a quantum many-body system. (a) Double

occupancy as a function of onsite interaction U for the static case (black) and driving frequen-

cies of ω/2π = 3 kHz (red) and 6 kHz (blue) with a modulation amplitude of κ = 1.30(3).

Around the resonances, the effective states in the driven Hamiltonian contain a higher num-

ber of double occupancies. Solid lines are (double) Gaussian fits to the data. Data points

and error bars denote the mean and standard error of 4 individual measurements at dif-

ferent times within one driving period. (b) In the near-resonant case U ≈ ~ω, the driven

system can be described by an effective Hamiltonian in which tunneling processes that do

not change the number of double occupancies are renormalized by J0(κ). In contrast, the

creation of doublon-holon pairs is resonantly enhanced and is determined by the first order

Bessel function J1(κ). The effective interaction of the system becomes U − ~ω.

function of the driving strength. This can be a first indicative of heating processes arising

from the driving of the many-body system. Therefore, we measure the level of correlations

as a function of the modulation time and compare the exponential decay to a measurement

without modulation (see Fig. 10.7). Two exemplary measurements of the decay for κ =

0.74(2) (red) and without modulation (blue) are shown in Fig. 10.7a. When driving for

longer times we find that the lifetime is reduced. A summary of the lifetimes of correlations

in the shaken system is presented in Fig. 10.7b, where we have repeated the measurement

for different shaking strengths. When driving for longer times, we find that the lifetime of

correlations is reduced to 22(8) ms at κ = 1.11(3) compared to 89(8) ms in the static case.

Although the lifetime is reduced, it still allows to observe comparable levels of correlations

in the driven and static cases on experimental timescales. The lifetimes of correlations might

be a good indicator to quantify the heating in driven many-body systems. However, further

investigation and a theoretical comparison is needed to specify these effects in our system.

10.5. Resonant modulation - creation of density assisted tunneling

While an off-resonant modulation scheme typically leads to a renormalization of pre-existing

parameters, novel physics which is not accessible in static systems arises for a near-resonant

drive. We have seen in the previous chapter, that resonant modulation can lead to extended

terms such as density-dependent tunneling energies [71, 72, 183]. In the double well system

we have engineered such terms, which are not present in the single band Hubbard model. To

investigate this regime in the many-body context, we set a large onsite interaction close to

the driving frequency U ≈ l~ω (l ∈ Z) and ramp up the modulation at a frequency of either

3 kHz or 6 kHz within 3.3 ms or 2 ms, respectively13. Comparable to the situation in the

13In the resonant case, we have experimentally verified that both observables (D and C) are not affected by

the launching phase of the drive.
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double well system, we observe that the effective states in the driven many-body Hamiltonian

contain a higher fraction of double occupancies if U ≈ l~ω (see Fig.10.8a). We can clearly

identify the first and second order resonances for a shaking frequency ω/2π = 3 kHz and the

first resonance around U ≈ ~ω = 6 kHz for a shaking frequency ω/2π = 6 kHz.

In order to obtain a microscopic understanding of the observed phenomena, we perform a

Floquet analysis on the time-periodic Hamiltonian 10.1 in the near-resonant driving regime

with t � U ≈ l~ω. Analog to the derivation of the near-resonantly driven Hamiltonian in

the double well system we transform to a rotating frame using the operator

R̂(τ) = exp

i∑
j

(lωτ n̂j↑n̂j↓ +
∑
σ

Fj(τ)n̂jσ)

 , (10.3)

where Fj(τ) = 1/~
∫ τ

0 fj(τ
′)dτ ′. In this frame, the tunneling on the horizontal bonds is to

lowest order in 1/ω described by the effective Hamiltonian

Ĥeff
tx = −tx

∑
i∈A,σ
j=i+ex

[
J0(κ)âijσ̄ + Jl(κ)b̂lijσ̄

]
ĉ†iσ ĉjσ + h.c. (10.4)

where ↑̄ = ↓ and vice versa [447, 448, 459]. The tunneling ty remains unaffected, while we

obtain a similar but small correction in tz since the hexagonal lattice is not an ideal brick

lattice (see discussion above).

The second term in the derived Hamiltonian is exactly the result we have obtained for the

kinetic energy in the near-resonantly driven double well (see Equation 9.19). In the double

well system we prepared (and assumed for the analytical description) a system with two

atoms of opposite spin. In contrast to the double well system, the many-body system in

a harmonic trap can also have more or less than two spins on two neighboring sites. As

a result, the effective tunneling energy is density-dependent and can be described by two

distinct processes. Hopping processes which do not change the number of double occupancies

as described by the operator âijσ = (1− n̂iσ)(1− n̂jσ) + n̂iσn̂jσ are renormalized by J0(κ). In

contrast, the creation or annihilation of doublon-holon pairs corresponding to b̂lijσ = (−1)l(1−
n̂iσ)n̂jσ + n̂iσ(1 − n̂jσ) become resonantly restored with an amplitude txJl(κ). In addition,

the effective interaction U eff = U − l~ω = −δl is given by the detuning from the l-photon

resonance δl.

Fig. 10.8b summarizes these processes in an illustrative tight-binding representation. A

single atom without a neighboring atom, or a double occupancy with a single atom, is not

influenced by the interaction energy U and therefore will always be governed by an off-

resonant modulation. As a result, for such a hopping process, the tunneling is renormalized

by J0(κ) (brown arrows). Contrarily, for a system of two neighboring sites with two atoms of

opposite spin the tunneling process is enhanced by the resonant shaking along the x-direction
14. In this picture, one can also understand the creation of double occupancies for small δl,

as the system becomes effectively more weakly interacting.
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Figure 10.9.: Enhancement and sign reversal of magnetic correlations by near-

resonant driving. (a) Spin correlations on the horizontal link as a function of U for the

same parameters as in Fig. 10.8. For U > ~ω (red), anti-ferromagnetic correlations are en-

hanced compared to the static case (black) for a broad range of interactions. When U < ~ω
(blue), the correlator changes sign and the system develops ferromagnetic correlations. (b)

Spin correlations as a function of driving amplitude κ for ω/2π = 3 kHz, U/h = 3.8(1) kHz

(red) and ω/2π = 6 kHz, U/h = 4.4(1) kHz (blue). For U > ~ω, anti-ferromagnetic corre-

lations increase around κ ≈ 1.3. For ~ω > U , correlations become ferromagnetic beyond a

critical modulation amplitude. Data points and error bars denote the mean and standard

error of 10 individual measurements at different times within one driving period.

10.6. Enhancement and sign-reversal of magnetic correlations

In Section 9.9 we have experimentally shown that resonant modulation processes additionally

affect the magnetic exchange energy. In the representation of the effective tight-binding model

(see Fig. 10.8b) we can understand the change in the magnetic exchange as a resonant

enhancement of the virtual ’superexchange’ processes due to the shaking with frequency

U ≈ l~ω. To probe the influence of the tunable exchange in the driven many-body system we

measure the nearest-neighbor spin-spin correlations15. Strikingly, we find that the magnetic

correlations on the horizontal links depend both on the sign and magnitude of the modulation

detuning δ = ~ω � U (see Fig. 10.9).

For a red-detuned drive (δ < 0), correlations are increased compared to the static case

if |δ| is on the order of a few tunneling energies tx. In contrast, when choosing δ > 0 the

sign of the spin-spin correlator inverts and the system exhibits ferromagnetic correlations

on neighboring sites in the x-direction. If we set a fixed interaction strength and vary the

amplitude of the modulation, we find that for δ < 0 correlations increase for values around

κ ≈ 1.3 before they eventually decrease again. For a blue-detuned drive (δ > 0) a critical

value of the driving strength is required for the system to develop ferromagnetic correlations.

As expected from the microscopic picture, the magnetic properties of the many-body state

are significantly altered in the effective Hamiltonian 10.4, since microscopically the superex-

change process leading to spin-spin interactions involves two virtual hopping processes deter-

mined by Jl(κ), in which a double occupancy at energy U eff is created and annihilated. As

we have seen in the discussion of the double well, the exchange energy Jex on the horizontal

bonds will depend both on the modulation amplitude κ and the detuning δ. It even changes

sign for δ > 0, because in this case the effective interaction becomes attractive [436, 437, 438]

14If two neighboring atoms have the same spin, tunneling is prohibited due to the Pauli blocking.
15Chapter 5 has shown that the spin-spin correlations are an ideal observable to probe the onset of spin-

ordering in the Fermi-Hubbard system
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(see Section 9.9 for all details).

The dependence of the exchange energy on the driving frequency and strength provides

a microscopic explanation for the phenomena observed in the many-body system16. In the

off-resonant case, the magnetic exchange decreases with increasing modulation amplitude,

which reduces the lattice anisotropy and therefore the correlations on the x-bonds. Here,

we can qualitatively compare the results in the many-body system (Fig. 10.6b) with the

experimental measurements and theoretical description in the double well (see Fig. 9.15). If

the interaction energy U comes close to, but is still lower than the driving frequency, resonant

effects start to dominate and the magnetic exchange inverts its sign, leading to ferromagnetic

correlations in the many-body system, as observed in Fig. 10.9 (compare to Fig.9.16c,d for

the measurements in the double well).

For U & ~ω, we have also seen that the exchange energy increases with κ, which can

enhance anti-ferromagnetic correlations due to several reasons. First, the anisotropy can be

increased since the ratio Jxex/J
y,z
ex becomes larger, which makes it more favorable to redis-

tribute entropy onto the weak links in y- and z-directions (as described in Section 5.4 and in

our publication [54]). Second, while the exchange is increased, the single-particle tunneling

energy is renormalized as tx,single = txJ0(κ) in the effective Hamiltonian (compare the two

terms in the effective Hamiltonian 10.4). Due to the isolated nature of the entire system, the

reduction of tx,single can lead to an entropy redistribution in the trap and lowers the absolute

temperature, which globally enhances magnetic correlations. A final option is given by the

ratio Jex/tx,single, which increases and can result in a more favorable pairing mechanism for

two atoms. They can form a singlet state in the low filled regions of the trap instead of

delocalizing far apart [438].

Furthermore, we can also determine the adiabaticity of the protocol to reach states in

the effective Hamiltonian, by reverting the modulation ramp (see Fig. 10.10). If the ramp

scheme of the modulation is fully adiabiatic, we expect a reversal of the correlations to their

static value. We perform this test of the adiabaticity in the off- and near-resonant modulation

regime. In case of the off-resonantly driven many-body system, we find that the correlations

do not reach the level of the static case at κ = 0 after reverting the ramp. We attribute

this effect to some extend to a reduced lifetime of correlations (see Fig. 10.7) and residual

heating in the driven system. Similarly, for the resonant case correlations do not reach the

static value after reverting the driving ramp. This is in contrast to our measurements in the

driven two-particle system presented in Chapter 9. In this four level system it was possible to

adiabatically prepare a system in a given Floquet state. However, heating processes in this

reduced Hilbert space are limited compare to a many-body system. To summarize, we find

that correlations return only partially to their static values and further measurements are

needed to investigate the nature of this non-adiabaticity.

10.7. Micromotion of the resonantly driven Fermi-Hubbard model

Finally, we can also observe the micromotion by performing measurements within one period

of the drive. Using similar parameters as in the previous measurement we observe a clear mi-

cromotion in the near resonant regime (see Fig. 10.11). While the minima of the micromotion

16In the previous chapter we have shown experimentally, as well as theoretically, that our driven system offers

the full control on the magnetic exchange energy.
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Figure 10.10.: Adiabaticity of the modulation ramp in the off- and near reso-

nantly driven many-body system. (a) Starting from the static lattice, the modulation

amplitude is ramped up and subsequently kept at a fixed value to allow for a 5 ms equili-

bration time. We start the detection of nearest neighbor spin-correlations C in the effective

Hamiltonian Heff by quenching the tunneling to zero as we ramp up the lattice depth in

all directions within 100 µs. To estimate the adiabaticity of the final state, we perform a

second type of measurement in which we revert the driving ramp followed by an additional

waittime of 5 ms before the detection of H
(R)
st . If the ramp scheme of the modulation is fully

adiabiatic, we expect a reversal of the correlations to their static value. (b) Nearest neighbor

spin-correlations C as a function of the modulation strength in the off-resonant driving regime

(U/h = 0.93(2) kHz and ω/2π = 6 kHz). The filled green circles are measured in the modu-

lated system (data points from Fig. 10.6b) and the open green circles after ramping off the

modulation (H
(R)
st ). (c) Spin-correlator for different driving strengths κ in the near-resonant

regime for U < ~ω (blue, U = 4.4(1) kHz and ω/2π = 6 kHz) and in the regime of enhanced

anti-ferromagnetic correlations (red, U/h = 3.8(1) kHz and ω/2π = 3 kHz). Full data points

represent the effective states in the modulated system (same data as in Fig. 10.9b) while

open data points are measured after ramping off the modulation. Data points and error bars

denote the mean and standard error of 10 individual measurements at different times within

one driving period.

are on a level of the static correlations in the red-detuned case, the average over the micro-

motion shows clearly enhanced correlations. Especially, for the blue-detuned case all data

points show ferromagnetic correlations. For a different set of parameters in the measurement

of the micromotion it should be also possible to switch between anti-ferromagnetic and ferro-

magnetic correlations within one driving cycle. From the sinusoidal fits to the data we obtain

a fitted frequency of 4.8+1.9
�0.4 kHz for the anti-ferromagnetic enhancement or 7.6+3.9

�1.7 kHz for

the ferromagnetic switching, respectively.

10.8. Conclusion

Having shown that near-resonant driving can be used to increase or reverse the sign of mag-

netic correlations, the low energy scales in cold atom systems enable further investigations of
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Figure 10.11.: Observation of micromotion in magnetic correlations for near-

resonant driving. (a) Nearest neighbor spin-correlations C for κ = 1.30(3) as a function

of modulation time after the ramp up of the drive, sampled within one oscillation period.

We observe a significant micromotion both for the case of enhanced anti-ferromagnetic cor-

relations in (a) (U/h = 3.8(1) kHz and ω/2π = 3 kHz) and for ferromagnetic correlations in

(b) (U/h = 4.4(1) kHz and ω/2π = 6 kHz). The open symbols represent a reference mea-

surement in the static case with all other parameters being equal. Solid lines are sinusoidal

fits to the data, error bars denote the standard error of 10 measurements.

the involved timescales and the possible existence of pre-thermalized states in future experi-

ments [426, 455, 456, 460, 461, 462, 463]. Our measurements show, that it is indeed possible to

realize controllable driven many-body Hamiltonians. Especially, the measured lifetime of cor-

relations was found to be sufficiently long to observe them even in the near-resonant driving

regime. The demonstration of density-dependent hopping allows to enter regimes of mag-

netic order which are not accessible in the static Fermi-Hubbard model [436, 448]. Therefore,

Floquet engineering can provide an alternative route to experimentally investigate unconven-

tional pairing in strongly correlated systems [437, 438, 451]. For example, the independent

control of the exchange and tunneling energies opens up the possibility to investigate d-wave

pairing in the t-J-model, which plays an important role in the context of high-temperature

superconductivity [451].

In addition, the realization of the driven Fermi-Hubbard model is an ideal platform to

investigate driven many-body systems and offers the prospect of quantitative comparisons

to theoretical predictions. Determining an understanding of the dynamical processes can

for example reveal the underlying microscopic processes and limitations of ultrafast optical

manipulation of magnetic order [76]. A more detailed discussion on possible future exper-

iments on the concept of driven many-body systems is following in the ’Outlook’ chapter

11. Here, one other interesting future research direction is the combination of topology with

interactions, as both topics have been separately realized in our experimental setup.
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11 Outlook

The experimental results presented in this thesis show the strength of quantum simulation

and its wide range of applications. We have seen, that fermions in optical lattices offer a

large tunability and allow for versatile implementations in different geometries and setups.

Furthermore, as the recent development of Floquet engineering has shown, new tools and

ideas can be easily realized due to the large flexibility. In the following I will present a short

outlook of possible experiments which could be investigated in future with our experimental

setup. As we have seen Floquet engineering has started a novel development and created a

new direction in quantum simulation. Especially, the first successful measurement of magnetic

correlations in a driven Fermi-Hubbard system should be mentioned here and validates this

approach to study driven many-body systems.

11.1. Dynamics in driven many-body systems

In the previous chapter, we have shown that near-resonant driving can be used to switch

and tune local magnetic correlations. Although our observations can be nicely explained by

a microscopic picture and described by an effective Hamiltonian the exact dynamics of the

many-body states and the buildup of correlations in a driven Fermi-Hubbard model remain

as a future investigation. By analyzing these mechanism we could reveal the underlying

microscopic processes and limitations of ultrafast optical manipulation in condensed matter

systems [76, 77, 78]. In general, a better understanding will help to engineer suitable materials

for future applications.

Due to the ’slow’ timescales in optical lattice systems, we can study the dynamics of the

magnetic properties by varying the modulation time after the ramp up of the drive (see

Fig. 11.1). In first measurements we find that it takes a few milliseconds until correlations

increase for the red-detuned driving. For a driving strength of κ = 1.30(3) and U/h =

3.8(1) kHz, ω/2π = 3 kHz (red data points), anti-ferromagnetic correlations increase with

time and reach a level higher than the static case. If the interaction is smaller than the

driving frequency (blue, U/h = 4.4(1) kHz, ω/2π = 6 kHz), the correlations switch sign and

become ferromagnetic after a few milliseconds. For modulation times longer than 10 ms the

correlations start to decrease, similarly to the observed decay in the lifetime measurement

from the off-resonant modulation. We can extract the lifetime of magnetic correlations for

U > ~ω (red) from an exponential fit to the long-time behavior (for the fit we use modulation

times larger than 4 ms). While we obtain a lifetime of 82(34) ms in the static case, it is

reduced to 12(4) ms at κ = 1.30(3) in the resonant case. The red dashed solid line for short

modulation times in the resonant case indicates the initial increase of correlations.

The two measurements indicate a comparable timescale for the build-up of correlations in
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Figure 11.1.: Formation and decay dynamics of magnetic correlations for near-

resonant driving. Nearest neighbor spin-correlations C as a function of the modulation

time after the ramp up of the drive for a driving strength of κ = 1.30(3). We measure the

formation and decay of magnetic correlations in the near resonant driving regime for two

specific sets of interactions and modulation frequencies (red data points, U/h = 3.8(1) kHz,

ω/2π = 3 kHz and blue, U/h = 4.4(1) kHz, ω/2π = 6 kHz). We can directly compare the

results with the level of correlations in the static case (black, U/h = 3.8(1) kHz). Solid lines

show an exponential fit of the full data in the static case (gray) and to modulation times

longer than 4 ms in the driven lattice for U > ~ω (red). All measurements are averaged over

one modulation cycle. Data points and error bars denote the mean and standard error of 13

individual measurements at different times within one driving period.

the effective Hamiltonian, independent of the detuning. In general, the buildup of correlations

and therefore the dynamics of driven many-body systems features different timescales: An

initial build-up of an ’effective’ Hamiltonian, which is indicated by the rise of correlations, the

intermediate description within the formalism of the effective Hamiltonian and a final decay

due to heating. A future study can reveal those timescales and compare the experimental

many-body dynamics to theoretical calculations. In general, a theoretical analysis of driven

many-body Hamiltonians is quite demanding and a comparison between experiment and

theory is a usefull crosscheck for both experiment and theory. Recent theoretical results

seem to allow for a detailed comparison and could lead to a better understanding of the

heating mechanism of driven many-body systems and their limitations [464]. Especially, a

quantitative comparison can be a benchmark for further studies, as has been done in the

static Fermi-Hubbard model [20, 56, 57, 58]. A first possibility is to investigate the formation

of double occupancies in the off-resonant and near resonant modulation regime [465, 466,

467].

By looking at spin-excitations and the decay of correlations as well as the excitations of

double occupancies we can investigate the description of the driven system by an effective

Hamiltonian. Due to the large tunability, we can change parameters like the detuning and the

driving frequency and analyze possible deviations. In a single band picture, theory shows that

heating is exponentially suppressed for large frequencies [468], however a coupling to higher

band will change this picture [114, 288, 457]. If experimental results show an increased heating

or discrepancies from the theoretical expectations, a more complex theoretical description,

including coupling to higher bands and complex loss mechanism could be included. In ad-

dition, our measurements of the system dynamics pave the way to investigate the possible

existence of pre-thermalized states in future experiments [426, 455, 456, 460, 461, 462, 463].

One possible scheme to detect pre-thermalized states could be the investigation of different
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relaxation time scales in pump-probe experiments [464].

As stated in the previous section, the increase of correlations in the near-resonantly driven

Fermi-Hubbard model might be connected to a pairing mechanism [438]. Here a detailed

analysis of the observed effect can lead to a better understanding and might point at the

correct explanation. We can probe the increase of correlations as a function of the filling

(doping) of the system by changing the total atom number and shaping of the trapping

potential and compare our measurements to theoretical calculations. In addition, we can

explore new observables, such as a spectroscopic measurement of the pairing gap [38]. To

analyze the role of the anisotropy, we can additionally modify the values of the tunneling links

and vary the geometry of the system to experimentally determine the change in the behavior.

Driven systems might provide a new perspective to investigate unconventional pairing in

strongly correlated systems [354, 355, 437, 438, 451] and could reveal microscopic processes to

explain driving induced superconductivity in condensed matter systems [79]. In general, using

resonant modulation (not necessarily using phase modulation) we can implement different

correlated hopping models which could lead to exotic quantum phases [354, 355, 437, 438,

451].

Furthermore, if we combine the spin-dependent driving scheme with an interacting system

we can immediately realize numerous interesting many-body Hamiltonians [356, 357, 359,

360], such as the Falicov-Kimball model [351, 368]. It should furthermore be possible to

mimic mass imbalanced lattice systems, which allows for an experimental investigation of

in FFLO states [336]. Instead of loading a one-dimensional optical lattice, we can realize

the spin-dependent shaking in three-dimensional lattice geometries. By using a pair of coils

instead of a single coil, an improved modulation scheme can be built. With this we can realize

pure gradients for the creation of spin-dependent forces, which will additionally minimize the

change of the offset field and lead to a more controlled setup. Here, one possibility is to use

the pair of Ioffe-coils (labeled as ’Gradient’ and ’Ioffe’ coil in Fig. 2.5a). One complication is

the slight different distance to the atomic cloud, which we can compensate by independently

calibrating the amplitude of the sinusoidal modulation for each of the two coils. For strong

interactions U � t, the model is described by a spin-1/2 XXZ-model (anisotropic Heisenberg

model) and can lead to a mismatch of Fermi-surfaces [361, 362, 363]. We could directly

reveal the Fermi-surface mismatch by a momentum resolved band mapping technique, which

we can extend to a spin-dependent detection. This is achieved by adding a Stern-Gerlach type

time-of-flight detection to our usual measurement procedure. In addition, we can infer the

properties of these new systems by measuring spin-spin-correlations, which should dependent

on the spin-axes.

Finally, we can combine driven-interacting systems with topological non-trivial band struc-

tures, which are realized with periodic modulation. This idea is described in more detail in

the following sections.

11.2. Measuring topological edge states

By using an elliptically driven optical lattice we have successfully implemented the Haldane

model and could detect its topological phase transition as well as distinct topological re-

gions. While experiments with synthetic dimensions could identify ’edge’ modes and measure

unidirectional motion [393, 394], a clear measurement of the edge modes in two-dimensional
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Figure 11.2.: Creation of tunable topological interfaces. (a) Experimental imple-

mentation of the setup. We add an additional lattice beam (X) to our interfering lattice

(X,Z). To realize a spatial dependent site offset ∆AB(x) we have to slightly adapt the tun-

able lattice configuration. In contrast to our usual implementation, where the non-interfering

beam is detuned by approximately 400 MHz we now use a lattice beam with a wavelength

further detuned (fraction of λ). (b) Resulting lattice potentials as a function of the real space

distance x shown as cut at y = 0. The standing wave created by X has a lattice spacing of

λ/2 (blue), which is slightly more than λ1/2, the spacing of the interference lattice created by

(X,Z) (red). Therefore, their extrema only coincide at a particular point in the system. The

resulting combined optical potential (green) features a spatially varying site offset ∆AB(x).

(c) ∆AB(x) shown for reasonable experimental parameters (for more details see [430]). The

offset is expressed in units of the critical value ∆trans = 4
√

3tNNN, at which the topological

transition occurs (see horizontal dashed lines). (d) Phase diagram of the Haldane model.

The boundary lines in the phase diagram indicate the topological phase transition where a

gap closes. As indicated, within the trapped system different topological regions occur.

systems is still missing. However, the localization length of edge states largely increases due

to the presence of a harmonic trap, while on the same time the velocity of the edge modes is

significantly reduced [469, 470, 471, 472]. As a result, the distinction between bulk states and

edge states becomes challenging for experimental measurements. We can therefore implement

a general scheme to create chiral topological edge modes within the bulk of two-dimensional

engineered quantum systems. For a detailed analysis and description of our proposal, see

our publication [430], which features both experimental parameters for a setup as well as a

detailed theoretical simulation performed by our collaborator Nathan Goldman (Université

Libre de Bruxelles).

Our method is based on the implementation of topological interfaces, designed within

the bulk of the system, which features distinct topological phases in separated regions of

space. The general idea is presented in Fig. 11.2. The non-interfering lattice beam X is

replaced with a different laser beam which is further detuned from the interfering lattice

(≈ 0.5λ). This exchange will lead to a spatially varying site offset ∆AB(x) since the two

standing waves differ in their lattice spacing (see Fig. 11.2b). The resulting spatial dependence
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Figure 11.3.: Measurement of topological edge states via time-evolution of wave

packets. (a) The elliptically driven system features a separation between topological and

trivial regions within the trap, as dictated by the two interfaces. The inner region of the lattice

corresponds to the topological region (�∆trans < ∆AB(x) < ∆trans), while the regions on the

outside are topologically trivial. Chiral topological edge modes are localized and propagate

in the vicinity of these two interfaces, as indicated by the colored arrows. (b) Schematics

of the measurement scheme for the topological edge mode. A small Gaussian wave packet is

initially prepared (τ0) such that the real space position and quasi-momentum are adjusted

to maximize the projection onto the localized chiral modes. We expect to observe a clear

chiral motion along the topological interface, which depends on the chosen projected mode.

As a result, the direction of motion is directly related to the coupled edge mode. For detailed

theoretical simulations of the time evolution and dynamics of the wave packet, see our

publication [430].

of ∆AB(x) leads to our desired creation of distinct topological regions within the trap. If

�∆trans < ∆AB(x) < ∆trans, where ∆trans is the critical value of the topological phase

transition to the trivial phase we implement a topological phase in the central region. In

contrast, for regions in the trap where ∆AB(x) is above or below this limit we realize a

trivial phase. As a result we create linear topological interfaces inside the bulk system, which

significantly reduce the effects of external confinement on topological edge properties. Note,

in our usual implementation of the Haldane model [13] the site-offset varies only negligibly

within the cloud and the whole system is realized in the same phase.

Our proposal to create topologically-protected edge modes, which will localize and freely

propagate in a unidirectional manner is highly tunable. Adjustments of the lattice potential

and modulation parameters allows us to tune the position, the localization length and the

chirality of the edge modes. Fig. 11.3 schematically shows the detection process of the local-

ized edge states. The general idea is to prepare a wave packet with initial real space position

and quasi-momentum such that it maximally couples to one of the desired edge states. For

the correct preparation parameters and sufficiently small wave packets we could project up

to 90% of the atoms onto the localized cloud. In that case, the wave packet will move along

the chiral edge mode with a constant group velocity given by the dispersion of the modes. If

we couple instead to the other edge mode the wave packet will evolve in opposite direction.

For a complete theoretical simulation of different wave packets see our publication, which
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also includes numerical simulations for clouds with sizes that exceed the localization length

of the edge mode. Even in this case it seems still possible to reveal the motion along the

chiral edge mode, especially if we use differential measurements with reversed chirality of

the topological edge modes. Implementing such a detection scheme would be a powerful tool

which could be also used in other future measurements of topological systems.

One direct extension is to combine the elliptical shaking with a modulated magnetic field

gradient, by simultaneously modulating the lattice on one axis and a magnetic field gradient

on the other. We can immediately see that the two spin components would then experience

clockwise or anti-clockwise modulated forces, which leads to opposite phases for the NNN-

tunneling links (assuming opposite magnetic moments). In this case, time-reversal symmetry

is restored and we could implement the Kane-Mele model [375]. In combination with tun-

able interfaces, it might be possible to observe helical (spin-dependent) edge modes with

counterpropagating motion [473, 474].

11.3. Topology and interactions

Our results have shown, that Floquet engineering is a versatile tool and can be used for

the creation of topological bands as well as to engineer density assisted hopping processes

and driven Fermi-Hubbard models. Therefore, one major goal will be to combine topological

band structures with interacting fermionic systems. In general, the tunability of cold atoms

setups is a perfect tool to investigate the influence of interactions which can lead to exotic

topological phases [83]. This opens the possibility of studying topological models with inter-

actions [475] in a controlled and tunable way. For example, extended modulation schemes

could be used to create topological flat bands, which have been suggested to give rise to

interaction-induced fractional Chern-insulators [390, 476]. A first test of fractional statistics

could be the investigation of additional fractional ’Mott plateaus’ as a function of the filling.

Furthermore, by additionally imprinting complex phases on the density assisted tunneling

energies (combining our results from Chapters 8 and 10), dynamical gauge fields and anyonic

statistics could be engineered [448].

I want to mention one possible future direction - the Haldane-Hubbard model - in more

detail. We can directly extend our implementation of the Haldane model on the honeycomb

lattice by loading an interacting spin-mixture instead of a spin-polarized cloud. Detailed

theoretical studies have investigated this model and found interesting and novel phases of

matter in the presence of interactions [201, 202, 203, 204, 425]. While we expect to observe

a Mott insulating state in the large U -limit, theory suggests interesting behavior for weak

interactions. Here, interactions also stabilize the topological region and lift the topological

phase transition to higher values of ∆AB compared to the non-interacting case [204]. One pos-

sible detection method of new phases is to measure the quasi-particle gaps spectroscopically

[38, 204]. Another possibility is to use the detection method of edge states presented above,

as different topological transitions as a function of ∆AB and U would appear as spatially

separated edge modes. Here, also newly implemented detection techniques might be less re-

stricted to non-interacting systems [82, 477, 478]. As we have seen, the direct observation of

Landau-Zener transfers to higher bands is limited to weak confinement and a measurement

of a three-dimensional lattice systems is therefore challenging when using this observable.

Clearly, the investigation of new measurement techniques for interacting topological systems
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is the first step to analyze such model systems.
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[180] T. Busch, B.-G. Englert, K. Rzażewski, and M. Wilkens. “Two Cold Atoms in a

Harmonic Trap”. Foundations of Physics 28 (1998), 549–559.
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joyful music nights. Rémi, our Postdoc, started shortly after me and we could therefore share

many successful results. His intuitive thoughts, as well as his theoretical understanding,

always provided new perspectives and allowed to think about new ideas. Furthermore, he

introduced the amazing and tasteful French cuisine, which I do not dare to compare to the

daily mensa food.

Frederik’s deep understanding of theoretical physics gave another boost to the team, while

his dry humor allowed for many funny moments. Also outside the lab we shared funny

evenings and party nights - not to forget the conversations with my fictive fencing teacher.

Frederik’s additional sportive attitude is only slowed down by missing snow-chains in winter,

just keep going! For the last one-and-a-half years of my thesis I could also enjoy to work

together with Kilian. His dedicated, intense, and focused work is a gain for the whole team.

We not only shared late nights in the lab to measure data, but also had fun parties as

well as sportive events. His steady and determined character generates a pleasant working

atmosphere, which allows for a bright future of the experiment. In addition, I am grateful for

257



our joint hiking tours and looking forward to the upcoming summer. Finally, Joaquin joined

our team when I started writing my thesis. I am sure the team will benefit from his ideas and

attitude, which bring in a new spirit. In addition, I should also mention Martin, who is now

in the Lithium team, but was part of our team as Master student and vastly contributed to

the great effort to realize the topological Haldane model. It is still a pity that Martin decided

to switch to lower dimensions although the bright future of topology and flatlands was so

close, especially since all the physics discussions with him are always fruitful.

Apart from my team, I also want to thank everyone in the whole group. The work without

you would not be so exciting and motivating. Although we do not share the same lab, we still

spend a lot of time together. Here, I should mention the former group members Sebastian,

David, Rafael and Renate who showed that an intact group dynamic will generate a successful

atmosphere and their spirits live on. First, I want to thank Lorenz for his mindful attitude and

numerous deep discussions about physics and life. I admire his incredible technical knowledge,

which has steadily improved the stability of the Cavity experiment. You’re always welcome

back at home to share a good bottle of wine with me. However, when you visit Germany

make sure to not bring any dog; he might be scared away. Dominik and I started around the

same time and since then we shared many days and nights with snow-boarding, movie nights,

as well as game evenings, and celebrations. He is a true team player and immediately boosted

the Lithium lab. For the next board game session, I will try to follow the Olympic thought

’dabei sein ist alles’ rather than the desire to win the game. The many hours of planning the

YAO conference showed me that one can also gain a lot of knowledge outside the physics

world during a PhD. Here, a special thanks goes to Julian, with whom I coordinated the

whole organization team. Andrea has brought the Italian flair into our group, which is also

why pizza Hawaii totally scares him off. His honorable mind of physics is just sometimes

distracted by his planning of trips and journeys.

I also want to thank Tobias for being the backbone of the whole organization within the

group and always having good advice on technical problems. He is especially a grand master

when it comes to communicate problems regarding air conditioning, and remains insightful

although he might be in the cross fire of angry calls when it fails. Furthermore, I am happy

that we have Nishant in our group, who is always graceful and generates a calm atmosphere.

His theorectical understanding is amazing, so I hope he sticks to physics in his future career,

although his Indian cuisine is delicious. A special thanks goes to the postdocs from our group

Jean-Philippe, Manuele and Laura from whom I could learn a lot about physics and get

also different technical advice. The comments and discussions within the group meetings are

always a helpful guidance. I would not have wanted to miss the discussions and exchange of

experimental details, as well as general topics with Philip and our joint confirmation that a

physics career was a better choice compared to car racing. Samuel’s ability to ask elaborate

questions on physics are always a great challenge and helped us think deeply about possible

solutions, while with Katrin I had a lot of fun building electronics and programming arduinos,

as well as FPGAs.

I am also happy that a new generation is now starting in the group and has already

integrated quite well, which lets me believe that the group spirit will continue.

Our work in the lab is highly supported by our secretaries Veronika Bürgisser, Stephanie

Schorlemer, Eik Szee Goh Aschauer, and Stefanie Ackermann. They constantly free us from

all bureaucracy and have useful answers to our questions. Without the help of our electrician



Alexander Frank we would have had some sleepless nights about broken devices. However,

with his help, all the devices of the machine keep running. In addition, he provides us with

custom-made electronics, which allows us to solve a technical problem rather then buying

a standard tool and working around it. Finally, I want to thank everyone again who was

proof-reading different chapters of my thesis.

In general, I am lucky to work with so many great people, which are both scientifically

excellent, but also share passion and fun outside of the lab. Many of you have become not

only colleagues but also close friends, as our fun trips to Rome, Vienna, or the wine festivals

have shown. Furthermore, your passionate appearance at our wedding was amazing, although

it was probably the hottest wedding you’ve ever been to. I’m also happy that many of you

had fun helping harvesting our grapes in Germany. Throughout the years we shared exciting

discussions and exchanged many ideas. Many memorable events will remain, for example our

’decision’ weekend for the YAO conference, where we thought of enjoyable skiing slopes after

work, but were too distracted to ever ski.
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und, ohne den ich vielleicht gar nicht in Zürich wäre. Zusammen haben wir viel erlebt und
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