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Abstract

The modeling paradigm is ubiquitous in contemporary financial industry: within
a pre-specified class of stochastic processes, one is selected as a model by calib-
ration to market prices of options or estimation based on time-series of historical
data. It is then used to calculate prices and hedging strategies for new derivative
products. Hence input information is mapped to real-world decisions in a highly
non-linear way.

modeldata decision

Input Output

Thus, it is very important to quantify uncertainty about model output and
design decision procedures that depend as little as possible on modeling assump-
tions. However, one faces a dilemma, because a more realistic model usually
comes at the price of lower numerical tractability and requires more input data
in the model selection step. These challenging tasks have been a major focus
of the recent mathematical finance literature. Approaches include combining
calibration and estimation within a sophisticated Bayesian framework, i.e. high-
dimensional filtering, looking for model-independent bounds for option prices,
and designing novel data driven numerical procedures for more realistic models.

This thesis examines these questions in three different areas:
Firstly, we consider the filtering problem for the class of affine processes.

While being very popular in financial modeling, their proper use in multi-dim-
ensional models has been limited by the lack of a numerically tractable filtering
methodology. We solve this problem with a novel surprisingly simple approx-
imation technique based on generalized stochastic Riccati ordinary differential
equations. Our theoretical results are complemented by numerical experiments
for Cox–Ingersoll–Ross and Wishart processes illustrating the efficiency of the
method.

Secondly, we consider the problem of hedging a derivative in a scenario based
discrete-time market with realistic transaction costs. Such a setting is more
realistic than most of the models used in practice today, but of course it suffers
from numerical intractability. We demonstrate that this has changed thanks to
recent technological advances: using hedging strategies built from neural networks
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and machine learning optimization techniques, optimal hedging strategies can be
approximated very well, as our numerical study and our theoretical results show
in an impressive way.

Finally, we study the Skorokhod embedding problem for Lévy processes with
non-deterministic initial value. Due to correspondence of option price data to
marginal distributions, this problem is intimately connected to robust finance,
but it is also of independent mathematical interest and no (explicit) solution has
been known to date. Using time-change techniques and ideas inspired from local
volatility calibration, we construct a solution to this problem, which is new also
in the special case of Brownian motion.



Kurzfassung

Das Paradigma der Modellierung ist allgegenwärtig in der heutigen Finanzindus-
trie: aus einer vorgegebenen Klasse von stochastischen Prozessen wird - mittels
Kalibrierung an Marktpreise von Optionen oder Parameterschätzung basierend
auf Zeitreihen von historischen Daten - ein Spezifischer als Modell ausgewählt
und dann zur Berechnung von Preisen und Hedging-Strategien für zusätzliche
Derivate benutzt. Dabei wird Input-Information auf höchst nichtlineare Art und
Weise in praktische Entscheidungen übersetzt.

modeldata decision

Input Output

Es ist daher sehr wichtig die Unsicherheit über den Modell-Output zu quanti-
fizieren und Entscheidungsprozesse zu wählen, die so wenig wie möglich von den
Modellannahmen abhängen. Dies führt zu einem Dilemma, da ein realistischeres
Modell meist numerisch schwieriger zu handhaben ist und bei der Modellauswahl
mehr Input-Daten benötigt. Diese Herausforderungen stehen im Zentrum der
modernen finanzmathematischen Forschung. Lösungsansätze sind unter anderem
Kalibrierung und Schätzung in einem ausgefeilten bayesschen Framework zu kom-
binieren, d.h. hochdimensionales filtering, modellunabhängige Schranken für Op-
tionspreise zu suchen und neue, datenbasierte numerische Methoden für rea-
listischere Modelle zu entwickeln.

Diese Doktorarbeit untersucht obige Fragen in drei verschiedenen Gebieten:
Zuerst wird das Filtering-Problem für die Klasse der affinen Prozesse behan-

delt. Diese sind sehr beliebt in der praktischen Modellierung, ihr Einsatz in
mehrdimensionalen Modellen war aber bisher nur beschränkt möglich mangels
einer effizienten numerischen Filtering-Methode. Wir lösen dieses Problem und
stellen eine neue, überraschend einfache Approximationstechnik zur Verfügung,
die auf verallgemeinerten stochastischen Riccati-Differentialgleichungen basiert.
Wir ergänzen unsere theoretischen Ergebnisse mit numerischen Experimenten für
Cox-Ingersoll-Ross und Wishart-Prozesse und illustrieren damit die Effizienz der
Methode.

Als nächstes beschäftigen wir uns mit dem Hedging-Problem in einem szena-
riobasierten, zeitdiskreten Markt mit realistischen Transaktionskosten. In der
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Praxis sind solche Modelle bis anhin kaum benutzt worden, da numerische Berech-
nungen nicht möglich waren. Wir zeigen mit numerischen und theoretischen Re-
sultaten, dass sich dies dank des technologischen Fortschritts geändert hat: Mit-
tels Hedging-Strategien, die auf neuronalen Netzwerken basieren, und Optimie-
rungstechniken des maschinellen Lernens können optimale Hedging-Strategien
sehr effizient berechnet und approximiert werden.

Zuletzt untersuchen wir das Skorokhod-Embedding-Problem für Lévy-Pro-
zesse mit nichtdeterministischem Startwert. Dieses Problem ist sehr nahe mit
Fragen der robusten Finanzmathematik verwandt, es ist aber auch von unab-
hängigem mathematischen Interesse und bisher gab es keine (explizite) Lösung
dazu. Wir benutzen Time-Change-Techniken und Ideen, die von der Kalibrierung
von Local-Volatility-Modellen inspiriert sind, um eine Lösung zu konstruieren.
Diese ist auch im Spezialfall der brownschen Bewegung neu.



Acknowledgements

Some people might say that writing a doctoral thesis is the last step of a solid aca-
demic education. Just like in other types of schooling, a PhD student encounters
not only one, but various teachers. Let me express my gratitude to all of them for
what they have taught me: most importantly to my supervisor Josef Teichmann
and my collaborators Leif Döring, David Prömel and Oleg Reichmann as well
as Hans Bühler and Ben Wood. But also to all my friends and colleagues and
everyone else with whom I have shared the pleasure of an inspiring discussion.
Special thanks to Dan Crisan for agreeing to act as a co-examiner.
Finally, I would like to thank Emil and his still nameless brother for their sin-
cere and refreshing lack of interest in my work and Cécile for her uncountable
support.

vii



viii



Contents

I Introduction 1

II Affine Filtering 13
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Background: Affine processes and the filtering problem . . . . . . 15

2.1 Affine processes . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Definition and characterization . . . . . . . . . . 15
2.1.2 Exponential moments of affine processes . . . . . 18
2.1.3 Time-inhomogeneous affine processes . . . . . . . 20

2.2 The filtering problem . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Problem formulation and the Zakai equation . . . 21
2.2.2 Uniqueness for the Zakai equation . . . . . . . . 23
2.2.3 Robust filtering . . . . . . . . . . . . . . . . . . . 23

3 The linearized filtering functional . . . . . . . . . . . . . . . . . . 24
3.1 Definition and main results . . . . . . . . . . . . . . . . . 25

3.1.1 Definition of the approximate filter . . . . . . . . 25
3.1.2 Heuristic motivation . . . . . . . . . . . . . . . . 25
3.1.3 Fourier filtering . . . . . . . . . . . . . . . . . . . 25
3.1.4 The smoothing distribution . . . . . . . . . . . . 26
3.1.5 An alternative point of view . . . . . . . . . . . . 27
3.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . 28

4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Proof of auxiliary results . . . . . . . . . . . . . . . . . . . 29

4.1.1 Change of measure . . . . . . . . . . . . . . . . . 30
4.1.2 Estimates for R . . . . . . . . . . . . . . . . . . . 35
4.1.3 Properties of T̄ y . . . . . . . . . . . . . . . . . . 36

4.2 Proof of Proposition II.3.8 . . . . . . . . . . . . . . . . . . 37
4.3 Proof of Theorem II.3.1 and II.3.5 . . . . . . . . . . . . . . 38

5 Illustration: Filtering a Cox-Ingersoll-Ross process . . . . . . . . . 42
5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . 42
5.2 Numerical solution: Approximate filtering methods . . . . 43
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Illustration: Filtering a Wishart process . . . . . . . . . . . . . . 46
6.1 The signal process . . . . . . . . . . . . . . . . . . . . . . 46

ix



x Contents

6.2 Numerical solution of the filtering problem . . . . . . . . . 47
6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

IIIDeep Hedging 51
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.1 Related literature . . . . . . . . . . . . . . . . . . . . . . . 51
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2 Setting: Discrete time-market with transaction costs . . . . . . . . 52
3 Pricing and hedging using convex risk measures . . . . . . . . . . 53

3.1 Example: Exponential Utility Indifference Price . . . . . . 55
3.2 A special class of risk measures: Optimized certainty equi-

valents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Approximating strategies by deep neural networks . . . . . . . . . 57

4.1 Universal approximation by neural networks . . . . . . . . 57
4.2 Hedging strategy input parametrization . . . . . . . . . . . 58
4.3 Optimal hedging using deep neural networks . . . . . . . . 59
4.4 Numerical solution for OCE-risk measures . . . . . . . . . 60
4.5 Extension to general risk measures . . . . . . . . . . . . . 61

5 Numerical experiments and results . . . . . . . . . . . . . . . . . 65
5.1 Setting and Implementation . . . . . . . . . . . . . . . . . 65
5.2 Benchmark: No transaction costs . . . . . . . . . . . . . . 66
5.3 Price asymptotics under proportional transaction costs . . 73
5.4 High-dimensional example . . . . . . . . . . . . . . . . . . 75

IV Skorokhod Embedding Problem for Lévy Processes 79
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

1.1 Related literature . . . . . . . . . . . . . . . . . . . . . . . 80
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.1 Regularity Assumptions . . . . . . . . . . . . . . . . . . . 83

3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.1 The Poisson Equation for Lévy Processes . . . . . . . . . . 85

3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . 85
3.1.2 Solving the Poisson Equation using the Fourier

Transform . . . . . . . . . . . . . . . . . . . . . . 88
3.2 Necessity of Conditions . . . . . . . . . . . . . . . . . . . . 93
3.3 Sufficiency of Conditions . . . . . . . . . . . . . . . . . . . 96

Appendices
A Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . 102

A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B Time-changes for Markov processes . . . . . . . . . . . . . . . . . 106
B.1 Constructing the Time-Change . . . . . . . . . . . . . . . 106
B.2 Pathwise Uniqueness and Martingale Problem . . . . . . . 111

C A Uniqueness Result for Degenerate Fokker-Planck Equations . . 115
C.1 Reducing to the Time-Homogeneous Setup . . . . . . . . . 117



Contents xi

C.2 Well-Posedness of the Martingale Problem . . . . . . . . . 120
C.3 From Uniqueness of the Martingale Problem to Uniqueness

for the Fokker-Planck Equation . . . . . . . . . . . . . . . 129

Bibliography 133



xii Contents



Chapter I

Introduction

Randomness is understood as a quantifiable uncertainty about future outcomes:
while the exact future evolution of a system is unknown and can not be forecasted
perfectly, one may nevertheless weight different outcomes as more or less likely,
according to their probability of occurrence. Stochastic processes mathematically
describe the dynamic random evolution of a system. They are widely used for
modeling time-dependent quantities in many areas of science, technology, eco-
nomics and finance. This amounts to choosing a stochastic process that describes
in the best possible way some data observed to date and related to this quantity.
Based on the chosen process one makes predictions about future outcomes and
takes real-world decisions.

A bank might choose, e.g., a Heston model to describe the evolution of the
price of a stock and its volatility. The model parameters would be chosen so that
the model prices fit as closely as possible the market prices of call options on
that stock. Subsequently, the bank would use the model (based on the calibrated
parameters) to calculate prices for additional derivative products and sell these
products to clients in reality. While this particular model choice is not consistent
with all observations, as call option prices for different maturities would require
different parameters, the procedure described above is at the basis of day-to-day
practice in the financial industry (with varying models, derivatives products, asset
classes, ... ). Let us elaborate on the modeling paradigm in this specific context
of equity options and provide further examples.

As an alternative to the standard Heston model, the bank might choose to
calibrate a local volatility extended Heston model. This is a non-parametric model
and can be chosen perfectly consistent with all observed prices of European call
options on the given stock. However, this model is much less numerically tractable
and to fully specify it, knowledge of option prices for all expirations and all
strikes would be required. Since this data is available on a discrete grid only, an
interpolation (e.g. on the level of implied volatility) not introducing arbitrage has
to be chosen. Thus, to compensate the lack of data, further modeling assumptions
have to be made and different choices of such assumptions may lead to different
prices for the additional derivative products.

Having sold such a derivative product, the bank is now exposed to additional
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2 I Introduction

financial risk: it has received a cash premium (the price) and in exchange agreed
to make a payment at a future date, the expiry date. The size of the payment is
currently unknown and linked to the stock price at the future date. To hedge this
exposure, i.e. to minimize the risk of a financial loss caused by this unknown future
payment, the bank trades in the underlying (and possibly additional derivatives).
It readjusts its holdings in each of these hedging instruments e.g. every day up
to the expiry date. The precise amounts to be held on a given day are calculated
from the pricing model (see above), which is used to make a prediction of the
price of the product on the subsequent day and the sensitivity of this price with
respect to changes in the underlying and e.g. its volatility.

In practice the bank also sells products written on several underlyings and not
just a single stock as considered above. To calculate prices and determine hedging
strategies for such multi-asset products, the bank now also specifies a correlation
model for the underlyings. However, even for relatively simple model choices the
very limited multi-asset options data that is available may not be sufficient to
fully specify the model parameters and, even if there is enough data, calibration
may be highly challenging numerically. This could be resolved by choosing e.g.
a multivariate generalization of the Heston model and modeling the covariance
matrix process by a Wishart process. Alternatively, the bank may decide to
estimate model parameters from time-series of past prices instead of calibrating
these. In whichever way model selection is performed, as in the previous examples
data is translated to pricing and hedging decisions in a non-linear way.

In these examples or any other application leading to real-world decisions it
is therefore important to address model (or Knightian) uncertainty, i.e. to take
into account that the chosen stochastic model is only an idealization of reality
and, to deal with this, aim at decisions and procedures which depend as little as
possible on the modeling assumptions. Such questions of robustness with respect
to model misspecification have been a major focus of the mathematical finance
literature in the past decade. Handling model uncertainty within a model can of
course never fully resolve the issue, but it can help to replace standard models
with significantly more robust ones. We refer to this general (and not sharply
separated) task as dynamic uncertainty modeling, see also [CKT17]. It addresses
one of the key problems of stochastic modeling: different models may lead to
inconsistent decisions. As elaborated above, however, a challenge that one faces
when addressing this is the opposing second key problem: a good model needs
a lot of data and computation time, which may not be given due to real-time
evaluation requirements.

This thesis studies three instances of dynamic uncertainty modeling, each of
them treated in an independent chapter, addressing a different problem. We
now explain each of the chapters very briefly from the perspective of dynamic
uncertainty modeling. Subsequently, we will give a more detailed overview of
each of the chapters.

Consider a Black-Scholes model under the real-world probability measure.
Since the drift parameter is notoriously hard to estimate (see e.g. [Rog01, Sec-
tion 5]), it is essential to incorporate the uncertainty about the drift into the
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model. Updating this uncertainty by subjective prior information leads to the
seductively attractive Bayesian approach: one models the drift with a (latent)
stochastic process. The distribution of this process at time t conditional on the
observations (in our case the price process) up until t then quantifies the uncer-
tainty about the drift within the model. Calculating this distribution is the clas-
sical filtering problem, see e.g. [BC09a]. For Gaussian models (i.e. when a linear
stochastic differential equation is taken as a prior for the drift) this leads to the
famous and numerically tractable Kalman filter, but in general (non-Gaussian
and higher-dimensional) situations numerical calculation is highly challenging.
Chapter II of this thesis studies the filtering problem for the more general class
of affine processes (see e.g. [DFS03],[CFMT11]) and introduces a new approx-
imation scheme that allows for efficient numerical calculation in high dimension.
We provide theoretical results on the associated (stochastic) Riccati equations
and illustrate the method by numerical experiments for Cox-Ingersoll-Ross and
Wishart processes.

In Chapter II we have developed an efficient numerical approximation method
in a classical spirit, but it is not always possible to do this. In the sequel we use
novel solution concepts and techniques inspired by machine learning.

The brief summary of Chapter II given above provides us with a perfect
example of the key modeling dilemma: a more realistic model usually comes
at the price of lower numerical and computational tractability. In parallel, as
illustrated in the local volatility example given above, a more sophisticated model
also requires more data in the model selection step. Lack of data can only be
compensated by additional assumptions, which may interfere with the original
aim of a more realistic model.

Thus, even though in reality trading is subject to transaction costs, a bank
selling a derivative will base (real-world) hedging decisions on an idealized model
neglecting such costs. The reason for this is simply that more realistic models have
not been numerically tractable so far. Thanks to recent technological advances,
however, this is about to change, as the study presented in Chapter III illustrates.
Here the problem of hedging a derivative in a discrete-time (incomplete) market
with frictions (e.g. transaction costs or temporary market impact) is considered.
Risk-preferences are specified in terms of a convex risk measure. It is not pos-
sible to calculate indifference prices (and associated optimal hedging strategies) in
such a framework using classical numerical techniques. However, in Chapter III
we show that, using modern machine learning techniques, numerical calculation
is feasible, but we dismiss the concept of a classical solution accompanied by
an optimal algorithm approximating it. The key idea is to parametrize hedging
strategies by neural networks and use machine learning optimization techniques
to train them. This is indeed feasible even on a standard laptop thanks to highly
efficient numerical packages such as TensorFlow, Theano and Torch. We prove
theoretical approximation results and present various numerical experiments in
Python. Note that here uncertainty about modeling assumptions is not part of
the model, but rather of the decision procedure: the algorithm and the imple-
mentation can handle a wide range of market environments in the same framework
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and so one may run it for a variety of different modeling assumptions in parallel.
An alternative and very popular approach to dynamic uncertainty modeling

is taken in the area of robust finance, see e.g. [Hob98, BHR01b, CL10, CO11],
[BHLP13, DS14, DOR14, GHLT14, BN15] and references therein. One does
not incorporate incoming information dynamically, but instead takes a static
approach and specifies a family of possible models (with minimal assumptions,
e.g. only imposing consistency with prices of initially observed call options) and
aims at finding a hedging strategy (and associated price bounds) that super-
replicates the payoff of a given derivative in all of these models. In order to
prove that these bounds are tight, one often needs to construct a martingale that
has prescribed marginal distributions (and potentially additional properties, see
e.g. [Hob98], [BHR01b], [Hob11]). By a random time-change, this is equivalent
to the Skorokhod embedding problem (SEP), see e.g. [Obł04] for an overview.
For both of these problems there exist a variety of solutions with continuous
trajectories (see e.g. [HPRY11]), but results on processes with jumps are scarce.
In particular, so far there has been no (non-randomized) solution for the SEP
for general jump processes with non-deterministic starting value. In Chapter IV
we solve this problem for the class of Lévy processes ([Ber96],[Sat99],[Kyp14])
and thereby also obtain a new solution for the case of Brownian motion. Our
construction is very natural from the point of view of mathematical finance: it
is based on inverting the Fokker-Planck equation associated to the Lévy process.
This can be seen as calibrating a local volatility model (as in [Dup94], [CGMY04])
and amounts to time-changing the Lévy process. However, making this precise
is technically delicate (the resulting local volatility function is time-dependent, it
may be unbounded and exhibit zeros) and requires results on time-changes and
uniqueness of Fokker-Planck equations that have not yet been available in the
literature. These are developed in the general framework of martingale problems
of [EK86] in the appendix of Chapter IV.

We now give a more detailed overview on each of the chapters. The three
chapters correspond to [GT17],[BGTW17] and [DGPR17], respectively.

Chapter II: Affine Filtering

This chapter is devoted to the filtering problem for affine processes. The results
can also be found in [GT17].

More precisely, we set D = Rm
+ × Rd−m and consider a conservative affine

process ((Xt)t≥0, (Px)x∈D) with state space D. X is considered a latent signal,
about which inference is only made through the observation process Y defined by

Yt =

∫ t

0

Xs ds+Wt, t ∈ [0, T ], (1.1)

for a d-dimensional Brownian motionW independent of X. The filtering problem
is to calculate the distribution of Xt conditional on FYt := σ(Ys : s ∈ [0, t]), the
filtering distribution, for any t ∈ [0, T ].

Theoretically, this problem has been solved in great generality and so also
in the present setting we may use [KO88] to characterize the (process of) con-
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ditional distribution(s) as the unique solution to the (measure-valued) Kushner-
Stratonovich stochastic differential equation. Since X is a Px-semimartingale,
one may take an alternative approach (originating from [Cla78],[Dav80]) and
consider the pathwise filtering functional, defined for x ∈ D, t ∈ [0, T ], f ∈ B(D)
and y ∈ C([0, T ],Rd) by

σxt (f, y) = Ex
[
f(Xt) exp

(
y>t Xt −

∫ t

0

y>s dXs −
1

2

∫ t

0

|Xs|2 ds

)]
. (1.2)

Then σxt (f, Y )/σxt (1, Y ) = Ex[f(Xt)|FYt ], Px-a.s and so σxt (·, Y ) can be used to
fully describe the filtering distribution at t. See also [BC09a, Chapters 2-5] for
more details.

Due to the infinite-dimensional structure of the problem (except in special
cases, see [BC09a, Chapter 6]), it has remained highly challenging to numerically
calculate the filtering distribution. Well-established methods exist for approxim-
ately Gaussian or very low-dimensional settings (see [BC09a, Chapters 8-10]), but
this does not cover the case of (general) affine processes. Motivated by the prom-
inent role of affine processes in financial modeling (see e.g. [DFS03], [KRM15,
Section 3]), in Chapter II we fill this gap by providing an ordinary differential
equation based numerical filtering method.

In more detail, the approach taken in Chapter II is to approximate (1.2) by a
linearized functional of the form

ρxt (f, y) = Ex
[
f(Xt) exp

(
y>t Xt −

∫ t

0

y>s dXs −
∫ t

0

γ>s Xs − cs ds

)]
(1.3)

with appropriately chosen γ ∈ C([0, T ],Rd) and c ∈ C([0, T ],R). The key reason
for doing this is that evaluations of ρxt (·, y) at the Fourier basis can be calculated
by solving a system of (generalized Riccati) ordinary differential equations:

More precisely, as one of our main contributions, we show that there exists T0 > 0
such that for all u ∈ iRd and T ≤ T0 the system

−∂tΦ(t, T, u) = F (Ψ(t, T, u)− yt)− ct, Φ(T, T, u) = 0

−∂tΨ(t, T, u) = R(Ψ(t, T, u)− yt)− γt, Ψ(T, T, u) = u+ yT , 0 ≤ t ≤ T.
(1.4)

has a unique solution Φ(·, T, u) ∈ C1([0, T ],R), Ψ(·, T, u) ∈ C1([0, T ],Rd) and
that

ρxT (fu, y) = exp(Φ(0, T, u) + x>Ψ(0, T, u)), (1.5)

where fu(z) := exp(u>z), z ∈ D.

Here F and R are vector fields associated to the (characteristic function of the)
affine process and of Lévy-Khintchine-form. The representation (1.5) can then
be used to devise Fourier filtering techniques, analogously to the Fourier pricing
techniques used for affine (log-price) models, see e.g. [CM99] and [DFS03]. Note
that we need to impose an exponential moment condition on the jump-measures,
without which (1.3) may not be finite for any t > 0. The proof of the above result
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is based on a change of measure (relying on [KMK10],[CFY05]) and comparison
results for generalized Riccati equations. These are of independent interest and
extend results from [KMK10] and [KRM15] to Riccati equations associated to
non-conservative time-inhomogeneous affine “processes” that do not necessarily
satisfy the admissibility conditions. Finally, we also provide an extension of
the above result to the smoothing distribution, non-deterministic initial law and
give an interpretation in terms of time-inhomogeneous affine processes (see e.g.
[Fil05]).

These theoretical results are complemented by numerical experiments for a
Cox–Ingersoll–Ross (CIR) process [CIR85] and a Wishart process [Bru91]. The
latter is a matrix-valued extension of the former and a special case of affine pro-
cesses taking values in the set of symmetric positive semi-definite matrices (see
[CFMT11]). For both processes, standard approximate non-linear filters (such as
the extended and ensemble Kalman filter, see [BC09a, Chapter 8] and [LSZ15]) do
not give accurate results, since they work under a paradigm of Gaussian approxim-
ations. However, if the Feller condition is not satisfied, the marginal distributions
of CIR and Wishart processes are highly non-Gaussian close to their well-known
boundaries. Therefore, such methods fail for these processes. To overcome this,
alternative parametric families of distributions (e.g. a Gamma distribution in
[Bat06]) have been proposed. However, so far the problem of finding a general
procedure applicable also to higher-dimensional and general affine processes has
remained open.

To illustrate the accuracy and feasibility of our method, in experiments for
the CIR process the filter induced by (1.3) is compared to the benchmark (a
bootstrap particle filter) and two standard Gaussian- and Gamma-approximation
approaches (extended Kalman filter and [Bat06]) and shown to be more accurate
than the two other approximations. For the Wishart process the situation turns
out to be even more extreme: numerical experiments (already) for d = 3 show
that in order to achieve the same level of accuracy (measured in terms of mean
square error) by a particle filter as is obtained by the filter induced by (1.3), an
outrageous number of particles is necessary.

Chapter III: Deep Hedging

In this chapter we apply deep learning techniques to the problem of pricing and
hedging in discrete-time market models with frictions. The chapter is based on
[BGTW17].

Let us start by a formal description of the market model. On a probabil-
ity space (Ω,F ,P) with filtration F = (Ftk)k=0,...,n we consider a discrete-time
F-adapted stochastic process S = (Stk)k=0,...n in Rd representing the prices of
available hedging instruments. At time t0 = 0 an agent sells a contingent claim,
yielding a (random, FT -measurable) payoff Z at time tn = T for the buyer. The
agent charges price p0 and trades dynamically in S according to an F-predictable
hedging strategy δ, i.e. she readjusts the number of units she holds in each of the
hedging instruments at tj, j = 0, . . . , n − 1. Assuming risk-free borrowing and
lending (which just means that we are working with discounted quantities), the
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value of her position at T is thus given as

PLT (Z, p0, δ) := −Z + p0 + (δ · S)T − CT (δ), (1.6)

where · denotes discrete-time stochastic integration and CT (δ) denote the cumu-
lative transaction costs associated to δ.

This leads to the problem of hedging her exposure to Z: ideally, the agent
would like replicate Z, i.e. to choose p0 and δ such that (1.6) is equal to 0,
P-a.s. However, this is not possible in general and so she needs to specify risk-
preferences. For example, she could aim at finding δ and p0 that minimize the
variance of (1.6). Since such an approach penalizes both gains and losses, here
we follow e.g. [FL00], [Xu06], [KS07], [IJS09] and describe risk-preferences by a
convex risk measure ρ, see [FS16]. Denote by H the set of all available hedging
strategies. Optimal pricing and hedging then amounts to calculating the (a pos-
teriori unique) indifference price p(Z) defined implicitly by

inf
δ∈H

ρ (PLT (Z, p(Z), δ)) = inf
δ∈H

ρ (PLT (0, 0, δ)) , (1.7)

and an optimal hedging strategy for Z is a minimizer (if it exists) for the left
hand side of (1.7). Thus, her risk when selling the contingent claim at price p(Z)
and hedging optimally is the same as when not entering into the transaction.

While such a framework is highly flexible and general (and e.g. includes ex-
ponential utility indifference pricing), numerical calculation has been extremely
challenging even in low-dimensional and more idealized settings, see e.g. [HN89],
[DPZ93],[WW97] and [KMK15]. The approach pursued in Chapter III is to only
consider hedging strategies built from neural networks, a parametric family of
functions that can be used to approximate any multivariate function (surpris-
ingly) efficiently (see [BGKP17]) and for which efficient machine learning op-
timization algorithms (see [GBC16]) and toolboxes implementing these (we use
TensorFlow here) are available. In Chapter III we demonstrate how one may
build on this to calculate (1.7) numerically.

In detail, instead of optimizing over the whole of H in (1.7), we only consider
strategies of the form

δθtk := F θk(St0 , . . . , Stk−1
), k = 1, . . . , n, (1.8)

where F θk is a neural network with a fixed architecture (i.e. a fixed activation
function, number of layers and nodes) and weights parametrized by θk. Indexing
the “complexity” of the architecture by M ∈ N, the set HM of such hedging
strategies is thus parametrized by some ΘM ⊂ Rp (for some p ∈ N depending
on M) and so problem (1.7) with H replaced by HM is an optimization problem
over ΘM . Denote by pM(Z) the indifference price for this approximate problem.

As a theoretical justification, we prove that as M → ∞, the approximate indif-
ference price pM(Z) converges to the price p(Z) of the original problem (1.7).

The proof relies on a suitable version of the universal approximation theorem
(see e.g. [Hor91] and the references in [BGKP17]), but some care is needed, since
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standard results work on compact spaces. Also note that for simplicity of the
exposition here we have assumed Ftk = σ(St0 , . . . , Stk), but the result holds more
generally (with a suitable modification of (1.8), see Chapter III). Furthermore,
one may also consider the more restricted choice of recurrent network hedging
strategies δθtk := F θk(Stk−1

, δtk−1
) and in fact this turns out to be very efficient in

numerical examples.
This simple but important result provides a theoretical justification for hedg-

ing based on neural networks. While for a special class of risk measures (see e.g.
[BTT07]) one can then directly apply stochastic gradient type-algorithms to train
the neural network, i.e. find a parameter θ ∈ ΘM that is close-to-minimal for
the objective ρ

(
PLT (Z, 0, δθ)

)
. For general risk measures however, this objective

is not directly amenable to these algorithms and so an additional approximation
is required. By relying on the dual representation of ρ, we show that one may
approximate the optimal hedging problem by solving

inf
θ̄∈ΘM

sup
θ̃∈Θ̃M

J(θ),

J(θ) := E
[
−PL(Z, 0, δθ̄) exp(F θ̃ ◦ S)

]
− ᾱ(F θ̃ ◦ S)− λ0(E[exp(F θ̃ ◦ S)]− 1)

(1.9)
where θ = (θ̄, θ̃), F θ̃ : Rd(n+1) → R is a neural network parametrized by θ̃ ∈ Θ̃M ,
λ0 is a Lagrange multiplier and ᾱ is related to the dual representation of ρ. We
prove a similar convergence result as above and conclude the theoretical justific-
ations by arguing that J is amenable to backpropagation and stochastic gradient
type algorithms. Throughout the chapter we take a sample based approach and
assume that Ω is finite, but this assumption is essential only for this last part.

These theoretical justifications are complemented by a numerical study dem-
onstrating the surprising feasibility and accuracy of the method. To have a bench-
mark at hand, as a first example we consider a setting without transaction costs
and where S is a discretized Heston [Hes93] stochastic volatility model under
a risk-neutral measure. Note that in addition to the underlying one may also
trade in a variance swap and so d = 2 hedging instruments are available. The
deep hedge associated to the expected shortfall (also called conditional or average
value at risk) risk measure for varying levels of risk-aversion is compared to the
model delta-vega hedge and is seen to produce a very accurate approximation.
As a second example, we examine the effect of proportional transaction costs
on pricing. Denoting pε = pε(Z) the exponential utility indifference price of Z
associated to transaction costs of size ε, it has been established in a variety of
one-dimensional models (see e.g. [WW97], [KMK15] and the references therein)
that

pε − p0 = O(ε2/3), as ε ↓ 0. (1.10)

As one of our main contributions, using the methodology developed in Chapter III,
we are able not only to reproduce (1.10) in a Black-Scholes model, but also in a
Heston model with d = 2 hedging instruments. For this case (or any other model
with d > 1) neither theoretical nor numerical results on (1.10) have been available
previously.
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Finally, we consider a setting with d = 10, built from 5 independent Heston
models and show that the algorithm gives accurate approximations of hedging
strategies also here. This demonstrates the feasibility also in higher-dimensional
setups.

Let us conclude by pointing out the flexibility of the methodology: the al-
gorithm takes as an input a transaction cost structure, a risk measure ρ and
samples of the price process S and the payoff Z. Given these specifications,
it calculates an approximate indifference price and a close-to-optimal hedging
strategy.

Chapter IV: Skorokhod Embedding Problem for Lévy Processes

In this chapter we provide a solution to the Skorokhod embedding problem for
Lévy processes with non-deterministic initial value. The chapter is based on
[DGPR17].

The Skorokhod embedding problem (SEP) is formulated as follows: given two
probability distributions µ0, µ1 on R and a Lévy process L with L0 ∼ µ0 under P,
find an F-stopping time such that Lτ ∼ µ1 and E[τ ] <∞. F denotes the natural
augmented filtration of L.

This problem is classical [Sko61, Sko65] in the special case when L is a
Brownian motion with µ0 = δ0 and a variety of solutions exist. For background we
refer to the survey [Obł04], the recent systematic solution methodology [BCH17b]
and the survey [Hob11]. The latter explains in detail the connection of (SEP)
to robust finance and provides a list of references in this direction. Studying the
problem also for µ0 6= δ0 is motivated by the interest in multi-marginal Skorok-
hod embeddings, robust bounds for forward start options and martingale optimal
transport, see e.g. [BHR01a], [HN12], [BHLP13], [COT15], [OS17], [BCH17a]
and the references therein. For more general (non-continuous) Markov processes,
there have only been few results in the literature. Solutions are constructed in
[Ros71], [Mon72], [FF91], [BL92], [OP09], but these are either specific to the case
µ0 = δ0, the construction only covers transient processes or the stopping times are
non-explicit and possibly randomized (i.e. they are stopping times with respect to
a larger filtration). In particular, in Chapter IV we provide the first solution for
(SEP) with µ0 6= δ0 that is non-randomized and covers all Lévy processes. This
generality comes at the price of some regularity assumptions on the measures µ0

and µ1, but the solution is very natural, it is explicit and it appears to be new
also in the case of Brownian motion.

Before we state the result in detail, let us provide a summary of the approach.
The basic idea is to exploit the connection between stopping-times, random time-
changes and Fokker-Planck equations. For σ : [0, 1] × R → [0,∞) sufficiently
regular and bounded, there exists a unique solution to the time-change equation

Xt = Lδ(t), δ(t) =

∫ t

0

σ(s, Lδ(s)) ds for t ∈ [0, 1], (1.11)

and for any t ∈ [0, 1], δ(t) is an F-stopping time. Thus, if one finds a choice of σ
yielding X1 ∼ µ1, then one automatically obtains a solution to (SEP) by setting
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τ := δ(1). Since the marginal distributions of X in (1.11) satisfy the Fokker-
Planck equation, one obtains a link between these marginals and σ: supposing
that the distribution of Xt admits a density φ(t, ·) with respect to the Lebesgue
measure for all t ∈ [0, 1] and formally inverting the Fokker-Planck equation, one
obtains

σ(t, x) =
((A∗)−1∂tφ(t, ·)) (x)

φ(t, x)
, (t, x) ∈ [0, 1]× R, (1.12)

where A∗ is the (for now formal) adjoint of the infinitesimal generator of L. This
can be seen as the general version of the Dupire-formula for calibrating local
volatility (or local Lévy) models, see [Dup94], [CGMY04]. Assuming that µ0 and
µ1 admit Lebesgue-densities h0 and h1, our approach is now to choose a family
of densities (φ(t, ·))t∈[0,1] with φ(i, ·) = hi (for i = 0, 1), define σ by (1.12) and
verify that this choice of σ satisfies the regularity and boundedness assumptions
guaranteeing a unique solution to (1.11) with X1 ∼ µ1. By the reasoning given
above, this yields a solution to (SEP).

While the approach may appear simple at first sight, the key difficulty is
that the properties (non-negativity, regularity and boundedness) of σ depend
heavily on the choice of interpolation (φ(t, ·))t∈[0,1]. A choice of interpolation that,
surprisingly, turns out to work for all Lévy processes is the linear interpolation
φ(t, ·) = th1 + (1− t)h0. With this choice of interpolation the formal expression
for σ in (1.12) can be written as σ = H/φ, where H is the solution to the Poisson
equation A∗H = h1−h0. In particular, σ is non-negative if and only if H is non-
negative. This last condition is in fact necessary for (SEP) to admit a solution,
as we also show in Chapter IV.

Finally, sinceH may admit zeros and σ may be unbounded, the standard time-
change results available in the literature do not apply and we have to extend these
to our setting. Since these results are of independent interest, they are developed
in the general framework of martingale problems [EK86] in a separate appendix.

Having outlined the key ideas, let us now state the main result of Chapter IV
in detail. We assume that µ0 and µ1 have strictly positive densities h0 and h1 with
respect to the Lebesgue measure. We distinguish three classes of Lévy processes
and impose different regularity assumptions on h0 and h1 for each of them, e.g. if
L is a symmetric α-stable Lévy process with α ∈ (1, 2] (which includes Brownian
motion for α = 2) we assume h0, h1 ∈ C0(R). Denoting by η the characteristic
exponent of the Lévy process L, the main result of Chapter IV is as follows:
Firstly, a solution to (SEP) exists if and only if

µ̂1 − µ̂0

η
∈ L1(R), H ≥ 0 and H ∈ L1(R), (1.13)

where µ̂i is the characteristic function of µi and

H(x) :=
1

2π

∫
R

µ̂1(ξ)− µ̂0(ξ)

η(ξ)
e−ixξ dξ, x ∈ R. (1.14)

Secondly, if (1.13) is satisfied, then a solution to (SEP) is given by

τ := inf

{
t ∈ [0, ρ) :

∫ t

0

e−G(r)h1(Lr)

H(Lr)
dr ≥ 1

}
∧ ρ, (1.15)
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where, for t ≥ 0,

ρ := inf{t ∈ [0,∞) : H(Lt) = 0} and G(t) :=

∫ t

0

h1(Lr)− h0(Lr)

H(Lr)
dr

with the usual convention inf ∅ :=∞. Finally, Eµ0 [τ ] =
∫
RH(x) dx.

Let us conclude by briefly explaining why conditions (1.13) are necessary. To
see this, one assumes that a solution τ to (SEP) exists and applies the Riesz
representation theorem to find a measure ν on R such that

E
[∫ τ

0

g(Ls) ds

]
=

∫
R
g(x)ν(dx), g ∈ Cc(R). (1.16)

On the other hand, from Dynkin’s lemma and properties of the Lévy process one
obtains

η(u)E
[∫ τ

0

eiuLs ds

]
= µ̂1(u)− µ̂0(u), u ∈ R. (1.17)

By extending (1.16) to g(x) := eiux and using (1.17), one may deduce ν(dx) =
H(x)dx and (1.13).
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Chapter II

Affine Filtering

1 Introduction

Consider a time-dependent signal which can not be observed directly, but only
through noisy measurements. Given the stream of observations made up until
today, what can you say about the signal? For example, what is the best estim-
ate for the signal today? There are various mathematical formulations of this
problem. Research fields such as time-series analysis, signal processing and (fre-
quentist) non-parametric statistics model the signal process as a deterministic
function or focus on a discrete-time setting. In stochastic filtering the signal and
observation processes are modeled as continuous-time stochastic processes, i.e. a
Bayesian perspective is adopted. The classical mathematical formulation of the
above problem in this context is the following: consider a D-valued stochastic
process X, a p-dimensional Brownian motion W and an observation function
h : D → Rp. Define Y as

Yt =

∫ t

0

h(Xs) ds+Wt, t ≥ 0. (1.1)

Note that both X and W are defined on a probability space (Ω,F ,P), p ∈ N,
D is some set and some regularity on h and the sample paths of X needs to
be imposed to make (1.1) well-defined. Here X models the signal and Y the
observation process. The filtering problem is to calculate πt, the conditional
distribution of Xt given FYt := σ(Ys : s ∈ [0, t]), i.e. the observations up to time
t, for each t ≥ 0.

Starting in the mid-twentieth century, stochastic filtering has received an
enormous amount of attention and has influenced many fields of mathematics
- we refer to the introductory textbooks [LS01], [BC09a] the historical over-
view in [Cri14] and the handbook [CR11]. Theoretically the filtering prob-
lem has been solved: (πt)t≥0 can be characterized as the unique solution to a
measure-valued stochastic differential equation (the Fujisaki-Kallianpur-Kunita
or Kushner-Stratonovich equation). For applications in mathematical finance
[BH98] or geophysics [LSZ15] also a numerical calculation of πt is essential - in
fact for any application of a continuous-time stochastic model that features latent

13
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factors. It has been shown that apart from a few special cases, e.g. when h is
affine and X is an Ornstein-Uhlenbeck process or when the state space D con-
sists of finitely many points, the equation for (πt)t≥0 is truly infinite-dimensional.
As a consequence, devising numerical methods to calculate πt or even just the
conditional mean E[Xt|FYt ] is very challenging. In most cases it is in-feasible due
to computational constraints. Standard numerical methods ([BC09a, Chapters
8-10]) either only work for low-dimensional state spaces or for approximately
Gaussian setups.1 However, post-crisis financial modeling asks for factor pro-
cesses X which are both high-dimensional and not approximately Gaussian. The
lack of numerical filtering methods for such processes has put serious limitations
on the modeling flexibility: one has not been able to include latent factors in
them.

In the present chapter, we fill this gap and show that the narrow class of
processes for which an efficient numerical solution is possible (see above) also
includes affine processes. More precisely, we consider the case when h is affine
and the signal process X is an affine process with state space D = Rm

+ × Rd−m

as characterized in [DFS03]. This class of processes includes for example Lévy
processes, Cox-Ingersoll-Ross processes [CIR85] or the Heston model [Hes93] and
is very widely used in financial applications (see e.g. [DFS03], [KRM15, Section 3]
for a list of references). The filtering problem arises naturally in this context; for
example, X could model the short rate and Y the observed yields of bond prices
as in [GP99], [CS03], see also [BH98].

Let us briefly summarize the key ideas of our approach. As a first step the
filtering distribution is rewritten in terms of the pathwise filtering functional as
studied by [Dav80], [Cla78]. Although the functional itself is not tractable, it
can be approximated by a linearized version thereof. This new linearized filtering
functional (LFF) is numerically tractable, since the Fourier coefficients can be
calculated by solving a system of generalized Riccati equations with vector fields
depending on the observation Y . This gives rise to Fourier filtering techniques,
analogously to the Fourier pricing techniques used for affine (log-price) models, see
e.g. [CM99] and [DFS03]. In addition the (approximate) conditional moments can
be calculated by solving a system of ordinary differential equations. In contrast
to existing numerical methods (e.g. a particle filter), this is very well-suited to
parallel computations and thus promising for high-dimensional filtering.

All of this is explained in detail in Section 3, while Section 2 provides back-
ground on affine processes and the filtering problem. The proofs of the statements
on the LFF as well as local existence and uniqueness of solutions to the Riccati
equations in Section 3 are then given in Section 4. This theoretical analysis is
complemented by a numerical study in Sections 5 and 6, where the methodo-
logy is applied to the problem of filtering Cox-Ingersoll-Ross (CIR) and Wishart
processes.

1In high-dimensional geophysical applications for example, only approximate Gaussian filters
are routinely used (see the preface of [LSZ15]).
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1.1 Notation

Fix a complete probability space (Ω,F ,P) on which all random variables are
defined.

Fix p ∈ N, m ∈ N ∪ {0}, d ∈ N with d ≥ m and set D = Rm
+ × Rd−m. Let

〈·, ·〉 denote the standard inner product on Rd and | · | the associated norm. Also
write 〈·, ·〉 for the linear extension of the inner product to Rd + iRd, but without
complex conjugation. Set

I := {1, . . . ,m}, J := {m+ 1, . . . , d}.
For k ∈ N, write

Ck
− = {u ∈ Ck : Reui ≤ 0, ∀i}, Ck

−− = {u ∈ Ck : Reui < 0, ∀i}
and define U = Cm

− × iRn .
Denote by B(D) and Cb(D) the sets of bounded measurable functions and

bounded continuous functions on D and by P(D) the set of probability meas-
ures on D. As usually, P(D) is equipped with the topology of weak conver-
gence. Let M+(D) denote the set of finite measures on the Borel σ-algebra
B(D). Given µ ∈M+(D) and a measurable, µ-integrable function f on D, write
µf :=

∫
D
f(x)µ(dx).

Fix a continuous truncation function χ : Rd → [−1, 1]d with χ(ξ) = ξ in a
neighborhood of 0 and bounded away from 0 outside that neighborhood. In fact,
in order to be able to rely on a result from [KMK10] for k = 1, . . . d we choose

χk(x) =

{
0 if xk = 0,

(1 ∧ |xk|) xk
|xk|

otherwise.

Let π0 ∈ P(D), D(L) ⊂ Cb(D) and L : D(L) → Cb(D) linear. Recall that a
D-valued stochastic process (Xt)t≥0 defined on some probability space (Ω̃, F̃ , P̃)
is called a solution to the martingale problem for (D(L),L, π0), if P̃ ◦X−1

0 = π0

and for each h ∈ D(L), the process

h(Xt)− h(X0)−
∫ t

0

Lh(Xs) ds, t ≥ 0,

is a martingale (in its own filtration). The martingale problem for (D(L),L, π0)
is said to be well-posed if there exists a solution and any two solutions have the
same finite-dimensional marginal distributions.

2 Background: Affine processes and the filtering
problem

2.1 Affine processes

2.1.1 Definition and characterization

Let us review the definition of an affine process and some consequences thereof.
We refer to [DFS03], [KRST11] and [CT13] for further details and references.
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Consider a D-valued time-homogeneous Markov process ((Xt)t≥0, (Px)x∈D)
defined on (Ω,F), see [RW00a, Chapter III]. Denote by (Pt)t≥0 the associated
semigroup on B(D) and assume Pt1 = 1 for all t ≥ 0 (i.e. the process is conser-
vative). ((Xt)t≥0, (Px)x∈D) is called affine, if it is stochastically continuous, X has
RCLL-paths (Px-a.s. for any x ∈ D) and there exist functions φ : R≥0 × U → C
and ψ : R≥0 × U → Cd such that for all x ∈ D, (t, u) ∈ R≥0 × U :

Ex[e〈Xt,u〉] = exp(φ(t, u) + 〈x, ψ(t, u)〉). (2.1)

Remark 2.1. As shown in [KRST11] this definition implies that for all u ∈ U ,

F (u) :=
∂φ

∂t
(t, u)

∣∣∣∣
t=0+

, R(u) :=
∂ψ

∂t
(t, u)

∣∣∣∣
t=0+

(2.2)

exist and are continuous at u = 0. Thus, in the terminology of [DFS03] we are
considering a conservative, regular affine process.
Remark 2.2. Alternatively, we could only assume that ((Xt)t≥0, (Px)x∈D) is con-
servative, stochastically continuous and (2.1) holds for (t, u) ∈ R≥0 × iRd. Then
[KRST11] implies that it is a Feller process and in particular, we may choose an
RCLL version of X on D (under Px, for any x ∈ D).2 Finally [DFS03, Theorem
2.7] implies that (2.1) can be extended to R≥0 × U .

Let us now review some key properties of affine processes. To formulate these,
an additional definition is required: a collection of parameters

(a, α, b, β, c, γ, µ0, µ) (2.3)

is called admissible, if it satisfies the following (admissibility) conditions:

a ∈ Semd with ai,j = 0 for i, j ∈ I (2.4)

α = (α1, . . . , αm) with αi ∈ Semd and αik,j = 0 for k, j ∈ I \ {i} (2.5)

b ∈ Rd with bi −
∫
D\{0}

χi(ξ)µ
0(dξ) ≥ 0 for i ∈ I (2.6)

β ∈ Rd×d with βi,j −
∫
D\{0}

χi(ξ)µ
j(dξ) ≥ 0 for i, j ∈ I and i 6= j (2.7)

βi,k = 0 for i ∈ I, k ∈ J (2.8)
c ∈ R+ (2.9)
γ ∈ Rm

+ (2.10)
µ = (µ1, . . . , µm) and for i ∈ I ∪ {0}, µi is a Borel measure on D \ {0}

(2.11)∫
D\{0}

χk(ξ)µ
i(dξ) <∞ for i ∈ I ∪ {0}, k ∈ I \ {i} (2.12)∫

D\{0}
χk(ξ)

2µi(dξ) <∞ for i ∈ I ∪ {0}, k ∈ (J ∪ {i}) \ {0}

(2.13)
2Since the process is conservative, there is no need to consider the one-point compactification

of D.
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Remark 2.3. The admissibility conditions are identical to those in [DFS03, Defin-
ition 2.6]. We have only changed notation slightly in order to match the semi-
martingale notation in [KMK10]. The measure m in [DFS03, Definition 2.6] is
denoted µ0 here, the truncation function is arbitrary (as in [Fil05]) and we denote
by b, β the parameters b̃, β̃ from [DFS03, Theorem 2.12]. Our conditions (2.6),
(2.7) for these are equivalent to conditions (2.6) and (2.7) in [DFS03, Defini-
tion 2.6]. This leads to different expressions below for (2.14) and (2.16) than in
[DFS03], see also [DFS03, Remark 2.13].

Suppose ((Xt)t≥0, (Px)x∈D) is an affine process and denote again by (Pt)t≥0

the restriction of the associated semigroup to C0(D). Then (see [DFS03, The-
orem 2.7, Theorem 2.12 and Proposition 9.1]) there exists a collection of admiss-
ible parameters3 (2.3) with c = 0 and γ = 0 such that the following properties
hold:

• F and R in (2.2) are given as

F (u) =
1

2
〈u, au〉+ 〈b, u〉+

∫
D\{0}

(
e〈ξ,u〉 − 1− 〈χ(ξ), u〉

)
µ0(dξ)

Ri(u) =
1

2
〈u, αiu〉+ 〈βi, u〉+

∫
D\{0}

(
e〈ξ,u〉 − 1− 〈χ(ξ), u〉

)
µi(dξ)

(2.14)

for i = 1, . . . ,m and Ri(u) = 〈βi, u〉 for i = m + 1, . . . , d. Here βi ∈ Rd is
defined via

βij := βj,i, for 1 ≤ i, j ≤ d.

• φ and ψ solve the generalized Riccati equations

∂tφ(t, u) = F (ψ(t, u)), φ(0, u) = 0

∂tψ(t, u) = R(ψ(t, u)), ψ(0, u) = u
(2.15)

for t ≥ 0, u ∈ U .

• (Pt)t≥0 is a Feller semigroup (in the sense of [RY99, Chapter III]). Denote
by (D(A),A) its infinitesimal generator. Then C∞c (D) is a core for A,
C2

0(D) ⊂ D(A) and for any f ∈ C2
0(D), x ∈ D,

Af(x) =
1

2

d∑
k,l=1

αkl(x)
∂2f(x)

∂xk∂xl
+ 〈β(x),∇f(x)〉

+

∫
D\{0}

(f(x+ ξ)− f(x)− 〈χ(ξ),∇f(x)〉)K(x, dξ)

(2.16)

3Recall that we only consider conservative affine processes here.
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where

α(x) = a+
m∑
i=1

αixi

β(x) = b+
d∑
i=1

βixi

K(x, dξ) = µ0(dξ) +
m∑
i=1

xiµ
i(dξ).

(2.17)

• X is a semimartingale (under Px, for any x ∈ D) admitting characteristics
(B,C, ν) with respect to χ given by

Bt =

∫ t

0

β(Xs) ds, Ct =

∫ t

0

α(Xs) ds, ν(dt, dξ) = K(Xt, dξ) dt,

(2.18)
where α, β,K are as in (2.17).

Finally, let us put (conservative) affine processes into the framework of [EK86].
This is the purpose of Lemma 2.4 below. It is very close to [DFS03, Lemma 10.2],
but considers arbitrary initial laws and establishes uniqueness also within the
class of solutions to the martingale problem which are not necessarily RCLL.
This extension is required to establish uniqueness for evolution equations (as the
Zakai equation in Theorem 2.9 below) associated to A.

Lemma 2.4. Fix a collection of admissible parameters (2.3) and define A0 as
the restriction of A (see (2.16)) to C∞c (D). Then for any π0 ∈ P(D), the martin-
gale problem for (C∞c (D),A0, π0) is well-posed and the solution has RCLL-sample
paths.

Proof. The statement of [DFS03, Theorem 2.7] that X is a Feller process means
that (Pt)t≥0 is a strongly continuous, positive contraction semigroup on C0(D) in
the terminology of [EK86]. Furthermore, by [EK86, Chap.4, Cor. 2.8] and since
X is conservative, (D(A),A) is conservative (in the terminology of [EK86]). Thus
(Pt)t≥0 is a Feller semigroup (on C0(D)) also in the terminology of [EK86]. Set
D(A0) = C∞c (D). By [DFS03, Theorem 2.7], D(A0) is a core for (D(A),A) and
so the closure of the operator (D(A0),A0) is again (D(A),A). Combining [EK86,
Chap.4, Thm. 2.2, 2.7 and 4.1] then yields the statement.

In view of Lemma 2.4 the following terminology is sensible: Fix π0 ∈ P(D).
We call an RCLL stochastic process X on (Ω,F ,P) an affine process started
from π0, if it is a solution to the martingale problem for (C∞c (D),A0, π0). By
Lemma 2.4 this uniquely determines the law of X under P.

2.1.2 Exponential moments of affine processes

For the analysis of this chapter, it will be necessary to extend (2.1) to U0 ⊂
R≥0 × Cd, where U0 is open and 0 ∈ U0. This means that an assumption on
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exponential moments is required. Suppose that∫
D\{|z|≤1}

|z|e〈z,u〉µi(dz) <∞ for all i = 0, . . . ,m and u ∈ Rd. (2.19)

Suppose ((Xt)t≥0, (Px)x∈D) is an affine process and define

E = {(t, u) ∈ R≥0 × Rd : Ex[e〈Xt,u〉] <∞ for all x ∈ D}. (2.20)

By definition, this is the maximal domain on which the left hand side of (2.1) is
finite. Under assumption (2.19), E is open, 0 ∈ E and φ and ψ can be extended to
E. This is summarized in the next Lemma, which directly follows from [KRM15]
and [FM09]. See also [SV10] and further references in all these articles.

Lemma 2.5. Suppose (2.19) holds. Then

(i) E is open in R≥0 × Rd,

(ii) for any (T, u) ∈ R≥0×Cd with (T,Reu) ∈ E, there exists a unique solution
to (2.15) on [0, T ] and (2.1) holds.

Proof. By [DFS03, Lemma 5.3] and (2.19), F and R are analytic functions.
Therefore the same reasoning as in the proof of [FM09, Lemma 2.3] shows that
for any u ∈ Cd, there exists t+(u) ∈ (0,∞] such that (2.15) has a unique solution
on [0, t+(u)) and the set

DR := {(t, y) ∈ R≥0 × Rd : t < t+(y)}

is open in R≥0 × Rd. Furthermore, by [KRM15, Theorem 2.14(b)], [KRM15,
Theorem 2.17(b)] and (2.19), one has DR ⊂ E and (2.1) holds for all (t, u) ∈ DR,
x ∈ D. [KRM15, Theorem 2.14(a)] implies E ⊂ DR and hence E = DR. This
shows (i). (T,Reu) ∈ E yields (T,Reu) ∈ DR and so [KRM15, Theorem 2.26]
implies (ii).

A further consequence of (2.19) is the following:

Lemma 2.6. Assume (2.19). Then for any T ≥ 0, k ∈ N, x ∈ D

Ex[|XT |2k] <∞, (2.21)

Ex
[∫ T

0

|Xt|2k dt

]
<∞. (2.22)

Proof. By [DFS03, Lemma 5.3] and (2.19), F and R are analytic functions on Cd.
Thus by [DFS03, Lemma 6.5(i)], φ and ψ are in C∞(R+×U). Combining this with
iRd ⊂ U and [DFS03, Theorem 2.16(i)] yields (2.21). By [DFS03, Lemma A.1],
for any t ∈ [0, T ], Ex[|Xt|2k] is a sum of partial derivatives (up to order k) of
ψ(t, ·) and φ(t, ·) at 0. But all of these are continuous (as argued above) and so
t 7→ Ex[|Xt|2k] is bounded on [0, T ]. Hence (2.22) follows.
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2.1.3 Time-inhomogeneous affine processes

As it turns out, linear filtering of an affine process gives rise to a time-inhomo-
geneous affine process. This class of time-inhomogeneous Markov processes has
been studied in [Fil05]. Similar to the time-homogeneous case (as summarized
in Section 2.1.1), [Fil05] has obtained characterizations in terms of a martingale
problem or (for conservative processes) semimartingale characteristics. We do not
repeat these here; for our purposes it is sufficient to understand the conditions
on the parameters that are necessary and sufficient for the existence of such a
process. For more details we refer to [Fil05].

A collection of parameters (depending on t ≥ 0)

(a(t), α(t), b(t), β(t), c(t), γ(t), µ0(t), µ(t)) (2.23)

is called admissible (or strongly admissible), if the following (admissibility) con-
ditions are satisfied:

• for any t ≥ 0, (2.23) satisfies conditions (2.4)-(2.13),

• (a(t), α(t), b(t), β(t), c(t), γ(t)) are continuous in t ∈ R+,

• the measures χk(·)µi(t, ·) (on D \ {0}) are weakly continuous in t ∈ R+ for
any i ∈ I ∪ {0}, k ∈ I \ {i},

• the measures χk(·)2µi(t, ·) (on D \ {0}) are weakly continuous in t ∈ R+ for
any i ∈ I ∪ {0}, k ∈ (J ∪ {i}) \ {0}.

Remark 2.7. As before, b and β here denote b̃, β̃ in [Fil05, Theorem 2.13]. Since
χk is bounded and continuous, the third continuity condition guarantees that
b̃, β̃ in [Fil05, Theorem 2.13] are continuous if and only if b and β in [Fil05,
Definition 2.5] are continuous. Together with Remark 2.3 this implies that the
present admissibility conditions are identical with [Fil05, Definition 2.5].

Remark 2.8. If c(t) = 0, γ(t) = 0 for all t ≥ 0, then the admissibility condition
here is equivalent to [KMK10, Definition 2.4].

By [Fil05, Theorem 2.13, Lemma 3.1 and Proposition 4.3] for any collection
of parameters satisfying these conditions (and only under these), there exists a
strongly regular time-inhomogeneous affine process (X̄, (P(r,x))(r,x)∈R+×D) (a time-
inhomogeneous, stochastically continuous Markov process with an additional reg-
ularity condition as (2.2), see [Fil05]) with transition function (Pt,T ) satisfying
for any u ∈ U , 0 ≤ t ≤ T ,

Pt,T exp(〈u, ·〉)(x) = exp(Φ(t, T, u) + 〈x,Ψ(t, T, u)〉), ∀x ∈ D, (2.24)

where Φ and Ψ solve the generalized Riccati equations

−∂tΦ(t, T, u) = F (t,Ψ(t, T, u)), Φ(T, T, u) = 0

∂tΨ(t, T, u) = R(t,Ψ(t, T, u)), Ψ(T, T, u) = u, 0 ≤ t ≤ T
(2.25)



2 Background: Affine processes and the filtering problem 21

with vector fields

F (t, u) =
1

2
〈u, a(t)u〉+ 〈b(t), u〉 − c(t) +

∫
D\{0}

(
e〈ξ,u〉 − 1− 〈χ(ξ), u〉

)
µ0(t, dξ)

Ri(t, u) =
1

2
〈u, αi(t)u〉+ 〈βi(t), u〉 − γi(t)

+

∫
D\{0}

(
e〈ξ,u〉 − 1− 〈χ(ξ), u〉

)
µi(t, dξ), i = 1, . . . ,m,

Ri(t, u) = 〈βi(t), u〉, i = m+ 1, . . . , d,
(2.26)

where βij(t) := βj,i(t).
Finally, fix (r, x) ∈ R+ ×D. As noted in [Fil05] one may assume that X̄ has

RCLL paths, P(r,x)-a.s. and so the following terminology makes sense: suppose
Y is a stochastic process on (Ω,F ,P) with RCLL paths. We will say that (under
P) Y is a time-inhomogeneous affine process started in (r, x) with admissible
parameters (2.23), if the law of Y under P (on the space of RCLL-paths) is
identical to the law of X̄ under P(r,x).

2.2 The filtering problem

2.2.1 Problem formulation and the Zakai equation

Fix π0 ∈ P(D) and suppose X is an affine process started from π0 (see Sec-
tion 2.1.1) on (Ω,F ,P). Further, suppose F is a right-continuous filtration on
(Ω,F ,P) with respect to which X is adapted and such that F0 contains all P-
nullsets.

Let us introduce the problem of filtering X given noisy observations Y , as in
the standard setup, see [LS01] and [BC09a]. The exposition here follows [KO88].

Define Y as

Yt =

∫ t

0

h(Xs) ds+Wt, t ≥ 0, (2.27)

where W is a p-dimensional F-Brownian motion independent of X, h : D → Rp

is measurable and

E
[∫ T

0

|h(Xs)|2 ds

]
<∞, (2.28)

for all T ≥ 0. Set

FYt = σ(Ys : 0 ≤ s ≤ t) ∨N , t ≥ 0, (2.29)

where N denotes the collection of P-nullsets of (Ω,F).
The goal of filtering theory is to calculate, for t ∈ [0,∞), the conditional

distribution of Xt given FYt . Formally this is described by a measure-valued
process as follows: by [BC09a, Theorem 2.1] there exists a P(D)-valued (FYt )t≥0-
adapted, RCLL-process (πt)t≥0 such that for any f ∈ B(D), t ≥ 0,

πtf = E[f(Xt)|FYt ] P-a.s.
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It can be shown that π satisfies the Kushner-Stratonovich equation. This is a
stochastic partial differential equation for the process π, usually written in weak
form, i.e. applied to test functions f ∈ D(A).

Alternatively, one may consider an M+(D)-valued (but not P(D)-valued)
process, which leads to the linear Duncan-Mortensen-Zakai equation or shortly
Zakai equation: define

σt := exp

(∫ t

0

(πsh)> dYs −
1

2

∫ t

0

|πsh|2 ds

)
πt (2.30)

which is nonzero P-a.s., for any t ≥ 0, because

E
[∫ t

0

|πsh|2 ds

]
<∞, (2.31)

as can be deduced from (2.28).
We are now concerned with the filtering problem on the time interval [0, T ],

for some T > 0 fixed. By (2.28) and independence,

dQ
dP

= exp

(
−
∫ T

0

h(Xs)
> dWs −

1

2

∫ T

0

|h(Xs)|2 ds

)
(2.32)

defines a new probability measure Q on (Ω,F) that is equivalent to P on FT .4
Furthermore, the law of X under P is the same as under Q and, on [0, T ] under
the measure Q, Y is a Brownian motion independent of X.

It can be shown (see [BC09a, Exercise 3.37]) that σt1 defined in (2.30) is equal
to EQ[ dP

dQ |F
Y
t ]. Combining this with the abstract Bayes’ rule and the definition

(2.30), one obtains (see [BC09a, Proposition 3.16]) that for any t ∈ [0, T ], f ∈
B(D),

σtf = EQ

[
f(Xt) exp

(∫ t

0

h(Xs)
> dYs −

1

2

∫ t

0

|h(Xs)|2 ds

)∣∣∣∣FYt ] , (2.33)

P-a.s., and the Kallianpur-Striebel formula

πtf =
σtf

σt1
. (2.34)

Furthermore, σ satisfies the Zakai equation

σtf = π0f +

∫ t

0

σs(Af) ds+

∫ t

0

σs(hf) dYs for any f ∈ D(A). (2.35)

By (2.31) and (2.30), h is σt-integrable for all t ≤ T and
∫ T

0
|σth|2 ds <∞, P-a.s.

Hence all terms in (2.35) are indeed well-defined.

4See [LS01, Example I.6.2.4]. Independence is crucial here, otherwise a Nivikov’ type as-
sumption would be needed.
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2.2.2 Uniqueness for the Zakai equation

The following result is a consequence of [KO88, Theorem 4.2]:

Theorem 2.9 (Well-posedness of the Zakai equation). Let h ∈ C(D), A the gen-
erator of a (conservative) affine process (see (2.16)) and σ as in (2.35). Assume
(2.28).

Suppose (ρt)t∈[0,T ] is an (FYt )t∈[0,T ]-adapted RCLLM+(D)-valued process such
that h is ρt-integrable for all t ≤ T ,

∫ T
0
|ρth|2 ds <∞, P-a.s. and satisfying

ρtf = π0f +

∫ t

0

ρs(Af) ds+

∫ t

0

ρs(hf) dYs, for any f ∈ C∞c (D) (2.36)

and for f = 1 (with A1 := 0). Then ρt = σt for all t < T , P-a.s.

Proof. Define D(A0) := C∞c (D) and A0 the restriction of A to D(A0). Then by
Lemma 2.4, for any π0 ∈ P(D), the martingale problem for (D(A0),A0, π0) is
well-posed. Furthermore, for any f ∈ D(A0), hif ∈ C0(D) for i = 1, . . . , p and
so the assumptions of [KO88, Theorem 4.2] are indeed satisfied.

Since the assumptions for [KO88, Theorem 4.1] are the same as for [KO88,
Theorem 4.2], as a corollary one also obtains a uniqueness result for the Kushner-
Stratonovich equation.

Let us point out that Theorem 2.9 holds in the setting considered in Section 3.
Taking h(x) = x, π0 = δx for some x ∈ D and assuming that the jump-measures
of the affine process satisfy (2.19), one obtains from Lemma 2.6 that (2.28) is
indeed satisfied.

2.2.3 Robust filtering

Thanks to the uniqueness result for the Zakai equation in Theorem 2.9, theoretic-
ally the filtering problem is settled: one finds a solution to the Zakai equation and
uses the Kallianpur-Striebel formula (2.34) to calculate the filter. However, in
practice one is given a fixed y ∈ C([0, T ],Rp) (of finite variation), whereas (2.33)
only specifies the filter P-a.s. Thus a definition of (2.33) for all y ∈ C([0, T ],Rp)
is needed.

Let us briefly review the main result of [Dav80]. See [BC09a, Chapter 5] and
[vH07, Section 1.4] for further references on robust filtering. Suppose h ∈ D(A)
so that h(X) is a semimartingale. Since X and Y are independent, one can
integrate by parts ∫ t

0

h(Xs)
> dYs = Y >t h(Xt)−

∫ t

0

Y >s dh(Xs) (2.37)

and rewrite σ in (2.33) as

σtf = EQ

[
f(Xt) exp

(
Y >t h(Xt)−

∫ t

0

Y >s dh(Xs)−
1

2

∫ t

0

|h(Xs)|2 ds

)∣∣∣∣FYt ] .
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Recalling that X and Y are independent under Q and X has the same dis-
tribution under P as under Q, the conditional expectation is actually given as
E [F (X, y)]|y=Y for a suitable function F : D × Rp → R. In fact, the following
robustness property has been established in [Cla78], [CC05]: define the pathwise
filtering functional σt : B(D)× C([0, T ],Rd)→ R by

σt(f, y) = E
[
f(Xt) exp

(
y>t h(Xt)−

∫ t

0

y>s dh(Xs)−
1

2

∫ t

0

|h(Xs)|2 ds

)]
,

(2.38)
then σt(f, ·)/σt(1, ·) is locally Lipschitz continuous and

σt(f, Y )

σt(1, Y )
= E[f(Xt)|FYt ], P-a.s. (2.39)

See also [CDFO13] for an extension to multidimensional observation and correl-
ated noise.

In [Dav80] the following observation is made: fix y ∈ C[0, T ] and define a
two-parameter semigroup of operators on B(D) by

T ys,tf(x) = Ex
[
f(Xt−s) exp

(
−
∫ t

s

y>u dh(Xu−s)−
1

2

∫ t

s

|h(Xu−s)|2 du

)]
,

(2.40)
for t ≥ s ≥ 0, x ∈ D. Then

σt(f, y) =

∫
D

T y0,t(e
y(t)hf)(x)π0(dx) (2.41)

and, this is the main result of [Dav80], the (extended) generator Ayt of the semig-
roup T ys,t is given by

Ayt f = ey(t)h(A− 1

2
h2)(e−y(t)hf).

This is closely related to applying a Doss-Sussmann method (see e.g. [RW00a,
Theorem 28.2]) to the Zakai equation, as explained in [Dav11].

3 The linearized filtering functional

In this section we introduce and study a computationally tractable approximation
of the pathwise filtering functional (2.38) when bothX and h are affine. Through-
out this section X is an affine process on (Ω,F ,P) started from π0 ∈ P(D) with
admissible parameters (2.3) and F , R are as in (2.14). If π0 = δx for x ∈ D, we
write Px for P.
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3.1 Definition and main results

3.1.1 Definition of the approximate filter

Fix an observation y ∈ C([0,∞),Rd) with y(0) = 0 and γ ∈ C([0,∞),Rd),
c ∈ C([0,∞),R). The linearized filtering functional (LFF) ρ is defined as

ρt(f, y) = E
[
f(Xt) exp

(
y>t Xt −

∫ t

0

y>s dXs −
∫ t

0

γ>s Xs − cs ds

)]
(3.1)

for any t ≥ 0 and f : D → R measurable such that the right hand side of (3.1)
is well-defined (e.g. f ≥ 0). If ρt(1, y) is finite, define the approximate pathwise
filter (the affine functional filter or AFF) by

π̄t(f, y) =
ρt(f, y)

ρt(1, y)
. (3.2)

If π0 = δx for x ∈ D, we write ρxt (f, y) for ρt(f, y) and π̄xt (f, y) for π̄t(f, y).

3.1.2 Heuristic motivation

The linearized filtering functional (3.1) is the same as the pathwise filtering func-
tional (2.38) for h(x) = x, but with 1

2
|x|2 approximated by the affine function

γsx+cs. The motivation for studying ρt is the following: if for some t > 0, x0 ∈ D
and (small) ε > 0, P({Xs ∈ Bε(x0)∀s ∈ [0, t]}) is almost 1, then (3.1) and (2.38)
(with γs = x0 and cs =

x2
0

2
) are very close. Consequently, (2.39) implies that also

the approximate filter π̄t(f, Y ) should be close to πt(f).

3.1.3 Fourier filtering

The key point is that (3.1) is computationally tractable, since one can calcu-
late the Fourier coefficients of (3.1) by solving a system of generalized Riccati
equations:

Theorem 3.1. Assume (2.19) holds. Let u ∈ Cd and T ∈ R+. Suppose Φ ∈
C1([0, T ],R) and Ψ ∈ C1([0, T ],Rd) solve

−∂tΦ(t, T, u) = F (Ψ(t, T, u)− yt)− ct, Φ(T, T, u) = 0

−∂tΨ(t, T, u) = R(Ψ(t, T, u)− yt)− γt, Ψ(T, T, u) = u+ yT , 0 ≤ t ≤ T.
(3.3)

Then for any x ∈ D, the Fourier coefficient of ρxT (·, y) is well-defined and given
as

ρxT (exp(〈u, ·〉), y) = exp(Φ(0, T, u) + 〈x,Ψ(0, T, u)〉). (3.4)

Furthermore, there exists T0 > 0 such that for all u ∈ iRd and T ≤ T0, the system
(3.3) has a unique solution on [0, T ].

The proof of Theorem 3.1 is postponed to Section 4.3 below. Let us briefly
discuss how to use Theorem 3.1 in practice, relate it to the literature and discuss
its assumptions.
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Remark 3.2. Suppose f : D → C is given as

f(y) =

∫
Rd
ei〈v,y〉f̂(v) dv, y ∈ D

for some f̂ : Rd → C integrable. Then for any T > 0 small enough, by The-
orem 3.1, definition (3.1) and Fubini’s theorem

ρxT (f, y) =

∫
Rd
ρxT (exp(〈iv, ·〉), y)f̂(v) dv =

∫
Rd
eΦ(0,T,iv)+〈x,Ψ(0,T,iv)〉f̂(v) dv.

This is analogous to the Fourier method used in option pricing in the framework
of affine models.
Remark 3.3. Expressions of type (3.4) are called affine transform formulas in the
literature, see e.g. [KRM15] and the references therein. Note that the present
result is not covered in the literature, since the Riccati equations (3.3) are time-
inhomogeneous and correspond to a non-conservative affine “process” for which
the admissiblity conditions (2.9) and (2.10) are not necessarily satisfied.
Remark 3.4. In general, it does not hold that ρT (1, y) <∞ for all T > 0 and so
the statement of Theorem 3.1 really just holds up to a finite T0 (depending on
y). To see this, let u ∈ Rd and consider ys = us, cs = γs = 0 for all s ≥ 0. Then
the product rule (as in (2.37)) and ẏs = u show

ρxT (1, y) = Ex
[
exp

(
u>
∫ T

0

Xs ds

)]
which is not necessarily finite. For example, if d = m = 1 and X is a CIR process
(see Section 5) with parameters β > 0, b ≥ 0 and σ > 0, then for u < β2/(2σ2)
and T large enough (satisfying tanh(γT/2) ≥ γ/β with γ =

√
β2 − 2σ2u) the

expectation is not finite, see [FKR10] or [Duf01].
Finally, note that (2.19) could be weakened to the following assumption: there

exists V ⊂ Rd open with 0 ∈ V such that (2.19) holds for u ∈ V (instead of all
u ∈ Rd).

3.1.4 The smoothing distribution

Our approximation (3.1) and (3.2) also gives rise to an approximation of the
smoothing distribution, i.e. the distribution of X[0,t] conditional on FYt .

Fix t > 0 and denote byD[0, t] the set of RCLL-mappings [0, t]→ D. Consider
G : D[0, t]→ R bounded, measurable5 and, analogously to (3.1) and (3.2) define

ρt(G, y) = E
[
G(X[0,t]) exp

(
y>t Xt −

∫ t

0

y>s dXs −
∫ t

0

γ>s Xs − cs ds

)]
π̄t(G, y) =

ρt(G, y)

ρt(1, y)

(3.5)

5More precisely, for s ∈ [0, T ] define Ys : D[0, t]→ R by Ys(ω) := ω(s) and equip D[0, t] with
the σ-algebra generated by (Ys)s∈[0,t].
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for any t ≥ 0 such that ρt(1, y) < ∞. Then π̄t(·, y) is a probability measure on
D[0, t] and an approximation to the smoothing distribution. Again, if π0 = δx for
x ∈ D, we write ρxt (G, y) for ρt(G, y) and π̄xt (G, y) for π̄t(G, y).

The following result shows that π̄t(·, y) coincides with the the distribution on
D[0, t] of a time-inhomogeneous affine process. It will be used for the calculation
of (approximate) conditional moments in Section 5 and 6 below. To formulate it,
define

π̂0(z) =

∫
D

e〈x,z〉π0(dx), for z ∈ Dπ0 = {z ∈ Cd : | exp(〈·, z〉)| ∈ L1(D, π0)}.

Theorem 3.5. Let T0 > 0, t ∈ (0, T0] and Ψ(·, t, 0) as in Theorem 3.1. Suppose
Ψ(0, t, 0) ∈ Dπ0. Then for any G ∈ B(D[0, t]),

π̄t(G, y) =

∫
D
e〈x,Ψ(0,t,0)〉EQy,tx [G(X[0,t])]π0(dx)

π̂0(Ψ(0, t, 0))
,

where under Qy,t
x , X is a time-inhomogeneous affine process started from (0, x)

with admissible parameters

(a(s), α(s), b(s), β(s), 0, 0, µ0(s), µ(s))s≥0

defined by (4.1) below with g(s) := Ψ(s ∧ t, t, 0)− ys∧t for s ≥ 0.

Remark 3.6. If π0 = δx for x ∈ D, then Dπ0 = Cd, π̂0(z) = e〈x,z〉 and so The-
orem 3.5 implies

π̄xt (G, y) = EQy,tx [G(X[0,t])]. (3.6)

Remark 3.7. As a simple example, consider a CIR process (see Section 5) started
in x > 0. Theorem 3.5 implies that for t ≤ T0 the approximate smoothing
distribution is given by (3.6). Under Qy,t

x the process X is the unique solution to

dXs = b+ βXs + u(s,Xs)ds+ σ
√
XsdBs, X0 = x, (3.7)

where u(s, x) := σ2(Ψs∧t − ys∧t)x, Ψs := Ψ(s, t, 0) solves (the second part of)
(3.3) and B is a Brownian motion under Qy,t

x . Thus, the approximate smoothing
distribution is the distribution (on path space) of a new process, which is obtained
by inserting the additional drift term u(s,Xs) in the original SDE (5.1).

From [vH07, Chapters 1.4.3 and 4.2] one obtains formally a representation
analogous to (3.6) for the exact smoothing distribution, the only difference being
the choice of u in (3.7). However, calculating the function u in this case requires
solving a PDE. For the approximate filter u can be obtained by solving an ODE,
which is an enormous reduction of complexity.

3.1.5 An alternative point of view

To clarify further the relation to [Dav80], let x0 ∈ Rm
++ × Rn, c0 > 0 and define

H(x) = (x0)>I xI + c0 and

T̄ yt f(x) = Ex
[
f(Xt) exp

(
−
∫ t

0

y>u dXu −
∫ t

0

H(Xu) du

)]
, (3.8)
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so that, in analogy to (2.41) it holds that (with γ> = ((x0)>I , 0)) and c = c0 in
(3.1))

ρxt (f, y) = T̄ yt (exp(〈yt, ·〉)f)(x).

Thus we have approximated T y0,t in (2.40) by T̄ yt . Now if βi = 0 for i ∈ J , then
(3.8) corresponds to a non-conservative, time-inhomogeneous affine process:

Proposition 3.8. Assume (2.19) holds and βi = 0 for i ∈ J . Then there exists
c0 > 0, T > 0 such that for all t ∈ [0, T ], T̄ yt in (3.8) satisfies T̄ yt = P y

0,t, where
(P y

s,t) is the transition semigroup of a time-inhomogeneous affine process with
(admissible) parameters (2.23) defined for all t ≥ 0 by (4.1) below with g(t) =
−yt∧T and

c(t) = c0 − F (−yt)
γi(t) = xi0 −Ri(−yt), i ∈ I.

(3.9)

3.1.6 Discussion

Remark 3.9. The ordinary differential equation (3.3) is formulated backwards in
time, which appears to lead to a non-recursive filter. This can easily be resolved
and we now explain how a recursive procedure can be obtained: fix T0 > 0
sufficiently small. Theorem 3.1 guarantees that for any v ∈ Rd and T ≤ T0 there
exists a unique u0 ∈ Cd such that the ODE

−∂tΨ̄(t, u0) = R(Ψ̄(t, u0)− yt)− γt
Ψ̄(0, u0) = u0

(3.10)

has a unique solution on [0, T ] with Ψ̄(T, u0) = iv + yT . More specifically, one
chooses u0 := Ψ(0, T, iv) and Ψ̄(t, u0) := Ψ(t, T, iv). This gives the following
recursive procedure to calculate the approximate filter at time T ≤ T0:

• solve for all u0 ∈ Cd (for which a solution exists) the ODE (3.10) up to time
T .

• for v ∈ Rd, find the unique solution u0 ∈ Cd to Ψ̄(T, u0) = iv + yT and
evaluate

ρxT (exp(〈iv, ·〉), y) = exp

(∫ T

0

F (Ψ̄(s, u0)− ys)− cs ds+ 〈x, u0〉
)
.

In order to calculate the approximate filter at time T̃ ∈ [T, T0] one only needs to
continue solving (3.10) on [T, T̃ ] (and then repeat the second step for v ∈ Rd),
hence the procedure is indeed recursive.

Remark 3.10. Consider a p-dimensional Brownian motionW , C ∈ Rp×d, Γ ∈ Rp×p

invertible and an observation process given as

Ȳt =

∫ t

0

CXs ds+ ΓWt, t ≥ 0. (3.11)
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The present methodology also provides an approximation for this setup: Since Ȳ
and Y = Γ−1Ȳ generate the same filtration, the filtering distribution is given
by (2.38) and (2.39) with h(x) = Γ−1Cx. The pathwise functional σt(f, y)
in (2.38) is approximated naturally by ρt(f, (Γ

−1C)>y)) (see (3.1)) with γs =
(Γ−1C)>Γ−1Cx0 (corresponding to the linearization of h around x0) and x0 =∫
D
xπ0(dx). We do not specify c here, since it cancels out in the normalization

(3.2).
In fact, this choice of γ has been used in the examples in Section 5.

Remark 3.11. The choice of the functions γ and c is of course essential for how
close ρt and π̄t are to σt and πt. In the examples we have always made the choice
specified in the previous remark. Let us examine the approximation quality in
this setting. Using the product rule (2.37), the definition of Q and applying the
change of measure (2.32) in (3.1) yields P-a.s.

ρt(f, Y ) = EQ

[
f(Xt)

dP
dQ

exp

(
1

2

∫ t

0

|h(Xs)|2 ds−
∫ t

0

γ>s Xs − cs ds

)∣∣∣∣FYt ]
= E

[
f(Xt) exp

(
1

2

∫ t

0

|h(Xs)|2 ds−
∫ t

0

γ>s Xs − cs ds

)∣∣∣∣FYt ]σt1
and so (in the setting of the previous remark)

π̄t(f, Y ) =
E
[
f(Xt)At| FYt

]
E [At| FYt ]

, At = exp

(
1

2

∫ t

0

|Γ−1C(Xs − x0)|2 ds

)
.

This gives an indication about the approximation quality:
If (with high probability) logAt is very small, then the approximation quality

is good. This happens for example if Γ = εI for large ε > 0. If ε > 0 is very
small on the other hand, then the approximation quality decreases. However, in
this regime there is no need for filtering, since

∫ ·
0
Xs ds can be almost read off

from (3.11). For intermediate values of ε this is more difficult to judge and from
numerical experiments it appears that there is a range of ε for which the filtering
problem is not easy, and nevertheless the approximation is not very good.

Remark 3.12. If the observations arrive only at discrete-time points (as opposed
to the continuous-time setting considered here) a similar approximation can be
defined. In this case the ordinary differential equations (3.3) are replaced by
difference equations.

4 Proofs

4.1 Proof of auxiliary results

In this section we prepare for the proof of the main results. To this end, we study
a change of measure, estimates for the function R in (2.14) and properties of T̄ y
in (3.8).
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4.1.1 Change of measure

One of the key tools in the proofs is a change of measure, which turns the original
(time-homogeneous) affine process into a time-inhomogeneous affine process. The
next Lemma 4.1 verifies that the associated parameters satisfy the admissibility
conditions. Based on this, Proposition 4.2 below will then provide the ingredients
for the change of measure.

Lemma 4.1. Suppose g : R+ → Rd is continuous, (2.3) are admissible with c = 0,
γ = 0 and (2.19) holds. For t ≥ 0, define parameters (2.23) by c(t) = 0, γ(t) = 0
and

a(t) = a

α(t) = α

b(t) = b+ agt +

∫
D\{0}

χ(ξ)(e〈gt,ξ〉 − 1)µ0(dξ)

βi,j(t) = βi,j + (αjgt)i +

∫
D\{0}

χi(ξ)(e
〈gt,ξ〉 − 1)µj(dξ), i ∈ I ∪ J, j ∈ I

βi,j(t) = βi,j, i ∈ I ∪ J, j ∈ J
µi(t, dξ) = e〈gt,ξ〉µi(dξ), i ∈ I ∪ {0}.

(4.1)
Then (2.23) is strongly admissible and for all T ≥ 0,

sup
t∈[0,T ]

∫
{ξk>1}

ξkµ
i(t, dξ) <∞, for i, k ∈ I. (4.2)

Proof. Admissibility for fixed t ≥ 0: Firstly, (2.4) implies ai,j = 0 for all
i ∈ I, j ∈ I ∪ J (see (2.4) in [DFS03]). Thus, for i ∈ I, definition (4.1), the
assumed integrability (2.12) and the non-negativity condition (2.6) yield

bi(t)−
∫
D\{0}

χi(ξ)µ
0(t, dξ) = bi −

∫
D\{0}

χi(ξ)µ
0(dξ) ≥ 0.

Similarly, for i, j ∈ I with i 6= j, (2.5) implies αji,k = 0 for all k ∈ I ∪ J . If this
was not the case, i.e. if αji,k 6= 0 for some k ∈ J ∪ {j}, then defining v ∈ Rd by
vl = δlk for l ∈ J ∪ {j}, vl = Cδli for l ∈ I \ {j} and using (2.5) would yield

0 ≤ v>αjv = 2Cαji,k + αjk,k

for all C ∈ R and hence a contradiction. Consequently (αjgt)i = 0 and as above
one uses (2.7) and (2.12) to obtain

βi,j(t)−
∫
D\{0}

χi(ξ)µ
j(t, dξ) = βi,j −

∫
D\{0}

χi(ξ)µ
j(dξ) ≥ 0.

Finally, for i ∈ I ∪ {0} and any non-negative f ∈ B(D) one uses |e〈gt,ξ〉| ≤ e|gt|

on {|ξ| ≤ 1} to estimate∫
D\{0}

f(ξ)µi(t, dξ) ≤ e|gt|
∫
{|ξ|≤1}\{0}

f(ξ)µi(dξ) + ‖f‖∞
∫
D\{|ξ|≤1}

|ξ|e〈gt,ξ〉µi(dξ).

(4.3)
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Inserting f = χk for k ∈ I \ {i} and f = χ2
k for k ∈ (J ∪ {i}) \ {0} in (4.3), the

integrability conditions for µi(t, ·) follow from (2.12), (2.13) and (2.19).
Altogether, it has been verified that (2.23) satisfy for each t ≥ 0 conditions

(2.4)-(2.13).
Continuity in t: Let us first verify the third and fourth admissibility con-

ditions. To do so, note that for any f : D \ {0} → R which is µi-integrable,
dominated convergence and continuity of g yield that

t 7→
∫
{|ξ|≤1}\{0}

f(ξ)e〈gt,ξ〉µi(dξ) is continuous. (4.4)

Suppose the following is established: for any f ∈ Cb(D),

t 7→
∫
D\{|ξ|≤1}

f(ξ)e〈gt,ξ〉µi(dξ) is continuous. (4.5)

Then for k ∈ I \ {i} and any h ∈ Cb(D), one defines f := χkh, notes that
f ∈ Cb(D) (since χ ∈ Cb(D)) and µi-integrable by (2.12) and concludes that

t 7→
∫
D\{0}

h(ξ)χk(ξ)µ
i(t, dξ) is continuous,

by (4.4) and (4.5). Thus χk(·)µi(t, ·) is weakly continuous and the last strong
admissibility condition follows analogously with f := χ2

kh and (2.13).
To verify (4.5), note that (2.19) and [DFS03, Lemma A.2] yield that the

function G0 : Rd → R defined via

G0(u) :=

∫
D\{|ξ|≤1}

f(ξ)e〈u,ξ〉µi(dξ) (4.6)

is analytic. In particular, composing it with the continuous function y preserves
continuity and hence (4.5) holds.

Finally, it remains to argue that b(·) and β(·) are continuous. To show this,
for any i ∈ I ∪{0}, k ∈ I ∪J one uses µi(D \ {|ξ| ≤ 1}) <∞ (since χ is bounded
away from 0 on D \ {|ξ| ≤ 1} and by (2.12) and (2.13)) to decompose∫

D\{0}
χk(ξ)(e

〈gt,ξ〉 − 1)µi(dξ)

=

∫
{|ξ|≤1}\{0}

χk(ξ)(e
〈gt,ξ〉 − 1)µi(dξ) +

∫
D\{|ξ|≤1}

χk(ξ)e
〈gt,ξ〉µi(dξ)

−
∫
D\{|ξ|≤1}

χk(ξ)µ
i(dξ).

(4.7)

The second term is continuous in t by (4.5) and so it remains to show that the
first integral is continuous in t. But this follows from dominated convergence: for
any T > 0 one may use Lipschitz continuity of exp, continuity of g, the Cauchy-
Schwarz inequality and the properties of χ to find C0, C1, C2 > 0 such that for all
t ∈ [0, T ], ξ ∈ {|ξ| ≤ 1} \ {0},

|χk(ξ)(e〈gt,ξ〉 − 1)| ≤ C0|χk(ξ)||〈gt, ξ〉| ≤ C1|χ(ξ)|2 |ξ|
|χ(ξ)|

≤ C2|χ(ξ)|2.
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But (2.12) and (2.13) imply
∫
{|ξ|≤1}\{0} |χ(ξ)|2µi(dξ) <∞ and thus the claim.

Verification of (4.2): Finally, again (2.19) and [DFS03, Lemma A.2] applied
to the measure |ξ|µi(dξ) on D \ {|ξ| > 1} (which is finite by (2.19)) shows that
the function on G : Rd → R defined via

G(u) :=

∫
D\{|ξ|≤1}

|ξ|e〈u,ξ〉µi(dξ)

is analytic and thus for i, k ∈ I,

sup
t∈[0,T ]

∫
{ξk>1}

ξke
g>t ξµi(dξ) ≤ sup

t∈[0,T ]

∫
D\{|ξ|≤1}

|ξ|eg>t ξµi(dξ) = sup
u∈K

G(u) <∞,

since K := {gs : s ∈ [0, T ]} is a compact set by continuity of g.

Based on Lemma 4.1 and a result from [KMK10] (alternatively, one could use
[CFY05]) we can now prove the following key tool:

Proposition 4.2. Suppose g : R+ → Rd is continuous and (2.19) holds. Then
for any x ∈ D,

(i) the process

Et := exp

(∫ t

0

g>u dXu −
∫ t

0

F (gu) + 〈Xu, R(gu)〉 du
)
, t ≥ 0, (4.8)

is a Px-martingale,

(ii) if for some t ≥ 0 and all s ≥ 0, g(s) = g(s∧ t), then (Es∧t)s≥0 is the density
process (w.r.t. Px) of a measure Q on (Ω,F) such that, under Q, X is a
time-inhomogeneous affine process started from (0, x) with parameters as in
Lemma 4.1.

Proof. The proof of Proposition 4.2 is structured as follows: In Step 1, E in (4.8)
is rewritten as E(M) for a suitable local martingale M . In Step 2 it is verified
that Lemma 4.1 implies conditions (4.12), (4.13) and (4.14) below. Finally, in
Step 3 we combine Step 1 and 2 with [KMK10] and obtain (i) and (ii).

Step 1: We follow the notation and definitions of [JS03].
Denote by µX the jump-measure and by Xc the continuous martingale part

of X, respectively. By (2.19), |eg>x − 1 − g>χ(x)| ∗ ν is an adapted, continu-
ous, increasing R-valued process and thus (combining [JS03, Lemma I.3.10 and
Proposition II.1.28]) eg>x − 1 + g>χ(x) ∈ Gloc(µ

X). By linearity and [JS03, The-
orem II.2.34], g>χ(x) ∈ Gloc(µ

X) and so also eg>x−1 ∈ Gloc(µ
X). Thus by [JS03,

Theorem II.1.8(ii)], the process

Mt =

∫ t

0

g>s dXc
s + (eg

>x − 1) ∗ (µX − ν)t, t ≥ 0 (4.9)
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is a local martingale. By an argument as above and [JS03, Corollary II.2.38],
g>x ∈ Gloc(µ

X) and W := eg
>x − 1 − g>x ∈ Gloc(µ

X) and thus, using ∆Mt =
eg
>
t ∆Xt − 1 > −1 one has

(log(1 + x)− x) ∗ µM

= (−g>x+ eg
>x − 1) ∗ µX

= W ∗ (µX − ν) +W ∗ ν
(4.9)
= (−g>x) ∗ (µX − ν) +M +

∫ ·
0

−g>s dXc
s +W ∗ ν

=

∫ ·
0

−g>s dXs +M +W ∗ ν +

∫ ·
0

g>s β(Xs) ds+ g>(x− χ(x)) ∗ ν

= −
∫ ·

0

g>s dXs +M + (eg
>x − 1− g>χ(x)) ∗ ν +

∫ ·
0

g>s β(Xs) ds.

(4.10)
Denoting by E the stochastic exponential, the definition (see also [JS03, The-

orem 8.10]) and (2.18) yields

E(M)t = exp

(
Mt −

1

2

∫ t

0

g>s α(Xs)gs ds− (log(1 + x)− x) ∗ µMt
)

(4.10)
= exp

(∫ t

0

g>u dXu −
∫ t

0

g>u β(Xu) du− 1

2

∫ t

0

g>s α(Xs)gs ds

+ (g>χ(x)− eg>x + 1) ∗ νt
)

= exp

(∫ t

0

g>u dXu −
∫ t

0

F (gu) + 〈Xu, R(gu)〉 du
)
,

(4.11)

where the last step follows by definition (2.14).
Step 2: Define W : R+ × Rd → [0,∞) by W (t, x) := e〈gt,x〉. We now show

that for all j ∈ I ∪ {0}, t ≥ 0,∫ t

0

∫
D\{0}

(1−
√
W (s, x))2µj(dx)ds <∞, (4.12)∫

D\{0}
|χ(x)(W (t, x)− 1)|µj(dx) <∞, (4.13)

t 7→ χk(W (t, x)− 1)(W (t, x)− 1)µj(dx)is weakly continuous in t ∈ R+.
(4.14)

It remains to argue that (4.12)-(4.14) are indeed satisfied. Since exp is
Lipschitz continuous and g is continuous, there exists C ≥ 0 such that for all
s ∈ [0, t], |x| ≤ 1,

|1−
√
W (s, x)| = |1− e−

1
2
〈gs,x〉| ≤ C|〈gs, x〉| ≤ C|gs||x|.

Taking K ⊂ Rd compact with gs,
1
2
gs ∈ K for all s ∈ [0, t] and splitting the
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integral in {|x| ≤ 1} and {|x| ≥ 1}, we obtain (for G0 as in (4.6) with f = 1)∫ t

0

∫
D\{0}

(1− e−
1
2
〈gs,x〉)2µj(dx)ds ≤ C

∫ t

0

|gs|2 ds

∫
|x|≤1

|x|2µj(dx)

+ 2 sup
u∈K

G0(u) +

∫
D\{|x|≤1}

µj(dx),

which is finite by the integrability properties of the Lévy-measures (2.12), (2.13)
and since G0 is continuous. Thus (4.12) indeed holds and an analogous reasoning
gives (4.13).

To establish (4.14), denote µ̃(t, dx) := χk(W (t, x)−1)(W (t, x)−1)µj(dx) and
again consider D \ {|ξ| ≤ 1} and {|ξ| ≤ 1} \ {0} separately, i.e. for f ∈ Cb(D)
write∫

D\{0}
f(ξ)µ̃(t, dξ) =

∫
D\{|ξ|≤1}

f(ξ)µ̃(t, dξ) +

∫
{|ξ|≤1}\{0}

f(ξ)µ̃(t, dξ). (4.15)

The second term is continuous in t by dominated convergence and the same
argument used to show that b and β are continuous. The first term in (4.15) is
the composition of F0 : Rd → R+ defined by

F0(u) :=

∫
D\{|ξ|≤1}

f(ξ)χk(e
〈u,ξ〉 − 1)(e〈u,ξ〉 − 1)µj(dξ)

and g. To establish (4.14) it thus suffices to show that F0 is continuous. To see
this, assume f ≥ 0 (for general f apply the subsequent argument to the positive
and negative parts of f separately), define h : [−1,∞)→ R by h(z) := z2−zχk(z)
and write

F0(u) = G0(2u)− 2G0(u) +G0(0)−
∫
D\{|ξ|≤1}

f(ξ)h(e〈u,ξ〉 − 1)µj(dξ)

with G0 as in (4.6). For the truncation function χ chosen in [KMK10], h(z) =
max(0, z2 − z) for all z ∈ [−1,∞) and so h is non-decreasing and convex. In
particular for any ξ ∈ D\{|ξ| ≤ 1}, the function on Rd defined by u 7→ h(e〈u,ξ〉−1)
is convex and so

u 7→
∫
D\{|ξ|≤1}

f(ξ)h(e〈u,ξ〉 − 1)µj(dξ)

is a (R+-valued) convex function on Rd. [Roc70, Corollary 10.1.1] implies that it
is continuous and so the proof is complete.

Step 3: Recall that (2.3) with c = 0 and γ = 0 is strongly admissible
in the sense of [KMK10, Definition 2.4] and by Lemma 4.1 the same holds for
(4.1). Furthermore, recall the definition of M in (4.9). Since g : R+ → Rd

and W : R+ × Rd → [0,∞) (defined above) are continuous, satisfy (by Step 2)
conditions (4.12), (4.13) and (4.14) and since (4.2) holds, [KMK10, Theorem 4.1]
and its proof show that E(M) is a martingale and that E(M) can be used as the
density process of a probability measure Q that is locally absolutely continuous
w.r.t. Px and has the properties stated in (ii). But Et = E(M)t (by Step 1) and
hence the claim.
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4.1.2 Estimates for R

Lemma 4.3. There exists a function g ∈ C(Rd,R+) such that g(x) = g((x+
I , xJ))

for all x ∈ Rd (with x+
I = (x+

1 , . . . , x
+
m)) and for any u ∈ Cd,

Re 〈ūI , RI(u)〉 ≤ g(Reu)(1 + |uJ |2)(1 + |uI |2). (4.16)

Proof. Inequality (4.16) is derived in [KRM15, Lemma 5.5] with

g(x) := c0(1 + x+
I ) + c1e

x+

+
m∑
i=1

∫
D∩|ξ|≥1

e〈ξ,x〉µi(dξ) +

∫
D∩|ξ|≤1

ξi(e
ξix

+
i − 1)µi(dξ)

(4.17)
for some c0, c1 > 0. Since ξk ≥ 0 for all k ∈ I, e〈ξ,x〉 ≤ e〈ξ,(x

+
I ,xJ )〉 and so (4.16)

remains valid if instead of g one uses g((x+
I , xJ)). Continuity of this function

follows by (2.19) and so the lemma is proved.

Lemma 4.4. Let r > 0 and Sr := {u ∈ Cd : ∀ ∈ I Reui ≤ r, |uJ | ≤ r}. Then
there exists C > 0 such that for all u ∈ Sr,

|RI(u)| ≤ C(1 + |u|2).

Proof. By the triangle inequality it suffices to find for each i ∈ I a constant
Ci > 0 such that |Ri(u)| ≤ Ci(1 + |u|2) for all u ∈ Sr. For i ∈ I,

|Ri(u)| ≤
(

1

2
|αi|+ |βi|

)
(1 + |u|2) +

∫
D\{0}

∣∣e〈ξ,u〉 − 1− 〈χ(ξ), u〉
∣∣µi(dξ)

and so we only need to analyze the µi-integral. Set B := {z ∈ C : Re z ≤
(d+ 1)r}, then for all z ∈ B,

| exp(z)− 1− z| ≤ |z| sup
t∈(0,1)

|etz − 1| = |z| sup
t∈(0,1)

|z
∫ t

0

esz ds| ≤ |z|2e(d+1)r.

Furthermore, for any ξ ∈ D with |ξ| ≤ 1 and u ∈ Sr,

Re 〈ξ, u〉 = 〈ξ,Reu〉 ≤

(∑
i∈I

ξi + |ξJ |

)
r ≤ (d+ 1)r

implies 〈ξ, u〉 ∈ B. Combining these two observations with the Cauchy-Schwarz
inequality and χ(ξ) = ξ on {|ξ| ≤ 1} one obtains with D1 := D ∩ {|ξ| ≤ 1}∫

D1

∣∣e〈ξ,u〉 − 1− 〈χ(ξ), u〉
∣∣µi(dξ) ≤ |u|2e(d+1)r

∫
D1

|ξ|2µi(dξ) =: |u|2C0
i ,

where C0
i is finite because of (2.12) and (2.13).

By (2.19) and [DFS03, Lemma A.2], the function

R̃i(u) :=

∫
D\{|ξ|≤1}

e〈ξ,u〉µi(dξ), u ∈ Cd
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is analytic. In particular, C0 := sup|u|≤r |R̃i(u)| is finite.
Since χ is bounded away from 0 on D \ {|ξ| ≤ 1}, C := µi(D \ {|ξ| ≤ 1})

is finite (by (2.12) and (2.13)). Combining this with |χ(ξ)| ≤ d one obtains for
u ∈ Sr∫

D\{|ξ|≤1}

∣∣e〈ξ,u〉 − 1− 〈χ(ξ), u〉
∣∣µi(dξ) ≤ ∫

D\{|ξ|≤1}
e〈ξ,Reu〉µi(dξ) + C(1 + d|u|)

≤ C0 + C(1 + |u|),

where we have used ξI ∈ Rm
+ for the last estimate. Combining all the estimates

yields the desired statement.

4.1.3 Properties of T̄ y

To prepare the proof of Proposition 3.8 we provide two additional Lemmas. The
first is an application of Itô’s lemma and essentially identifies the extended gen-
erator of T̄ y in (3.8). The second Lemma rephrases a result from [Fil05].

Recall that H(x) = (x0)>I xI + c0 and for f ∈ C1,2
0 (R+ ×D), t ≥ 0, set

Ayt f(t, x) = Af(t, x) + f(t, x)[F (−yt) + 〈x,R(−yt)〉 −H(x)]

− 〈α(x)yt,∇xf(t, x)〉

+

∫
D\{0}

[f(t, x+ ξ)− f(t, x)](e−〈yt,ξ〉 − 1)K(x, dξ).

(4.18)

Proposition 4.5. Suppose y : R+ → Rd is continuous, (2.3) are admissible with
c = 0, γ = 0 and (2.19) holds. Define

Ut := exp

(
−
∫ t

0

y>u dXu −
∫ t

0

H(Xu) du

)
(4.19)

and Ay as in (4.18). Then for any f ∈ C1,2
0 (R+ ×D), the process

Utf(t,Xt)− f(0, X0)−
∫ t

0

Uu(∂u +Ayu)f(u,Xu) du, t ≥ 0, (4.20)

is a local martingale.

Proof. Define E by (4.8) with g := −y. Then Et = E(M)t for M as in (4.9).
Furthermore, Ut = Et exp(Vt), where

Vt =

∫ t

0

F (−yu) + 〈Xu, R(−yu)〉 du−
∫ t

0

H(Xu) du

is continuous and of bounded variation, [E, V ] = 0 and thus

dUt = d(E(M)t exp(Vt)) = Ut− dMt + Ut dVt.

For f ∈ C1,2
0 (R+ ×D), Itô’s formula shows that

f(t,Xt) = f(0, X0) +

∫ t

0

(∂s +A)f(s,Xs) ds+Nt, t ≥ 0,
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where N is a local martingale with continuous part
∫
∇xf(s,Xs−)> dXc

s . Com-
bining this with (2.18), the definition (4.9), the fact that f is bounded and
e−y

>x − 1 ∈ Gloc(µ
X), we obtain

[M,N ]t = 〈M c, N c〉t +
∑
s≤t

(f(s,Xs)− f(s,Xs−))(e−ys∆Xs − 1)

.
= −

∫ t

0

y>s α(Xs)∇xf(s,Xs) ds

+

∫ t

0

(f(s,Xs− + ξ)− f(s,Xs−))(e−y
>
u ξ − 1)K(Xu−, dξ) du,

where U .
= V means that U − V is a local martingale.

Putting everything together, Itô’s formula written in differential form gives

dUtf(t,Xt)
.

=Ut(∂t +A)f(t,Xt) dt+ f(t,Xt−)UtdVt + d[U,N ]t
.

=UtAyt f(t,Xt) dt,

which shows that (4.20) is a local martingale.

In the following Lemma, we allow the function spaces (defined before) to
contain complex valued functions.

Lemma 4.6. There exists a dense subset L ⊂ C0(D) with the following property:
for any T > 0, h ∈ L there exists u ∈ C1,2([0, T ]×D) bounded, satisfying

∂tu(t, x) +Aytu(t, x) = 0 (t, x) ∈ [0, T )×D,
u(T, x) = h(x) x ∈ D.

(4.21)

Proof. Denote by Θ0 ⊂ C0(D) the set of C-valued functions from [DFS03, Pro-
position 8.2]. Any h ∈ Θ0 is of the form

h(x) =

∫
Rn
e(v,iq)>xg(q) dq, x ∈ D,

for some g ∈ C∞c (Rn) and v ∈ Cm
−−. Denote by L the complex linear span of Θ0.

In [DFS03, Lemma 8.4] it is shown that L dense in C0(D).
Fix T > 0 and h ∈ Θ0. For (t, x) ∈ [0, T ] × D, define u(t, x) := Pt,Th(x).

Then u is bounded, satisfies u(T, ·) = h and, as established in the proof of [Fil05,
Proposition 6.3], u ∈ C1,2([0, T ]×D) and (4.21) indeed holds.

4.2 Proof of Proposition 3.8

Proof of Proposition 3.8. Since xi0 > 0 for i ∈ I, y0 = 0, R(0) = 0 and R, y
are continuous, there exists T > 0 such that xi0 − Ri(−yt) ≥ 0 for t ∈ [0, T ].
Taking c0 = supt∈[0,T ] F (−yt) it follows that c(t) ≥ 0 and γ(t) ∈ Rm

+ for all
t ∈ [0, T ]. Combining this with Lemma 4.1, it follows that the parameters are
indeed admissible.
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To prove the proposition, it suffices to show T̄ yt = P y
0,t and for this it is

sufficient to show T̄ yt h = P y
0,th for all h in a dense subset of C0(D). Taking L

from Lemma 4.6, for any h ∈ L we find f ∈ C1,2
0 ([0, t]×D) such that f(t, ·) = h

and the du-integral in (4.20) vanishes. Hence

Ns := Us∧tf(s ∧ t,Xs∧t), s ≥ 0,

is a local martingale by Proposition 4.5, where U is as in (4.19). On the other
hand,

Ut = exp(Vt)Et,

where E is defined in (4.8) (with g = −y) and

Vt :=

∫ t

0

F (−yu) + 〈Xu, R(−yu)〉 du−
∫ t

0

H(Xu) du, t ≥ 0.

Since βj = 0 for j ∈ J and xi ≥ 0 for i ∈ I,

H(x)− F (−yt)− 〈x,R(−yt)〉 = c(t) + x>γ(t) ≥ 0

for all (t, x) ∈ [0, T ] × D. Thus Vt ≤ 0 for t ∈ [0, T ] and exp(Vt) is bounded on
[0, T ]. Since E is a martingale by Proposition 4.2, the local martingale N satisfies

Ns = exp(Vt∧s)Et∧sf(s ∧ t,Xs∧t), s ≥ 0,

and is the product of a bounded process and a martingale. Thus N is a true
martingale and combining this with f(t, ·) = h, the definition (3.8) and f(s, ·) =
Ps,th (see Lemma 4.6) yields

T̄ yt h(x) = Ex[Utf(t,Xt)] = Ex[Nt] = Ex[N0] = f(0, x) = P0,th(x). (4.22)

4.3 Proof of Theorem 3.1 and 3.5

Proof of Theorem 3.1. We proceed in two steps: First (3.4) is verified under the
assumption that a solution to (3.3) exists. In the second part, existence and
uniqueness for (3.3) is established.

Expression for the Fourier coefficients: Since Ψ is continuously differen-
tiable, each component is of finite variation and thus [Ψj, Xj] = 0 for all j. By
the product rule and (3.3),

(u+ yT )>XT−Ψ(0, T, u)>X0

= Ψ(T, T, u)>XT −Ψ(0, T, u)>X0

=

∫ T

0

Ψ(s, T, u)> dXs +

∫ T

0

X>s ∂sΨ(s, T, u) ds

=

∫ T

0

Ψ(s, T, u)> dXs −
∫ T

0

X>s (R(Ψ(s, T, u)− ys)− γs) ds.

(4.23)
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By Proposition 4.2 applied to the continuous function g : R+ → Rd defined by

g(t) := Ψ(t ∧ T, T, u)− yt∧T ,

the process

Ẽt := exp

(∫ t

0

g>u dXu −
∫ t

0

F (gu) + 〈Xu, R(gu)〉 du
)
, t ≥ 0,

is a martingale.
Combining this with (4.23) and the definition of ρ we obtain

ρxT (fu, y) = E
[
exp

(
(u+ yT )>XT −

∫ T

0

y>s dXs −
∫ T

0

cs +X>s γs ds

)]
= E

[
exp

(
Ψ(0, T, u)>X0 +

∫ T

0

(Ψ(s, T, u)− ys)> dXs

−
∫ T

0

csX
>
s R(Ψ(s, T, u)− ys) ds

)]
= E

[
ẼT exp

(
Ψ(0, T, u)>X0 +

∫ T

0

F (Ψ(s, T, u)− ys)− cs ds

)]
= exp(Φ(0, T, u) + Ψ(0, T, u)>x).

(4.24)
Existence and uniqueness of solutions to (3.3): Suppose first for some

T > 0 there exists Ψ̃ ∈ C1([0, T ],Rd) satisfying

∂tΨ̃(t, u) = R(Ψ̃(t, u) + yT − yT−t)− γT−t, Ψ̃(0, u) = u. (4.25)

Then a solution to (3.3) is obtained by setting Ψ(t, T, u) := Ψ̃(T − t, u) + yT and

Φ(t, T, u) =

∫ T

t

F (Ψ(s, T, u)− ys)− cs ds, t ∈ [0, T ].

Conversely, any solution to (3.3) gives rise to Ψ̃ satisfying (4.25) by setting
Ψ̃(t, u) := Ψ(T − t, T, u)− yT . Thus, to prove the theorem it suffices to construct
T > 0 such that for all u ∈ iRd there exists a unique Ψ̃(·, u) ∈ C1([0, T ],Rd)
satisfying (4.25). To do so, we will establish the following statements:

(i) for any T > 0, u ∈ Cd, there exists t+(u, T ) ∈ (0,∞] such that (4.25)
has a unique solution on [0, t+(u, T )). If t+(u, T ) < ∞, then it holds that
limt↑t+(u,T ) |Ψ̃(t, u)| =∞.

(ii) there exists T0 > 0 such that t+(0, T0) > T0, i.e. the solution to (4.25) with
u = 0, T = T0 exists on [0, T0].

(iii) for any u ∈ iRd, t+(u, T0) > T0.
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Then (iii) implies that for any u ∈ iRd there exists a unique solution to (4.25) on
[0, T0], which proves the theorem. We now show (i)-(iii). In what follows, we set
yr := 0 for r < 0 so that y ∈ C(R,Rd).

(i) By [DFS03, Lemma 5.3] and (2.19), R is an analytic function. In par-
ticular it is locally Lipschitz continuous. Combining this with the fact that y is
continuous, (i) follows from the global existence and uniqueness result for ordin-
ary differential equations [Ama90, Theorem 7.6].

(ii) For (t, z, T ) ∈ R× Cd × R, set

f(t, z, T ) := R(z + yT − yT−t)− γT−t.

Then f ∈ C(R × Cd × R,Cd) and, since R is locally Lipschitz-continuous, the
prerequisites of[Ama90, Theorem 8.3] are satisfied. Thus, the set

D := {(t, τ, u, T ) ∈ R× R× Cd × R : t ∈ J(τ, u, T )}

is open, where J(τ, u, T ) is the maximal interval of existence of the (unique)
solution to

ẋ(t) = f(t, x(t), T ), x(τ) = u.

Since (0, 0, 0, 0) ∈ D and D is open, (T0, 0, 0, T0) ∈ D for T0 > 0 small enough.
Thus T0 ∈ J(0, 0, T0) and, since the right endpoint of the open interval J(0, 0, T0)
is t+(0, T0), the claim follows.

(iii) Fix u ∈ iRd. By (ii), t+(0, T0) > T0 and so it suffices to show that
t+(u, T0) ≥ t+(0, T0) or, by (i), that |Ψ̃(t, u)| does not explode on [0, T0]. Consider
the J-components first. By (2.8), for j ∈ J (4.25) is given as

∂tΨ̃j(t, u) = 〈βj, Ψ̃J(t, u) + yJ(T )− yJ(T − t)〉 − (γT−t)j, Ψ̃j(0, u) = uj (4.26)

and, as this is a system of first order linear equations, Ψ̃J(t, u) exists for all
t ≥ 0. Thus it remains to analyze the I-components. We claim that there exists
constants c0, c1 > 0 such that for all t ∈ [0, T0 ∧ t+(u, T0))

∂t|Ψ̃I(t, u)|2 ≤ c0(c1 + |Ψ̃I(t, u)|2). (4.27)

Assuming that (4.27) has been established, Gronwall’s inequality applied to c1 +
|Ψ̃I(t, u)|2 implies

|Ψ̃I(t, u)|2 ≤ (c1 + |uI |2) exp (c0t)− c1 (4.28)

for all t ∈ [0, T0 ∧ t+(u, T0)). This allows to conclude (iii) by contradiction: If
T0 ≥ t+(u, T0), then (4.28) holds for all t ∈ [0, t+(u, T0)) and the left hand side of
(4.28) explodes as t ↑ T0, whereas the right hand side is bounded by its value at
T0. Hence, by contradiction T0 < t+(u, T0) as claimed.

Therefore it suffices to establish (4.27). To do so, we follow the proof of
[DFS03, Proposition 6.1] and [KRM15, Proposition 5.1]. For t ∈ R, set ȳ(t) :=
yT0 − yT0−t. As argued above, (4.26) implies that Ψ̃J(t, u) exists for all t ≥ 0.
Furthermore, the real part of (4.26) does not depend on u and therefore

Re Ψ̃J(t, u) = Re Ψ̃J(t, 0) = Ψ̃J(t, 0). (4.29)
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Set T := t+(0, T0) ∧ t+(u, T0) and for (t, x) ∈ [0, T ]× Rm,

f(t, x) := RI((x, Ψ̃J(t, 0)) + ȳ(t))− (γT0−t)I .

Then by [KRM15, Lemma 5.7], continuity of y and Lipschitz continuity of RI ,
f satisfies the conditions of the comparison result [MMKS11, Proposition A.2].
Furthermore, (4.29) and the inequality ReRi(z) ≤ Ri(Re (z)) (valid for all z ∈
Cd) yield

∂tRe Ψ̃i(t, u)− fi(t,Re Ψ̃I(t, u)) ≤ 0 = ∂tΨ̃i(t, 0)− fi(t, Ψ̃I(t, 0)),

and Re Ψ̃i(0, u) = Ψ̃i(0, 0) for t ∈ [0, T ), i ∈ I. Hence the comparison result
[MMKS11, Proposition A.2] implies

Re Ψ̃i(t, u) ≤ Ψ̃i(t, 0), ∀i ∈ I, t ∈ [0, t+(0, T0) ∧ t+(u, T0)) (4.30)

For t ∈ [0, T0 ∧ t+(u, T0)) one uses (4.25) to write

1

2
∂t|Ψ̃I(t, u)|2 = Re 〈Ψ̃I(t, u), ∂tΨ̃I(t, u)〉

= Re 〈Ψ̃I(t, u) + ȳ(t), RI(Ψ̃(t, u) + ȳ(t))〉
− 〈ȳ(t),ReRI(Ψ̃(t, u) + ȳ(t))〉
− 〈Re Ψ̃I(t, u), (γT0−t)I〉

= I1 − I2 − I3,

(4.31)

where each Ii denotes an inner product. The three inner products in (4.31) can
be estimated separately:

For the first one, denote by g ∈ C(Rd,R+) the function from Lemma 4.3,
write x+,I := (x+

I , xJ) for x ∈ Rd and recall g(x) = g(x+,I). By (4.30) and the
fact that Ψ̃J(t, u) exists for all t ≥ 0, there exists K ⊂ Rd compact such that
(Re Ψ̃(t, u) + ȳ(t))+,I ∈ K for all t ∈ [0, T0 ∧ t+(u, T0)). Hence Lemma 4.3 yields

I1 ≤ g(Re Ψ̃(t, u) + ȳ(t))(1 + |Ψ̃J(t, u) + ȳJ(t)|2)(1 + |Ψ̃I(t, u) + ȳI(t)|2)

≤ 4g((Re Ψ̃(t, u) + ȳ(t))+,I)(1 + |Ψ̃J(t, u) + ȳJ(t)|2)(C1 + |Ψ̃I(t, u)|2)

≤ C0(C1 + |Ψ̃I(t, u)|2)

(4.32)

where C0 := (4 supx∈K g(x) ∧ 1) supt∈[0,T0](1 + |Ψ̃J(t, u) + ȳJ(t)|2) and C1 := 1 +
2 supt∈[0,T0] |ȳ(t)|2.

For the second one, Lemma 4.4, the fact that Ψ̃J(t, u) exists for all t ≥ 0 and
(4.30) yield that there exists C > 0 such that

−I2 ≤ |ȳ(t)||RI(Ψ̃(t, u) + ȳ(t))|
≤ CC1(1 + |Ψ̃(t, u) + ȳ(t)|2)

≤ 4CC1(C0 + C1 + |Ψ̃I(t, u)|2)

(4.33)
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and for the last one

− I3 ≤ |γT0−t||Ψ̃I(t, u)| ≤ sup
s∈[0,T0]

|γs|(1 + |Ψ̃I(t, u)|2). (4.34)

Combining (4.31) with the estimates (4.32),(4.33) and (4.34) yields (4.27), as
desired.

Proof of Theorem 3.5. Precisely as in the derivation of (4.24), one combines the
definition (3.5), the product rule (4.23) for u = 0 and the definition of Et in (4.8)
to write

ρt(G, y) = E
[
G(X[0,t])Et exp

(
Ψ(0, t, 0)>X0 +

∫ t

0

F (gs)− cs ds

)]
= exp(Φ(0, t, 0))

∫
D

exp(〈x,Ψ(0, t, 0)〉)Ex[G(X[0,t])Et]π0(dx).

But for any x ∈ D,

Ex
[
G(X[0,t])Et

]
= EQy,tx

[
G(X[0,t])

]
with Qy,t

x = Q as in Lemma 4.2(ii). Thus the statement follows from the definition
of π̄t(G, y) and Lemma 4.2(ii).

5 Illustration: Filtering a Cox-Ingersoll-Ross pro-
cess

In this section the methodology developed in Section 3 is applied to the prob-
lem of filtering a Cox-Ingersoll-Ross process. We compare the approximation
via our linearized filtering functional (LFF) (respectively the induced affine func-
tional filter (AFF)) and other existing approximate filtering methods to the true
solution.

5.1 Problem formulation

A Cox-Ingersoll-Ross (CIR) process is a weak solution to the stochastic differential
equation

dXt = (b+ βXt)dt+ σ
√
XtdBt, X0 = x, (5.1)

where b ≥ 0, β ∈ R, σ > 0 and B is a Brownian motion. Denoting by Px the law
of X, this gives rise to a conservative affine process with state space D = R+.
The parameters in (2.3) are given as (0, σ2, b, β, 0, 0, 0, 0). Let W a Brownian
motion independent of X, Γ > 0 and set

Yt =

∫ t

0

Xs ds+ ΓWt, t ≥ 0. (5.2)



5 Illustration: Filtering a Cox-Ingersoll-Ross process 43

The goal is to calculate, for any t ≥ 0, the distribution of Xt conditional on
the σ-algebra generated by (Ys)s∈[0,t] (see Section 2.2.1). In particular, we are
interested in the conditional mean and variance

x̂t = Ex[Xt|FYt ],

Vt = Ex[(Xt − x̂t)2|FYt ], t ≥ 0.
(5.3)

There are various methods available to numerically approximate (5.3). For any
of these methods one has to pass to a setup of discrete-time observations at some
stage. To do this we fix T > 0, N ∈ N and a time-grid 0 = t0 < t1 < . . . < tN = T .
Instead of observing the entire path (5.2), one observes at time ti the random
variable

yi = Xti(ti − ti−1) + Γ
√
ti − ti−1εi, (5.4)

for i = 1, . . . N , where ε1, . . . εN are i.i.d. standard normal random variables.
This amounts to discretizing the integral in (5.2) using a Riemann sum and
setting yi = Y disc

ti
− Y disc

ti−1
. The filtering distribution is then approximated as

Ex[f(Xtn)|FYtn ] ≈ πNtn(f) with

πNtn(f) := Ex[f(Xtn)|FY,Ntn ], (5.5)

for any measurable f : R+ → C satisfying Ex[|f(Xt)|] < ∞, where FY,Ntn =
σ(y1, . . . yn) and n = 1, . . . N . In particular, instead of (5.3) in what follows
we will denote

x̂t = Ex[Xt|FY,Nt ],

Vt = Ex[(Xt − x̂t)2|FY,Nt ], t ∈ {t0, . . . tN}.
(5.6)

5.2 Numerical solution: Approximate filtering methods

There are various methods at hand to numerically approximate (5.5) and (5.6).
To illustrate the quality of these we first generate a sample path of the signal and
observation process. More precisely, a sample of (Xt0 , Xt1 , . . . , XtN ) is generated
by (exact) sampling from the transition density (see [Gla04, Section 3.4]). Based
on this sample, a sample of (y1, . . . , yN) is generated using (5.4).

For this sample observation we now compare different methods for approx-
imating (5.5) and (5.6). As a benchmark we calculate (5.6) using a (bootstrap)
particle filter with sufficiently many particles (106 in the examples below), see
[BC09a, Chapter 10]. In the plots these results will be denoted by x̂ and V by
slight abuse of notation.

This benchmark is now compared to the approximation using the linear-
ized filtering functional (LFF, developed in the present chapter) and two stand-
ard approximations (explained in more detail below): A Gamma-approximation
([Bat06]) and a normal approximation ([GP99], see also [BH98]). The respective
approximations to (5.6) are denoted as follows:

• Normal: x̂(EKF ), V (EKF )
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• Gamma: x̂(G), V (G)

• LFF: x̂(LFF ), V (LFF ).

Firstly, let us explain the approximations from [Bat06] and [GP99] in more
detail. In both cases basic idea is to postulate that (at each time-step tn) the
conditional distribution in (5.5) belongs to a certain two-parameter family of
probability distributions (Normal in [GP99] and Gamma in [Bat06]). Then (at
each time-step tn) one only needs to approximate (5.6) and determine the two
parameters from this. In [GP99] the updating procedure for (5.6) is based on
the exact formulas for the mean and variance of a CIR process and the Kalman
filter. This can be seen as a version of the extended Kalman filter. In [Bat06]
numerical integration on the level of characteristic functions is used to update
(5.6). We refer to these articles for more details. Both approximations [Bat06]
and [GP99] can be viewed as special cases of the projection filter (first introduced
in [BHL98]), see [BH98].

Finally, the unconditional mean and variance are denoted by x̄t := Ex[Xt] and
vt := Ex[(Xt− x̄t)2]. Since these correspond to a situation where no observations
are available, a comparison of (x̄, v) and (x̂, V ) shows how much information the
(sample path of the) observation (y1, . . . , yN) contains about X. Therefore, these
are also shown in the plots below.

5.3 Discussion

We now compare the methods introduced above for two sets of parameters. For
both settings the following choices have been made:

• instead of a constant x, the signal process X is started in X0 = max(0, Z),
where Z ∼ N (x0, s

2
0) is independent of B and W ,

• the time horizon is T = 1 and the discretization uses an equidistant grid
ti = iT/N , i = 0, . . . N ,

• N = 1000, σ = 0.04, β = −0.2 and s0 = 2 · 10−5.

The remaining parameter values differ for the two settings; they are indicated in
the caption of the figures.

Case 1 We choose b = 10−6, Γ = x0 = 0.005. Figures II.1 and II.2 show the
same sample path of a CIR process. The sample of observations is not shown
in the plot, but one clearly sees that for t sufficiently large the conditional mean
x̂ is neither very close to X nor very close to the mean x̂. Thus, the filtering
problem is indeed not trivial: the posterior distribution in (5.5) is neither close
to the distribution of Xtn nor concentrated at Xtn .

In both figures the conditional mean x̂ is shown along with (dotted) “confid-
ence bounds” given by x̂+

√
V and x̂−

√
V . This allows to show both conditional

mean and variance in the same plot. The analogous bounds are also shown for
the unconditional mean and the different approximations.
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Figure II.1: Case 1: Comparison with extended Kalman filter.
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Figure II.2: Case 1: Comparison with Gamma approximation.

The two figures illustrate that the linearized filtering functional provides a
more accurate approximation for (5.6) than the standard methods.

Case 2 We choose b = 2 · 10−5, Γ = x0 = 0.0001. In this case both the
approximation using the linearized filtering functional (LFF) and the normal ap-
proximation are not very good. However, it appears that the LFF-approximation
becomes better as t approaches 1. Although this behaviour is typical in the
present parameter regime, a precise explanation (possibly based on ergodicity
properties of the CIR process) is presently not available.
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Figure II.3: Case 2: Comparison with extended Kalman filter.

6 Illustration: Filtering a Wishart process

So far this chapter has been concerned with the filtering problem for Rm
+ ×Rd−m-

valued affine processes. We now test the methodology on Wishart processes, an
S+
d -valued generalization of the CIR process (as studied in Section 5). Here S+

d

denotes the set of all symmetric, positive semidefinite d × d matrices. Wishart
processes were introduced in [Bru91] and are commonly used for multivariate
stochastic volatility modeling. They are a subclass of S+

d -valued affine processes
as characterized in [CFMT11].

Although in theory sequential Monte Carlo methods can be applied for nu-
merically filtering Wishart processes, in practice this is infeasible for d ≥ 3 (see
below). Hence, so far no numerical method has been available for this problem.
We fill this gap by introducing a linearized filtering functional analogous to (3.1)
and perform numerical experiments for d = 3. This section contains simulation
results. A generalization of the theory in Sections 3 and 4 to S+

d -valued affine
processes will be subject of future work.

6.1 The signal process

Denote by S+
d the set of all symmetric, positive semidefinite d × d matrices and

set S−d = −S+
d . A Wishart process is (an S+

d -valued) weak solution to

dXt = (b+HXt +XtH
>)dt+

√
XtdBtΣ + Σ>dB>t

√
Xt, X0 = x, (6.1)

for B a d × d-matrix of independent standard Brownian motions and suitable
b ∈ S+

d , x ∈ S
+
d , H ∈ Rd×d, Σ ∈ Rd×d. For simplicity, we assume that Σ ∈ S+

d ,
H = 0, b = nΣ2 for some n ∈ N with n ≥ d + 1 and that x has distinct
eigenvalues. Then [Bru91, Proof of Theorem 2”] ensures that (6.1) has a unique
strong solution for all t ≥ 0. It also ensures that sample paths of X can be
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simulated easily: Given z0 ∈ Rn×d with x = z>0 z0 and an n× d-Brownian motion
W , set Zt = WtΣ + z0 for t ≥ 0. Then X := Z>Z is a weak solution to (6.1).
Hence, to simulate a sample path of X one only needs to simulate a sample path
of W and apply these two transformations. Finally, for u, v ∈ Sd (the set of
symmetric d × d-matrices) define 〈u, v〉Sd := tr(uv). Then for t ≥ 0 the Laplace
transform of Xt is given by

E[e〈u,Xt〉Sd ] = exp(φ(t, u) + 〈ψ(t, u), x〉Sd), u ∈ S−d

for some φ : R≥0 × S−d → R− and ψ : R≥0 × S−d → S−d . In fact φ and ψ solve
generalized Riccati equations (2.15) with R(u) := 2uΣ2u, F (u) := ntr(Σ2u).

6.2 Numerical solution of the filtering problem

Fix h : S+
d → Rm linear and Γ ∈ Rm×m symmetric, invertible. The observation

process Y is defined as

Yt =

∫ t

0

h(Xs) ds+ ΓWt, t ≥ 0,

whereW is anm-dimensional Brownian motion independent ofX, and (the signal
process) X is a solution to (6.1) with parameters as specified above (under P).
As before our goal is to numerically calculate the distribution of Xt conditional
on the σ-algebra generated by (Ys)s∈[0,t], for any t ≥ 0. For this two methods
are used: firstly a bootstrap particle filter as in [BC09a, Chapter 9] and secondly
the approximate affine filter (AFF) induced by the linearized filtering functional
(LFF). These are defined analogously to the case of a canonical state space. More
precisely, fix x0 ∈ S+

d and for t ≥ 0, y ∈ C(R+,Rm) and f ∈ B(S+
d ) define the

LFF ρt(·, y) by

ρt(f, y) = E
[
f(Xt) exp

(
y>t h̄(Xt)−

∫ t

0

y>s dh̄(Xs)−
∫ t

0

h(x0)>h̄(Xs) ds

)]
,

where h̄ = Γ−2h, and the AFF π̄t(·, y) by (3.2). As in Remark 3.10 the LFF is
obtained by linearizing the pathwise filtering functional (associated to the obser-
vation process Γ−1Y and observation function Γ−1h) at x0. Denoting by h> the
adjoint6 of h and setting ȳs = h>(Γ−2ys) and x̄0 = h>(Γ−2h(x0)) one rewrites
ρt(f, y) as

ρt(f, y) = E
[
f(Xt) exp

(
〈ȳt, Xt〉Sd −

∫ t

0

〈ȳs, dXs〉Sd −
∫ t

0

〈x̄0, Xs〉Sd ds

)]
and based on Section 3 one expects

π̄t(f, y) = EQy,tx [f(Xt)],

6By definition, this is the unique linear map h> : Rm → Sd such that h(x)>y = 〈x, h>(y)〉Sd

for all y ∈ Rm.
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where under Qy,t
x , X satisfies X0 = x and

dXs = (nΣ2 +HsXs +XsH
>
s )ds+

√
XsdBsΣ + ΣdB>s

√
Xs, s ∈ (0, t] , (6.2)

with Hs = 2Σ2(Ψ(s) − ȳs), B a d × d Brownian motion under Qy,t
x and Ψ the

solution to
−∂sΨ(s) = R(Ψ(s)− ȳs)− x̄0, s ∈ [0, t)

Ψ(t) = ȳt.
(6.3)

In particular, (6.2) yields an ordinary differential equation for the approximate
conditional mean X̂t = π̄t(id, y) at time t: Formally taking expectations in (6.2)
one obtains X̂0 = x and

dX̂s

ds
= (nΣ2 +HsX̂s + X̂sH

>
s ), s ∈ (0, t]. (6.4)

6.3 Discussion

We now compare the two methods in an example. The following choices have
been made: h(x) := vech(x) is the half-vectorization operator (which takes the
elements of x in the lower triangular part and writes them in an m-dimensional
column vector) and m = 1

2
d(d + 1). Denote by Id the d × d identity matrix.

We choose d = 3, Γ = Γ0I3, Σ = σI3 and the parameter values as shown in the
following summary:

dXt = nσ2I3dt+ σX
1/2
t dBt + σdB>t X

1/2
t , X0 = x0

dYt = vech(Xt)dt+ Γ0dWt, Y0 = 0

(n, σ, x0,Γ0) = (4, 0.04, diag(0.752, 0.52, 0.252), 0.06).

(6.5)

The filtering problem is discretized analogously to the case of a CIR process
discussed in detail in Section 5. We choose T = 1 and equidistant time-points
ti = iT/N , i = 0, . . . N with N = 100. (Exact) samples of (Xt0 , Xt1 , . . . XtN )
can be generated as explained in Section 6.1 and a spline interpolation is used to
generate a continuous observation path y from discrete measurements.

In this setting the conditional mean x̂t (see (5.3) and (5.6)) is approximated
by

• x̂(PF )
t based on a bootstrap particle filter with Np particles (as in [BC09a,

Chapter 10]),

• x̂(AFF )
t = X̂t in (6.4).

The computation time required to calculate x̂(PF )
t on a standard laptop is enorm-

ous already for moderate Np (e.g. for Np = 103, 104, 105 it takes roughly 10
seconds, 1 minute, 10 minutes, respectively). On the other hand, in all these
cases the approximation is very bad and so, in contrast to Section 5, here no
benchmark is available. The two approximations are therefore compared based
on their mean square error: we generate M sample paths of (6.5), calculate the
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Figure II.4: Comparison of mean square error for conditional mean of particle
filter and AFF.

approximate conditional mean with both methods and calculate the average at
each time-point,

e
(m)
t =

1

M

M∑
j=1

‖Xj
t − x

(m),j
t ‖2, t = t0, . . . , tN

for m ∈ {PF,AFF}. Here Xj is the j-th sample path of X, x(m),j is the ap-
proximate conditional mean (calculated using method m) associated to it and
‖u‖2 := 〈u, u〉Sd for u ∈ Sd. By the law of large numbers and the definition of x̂,
a smaller value of e(m)

ti indicates that (on average) x̂ti and x
(m)
ti are closer.

Figure II.4 shows a plot of (ti, e
(m)
ti ), i = 0, . . . , N for m ∈ {PF,AFF},

Np = 104 andM = 100. For this number of particles the calculation of x̂(PF ) takes
about 15 times longer than the calculation of x̂(AFF ) (on average). Nevertheless,
the approximation quality of a bootstrap particle filter is considerably worse than
that of the AFF, since the average mean-square error is significantly larger for
longer time-periods, as shown in Figure II.4.



50 II Affine Filtering



Chapter III

Deep Hedging

1 Introduction

The problem of pricing and hedging derivatives is crucial for risk-management
in the financial securities industry. In idealized (frictionless, complete) market
models mathematical finance provides a tractable solution (risk neutral pricing
and delta-hedging) to this problem. Even though real markets are not frictionless
(e.g. transaction costs are incurred), in practice hedging decisions are often still
based on this idealized solution due to the lack of alternatives: in more realistic
market models so far there has not been any general approach to pricing and
hedging, which is also numerically feasible. A few examples illustrating this are
provided in Section 1.1 below.

Building on recent theoretical insights (see e.g. [BGKP17]) and computational
advances in the area of neural networks, this chapter studies hedging strategies
built from deep neural networks. It turns out that these provide an efficient para-
metrization of the space of all hedging strategies and a generic hedging algorithm
applicable to a wide range of market environments (different market models and
frictions).

More concretely, we build on ideas from e.g. [Xu06], [IJS09], [FL00], [FS16]
and use convex risk measures to define prices and optimal hedging strategies. To
calculate these numerically, the strategies are approximated by deep neural net-
works. State-of-the-art machine learning optimization techniques (see [GBC16])
are then used to train these networks, yielding a close-to-optimal deep hedge. All
of this is implemented in Python using TensorFlow and a numerical study is car-
ried out for the Heston model [Hes93], where trading is allowed in both stock and
a variance swap. Experiments with proportional transaction costs show prom-
ising results and the approach is feasible also in a high-dimensional setting. The
experiments are complemented by theoretical convergence results.

1.1 Related literature

There is a vast literature on hedging in market models with frictions. In addition
to those discussed later on in the chapter ([HN89], [DPZ93],[WW97], [KMK15])

51
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here we pick out only a small selection to illustrate the complex character of
the problem. For example, [RS10] study a market in which trading a security
has a (temporary) impact on its price. The price process is modeled by a one-
dimensional Black-Scholes model. The optimal trading strategy can be obtained
by solving a system of three coupled (non-linear) PDEs. In [BSV17] a more gen-
eral tracking problem (covering the temporary price impact hedging problem) is
carried out for a Bachelier model and a closed form solution (involving conditional
expectations of a time integral over the optimal frictionless hedging strategy) is
obtained for the strategy. [SSC95] prove that in a Black-Scholes market with
proportional transaction costs, the cheapest superhedging price for a European
call option is the spot price of the underlying. Thus, in the one-dimensional case
the concept of super-replication is of little interest to practitioners. This is of
course different if a larger number of hedging instruments is allowed, but then
the problem becomes numerically intractable by classical methods.

1.2 Outline

This chapter is structured as follows. In Sections 2 and 3 we provide the theoret-
ical framework for pricing and hedging using convex risk measures in discrete-time
markets with frictions. Section 4 discusses hedging by neural network strategies
and provides theoretical results explaining why the approach works. Finally, in
Section 5 we present numerical experiments that illustrate the surprising feasib-
ility and accuracy of the method.

2 Setting: Discrete time-market with transaction
costs

Consider a discrete-time financial market with finite time horizon T and n + 1
trading dates 0 = t0 < t1 < . . . < tn = T . Fix a probability space (Ω,F ,P)
on which all random variables are defined and a filtration F = (Ftk)k=0,...,n. Ftk
models the information available at tk. Assume Ω = {ω1, . . . , ωN}, P({ωi}) > 0
for all i and set X := {X : Ω→ R}.

The market contains d tradable assets, a risk-free bank account and a contin-
gent claim (modeling a portfolio of derivatives or an exotic option) with maturity
T . Prices of the d tradable assets are given by an Rd-valued F-adapted stochastic
process S = (Stk)k=0,...,n. For notational simplicity, we assume that all prices have
been discounted and set interest rates to 0. The payoff of the contingent claim is
an FT -measurable random variable Z.

At time 0 an agent sells the contingent claim at price p0 and she wants to
hedge this exposure at maturity, i.e. she aims at replicating its payoff Z at T by
trading in S (and the bank account). A hedging strategy is thus any Rd-valued
F-adapted stochastic process δ = (δtk)k=0,...,n−1. Let us denote by H the set of
such processes. Here δ(i)

tk
represents the number of units that the agent decides

to hold in asset i at time tk.



3 Pricing and hedging using convex risk measures 53

In a market without transaction costs the agent’s wealth at time T is thus
given by −Z + p0 + (δ · S)T , where

(δ · S)T :=
n−1∑
j=0

δtj · (Stj+1
− Stj).

However, we are interested in situations where e.g. S(2) is the price of a call option
with underlying S(1) and so market frictions cannot be neglected. We assume that
any trading activity causes costs as follows: if the agent decides to buy or sell ∆
units of asset i at tk, she will be charged a transaction cost of ci(|∆|, Stk). Thus
the total cost incurred up to maturity is

CT (δ) :=
d∑
i=1

[
ci(|δ(i)

t0 |, S
(i)
t0 ) +

n−1∑
j=1

ci(|δ(i)
tj − δ

(i)
tj−1
|, S(i)

tj ) + c̄i(|δ(i)
tn−1
|, S(i)

tn )

]

and the agent’s terminal portfolio value at T is

PLT (Z, p0, δ) := −Z + p0 + (δ · S)T − CT (δ). (2.1)

Throughout, we assume that the non-negative functions ci : [0,∞) × R →
[0,∞) satisfy ci(0, ·) = 0 and that for any s ∈ R, x 7→ ci(x, s) is upper semi-
continuous. Furthermore, in the numerical examples we have assumed no trans-
action costs at maturity, i.e. c̄i = 0.

Example 2.1. This includes the following effects (and by summation also com-
binations of them):

• Proportional transaction costs: ci(x, s) = Cixs for constants Ci ≥ 0

• Fixed transaction costs: ci(x, s) = fi1{x≥ε} for constants fi ≥ 0 and ε > 0.

• Temporary market impact: ci(x, s) = εix
2s for constants εi ≥ 0.

Remark 2.2. The assumption that Ω is finite is only essential for the numerical
solution of the optimal hedging problem (from Section 4.4 onwards). Alternat-
ively one could start with arbitrary Ω and discretize it for the numerical solution.
If one imposed appropriate integrability conditions on Z and the elements of H,
the results prior to Section 4.4 would remain valid for general Ω.

3 Pricing and hedging using convex risk measures

While in idealized situations (Brownian market, continuous-time trading and no
transaction costs) for any claim Z there exists a (unique) hedging strategy δ ∈ H
and a price p0 ∈ R such that Z can be replicated perfectly, i.e. PLT (Z, p0, δ) = 0
holds P-a.s., this is not true in the present setting. The agent therefore specifies
an optimality criterion reflecting her risk-preferences and seeks to find a hedging
strategy achieving the minimum. We focus here on pricing and hedging based
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on convex risk measures as studied e.g. in [Xu06],[IJS09]. See also [KS07] and
further references therein for a dynamic setting.

Denote by ρ : X → R a convex risk measure as defined in [FS16]. Suppose
that the agent wants to determine both an optimal hedging strategy and a price
p0. Setting

π(Z) := inf
δ∈H

ρ(−Z + (δ · S)T − CT (δ)), (3.1)

we define an optimal hedging strategy as a minimizer δ ∈ H of (3.1). Recalling
the interpretation of ρ(X) as the minimal amount of capital that has to be added
to the risky positionX to make it acceptable for the risk measure ρ, π(Z) is simply
the minimal amount that the agent needs to charge in order to make her terminal
position acceptable, if she hedges optimally. The indifference price p(Z) is now
defined as the amount of cash that she needs to charge in order to be indifferent
between selling Z and not doing so, i.e. as the solution p0 to π(Z − p0) = π(0).
By cash-invariance this is equivalent to taking p0 = p(Z), where

p(Z) := π(Z)− π(0). (3.2)

It is easily seen that without trading restrictions and transaction costs, this price
coincides with the price of a replicating portfolio (if it exists):

Lemma 3.1. Suppose ci = 0 for i = 1, . . . , d. If Z is attainable, i.e. there exists
δ∗ ∈ H and p ∈ R such that Z = p+ (δ∗ · S)T , then p(Z) = p.

Proof. For any δ ∈ H, the assumptions and cash-invariance of ρ imply

ρ(−Z + (δ · S)T − CT (δ)) = p+ ρ(([δ − δ∗] · S)T ).

Taking the infimum over δ ∈ H on both sides and using H− δ∗ = H one obtains

π(Z) = p+ inf
δ∈H

ρ(([δ − δ∗] · S)T ) = p+ π(0).

Remark 3.2. The methodology developed in this chapter can also be applied to
approximate optimal hedging strategies in a setting where the price p0 is given
exogenously: fix a loss function l : R → [0,∞). Suppose p0 > 0 is given (e.g.
the derivative has already been sold at this price without taking into account
risk-management). The agent then wishes to minimize her loss at maturity, i.e.
she defines an optimal hedging strategy as a minimizer to

inf
δ∈H

E [l(−Z + p0 + (δ · S)T − CT (δ))] . (3.3)

This problem, i.e. optimal hedging under a capital constraint, is closely related
to taking for ρ a shortfall risk measure, see e.g. [FL00]. Similarly, one could treat
temporary market impact models as e.g. [RS10] by considering

inf
δ∈H

E [l(−Z + p0 + (δ · S)T )] + E [CT (δ)] . (3.4)
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3.1 Example: Exponential Utility Indifference Price

The following Lemma shows that the present framework includes exponential
utility indifference pricing as studied for example in [HN89], [DPZ93],[WW97]
and [KMK15]. Recall that for the exponential utility function (defined for x ∈ R
by U(x) := − exp(−λx) for a risk-aversion parameter λ > 0) the indifference
price p0(Z) ∈ R of Z is defined by

sup
δ∈H

E [U(p0(Z)− Z + (δ · S)T + CT (δ))] = sup
δ∈H

E [U((δ · S)T + CT (δ))] .

In other words, if the seller charges a cash amount of p0(Z), sells Z and trades in
the market, she obtains the same expected utility as by not not selling Z at all.

Lemma 3.3. Define p0(Z) as above. Choose ρ as the entropic risk measure

ρ(X) =
1

λ
logE[exp(−λX)], (3.5)

and define p(Z) by (3.2). Then p0(Z) = p(Z).

Proof. Using the special form of U , one may write the indifference price as

p0(Z) =
1

λ
log

(
supδ∈H E [U(−Z + (δ · S)T + CT (δ))]

supδ∈H E [U((δ · S)T + CT (δ))]

)
and so the claim follows from (3.2) and (3.5).

3.2 A special class of risk measures: Optimized certainty
equivalents

Fix l : R→ R continuous, non-decreasing and convex. Based on the loss function
l one may define a convex risk measure ρ by setting

ρ(X) := inf
w∈R
{w + E[l(−X − w)]} , X ∈ X . (3.6)

Lemma 3.4. (3.6) defines a convex risk measure.

Proof. Let X, Y ∈ X .

(i) [Monotonicity] Suppose X ≤ Y . Since l is non-decreasing, for any w ∈ R
one has E[l(−X − w)] ≥ E[l(−Y − w)] and thus ρ(X) ≥ ρ(Y ).

(ii) [Cash invariance] For any m ∈ R, (3.6) gives

ρ(X +m) = inf
w∈R
{(w +m)−m+ E[l(−X − (w +m))]} = −m+ ρ(X).



56 III Deep Hedging

(iii) [Convexity] Let λ ∈ [0, 1]. Then convexity of l implies

ρ(λX + (1− λ)Y )

= inf
w∈R
{w + E[l(−λX − (1− λ)Y − w)]}

= inf
w1,w2∈R

{λw1 + (1− λ)w2 + E[l(λ(−X − w1) + (1− λ)(−Y − w2))]}

≤ inf
w1∈R

inf
w2∈R
{λ(w1 + E[l(−X − w1)]) + (1− λ)(w2 + E[l(−Y − w2)])}

= λρ(X) + (1− λ)ρ(Y ).

Taking l(x) := −u(−x) (x ∈ R) for a utility function u : R → R, (3.6) co-
incides with the optimized certainty equivalent as defined (and studied in a lot
more detail than here) in [BTT07].

Example 3.5. Fix λ > 0 and set l(x) := exp(λx) − 1+log(λ)
λ

, x ∈ R. Then
the optimization problem in (3.6) can be solved explicitly and the minimizer w∗
satisfies eλw∗ = λE[exp(−λX)]. Inserting this into (3.6), one obtains the entropic
risk measure defined in (3.5) above.

Example 3.6. Let α ∈ (0, 1) and set l(x) := 1
1−α max(x, 0). The associated risk

measure (3.6) is called average value at risk at level 1 − α (see [FS16, Defini-
tion 4.48, Proposition 4.51] with λ := 1− α) or also conditional value at risk or
expected shortfall.

Proposition 3.7. Suppose S is a P-martingale, ρ is defined as in (3.6) and π,
p as in (3.1), (3.2). Then

(i) π(0) = ρ(0),

(ii) p(Z) ≥ E[Z] for any Z ∈ X .

Proof. Since 0 ∈ H and CT (0) = 0, one has π(0) ≤ ρ(0) for any choice of risk
measure ρ in (3.1). Under the present assumptions the converse inequality is also
true: By first applying Jensen’s inequality (recall that l is convex) and then using
that S is a martingale, that CT (δ) ≥ 0 for any δ ∈ H and that l is non-decreasing,
one obtains

π(Z) = inf
w∈R

inf
δ∈H
{w + E[l(Z − (δ · S)T + CT (δ)− w)]}

≥ inf
w∈R

inf
δ∈H
{w + l(E[Z − (δ · S)T + CT (δ)− w])}

≥ inf
w∈R
{w + l(E[Z]− w)} = ρ(−E[Z]) = E[Z] + ρ(0).

(3.7)

Inserting Z = 0 yields the converse inequality π(0) ≥ ρ(0) and thus (i). Combin-
ing (i), (3.2) and (3.7) then directly gives (ii).
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4 Approximating strategies by deep neural net-
works

The key idea that we pursue in this chapter is to approximate hedging strategies
by neural networks. Before describing this approach in more detail we recall
the definition and approximation properties of neural networks and prove some
basic results on hedging strategies built from them. While these results show
that the approach is theoretically well-founded, they are only one half of the
answer to the question why we have used neural networks (and not some other
parametric family of functions) to approximate hedging strategies. The other
half is that numerically, optimal hedging strategies built from neural networks
can be calculated very efficiently. This is explained first for the case of OCE risk
measures. Finally, an extension to general risk measures is presented.

4.1 Universal approximation by neural networks

Let us first recall the definition of a (feed forward) neural network:

Definition 4.1. Let L,N0, N1, . . . , NL ∈ N with L ≥ 2, let ρ̄ : R→ R and for any
l = 1, . . . , L, let Wl : RNl−1 → RNl an affine function. A function F : RN0 → RNL

defined as

F (x) = WL ◦ FL−1 ◦ · · · ◦ F1 with Fl = ρ̄ ◦Wl for l = 1, . . . , L− 1

is called a (feed forward) neural network. Here the activation function ρ̄ is ap-
plied componentwise. L denotes the number of layers, N1, . . . , NL−1 denote the
dimensions of the hidden layers and N0, NL of the input and output layers, re-
spectively. For any l = 1, . . . , L the affine functionWl is given asWl(x) = Alx+bl

for some Al ∈ RNl×Nl−1 and bl ∈ RNl . For any i = 1, . . . Nl, j = 1, . . . , Nl−1 the
number Alij is interpreted as the weight of the edge connecting the node i of layer
l−1 to node j of layer l. The number of non-zero weights of a network is the sum
of the number of non-zero entries of the matrices Al, l = 1, . . . , L and vectors bl,
l = 1, . . . , L.

Denote by NN ρ̄,d0,d1 the set of neural networks mapping from Rd0 → Rd1

and with activation function ρ̄. The next result ([Hor91, Theorems 1 and 2])
illustrates that neural networks approximate multivariate functions arbitrarily
well.

Theorem 4.2 (Universal approximation, [Hor91]). Suppose ρ̄ is bounded and
non-constant. The following statements hold:

• For any finite measure µ on (Rd0 ,B(Rd0)) and 1 ≤ p <∞, the set NN ρ̄,d0,1

is dense in Lp(Rd0 , µ).

• If in addition ρ̄ ∈ C(R), then NN ρ̄,d0,1 is dense in C(Rd0) for the topology
of uniform convergence on compact sets.
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Since each component of an Rd1-valued neural network is an R-valued neural
network, this result easily generalizes to NN ρ̄,d0,d1 with d1 > 1, see also [Hor91].
A variety of other results with different assumptions on ρ̄ or emphasis on approx-
imation rates are available, see e.g. [BGKP17] for further references.

In what follows, fix a bounded and non-constant activation function ρ̄ and
denote by {NNM,d0,d1}M∈N a sequence of subsets of NN ρ̄,d0,d1 with the following
properties:

• NNM,d0,d1 ⊂ NNM+1,d0,d1 for all M ∈ N,

•
⋃
M∈NNNM,d0,d1 = NN ρ̄,d0,d1 ,

• for anyM ∈ N, one hasNNM,d0,d1 = {F θ : θ ∈ ΘM,d0,d1} with ΘM,d0,d1 ⊂ Rq

for some q ∈ N (depending on M).

Remark 4.3. We have two classes of examples in mind: the first one is to take for
NNM,d0,d1 the set of all neural networks in NN ρ̄,d0,d1 with an arbitrary number of
layers and nodes, but at most M non-zero weights. The second one is to take for
NNM,d0,d1 the set of all neural networks in NN ρ̄,d0,d1 with a fixed architecture,
i.e. a fixed number of layers L(M) and fixed input and output dimensions for
each layer. These are specified by d0, d1 and some non-decreasing sequences
{L(M)}M∈N and {N (M)

1 }M∈N, . . ., {N (M)

L(M)−1
}M∈N. In both cases the set NNM,d0,d1

is parametrized by matrices Al and vectors bl.

4.2 Hedging strategy input parametrization

Suppose now the information at tk is described by some Rp-valued stochastic
factor process X, i.e.

Ftk = σ(Xt0 , . . . , Xtk), k = 0, . . . , n. (4.1)

The role of X is twofold: Firstly, as indicated by (4.1), it models the flow of
information. Recall that S is F-adapted, so X includes at least all information
on S (e.g. X = S). However, X could also include information on additional
quantities that are observed but not traded.

Secondly, X describes a parametrization of the input variables for hedging
strategies: one could have d = p and Xtk = Φk(Stk) for some Φk : Rd → Rd

invertible (so that X and S contain precisely the same information), but by
expressing the (optimal) hedging strategy in terms of X instead of S one obtains
a computationally simpler problem.

Example 4.4. Let σ > 0, K > 0, d = 1 and denote by N the cdf of a standard
normal. If S follows a (discretely sampled) Black-Scholes model and Z is a
European call option with strike K and maturity T , the hedging strategy

δBStk = N

(
1

σ
√
T − tk

[
log(Stk)− log(K) +

σ2

2
(T − tk)

])
(4.2)
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is close to optimal. Setting Xtk = log(Stk), one reads off from (4.2) that δBStk =

F (k)(Xtk) for a neural network with one hidden layer (with W2(x) = x, ρ̄ = N
and W1 a suitable affine function). Thus, if one did not know the exact form
of (4.2), it could nevertheless be learnt easily by the methodology developed in
the present chapter, using a very simple neural network architecture. If one used
Xtk = Stk instead, an exact representation by a neural network is not possible.
The methodology of course still works, but a more complex network structure has
to be used, since x 7→ log(x) also needs to be approximated by a neural network.

4.3 Optimal hedging using deep neural networks

Motivated by the universal approximation results stated above, we now consider
neural network hedging strategies: we define

HM = {(δtk)k=0,...,n−1 ∈ H : δtk = F k(Xt0 , . . . , Xtk) , F
k ∈ NNM,p(k+1),d} (4.3)

= {(δθtk)k=0,...,n−1 ∈ H : δθtk = F θk(Xt0 , . . . , Xtk) , θk ∈ ΘM,p(k+1),d}

and replace the set H in (3.1) by HM ⊂ H, i.e. we aim at calculating

πM(Z) := inf
δ∈HM

ρ(−Z + (δ · S)T − CT (δ)) (4.4)

= inf
θ∈ΘM

ρ(−Z + (δθ · S)T − CT (δθ)),

where ΘM =
∏n−1

k=0 ΘM,p(k+1),d. Thus, the infinite-dimensional problem of find-
ing an optimal hedging strategy is reduced to the finite-dimensional problem of
finding optimal parameters.

Remark 4.5. In problems (3.3) and (3.4) one would analogously replace H by
HM .

Remark 4.6. In certain situations (e.g. if S is an (F,P)-Markov process and Z =
g(ST ) for g : Rd → R) one knows (or expects) that the optimal strategy in (3.1)
is of the form δtk = Fk(Xtk , δtk−1

) for some Fk : Rp+d → Rd measurable, for
k = 0, . . . , n − 1. Then one would replace HM in (4.4) by the smaller set of
recurrent neural network strategies defined by (with the convention δ−1 := 0)

HM = {(δtk)k=0,...,n−1 ∈ H : δtk = F k(Xtk , δtk−1
) , F k ∈ NNM,p+d,d} (4.5)

= {(δθtk)k=0,...,n−1 ∈ H : δθtk = F θk(Xtk , δ
θ
tk−1

) , θk ∈ ΘM,p+d,d}.

The set ΘM in (4.4) is then given by ΘM := (ΘM,p+d,d)
n.

The next proposition shows that thanks to (4.1) and the universal approxim-
ation theorem, strategies in H are approximated arbitrarily well by strategies in
HM . Consequently, the neural network price πM(Z) − πM(0) converges to the
exact price p(Z).

Proposition 4.7. Define HM as in (4.3) and πM as in (4.4). Then

lim
M→∞

πM(Z) = π(Z).
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Proof. Since HM ⊂ HM+1 ⊂ H, for allM ∈ N it holds that πM(Z) ≥ πM+1(Z) ≥
π(Z). Thus it suffices to show that for any ε > 0 there exists M ∈ N such that
πM(Z) ≤ π(Z) + ε. By definition, there exists δ ∈ H such that

ρ(−Z + (δ · S)T − CT (δ)) ≤ π(Z) +
ε

2
. (4.6)

Since δ is F-adapted and by (4.1), for each k = 0, . . . , n− 1 there exists a meas-
urable function F k : Rp(k+1) → Rd such that δtk = F k(Xt0 , . . . , Xtk). Since Ω
is finite, δtk is bounded and so F k

i ∈ L1(Rp(k+1), µ) for any i = 1, . . . d, where
µ is the law of (Xt0 , . . . , Xtk) under P. Thus one may use Theorem 4.2 to
find F k,n

i ∈ NN ρ̄,p(k+1),1 such that δ(i),n
tk

:= F k,n
i (Xt0 , . . . , Xtk) converges to

F k
i (Xt0 , . . . , Xtk) in L1(P) as n → ∞. By passing to a suitable subsequence,

this convergence holds P-a.s. (and simultaneously for all i, k) and so, by assump-
tion on Ω, for all ω ∈ Ω. Thus for any fixed ω ∈ Ω one may combine this with
upper semi-continuity of ci(·, s) (for any s ≥ 0, i = 1, . . . , d) to find n0(ω) ∈ N
such that for all n ≥ n0(ω) one has

−(δn · S)T (ω) + CT (δn)(ω) ≤ −(δ · S)T (ω) + CT (δ)(ω) +
ε

2
.

Combining this with monotonicity of ρ and then using cash-invariance of ρ and
(4.6) one obtains for all n ≥ maxi=1,...,N n0(ωi) that

ρ(−Z + (δn · S)T − CT (δn)) ≤ ρ(−Z + (δ · S)T − CT (δ)− ε

2
) ≤ π(Z) + ε. (4.7)

Since δn ∈ HM for all M large enough, one obtains πM(Z) ≤ π(Z) + ε by (4.4)
and (4.7), as desired.

4.4 Numerical solution for OCE-risk measures

While Theorem 4.2 and Proposition 4.7 give a theoretical justification for using
hedging strategies built from neural networks, we now turn to computational
considerations: how can we calculate a (close-to) optimal parameter θ ∈ ΘM for
(4.4)?

To explain the key ideas we focus on the case when ρ is an OCE risk measure
(see (3.6)), a class of general risk measures is treated below.

Inserting the definition of ρ, see (3.6), into (4.4), the optimization problem
can be rewritten as

πM(Z) = inf
θ̄∈ΘM

inf
w∈R

{
w + E[l(Z − (δθ̄ · S)T + CT (δθ̄)− w)]

}
= inf

θ∈Θ
J(θ),

where Θ = R×ΘM and for θ = (w, θ̄) ∈ Θ,

J(θ) := w + E[l(Z − (δθ̄ · S)T + CT (δθ̄)− w)]. (4.8)

Generally, to find a local minimum of a differentiable function J , one may use
a gradient descent algorithm: Starting with an initial guess θ(0), one iteratively
defines

θ(j+1) = θ(j) − ηj∇Jj(θ(j)), (4.9)
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for some (small) ηj > 0, j ∈ N and with Jj = J . Under suitable assumptions on
J and the sequence {ηj}j∈N, θ(j) converges to a local minimum of J as j → ∞.
Of course, the success and feasibility of this algorithm crucially depends on two
points: Firstly, can one avoid finding a local minimum instead of a global one?
Secondly, can ∇J be calculated efficiently?

One of the key insights of deep learning is that for cost functions J built based
on neural networks both of these problems can be dealt with simultaneously by
using a variant of stochastic gradient descent and the (error) backpropagation al-
gorithm. What this means in our context is that in each step j the expectation
in (4.8) (which is in fact a weighted sum over all elements of the finite, but poten-
tially very large sample space Ω) is replaced by an expectation over a randomly
(uniformly) chosen subset of Ω of size Nbatch � N , so that Jj used in the update
(4.9) is now given as

Jj(θ) = w +

Nbatch∑
m=1

l(Z(ω(j)
m )− (δθ̄ · S)T (ω(j)

m ) + CT (δθ̄)(ω(j)
m )− w)

N

Nbatch
P({ω(j)

m })

for some ω
(j)
1 , . . . , ω

(j)
Nbatch

∈ Ω. This is the simplest form of the (minibatch)
stochastic gradient algorithm. Not only does it make the gradient computation
a lot more efficient (or possible at all, if N is large), but it also avoids getting
stuck in local minima: even if θ(j) arrives at a local minimum at some j, it moves
on afterwards (due to the randomness in the gradient). In order to calculate
the gradient of Jj for each of the terms in the sum, one may now rely on the
compositional structure of neural networks. If l, {ci}i=1,...,d and ρ̄ are differentiable
and the derivatives are available in closed form, then one may use the chain rule to
calculate the gradient of F θ̄k with respect to θ analytically and the same holds for
the gradient of Jj. Furthermore, these analytical expressions can be evaluated
very efficiently using the so called backpropagation algorithm (see subsequent
section).

While this certainly answers the second question posed above (efficiency), the
first one (local minima) is only partially resolved, as there is no general result
guaranteeing convergence to the global minimum in a reasonable amount of time.
However, it is common belief that for sufficiently large neural networks, it is
possible to arrive at a sufficiently low value of the cost function in a reasonable
amount of time, see [GBC16, Chapter 8].

Finally, note that for the experiments in Section 5 below we have used Adam, a
more refined version of the stochastic gradient algorithm, as introduced in [KB15]
and also discussed in [GBC16, Chapter 8.5.3].
Remark 4.8. In the experiments in Section 5 below, the functions l, {ci}i=1,...,d and
ρ̄ are continuous, but have only piecewise continuous derivatives. Nevertheless,
similar techniques can be applied.

4.5 Extension to general risk measures

As explained in Section 4.4, for OCE risk measures the optimal hedging prob-
lem (4.4) is amenable to deep learning optimization techniques (i.e. variants of
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stochastic gradient descent) via (4.8). The key ingredient for this is that the
objective J satisfies

(ML1) the gradient of J decomposes into a sum over the samples, i.e. ∇θJ(θ) =∑N
m=1∇θJ(θ, ωm) and

(ML2) ∇θJ(θ, ωm) can be calculated efficiently for each m, i.e. using backpropaga-
tion.

The goal of the present section is to show that for a general class of con-
vex risk measures (including all coherent ones) one can approximate (3.1) by a
minimax problem over neural networks and that the objective functional of this
approximate problem also has these two key properties, making it amenable to
deep learning optimization techniques.

Denote by P the set of probability measures on (Ω,F). The following result
serves as a starting point:

Theorem 4.9 (Robust representation of convex risk measures). Suppose ρ : X →
R is a convex risk measure. Then ρ can be written as

ρ(X) = max
Q∈P

(EQ[−X]− α(Q)) , X ∈ X , (4.10)

where α(Q) := supX∈X (EQ[−X]− ρ(X)) .

Proof. Since for Ω finite the set of probability measures P coincides with the set of
finitely additive, normalized set functions (appearing in [FS16, Theorem 4.16]),
the present statement follows directly from the cited theorem and [FS16, Re-
mark 4.17].

The function α : P → R is called the (minimal) penalty function of the risk
measure ρ.

Since Ω is finite, P can be identified with the standard N − 1 simplex in RN

and so (4.10) is an optimization over RN . However, N is very large in our context
and so the representation (4.10) is of little use for numerical calculations. The
next result shows that ρ(X) can be approximated by an optimization problem
over a lower-dimensional space. To state it, let us define the set L ⊂ X of
log-likelihoods by

L := {f ∈ X : E[exp(f)] = 1},

define ᾱ : L → R by ᾱ(f) = α(exp(f)dP) for any f ∈ L and write Peq for the set
of probability measures on (Ω,F), which are equivalent to P. Furthermore, one
may view X̄ = (Xt0 , . . . , Xtn) as a map Ω→ Rp(n+1).

Theorem 4.10. Suppose

(i) α(Q) <∞ for some Q ∈ Peq,

(ii) ᾱ is continuous,

(iii) F = FT .
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Then for any X ∈ X , ρ(X) = limM→∞ ρ
M(X), where

ρM(X) := sup
θ∈ΘM,p(n+1),1

E[exp(F θ◦X̄)]=1

(
E[−X exp(F θ ◦ X̄)]− ᾱ(F θ ◦ X̄)

)
. (4.11)

Proof. We proceed in two steps. In a first step we show that for any X ∈ X one
may write

ρ(X) = sup
f̄∈M

E[exp(f̄◦X̄)]=1

(
E[−X exp(f̄ ◦ X̄)]− ᾱ(f̄ ◦ X̄)

)
, (4.12)

whereM denotes the set of measurable functions mapping from Rp(n+1) → R. In
the second step we rely on (4.12) to prove the statement.

Step 1: Since P({ωi}) > 0 for all i, X coincides with L∞(Ω,F ,P) and ρ is
law-invariant. Thus by (i) and [FS16, Theorem 4.43] one may write

ρ(X) = sup
Q∈Peq

(EQ[−X]− α(Q)) , X ∈ X . (4.13)

Note that Peq may be written in terms of L as

Peq = {exp(f)dP : f ∈ L} . (4.14)

Furthermore, using (iii) one obtains

X = {f̄ ◦ X̄ : f̄ ∈M}. (4.15)

Combining (4.13), (4.14) and the definition of ᾱ one obtains

ρ(X) = sup
f∈L

(E[−X exp(f)]− ᾱ(f)) ,

which can be rewritten as (4.12) by using (4.15).
Step 2: Note that one may also write (4.11) as

ρM(X) = sup
f∈NNM,p(n+1),1

E[exp(f◦X̄)]=1

(
E[−X exp(f ◦ X̄)]− ᾱ(f ◦ X̄)

)
. (4.16)

Combining (4.16) with (4.12) and using NNM,p(n+1),1 ⊂ NNM+1,p(n+1),1 ⊂ M,
one obtains that ρM(X) ≤ ρM+1(X) ≤ ρ(X) for all M ∈ N. Thus it suffices to
show that for any ε > 0 there exists M ∈ N such that ρM(X) ≥ ρ(X)− ε.

By (4.12), for any ε > 0 one finds f̄ ∈M such that

E[exp(f̄ ◦ X̄)] = 1, (4.17)

ρ(X)− ε

2
≤ E[−X exp(f̄ ◦ X̄)]− ᾱ(f̄ ◦ X̄). (4.18)

Precisely as in the proof of Proposition 4.7, one may use Theorem 4.2 to find f (n) ∈
NN ρ̄,p(n+1),1 such that P-a.s., f (n) ◦ X̄ converges to f̄ ◦ X̄ as n→∞. Combining
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this with (4.17), one obtains that for all n large enough, cn := log(E[exp(f (n)◦X̄)])
is well-defined and that f̄ (n) ◦ X̄ also converges P-a.s. to f̄ ◦ X̄, as n→∞, where
f̄ (n) := f (n) − cn. Using this, (4.18) and assumption (ii), for some (in fact all)
n ∈ N large enough one obtains

ρ(X)− ε ≤ E[−X exp(f̄ (n) ◦ X̄)]− ᾱ(f̄ (n) ◦ X̄). (4.19)

From NN ρ̄,p(n+1),1− cn = NN ρ̄,p(n+1),1 and from the choice of NNM,p(n+1),1, one
has f̄ (n) ∈ NNM,p(n+1),1 for M large enough. By combining this with (4.19) and
the choice of cn one obtains

ρ(X)− ε ≤ ρM(X),

as desired.

Combining (4.4) and (4.11), one thus approximates (3.1) by solving

inf
θ0∈ΘM

sup
θ1∈ΘM,p(n+1),1

J(θ), (4.20)

where θ = (θ0, θ1),

J(θ) := E
[
−PL(Z, 0, δθ0) exp(F θ1 ◦ X̄)

]
− ᾱ(F θ1 ◦ X̄)− λ0(E[exp(F θ1 ◦ X̄)]− 1)

and λ0 is a Lagrange multiplier.
We conclude this section by arguing that the objective J in (4.20) indeed

satisfies (ML1) and (ML2). This is standard (c.f. Section 4.4) for all terms in the
sum except for ᾱ(F θ1 ◦ X̄) and so we only consider this term.

Recall that Ω is finite and consists of N elements, thus X = {X : Ω → R}
can be identified with RN . As for standard backpropagation the compositional
structure can be used for efficient computation:

Proposition 4.11. Suppose ᾱ can be extended to ᾱ : X → R continuously dif-
ferentiable, ρ̄ is continuously differentiable and NNM,p(n+1),1 is the set of neural
networks with a fixed architecture (see Remark 4.3). Then J(θ1) := ᾱ(F θ1 ◦ X̄),
θ1 ∈ ΘM,p(n+1),1 is continuously differentiable and satisfies (ML1).

Proof. Note that F = F θ1 is parametrized by the matrices Al and vectors bl,
l = 1, . . . , L, and that one may consider all partial derivatives separately. Given
ᾱ : X → R and ∇ᾱ : X → X , one thus aims at calculating ∂Ali,j ᾱ(F ◦ X̄) and
∂bliᾱ(F ◦ X̄) for l = 1, . . . , L, i = 1, . . . , Nl, j = 1, . . . , Nl−1. This can be done by
the chain rule: For θ ∈ {Ali,j, bli}, one has

∂θᾱ(F ◦ X̄) =
N∑
m=1

∇ᾱ(F ◦ X̄)(ωm)∂θF (X̄(ωm))

and in particular (ML1) holds.
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Furthermore, in the notation of the proof, for any m = 1, . . . N the derivative
∂θF (X̄(ωm)) can be calculated using standard backpropagation algorithm (pre-
ceded by a forward iteration) and so (ML2) holds as well. For the reader’s conveni-
ence we state it here: One sets x0 = X̄(ωm), iteratively calculates xl := Fl(x

l−1)
for l = 1, . . . , L − 1 and xL := WL(xL−1). Then (this is the backward pass) one
sets JL := AL and calculates iteratively J l = J l+1dFl(x

l−1) for l = L − 1, . . . , 1,
where

dFl(x
l−1) = diag(ρ̄′(Wlx

l−1))Al.

From this one may use again the chain rule to obtain for any l = 1, . . . L, i =
1, . . . , Nl, j = 1, . . . , Nl−1 the derivatives of F with respect to the parameters as

∂Ali,jF (X̄(ωm)) = J l+1
i ρ̄′((Wlx

l−1)i)x
l−1
j

∂bliF (X̄(ωm)) = J l+1
i ρ̄′((Wlx

l−1)i).

5 Numerical experiments and results

After having introduced the optimal hedging problem (3.1) in Section 3 and
described in Section 4 how one may numerically approximate the solution by
(4.4) using neural networks, we now turn to numerical experiments to illustrate
the feasibility of the approach. We start by explaining in Section 5.1 the modeling
choices in detail. The remainder of this section will then be devoted to examining
the following three questions:

• Section 5.2: How does neural network hedging (with different risk-pre-
ferences) compare to the benchmark in a Heston model without transaction
costs?

• Section 5.3: What is the effect of proportional transaction costs on the
exponential utility indifference price?

• Section 5.4: Is the numerical method scalable to higher dimensions?

5.1 Setting and Implementation

For the results presented here we have chosen a time horizon of 30 trading days
with daily rebalancing. Thus, T = 30/365, n = 30 and the trading dates are
ti = i/365, i = 0, . . . , n. As explained in Section 4 and Remark 4.6, the number
of units δti ∈ Rd that the agent decides to hold in each of the instruments at
ti is parametrized by a recurrent neural network: we set δθtk = F θk(Xtk , δ

θ
tk−1

)

where F θk is a feed forward neural network with two hidden layers and Xtk =
Φ(St0 , . . . , Stk) for some Φ: R(k+1)d → Rd specified below. More precisely, in
the notation of Definition 4.1, F θk is a neural network with L = 3, N0 = 2d,
N1 = N2 = d + 15, N3 = d and the activation function is always chosen as
ρ̄(x) = max(x, 0). The weight matrices and biases are the parameters to be
optimized in (4.4). Note that these are different for each k.
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Having made these choices, the algorithm outlined in Section 4 can now be
used for approximate pricing and hedging in any market situation: given sample
trajectories of the hedging instruments S(ωm), samples of the payoff Z(ωm) and
associated weights P({ωm}) for m = 1, . . . , N (on a finite probability space Ω =
{ω1, . . . , ωN}), for any choice of transaction cost structure {ci}i=1,...,d and any
risk measure ρ one may now use the algorithm outlined in Section 4 to calculate
close-to optimal hedging strategies and approximate prices. Of course, for a path-
dependent derivative with payoff Z = G(S0, . . . , ST ) with G : (Rd)n+1 → R one
obtains samples of the payoff by simply evaluating G on the sample trajectories
of S.

Different risk measures ρ, transaction cost functions {ci}i=1,...,d and payoffs
Z will be used in the examples and so these are described separately in each of
the subsequent sections. To illustrate the feasibility of the algorithm and have a
benchmark at hand for comparison (at least in the absence of transaction costs),
we have chosen to generate the sample paths of S from a standard stochastic
volatility model under a risk-neutral measure P. Thus in most of the examples
below, the process S follows (a discretization of) a Heston model, see the be-
ginning of Section 5.2 below. But we stress again that, as explained above, the
algorithm is model independent in the sense that no information about the Heston
model is used except for the (weighted) samples of the price and variance process.

The algorithm has been implemented in Python, using TensorFlow to build
and train the neural networks. To allow for a larger learning rate, the technique of
batch normalization (see [IS15] and [GBC16, Chapter 8.7.1]) is used in each layer
of each network right before applying the activation function. The network para-
meters are initialized randomly (drawn from uniform and normal distribution).
For network training the Adam algorithm (see [KB15], [GBC16, Chapter 8.5.3])
with a learning rate of 0.005 and a batch size of 256 has been used. Finally, the
model hedge for the benchmark in Section 5.2 has been calculated using Quantlib.

5.2 Benchmark: No transaction costs

As a first example, we consider hedging without transaction costs in a Heston
model. In this example the risk measure ρ is chosen as the average value at
risk (also called conditional value at risk or expected shortfall), defined for any
random variable X by

ρ(X) :=
1

1− α

∫ 1−α

0

VaRγ(X)dγ (5.1)

for some α ∈ [0, 1), where VaRγ(X) := inf{m ∈ R : P(X < −m) ≤ γ}. An
alternative representation of ρ of type (3.6) is discussed in Example 3.6. We refer
to [FS16, Section 4.4] for further details. Note that different levels of α correspond
to different levels of risk-aversion, ranging from risk-neutral for α close to 0 to
very risk-averse for α close to 1. The limiting cases are ρ(X) = −E[X] for α = 0
and limα↑1 ρ(X) = −essinf(X), see [FS16, p.234 and Remark 4.50].
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A brief reminder on the Heston model

Recall that a Heston model is specified by the stochastic differential equations

dS
(1)
t =

√
VtS

(1)
t dBt, for t > 0 and S(1)

0 = s0

dVt = α(b− Vt)dt+ σ
√
VtdWt, for t > 0 and V0 = v0,

(5.2)

where B and W are one-dimensional Brownian motions (under a probability
measure Q) with correlation ρ ∈ [−1, 1] and α, b, σ, v0 and s0 are positive
constants. Below we have chosen α = 1, b = 0.04, ρ = −0.7, σ = 2, v0 = 0.04
and s0 = 100, reflecting a typical situation in an equity market.

Here S(1) is the price of a liquidly tradeable asset and V is the (stochastic)
variance process of S(1), modeled by a Cox-Ingersoll-Ross (CIR) process. V itself
is not tradable directly, but only through options on variance. In our framework
this is modeled by an idealized variance swap with maturity T , i.e. we set FHt :=

σ((S
(1)
s , Vs) : s ∈ [0, t]),

S
(2)
t := EQ

[∫ T

0

Vs ds

∣∣∣∣FHt ] , t ∈ [0, T ], (5.3)

and consider (S(1), S(2)) as the prices of liquidly tradeable assets. A standard
calculation1 shows that (5.3) is given as

S
(2)
t =

∫ t

0

Vs ds+ L(t, Vt) (5.4)

where
L(t, v) =

v − b
α

(1− e−α(T−t)) + b(T − t).

Consider now a European option with payoff g(S
(1)
T ) at T for some g : R→ R.

Its price (under Q) at t ∈ [0, T ] is given as Ht := EQ[g(S
(1)
T )|FHt ]. By the Markov

property of (S(1), V ), one may write the option price at t as Ht = u(t, S
(1)
t , Vt) for

some u : [0, T ] × [0,∞)2 → R. Assuming that u is sufficiently smooth, one may
apply Itô’s formula to H and use (5.4) to obtain

g(S
(1)
T ) = p+

∫ T

0

δ
(1)
t dS

(1)
t +

∫ T

0

δ
(2)
t dS

(2)
t (5.5)

where p = EQ[g(S
(1)
T )] and

δ
(1)
t := ∂su(t, S

(1)
t , Vt) and δ(2)

t :=
∂vu(t, S

(1)
t , Vt)

∂vL(t, Vt)
. (5.6)

Thus, if continuous-time trading was possible, (5.5) shows that the option payoff
can be replicated perfectly by trading in (S(1), S(2)) according to the strategy
(5.6).

1For example, one may use that (log(S(1)), V ) is an affine process to see that the conditional
expectation in (5.3) can be taken only with respect to σ(Vt, s ∈ [0, t]). This conditional expect-
ation can then be calculated by using the SDE for V or by directly inserting the expression
from e.g. [Duf01, Section 3].
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Remark 5.1. The strategy (5.6) depends on Vt. Although not observable directly,
an estimate can be obtained by estimating

∫ t
0
Vs ds and solving (5.4) for Vt.

Setting: Discretized Heston model

In addition to the setting explained in detail in Section 5.1, here we set d = 2,
consider no transaction costs (i.e. c1 = c2 = 0) and generate sample trajectories
of the price process of the hedging instruments from a discretely sampled Heston
model. Thus, S = (St0 , . . . , Stn) and for any k = 0, . . . , n, Stk = (S

(1)
tk
, S

(2)
tk

) is
given by (5.2) and (5.4) under Q. The sample paths of S are generated by (exact)
sampling from the transition density of the CIR process (see [Gla04, Section 3.4])
and then using the (simplified) Brodie-Kaya scheme (see [AJK10] and [BK06]).2
Generating independent samples of S according to this scheme can now be viewed
as sampling from a uniform distribution on a (huge) finite probability space Ω.3
Thus, in the notation of Section 5.1 one has P(ωm) = 1/N for all m = 1, . . . , N
with each S(ωm) corresponding to a sample of the Heston model generated as
explained above.

If continuous-time trading was possible, any European option could be rep-
licated perfectly by following the strategy (5.6). However, in the present setup
the hedging portfolio can only be adjusted at discrete time-points. Nevertheless
one may choose δHtk := (δ

(1)
tk
, δ

(2)
tk

) for k = 0 . . . n − 1 with δ(i) defined by (5.6)
and charge the risk-neutral price p. This will be referred to as the model-delta
hedging strategy (or simply model hedge) and serves as a benchmark.

Finally, in order to compare the neural network strategies to this benchmark,
the network input is chosen asXtk = (log(S

(1)
tk

), Vtk). One could also replace Vtk by
S

(2)
tk

instead. The network structure at time-step tk is illustrated in Figure III.1.

Results

We now compare the model hedge δH to the deep hedging strategies δθ cor-
responding to different risk-preferences, captured by different levels of α in the
average value at risk (5.1).

As a first example, consider a European call option, i.e. Z = (S
(1)
T −K)+ with

K = s0. Following the methodology outlined in Section 5.1, we calculate a (close-
to) optimal parameter θ for (4.4) and denote by δθ and pθ the (close-to) optimal
hedging strategy and value of (4.4), respectively. By definition of the indiffer-
ence price (3.2), the approximation property Proposition 4.7, Proposition 3.7 and
ρ(0) = 0, pθ is an approximation to the indifference price p(Z). As an out-of-
sample test, one can then simulate another set of sample trajectories (here 106)
and evaluate the terminal hedging errors p + Z + (δH · S)T (model hedge) and
pθ + Z + (δθ · S)T (CVar) on each of them. In fact, since the risk-adjusted price
pθ is higher than the risk-neutral price p = 1.69 (as shown in Proposition 3.7(ii)),

2This corresponds to replacing V in the SDE for S(1) in (5.2) by a piecewise constant process
and the integral in (5.4) by a sum.

3To be more precise, one replaces the normal distributions appearing in the simulation
scheme for S by (arbitrarily fine) discrete distributions.
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Figure III.1: Recurrent network structure

for (CVar) we have evaluated p+Z + (δθ · S)T , i.e. the hedging error from using
the optimal strategy associated to ρ, but only charging the risk-neutral price p.
This is shown in a histogram in Figure III.2 for α = 0.5, yielding a risk-adjusted
price pθ = 1.94. As one can see, the hedging performance of δH and δθ is very
similar. In particular

• for this choice of risk-preferences (ρ as in (5.1) with α = 0.5) the optimal
strategy in (3.1) is close to the model hedge δH ,

• the neural network strategy δθ is able to approximate very well the optimal
strategy in (3.1).

This is also illustrated by Figure III.3, where the strategies δθt and δHt at a fixed
time-point t are plotted conditional on (S

(1)
t , Vt) = (s, v) on a grid of values for

(s, v). To make this last comparison fully sensible instead of the recurrent network
structure δθtk = F θk(Xtk , δ

θ
tk−1

) here a simpler structure δθtk = F θk(Xtk) is used.
The hedging performance for this simpler structure is, however, very similar, see
Figure III.4. Of course, this is also expected from (5.6).4

Amore extreme case is shown in Figure III.6, where instead of the model hedge
the 99%-CVar criterion is used, i.e. α = 0.99. This results in a significantly higher
risk-adjusted price pθ = 3.49. If both the 50% and 99%-CVar optimal strategies
are used, but only the risk-neutral price is charged (see Figure III.7) one can

4For non-zero transaction costs this is not true anymore, i.e. the recurrent network struc-
ture is needed. For example, Figure III.5 is generated for precisely the same parameters
as Figure III.4, except that α = 0.99 and proportional transaction costs are incurred, i.e.
ci(x, s) = εxs with ε = 0.01.
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Figure III.2: Comparison of model hedge and deep hedge associated to 50%-
expected shortfall criterion.
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Figure III.3: δH,(1)
t and neural network approximation as a function of (st, vt) for

t = 15 days



5 Numerical experiments and results 71

3 2 1 0 1 2 3
0

5000

10000

15000

20000

25000

30000
recurrent
simpler

Figure III.4: Comparison of recurrent and simpler network structure (no trans-
action costs).

Mean Loss Price Realized CVar

recurrent 0.0018 5.5137 -0.0022

simpler 0.0022 6.7446 -0.0
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Figure III.5: Network architecture matters: Comparison of recurrent and simpler
network structure (with transaction costs and 99%-CVar criterion).
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Figure III.6: Comparison of 99%-CVar and 50%-CVar optimiality criterion.

Mean Loss Realized 0.5-CVar Realized 0.99-CVar

0.99-CVar 0.2635 0.527 1.8034

0.5-CVar 0.1514 0.2531 2.3631
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Figure III.7: Comparison of 99%-CVar and 50%-CVar optimiality criterion, nor-
malized to risk-neutral price.
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Figure III.8: Call spread δH,(1)
t and neural network approximation as a function

of (st, vt) for t = 15 days

clearly see the risk preferences: the 50%-CVar strategy is more centered at 0 and
also has a smaller mean hedging error, but the 99%-expected shortfall strategy
yields smaller extreme losses (c.f. also the realized 99%-CVar loss value realized
on the test sample, shown in the table below Figure III.7).

To further illustrate the implications of risk-preferences on hedging, as a last
example we consider selling a call-spread, i.e. Z = [(S

(1)
T − K1)+ − (S

(1)
T −

K2)+]/(K2 −K1) for K1 < K2. Here we have chosen K1 = s0, K2 = 101. Pro-
ceeding as above, we compare the model hedge to the more risk-averse hedging
strategies associated to α = 0.95 and α = 0.99. The strategies (on a grid of
values for spot and variance) are shown in Figures III.8 and III.9. The model
hedge would again correspond to α = 0.5. As one can see for higher levels of
risk-aversion, the strategy flattens. From a practical perspective, this precisely
corresponds to a barrier shift, i.e. a more risk-averse hedge for a call spread with
strikes K1 and K2 actually aims at hedging a spread with strikes K̃1 and K2 for
K̃1 < K1.

5.3 Price asymptotics under proportional transaction costs

In Section 5.2 we have seen that in a market without transaction costs, deep
hedging is able to recover the model hedge and can be used to calculate risk-
adjusted optimal hedging strategies.

The goal of this section is to illustrate the power of the methodology by
numerically calculating the indifference price (3.2) in a multi-asset market with
transaction costs.

So far, this has been regarded a highly challenging problem, see e.g. the intro-
duction of [KMK15]. For example, calculating the exponential utility indifference
price for a call option in a Black-Scholes model involves solving a multidimen-
sional nonlinear free boundary problem, see e.g. [HN89], [DPZ93]. Motivated by
this [WW97] have studied asymptotically optimal strategies and price asymptot-



74 III Deep Hedging

96 98 100 102 0.04
0.06

0.08
0.10

0.12
0.14

0.02
0.04
0.06
0.08
0.10
0.12
0.14

Spread Delta

96 98 100 102 0.04
0.06

0.08
0.10

0.12
0.14

0.05
0.10
0.15
0.20
0.25

Model Delta

96 98 100 102 0.04
0.06

0.08
0.10

0.12
0.14

0.125
0.100
0.075
0.050
0.025
0.000
0.025
0.050

Difference

Figure III.9: Call spread δH,(1)
t and neural network approximation as a function

of (st, vt) for t = 15 days

ics for small proportional transaction costs, i.e. for ci(y, s) = εys and as ε ↓ 0.
One of the results in the asymptotic analysis is that

pε − p0 = O(ε2/3), as ε ↓ 0, (5.7)

where pε = pε(Z) is the utility indifference price of Z associated to transaction
costs of size ε. In fact (5.7) is true in more general one-dimensional models, see
[KMK15], and the rate 2/3 also emerges in a variety of related problems with
proportional transaction costs, see e.g. [Rog04], [MKRS17] and the references
therein.

Here we numerically verify (5.7) using the deep hedging algorithm, first for
a Black-Scholes model (for which (5.7) is known to hold) and then for a Heston
model (with d = 2 hedging instruments). For this latter case (or any other model
with d > 1) there have been neither numerical nor theoretical results on (5.7)
previously in the literature.

Black-Scholes model

Consider first d = 1 and St = s0 exp(−tσ2/2 + σWt), where σ > 0 and W is a
one-dimensional Brownian motion. We choose σ = 0.2, s0 = 100 and use the
explicit form of S to generate sample trajectories. Setting Xtk = log(Stk) and
proceeding precisely as in the Heston case (see Sections 5.1 and 5.2), we may use
the deep hedging algorithm to calculate the exponential utility indifference price
pε for different values of ε. Recall that we choose proportional transaction costs
c1(x, s) = εxs and ρ is the entropic risk measure (3.5) (see Lemma 3.3). For
the numerical example we take λ = 1 and Z = (ST −K)+ with K = s0 and we
calculate pεi for εi = 2−i+5, i = 1, . . . , 5.

Figure III.10 shows the pairs (log(εi), log(pεi − p0)) (in red) and the closest
(in squared distance) straight line with slope 2/3 (in blue). Thus, in this range
of ε the relation log(pε − p0) = 2/3 log(ε) + C for some C ∈ R indeed holds true
and hence also (5.7).
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Figure III.10: Black-Scholes model price asymptotics.

Note that trading is only possible at discrete time-points and so the indiffer-
ence price and the risk-neutral price do not coincide. Since (5.7) is a result for
continuous-time trading (where p = p0), we have compared to the risk-neutral
price p here (thus neglecting the discrete-time friction in pε for ε > 0).

Heston model

We now consider a Heston model with two hedging instruments, i.e. d = 2 and
the setting is precisely as in Section 5.2, except that here ρ is chosen as (3.5)
and c1(x, s) = c2(x, s) = εxs. Choosing λ = 1, Z = (S

(1)
T − K)+ and εi as

in the Black-Scholes case above, one can again calculate the exponential utility
indifference prices and show the difference to p0 in a log-log plot (see above) in
a graph. These are shown as red dots in Figure III.11. Here the blue line in
Figure III.11 is the regression line, i.e. the least squares fit of the red dots. The
rate is very close to 2/3 and so it appears that the relation (5.7) also holds in this
case.

5.4 High-dimensional example

As a last example consider a model built from 5 separate Heston models, i.e.
d = 10 and (S(h), S(h+1)) is the price process of spot and variance swap in a Heston
model (specified by (5.2) and (5.4)) for h = 1, . . . , 5. To have a benchmark at
hand the 5 models are assumed independent and each of them has parameters as
specified in Section 5.2. This choice is of course no restriction for the algorithm
and is only made for convenience. The payoff is a sum of call options on each
of the underlyings, i.e. Z =

∑5
h=1 Zh with Zh = (S

(2h−1)
T − K)+ and K =
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Figure III.11: Heston model price asymptotics

s0 = 100. In a market with continuous-time trading and no transaction costs,
Z can be replicated perfectly by trading according to strategy (5.6) in each of
the models. In particular, this strategy is decoupled, i.e. the optimal holdings in
(S(h), S(h+1)) only depend on (S(h), S(h+1)). While in the present setup trading is
only possible at discrete time steps and so the strategy optimizing (3.1) leads to a
non-deterministic terminal hedging error (2.1), by independence one still expects
that the optimal strategy is decoupled as above, at least for certain classes of
risk measures. To see this most prominently, here we consider variance optimal
hedging : the objective is chosen as (3.3) for l(x) = x2 and p0 = 5p, where
p = E[Z1].

Let δ ∈ H and write δ(2h−1:2h) := (δ(2h−1), δ(2h)) for h = 1, . . . , 5 (and analog-
ously for S). If δ is decoupled, i.e. such that δ(2h−1:2h) is independent of S(2j−1:2j)

for j 6= h, then by independence and since S is a martingale one has

E
[
(−Z + p0 + (δ · S)T )2

]
=

5∑
h=1

Var
(
−Zi + (δ(2h−1:2h) · S(2h−1:2h))T

)
. (5.8)

By building δ from the (discrete-time) variance optimal strategies for each of the
5 models, one sees from (5.8) that the minimal value of (3.3) over all δ ∈ H is
at most 5 times the minimal value of (3.3) associated to a single Heston model.
This consideration serves as a guideline for assessing the approximation quality
of the neural network strategy.

To assess the scalability of the algorithm, we now calculate the close-to-
optimal neural network hedging strategy associated to (3.3) in both instances
(i.e. for nH = 5 models and for a single one, nH = 1) and compare the results.
Unless specified otherwise, the parameters are as in Section 5.1. Since for nH = 5



5 Numerical experiments and results 77

we are actually solving 5 problems at once, we allow for a network with more
hidden nodes by taking N1 = N2 = 12nH . We then train both networks for a
fixed number of iterations (here 2× 105) and measure the performance in terms
of both training time and realized loss (evaluated on a test set of nH×105 sample
paths): the training times on a standard Lenovo X1 Carbon laptop are 5.75 and
2.1 hours for nH = 5 and nH = 1, respectively and the realized losses are 1.13 and
0.20. In view of the considerations above, this indicates that the approximation
quality is roughly the same for both instances (and close-to-optimal).

While far from a systematic study, this last example nevertheless demonstrates
the potential of the algorithm for high-dimensional hedging problems.
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Chapter IV

Skorokhod Embedding Problem for
Lévy Processes

1 Introduction

Consider a one-dimensional Brownian motion L and denote by F the filtration
generated by L. The classical Skorokhod embedding problem is as follows: given
a probability distribution µ1, find an F-stopping time τ such that Lτ ∼ µ1 and
E[τ ] <∞. The last condition is imposed to exclude non-meaningful solutions, see
e.g. [RW00b, Remark 51.7]. The problem was originally formulated and solved by
Skorokhod [Sko61, Sko65]. Since then a variety of solutions with different prop-
erties and additional inherent structure have been found, see the comprehensive
survey [Obł04]. For further background we refer to the introduction of this thesis,
Section 1.1 below and e.g. [DGPR17], [BCH17b], [Hob11].

In the present chapter we study the Skorokhod embedding problem (SEP)
for a Lévy process L (which includes the case of a Brownian motion) with non-
deterministic initial distribution µ0. Under some regularity assumptions on µ0, µ1

(but none on L), we provide conditions on µ0, µ1 and L which are necessary for
a solution to exist and, assuming these, give an explicit solution. Our solution
is new also in the special case when L is a Brownian motion and it is the first
solution that is non-randomized and covers all Lévy processes (and not only e.g.
those which are transient or admit local times).

In more detail, our approach is to choose an interpolation (µt)t∈[0,1] of µ0 and
µ1 and construct a process with marginal distributions (µt)t∈[0,1] by a time-change
of L, which then also gives rise to a stopping time solving the SEP. Given the
choice of interpolation, the function σ determining the time-change is found by
inverting the Fokker-Planck equation. This can be seen as calibrating a local
volatility model (as in [Dup94], [CGMY04]) driven by L. However, since σ is
determined through our choice of interpolation, here we cannot simply assume
regularity (and positivity) of σ and existence of the associated process, but we
need to derive it from assumptions on (µt)t∈[0,1]. Even for sufficiently regular µ0

and µ1, this turns out to be delicate for general L and leads to a σ that is time-
dependent, possibly unbounded and may exhibit zeros. Proving that the desired

79
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process exists and indeed has marginal distributions (µt)t∈[0,1] thus requires results
on time-changes and uniqueness of Fokker-Planck equations that have not been
available in the literature. These are developed in the general framework of
martingale problems of [EK86] in the appendix of the present chapter.

1.1 Related literature

An overview of classical results on the Skorkohod embedding problem can be
found in the comprehensive survey [Obł04]. We mention in particular the solution
due to [Bas83], which has served as an inspiration. The stopping time in [Bas83] is
constructed from a random time-change associated to a suitable martingale. The
elegance of the solution in [Bas83] appears to be specific to the case of Brownian
motion, see e.g. the introduction of [DGPR17].

For more general Markov processes, there have been less results in the liter-
ature. Bertoin and Le Jan [BL92] consider µ0 = δ0 and deal with necessary and
sufficient conditions for the solvability of the Skorokhod embedding problem for a
large class of Markov processes, including Lévy processes that admit local times.
Sufficient conditions for different types of Lévy processes and µ0 = δ0 were also
obtained in [Mon72] and [OP09]. Namely, Monroe [Mon72] adresses symmetric
α-stable Lévy processes with α ∈ (1, 2] and Obłój and Pistorius [OP09] the case
of spectrally negative Lévy processes. In a more abstract setting Falkner and
Fitzsimmons [FF91] provide even necessary and sufficient conditions for general
but transient Markov processes, which cover only partially the class of Lévy pro-
cesses. For a relaxed version of the SEP (allowing for randomized stopping times,
i.e. allowing for stopping times which are measurable w.r.t. a larger filtration than
the natural filtration generated by the underlying Markov process) Rost [Ros71]
shows necessary and sufficient conditions for general Markov processes. A discus-
sion about differences between randomized and non-randomized solutions to the
SEP can be found for instance in [FF91].

Recent motivation to deal with various versions of the classical Skorokhod
embedding problem stems from its applications in mathematical finance start-
ing with the seminal work of Hobson [Hob98], where model-independent pricing
bounds and hedging techniques for lookback options were studied by means of
Skorokhod embedding. The link between robust financial mathematics and the
classical SEP was utilized by many authors to determine robust price bounds for
exotic options, see [Hob11] for a more detailed introduction to this area. More
recently, additional interest in the Skorokhod embedding problem was also caused
by new applications in game theory (e.g. [SS13, FH16]) and in numerical analysis
(e.g. [GMO15, AKU16]).

1.2 Outline

The chapter is structured as follows. In Section 2 we formulate the problem
and state our main result, Theorem 2.1. Section 3 contains preliminary results
on the Poisson equation for Lévy processes and the proof of Theorem 2.1. The
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proof relies on results on random time-changes and uniqueness for Fokker-Planck
equations, which are developed in Appendices A, B and C.

2 Main result

In this section we state and discuss Theorem 2.1, the main result of the present
chapter. We start with the precise formulation of the Skorokhod embedding
problem and a reminder on Lévy processes.

Let µ0 and µ1 be two given probability distributions. On a complete probab-
ility space (Ω,F ,Pµ0) we consider a stochastic process L with L0 ∼ µ0 under Pµ0

and denote by (Ft)t≥0 the Pµ0-augmented natural filtration of L. In this setting
the Skorokhod embedding problem is formulated as follows:

(SEP). Find an (Ft)t≥0-stopping time τ such that Lτ ∼ µ1 and Eµ0 [τ ] <∞.

Throughout this chapter, L will be a Lévy process with initial distribution µ0

under Pµ0 . For the special case µ0 = δ0 we always abbreviate P = Pδ0 .
Recall that a continuous-time process (Lt)t≥0 with values in R is called Lévy

process if it has almost surely RCLL sample paths, is almost surely issued from 0,
is stochastically continuous and has stationary and independent increments. Due
to the Lévy-Khintchine representation, there exist α ≥ 0, γ ∈ R and a measure
ν on R with ν({0}) = 0 and

∫
R(x2 ∧ 1) ν(dx) <∞ such that

E[eiuLt ] = etη(u), u ∈ R, t ≥ 0, (2.1)

with the characteristic exponent

η(u) = −1

2
α2u2 + iuγ +

∫
R\{0}

(eiuy − 1− iuy1{|y|≤1}) ν(dy), u ∈ R. (2.2)

The triplet (α2, γ, ν) is called Lévy triplet and fully characterizes L. We exclude
the trivial case of a constant Lévy process, i.e. α = γ = ν = 0. For more
background information we refer for instance to the introductory texts of Ber-
toin [Ber96] and Kyprianou [Kyp14] and to [Sat99]. A Lévy process with initial
distribution µ0 is defined as L = L̃+X0, where X0 ∼ µ0 is independent from the
Lévy process L̃.

We are now ready to state the main result. Condition (2.3) with H as in
(2.4) also appears in [BL92], where µ0 = δ0 and Lévy processes with local times
are considered. In particular, Theorem 2.1 shows that this is the necessary and
sufficient condition also for a wide class of measures and Lévy processes without
local times. Allowing the Lévy process to be more general forces us on the
other hand to assume a priori regularity on µ0, µ1. We will always assume that
µ0, µ1 have positive densities with respect to the Lebesgue measure. Additional
smoothness will be imposed (e.g. h0, h1 ∈ C0(R) for the Brownian motion).
Assumptions on the densities are different for different Lévy processes; we state
the precise assumptions in Section 2.1 below.
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Theorem 2.1. Suppose L is a Lévy process with initial distribution µ0 and char-
acteristic exponent η. Suppose µ0, µ1 have strictly positive densities h0, h1 which
are “sufficiently smooth” (specified below in Assumption 2.4).

(i) The necessary and sufficient condition for the existence of a finite mean
Skorokhod embedding is

µ̂1 − µ̂0

η
∈ L1(R), H ≥ 0 and H ∈ L1(R), (2.3)

where

H(x) :=
1

2π

∫
R

µ̂1(ξ)− µ̂0(ξ)

η(ξ)
e−ixξ dξ, x ∈ R. (2.4)

(ii) If (2.3) is satisfied, then an explicit solution under Pµ0 is given as follows:

τ := inf

{
t ∈ [0, ρ) :

∫ t

0

e−G(r)h1(Lr)

H(Lr)
dr ≥ 1

}
∧ ρ,

where, for t ≥ 0,

ρ := inf{t ∈ [0,∞) : H(Lt) = 0} and G(t) :=

∫ t

0

h1(Lr)− h0(Lr)

H(Lr)
dr

with the usual convention inf ∅ :=∞.

(iii) With τ from (ii) it holds that Eµ0 [τ ] =
∫
RH(x) dx.

The conditions might look complicated at first sight but they are explicit since
they only involve the given densities and the given characteristic exponent of the
Lévy process. Also the stopping time is fairly explicit: it only involves the process
and explicit functions but no further stochastic quantities (e.g. local times).

For the case of a Brownian motion starting from an initial law µ0 with finite
second moment, it is a classical result that there is a finite mean embedding for
µ1 if and only if µ0 and µ1 have the same first moment, finite second moments
and µ0 is smaller than µ1 in convex order, i.e.∫

R
ϕ(x)µ0(dx) ≤

∫
R
ϕ(x)µ1(dx) for all ϕ convex.

Sufficiency follows e.g. by [BC74], necessity by the optional sampling theorem
and Jensen’s inequality.

Even though the three conditions in (2.3) cannot be considered separately
from each other, each of them has an interpretation in analogy to the Brownian
case: Since η(0) = 0, the integrability at zero of (µ̂1 − µ̂0)/η forces a decay of
µ̂1 − µ̂0 in relation to the behavior of η at zero. Since the behavior at zero of
a characteristic function relates to the moments, the integrability of (µ̂1 − µ̂0)/η
is an abstract condition for equal first moments of µ0, µ1. Non-negativity of
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H is a generalization of the convex order condition for Brownian motion and
integrability of H corresponds to finite second moments.

Finally, note that the function H appearing in (2.4) is the unique solution in
C0(R) to the Poisson equation

A∗H = h1 − h0, (2.5)

where A∗ is the generator of the dual Lévy process −L. This is shown in Sec-
tion 3.1 below and can be seen informally by taking the Fourier transform in (2.5)
and recalling the Fourier representation Â∗H(u) = η(u)Ĥ(u) of A∗. Using that
for a Brownian motion the solution to (2.5) can also be represented as

H(x) =

∫
R
(h1(y)− h0(y))|y − x| dy, x ∈ R, (2.6)

see e.g. [Sat72, Corollary 5.1], and that
∫
RH(x) dx =

∫
R x

2 µ1(dx)−
∫
R x

2 µ0(dx)
as shown e.g. in [Cha77, Lemma 7.1], one may recover from (2.3) the classical
conditions for Brownian motion stated above.

Remark 2.2. Note that for lattice type Lévy processes there exist u0 6= 0 with
η(u0) = 0. For such u0 the condition (µ̂1 − µ̂0)/η ∈ L1(R) in (2.3) thus requires
a decay of µ̂1(u)− µ̂0(u) as u→ u0.

2.1 Regularity Assumptions

For different Lévy processes the necessary and sufficient conditions for the solvab-
ility of the Skorokhod embedding problem (SEP) provided in Theorem 2.1 require
different regularity assumptions on the initial density h0 and the target density
h1. In order to state these assumptions, we distinguish between the following
types of Lévy processes.

Definition 2.3. We say a Lévy process with characteristic exponent η is of type

S if it is symmetric and
∫∞

1
1
|η(u)| du <∞,

0 if lim infu→∞ |η(u)| ∈ (0,∞],

D if lim infu→∞ |η(u)| = 0.

Notice that these three types cover all Lévy processes as in particular any
Lévy process is either of type 0 or of type D. Based on this classification, we
make the following regularity assumptions on the densities h0, h1.

Assumption 2.4 (Regularity Assumptions).

• If L is of type S, then h0, h1 ∈ C0(R).

• If L is of type 0, then hi ∈ C2
0(R) with h(k)

i ∈ L1(R) for k = 1, 2, i = 0, 1.

• If L is of type D, then ĥ1 − ĥ0 ∈ Cc(R).



84 IV Skorokhod Embedding Problem for Lévy Processes

The Lévy processes considered by Bertoin and Le Jan are of type 0 as we will
see in the next remark. The subclass of processes considered in the Appendix of
[BL92] (for which conditions (2.3) were proved) are even of type S.
Remark 2.5. In [BL92], the Lévy processes are assumed to be recurrent and satisfy
that 0 is regular for 0. Excluding the compound Poisson case, the last condition
is equivalent to condition (i) of Lemma 2.7 below and

σ2 > 0 or
∫
R
(|x| ∧ 1) ν(dx) =∞,

see [RW00a, Section I.30]. Hence, these processes are of type 0 by Lemma 2.7.
Let us give further examples:

Example 2.6. Type S: Symmetric α-stable Lévy processes with index α ∈ (1, 2]
are of type S. In particular, a Brownian motion is of type S and so for a Brownian
motion Theorem 2.1 provides a solution to the SEP for any positive, continuous
densities h0, h1 ∈ C0(R) which have the same first moment, finite second moments
and which are in convex order.

Type 0: Symmetric α-stable Lévy processes with index α ∈ (0, 1] are of type 0,
but not of type S.

Type D: Lattice-type compound Poisson processes are of type D. Other ex-
amples of processes of type D can be found in [Ber96, Exercise I.7] and [Sat99,
Example 41.23].

In fact, Lévy processes of type 0 form a large class as demonstrated by the
sufficient conditions presented in the next lemma.

Lemma 2.7. Suppose that either

(i)
∫
R Re

(
1

1−η(ξ)

)
dξ <∞ or

(ii) for some t > 0, the distribution of Lt − L0 has a non-trivial absolutely
continuous part.

Then L is of type 0.

Proof. We argue by contraposition. Suppose there exists {uk}k∈N ⊂ R such that
limk→∞ |uk| =∞ and limk→∞ η(uk) = 0. Then condition (ACP) in [Sat99] cannot
be satisfied (see [Sat99, Example 41.23]). Combining this with [Sat99, Thm. 43.3]
and [Sat99, Remark 43.6], condition (i) does not hold. Similarly, for any t > 0,
limk→∞ Eµ0 [eiuk(Lt−L0)] = 1 and by the Riemann-Lebesgue Theorem it follows
that the law of Lt − L0 does not have an absolutely continuous part. Hence, (ii)
does not hold either.

3 Proofs

In this section we prove Theorem 2.1. The exposition is structured as follows:
Firstly, in Section 3.1 preliminary results on Lévy processes and the associated
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Poisson equation are presented. Secondly, in Section 3.2 it is proved that (2.3) is
indeed necessary for the existence of a finite mean Skorokhod embedding. Finally,
in Section 3.3 it is established that τ in Theorem 2.1 is a finite mean solution
to the Skorokhod embedding problem (SEP), thereby also proving sufficiency
of (2.3).

3.1 The Poisson Equation for Lévy Processes

In this section we lay the foundation for the proof of Theorem 2.1. As sketched
in the introduction of this thesis, it is crucial to understand the solvability of the
Poisson equation A∗H = h1 − h0 and properties of the solution H. As sketched
below Theorem 2.1, the Poisson equation for Lévy processes can be tackled with
Fourier transforms. Throughout this section we take µ0 := δ0 and set P := Pµ0 .

3.1.1 Preliminaries

Recall from the introduction that (α2, γ, ν) denotes the Lévy triplet and

η(u) = −1

2
α2u2 + iuγ +

∫
R\{0}

(eiuy − 1− iuy1{|y|≤1}) ν(dy), u ∈ R,

is the characteristic exponent, i.e. E[eiuLt ] = etη(u) for u ∈ R and t ≥ 0. In what
follows we collect the machinery that we need to study the Poisson equation for
Lévy processes in the next section.

For t ≥ 0 and f ∈ C0(R) define the transition semigroup Ptf(x) := E[f(Lt +
x)], x ∈ R, and, for q > 0, f ∈ C0(R) the resolvent operators

U qf(x) :=

∫ ∞
0

e−qtPtf(x) dt, x ∈ R.

By dominated convergence, f ∈ C0(R) implies Ptf ∈ C0(R) for any t ≥ 0 and
thus

D(A) :=
{
f ∈ C0(R) : lim

t→0
t−1(Ptf − f) exists in C0(R)

}
is well-defined. For f ∈ D(A) define Af := limt→0 t

−1(Ptf−f). Then, see [Sat99,
Thm. 31.5], the generator A : D(A) → C0(R) is linear, C2

0(R) ⊂ D(A) and for
u ∈ C2

0(R) it holds that

Au(x) =
1

2
α2u′′(x)+γu′(x)+

∫
R\{0}

[u(x+y)−u(x)−yu′(x)1{|y|≤1}] ν(dy), x ∈ R.

(3.1)
Furthermore, C∞c (R) is a core for A. This means by definition that for any
f ∈ D(A), there exists a sequence {fn}n∈N ⊂ C∞c (R) such that limn→∞ fn = f
and limn→∞Afn = Af in C0(R). In particular, we note the following:

Lemma 3.1. Suppose L is a Lévy process with Lévy triplet (α2, γ, ν). Set D :=
C∞c (R) and define A : D → C0(R) as (3.1) for u ∈ D. Then (D,A) satisfies
Assumption A.7.
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Proof. This follows by general theory (as explained in Example A.8) since the
transition semigroup is a positive, strongly continuous contraction semigroup on
C0(R) by [Sat99, Thm. 31.5] and since D is a core (see above) for the infinitesimal
generator of (Pt)t≥0.1

Two objects which are less popular in the study of Lévy processes, but central
for our purposes, are the potential operator and the adjoint, both of which we
introduce next. From [Sat99, Remark 31.10] or [Sat72, Thm. 4.1] it follows that
the Lévy process admits a potential operator. By definition this means that A
is injective, the domain D(V ) := {Af : f ∈ D(A)} of the potential operator
V := −A−1 is dense in C0(R) and, for f, g ∈ C0(R),

g ∈ D(V ) and V g = f ⇐⇒ U qg → f in C0(R) as q → 0. (3.2)

Furthermore, for t ≥ 0, set L∗t := −Lt. Then L∗ is also a Lévy process, called
the dual Lévy process, and its Lévy triplet is given by (α2,−γ, ν∗) where ν∗(A) :=
ν({−x : x ∈ A}) for A ∈ B(R). In other words, the characteristic exponent η∗ of
L∗ is given for u ∈ R as η∗(u) = η(−u) where η is the characteristic exponent (2.2)
of L. Since L∗ is also a Lévy process, the transition semigroup, resolvent operator,
infinitesimal generator and potential operator have been defined above. We will
denote them by P ∗t , (U q)∗, A∗ and V ∗, respectively.

For example, we denote by A∗ the infinitesimal generator associated to the
dual Lévy process L∗ and refer to it as the dual of A. Recall from the above that
C2

0(R) ⊂ D(A∗) and for u ∈ C2
0(R), x ∈ R,

A∗u(x) =
1

2
α2u′′(x)−γu′(x)+

∫
R\{0}

[u(x−y)−u(x)+yu′(x)1{|y|≤1}] ν(dy). (3.3)

Remark 3.2. The semigroup (Pt)t≥0 and the operator A are defined on (a subset
of) C0(R) in the present context. We define A∗ also on C0(R) (and not on the
dual space of C0(R) as in [Sat72]). The next lemma justifies the ∗-notation.

The following lemma is immediate, it identifies the dual generator A∗ as the
adjoint operator of A. For the proof of Theorem 2.1 we will not need all the
cases, but we have included the other ones for completeness.

Lemma 3.3. Suppose L is a Lévy process with Lévy triplet (α2, γ, ν) and denote
by A its infinitesimal generator A : D(A)→ C0(R) and A∗ : D(A∗)→ C0(R) the
infinitesimal generator of −L. Then∫

R
Af(x)g(x) dx =

∫
R
f(x)A∗g(x) dx, (3.4)

for any f ∈ D(A), g ∈ D(A∗) such that either f, g ∈ L1(R) or f,Af ∈ L1(R) or
g,A∗g ∈ L1(R) or Af,A∗g ∈ L1(R).

1One could also verify Assumption A.7 (i) by hand taking φ ∈ C∞c (R) with φ(x) = 1 for
x ∈ [−1, 1] and φ(x) = 0 for x /∈ [−2, 2] and setting φn(x) := φ(x/n) for x ∈ R, n ∈ N. Then
{φn}n∈N ⊂ D and bp-limn→∞(φn,Aφn) = (1, 0).
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Proof. Case 1, f, g ∈ L1(R): For t ≥ 0 and x ∈ R denote by P ∗ the transition
semigroup of −L, i.e. P ∗t g(x) = E[g(x − Lt)]. By Fubini’s Theorem g ∈ L1(R)
implies P ∗t g ∈ L1(R) for any t ≥ 0. By [Ber96, Chap. II, Prop. 1] for any t ≥ 0
it holds that ∫

R
Ptf(x)g(x) dx =

∫
R
f(x)P ∗t g(x) dx. (3.5)

To be precise, in [Ber96, Chap. II, Prop. 1] f and g are assumed non-negative,
but by considering positive and negative parts separately and using g ∈ L1(R)
and P ∗t g ∈ L1(R), [Ber96, Chap. II, Prop. 1] implies (3.5).

Using the definition of A, f ∈ D(A) and g ∈ L1(R) to apply dominated
convergence in the first step and g ∈ D(A∗) and f ∈ L1(R) in the last step, one
obtains ∫

R
Af(x)g(x) dx = lim

t→0

1

t

∫
R
(Ptf(x)− f(x))g(x) dx

(3.5)
= lim

t→0

1

t

∫
R
f(x)(P ∗t g(x)− g(x)) dx

=

∫
R
f(x)A∗g(x) dx

and so (3.4) has been established under the assumption f, g ∈ L1(R).
Case 2, f,Af ∈ L1(R) or g,A∗g ∈ L1(R): Suppose g,A∗g ∈ L1(R), the other

case can be treated by the same argument. Since C∞c (R) is a core for A, there
exists {fn}n∈N ⊂ C∞c (R) with limn→∞ fn = f and limn→∞Afn = Af in C0(R).
But fn, g ∈ L1(R) and so (3.4) holds for fn and g for any n ∈ N. Furthermore,
the assumptions g,A∗g ∈ L1(R) allow us to apply dominated convergence and so
(3.4) also holds for f and g, as desired.

Case 3, Af , A∗g ∈ L1(R): For the proof of the last part, denote by V and
V ∗ the potential operators associated to A and A∗, respectively. We claim that
for any f̃ ∈ D(V ), g̃ ∈ D(V ∗) with f̃ , g̃ ∈ L1(R) it holds that∫

R
V f̃(x)g̃(x) dx =

∫
R
f̃(x)V ∗g̃(x) dx. (3.6)

Once this is established, we may set f̃ := Af , g̃ := A∗g and apply (3.6) to deduce
(3.4).

So assume f̃ ∈ D(V ), g̃ ∈ D(V ∗) and f̃ , g̃ ∈ L1(R). For q > 0 and x ∈ R
denote by (U q)∗ the resolvent operator of −L, i.e. (U q)∗g̃(x) =

∫∞
0
e−qtP ∗t g̃(x) dt

where P ∗ is the transition semigroup of −L as above. By Fubini’s Theorem,
g̃ ∈ L1(R) implies (U q)∗g̃ ∈ L1(R) for any q > 0. By [Ber96, Chap. II, Prop. 1]
for any q > 0 it holds that∫

R
U qf̃(x)g̃(x) dx =

∫
R
f̃(x)(U q)∗g̃(x) dx. (3.7)

By the same argument as in Case 2, [Ber96, Chap. II, Prop. 1] implies (3.7).
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Using (3.2), f̃ ∈ D(V ) and g̃ ∈ L1(R) one may let q → 0 and apply dom-
inated convergence to obtain that the left-hand side of (3.7) converges to the
left-hand side of (3.6) and analogously for the right-hand side. Thus (3.6) is
indeed established.

3.1.2 Solving the Poisson Equation using the Fourier Transform

By definition of the potential operator V ∗ = −(A∗)−1 in the previous section, for
g ∈ D(V ∗) the function H = −V ∗g is the unique solution to the Poisson equation

A∗H = g (3.8)

in C0(R). In this section we study the solvability of (3.8) and further properties
of solutions.

The first proposition justifies the heuristic given in the introduction below
Theorem 2.1 and, hence, the occurrence of the function H in Theorem 2.1. Note
that the appearing assumption g ∈ L1(R) will not pose any restriction as in our
applications g = h1 − h0 and h0, h1 are probability densities.

Proposition 3.4. If g ∈ C0(R) ∩ L1(R) and ξ 7→ ĝ(ξ)
η(ξ)
∈ L1(R), then there is a

unique solution H ∈ D(A∗) ⊂ C0(R) to the Poisson equation A∗H = g and

H(x) =
1

2π

∫
R

ĝ(ξ)

η(ξ)
e−ixξ dξ, x ∈ R. (3.9)

Proof. We start with some preliminary facts that do not use the assumption of the
proposition. Note that g ∈ C0(R)∩L1(R) implies g ∈ L∞(R)∩L1(R). Hence, one
can use Fubini’s Theorem to see that for any q > 0, (U q)∗g(x) =

∫∞
0
e−qtP ∗t g(x) dt

is in L1(R). Taking the Fourier transform we obtain (see e.g. [Ber96, Chap. I,
Prop. 9]) for any q > 0

(̂U q)∗g(ξ) = (q − η(ξ))−1ĝ(ξ), ξ ∈ R. (3.10)

By (2.1) it holds that |eη(ξ)| = |E[eiξL1 ]| ≤ 1 and thus

Re(η(ξ)) ≤ 0 for any ξ ∈ R, (3.11)

where Re(z) denotes the real part of z ∈ C. In particular, the right-hand side of
(3.10) is indeed well-defined and

∀ξ ∈ R, q > 0 : |η(ξ)| ≤ |q − η(ξ)|. (3.12)

By assumption, the inverse Fourier transform of ξ 7→ ĝ(ξ)
η(ξ)

, given by H in (3.9),
is well-defined. Furthermore, by (3.12) and our assumption, for any q > 0 the
right-hand side of (3.10) is integrable and so, as (U q)∗g ∈ C0(R) ∩ L1(R) and
(̂U q)∗g ∈ L1(R), by Fourier inversion and (3.10), (U q)∗g can be represented as

(U q)∗g(x) =
1

2π

∫
R

ĝ(ξ)e−ixξ

q − η(ξ)
dξ, x ∈ R. (3.13)
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Thus, one has

sup
x∈R
| −H(x)− (U q)∗g(x)| = sup

x∈R

∣∣∣∣ 1

2π

∫
R
ĝ(ξ)e−ixξ

(
1

η(ξ)
+

1

q − η(ξ)

)
dξ

∣∣∣∣
≤ 1

2π

∫
R
|ĝ(ξ)|

∣∣∣∣ 1

η(ξ)
+

1

q − η(ξ)

∣∣∣∣ dξ.

However, by (3.12) the last integrand is bounded from above by ξ 7→ 2ĝ(ξ)/η(ξ),
which is integrable by assumption, and so we can let q → 0 and apply dominated
convergence to conclude (U q)∗g → −H as q → 0 in C0(R). By (3.2) (for the dual
Lévy process L∗), this implies g ∈ D(V ∗) and V ∗g = −H or, in other words,
A∗H = g.

In the next proposition we show that under the assumptions of Theorem 2.1,
it holds that H ∈ D(A∗) ∩ D(A). This property will be crucial to guarantee
uniqueness for the time-change in the proof of sufficiency of Theorem 2.1 and
forces us to assume that the densities h0, h1 are “sufficiently smooth” in the next
sections.

Proposition 3.5. Suppose h0, h1 are as in Theorem 2.1 and (2.3) holds with H
as in (2.4). Then H ∈ D(A) ∩D(A∗).

Proof. Set g := h1 − h0. By Proposition 3.4, H ∈ D(A∗) and so we only need to
verify H ∈ D(A). If L is of type S, then it is symmetric. In particular A = A∗
and hence the claim. If L is of type 0 or D, then (as established in the proof of
Lemma 3.9 below), ĝ ∈ L1(R) and we now show that this implies H ∈ D(A).

Since the complex conjugate of η(ξ) is given by η(−ξ) for all ξ ∈ R and since
ĝ ∈ L1(R), the function

f(x) :=
1

2π

∫
R

ĝ(ξ)η(−ξ)
η(ξ)

e−ixξ dξ, x ∈ R,

is well-defined and, by the Riemann-Lebesgue Theorem, f ∈ C0(R). Inserting
(3.9) in the definition, applying Fubini’s Theorem and using (2.1) and the defin-
ition of f yields

sup
x∈R

∣∣∣∣1t (PtH(x)−H(x))− f(x)

∣∣∣∣
= sup

x∈R

∣∣∣∣1t (E[H(Lt + x)]−H(x))− f(x)

∣∣∣∣
= sup

x∈R

∣∣∣∣ 1

2πt

∫
R

ĝ(ξ)

η(ξ)
(E[e−iLtξ]− 1)e−ixξ dξ − f(x)

∣∣∣∣
≤ 1

2π

∫
R

|ĝ(ξ)|
|η(ξ)|

∣∣∣∣etη(−ξ) − 1

t
− η(−ξ)

∣∣∣∣ dξ,

which tends to 0 as t ↓ 0, by dominated convergence. By definition, this implies
H ∈ D(A) and AH = f . To see that dominated convergence can be applied,
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recall (3.11) and so for all ξ ∈ R, t > 0,

|ĝ(ξ)|
|η(ξ)|

∣∣∣∣etη(−ξ) − 1

t
− η(−ξ)

∣∣∣∣ ≤ 2|ĝ(ξ)|.

The rest of this section may be skipped on first reading, all following propos-
itions are not needed for the proof of Theorem 2.1.

We give conditions on g and η so that Proposition 3.4 implies the existence
of the solution H, conditions that imply H ∈ L1(R) and that H is Lipschitz
continuous. For future applications, those might be useful to verify the conditions
of Theorem 2.1.

Proposition 3.6. Assume the non-degeneracy condition η(u) 6= 0 for all u 6= 0
(i.e. L is non-lattice) and either ν 6= 0 or α 6= 0. If g ∈ C0(R) ∩ L1(R),
x 7→ xig(x) ∈ L1(R) for i = 1, 2,∫

R
g(x)xj dx = 0, j = 0, 1, (3.14)

and there exists R > 0 such that∫
|ξ|>R

|ĝ(ξ)|
|η(ξ)|

dξ <∞, (3.15)

then ξ 7→ ĝ(ξ)
η(ξ)
∈ L1(R).

Proof. First note that in the present one-dimensional setup, the law of L1 is
degenerate (in the sense of [Sat99, Def. 24.16]) if and only if there exists a ∈ R
with L1 = a, P-a.s. Since we have assumed α 6= 0 or ν 6= 0, this is not the case
here (see [Sat99, Thm. 24.3]). In particular, we may apply [Sat99, Prop. 24.19]
and obtain that there exist ε′ > 0 and c > 0 such that

|E[eiξL1 ]| ≤ 1− c|ξ|2 for |ξ| < ε′. (3.16)

By (2.1), the left-hand side of (3.16) is greater or equal than eRe(η(ξ)) and thus
there exist C > 0 and ε > 0 such that

− Re(η(ξ)) ≥ − log(1− c|ξ|2) ≥ C|ξ|2 (3.17)

for all ξ ∈ Bε(0).
On the other hand, for g 6= 0 (if g = 0, then the claim trivially holds), we

may decompose g = g+ − g− with g+ ≥ 0, g− ≥ 0. Setting c0 :=
∫
R g

+(x) dx,
(3.14) with i = 0 implies c0 =

∫
R g
−(x) dx and thus c0 > 0. Setting h1 := g+/c0

and h0 := g−/c0, both h0 and h1 are probability densities and so we may apply
[Sat99, Prop. 2.5 (ix)] to h0 and h1 to obtain that, by our moment assumptions,
ĝ ∈ C2(R) and, by (3.14), ĝ(0) = ĝ′(0) = 0. Taylor expanding around 0, we
therefore obtain

|ĝ(ξ)| ≤ C0ξ
2 (3.18)
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for some C0 > 0 and all ξ ∈ Bε(0). Combining (3.17) and (3.18) yields

|ĝ(ξ)| ≤ C0ξ
2 ≤ −Re(η(ξ))

C0

C
≤ C0

C
|η(ξ)|

for all ξ ∈ Bε(0) and thus ξ 7→ ĝ(ξ)
η(ξ)

is locally bounded at zero. Since η(u) 6= 0

for u 6= 0 and ĝ and η are continuous, it follows that ξ 7→ ĝ(ξ)
η(ξ)

is bounded on any
compact subset of R. Combining this with (3.15) yields the claim.

Proposition 3.7. Suppose g and H are as in Proposition 3.4. If in addition for
some R > 0, ∫

|ξ|>R

|ξ||ĝ(ξ)|
|η(ξ)|

dξ <∞, (3.19)

then H is Lipschitz continuous.

Proof. By assumption,∫
|ξ|≤R

|ξ||ĝ(ξ)|
|η(ξ)|

dξ ≤ R

∫
R

|ĝ(ξ)|
|η(ξ)|

dξ <∞

and combining this with (3.19) yields

L :=

∫
R

|ξ||ĝ(ξ)|
|η(ξ)|

dξ <∞. (3.20)

On the other hand, precisely as in the proof of Proposition 3.4 we may apply
Fourier inversion to write, for any q > 0, (U q)∗ as (3.13). Using |eiu−eiv| ≤ |u−v|
for u, v ∈ R yields

|(U q)∗g(x)− (U q)∗g(y)| (3.13)
=

1

2π

∣∣∣∣∫
R

ĝ(ξ)(e−ixξ − e−iyξ)
q − η(ξ)

dξ

∣∣∣∣
(3.12)
≤ 1

2π
|x− y|

∫
R

|ξ||ĝ(ξ)|
|η(ξ)|

dξ
(3.20)
=

L

2π
|x− y|

for any q > 0 and x, y ∈ R. Letting q → 0 and using that (U q)∗g → V ∗g pointwise
(even in C0(R)) by (3.2), this last estimate implies the result.

The next result shows that if a solution of the Poisson equation exists (e.g.
if the conditions of Proposition 3.4 hold, but here we impose a slightly weaker
assumption), then H ≥ 0 implies H ∈ L1(R). This is useful for verifying the
conditions of Theorem 2.1.

Proposition 3.8. If g ∈ C0(R) ∩ L1(R), ξ 7→ ĝ(ξ)
η(ξ)

is locally bounded at zero,
there is a solution H ∈ C0(R) to the Poisson equation A∗H = g and H ≥ 0, then
H ∈ L1(R).
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Proof. Using (3.10) which did not rely on the stronger assumptions of Proposition
3.4 and the local boundedness of ξ 7→ ĝ(ξ)

η(ξ)
in the first and (3.12) in the second

inequality, there is some ε > 0 and C > 0 with

|(̂U q)∗g(ξ)| ≤ C|(q − η(ξ))|−1|η(ξ)| ≤ C for ξ ∈ Bε(0). (3.21)

Let us take a function ϕ such that

ϕ ∈ L1(R) satisfies ϕ = 0 on R \Bε(0), ϕ ≥ 0, ϕ̂ ∈ L1(R) and ϕ̂ ≥ 0. (3.22)

Since ϕ, ϕ̂, (U q)∗g ∈ L1(R), see the beginning of the proof of Proposition 3.4,
Fubini’s Theorem gives∫

R
(U q)∗g(x)ϕ̂(x) dx =

∫
R

∫
R
(U q)∗g(x)eiξxϕ(ξ) dξ dx =

∫
R

(̂U q)∗g(ξ)ϕ(ξ) dξ.

(3.23)
Furthermore, Hϕ̂ ≥ 0 and Hϕ̂ ∈ L1(R) since H ∈ C0(R) and we have assumed
H ≥ 0 and (3.22). Thus, recalling H = −V ∗g, we may estimate

0 ≤
∫
R
H(x)ϕ̂(x) dx

(3.2)
= − lim

q→0

∫
R
(U q)∗g(x)ϕ̂(x) dx

(3.23)
= − lim

q→0

∫
R

(̂U q)∗g(ξ)ϕ(ξ) dξ
(3.21)
≤ C

∫
R
ϕ(ξ) dx,

(3.24)

where the first equality uses dominated convergence and the last step relies on
our assumption (3.22) that ϕ = 0 outside Bε(0).

We now claim that there exists {ϕn}n∈N ⊂ L1(R) and I ∈ (0,∞) such that for
each n, ϕn satisfies (3.22) and limn→∞ ϕ̂n(x) = I for any x ∈ R. Assuming that
such a sequence can indeed be constructed, the following argument will finish the
proof: inserting ϕn in (3.24), letting n→∞ and using Fatou’s Lemma yields

0 ≤
∫
R
H(x) dx =

1

I

∫
R

lim inf
n→∞

H(x)ϕ̂n(x) dx

≤ lim inf
n→∞

1

I

∫
R
H(x)ϕ̂n(x) dx

≤ lim inf
n→∞

C

I

∫
R
ϕn(x) dx = lim inf

n→∞

C

I
ϕ̂n(0) = C <∞

and therefore indeed H ∈ L1(R).
Thus, the remainder of the proof will be devoted to construct a sequence

{ϕn}n∈N ⊂ L1(R) with the desired properties. Take χ0 ∈ C∞c (R) \ {0} with
χ0 ≥ 0, χ0(−x) = χ0(x) for all x ∈ R and χ0(x) = 0 for x /∈ Bε/3(0). Set
χ(y) :=

∫
R χ0(y−x)χ0(x) dx = χ0 ∗χ0(y). Then χ(y) = 0 for y /∈ Bε(0) and since

the Fourier transform turns convolution into products, χ̂(ξ) = (χ̂0(ξ))2 for all
ξ ∈ R. In particular, χ̂ ≥ 0. Furthermore, χ̂0 6= 0 implies that I :=

∫
R χ̂(ξ) dξ =∫

R(χ̂0(ξ))2 dξ satisfies I > 0 and χ0 ∈ C∞c (R) implies χ̂0 ∈ L2(R), thus I ∈ (0,∞).
Finally, since χ̂ ∈ L1(R), Fourier inversion gives χ(x) = (2π)−1 ˆ̂χ(−x) for all x ∈ R
(see [Sat99, Prop. 37.2]).
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For n ∈ N, define

ϕn(x) := 2πnχ(−x) exp

(
− 1

2
n2x2

)
, x ∈ R,

and note that ϕn(x) = ˆ̂χ(x)nψ̂n(x), where ψn(x) := 1
n
√

2π
exp(−x2/(2n2)) is the

density of a normal with mean zero and variance n. In particular, ϕn = n ̂(χ̂ ∗ ψn)

and using ˆ̂
f(x) = f(−x) for f ∈ L1(R) with f̂ ∈ L1(R), as above we obtain

ϕ̂n(ξ) = n
̂̂

(χ̂ ∗ ψn)(ξ) = nχ̂ ∗ ψn(−ξ) =
1√
2π

∫
R
χ̂(y) exp

(
− 1

2n2
(ξ + y)2

)
dy.

(3.25)
Thus, for any n ∈ N, ϕn indeed satisfies (3.22) and applying dominated conver-
gence (and noting that the integrand on the right-hand side converges pointwise
to χ̂) in (3.25) gives for any ξ ∈ R, limn→∞ ϕ̂n(ξ) = I as desired.

3.2 Necessity of Conditions

In this section we assume that τ is a finite mean solution for the Skorokhod
embedding problem corresponding to µi(dx) = hi(x)dx and study the associated
Poisson equation A∗H = h1 − h0. We show that

• there is a solution H. Using Proposition 3.4 we need to show (ĥ1− ĥ0)/η ∈
L1(R). Integrability at infinity is only a consequence of the smoothness
assumption on h0, h1 (Lemma 3.9) without using τ . Integrability at zero is
a consequence of Dynkin’s formula and the existence of τ (Lemma 3.10).

• H ≥ 0 and H ∈ L1(R). This is a consequence of Dynkin’s formula and the
Riesz representation theorem.

The first lemma is the source of our assumptions on the regularity for h0 and
h1.

Lemma 3.9. Under Assumption 2.4 on h0 and h1 (as in Theorem 2.1) we have∫
|u|>R

∣∣∣∣∣ ĥ1(u)− ĥ0(u)

η(u)

∣∣∣∣∣ du <∞

for some R > 0.

Proof. We consider all cases listed in Assumption 2.4 separately.
Type S: Since |ĥi(u)| ≤ 1 for i = 0, 1, for R ≥ 1 one can use symmetry and

the integrability assumption for 1/η to estimate∫
|u|>R

∣∣∣∣∣ ĥ1(u)− ĥ0(u)

η(u)

∣∣∣∣∣ du ≤
∫
|u|>R

2

|η(u)|
du ≤ 4

∫ ∞
R

1

|η(u)|
du <∞.
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Type 0: By assumption there exists R > 0, C > 0 with

|η(u)| ≥ C for |u| ≥ R. (3.26)

On the other hand, the regularity assumptions for type 0 guarantee that h(2)
i ∈

L1(R) and so standard Fourier analysis gives∣∣∣u2(ĥ1(u)− ĥ0(u))
∣∣∣ =

∣∣∣∣ĥ(2)
1 (u)− ĥ(2)

0 (u)

∣∣∣∣ ≤ C̃ (3.27)

for all u ∈ R, where C̃ :=
∫
R |h

(2)
1 (x)|+ |h(2)

0 (x)| dx.
Using (3.26) in the first and (3.27) in the second step yields∫

|u|>R

∣∣∣∣∣ ĥ1(u)− ĥ0(u)

η(u)

∣∣∣∣∣ du ≤ 1

C

∫
|u|>R

∣∣∣ĥ1(u)− ĥ0(u)
∣∣∣ du

≤ C̃

C

∫
|u|>R

1

|u|2
du <∞.

Type D: By assumption there exists R > 0 such that ĥ1(u) − ĥ0(u) = 0 for
all |u| > R and so the integral is 0.

Lemma 3.9 was independent of the Skorokhod embedding problem whereas
the integrability around the origin indeed is a consequence of the SEP. The crucial
ingredient of the proof is the use of Dynkin’s formula for the complex exponential
function:

Lemma 3.10. Suppose τ is a finite mean solution to the Skorokhod embedding
problem for µi(dx) = hi(x) dx. Then

η(u)Eµ0

[∫ τ

0

eiuLs ds

]
= ĥ1(u)− ĥ0(u) (3.28)

for all u ∈ R and ∫
|u|≤R

∣∣∣∣∣ ĥ1(u)− ĥ0(u)

η(u)

∣∣∣∣∣ du <∞

for any R > 0.

Proof. Let f, g ∈ Cb(R) be such that

M f
t := f(Lt)− f(L0)−

∫ t

0

g(Ls) ds, t ≥ 0,

is a martingale. The optional sampling theorem implies that also (M f
t∧τ )t≥0 is a

martingale. In particular, for any t ≥ 0,

Eµ0

[∫ τ∧t

0

g(Ls) ds

]
= Eµ0 [f(Lτ∧t)]− Eµ0 [f(L0)].
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It holds that Pµ0(limt→∞ Lτ∧t = Lτ ) = 1, since Pµ0(τ < ∞) = 1 and L is quasi-
left continuous. Using dominated convergence, Eµ0 [τ ] <∞ and f, g ∈ Cb(R), one
may let t→∞ to obtain Dynkin’s formula,

Eµ0

[∫ τ

0

g(Ls) ds

]
= Eµ0 [f(Lτ )]− Eµ0 [f(L0)]. (3.29)

For u ∈ R, set

Mu
t := eiuLt − eiuL0 − η(u)

∫ t

0

eiuLr dr, t ≥ 0.

ThenMu is (Ft)t≥0-adapted and for any t ≥ 0,Mu
t is a bounded random variable.

Furthermore,

Eµ0 [Mu
t −Mu

s |Fs] = eiuLsEµ0

[
eiu(Lt−Ls) − 1− η(u)

∫ t

s

eiu(Lr−Ls) dr

∣∣∣∣Fs]
(2.1)
= eiuLs

(
e(t−s)η(u) − 1− η(u)

∫ t

s

e(r−s)η(u) dr

)
= 0

and thereforeMu is a complex-valued (Ft)t≥0-martingale. Thus Dynkin’s formula
(3.29) can be applied to f(x) := eiux, g(x) := η(u)f(x) and so

η(u)Eµ0

[∫ τ

0

eiuLr dr

]
= Eµ0

[∫ τ

0

g(Lr) dr

]
= Eµ0 [f(Lτ )]− Eµ0 [f(L0)]

= Eµ0 [eiuLτ ]− Eµ0 [eiuL0 ].

This proves the first claim of the lemma. We can now deduce that (ĥ1− ĥ0)/η is
integrable in compact sets. By the above we obtain∣∣∣ĥ1(u)− ĥ0(u)

∣∣∣ =

∣∣∣∣η(u)Eµ0

[∫ τ

0

eiuLr dr

]∣∣∣∣ ≤ |η(u)|Eµ0 [τ ],

and this implies ∫
|u|≤R

∣∣∣∣∣ ĥ1(u)− ĥ0(u)

η(u)

∣∣∣∣∣ du ≤ 2REµ0 [τ ] <∞.

Combining the previous lemmas we proved that a finite mean solution to the
Skorokhod embedding problem for “sufficiently smooth” densities implies (ĥ1 −
ĥ0)/η ∈ L1(R) which, solving in Fourier domain, implies there is a solution H to
the Poisson equation A∗H = h1 − h0.

Now we can finish the proof by showing that existence of a finite mean solution
to the Skorokhod embedding problem implies H ≥ 0 and H ∈ L1(R).
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Proof of Theorem 2.1 (necessity): We showed that (ĥ1 − ĥ0)/η ∈ L1(R) so the
Poisson equation A∗H = h1 − h0 can be solved using Proposition 3.4 as

H(x) =
1

2π

∫
R

ĥ1(ξ)− ĥ0(ξ)

η(ξ)
e−ixξ dξ, x ∈ R.

It remains to prove H ≥ 0 and H ∈ L1(R):
Define the functional Λ: Cc(R)→ R by

Λ(g) := Eµ0

[∫ τ

0

g(Ls) ds

]
.

Then Λ(g) ≥ 0 for g ≥ 0, Λ is linear and |Λ(g)| ≤ ‖g‖∞Eµ0 [τ ]. By the Riesz
Representation Theorem (e.g. [Rud87, Theorem 2.14]), there exists a measure ν
on B(R) such that for all g ∈ Cc(R),

Eµ0

[∫ τ

0

g(Ls) ds

]
= Λ(g) =

∫
R
g(x) ν(dx). (3.30)

Choosing {gn}n∈N ⊂ Cc(R), increasing monotonically to 1 with gn ≥ 0 and
applying monotone convergence gives

ν(R) = lim
n→∞

∫
R
gn(x) ν(dx) = lim

n→∞
Eµ0

[∫ τ

0

gn(Ls) ds

]
= Eµ0 [τ ] <∞.

Thus ν is a finite measure and by dominated convergence, (3.30) holds for all
g ∈ Cb(R). Inserting g(x) := eiux for u ∈ R in (3.30) and using (3.28) yields

ν̂(u) =

∫
R
eiux ν(dx) = Eµ0

[∫ τ

0

eiuLs ds

]
=
ĥ1(u)− ĥ0(u)

η(u)
,

which is integrable by Lemma 3.9 and Lemma 3.10. Hence, e.g. by [Sat99,
Proposition 2.5 (xii)], ν is absolutely continuous with respect to the Lebesgue
measure and has a (non-negative) bounded continuous density given by

x 7→ 1

2π

∫
R

ĥ1(ξ)− ĥ0(ξ)

η(ξ)
e−ixξ dξ, x ∈ R.

But this function is identical to H and thus ν(dx) = H(x) dx. In particular,
H ≥ 0 and H ∈ L1(R).

3.3 Sufficiency of Conditions

Under the assumptions of Theorem 2.1 we now construct a finite mean stopping
time with Lτ ∼ h1(x) dx under the initial condition L0 ∼ h0(x) dx. We refer the
reader to the sketch in the introduction of this thesis to follow more easily the
construction of τ . During the proof we refer to auxiliary time-change arguments
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and uniqueness results for Fokker-Planck equations as developed in the appendix
(Appendix B and C). Also we refer to assumptions as formulated in Appendix A.

Let D := C∞c (R) and define the action of the Lévy generator A : D → C0(R)
for u ∈ D via (3.1). Furthermore, taking into account the definitions from The-
orem 2.1, let

φ(t, x) := (1− t)h0(x) + th1(x), (3.31)

σ(t, x) :=
H(x)

(1− t)h0(x) + th1(x)
, (t, x) ∈ [0, 1]× R, (3.32)

and, under Pµ0 ,

δ(s) := inf
{
t ∈ [0, ρ) : ∆(t) ≥ s

}
∧ ρ, s ∈ [0, 1], (3.33)

where

∆(t) := 1− eG(t) +

∫ t

0

e(G(t)−G(r))h1(Lr)

H(Lr)
dr, t ∈ [0, ρ), (3.34)

with

ρ := inf{t ∈ [0,∞) : H(Lt) = 0} and G(t) :=

∫ t

0

h1(Lr)− h0(Lr)

H(Lr)
dr.

The proof is split in two main steps: First we assume in addition that h0 and
h1 are such that σ is bounded and argue as sketched in the introduction. Then,
for σ unbounded, we approximate hi by h

(ε)
i with associated σ(ε) bounded and

deduce Theorem 2.1.

Proof of Theorem 2.1 (sufficiency if σ is bounded). For the proof the following
statements are established:

(i) (δ(s))s∈[0,1] constitutes a family of (Ft)t≥0-stopping times satisfying Pµ0-a.s.,

δ(s) =

∫ s

0

σ(u, Lδ(u)) du, s ∈ [0, 1], (3.35)

(ii) for any s ∈ [0, 1], the law of Lδ(s) under Pµ0 is φ(s, x) dx,

(iii) Eµ0 [δ(1)] =
∫
RH(x) dx <∞.

Theorem 2.1 can then be deduced from (i)-(iii) by setting τ := δ(1) because
φ(1, ·) = h1 by construction. Note that the stopping time looks slightly differ-
ent here than in the statement of Theorem 2.1. Both representations are equal
because from (3.34) one obtains

∆(t) ≥ 1 ⇐⇒ −eG(t) +

∫ t

0

e(G(t)−G(r))h1(Lr)

H(Lr)
dr ≥ 0

⇐⇒
∫ t

0

e−G(r)h1(Lr)

H(Lr)
dr ≥ 1,
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and, hence, the claimed representation of τ = δ(1) as generalized inverse in
Theorem 2.1 and in (3.33) are equal.

The proof of (i)-(iii) proceeds roughly as follows: Firstly, it is proved that
L and σ satisfy the assumptions of Lemma B.2 and that (3.34) is the solution
to the differential equation (B.5), so Lemmas B.2 and B.6 imply (i). Based on
Lemma B.9, one then verifies that (φ(s, x) dx)s∈[0,1] and the marginals of Lδ(·)
are solutions to the Fokker-Planck equation (C.2). Then from the uniqueness
result Theorem C.1 it follows that Lδ(s) indeed has the law φ(s, x) dx, i.e. (ii).
Combining the representation of δ(1) established in (i) with (ii) and the fact that
σ(t, x)φ(t, x) = H(x) for all t ∈ [0, 1] and x ∈ R one easily obtains (iii).

Verification of (i): The claim is a consequence of Lemma B.2 and its proof
(set t0 = 1 and compare (B.5) and (B.6) for the formula of δ in terms of ∆) and
Lemma B.6. We only need to verify the conditions of Lemma B.2 and then solve

∆(s) =

∫ s

0

σ(∆(r), Lr)
−1 dr, s ∈ [0, δ(t0)),

for our choice of σ from (3.32). It is the particular form of the denominator which
allows us to solve (B.5) explicitly and get the formula for ∆ as claimed in (3.34).

By Proposition 3.4, H ∈ D(A∗) ⊂ C0(R), where A∗ : D(A∗)→ C0(R) denotes
the adjoint (see Subsection 3.1.1 and (3.3)). Since also H ∈ D(A) by Proposi-
tion 3.5, H is regular for (the law of) L by Proposition B.5. Since h0 and h1 are
assumed positive and continuous, for any K ⊂ R compact, there exist C0, C1 > 0
such that

C0 ≤ hi(x) ≤ C1, x ∈ K, i = 0, 1. (3.36)
Set σ̃(t, x) := 1/φ(t, x) for (t, x) ∈ [0, 1] × K. Then (3.36) implies that for any
(t, x) ∈ [0, 1]×K, one has 1/C1 ≤ σ̃(t, x) ≤ 1/C0 and

|σ̃(t, x)− σ̃(s, x)| = 1

φ(s, x)φ(t, x)
|φ(s, x)− φ(t, x)| ≤ 2C1

C2
0

|t− s|.

In particular, Assumption A.6 (ii) holds and σ = Hσ̃ (see (3.32) above) satis-
fies Assumption A.6. Since σ is also assumed to be bounded, Lemma B.2 and
Lemma B.6 can be applied. Hence, the random times defined by (B.6), (B.5)
and (B.3) are stopping times and (B.1) holds. As the definitions (B.6) and (3.33)
coincide, in order to show (i), it thus suffices to show that ρ and ∆ in (3.33)
coincide Pµ0-a.s. with (B.3) and (B.5).

Since H is regular for the law of L (as argued above), ρ in (3.33) is equal to
(B.3) (see Definition A.4). Furthermore, as shown in Lemma B.2, the solution to
the Carathéodory differential equation (B.5) is Pµ0-a.s. unique. Thus it suffices
to show that Pµ0-a.s., ∆ defined by (3.34) is a solution to (B.5), i.e. that Pµ0-a.s.

∆(t) =

∫ t

0

σ(∆(r), Lr)
−1 dr, t ∈ [0, δ(1)), (3.37)

holds. Inserting (3.32) in (3.37) yields

∆(t) =

∫ t

0

∆(r)(h1(Lr)− h0(Lr))

H(Lr)
dr +

∫ t

0

h0(Lr)

H(Lr)
dr, t ∈ [0, δ(1)). (3.38)
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On the other hand, δ(1) ≤ ρ and Pµ0-a.s. the candidate solution ∆ in (3.34) is
absolutely continuous on every closed subinterval of [0, ρ) and

∆̇(t) = −Ġ(t)eG(t) + Ġ(t)

∫ t

0

e(G(t)−G(r))h1(Lr)

H(Lr)
dr +

h1(Lt)

H(Lt)

= Ġ(t)(∆(t)− 1) +
h1(Lt)

H(Lt)

= ∆(t)
h1(Lt)− h0(Lt)

H(Lt)
+
h0(Lt)

H(Lt)
,

for almost every t ∈ [0, ρ). This is equivalent to (3.34) being a solution to (3.38)
on [0, ρ) as desired.

Verification of (ii): Firstly, in (i) it has been verified that Assumption A.6
holds and by Lemma 3.1, Assumption A.7 is satisfied. Secondly, Assumption A.11
holds and, as argued above, Assumption A.12 is satisfied. Thus, Lemma B.9 and
Theorem C.1 can be applied. This shows that (p̃(s, ·))s∈[0,1] is the unique solution
to the Fokker-Planck equation (B.16), where p̃(s, ·) is the law of Lδ(s) under
Pµ0 . Thus, in order to establish (ii), it suffices to verify that (p(s, ·))s∈[0,1] with
p(s, dx) = φ(s, x) dx also satisfies the Fokker-Planck equation (C.2) with (C.1).

Inserting p(s, dx) = φ(s, x) dx with φ from (3.31) into the left-hand side of
(C.2), using H ∈ D(A∗), A∗H = h1 − h0 (by (2.4) and Proposition 3.4) and
H ∈ L1(R), h1 − h0 ∈ L1(R) (by assumption), Lemma 3.3 gives∫

R
f(x) p(t, dx)−

∫
R
f(x)µ0(dx)

(3.31)
=

∫
R
f(x)t(h1 − h0)(x) dx

=

∫ t

0

∫
R
A∗H(x)f(x) dx ds

(3.4)
=

∫ t

0

∫
R
H(x)Af(x) dx ds

=

∫ t

0

∫
R
σ(s, x)Af(x) p(s, dx) ds,

where the last step is just the definition (3.32) and (3.31). Hence, by Theorem C.1
and our argument above we may indeed conclude (ii).

Verification of (iii): Having verified that the marginals of Lδ(·) are given as
in (3.31), we may apply the representation of δ as solution to an integral equation
(established in (i)), Tonelli’s Theorem and the definition of σ and φ to see, using
(3.35),

Eµ0 [δ(1)] = Eµ0

[ ∫ 1

0

σ(u, Lδ(u)) du

]
=

∫ 1

0

Eµ0 [σ(u, Lδ(u))] du

=

∫ 1

0

∫
R
σ(u, x)φ(u, x) dx du

=

∫
R
H(x) dx.
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The right-hand side is finite by assumption and so τ = δ(1) has finite mean.

Proof of Theorem 2.1 (sufficiency). To finish the proof of sufficiency we need to
remove the assumption that h0 and h1 are such that σ = H/φ is bounded using a
truncation procedure. For this sake we shift the densities in order to shift down
φ.

Approximate stopping times δ(ε): Since H ∈ L1(R) by assumption, C :=∫
RH(x) dx is well-defined and p := H/C is a probability density on R. For any
ε ∈ (0, 1) we define

h
(ε)
i (x) := (1− ε)hi(x) + εp(x), i = 0, 1,

φ(ε)(t, x) := (1− t)h(ε)
0 (x) + th

(ε)
1 (x), (3.39)

H(ε)(x) := (1− ε)H(x),

for (t, x) ∈ [0, 1]× R, and the approximation to σ by σ(ε) := H(ε)

φ(ε) . Then, for any
ε ∈ (0, 1), φ(ε) ≥ εp and so, for any t ∈ [0, 1] and x ∈ R with H(x) 6= 0,

σ(ε)(t, x) ≤ H(ε)(x)

εp(x)
=

(1− ε)C
ε

.

Thus, for any ε ∈ (0, 1), σ(ε) is bounded. Furthermore, h(ε)
i ∈ C0(R), h(ε)

i (x) > 0
and

h
(ε)
1 (x)− h(ε)

0 (x) = (1− ε)(h1(x)− h0(x)) (3.40)

for any x ∈ R, i = 0, 1 and ε ∈ [0, 1). In particular, H(ε) satisfies the Poisson
equation A∗H(ε) = h

(ε)
1 − h

(ε)
0 . Since H(ε) = (1 − ε)H, the following properties

are inherited from H: H(ε) is non-negative, H(ε) ∈ L1(R) and H(ε) ∈ D(A) by
Proposition 3.5.

Thus Step (i) of the bounded case applied with h(ε)
0 , h

(ε)
1 instead of h0, h1 shows

that, for any ε ∈ (0, 1),

δ(ε)(s) := inf{t ∈ [0, ρ) : ∆(ε)(t) ≥ s} ∧ ρ, s ∈ [0, 1], (3.41)

constitutes a family of (Ft)t≥0-stopping times, where

ρ(ε) := inf{t ∈ [0,∞) : H(ε)(Lt) = 0},

∆(ε)(t) := 1− eG(ε)(t) +

∫ t

0

e(G(ε)(t)−G(ε)(r)) h
(ε)
1 (Lr)

H(ε)(Lr)
dr, (3.42)

G(ε)(t) :=

∫ t

0

h
(ε)
1 (Lr)− h(ε)

0 (Lr)

H(ε)(Lr)
dr,

for t ∈ [0, ρ) and we note that ρ = ρ(ε), since H(ε) = (1− ε)H.
Some simplifications: The choice of δ(ε) is very convenient as the mean and

∆(ε) simplify in a neat way. By Step (ii) of the bounded case, for any ε ∈ (0, 1),
Lδ(ε)(s) has law φ(ε)(s, x) dx under Pµ0 , for any s ∈ [0, 1] and by (iii),

Eµ0 [δ(ε)(1)] =

∫
R
H(ε)(x) dx = (1− ε)

∫
R
H(x) dx. (3.43)
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Next, (3.40) and H(ε) = (1 − ε)H imply that G(ε) = G and thus from (3.42)
one obtains, for any t ∈ [0, ρ), a simple formula for ∆(ε):

∆(ε)(t) = 1− eG(t) +

∫ t

0

e(G(t)−G(r)) h
(ε)
1 (Lr)

(1− ε)H(Lr)
dr

(3.39)
= 1− eG(t) +

∫ t

0

e(G(t)−G(r))h1(Lr)

H(Lr)
dr +

ε

(1− ε)C
eG(t)

∫ t

0

e−G(r) dr

= ∆(t) +
ε

(1− ε)C
eG(t)

∫ t

0

e−G(r) dr.

(3.44)
Limiting stopping time δ: Set ∆(0) := ∆ and δ(0) := δ (from (3.33)). We

need to show that δ(0) is a stopping time and we need to compute the distribution
of Lδ.

Since f : [0, 1) → R, f(x) := x/(1 − x), is increasing and f(0) = 0 the last
decomposition of ∆(ε) shows that Pµ0-a.s. for any 0 ≤ ε < ε̃ < 1 and all t ∈ [0, ρ),
∆(ε)(t) ≤ ∆(ε̃)(t) and hence, from (3.41), δ(ε)(s) ≥ δ(ε̃)(s) for all s ∈ [0, 1]. In
particular, for any s ∈ [0, 1], (δ( 1

n
)(s))n∈N is a sequence of stopping times with

δ( 1
n

)(s) ≤ δ( 1
n+1

)(s) ≤ δ(s) for any n ∈ N. Thus δ̃(s) := limn→∞ δ
( 1
n

)(s) ∈ [0,∞]
exists Pµ0-a.s. and δ̃(s) ≤ δ(s). Since (Ft)t≥0 is right-continuous, δ̃(s) is an
(Ft)t≥0-stopping time. By (3.43) and monotone convergence,

Eµ0 [δ̃(1)] = lim
n→∞

Eµ0 [δ( 1
n

)(1)] =

∫
R
H(x) dx <∞. (3.45)

In particular, δ̃(s) ≤ δ̃(1) <∞, Pµ0-a.s.
If δ̃(s) ≥ ρ, then δ(s) ≤ ρ and δ̃(s) ≤ δ(s) imply δ̃(s) = δ(s). Otherwise

δ̃(s) < ρ and thus ∫ δ̃(s)

0

1

H(Ls)
ds <∞. (3.46)

Using continuity and the decomposition (3.44) one obtains

∆(δ̃(s)) = lim
n→∞

∆(δ( 1
n

)(s))

= lim
n→∞

(
∆( 1

n
)(δ( 1

n
)(s))−

eG(δ( 1
n )(s)) 1

n

(1− 1
n
)C

∫ δ( 1
n )(s)

0

e−G(r) dr

)
≥ s,

(3.47)

where the last inequality follows from ∆( 1
n

)(δ( 1
n

)(s)) ≥ s (by definition), the fact
that on {δ̃(s) < ρ}, G is bounded on the compact interval [0, δ̃(s)] (which follows
directly from (3.46)) and δ( 1

n
)(s) ≤ δ̃(s) for all n ∈ N. The definition (3.33)

and inequality (3.47) imply δ̃(s) ≥ δ(s) also on {δ̃(s) < ρ}. We conclude that
Pµ0-a.s., δ̃(s) = δ(s) and the sequence of stopping times {δ( 1

n
)(s)}n∈N increases

monotonically to δ(s). Hence, δ(0) = δ is a stopping time and by quasi-left
continuity of L, [EK86, Chap. 4, Thm. 3.12] implies

lim
n→∞

L
δ( 1
n )(s)

= Lδ(s), Pµ0-a.s.
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In particular, for any f ∈ C0(R),

Eµ0 [f(Lδ(s))] = lim
n→∞

Eµ0 [f(L
δ( 1
n )(s)

)] = lim
n→∞

∫
R
f(x)φ( 1

n
)(s, x) dx

=

∫
R
f(x)φ(s, x) dx,

which implies that (ii) (and (iii), as seen from (3.45)) has been established also
without the assumption that σ is bounded.

A Notation and Definitions

The aim of the appendix is to generalize time-change methods and uniqueness
results for Fokker-Planck equations from time-homogeneous generators to the case
of time-inhomogeneous generators of the form σA, where A is time-independent
but σ is time-dependent. To the best of our knowledge the results we need are not
available in the literature apart from special cases such as A being the Laplacian
(see Appendix C for a discussion).

In what follows the reader might keep in mind the time-inhomogeneous ex-
ample to which the theory is applied in the main body of the chapter: L = σA,
where A is the generator of a Lévy process, H solves the Poisson equation
A∗H = h1 − h0 and

σ(t, x) =
H(x)

th1(x) + (1− t)h0(x)
. (A.1)

The example motivates us to study the very specific choice σ = σ̃H below with
separate hypothesis on σ̃ and H.

Even though the main body of this chapter is specialized to Lévy processes
the appendix is in more generality to allow for later extensions of our approach
to other classes of processes, e.g. diffusion processes or Markov chains.

A.1 Notation

The stochastic basis consists of a probability space (Ω,F ,P) and a filtration
(Ft)t≥0 satisfying the usual conditions of completeness and right-continuity. The
space of continuous functions f : R → R satisfying lim|x|→∞ f(x) = 0 is denoted
by C0(R). For n ∈ N let Cn

0 (R) be the subset of functions f ∈ C0(R) such that f
is n-times differentiable and all derivatives of order less or equal to n belong to
C0(R) and we set C∞0 (R) :=

⋂
n∈NC

n
0 (R). The spaces of functions with compact

support Cc(R), Cn
c (R) and C∞c (R) are defined analogously.

Next, fix a locally compact, complete, separable metric space (E, d) and de-
note by B(E) its Borel σ-algebra. The space DE[0,∞) stands for all maps
ω : [0,∞) → E which are right-continuous and have a left-limit at each point
t ∈ [0,∞) (short: RCLL paths). For x ∈ E and ε > 0, set Bε(x) := {y ∈ E :
d(x, y) < ε}. P(E) denotes the set of probability measures on (E,B(E)). B(E)
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denotes the space of real-valued, bounded, measurable functions on E and ‖ · ‖
is the sup-norm. C0(E) denotes the space of continuous functions that vanish at
infinity and Cb(E) the space of bounded continuous functions on E. A sequence
{fn}n∈N ⊂ B(E) converges boundedly and pointwise to f ∈ B(E) (denoted by
bp-limn→∞ fn = f) if supn ‖fn‖ < ∞ and limn→∞ fn(x) = f(x) for all x ∈ E.
U ⊂ B(E) is called bp-closed, if {fn}n∈N ⊂ U and bp-limn→∞ fn = f implies
f ∈ U . For V ⊂ B(E), we define bp-closure(V ) as the smallest subset of B(E)
which is bp-closed and contains V . A sequence {(fn, gn)}n∈N ⊂ B(E) × B(E)
is said to converge to (f, g) ∈ B(E) × B(E) boundedly and pointwise (denoted
by bp-limn→∞(fn, gn) = (f, g)) if bp-limn→∞ fn = f and bp-limn→∞ gn = g. The
definitions of bp-closed and bp-closure are then defined analogously for subsets
of B(E)×B(E).

Let D(L) ⊂ Cb(E) and L : D(L) → Cb(E) linear. (D(L),L) is said to be
conservative if

there exists {hn}n∈N ⊂ D(L) such that (1, 0) = bp-limn→∞(hn,Lhn). (A.2)

For a stochastic process (Xt)t≥0 we set FXt := σ(Xs : s ≤ t). A solution to the
martingale problem for (L, µ) is a progressively measurable E-valued stochastic
process (Xt)t≥0 defined on some probability space (Ω̃, F̃ , P̃) such that for each
h ∈ D(L), the process

h(Xt)− h(X0)−
∫ t

0

Lh(Xs) ds, t ≥ 0, (A.3)

is an (FXt )t≥0-martingale and P̃ ◦ X−1
0 = µ. Uniqueness is said to hold for the

martingale problem for (L, µ) if any two solutions X, X̃ have the same finite-
dimensional distributions. The martingale problem for (L, µ) is said to be well-
posed if there exists a solution and uniqueness holds. A solution to the DE[0,∞)-
martingale problem (or RCLL-martingale problem) for (L, µ) is an RCLL process
that is a solution to the martingale problem for (L, µ). Uniqueness is said to
hold for the RCLL-martingale problem for (L, µ) if any two solutions to the
RCLL-martingale problem for (L, µ) have the same law on DE[0,∞). The RCLL-
martingale problem for (L, µ) is said to be well-posed if there exists a solution
and uniqueness holds.

Similarly, for a linear operator (D(A),A) and σ : [0,∞)×E → [0,∞) measur-
able, a solution to the (time-inhomogeneous) martingale problem for (σA, µ) is a
progressively measurable E-valued process X defined on some probability space
(Ω̃, F̃ , P̃) such that for each f ∈ D(A) the process

f(Xt)− f(X0)−
∫ t

0

σ(s,Xs)Af(Xs) ds, t ≥ 0, (A.4)

is an (FXt )t≥0-martingale and P̃◦X−1
0 = µ. The function σ is called the local speed

function ofX. Uniqueness, well-posedness and the corresponding concepts among
DE[0,∞)-processes are defined analogously to the time-homogeneous case. For
µ ∈ P([0,∞)) and ν ∈ P(E) we write µ⊗ν for the product measure generated by
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µ and ν on [0,∞)×E. If F is a measurable space, δx denotes the Dirac measure
at x ∈ F . For V ⊂ B(E), span(V ) denotes the smallest linear subspace of B(E)
containing V , i.e. the set of all finite linear combinations of elements of V .

Remark A.1. Our definitions and notation are precisely as in [EK86] with the
following two exceptions: Firstly, in [EK86] (D(L),L) is said to be conservative
if

(1, 0) ∈ bp-closure({(h,Lh) : h ∈ D(L)}). (A.5)

While our requirement (A.2) implies (A.5), the converse is not true in general,
cf. [EK86, Chap. 3, Sec. 4].

Secondly, (not necessarily RCLL) solutions to martingale problems are re-
quired to be progressively measurable in our context, as in [Kur98].

Remark A.2. The motivation for the definition of bp-closure is as follows: Suppose
(D(L),L) is a linear operator on Cb(E) and X is a solution to the martingale
problem for (L, µ) for some µ ∈ P(E). Then by the dominated convergence
theorem, the set of functions (h, g) ∈ B(E)×B(E), for which

h(Xt)− h(X0)−
∫ t

0

g(Xs) ds, t ≥ 0, (A.6)

is an (FXt )t≥0-martingale, is bp-closed. Therefore, (A.6) is a martingale for all
(h, g) ∈ bp-closure({(h,Lh) : h ∈ D(L)}).

Finally, we provide two definitions. The first one is a (strong) recurrence
property, the second is essential for studying uniqueness of time-change equations.
Denote by Z the coordinate process on DE[0,∞).

Definition A.3. A probability measure P on (DE[0,∞),B(DE[0,∞)) is called
recurrent if

P

(∫ ∞
0

1Ba(Z0)(Zt) dt =∞
)

= 1 for every a > 0. (A.7)

Definition A.4. Let H : E → [0,∞) measurable and P ∈ P(DE[0,∞)). H is
called regular for P if P -a.s.

inf

{
s ∈ [0,∞) :

∫ s

0

H(Zu)
−1 du =∞

}
= ρ and H(Zρ) = 0 on {ρ <∞}

where
ρ := inf {s ∈ [0,∞) : H(Zs) = 0} .

Example A.5. Let E = R and Z a P -Brownian motion. SupposeH : R→ [0,∞)
satisfies

{x ∈ R : H(x) = 0} = I(H), (A.8)

where I(H) is the closed set

I(H) :=

{
x ∈ R : ∀ε > 0 :

∫ x+ε

x−ε

dy

H(y)
=∞

}
. (A.9)
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Then H is regular for P . Indeed, since I(H) in (A.9) is closed and (A.8) holds,
H−1({0}) is closed. Hence, for P -a.e. ω with ρ(ω) < ∞, H(Zρ(ω)(ω)) = 0 by
(right-)continuity. Hence, the second part of the definition is established and the
first part follows directly from (A.8) and [KS91, Chap. 5, Lem. 5.2].

A.2 Assumptions

The following assumptions are used at different places throughout the chapter.
Recall that our standard application will assume A to be the generator of a Lévy
process, H the solution to the Poisson equation A∗H = h1 − h0 and σ̃(t, x) =
1/(th1(x) + (1− t)h0(x)).

Our set of assumptions is split in such a way that we can distinguish as good as
possible between assumptions on the stochastic process and on the densities h0, h1.

Assumption A.6 (Regularity of σ). Let t0 > 0 and σ : [0,∞) × E → [0,∞) be
of the form σ(t, x) := H(x)σ̃(t, x) for (t, x) ∈ [0,∞) × E with σ̃(t, x) ≡ 0 for
t > t0 and such that

(i) H : E → [0,∞) is measurable,

(ii) σ̃ : [0, t0] × E → (0,∞) is measurable and satisfies the following: for each
compact set K ⊂ E and S ∈ (0, t0) there exists C1, C2, C3 > 0 such that

|σ̃(t, x)− σ̃(s, x)| ≤ C1|t− s| and C2 ≤ σ̃(t, x) ≤ C3,

for all s, t ∈ [0, S] and for all x ∈ K, where C3 does not depend on S (but
it may depend on K).

Assumption A.7. Let D ⊂ C0(E) and A : D → C0(E) be linear so that

(i) (D,A) is conservative, D is dense in C0(E) and an algebra in C0(E),

(ii) for any µ0 ∈ P(E), the RCLL-martingale problem for (A, µ0) is well-posed.2

Example A.8. Let Ā be the generator of a Feller semigroup on C0(E) with
domain D(Ā) and D a core for Ā (see [EK86]). Suppose D is an algebra in
C0(E) and denote by A the restriction of Ā to D. Then D is dense, (D,A)
satisfies the assumptions of [EK86, Chap. 4, Thm. 2.2] and thus, by [EK86,
Chap. 4, Cor. 2.8], (D,A) is conservative in the sense of (A.5) (from the proof
of [EK86, Chap. 4, Cor. 2.8] also conservative in our sense (A.2)). Furthermore,
by [EK86, Chap. 4, Thm. 2.7 and Thm. 4.1], for any µ0 ∈ P(E) the martingale
problem for (A, µ0) is well-posed and the solution has sample paths in DE[0,∞).
Hence, Assumption A.7 indeed holds.

Assumption A.9 (Recurrence and boundedness). Let (D,A) and (Px)x∈E as in
Assumption A.7 and footnote 2. For t0 > 0 and σ = Hσ̃ as in Assumption A.6
assume that

2 The most important special case of Assumption A.7 (ii) is µ0 = δx. In this case the
corresponding law on DE [0,∞) of the RCLL-solution to the martingale problem is denoted by
Px.
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(i) for any x ∈ E, Px is recurrent (in the sense of Definition A.3) and H is
bounded on compacts,

(ii) σAf ∈ C0([0, t0]× E) for all f ∈ D.

Assumption A.9 (ii) can be seen as a weak locality assumption, which is always
satisfied for Brownian motion:

Example A.10. Set D := C∞c (R) and Af(x) := 1
2
f ′′(x) for f ∈ D. By [EK86,

Chap. 5, Prop. 1.1] and Example A.8, Assumption A.7 is satisfied and under Px
the canonical process Z is a Brownian motion started from x so (the first part of)
Assumption A.9 (i) holds. A sufficient condition for Assumption A.9 (ii) to hold
is that σ is continuous on [0, t0]×R: If this is true, then (t, x) 7→ σ(t, x)Af(x) is
continuous and even compactly supported for all f ∈ D.

Assumption A.11 (Boundedness of σ). σ : [0,∞)× E → [0,∞) is bounded.

Assumption A.9 (i) or A.11 ensure that there exists a non-exploding solution
to the time-change equation (B.1) below.

Assumption A.12 (Regularity of H). Let (Px)x∈E as in Assumption A.7 and
H : E → [0,∞) measurable. Assume that for any x ∈ E, H is regular for Px (in
the sense of Definition A.4).

Assumption A.12 is needed to guarantee uniqueness of the time-change equa-
tions. Proposition B.5 provides a useful criterion to verify it.

B Time-changes for Markov processes

Given a Markov process M with generator A and a sufficiently regular time-
inhomogeneous coefficient σ, our aim is to obtain a Markov process X with gen-
erator σA. The new Markov process X is identified as a time-change of M ,
where the time-change δ is characterized by the pathwise Carathéodory differen-
tial equation

δ(t) =

∫ t

0

σ(s,Mδ(s)) ds, t ∈ [0, t0]. (B.1)

B.1 Constructing the Time-Change

In order to ensure the existence of the time-change δ, we first need to provide an
auxiliary lemma concerning so-called Carathéodory differential equations.

Lemma B.1. Let t0 > 0 and consider the Carathéodory differential equation

∆(t) =

∫ t

0

γ(∆(s), s) ds, (B.2)

where γ : [0, t0] × [0,∞) → [0,∞) and the integral is understood in the Lebesgue
sense. For some S ∈ (0, t0] and T > 0 suppose that γ(r, ·) is measurable for each
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r ∈ [0, S], γ(0, ·) is integrable on [0, T ] and there exists an integrable function
f : [0, T ]→ [0,∞) such that

|γ(r, t)− γ(s, t)| ≤ f(t)|r − s| for all r, s ∈ [0, S], t ∈ [0, T ].

Then there exists a unique absolutely continuous function ∆: I → [0, S] satisfying
(B.2) for some interval I ⊂ [0,∞), where either there exists T0 ∈ (0, T ] such that
we may take I = [0, T0] and we have ∆(T0) = S or we may take I = [0, T ] and
have ∆(t) < S for all t ≤ T .

Proof. Since

|γ(r, t)| ≤ |γ(0, t)|+ |f(t)|S for all r ∈ [0, S]

and the right-hand side is integrable on [0, T ], γ satisfies the Carathéodory Con-
ditions in [Fil88, Chap. 1] and thus [Fil88, Chap. 1, Thm. 1] guarantees the
existence of a solution ∆ on an interval [0, T0] for some T0 > 0. The solution ∆
can be extended either to the whole interval [0, T ] provided ∆(t) ≤ S for all
t ∈ [0, T ] or to the interval [0, T0] for some T0 ∈ (0, T ] with ∆(T0) = S (see e.g.
[Fil88, Chap. 1, Thm. 4]). Uniqueness of the solution follows by [Fil88, Chap. 1,
Thm. 2].

Due to the time-inhomogeneity of the coefficient σ in the differential equa-
tion (B.1), we need to include the time variable t in the state space of the time-
changed process X. This time-inhomogeneity prevents us to directly rely on
well-known results as for example [EK86, Chap. 6, Thm. 1.1]. Therefore, we
verify as a first step that equation (B.1) indeed has a solution.

Lemma B.2. Let M be an E-valued process on (Ω,F ,P) with P-almost surely
RCLL sample paths. Denote by P the law on DE[0,∞) of M . Assume that

• t0 > 0 and σ = Hσ̃ are given as in Assumption A.6,

• H is regular for P (in the sense of Definition A.4),

• either H is bounded on compacts and P is recurrent (see Definition A.3) or
σ is bounded.

Then there exists a family of random times (δ(t))t∈[0,t0] such that

(i) δ : [0, t0]→ [0,∞) is non-decreasing and absolutely continuous, P-a.s.,

(ii) δ(t0) is finite, P-a.s.,

(iii) δ solves the Carathéodory differential equation (B.1) for M .

Proof. Using the conventions inf ∅ :=∞ and [0, 0) := {0}, we define the random
time

ρ := inf

{
s ∈ [0,∞) :

∫ s

0

H(Mu)
−1 du =∞

}
(B.3)
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and the random times

δ(t) :=

{
inf{s ∈ [0, ρ) : ∆(s) ≥ t} ∧ ρ if t ∈ [0, t0)

sups∈[0,t0) inf{r ∈ [0, ρ) : ∆(r) ≥ s} ∧ ρ if t = t0
(B.4)

where ∆ is given by the Carathéodory differential equation

∆(s) =

∫ s

0

σ(∆(r),Mr)
−1 dr, s ∈ [0, δ(t0)). (B.5)

In other words, δ is the right inverse of ∆ until σ becomes 0, then one sets
δ = ρ. To prove that (δ(t))t∈[0,t0] is well-defined, it is sufficient to show that
equation (B.5) has indeed a unique solution on the interval [0, δ(t)∧ T ] for every
t ∈ [0, t0) and T ∈ [0, ρ). Let us fix t ∈ (0, t0), an RCLL sample path of M
denoted by (Ms(ω))s∈[0,T ] for ω ∈ Ω and T ∈ [0, ρ(ω)). By the RCLL property,
the path (Ms(ω))s∈[0,T ] is contained in a compact set K ⊂ E, i.e. {Ms(ω) : s ∈
[0, T ]} ⊂ K, and N(ω) := {s ∈ [0, T ] : H(Ms(ω)) = 0} is a Lebesgue null set
by definition of ρ. Therefore, the function γ(r, s) := σ(r,Ms(ω))−1 is well-defined
for r ∈ [0, t] and s ∈ [0, T ] \ N(ω) and we set γ(·, s) := 1 for s ∈ N(ω). Since
{Ms(ω) : s ∈ [0, T ]} ⊂ K, by Assumption A.6 on σ = Hσ̃ there exist C1, C2 > 0
such that C2H(Mt)

−1 ≤ γ(u, s) and

|γ(u, s)− γ(v, s)| = H(Ms(ω))−1

∣∣∣∣ σ̃(u,Ms(ω))− σ̃(v,Ms(ω))

σ̃(u,Ms(ω))σ̃(v,Ms(ω))

∣∣∣∣
≤ C2

2C1H(Ms(ω))−1|u− v|
for all u, v ∈ [0, t] and s ∈ [0, T ]. Thus, γ satisfies the assumptions of Lemma B.1,
which says that there exists a unique solution ∆ of the Carathéodory differential
equation (B.5) on the interval [0, δ(t)∧T ]. Moreover, since now δ(s) is well-defined
for all s ∈ [0, t0) and δ(t0) = sups<t0 δ(s), δ(t0) is also well-defined.

Note that if Assumption A.6 (ii) holds also for S = t0, we set

δ(t) := inf{s ∈ [0, ρ) : ∆(s) ≥ t} ∧ ρ, t ∈ [0, t0], (B.6)

instead of (B.4) and the above argument works for t = t0 as well.
(i) By definition of ∆ through equation (B.5), ∆ is absolutely continuous

and strictly increasing on [0, δ(t)) for every t ∈ [0, t0) and thus invertible with
δ(s) = ∆−1(s) for s ∈ [0, t). This implies that δ is also non-decreasing and
absolutely continuous on [0, t0] (cf. [Leo09, Thm. 1.7 and Ex. 3.21]).

(ii) To verify that δ(t0) <∞, P-a.s., suppose first H is bounded on compacts
and P is recurrent. Let N := {ω ∈ Ω : δ(t0)(ω) = ∞}. Then for ω ∈ N ,
equation (B.5) has a solution on [0,∞) and ∆(t)(ω) < t0 for all t ≥ 0. Fixing
some a > 0, we notice that by Assumption A.6 and since H is bounded on
compacts, there exists a constant C1 > 0 such that σ(∆(s),Ms)

−1 ≥ C1 for
s ∈ {t ≥ 0 : Mt(ω) ∈ Ba(M0(ω))} and ω ∈ N . We therefore have

t0 ≥ lim
t→∞

∆(t) =

∫ ∞
0

σ(∆(s),Ms)
−1 ds ≥

∫ ∞
0

1Ba(M0)(Ms)σ(∆(s),Ms)
−1 ds

≥ C1

∫ ∞
0

1Ba(M0)(Ms) ds (B.7)
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on N . However, the right-hand side of (B.7) is infinite, P-a.s., by the recurrence
assumption and hence (B.7) can only hold on a null set. Thus N is a P-null set,
i.e. δ(t0) < ∞, P-a.s., as claimed. Supposing Assumption A.11 holds, a similar
argument works.

(iii) For every t ∈ [0, t0] such that δ(t) < ρ, one observes that

1 =
d

ds
(∆(δ(s)) =

d

ds
∆(δ(s))

d

ds
δ(s) = σ(δ(s),Mδ(s))

−1 d

ds
δ(s) (B.8)

for almost all s ∈ [0,∆(δ(t))], where the chain rule (c.f. [Leo09, Thm. 3.44]) and
(B.5) was used. Therefore, the absolutely continuity of δ and identity (B.8) show
that δ indeed solves the desired integral equation (B.1) since

δ(t) =

∫ t

0

d

ds
δ(s) ds =

∫ t

0

σ(s,Mδ(s)) ds.

For every t ∈ [0, t0] such that δ(t) ≥ ρ, we denote χ := inf{t ∈ [0, t0] : δ(t) ≥ ρ}.
Notice that δ is constant (equal to ρ) on [χ, t0] and, P-a.s., H(Mρ) = 0, by the
assumption that H is regular for the law of M .3 In particular, δ(t) satisfies
equation (B.1) for every t ∈ [χ, t0] as well. Recall that the assumption on H
means that ρ defined in (B.3) satisfies

H(Mρ) = 0 on {ρ <∞}, P-a.s., (B.9)
ρ = inf {s ∈ [0,∞) : H(Ms) = 0} , P-a.s. (B.10)

In order to create a better understanding of the time-change δ (defined by the
Carathéodory differential equation (B.1)) and the assumptions of Lemma B.2,
two remarks are provided for the special case of Brownian motion.
Remark B.3. As we have seen in the proof of Lemma B.2, (A.7) or Assump-
tion A.11 is required to ensure that the random time δ(t0) is P-almost surely
finite. More precisely, we used

∆(t) =

∫ t

0

σ(∆(s),Ms)
−1 ds = t0 (B.11)

for some finite t ∈ [0,∞), P-a.s. For example, if M is a Brownian motion under
P, it is possible to verify condition (B.11) a posteriori by the uniqueness in law
of the time-changed process Xs := Mδ(s) for s ∈ [0, t0] as done by Bass [Bas83].
Remark B.4. Let us consider the time-homogeneous case where M is a Brownian
motion under P. Suppose that σ = H and we have a unique finite solution
(δ(t))t∈[0,t0] to the differential equation (B.1). Then the time-changed process
Xt := Mδ(t) is a weak solution to the Brownian stochastic differential equation
(SDE)

dXt =
√
H(Xt) dMt, X0 = x0 ∈ R, t ∈ [0, t0].

3 In fact, here only (B.9) is used and so the statement of the Lemma B.2 could be modified
accordingly. (B.10) is only used for uniqueness of the time-change in Lemma B.6 below.
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From Engelbert and Schmidt [ES85] (see also [KS91, Chap. 5, Thm. 5.7]) we
know that a solution to this SDE exists and uniqueness in law holds for this SDE
if and only if {x ∈ R : H(x) = 0} = I(H). Such a function H is regular for (the
law of) M under P in the sense of Definition A.4, see Example A.5. For example,
if H(x) = |x|α for α ∈ (0, 1), then there is no uniqueness in law. However, the
so-called fundamental solution in sense of [ES85] is unique in law: The weak
solution of the SDE satisfying H(Xs(ω)) > 0 Leb⊗ P-almost surely is unique in
law, i.e. a solution that does not spend time at the zeros of H. This is exactly
how we construct the time-change: No time is spent at the zeros of H until the
first time at which 1/H is not integrable anymore, then we stop.

Finally, we provide a condition that is useful in verifying regularity of H (see
Definition A.4) needed for the existence of the time-change in Lemma B.2 and
the uniqueness in Lemma B.6 below.

Proposition B.5. Let D ⊂ C0(E) dense in C0(E) and A : D → C0(E) be linear.
SupposeM is a solution on (Ω,F ,P) to the RCLL-martingale problem for (A, µ0),
for some µ0 ∈ P(E). Denote by P the law on DE[0,∞) of M . Then any H ∈ D
with H ≥ 0 is regular for P .

Proof. Define ρ as in (B.3) and recall that, by Definition A.4, (B.9) and (B.10)
have to be verified. Set

ρ0 := inf {s ∈ [0,∞) : H(Ms) = 0} .

Since H is continuous andM is RCLL, H(Mρ) = 0 on {ρ <∞} and ρ0 ≤ ρ, P-a.s.
In particular, ρ0 = ρ on {ρ0 =∞}, and if {ρ0 <∞} is a P-null set, this already
establishes the claim. Otherwise the probability measure P̃( · ) := P( · |{ρ0 <∞})
is well-defined, ρ0 <∞, P̃-a.s. and to prove the proposition we only need to show
P̃(ρ0 ≥ ρ) = 1. To do so, on {ρ0 <∞} define for any t ≥ 0 the random time

δ(t) := inf

{
s ∈ [0,∞) :

∫ s

0

H(Mu+ρ0)−1 du ≥ t

}
.

Since H(Mρ0) = 0 and ρ0 ≤ ρ, P̃-a.s., it suffices to establish that P̃-a.s. for any
t ≥ 0, δ(t) = 0.

For the proof of the last statement one proceeds as follows: Since H is
bounded, H(Mρ) = 0 on {ρ <∞}, P̃-a.s., and by footnote 3, Lemma B.2 can be
applied to the RCLL process (Mu+ρ0)u≥0 on (Ω,F , P̃) with σ̃ = 1 and σ = H.
This yields P̃-a.s.

δ(t) =

∫ t

0

H(Mδ(u)+ρ0) du, t ≥ 0, (B.12)

and δ(t) <∞ for any t ≥ 0. Denote by (Ft)t≥0 the P-usual augmentation of the
filtration generated by M . Then ρ and ρ0 (possibly modified on a P-null set, see
[EK86, Chap. 4, Cor. 3.13]) are (Ft)t≥0-stopping times and thus

{δ(t) + ρ0 ≤ s} = {ρ0 ≤ s} ∩
({∫ s

ρ0

H(Mu)
−1 du ≥ t

}
∪ {ρ ≤ s− ρ0}

)
∈ Fs
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shows that also δ(t)+ρ0 is a stopping time. By assumption on H, M and A (and
[RW00a, Lem. II.67.10]) the process

Nt := H(Mt)−H(M0)−
∫ t

0

AH(Ms) ds, t ≥ 0,

is a (P, (Ft)t≥0)-martingale. By the optional sampling theorem, for any r ≥ 0,
P-a.s.,

E[N(δ(t)+ρ0)∧r|Fρ0∧r] = Nρ0∧r

or equivalently

E[H(M(δ(t)+ρ0)∧r)|Fρ0∧r] = H(Mρ0∧r) + E

[∫ (δ(t)+ρ0)∧r

ρ0∧r
AH(Mu) du

∣∣∣∣∣Fρ0∧r

]
.

Multiplying by 1{ρ0≤r}, using {ρ0 ≤ r} ∈ Fρ0∧r and taking expectations gives

E[H(M(δ(t)+ρ0)∧r)1{ρ0≤r}] =E[H(Mρ0∧r)1{ρ0≤r}]

+ E

[∫ (δ(t)+ρ0)∧r

ρ0∧r
AH(Mu) du1{ρ0≤r}

]
.

By quasi-left continuity, [EK86, Chap. 4, Thm. 3.12],

lim
r→∞

M(δ(t)+ρ0)∧r1{ρ0≤r} = Mδ(t)+ρ01{ρ0<∞}, P-a.s.,

and so using dominated convergence, boundedness and non-negativity of H,
H(Mρ0) = 0 on {ρ <∞} and setting C := ‖AH‖, one estimates

E[H(Mδ(t)+ρ0)1{ρ0<∞}] = lim
r→∞

E[H(M(δ(t)+ρ0)∧r)1{ρ0≤r}]

= lim
r→∞

∣∣∣∣∣E
[∫ (δ(t)+ρ0)∧r

ρ0

AH(Mu) du1{ρ0≤r}

]∣∣∣∣∣
≤ CE[δ(t)1{ρ0<∞}].

(B.13)

Using (B.12) and Tonelli’s Theorem for the first and (B.13) for the second equality
yields

E[δ(t)1{ρ0<∞}] =

∫ t

0

E[H(Mδ(u)+ρ0)1{ρ0<∞}] du ≤ C

∫ t

0

E[δ(u)1{ρ0<∞}] du

(B.14)
and so Gronwall’s lemma implies that the left-hand side of (B.14) is 0 for any
t ≥ 0. But this implies that P̃-a.s., δ(t) = 0 for all t ≥ 0 as desired.

B.2 Pathwise Uniqueness and Martingale Problem

To verify that the random times (δ(t))t∈[0,t0] solving the Carathéodory differential
equation (B.1) are indeed stopping times with respect to the filtration generated
by the process M , we show pathwise uniqueness of the time-changed Markov
process Xt := Mδ(t) for t ∈ [0, t0].
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Lemma B.6. Let σ and M be given as in Lemma B.2. (δ(t))t∈[0,t0] is the family
of random times from Lemma B.2 with δ(t) := δ(t0) for t > t0 and the time-
changed process X is given by Xt := Mδ(t) for t ≥ 0. Suppose M is (Ft)-adapted.
Then the following holds:

(i) The time-changed process X has RCLL sample paths, P-a.s.

(ii) Any RCLL process X̃ satisfying

X̃t = M∫ t
0 σ(u,X̃u) du, t ∈ [0,∞), P-a.s., (B.15)

is indistinguishable from X.

(iii) The random times (δ(t))t∈[0,t0] are (Ft)-stopping times.

Proof. (i) SinceM has RCLL sample paths and δ is non-decreasing and absolutely
continuous by Lemma B.2, the time-changed process X has RCLL sample paths.

(ii) Let X̃ be an RCLL process satisfying equation (B.15). Define the random
time

ρ̃ := t0 ∧ inf
{
t ≥ 0 : H(X̃t) = 0

}
and set

δ̃(s) :=

∫ s

0

σ(u, X̃u) du, s ∈ [0,∞).

Notice that the integral is well-defined since σ is bounded on compacts and X̃ is
RCLL. Since Xt = Mδ(t) and X̃t = Mδ̃(t), to verify that X and X̃ are indistin-
guishable, it is sufficient to show that δ(t) = δ̃(t) for every t ∈ [0,∞), P-a.s.

By [Leo09, Lem. 3.31] δ̃ is absolutely continuous with weak derivative δ̃′(u) =
σ(u, X̃u) for u ∈ [0,∞) and invertible on [0, ρ̃ ∧ t0] by the definition of ρ̃. The
inverse of δ̃ is denoted by ∆̃ with domain [0, δ̃(ρ̃∧ t0)]. Because ∆̃ is also strictly
increasing and absolutely continuous, the chain rule (see [Leo09, Thm. 3.44]) gives

1 =
d

dt
δ̃(∆̃(t)) = σ(∆̃(t), X̃∆̃(t))

d

dt
∆̃(t) for almost all t ∈ [0, δ̃(ρ̃ ∧ t0)].

Combining this with fundamental theorem of calculus (see [Leo09, Thm. 3.30]),
one has that ∆̃ satisfies the integral equation

∆̃(t) =

∫ t

0

σ(∆̃(s), X̃∆̃(s))
−1 ds, t ∈ [0, δ̃(ρ̃ ∧ t0)].

Moreover, notice that Mt = Mδ̃(∆̃(t)) = X̃∆̃(t) for t ∈ [0, δ̃(ρ̃ ∧ t0)]. Therefore,
∆(t) = ∆̃(t) for t ∈ [0, δ̃(ρ̃ ∧ t0) ∧ δ(t0)] since the solution to this equation is
unique on [0, δ(t0)], see (B.5). Furthermore, we have δ̃(ρ̃ ∧ t0) ≤ ρ ∧ δ̃(t0) since
t < δ̃(ρ̃ ∧ t0) implies ∆̃(t) < ρ̃ ∧ t0 and thus t < ρ ∧ δ̃(t0), where we recall ρ from
(B.3) and that (B.9), (B.10) holds. In conclusion, ∆(t) = ∆̃(t) for t ∈ [0, δ̃(ρ̃∧t0)],
which leads to δ̃(s) = δ(s) for s ∈ [0, ρ̃ ∧ t0].
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To see δ̃(s) = δ(s) for s > ρ̃∧t0, we first observe that 1/(H(Ms)∨ε) is bounded
for every ε > 0 and σ̃ is bounded on compacts by Assumption A.6. Applying a
change of variables ([Leo09, Cor. 3.57]) and using monotone convergence gives

Ct ≥ lim
ε→0

∫ t

0

σ(s, X̃s)

H(X̃s) ∨ ε
ds = lim

ε→0

∫ δ̃(t)

0

1

H(Ms) ∨ ε
ds =

∫ δ̃(t)

0

1

H(Ms)
ds,

which ensures δ̃(t) ≤ ρ for all t ≥ 0. Assuming ρ̃ < t0, there exist {tn}n∈N ⊂ [ρ̃, t0]
with tn ↓ ρ̃ and H(X̃tn) = 0 and so ρ ≤ δ̃(ρ̃) by (B.15) and (B.9), (B.10). In this
case δ̃(t) = δ̃(ρ̃) = ρ = δ(t) for all t ≥ ρ̃. Assuming ρ̃ ≥ t0, we have δ̃(t) = δ̃(t0)
for all t ≥ t0 due to σ(t, ·) = 0 for t > t0 and in particular δ̃(t) = δ̃(t0) = δ(t) for
t ≥ t0.

(iii) In order to apply a result from [EK86], we consider the two-dimensional
process Yt := (t,Mt) and the time-changed process (t,Xt) for t ∈ [0, T ]. Hence,
[EK86, Chap. 6, Thm. 2.2 (b)] implies that δ(t) is a stopping time with respect to
the usual augmentation of the filtration generated by M , and thus also an (Ft)-
stopping time, where we keep in mind that the first component of Y generates a
trivial filtration.

Corollary B.7. Let σ, M and X̃ be given as in Lemma B.6 and denote by P
the law (on DE[0,∞)) of M under P. Then the law of X̃ under P is uniquely
determined by P and σ.

Proof. By Lemma B.6 (ii), the law of X̃ is identical to the law of X under
P. To show explicitly that the latter is uniquely determined by P and σ, one
proceeds as follows: Let n ∈ N, t1, . . . , tn ∈ [0,∞), B1, . . . , Bn ∈ B(E) and
let π1 : DE[0,∞) × DE[0,∞) → DE[0,∞) be the projection map on the first
component. We have seen in the proof of Lemma B.6 that there exist a unique
solution to the time-change equation for P-a.e. sample path M(ω). Hence, as in
the proof of [EK86, Chap. 6, Lem. 2.1], the map

γ : DE[0,∞)×DE[0,∞)→ DE[0,∞), γ(M,X) := M∫ ·
0 σ(u,Xu) du,

is Borel measurable and the set

C := {(m,x) ∈ DE[0,∞)×DE[0,∞) : γ(m,x) = x, xt1 ∈ B1, . . . , xtn ∈ Bn}

is in B(DE[0,∞)2). Then [EK86, Appendix 11, Thm. 11.3] implies that π1C is
in the P -completion of B(DE[0,∞)) and thus

P(Xt1 ∈ B1, . . . , Xtn ∈ Bn) = P (π1C)

is indeed uniquely determined by P and σ.

In the next proposition we link the martingale problem for the given process
M to the martingale problem for the time-changed process X.
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Proposition B.8. Let σ, M and (Ft)t≥0 be given as in Lemma B.2. Define the
process (Xt)0≤t≤t0 by Xt := Mδ(t), where (δ(t))t∈[0,t0] is as in Lemma B.2. Suppose
that for some f , g ∈ C0(E) the process

M f,g
t := f(Mt)− f(M0)−

∫ t

0

g(Ms) ds, t ∈ [0, t0],

is an (Ft)-martingale and σg is bounded. Then the process (M̃ f,g
s )0≤s≤t0, given by

M̃ f,g
t := f(Xt)− f(X0)−

∫ t

0

σ(s,Xs)g(Xs) ds, t ∈ [0, t0],

is a martingale w.r.t. the right-continuous completion of the filtration generated
by X.

Proof. First observe that M̃ f,g
t = M f,g

δ(t) for t ∈ [0, t0]. Indeed, since δ(·) is mono-
tone and absolutely continuous on [0, t0] and the function s 7→ g(Ms) is integrable
on [0, δ(t0)], P-a.s., a change of variables (cf. [Leo09, Cor. 3.57]) leads to∫ δ(t)

0

g(Ms) ds =

∫ t

0

g(Mδ(s))σ(s,Mδ(s)) ds =

∫ t

0

σ(s,Xs)g(Xs) du, t ∈ [0, t0],

and thus M̃ f,g
t = M f,g

δ(t).
Therefore, it is sufficient to verify that (M f,g

δ(t))t∈[0,t0] is a martingale. For this
purpose we rely on the optional sampling theorem (see e.g. [EK86, Chap. 2,
Thm. 2.13]) and check its conditions: Because f ∈ C0(E) and σg is bounded,
there exists a constant C := C(f, g) > 0 with |M̃ f,g

t | ≤ C for t ∈ [0, t0] and in
particular supt∈[0,t0] E[|M̃ f,g

t |] <∞. Since δ(s) is finite for every s ∈ [0, t0], P-a.s.,
and since for every T < δ(s) there exists s̃ ∈ [0, s) such that δ(s̃) = T , we have
|M f,g

T | = |M
f,g
δ(s̃)| = |M̃

f,g
s̃ | ≤ C and

lim
T→∞

E
[
|M f

T |1{δ(s)>T}
]
≤ C lim

T→∞
P(δ(s) > T ) = 0.

Hence, for u, v ∈ [0, t0] with u ≤ v the optional sampling theorem gives

E
[
M f,g

δ(v)

∣∣Fδ(u)

]
= M f,g

δ(u),

which means that (M̃ f,g
t )t∈[0,t0] is an (Fδ(t))-martingale. Because M̃ f,g

t is meas-
urable with respect to σ(Xs : s ≤ t) for t ∈ [0, t0], M̃ f,g is also a martingale
with respect to the usual augmentation of the filtration generated by X, see e.g.
[RY99, Thm. II.2.8] or [RW00a, Thm. II.67.10].

Based on the previous Proposition B.8, the time-changed process X is a solu-
tion to the “time-changed” martingale problem and the marginal distributions of
X satisfy the corresponding Fokker-Planck equation:
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Lemma B.9. Let µ0 ∈ P(E), D ⊂ C0(E) and A : D → C0(E) be linear. Let
σ and M be given as in Lemma B.2 and assume in addition that M is a solu-
tion on (Ω,F ,P) to the RCLL-martingale problem for (A, µ0) and either As-
sumption A.9 (ii) or Assumption A.11 holds. Let us denote by p(t, ·) the law of
Xt = Mδ(t) = M∫ t

0 σ(s,Xs) ds as constructed in Proposition B.8 with p(0, ·) = µ0 and
δ(t) := δ(t0) for t > t0, where t0 is as in Assumption A.6. Then one has:

• X is a solution to the (time-inhomogeneous) DE[0,∞)-martingale problem
for (σA, µ0),

• for any g ∈ B([0,∞)×E) the function s 7→
∫
E
g(s, x) p(s, dx) is measurable,

• (p(s, dx))s∈[0,t0] satisfies the Fokker-Planck equation, i.e. for any f ∈ D,
t ∈ [0, t0],∫

E

f(x) p(t, dx)−
∫
E

f(x)µ0(dx) =

∫ t

0

∫
E

σ(s, x)Af(x) p(s, dx) ds. (B.16)

Proof. Let f ∈ D, then σAf is bounded by Assumption A.9 (ii) or A.11. Com-
bining this with our assumption that M is a solution to the RCLL-martingale
problem for (A, µ0) and with Proposition B.8, we obtain that

M̃ f
t := f(Xt)− f(X0)−

∫ t

0

σ(s,Xs)Af(Xs) ds, t ≥ 0,

is a martingale. In particular, one has E[M̃ f
t ] = 0 for all t ∈ [0, t0]. Since σAf is

bounded, applying Fubini’s Theorem yields (B.16). Finally, X : Ω× [0,∞)→ E
is measurable and thus so is (ω, s) 7→ (s,Xs(ω)). Hence, for g ∈ B([0,∞) × E)
also (ω, s) 7→ g(s,Xs(ω)) is measurable, and so, by the measurability statement
in Fubini’s Theorem, also s 7→

∫
E
g(s, x) p(s, dx) is measurable.

C A Uniqueness Result for Degenerate Fokker-
Planck Equations

If X is a solution to the martingale problem for (σA, µ0) and p(t, ·) is the law of
Xt, then according to the proof of Lemma B.9,

for any g ∈ B([0,∞)× E), s 7→
∫
E

g(s, x) p(s, dx) is measurable (C.1)

and for all f nice enough it holds that∫
E

f(x) p(t, dx)−
∫
E

f(x)µ0(dx) =

∫ t

0

∫
E

σ(s, x)Af(x) p(s, dx) ds, t ∈ [0, t0].

(C.2)
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Conversely, one may ask if solutions (p(t, ·))t∈[0,t0] to (C.2) can arise differently.
In this section, we provide sufficient conditions which guarantee that the Fokker-
Planck equation (C.2) (also called Kolmogorov forward equation) uniquely char-
acterizes the law of X, i.e. the one-dimensional marginal laws of X are the only
family of probability measures that satisfy (C.2) for a large class of functions f .
More precisely, we prove the following result on uniqueness to the Fokker-Planck
equation for time-inhomogeneous operators:

Theorem C.1. Suppose σ and (D,A) satisfy Assumptions A.6, A.7, A.12 and
either A.9 or A.11. Then uniqueness holds for (C.2): If both (q(t, ·))0≤t≤t0 and
(p(t, ·))0≤t≤t0 are families of probability measures on E which satisfy (C.1) and
(C.2) for all f ∈ D and q(0, ·) = µ0 = p(0, ·), then q(s, ·) = p(s, ·) for all
s ∈ [0, t0], where t0 is as in Assumption A.6 and µ0 ∈ P(E).

As we will see, existence and uniqueness of solutions to the time-inhomo-
geneous Fokker-Planck equation (C.2) is closely related to existence and unique-
ness of solutions to the martingale problem for the time-homogeneous operator
σA + ∂t on C0([0,∞) × E) defined in equation (C.6) below. We show that
the martingale problem for this operator is well-posed and the associated time-
homogeneous Fokker-Planck equation determines the marginal laws of the solu-
tion uniquely.

In the present context, mainly two difficulties arise: Firstly, σ is only locally
bounded, time-inhomogeneous and {(t, x) ∈ [0,∞) × E : σ(t, x) = 0} 6= ∅.
Secondly, even if well-posedness for the martingale problem associated to σA
can be established, it is not automatic that any solution to the Fokker-Planck
equation corresponds to a solution to the martingale problem for σA.

The question tackled in Theorem C.1 is classical. It has been studied in
various situations that, to the best of our knowledge, do not cover our assumptions
on the operator σA. For instance, for σ bounded away from 0, we refer to
[Str75], [Bas88], [BC09b] and further references therein. If σ is globally bounded,
see [Fig08].

Classical results on multiplicative perturbations of Feller generators and time-
changed Lévy processes allow for less regularity on σ, see e.g. [BSW13, Thm. 4.1],
the original reference [Lum73], [ES85] and further references therein. However,
these results are all time-homogeneous and do not deal with the question whether
the Fokker-Planck equation uniquely determines the law of the time-changed
process.

The proof of Theorem C.1 relies on the following theorem on uniqueness for
the Fokker-Planck equation corresponding to time-homogeneous operators cited4

from [Kur98] (see also [BK93, Thm. 4.1]).

Theorem C.2 ([Kur98, Thm. 2.6 (c)]). Let (E0, d0) be a locally compact, com-
plete, separable metric space, D(L) ⊂ Cb(E0) and L : D(L) → Cb(E0) be linear.
Let ν ∈ P(E) and suppose that

4 More precisely, instead of our hypothesis (iii), in [Kur98] the weaker requirement that L
is a pre-generator is imposed. However, as explained in [Kur98, Sec. 2] or [KS01, Remark 1.1],
(iii) implies that L is a pre-generator.
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(i) D(L) is an algebra and separates points,

(ii) there exists a countable subset {hk : k ≥ 1} ⊂ D(L) such that

bp-closure(span({(hk,Lhk) : k ≥ 1})) ⊃ {(h,Lh) : h ∈ D(L)}, (C.3)

(iii) for each y ∈ E0, there exists a RCLL-solution to the martingale problem for
(L, δy),

(iv) uniqueness holds for the martingale problem for (L, ν).

Then uniqueness holds for the Fokker-Planck equation for (L, ν):
Suppose {νt}t≥0 ⊂ P(E0) is such that

for any g ∈ B(E0) , s 7→
∫
E0

g(y) νs(dy) is measurable (C.4)

and ∫
E0

h dνt =

∫
E0

h dν +

∫ t

0

∫
E0

Lh dνs ds, t ≥ 0, (C.5)

for all h ∈ D(L). If {µt}t≥0 ⊂ P(E0) also satisfies (C.4) and (C.5), then µt = νt
for all t ≥ 0.

The rest of Appendix C is devoted to the proof of Theorem C.1. The argument
is split into three parts and we will only get to the actual proof in the third part.
The procedure is as follows:

• In Section C.1 the time-inhomogeneous problem is put into the time-homo-
geneous setup by including time as an additional state variable. The asso-
ciated generator L is defined in (C.6).

• In Section C.2 well-posedness of the martingale problem for L is proved.

• In Section C.3 the results from Section C.1 and C.2 are used to show that
Theorem C.2 can indeed be applied to prove Theorem C.1.

C.1 Reducing to the Time-Homogeneous Setup

Fix (D,A) as in Assumption A.7 and a measurable function σ : [0,∞) × E →
[0,∞). For f ∈ D and γ ∈ C1

c [0,∞), define the operator L by

L(fγ)(t, x) := γ(t)σ(t, x)Af(x) + f(x)γ′(t), t ∈ [0,∞), x ∈ E, (C.6)

and linearly extend L to D(L) := span{fγ : f ∈ D, γ ∈ C1
c [0,∞)} ⊂ C0([0,∞)×

E).
The following lemma relates the Fokker-Planck equation (C.2) and the mar-

tingale problem for the time-inhomogeneous operator σA to the Fokker-Planck
equation and the martingale problem for the time-homogeneous operator L on
C0([0,∞)× E). Furthermore, sufficient conditions for (C.3) are provided.
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Lemma C.3. Suppose σ : [0,∞) × E → [0,∞) is measurable, (D,A) is as in
Assumption A.7 and (D(L),L) as in (C.6). Further suppose σAf is bounded for
all f ∈ D. Let s0 ≥ 0, µ0 ∈ P(E) and define σs0(s, x) := σ(s0 + s, x). Then the
following hold:

(i) If σ is bounded, then (D(L),L) is conservative, i.e. (A.2) holds.

(ii) If X is a solution to the (time-inhomogeneous) RCLL-martingale problem
for (σs0A, µ0), then (s0 + t,Xt)t≥0 is a solution to the RCLL-martingale
problem for (L, δs0 ⊗ µ0).

(iii) If σ is bounded and (T,X) is a solution to the RCLL-martingale problem
for (L, δs0 ⊗ µ0), then X is a solution to the (time-inhomogeneous) RCLL-
martingale problem for (σs0A, µ0) and T is indistinguishable from (s0+t)t≥0.

(iv) Suppose (p(t, ·))t∈[0,t0] satisfies (C.1) and (C.2) for all f ∈ D and define
p(t, ·) := p(t0, ·) and σ(t, ·) := 0 for t > t0 and for all t ∈ [0,∞) the
measures νt := δt⊗p(t, ·) on E0 := [0,∞)×E. Then {νt}t≥0 satisfies (C.4)
and (C.5) for all h ∈ D(L).

(v) Suppose either σAf ∈ C0([0, t0]× E) for all f ∈ D or σ is bounded. Then
there exists a countable subset {hk : k ∈ N} ⊂ D(L) such that (C.3) holds.

Proof. (i) Note that by Assumption A.7 (i) and (A.2), there exists {fn}n∈N ⊂ D
such that bp-limn→∞ fn = 1 and bp-limn→∞Afn = 0. Furthermore, for each
n ∈ N there exist γn ∈ C1

c [0,∞) with γn = 1 on [0, n], γn = 0 on [n + 1,∞) and
supn ‖γ′n‖ <∞. In particular, bp-limn→∞ γ

′
n = 0, bp-limn→∞ fnγn = 1 and, since

σ is bounded, also bp-limn→∞ L(fnγn) = 0. Thus, (A.2) holds with hn := fnγn.
(ii) By assumption σAf is bounded for all f ∈ D, thus Lh ∈ B([0,∞) × E)

for all h ∈ D(L). Therefore, [EK86, Chap. 4, Thm. 7.1] implies that (t,Xt)t≥0

is a solution to the martingale problem for (D(L),Lσs0 ), where Lσs0 is given in
(C.6) with σ replaced by σs0 . Inserting h = fγ̃ and Lσs0 in (A.4), this implies
that the process defined for any t ≥ 0 by

γ̃(t)f(Xt)−γ̃(0)f(X0)−
∫ t

0

γ̃(s)σ(s0+s,Xs)Af(Xs) ds−
∫ t

0

γ̃′(s)f(Xs) ds, (C.7)

is an (FXt )t≥0-martingale for all f ∈ D and γ̃ ∈ C1
c [0,∞). In particular, for given

γ ∈ C1
c [0,∞), we can use γ̃ := γ(· + s0) (which is again in C1

c [0,∞)) in (C.7) to
see that

γ(s0 + t)f(Xt)− γ(s0)f(X0)−
∫ t

0

L(fγ)(s0 + s,Xs) ds, t ≥ 0,

is an (FXt )t≥0-martingale for all f ∈ D and γ ∈ C1
c [0,∞). By linearity, this

extends to all h ∈ D(L) and therefore (s0 + t,Xt)t≥0 is a solution to the RCLL-
martingale problem for (L, δs0 ⊗ µ0).

(iii) Firstly, both A1 := {(γ, γ′) : γ ∈ C1
c [0,∞)} and A2 := {(f, σAf) : f ∈

D} (viewed as subsets of B([0,∞) × E)) are contained in bp-closure({(h,Lh) :
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h ∈ D(L)}). For A1, this follows by fixing γ and using {fn}n∈N ⊂ D from the
proof of (i) to obtain bp-limn→∞(fnγ) = γ and bp-limn→∞ L(fnγ) = γ′ since σ is
bounded. For A2, this follows analogously by using γn as defined in the proof of
(i) and by noting that for any f ∈ D, bp-limn→∞(γnf,L(γnf)) = (f, σAf). So,
if (T,X) is a solution to the RCLL-martingale problem for (L, δs0 ⊗ µ0), then by
Remark A.2

h(Tt, Xt)− h(T0, X0)−
∫ t

0

g(Ts, Xs) ds, t ≥ 0, (C.8)

is an (F (T,X)
t )t≥0-martingale for all (h, g) ∈ bp-closure({(h,Lh) : h ∈ D(L)})

and thus in particular for all (h, g) ∈ A1∪A2. Inserting (γ, γ′) ∈ A1 in (C.8) thus
yields that

γ(Tt)− γ(T0)−
∫ t

0

γ′(Ts) ds, t ≥ 0,

is an (F (T,X)
t )t≥0-martingale and, since it is (FTt )t≥0-adapted, also a martingale

with respect to (FTt )t≥0. Thus, T is a solution to the RCLL-martingale problem
for (∂t, δs0), where ∂t has domain D(∂t) := C1

c [0,∞) and is defined as ∂tγ := γ′

for γ ∈ D(∂t). However, (s0 + t)t≥0 is also a solution to the RCLL-martingale
problem for (∂t, δs0) since

∫ t
0
γ′(s0+s) ds = γ(s0+t)−γ(s0) for all t ≥ 0, γ ∈ D(∂t).

By [EK86, Chap. 4, Thm. 4.1] uniqueness holds for the martingale problem for
(∂t, δs0) and in particular T is indistinguishable from (s0 + t)t≥0.5

On the other hand, (C.8) is a martingale for all (h, g) ∈ A2 as deduced above
and so for each f ∈ D,

f(Xt)− f(X0)−
∫ t

0

σ(Ts, Xs)Af(Xs) ds, t ≥ 0,

is a martingale. Since T is indistinguishable from (s0 + t)t≥0, the claim follows.

(iv) First notice that (C.2) actually holds for all t ≥ 0 since p(t, ·) = p(t0, ·) and
σ(t, ·) = 0 for t > t0. Moreover, for any f ∈ D, σAf is bounded by assumption
and so the function s 7→

∫
E
σ(s, x)Af(x) p(s, dx) is measurable by (C.1) and

bounded. Thus, from (C.2) we see that t 7→ F (t) :=
∫
E
f(x) p(t, dx) is absolutely

continuous (c.f. [Leo09, Lem. 3.31]) with F ′(t) =
∫
E
σ(t, x)Af(x) p(t, dx) for a.e.

t ≥ 0. Hence, for any f ∈ D and γ ∈ C1
c [0,∞), we may integrate by parts (see

5To check the assumptions of [EK86, Chap. 4, Thm. 4.1] in more detail (see [EK86] for un-
explained definitions), note that [0,∞) is locally compact, separable, D(∂t) is dense in C0[0,∞)
and C0[0,∞) is convergence determining (see [EK86, Chap. 3, Prop. 4.4]), hence separating.
Furthermore, whenever γ ∈ D(∂t), t∗ ≥ 0 satisfy γ(t∗) = supt≥0 γ(t), then γ′(t∗) = 0 and thus
∂t is dissipative by [EK86, Chap. 4, Lem. 2.1]. Finally, fix λ > 0, then for any g ∈ C1

c [0,∞),
the function γ(t) := exp(λt)

∫∞
t
g(s) exp(−λs) ds satisfies γ ∈ D(∂(t)) and λγ−∂tγ = g so that

the range of the operator λ− ∂t is C1
c [0,∞) and in particular dense in C0[0,∞).
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[Leo09, Cor. 3.37]) to obtain

γ(t)F (t)− γ(0)F (0) =

∫ t

0

γ(s)F ′(s) ds+

∫ t

0

γ′(s)F (s) ds

=

∫ t

0

∫
E

[γ(s)σ(s, x)Af(x) + γ′(s)f(x)] p(s, dx) ds

=

∫ t

0

∫
E

L(γf)(s, x) p(s, dx) ds =

∫ t

0

∫
E0

L(γf) dνs ds

for any t ≥ 0. But γ(t)F (t) =
∫
E0

(fγ) dνt by definition, thus {νt}t≥0 satisfies
(C.5) for all h = fγ and by linearity also for all h ∈ D(L). Finally, note that by
definition of {νt}t≥0 the integral in (C.4) is the same as in (C.1) and so the result
follows.

(v) Assume first σAf ∈ C0([0, t0]×E) for all f ∈ D. Set E0 := [0, t0]×E and
note that the spaces C0(E0) and C0(E0) × C0(E0) are separable since E, [0, t0]
and E0 are separable and because products of separable spaces are separable. For
f ∈ D and γ ∈ C1[0, t0] our assumption and D ⊂ C0(E) imply fγ′ ∈ C0(E0) and
γσAf ∈ C0(E0). Hence, also L(fγ) ∈ C0(E0) and by linearity, Lh ∈ C0(E0)
for any h ∈ D(L). Setting G0 := {(h,Lh) : h ∈ D(L)}, this shows G0 ⊂
C0(E0) × C0(E0). Since the latter space is separable (as argued above) and any
subspace of a separable metric space is separable, we conclude that there exists
H0 ⊂ G0, H0 countable, such that each (h,Lh) ∈ G0 is the limit in sup-norm of
a sequence in H0. In particular, G0 ⊂ bp-closure(H0), i.e. (C.3) holds.

Secondly, assume that σ is bounded. The same separability reasoning as above
shows that there exist {γk}k∈N ⊂ C1

c [0,∞) and {fl}l∈N ⊂ D with the property
that for any γ ∈ C1

c [0,∞) and f ∈ D, there exist {kn}n∈N, {ln}n∈N ⊂ N such
that γ = limn→∞ γkn , γ′ = limn→∞ γ

′
kn
, f = limn→∞ fln and Af = limn→∞Afln

in sup-norm. Since σ is bounded, this also implies bp-limn→∞ σAfln = σAf and
thus bp-limn→∞ γknfln = γf and bp-limn→∞ L(γknfln) = L(γf). Thus, we have
shown

{(fγ,L(fγ)) : f ∈ D, γ ∈ C1
c [0,∞)} ⊂ bp-closure({(γkfl,L(γkfl))}k,l∈N)

and by linearity this implies (C.3).

C.2 Well-Posedness of the Martingale Problem

In this section, we show that the martingale problem for (D(L),L), see (C.6)
above, is well-posed. The proof is split into three parts: Existence is established
in Proposition C.4, uniqueness is proved in Proposition C.5 under the assumption
that σ is bounded. Finally, in Proposition C.7 the assumption of boundedness is
removed.

To prove existence, we use the time-change construction from Lemma B.2.
Extra work is needed to incorporate the time-inhomogeneity.
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Proposition C.4. Suppose σ and (D,A) are as in Theorem C.1 and (D(L),L)
is defined as in (C.6). Then for any s0 ≥ 0 and x0 ∈ E there exists a solution to
the RCLL-martingale problem for (L, δs0 ⊗ δx0).

Proof. Define σs0(s, x) := σ(s0 + s, x) for s ≥ 0, x ∈ E. Assumption A.9 (ii) or
A.11 implies that σAf is bounded for any f ∈ D and so by Lemma C.3 (ii) it
suffices to show that there exists a solution to the (time-inhomogeneous) RCLL-
martingale problem for (σs0A, δx0).

If s0 ≥ t0, then σs0(s, x) = 0 for all (s, x) ∈ (0,∞) × E, since σ(t, ·) = 0 for
t > t0. Setting Xt := x0 for t ≥ 0, by definition (c.f. (A.4)) it follows that X is a
solution to the (time-inhomogeneous) RCLL-martingale problem for (σs0A, δx0).

If s0 < t0, set t̃0 := t0−s0 and note that σs0 satisfies Assumption A.6 on [0, t̃0]
(and σs0(t, ·) = 0 for t > t̃0), since σ satisfies Assumption A.6. Furthermore, σs0
satisfies σs0Af ∈ C0([0, t̃0]× E) for all f ∈ D or σs0 is bounded, since σ satisfies
Assumption A.9 (ii) or A.11. Let M denote the coordinate process on DE[0,∞)
and P = Px0 (as defined in Assumption A.7). Then σs0 , (D,A) and M satisfy
the assumptions of Lemma B.9, which implies that there exists a solution to the
RCLL-martingale problem for (σs0A, δx0).

The next step is to prove uniqueness under the assumption that σ is bounded.
Combined with Proposition C.4, well-posedness of the RCLL-martingale problem
for (D(L),L) follows.

The main idea of the proof is to show that any solution X̃ to the RCLL-
martingale problem for (L, δ(s0,x)) can be written as a time-change

X̃t = M∫ t
0 σ(s0+u,X̃u) du, t ≥ 0, P-a.s.,

for M which is a solution to the martingale problem for (A, δx). Corollary B.7
and Assumption A.7 (ii) then allow us to conclude uniqueness.

Note that if σ(t, x) did not depend on t, the proof could be simplified signi-
ficantly by relying on [EK86, Chap. 6, Thm. 1.4].

Proposition C.5. Suppose σ and (D,A) satisfy Assumptions A.6, A.7, A.11
and A.12. Define (D(L),L) as in (C.6), then for each ν ∈ P([0,∞) × E) the
RCLL-martingale problem for (L, ν) is well-posed.

Proof. Firstly, note that it suffices to show that for each (s0, x0) ∈ [0,∞)×E the
RCLL-martingale problem for (L, δ(s0,x0)) is well-posed: If this is established, we
can combine [BK93, Thm. 2.1] and Lemma C.3 (v) to conclude that also for any
ν ∈ P([0,∞)× E) the RCLL-martingale problem for (L, ν) is well-posed.

From Proposition C.4 it follows that for any (s0, x0) ∈ [0,∞)×E there exists
a solution to the RCLL-martingale problem for (L, δ(s0,x0)). In order to prove the
current proposition, by the above it is therefore sufficient to prove that for any
s0 ∈ [0,∞) and any x0 ∈ E uniqueness holds for the RCLL-martingale problem
for (L, δs0 ⊗ δx0). This will now be established.

Set µ0 := δx0 and suppose (T,X) is a solution RCLL-martingale problem for
(L, δs0 ⊗ µ0) defined on some probability space (Ω̃, F̃ , P̃). By Lemma C.3 (iii)
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it follows that, P̃-a.s., Tt = t + s0 for all t ≥ 0 and that X is a solution to
the (time-inhomogeneous) RCLL-martingale problem for (σ(s0 + ·)A, µ0), i.e. for
each f ∈ D the process

M f
t := f(Xt)− f(X0)−

∫ t

0

σ(s0 + s,Xs)Af(Xs) ds, t ≥ 0, (C.9)

is a martingale. In the following, we show that this implies that X solves the
time-change equation (B.15) for some process M that is a solution to the RCLL-
problem for (A, µ0). By the uniqueness result for the time-change equation in
Corollary B.7, it then follows that the law of X is determined by σ and the law
of M . Since uniqueness holds for the RCLL-martingale problem for (A, µ0), it
then follows that the law of X is uniquely determined by σ and (A, µ0) and thus
the claim follows.

Before we start, let us consider the case s0 ≥ t0. Since σ(t, x) = 0 for all
t > t0, x ∈ E, the integral term in (C.9) vanishes for any f ∈ D. In particular,
f(X) is a martingale for any f ∈ D. Combining this with our Assumption A.7 (i)
that D is dense in C0(E), this implies (see [EK86, Chap. 3, Ex. 7]) that Xt = X0,
P̃-a.s., for any t ≥ 0. However, X is RCLL and thus X is constant P̃-a.s. In
particular, the law of (T,X) is uniquely determined.

Thus, we may assume s0 < t0 and in analogy to (B.1) define

δ(t) :=

∫ t

0

σ(s0 + u,Xu) du,

for each t ≥ 0, and set ∆(u) := inf{t ≥ 0 : δ(t) ≥ u} for each u ≥ 0 and
Yu := X∆(u) for u ≤ δ(t0− s0). Note that σ is bounded and σ(s, ·) = 0 for s > t0,
thus P̃-a.s. δ(t0− s0) <∞ and δ(s) = δ(t0− s0) for all s > t0− s0. We now claim
that

(i) with probability one, X is constant on any interval [t, u] with
∫ u
t
σ(s0 +

s,Xs) ds = 0,

(ii) P̃-a.s., X satisfies the time-change equation Xt = Yδ(t) for all t ≥ 0 and Y
is RCLL,

(iii) on an extended probability space there exists a process Ỹ that is a solution
to the RCLL-martingale problem for (A, µ0) that satisfies Ỹu = Yu for
u ≤ δ(t0 − s0) and such that X = Ỹδ(t) still holds a.s. Furthermore, this
implies the claim.

To prove (i), we define

γt := inf{u > t : δ(u) > δ(t)} for each t ≥ 0

so that for any u > t,
∫ γt∧u
t

σ(s0 + s,Xs) ds = 0 and thus (recall σ ≥ 0) also

σ(s0 + s,Xs) = 0 for a.e. s ∈ [t, γt ∧ u], P̃-a.s. (C.10)
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Furthermore, for u < t, {γt ≤ u} = ∅ and for u ≥ t,

{γt < u} = {δ(u) > δ(t)} (C.11)

since δ is non-decreasing and continuous (which implies δ(γt) = δ(t)). Let us
denote by (Ft)t≥0 the usual augmentation (in the sense of [RW00a, II.67.3]) of
(FXt )t≥0. Since δ is adapted, (C.11) implies {γt < u} ∈ Fu for any u ≥ 0 and so
γt is an (Ft)t≥0-stopping time. By right-continuity of X and [RW00a, II.67.10],
(C.9) is also a martingale with respect to (Ft)t≥0. Hence, we can apply optional
sampling to the martingales (C.9) to obtain for any u > t and f ∈ D that

0 = E
[
M f

γt∧u −M
f
t

∣∣Ft]
= E

[
f(Xγt∧u)−

∫ γt∧u

t

σ(s0 + s,Xs)Af(Xs) ds

∣∣∣∣Ft]− f(Xt)

= E [f(Xγt∧u)|Ft]− f(Xt),

where the last step follows from (C.10). Since f ∈ D was arbitrary and by
Assumption A.7 (i) D is dense in C0(E), this implies (see [EK86, Chap. 3, Ex. 7])
that for fixed u > t, Xγt∧u = Xt, P̃-a.s. Thus we can find Ω0 ∈ F̃ such that
P̃(Ω0) = 1 and on Ω0, we have Xγt∧u = Xt for all u > t ≥ 0 with t, u ∈ Q. But
then on Ω0 this extends to all u > t ≥ 0 by a standard argument: for u > t ≥ 0,
we find {un} ⊂ Q, {tn} ⊂ Q with un ↓ u, tn ↓ t as n→∞. Then γtn ∧un ↓ γt∧u
as n→∞ and so we can use right-continuity of X for the first and last equality
and our choice of Ω0 for the second equality to obtain

Xt = lim
n→∞

Xtn = lim
n→∞

Xγtn∧un = Xγt∧u. (C.12)

Thus, if ω ∈ Ω0, u > t ≥ 0 and
∫ u
t
σ(s0 + s,Xs(ω)) ds = 0, then u ≤ γt(ω) and so

by (C.12) indeed Xt(ω) = Xγt(ω)∧u = Xu(ω).
To prove (ii), set ∆+(u) := limv↓u ∆(v) and notice ∆+(u) = inf{t ≥ 0 : δ(t) >

u}. Then from (i) we get that, P̃-a.s., X is constant on the interval [∆(u),∆+(u)]
for all u ≥ 0. Hence, from ∆(δ(t)) ≤ t ≤ ∆+(δ(t)) we obtain

Xt = X∆(δ(t)) = Yδ(t)

for all t ≥ 0. Furthermore, u ↓ u0 implies ∆(u) ↓ ∆+(u0) and so by right-
continuity of X also

Yu = X∆(u) → X∆+(u0) = X∆(u0) = Yu0

and since ∆ is left-continuous and X has left-limits, the same reasoning shows
that Y also has left-limits. Hence, Y is indeed RCLL.

For (iii), notice that σ(s0 + s,Xs) = 0 for s ∈ [∆(δ(t0 − s0)), t0 − s0] and
s ∈ [∆(v),∆+(v)] for any v ≥ 0. Combining this with ∆(u) ≤ t⇔ δ(t) ≥ u, one
obtains∫ ∆(u)∧(t0−s0)

0

σ(s0 + s,Xs)Af(Xs) ds =

∫ ∆(u∧δ(t0−s0))

0

σ(s0 + s,Xs)Af(Xs) ds

=

∫ ∆+(u∧δ(t0−s0))

0

σ(s0 + s,Xs)Af(Xs) ds,

(C.13)
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for u ≥ 0, f ∈ D. Since ∆+(v) = inf{t ≥ 0 : δ(t) > u}, a change of variables as
in [EK86, Chap. 6, Ex. 12] now allows to rewrite the last expression as∫ ∆+(u∧δ(t0−s0))

0

σ(s0 + s,Xs)Af(Xs) ds =

∫ u∧δ(t0−s0)

0

Af(X∆+(v)) dv. (C.14)

As argued in (ii), X∆+(v) = Yv for all v ≥ 0 and by inserting this in the right-hand
side of (C.14) and combining with (C.13), we get∫ ∆(u)∧(t0−s0)

0

σ(s0 + s,Xs)Af(Xs) ds =

∫ u∧δ(t0−s0)

0

Af(Ys) ds (C.15)

for any u ≥ 0, f ∈ D. Furthermore, for any t, u ≥ 0, {∆(u) ≤ t} = {δ(t) ≥
u} ∈ Ft so that for each u ≥ 0, ∆(u) is a stopping time. Using this, (C.15) and
applying the optional sampling theorem to the martingales in (C.9), we therefore
get that for any f ∈ D the process

M f
∆(u)∧(t0−s0) = f(Yu∧δ(t0−s0))− f(Y0)−

∫ u∧δ(t0−s0)

0

Af(Ys) ds, u ≥ 0, (C.16)

is a martingale with respect to the filtration (F∆(u)∧t0−s0)u≥0 and thus also with
respect to the filtration generated by Y·∧δ(t0−s0). Let us denote by W the coordin-
ate process on DE[0,∞) and for (ω, ω′) ∈ Ω̃×DE[0,∞) define

Ỹu(ω, ω
′) :=

{
Yu(ω) for u < δ(t0 − s0)(ω)

Wu−δ(t0−s0)(ω)(ω
′) for u ≥ δ(t0 − s0)(ω).

From (C.16) and Lemma C.6 below (applied to the process (Yu∧δ(t0−s0))u≥0 and the
random variable δ(t0−s0)) it follows that the process Ỹ is a solution to the RCLL-
martingale problem for (A, µ0) under a measure Q with Q(A×DE[0,∞)) = P̃(A)
for all A ∈ F̃ and such that Ỹs∧δ(t0−s0) = Ys∧δ(t0−s0) for all s ≥ 0, Q-a.s. Combining
this with (ii) and δ(·) ≤ δ(t0 − s0), it follows that

Xt = Yδ(t) = Yδ(t)∧δ(t0−s0) = Ỹδ(t)∧δ(t0−s0) = Ỹδ(t) = Ỹ∫ t
0 σs0 (s,Xs) ds, t ≥ 0, Q-a.s.,

where σs0(s, x) := σ(s+ s0, x) for s ≥ 0, x ∈ E. In particular, X satisfies a time-
change equation (B.15) (with M replaced by Ỹ and σ replaced by σs0). By our
assumptions on σ, σs0 satisfies Assumption A.6 on [0, t0−s0] (and σs0(t, ·) = 0 for
t > t0 − s0) and A.11. Since uniqueness holds for the RCLL-martingale problem
for (A, µ0), the law on DE[0,∞) of Ỹ under Q is given as Px0 and thus, by
Assumption A.12, H is regular for Q. Altogether, Corollary B.7 can be applied
to σs0 and Ỹ , which implies that the law of X under Q is uniquely determined
by σs0 and Px0 . But the law of X under P̃ is the same as under Q and so the
claim follows.

For the well-posedness of the RCLL-martingale problem (see Proposition C.5),
we used the following auxiliary lemma. As the authors are not aware of a suitable
reference, we also present its complete proof here.
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Lemma C.6. Let (E, d) be a locally compact, complete, separable metric space,
D ⊂ C0(E) and A : D → C0(E) linear. Suppose that the DE[0,∞)-martingale
problem for (A, µ) is well-posed for any µ ∈ P(E). Let (Ω,F ,P) be a probability
space, τ be a [0,∞)-valued random variable, and Z be an E-valued RCLL process
on (Ω,F ,P) with Zu = Zu∧τ for all u ≥ 0, such that

f(Zu)− f(Z0)−
∫ u∧τ

0

Af(Zs) ds, u ≥ 0,

is a martingale for all f ∈ D. Let us denote by X the coordinate process on
DE[0,∞). On Ω′ := Ω×DE[0,∞) define the process Y via

Yt(ω, ω
′) :=

{
Zt(ω) for t < τ(ω)

Xt−τ(ω)(ω
′) for t ≥ τ(ω)

for (ω, ω′) ∈ Ω′ and t ≥ 0. Furthermore, for each x ∈ E, denote by Px the law
of the solution of the RCLL-martingale problem for (A, δx) and by SE the Borel
σ-algebra in DE[0,∞). Let us define the measure Q on F × SE by

Q(A× C) := E[1APZτ (C)] (C.17)

for A ∈ F , C ∈ SE (and extend this to the product σ-algebra). Then under Q, Y
is a solution to the RCLL-martingale problem for (A, µ0), where µ0 is the law of
Z0. Furthermore, Q(A ×DE[0,∞)) = P(A) for all A ∈ F and Zt = Yt∧τ for all
t ≥ 0, Q-a.s.

Proof. Essentially this is [EK86, Chap. 4, Lem. 5.16], the only difference is that
we construct Y on Ω×DE[0,∞) (instead of DE[0,∞)× [0,∞)×DE[0,∞)).

To prove the claim, first notice that by [EK86, Chap. 4, Thm. 4.6], the map
x 7→ Px(C) is measurable for each C ∈ SE and so Q is indeed well-defined.
Furthermore, denoting by µ the law of Zτ , also the measure Q̃ defined on product
sets as

Q̃(B × C) :=

∫
E

E[1B(Z, τ)|Zτ = x]Px(C)µ(dx),

for B ∈ SE×B([0,∞)), C ∈ SE is well-defined. Thus, denoting by (X(1), η,X(2))
the coordinate random variable on DE[0,∞) × [0,∞) × DE[0,∞), from [EK86,
Chap. 4, Lem. 5.16, (5.52) and (5.53)] it follows that under Q̃ the process (Ỹt)t≥0

defined as

Ỹt :=

{
X

(1)
t for t < η

X
(2)
t−η for t ≥ η

is a solution to the RCLL-martingale problem for (A, µ0). Thus, it remains to
show that the law of Y under Q is the same as the law of Ỹ under Q̃.

Firstly note that for B ∈ SE × B([0,∞)) and C ∈ SE one obtains

Q({(Z, τ) ∈ B} × {X ∈ C}) = E[1{(Z,τ)∈B}PZτ (C)]

= E[E[1B(Z, τ)|Zτ ]E[PZτ (C)|Zτ ]]
= Q̃(B × C),
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where the last step uses [EK86, Chap. 4, Thm. 4.2 (c)]. Hence, Q̃ coincides with
the law of (Z, τ,X) on DE[0,∞)× [0,∞)×DE[0,∞) under Q. In particular, for
any 0 ≤ t1 < · · · < tn, n ∈ N, A1, · · · , An ∈ B(E),

Q(Yt1 ∈ A1, . . . , Ytn ∈ An)

=
∑

I⊂{1,...,n}

Q(Zti ∈ Ai , ti < τ ∀i ∈ I,Xtj−τ ∈ Aj, tj ≥ τ ∀j ∈ Ic)

=
∑

I⊂{1,...,n}

Q̃(X
(1)
ti ∈ Ai , ti < η ∀i ∈ I,X(2)

tj−η ∈ Aj, tj ≥ η ∀j ∈ Ic)

= Q̃(Ỹt1 ∈ A1, . . . , Ỹtn ∈ An)

and thus it follows that the law of Ỹ under Q̃ is the same as the law of Y under
Q, hence the claim.

Finally, Yu = Zu for u < τ and so we only need to show Zτ = Yτ , Q-a.s. This
should be clear but we still give a formal argument: For any A,B ∈ B(E) we
have, by (C.17) and Px(X0 ∈ B) = δx(B),

Q({Zτ ∈ A} × {X0 ∈ B}) = E[1A(Zτ )PZτ (X0 ∈ B)] = P(Zτ ∈ A ∩B). (C.18)

Now denote by {xm}m∈N a countable dense subset of E. Then, setting An,m,k =
{Zτ ∈ B1/k(xn)} ∩ {X0 ∈ B1/k(xm)} for any n ∈ N, m ∈ N \ {n} and k ∈ N with
d(xn, xm) > 2/k, from (C.18) we have

Q(An,m,k) = P(Zτ ∈ B1/k(xn) ∩B1/k(xm)) = P(∅) = 0.

Writing

{Zτ 6= Yτ} = {Zτ 6= X0} =
⋃
n∈N

⋃
m∈N\{n}

⋃
k∈N : d(xn,xm)>2/k

An,m,k,

we see that {Zτ 6= Yτ} is a countable union of Q-null sets and so the claim
follows.

Finally, Proposition C.5 is extended in two directions: Firstly, we localize to
prove uniqueness for the RCLL-martingale problem when σ is unbounded, and
secondly, we show that any progressively measurable (but not necessarily RCLL)
solution to the martingale problem has an RCLL modification. Note that the
last statement is not true in general (as discussed in [BK03]), but it has to be
established to apply Theorem C.2.

In the proof, the notion of a stopped martingale problem is used: Let (F, d) be
a complete metric space, (D(L),L) an operator on Cb(F ) and U open in F . If X
is an F -valued, RCLL process, then τ := inf{t ≥ 0 : Xt /∈ U or Xt− /∈ U} is an
(FXt )t≥0-stopping time by [EK86, Chap. 2, Prop. 1.5 a)]. X is called a solution
to the stopped martingale problem for (L, ν0, U) if X0 ∼ ν0, Xτ = X and

h(Xτ∧t)− h(X0)−
∫ τ∧t

0

Lh(Xs) ds, t ≥ 0,

is an (FXt )t≥0-martingale for any h ∈ D(L).
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Proposition C.7. Suppose σ and (D,A) are as in Theorem C.1 and (D(L),L)
is defined as in (C.6). Then for any µ0 ∈ P(E) the martingale problem for
(L, δ0 ⊗ µ0) is well-posed.

Proof. Suppose first µ0 = δx0 for some x0 ∈ E. By Proposition C.4 and our
assumptions, there exists a solution Z to the RCLL-martingale problem for
(L, δ0 ⊗ µ0). Therefore, it suffices to show that if Z̃ is any (progressively meas-
urable) solution to the martingale problem for (L, δ0 ⊗ µ0), then Z̃ has the same
finite-dimensional marginal distributions as Z. In order to prove this, we proceed
as follows:

To start, by [EK86, Chap. 4, Cor. 3.7] and since D(L) is dense in C0(L), Z̃
has a modification (which we also denote by Z̃) with sample paths in DE∆

0
[0,∞),

where E∆
0 is the one-point compactification of E0 := [0,∞) × E. Furthermore,

(A.3) remains vaild for Z̃ and all h ∈ D(L), where we extend h to C(E∆
0 ) by

h(∆) := 0. By assumption on E, there exists {Vn}n∈N ⊂ E such that for any n,
Vn is open, Vn is compact and ∪nVn = E. Define Un := [0,∞)×Vn, τn := inf{t ≥
0 : Zt /∈ Un or Zt− /∈ Un} and τ̃n =: inf{t ≥ 0 : Z̃t /∈ Un or Z̃t− /∈ Un}. Since Un
is open in E0, it is also open in E∆

0 and thus τn is an (FZt )t≥0-stopping time and
τ̃n is an (F Z̃t )t≥0-stopping time.

Suppose Assumption A.9 holds. Then for any n ∈ N there exists Cn > 0
such that |H(x)| ≤ Cn and |σ̃(t, x)| ≤ Cn for all (t, x) ∈ Un. Set σ̃n(t, x) :=
min(σ̃(t, x), Cn), Hn(x) := min(H(x), Cn) and σn := Hnσ̃n. In the other case, i.e.
if Assumption A.11 holds, set σn := σ. Then, in both cases, σn is bounded and
coincides with σ in Un. Define

Ln(fγ)(t, x) := γ(t)σn(t, x)Af(x) + f(x)γ′(t), t ∈ [0,∞), x ∈ E,

for f ∈ D and γ ∈ C1
c [0,∞) and linearly extended to D(Ln) := span{fγ : f ∈

D, γ ∈ C1
c [0,∞)} (and thus D(Ln) = D(L)).

We now claim that:

(i) Zτn is a solution to the stopped martingale problem for (Ln, δ0 ⊗ µ0, Un)
and this solution is unique in law,

(ii) Z̃ τ̃n takes values in DE0 [0,∞) and is also a solution to the stopped martin-
gale problem for (Ln, δ0⊗ µ0, Un) and thus, combining this with (i), we get
that the finite-dimensional marginals of Z̃ τ̃n and Zτn agree,

(iii) from (ii) it can be deduced that τ̃n →∞ as n→∞ and that Z̃ and Z have
the same distribution.

To show (i), notice that σn is bounded and satisfies Assumption A.6 and
Assumption A.12 since they hold for H and σ̃. In particular, σn and (D,A)
satisfy Assumptions A.6, A.7, A.11 and A.12 and thus by Proposition C.5 the
RCLL-martingale problem for (Ln, δ0 ⊗ µ0) is well-posed. Therefore, by [EK86,
Chap. 4, Thm. 6.1] for each U ⊂ E0 open there exists a unique solution to the
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stopped martingale problem for (Ln, δ0 ⊗ µ0, U). Applying optional sampling to
τn and the martingales (A.3) and noticing∫ τn∧t

0

Lh(Zs) ds =

∫ τn∧t

0

Lnh(Zs) ds, (C.19)

we see that Zτn is a (and hence the unique) solution to the stopped martingale
problem for (Ln, δ0 ⊗ µ0, Un).

To show (ii), note that, by definition of τ̃n, Z̃ is RCLL and Un-valued on
[0, τ̃n). Let us first show that actually P̃-a.s., for each n, Z̃τ̃n ∈ E0 (a priori, we
could have Z̃τ̃n = ∆). To do so, note that by applying optional sampling and
taking expectations in (A.3), we obtain

E[h(Z̃τ̃n∧t)] = E[h(Z̃0)]+E
[∫ τ̃n∧t

0

Lh(Z̃s) ds

]
= E[h(Z̃0)]+E

[∫ τ̃n∧t

0

Lnh(Z̃s) ds

]
(C.20)

for all h ∈ D(L) (with C0(E0) extended to E∆
0 as above). The second step in

(C.20) follows as in (C.19). Since σn is bounded, (D(Ln),Ln) is conservative by
Lemma C.3 (i) and so (for any n ∈ N) there exists {hk}k∈N ⊂ D(L) such that
bp-limk→∞ hk = 1 and bp-limk→∞ Lnhk = 0. In particular, bp-limk→∞ hk = 1E0

in C(E∆
0 ). Inserting hk in (C.20) and letting k → ∞, dominated convergence

gives

P(Z̃τ̃n∧t ∈ E0) = lim
k→∞

E[hk(Z̃τ̃n∧t)] = lim
k→∞

E[hk(Z̃0)] = P(Z̃0 ∈ E0) = 1.

Therefore, for any n ∈ N, Z̃ is RCLL and Un-valued on [0, τ̃n]. Thus, for any
n ∈ N, we may view Z̃ τ̃n as a DE0 [0,∞)-valued process and optional sampling
applied to (A.3) (and the analogon of (C.19) for Z̃) shows that Z̃ τ̃n is a solution
to the stopped martingale problem for (Ln, δ0⊗µ0, Un). Thus, by (i), the laws of
Z̃ τ̃n and Zτn coincide.

To show (iii), first note that τ̃n ≤ τ̃n+1 for all n ∈ N and thus τ := limn→∞ τ̃n
is well-defined. Since Z̃ has left-limits in E∆

0 , also Yt := limn→∞ Z̃τ̃n∧t is well-
defined in E∆

0 . Furthermore, Yt = ∆ if and only if τ ≤ t. Since Z has sample
paths in DE0 [0,∞), it holds that τn →∞, P-a.s., and so (ii) implies

E[h(Yt)] = lim
n→∞

E[h(Z̃ τ̃n
t )] = lim

n→∞
E[h(Zτn

t )] = E[h(Zt)] (C.21)

for any t ≥ 0 and h ∈ C0(E0). Taking {hk}k∈N ⊂ C0(E0) with bp-limk→∞ hk = 1
(and thus bp-limk→∞ hk = 1E0 in C(E∆

0 )), inserting hk in (C.21) and letting
k →∞, one obtains

P(τ > t) = P(Yt ∈ E0) = lim
k→∞

E[hk(Yt)] = lim
k→∞

E[hk(Zt)] = P(Zt ∈ E0) = 1

for all t ≥ 0. Hence, P(τ = ∞) = 1, τ̃n → ∞ a.s. and Z̃ does not explode, i.e it
has sample paths in DE0 [0,∞). In particular, for any choice of 0 ≤ t0 < · · · < tm,
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m ∈ N, h0, . . . , hm ∈ C0(E0),

E

[
m∏
k=0

hk(Z̃tk)

]
= lim

n→∞
E

[
m∏
k=0

hk(Z̃
τ̃n
tk

)

]
(ii)
= lim

n→∞
E

[
m∏
k=0

hk(Z
τn
tk

)

]

= E

[
m∏
k=0

hk(Z
τn
tk

)

]
.

Therefore, also the finite-dimensional marginals of Z̃ and Z coincide.
Finally, since now well-posedness of the RCLL-martingale problem for (L, δ0⊗

µ0) in the case µ0 = δx0 and x0 ∈ E is established, Lemma C.3 (v) and [BK93,
Thm. 2.1] imply that the RCLL-martingale problem for (L, δ0⊗µ0) is well-posed
also for arbitrary µ0 ∈ P(E). The exact same argument as above now shows that
uniqueness holds even in the class of progressively measurable solutions.

C.3 From Uniqueness of the Martingale Problem to Uni-
queness for the Fokker-Planck Equation

Finally, we put together all results obtained in the previous sections. When σ is
continuous, Theorem C.2 can be applied. When σ is not continuous, the following
extension of Theorem C.2 will be required:6

Theorem C.8 ([Kur98, Thm. 2.7]). Let E0 and F be locally compact, separable
metric spaces, D(L0) ⊂ Cb(E0) and L0 : D(L0)→ Cb(E0×F ) linear. Let η : E0×
B(F )→ [0, 1] be a transition kernel and define

Lηf(x) :=

∫
F

L0f(x, y) η(x, dy), f ∈ D(L0). (C.22)

For any y ∈ F , define the linear operator L0
y with domain D(L0) on Cb(E0) by

f 7→ L0f(·, y). Let ν ∈ P(E0 × F ) and suppose that

(i) D(L0) is an algebra and separates points,

(ii) for any x ∈ E0 and y ∈ F there exists a solution to the RCLL-martingale
problem for (L0

y, δx),

(iii) Lη and (Lη, ν) satisfy the conditions (ii) and (iv) of Theorem C.2.

Then the conclusion of Theorem C.2 is valid, i.e. uniqueness holds for the forward
equation for (Lη, ν).

In the next lemma we show how to obtain uniqueness for the Fokker-Planck
equation for (D,A) from uniqueness for (D(L),L).

6See footnote 4 for a discussion why (ii) implies that L0
y is a pre-generator (in the terminology

of [Kur98]).
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Lemma C.9. Suppose σ and (D,A) are as in Theorem C.1 and (D(L),L) is
defined as in (C.6). Let µ0 ∈ P(E), t0 as in Assumption A.6 and define ν :=
δ0 ⊗ µ0. Then the following statements hold:

(i) If σAf ∈ C0([0, t0]×E) for all f ∈ D, then the assumptions of Theorem C.2
are satisfied.

(ii) Suppose there exists R > 0 such that |σ(t, x)| ≤ R for all (t, x) ∈ [0,∞)×E.
Define E0 := [0,∞) × E, F := [0, R], D(L0) := D(L) and for f ∈ D,
γ ∈ C1

c [0,∞), set

L0(fγ)((t, x), v) := γ(t)vAf(x) + f(x)γ′(t), (t, x) ∈ E0, v ∈ F,

and linearly extend this definition of L0 to D(L0). Finally, set η((t, x), ·) :=
δσ(t,x)(·) and Lη as in (C.22). Then the assumptions of Theorem C.8 are
satisfied and (D(L),L) coincides with (D(L0),Lη).

In particular, in both cases the conclusion of Theorem C.2 is valid, i.e. uniqueness
holds for the forward equation (C.5) for (L, ν).

Proof. To prove (i), firstly note that by Assumption A.7 (i) D is an algebra
and dense. Hence, D(L) is an algebra and separates points. Secondly, by
Lemma C.3 (v) the condition (C.3) is indeed satisfied. Thirdly, by Proposition C.4
existence holds and fourthly, by Proposition C.7 uniqueness holds. Therefore, as-
sumptions (i)-(iv) of Theorem C.2 are indeed satisfied.

To prove (ii), notice that σ is a measurable function, and thus η is indeed a
transition kernel. Furthermore, by definition we have

Lh(t, x) =

∫ R

0

L0h((t, x), v) η((t, x), dv) = Lηh(t, x).

Hence, (D(L),L) and (D(L0),Lη) indeed coincide and it only remains to show
that the assumptions of Theorem C.8 are satisfied. Firstly, D(L0) = D(L) is an
algebra and separates points as argued in (i). Secondly, for any v ∈ [0, R] and
(s0, x) ∈ E0 a solution to the RCLL-martingale problem for (L0

v, δ(s0,x)) can be
constructed as follows: Let M be a solution to the RCLL-martingale problem for
(A, δx) and set Xt := Mvt. Then by elementary change of variable,

f(Xt)−
∫ t

0

vAf(Xs) ds = f(Mtv)−
∫ tv

0

Af(Ms) ds

for all f ∈ D, t ≥ 0, and thus X is a solution to the (time-inhomogeneous)
RCLL-martingale problem for (vA, δx). Therefore, by Lemma C.3, (t+ s0, Xt)t≥0

is a solution to the RCLL-martingale problem for (L0
v, δ(s0,x)). Finally, since σ is

bounded, (D(L),L) satisfies (C.3) by Lemma C.3 (v) and the martingale problem
for (L, ν) is well-posed by Proposition C.7.

After these preparations, we are now ready to prove the main result in this
section, Theorem C.1.
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Proof of Theorem C.1. Suppose (p(t, ·))t∈[0,t0] and (p̃(t, ·))t∈[0,t0] both satisfy (C.1)
and (C.2). Defining for any t ≥ 0 the measures νt := δt ⊗ p(t, ·) and ν̃t :=
δt ⊗ p̃(t, ·), by Lemma C.3 (iv), (νt)t≥0 and (ν̃t)t≥0 both satisfy (C.4) and (C.5).
Under our assumptions, Lemma C.9 implies that uniqueness holds for (C.5), i.e.
ν̃t = νt for all t ≥ 0 or δt ⊗ p(t, ·) = δt ⊗ q(t, ·) for all t ≥ 0. In particular,∫
E
f(x) p(s, dx) =

∫
E
f(x) p̃(s, dx) for all f ∈ C0(E) and all s ∈ [0, t0] and thus

the assertion follows.
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