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Abstract A measurement of the electroweak (EW) pro-
duction of two jets in association with a Z boson in proton-
proton collisions at

√
s = 13 TeV is presented, based on

data recorded in 2016 by the CMS experiment at the LHC
corresponding to an integrated luminosity of 35.9 fb–1. The
measurement is performed in the ��jj final state with � includ-
ing electrons and muons, and the jets j corresponding to the
quarks produced in the hard interaction. The measured cross
section in a kinematic region defined by invariant masses
m�� > 50 GeV, mjj > 120 GeV, and transverse momenta
pTj > 25 GeV is σEW(��jj) = 534 ± 20 (stat) ± 57 (syst) fb,
in agreement with leading-order standard model predic-
tions. The final state is also used to perform a search
for anomalous trilinear gauge couplings. No evidence is
found and limits on anomalous trilinear gauge couplings
associated with dimension-six operators are given in the
framework of an effective field theory. The corresponding
95% confidence level intervals are −2.6 < cWWW /Λ2 <

2.6 TeV−2 and −8.4 < cW /Λ2 < 10.1 TeV−2. The addi-
tional jet activity of events in a signal-enriched region is
also studied, and the measurements are in agreement with
predictions.

1 Introduction

In proton-proton (pp) collisions at the CERN LHC, the pro-
duction of dileptons (��) consistent with the Z boson invari-
ant mass in association with two jets (jj) is dominated by
events where the dilepton pair is produced by a Drell–Yan
(DY) process, in association with jets from strong interac-
tions. This production is governed by a mixture of elec-
troweak (EW) and strong processes of order α2

EWα2
S, where

αS is the strong coupling and αEW is the EW coupling
strength.

The pure electroweak production of the ��jj final state, at
order α4

EW, is less frequent [1], and includes production via
the vector boson fusion (VBF) process, with its distinctive

∗ e-mail: cms-publication-committee-chair@cern.ch

signature of two jets with both large energy and separation
in pseudorapidity η. In this paper the electroweak production
is referred to as EW Zjj, and the two jets produced through
the fragmentation of the outgoing quarks are referred to as
“tagging jets”.

Figure 1 shows representative Feynman diagrams for the
EW Zjj signal, namely VBF (left), bremsstrahlung-like (cen-
ter), and multiperipheral (right) production. Gauge cancel-
lations lead to a large negative interference between the
VBF process and the other two processes, with the interfer-
ences from the bremsstrahlung-like production being larger.
Interference with multiperipheral production is limited to
cases where the dilepton mass is close to the Z boson peak
mass [2].

In the inclusive production of ��jj final states, some of
the nonexclusive EW interactions with identical initial and
final states can interfere with the exclusive EW interactions
that are shown in Fig. 1. This interference effect between
the signal production and the main background processes is
much smaller than the interference effects among the EW
production amplitudes, but needs to be taken into account
when measuring the signal contribution [3,4].

Figure 2 (left) shows one example of corrections to order
α2

S for DY production that have the same initial and final
states as those in Fig. 1. A process at order α2

S that does not
interfere with the EW signal is shown in Fig. 2 (right).

The study of EW Zjj processes is part of a more general
investigation of standard model (SM) vector boson fusion
and scattering processes that include studies of Higgs boson
production [5–7] and searches for physics beyond the SM [8–
11]. When isolated from the backgrounds, the properties of
EW Zjj events can be compared with SM predictions. Probing
the additional hadronic activity in selected events can shed
light on the modelling of additional parton radiation [12,
13], which is important for signal selection or vetoing of
background events.

New physics could appear in the form of anomalous tri-
linear gauge couplings (ATGCs) [14,15] that can be param-
eterized with higher-dimensional operators. Their measure-
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Fig. 1 Representative Feynman diagrams for purely electroweak amplitudes for dilepton production in association with two jets: vector boson
fusion (left), bremsstrahlung-like (center), and multiperipheral production (right)

Fig. 2 Representative Feynman
diagrams for order α2

S
corrections to DY production
that constitute the main
background for the
measurement
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ments could provide an indirect search for new physics at
mass scales not directly accessible at the LHC.

At the LHC, the EW Zjj process was first measured by the
CMS experiment using pp collisions at

√
s = 7 TeV [3], and

then at
√
s = 8 TeV by both the CMS [4] and ATLAS [16]

experiments. The ATLAS experiment has also performed
measurements at

√
s = 13 TeV [17], with a data sample

corresponding to an integrated luminosity of 3.2 fb–1. All
results so far agree with the expectations of the SM within a
precision of approximately 20%.

This paper presents a measurement with the CMS detector
using pp collisions collected at

√
s = 13 TeV during 2016,

corresponding to an integrated luminosity of 35.9 fb–1. A
multivariate analysis, based on the methods developed for the
7 and 8 TeV data results [3,4], is used to separate signal events
from the large DY + jets background. Analysis of the 13 TeV
data with larger integrated luminosity and larger predicted
total cross section offers an opportunity to measure the cross
section at a higher energy and reduce the uncertainties of the
earlier measurements.

Section 2 describes the experimental apparatus and Sect. 3
the event simulations. Event selection procedures are descri-
bed in Sect. 4, together with the selection efficiencies and
background models in control regions. Section 5 details the
strategy adopted to extract the signal from the data, and the
corresponding systematic uncertainties are summarized in
Sect. 6. The cross section and anomalous coupling results are

presented in Sects. 7 and 8, respectively. Section 9 provides
a study of the additional hadronic activity in an EW Zjj-
enriched region. Finally, a brief summary of the results is
given in Sect. 10.

2 The CMS detector

The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromag-
netic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two
endcap sections. Forward calorimeters extend the η cover-
age provided by the barrel and endcap detectors. Muons are
measured in gas-ionization detectors embedded in the steel
flux-return yoke outside the solenoid.

The tracker measures charged particles within the pseu-
dorapidity range |η| < 2.5. It consists of 1440 pixel and
15 148 strip detector modules. For nonisolated particles of
1 < pT < 10 GeV and |η| < 1.4, the track resolutions are
typically 1.5% in pT and 25–90 (45–150) μm in the trans-
verse (longitudinal) impact parameter [18].

The electron momenta are estimated by combining energy
measurements in the ECAL with momentum measurements
in the tracker [19]. The dielectron invariant mass resolution
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for Z → ee decays is 1.9% when both electrons are in the
ECAL barrel, and 2.9% when both electrons are in the end-
caps.

Muons are measured in the pseudorapidity range |η| < 2.4
with detection planes made using three technologies: drift
tubes, cathode strip chambers, and resistive-plate chambers.
Matching muons to tracks measured in the silicon tracker
results in a relative transverse momentum resolution for
muons with 20 < pT < 100 GeV of 1.3–2.0% in the bar-
rel and better than 6% in the endcaps. The pT resolution
in the barrel is better than 10% for muons with pT up to
1 TeV [20].

The offline analysis uses reconstructed charged-particle
tracks and candidates from the particle-flow (PF) algo-
rithm [21]. In the PF event reconstruction, all stable parti-
cles in the event, i.e. electrons, muons, photons, charged and
neutral hadrons, are reconstructed as PF candidates using
information from all subdetectors to obtain an optimal deter-
mination of their direction, energy, and type. The PF candi-
dates are then used to reconstruct the jets and the missing
transverse momentum.

A more detailed description of the CMS detector, together
with a definition of the coordinate system and the relevant
kinematic variables, can be found in Ref. [22].

3 Simulation of signal and background events

Signal events are simulated at leading order (LO) using the
MadGraph5_amc@nlo (v2.3.3) Monte Carlo (MC) gen-
erator [23,24], interfaced with pythia (v8.212) [25,26] for
parton showering (PS) and hadronization. The NNPDF30
(nlo_as0130) [27] parton distribution functions (PDF) are
used to generate the events. The underlying event (UE)
is modelled using the CUETP8M1 tune [28]. The simula-
tion does not include extra partons at matrix element (ME)
level. The signal is defined in the kinematic region with
dilepton invariant mass m�� > 50 GeV, parton transverse
momentum pTj > 25 GeV, and diparton invariant mass
mjj > 120 GeV. The cross section of the ��jj final state (with
� = e or μ), applying the above fiducial cuts, is calculated
to be σLO(EW ��jj) = 543+7

−9 (scale) ± 22 (PDF) fb, where
the first uncertainty is obtained by changing simultaneously
the factorization (μF) and renormalization (μR) scales by
factors of 2 and 1/2, and the second reflects the uncertain-
ties in the NNPDF30 PDFs. The LO signal cross section
and relevant kinematic distributions estimated with Mad-
Graph5_amc@nlo are found to be in agreement within
5% with the next-to-leading order (NLO) predictions of the
vbfnlo generator (v.2.7.1) [29–31] that includes NLO QCD
corrections. For additional comparisons, signal events have
also been simulated with the herwig++ (v2.7.1) [32] PS,
using the EE5C [33] tune.

Events coming from processes including ATGCs are
generated with the same setting as the SM sample, but
include additional information for reweighting in a three-
dimensional effective field theory (EFT) parameter space, as
described in more detail in Sect. 8.1.

Background DY events are also simulated with Mad-
Graph5_amc@nlo using (1) an NLO ME calculation with
up to three final-state partons generated from quantum chro-
modynamics (QCD) interactions, and (2) an LO ME cal-
culation with up to four partons. The ME-PS matching
is performed following the FxFx prescription [34] for the
NLO case, and the MLM prescription [35,36] for the LO
case. The NLO background simulation is used to extract the
final results, while the independent LO samples are used to
perform the multivariate discriminant training. The dilep-
ton DY production for m�� > 50 GeV is normalized to
σth(DY) = 5.765 nb, which is computed at next-to-next-to-
leading order (NNLO) with fewz (v3.1) [37].

The evaluation of the interference between EW Zjj and
DY Zjj processes relies on predictions obtained with Mad-
Graph5_amc@nlo. A dedicated sample of events arising
from the interference terms is generated directly by selecting
the contributions of order αSα3

EW, and passing them through
the full detector simulation to estimate the expected interfer-
ence contribution.

Other backgrounds are expected from other sources of
events with two opposite-sign and same-flavour leptons
together with jets. Top quark pair events are generated with
powheg (v2.0) [38–40] and normalized to the inclusive cross
section calculated at NNLO together with next-to-next-to-
leading logarithmic corrections [41,42]. Single top quark
processes are modelled at NLO with powheg [38–40,43,44]
and normalized to cross sections of 71.7±2.0 pb, 217±3 pb,
and 10.32±0.20 pb respectively for the tW, t-, and s-channel
production [41,45]. The diboson production processes WW,
WZ, and ZZ are generated with pythia and normalized
to NNLO cross section computations obtained with mcfm
(v8.0) [46]. The abbreviation VV is used in this document
when referring to the sum of the processes that yield two
vector bosons.

The contribution from diboson processes with ��jj final
states, such as ZW and ZZ, to the signal definition is small,
and these contributions are not included in the background.

The production of a W boson in association with jets,
where the W decays to a charged lepton and a neutrino, is also
simulated with MadGraph5_amc@nlo, and normalized to
a total cross section of 61.53 nb, computed at NNLO with
fewz. Multijet QCD processes are also studied in simulation,
but are found to yield negligible contributions to the selected
events. All background productions make use of the pythia
PS model with the CUETP8M1 tune.

A detector simulation based on Geant4 (v.9.4p03) [47,
48] is applied to all the generated signal and background sam-
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ples. The presence of multiple pp interactions in the same
bunch crossing (pileup) is incorporated by simulating addi-
tional interactions (both in-time and out-of-time with respect
to the hard interaction) with a multiplicity that matches the
distribution observed in data. The additional events are sim-
ulated with pythia (v8.212) making use of the NNPDF23
(nlo_as0130) [49] PDF, and the CUETP8M1 tune. The aver-
age pileup is estimated to be about 27 additional interactions
per bunch crossing.

4 Reconstruction and selection of events

Events containing two isolated, high-pT leptons, and at least
two high-pT jets are selected. Isolated single-lepton triggers
are used to acquire the data, where the lepton is required to
have pT > 27 GeV for the electron trigger and pT > 24 GeV
for the muon trigger [50].

In the offline reconstruction, electrons are reconstructed
from clusters of energy deposits in the ECAL that match
tracks extrapolated from the silicon tracker [19]. Offline
muons are reconstructed by fitting trajectories based on
hits in the silicon tracker and in the muon system [20].
Reconstructed electron or muon candidates are required to
have pT > 20 GeV. Electron candidates are required to be
reconstructed within |η| ≤ 2.4, excluding barrel-to-endcap
1.444 < |η| < 1.566 transition regions of the ECAL [22].
Muon candidates are required to be reconstructed in the fidu-
cial region |η| ≤ 2.4 of the muon system. The track associ-
ated with a lepton candidate is required to have both its trans-
verse and longitudinal impact parameters compatible with
the position of the main primary vertex (PV) of the event. The
reconstructed PV with the largest value of summed physics-
object p2

T is taken to be the primary pp interaction vertex.
The physics objects are the objects returned by a jet find-
ing algorithm [51,52] applied to all charged particle tracks
associated with the vertex, plus the corresponding associated
missing transverse momentum.

The leptons are required to be isolated. The isolation
is calculated from particle candidates reconstructed by the
PF algorithm and is corrected for pileup on an event-by-
event basis. The sum of scalar pT of all particle candi-
dates reconstructed in an isolation cone with radius R =√

(Δη)2 + (Δφ)2 = 0.4 around the momentum vector of the
lepton is required to be below 15 (25)% of the electron (muon)
pT value. The two isolated leptons with opposite electric
charge and highest pT are chosen to form the dilepton pair,
and are required to have pT > 30 GeV and pT > 20 GeV for
the pT-leading and subleading lepton, respectively. Events
with additional leptons are kept in the event selection. Same-
flavour dileptons (ee or μμ) compatible with Z → �� decays
are then selected by requiring |mZ −m��| < 15 GeV, where
mZ is the mass of the Z boson [53].

Jets are reconstructed by clustering PF candidates with
the anti-kT algorithm [51,54] using a distance parameter of
0.4. The jet momentum is determined as the vector sum of
all particle momenta in the jet, and is found from simulation
to be within 5 to 10% of the true momentum over the whole
pT spectrum and detector acceptance [21].

An offset correction is applied to jet energies to take into
account the contribution from additional proton-proton inter-
actions within the same or nearby bunch crossings. Jet energy
corrections are derived from simulation, and are confirmed
with in situ measurements of the energy balance in dijet,
multijet, photon + jet, and leptonically decaying Z + jet
events [55]. Loose jet identification criteria are applied to
reject misconstructed jets resulting from detector noise [56].
Loose criteria are also applied to remove jets heavily con-
taminated with pileup energy (clustering of energy deposits
not associated with a parton from the primary pp interac-
tion) [56,57]. The efficiency of the jet identification criteria
is greater than 99%, rejecting 90% of background pileup jets
with pT � 50 GeV. The jet energy resolution (JER) is typi-
cally ≈15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV [55].
Jets reconstructed with pT ≥ 15 GeV and |η| ≤ 4.7 are used
in the analysis.

The two highest pT jets are defined as the tagging jets, and
are required to have pT > 50 GeV and pT > 30 GeV for the
pT-leading and subleading jet, respectively. The invariant
mass of the two tagging jets is required to satisfy mjj >

200 GeV.
A multivariate analysis technique, described in Sect. 5,

is used to provide an optimal separation of the DY Zjj and
EW Zjj components of the inclusive ��jj spectrum. The main
discriminating variables are the dijet invariant mass mjj and
the pseudorapidity separation Δηjj. Other variables used in
the multivariate analysis are described below.

Table 1 reports the expected and observed event yields
after the initial selection and after imposing a minimum
value for the final discriminator output that defines the signal-
enriched region used for the studies of additional hadronic
activity described in Sect. 9.

4.1 Discriminating gluons from quarks

Jets in signal events are expected to originate from quarks,
while for background events it is more probable that jets
are initiated by a gluon. A quark-gluon likelihood (QGL)
discriminant [3] is evaluated for the two tagging jets with the
intent of distinguishing the nature of each jet.

The QGL discriminant exploits differences in the show-
ering and fragmentation of gluons and quarks by making
use of the following internal jet composition observables:
(1) the particle multiplicity of the jet, (2) the minor root-
mean-square of distance between the jet constituents in the
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Table 1 Event yields expected for background and signal processes
using the initial selections and with a cut on the multivariate analysis
output (BDT) that provides signal ≈ background. The yields are com-
pared to the data observed in the different channels and categories. The

total uncertainties quoted for signal, DY Zjj, dibosons, and processes
with top quarks (tt and single top quarks) include the simulation statis-
tical uncertainty

Sample Initial BDT > 0.92

ee μμ ee μμ

WW 62 ± 16 116 ± 22 – –

WZ 914 ± 38 2151 ± 63 1.6 ± 1.6 1.8 ± 1.8

ZZ 522 ± 17 1324 ± 29 1.8 ± 1.1 2.7 ± 1.3

tt 5363 ± 48 12938 ± 81 7.1 ± 1.9 7.1 ± 1.9

Single top quark 269 ± 18 723 ± 31 – –

W + jets 34 ± 5 36 ± 5 – –

DY Zjj 152750 ± 510 394640 ± 880 273 ± 20 493 ± 31

Total backgrounds 159890 ± 510 411890 ± 890 283 ± 29 505 ± 43

EW Zjj signal 2833 ± 10 6665 ± 16 194.9 ± 2.6 379.7 ± 3.9

Data 163640 422499 418 892

η-φ plane, and (3) the pT distribution function of the jet con-
stituents, as defined in Ref. [58].

The variables are used as inputs to a likelihood discrimi-
nant on gluon and quark jets constructed from simulated dijet
events. The performance of this QGL discriminant is evalu-
ated and validated using independent, exclusive samples of Z
+ jet and dijet data [58]. Comparisons of simulation predic-
tions and data distributions allow the derivation of corrections
to the simulated QGL distributions and define a systematic
uncertainty band.

4.2 Additional discriminating variables

An event balance variable, R(phard
T ), is used to separate the

signal from the background, defined as

R(p hard
T ) = | 	pTj1 + 	pTj2 + 	pTZ|

| 	pTj1 | + | 	pTj2 | + | 	pTZ|
= | 	p hard

T |
| 	pTj1 | + | 	pTj2 | + | 	pTZ| , (1)

where 	pTj1 , 	pTj2 and 	pTZ are, respectively, the transverse
momenta of the two tagging jets and of the Z boson, and the
numerator is the estimator of the pT for the hard process, i.e.
p hard

T .
Angular variables useful for signal discrimination include

the difference between the rapidity of the Z boson yZ and the
average rapidity of the two tagging jets, i.e.

y∗ = yZ − 1

2
(yj1 + yj2), (2)

and the z∗ Zeppenfeld variable [13] defined as

z∗ = y∗

Δyjj
. (3)

The distributions for data and simulated samples of the
mjj, R(p hard

T ) and z∗ variables, after the initial selection, are
shown in Figs. 3 and 4, for the dielectron and dimuon chan-
nels, respectively. The distributions for data and simulated
samples of the dijet transverse momentum (pTjj), pseudo-
rapidity separation (Δηjj), and of the QGL output values
of each jet, after the initial selection, are shown in Figs. 5
and 6, respectively, for the dielectron and dimuon channels.
Good agreement between the data and the MC expectations is
observed in both channels. In the lower panels of these plots
the experimental uncertainties in the jet energy scales (JES)
(dotted envelope) and the uncertainties due to the choice of
QCD factorisation and normalization scales defined in Sect. 6
(dashed envelope) are shown.

5 Signal discriminants and extraction procedure

The EW Zjj signal is characterized by a large separation in
pseudorapidity between the tagging jets, due to the small
scattering-angle of the two initial partons. Because of both
the topological configuration and the large energy of the out-
going partons, mjj is also expected to be large. The evolu-
tion of Δηjj with mjj is expected to be different for signal
and background events, and therefore these characteristics
are expected to yield a high separation power between the
EW Zjj and the DY Zjj productions. In addition, in signal
events it is expected that the Z boson candidate is produced
centrally in the rapidity region defined by the two tagging jets
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Fig. 3 Data and simulated event distributions for the dielectron event
selection: mjj (top left), R(p hard

T ) (top right), and z∗ (bottom). The
contributions from the different background sources and the signal are
shown stacked, with data points superimposed. The expected signal-

only contribution is also shown as an unfilled histogram. The lower
panels show the relative difference between the data and expectations,
as well as the uncertainty envelopes for JES and μF,R scale uncertainties

and that the Zjj system is approximately balanced in the trans-
verse plane. As a consequence signal events are expected to
yield lower values of both z∗ and p hard

T than the DY back-
ground. Other variables that are used to enhance the signal-
to-background separation are related to the kinematics of the
event (pT, rapidity, and distance between the jets and/or the
Z boson) or to the properties of the jets that are expected to
be initiated by quarks. The variables that are used in the mul-
tivariate analysis are: (1)mjj; (2) Δηjj; (3) the dijet transverse

momentum pTjj; (iv) the QGL values of the two tagging jets;
(v) R

(
p hard

T

)
and z∗.

The output of the discriminator is built by training
a boosted decision tree (BDT) from the tmva pack-
age [59] to achieve an optimal separation between the EW Zjj
and DY Zjj processes, independently in the dielectron and
dimuon channels.

In order to improve the sensitivity for the extraction of the
signal component, the transformation that originally projects
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Fig. 4 Data and simulated event distributions for the dimuon event
selection: mjj (top left), R(p hard

T ) (top right), and z∗ (bottom). The
contributions from the different background sources and the signal are
shown stacked, with data points superimposed. The expected signal-

only contribution is also shown as an unfilled histogram. The lower
panels show the relative difference between the data and expectations
as well as the uncertainty envelopes for JES and μF,R scale uncertainties

the BDT output value in the [−1,+1] interval is changed into
BDT′ = tanh−1((BDT+1)/2). This allows the purest signal
region of the BDT output to be better sampled while keeping
an equal-width binning of the BDT variable.

Figure 7 shows the distributions of the discriminants for
the two leptonic channels. Good overall agreement between
simulation and data is observed in all distributions, and the
signal presence is visible at high BDT′ values.

A binned maximum likelihood calculation, which is used
to fit simultaneously the strength modifiers for the EW Zjj
and DY Zjj processes, μ = σ(EW Zjj)/σLO(EW ��jj) and
υ = σ(DY)/σth(DY), is built from the expected rates for
each process. Nuisance parameters are added to modify the
expected rates and shapes according to the estimate of the
systematic uncertainties affecting the measurement.

The interference between the EW Zjj and DY Zjj pro-
cesses is included in the fit procedure, and its strength scales
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Fig. 5 Data and simulated event distributions for the dielectron event
selection: dijet system transverse momentum (top left), dijet pseudora-
pidity opening (top right), pT-leading jet QGL (bottom left), and pT-
subleading jet QGL (bottom right). The contributions from the different
background sources and the signal are shown stacked, with data points

superimposed. The expected signal-only contribution is also shown as
an unfilled histogram. The lower panels show the relative difference
between the data and expectations, as well as the uncertainty envelopes
for JES and μF,R scale uncertainties

as
√

μυ. The interference model is derived from the Mad-
Graph5_amc@nlo simulation described in Section 3.

The parameters of the model (μ and υ) are determined
by maximizing the likelihood. The statistical methodology
follows the one used in other CMS analyses [6] using the
asymptotic formulas [60]. In this procedure the systematic
uncertainties affecting the measurement of the signal and
background strengths (μ and υ) are constrained with log-
normal probability distributions.

6 Systematic uncertainties

The main systematic uncertainties affecting the measurement
are classified into experimental and theoretical sources. Some
uncertainties affect only normalizations, while others affect
both the normalization and shape of the BDT output distri-
bution.
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Fig. 6 Data and simulated event distributions for the dimuon event
selection: dijet system transverse momentum (top left), dijet pseudora-
pidity opening (top right), pT-leading jet QGL (bottom left), and pT-
subleading jet QGL (bottom right). The contributions from the different
background sources and the signal are shown stacked, with data points

superimposed. The expected signal-only contribution is also shown as
an unfilled histogram. The lower panels show the relative difference
between the data and expectations, as well as the uncertainty envelopes
for JES and μF,R scale uncertainties

6.1 Experimental uncertainties

The following experimental uncertainties are considered.
Integrated luminosity A 2.5% uncertainty is assigned to

the value of the integrated luminosity [61].
Trigger and selection efficiencies Uncertainties in the effi-

ciency corrections based on control samples in data for the
leptonic trigger and offline selections amount to a total of 2–

3%, depending on the lepton pT and η for both the ee and μμ

channels. These uncertainties are estimated by comparing the
lepton efficiencies expected in simulation and measured in
data with a tag-and-probe method [62].

Jet energy scale and resolution The energy of the jets
enters at the selection level and in the computation of the kine-
matic variables used to calculate the discriminants. Therefore
the uncertainty in the JES affects both the expected event
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Fig. 7 Distributions for transformed BDT discriminants in dielectron
(left) and dimuon (right) events. The contributions from the different
background sources and the signal are shown stacked, with data points
superimposed. The expected signal-only contribution is also shown as

an unfilled histogram. The lower panels show the relative difference
between the data and expectations, as well as the uncertainty envelopes
for JES and μF,R scale uncertainties

yields and the final shapes. The effect of the JES uncertainty
is studied by scaling up and down the reconstructed jet energy
by pT- and η-dependent scale factors [55]. An analogous
approach is used for the JER. The final impact on the signal
strength uncertainty amounts to about 3% for JES and 2%
for JER.

QGL discriminator The uncertainty in the performance
of the QGL discriminator is measured using independent Z
+ jet and dijet data [58]. Shape variations corresponding to
the full data versus simulation differences are implemented.
The variations are of the order of 10% for lower QGL output
values, corresponding to gluon-like jets, and of the order of
5% for larger QGL output values, corresponding to quark-
like jets. The final impact on the signal strength uncertainty
amounts to about 1%.

Pileup Pileup can affect the identification and isolation
of the leptons or the corrected energy of the jets. When jet
clustering is performed, pileup can induce a distortion of the
reconstructed dijet system because of the contamination from
tracks and calorimetric deposits. This uncertainty is evalu-
ated by generating alternative distributions of the number of
pileup interactions, corresponding to a 5% uncertainty in the
total inelastic pp cross section at

√
s = 13 TeV.

Limited number of simulated events For each signal and
background simulation, shape variations for the distributions
are created by shifting each bin content up or down by its sta-
tistical uncertainty. This generates alternatives to the nomi-
nal shapes that are used to describe the uncertainty from the

limited number of simulated events. Depending on the BDT
output bin, the impact on the signal strength uncertainty can
be up to 3%.

6.2 Theoretical uncertainties

The following theoretical uncertainties are considered in the
analysis.

PDF The PDF uncertainties are evaluated by comparing
the nominal distributions to those obtained when using the
alternative PDFs of the NNPDF set, including αS variations.
The final impact on the signal strength uncertainty is less
than 1%.

Factorization and renormalization scales To account for
theoretical uncertainties, signal and background shape vari-
ations are built by changing the values of μF and μR from
their defaults by factors of 2 or 1/2 in the ME calculation,
simultaneously for μF and μR, but independently for each
simulated sample. The final impact on the signal strength
uncertainty amounts to 6% and 4% respectively for the sig-
nal and background variations.

Normalization of top quark and diboson backgrounds
Diboson and top quark production processes are modelled
with MC simulations. An uncertainty in the normalization
of these backgrounds is assigned based on the PDF and μF,
μR uncertainties, following calculations in Refs. [41,42,46].
The final impact on the signal strength uncertainty amounts
to less than 1%.
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Interference between EW Zjj and DY Zjj An overall nor-
malization uncertainty and a shape uncertainty are assigned
to the interference term in the fit, based on an envelope of
prediction with different μF, μR scales. The final impact on
the signal strength uncertainty amounts to 2–3%.

Parton showering model The uncertainty in the signal PS
model and the event tune is assessed as the full difference of
the acceptance and shape predictions using pythia and her-
wig++. The final impact on the signal strength uncertainty
amounts to about 4%.

The largest sources of experimental uncertainty come
from the JES and the limited statistics of simulated events;
the largest source of theoretical uncertainty comes from the
μF, μR scale uncertainties.

7 Measurement of the EW Zjj production cross section

The signal strength, defined for the ��jj final state in the
kinematic region described in Sect. 3, is extracted from the
fit to the BDT output distribution as discussed in Sect. 5.

In the dielectron channel, the signal strength is measured
to be

μ = 0.96 ± 0.06 (stat) ± 0.13 (syst)

= 0.96 ± 0.14 (total),

corresponding to a measured signal cross section

σ(EW ��jj) = 521 ± 34 (stat) ± 68 (syst) fb

= 521 ± 76 (total) fb.

In the dimuon channel, the signal strength is measured to
be

μ = 0.97 ± 0.04 (stat) ± 0.11 (syst)

= 0.97 ± 0.12 (total),

corresponding to a measured signal cross section

σ(EW ��jj) = 524 ± 23 (stat) ± 61 (syst) fb

= 524 ± 65 (total) fb.

The results obtained for the different dilepton channels are
compatible with each other, and in agreement with the SM
predictions.

From the combined fit of the two channels, the signal
strength is measured to be

μ = 0.98 ± 0.04 (stat) ± 0.10 (syst)

= 0.98 ± 0.11 (total),

corresponding to a measured signal cross section

σ(EW ��jj) = 534 ± 20 (stat) ± 57 (syst) fb

= 534 ± 60 (total) fb,

in agreement with the SM prediction σLO(EW ��jj) =
543 ± 24 fb. In the combined fit, the DY strength is υ =
0.988 ± 0.031. Using the statistical methodology described
in Ref. [60], the background-only hypotheses in the dielec-
tron, dimuon, and combined channels are all excluded with
significance well above 5σ .

8 Limits on anomalous gauge couplings

In the framework of EFT, new physics can be described as
an infinite series of new interaction terms organized as an
expansion in the mass dimension of the operators.

In the EW sector of the SM, the first higher-dimensional
operators containing bosons are six-dimensional [15]:

OWWW = cWWW

Λ2 WμνW
νρWμ

ρ ,

OW = cW
Λ2 (DμΦ)†Wμν(D

νΦ),

OB = cB
Λ2 (DμΦ)†Bμν(D

νΦ),

ÕWWW = c̃WWW

Λ2 W̃μνW
νρWμ

ρ ,

ÕW = c̃W
Λ2 (DμΦ)†W̃μν(D

νΦ), (4)

where, as is customary, group indices are suppressed and the
mass scale Λ is factorized from the coupling constants c.
In Eq. (4), Wμν is the SU(2) field strength, Bμν is the U(1)
field strength, Φ is the Higgs doublet, and operators with a
tilde are the magnetic duals of the field strengths. The first
three operators are charge and parity conserving, whereas
the two last ones are not. In this paper, models with opera-
tors that preserve charge conjugation and parity symmetries
can be included in the calculation either individually or in
pairs. With these assumptions, the value of coupling con-
stants divided by the mass scale c/Λ2 are measured.

These operators have a rich phenomenology since they
contribute to many multiboson scattering processes at tree
level. The operator OWWW modifies vertices with 3 to 6
vector bosons, whereas the operators OW and OB modify
both HVV vertices and vertices with 3 or 4 vector bosons.
A more detailed description of the phenomenology of these
operators can be found in Ref. [63]. Modifications to the
ZWW vertex are investigated in this case, since this modifies
the pp → Zjj cross section.

Previously, modifications to these vertices have been stud-
ied using anomalous trilinear gauge couplings [64]. The rela-
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Fig. 8 Distributions of pTZ in data and SM backgrounds, and various ATGC scenarios in the dielectron (left) and dimuon (right) channels

tionship between the dimension-6 operators in Eq. (4) and
ATGCs can be found in Ref. [15].

8.1 ATGC signal simulation

ATGC signal events are simulated at LO using Mad-
Graph5_amc@nlo with the NNPDF3.0 PDF set for sig-
nal generation. Showering and hadronization of the events
is performed with pythia using the CUETP8M1 tune [28],
using the same configuration as in the SM signal sample. The
’EWdim6NLO’ model [15,24] is used for the generation of
anomalous couplings.

For each event, 125 weights are assigned that correspond
to a 5×5×5 grid in cWWW /Λ2 × cW /Λ2 × cB/Λ2. Equal
bins are used in the interval [−15, 15] TeV−2 for cWWW /Λ2,
[−50, 50] TeV−2 for cW /Λ2, and equal bins in the interval
[−500, 500] TeV−2 for cB/Λ2.

8.2 Statistical analysis

The measurement of the coupling constants uses templates
in the transverse momentum of the dilepton system (pTZ).
Because this is well-measured and longitudinally Lorentz
invariant, this variable is robust against mismodelling and, in
principle, ideal for this purpose. In the electron channel 15
equal bins for 0 < pTZ < 900 GeV are used, and 20 equal
bins for 0 < pTZ < 1200 GeV are used in the muon channel,
where the last bin contains overflow.

In order to construct the pTZ templates, the associated
weights calculated for each event are used to construct a

parametrized model of the expected yield in each bin as a
function of the values of the dimension-six operators’ cou-
pling constants. For each bin, the ratios of the expected signal
yield with dimension-6 operators to the one without (leav-
ing only the SM contribution) are fitted at each point of
the grid to a quadratic polynomial. The highest bin is the
one with the largest statistical power to detect the presence
of higher dimensional operators. Figure 8 shows examples
of the final templates, with the expected signal overlaid on
the background expectation, for two different hypotheses of
dimension-6 operators. The SM distribution is normalized to
the expected cross section.

A simultaneous binned fit for the values of the ATGCs
is performed in the two lepton channels. A profile likeli-
hood method, the Wald Gaussian approximation and Wilks’
theorem [60] are used to derive one-dimensional and two-
dimensional limits at 95% confidence level (CL) on each of
the three ATGC parameters and each combination of two
ATGC parameters, respectively, while all other parameters
are set to their SM values. Systematic and theoretical uncer-
tainties are represented by individual nuisance parameters
with log-normal distributions and are profiled in the fit.

8.3 Results

No significant deviation from the SM expectation is observed.
Limits on ATGC parameters were previously set by LEP [65],
ATLAS [66,67], and CMS [68,69]. The LHC semileptonic
diboson analyses using 8 TeV data currently set the most
stringent limits.
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Table 2 One-dimensional limits on the ATGC EFT parameters at 95%
CL

Coupling
constant

Expected 95%
CL interval (TeV−2)

Observed 95%
CL interval (TeV−2)

cWWW /Λ2 [−3.7, 3.6] [−2.6, 2.6]
cW /Λ2 [−12.6, 14.7] [−8.4, 10.1]

Table 3 One-dimensional limits on the ATGC effective Lagrangian
(LEP parametrization) parameters at 95% CL

Coupling
constant

Expected 95%
CL interval

Observed 95%
CL interval

λZ [−0.014, 0.014] [−0.010, 0.010]
ΔgZ1 [−0.053, 0.061] [−0.035, 0.042]

Limits on the EFT parameters are reported and also trans-
lated into the equivalent parameters defined in an effective
Lagrangian (LEP parametrization) in Ref. [70], without form
factors: λγ = λZ = λ, ΔκZ = ΔgZ

1 − Δκγ tan2 θW. The
parameters λ, Δκ Z , and ΔgZ

1 are considered, where the Δ

symbols represents deviations from their respective SM val-
ues.

This analysis shows high sensitivity to cWWW /Λ2 and
cW /Λ2 parameters (equivalently λZ and ΔgZ1 ). The sensi-
tivity to cB/Λ2 (equivalently Δκ Z ) parameter is very low
since the contribution of this operator to the WWZ vertex is
suppressed by the weak mixing angle.

Results for 1D limits on cWWW and cW (λ and ΔgZ
1 ) can

be found in Table 2 (Table 3) respectively, and 2D limits are
shown in Fig. 9. Results are dominated by the sensitivity in
the muon channel due to the larger acceptance for muons. An
ATGC signal is not included in the interference between EW
and DY production. The effect on the limits is small (<3%).

9 Study of the hadronic and jet activity in Z + jet events

Now that the presence of an SM signal is established, the
properties of the hadronic activity in the selected events can
be examined. The production of additional jets in a region
with a larger contribution from EW Zjj processes is explored
in Sect. 9.1. Studies of the region in rapidity with expected
low hadron activity (rapidity gap), using track-only observ-
ables, are presented in Sect. 9.2. Finally a study of hadronic
activity vetoes, using both PF jets and track-only observ-
ables, is presented in Sect. 9.3. A significant suppression of
the hadronic activity in signal events is expected because the
final-state objects originate from pure electroweak interac-
tions, in contrast with the radiative QCD production of jets in
DY Zjj events. The reconstructed distributions are compared
directly to the prediction obtained with a full simulation of
the CMS detector.

In the following studies, event distributions are shown with
a selection BDT > 0.92, which allows a signal-enriched
region to be selected with a similar fraction of signal and
background events. The BDT > 0.92 selection corresponds
approximately to a selection BDT′>1.946 on the trans-
formed BDT′ discriminants shown in Fig. 7.

9.1 Jet activity studies in a high-purity region

In this study, aside from the two tagging jets used in the pre-
selection, all PF jets with a pT > 15 GeV found within the
pseudorapidity gap of the tagging jets, η

tag jet
min < η < η

tag jet
max ,

are used. The background contribution uses the normaliza-
tions obtained from the fit discussed in Sect. 7.

The pT of the pT-leading additional jet, as well as the
scalar pT sum (HT) of all additional jets, are shown in Fig. 10.
Data and expectations are generally in reasonable agreement
for all distributions in the signal-enriched regions, with some
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Fig. 9 Two-dimensional observed 95% CL limits (continuous black line) and expected 68, 95, and 99% CL limits on anomalous coupling parameters
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Fig. 10 Transverse momentum of the third highest pT jet (top row),
and HT of all additional jets (bottom row) within the pseudorapidity
interval of the two tagging jets in dielectron (left) and dimuon (right)
events with BDT > 0.92. The contributions from the different back-
ground sources and the signal are shown stacked, with data points

superimposed. The expected signal-only contribution is also shown as
an unfilled histogram. The lower panels show the relative difference
between the data and expectations, as well as the uncertainty envelopes
for JES and μF,R scale uncertainties. In all distributions the first bin
contains events where no additional jet with pT > 15 GeV is present

deficit of the simulation predictions for the rate of events with
no additional jet activity. A suppression of the emission of
additional jets is observed in data, when taking into account
the background-only predictions. In the simulation of the
signal, the additional jets are produced by the PS (see Sect. 3),
so studying these distributions provides insight on the PS
model in the rapidity-gap region.

9.2 Study of the charged-hadron activity

For this study, a collection is formed of high-purity tracks
[71] with pT > 0.3 GeV that are uniquely associated with the
main PV in the event. Tracks associated with the two leptons
or with the tagging jets are excluded from the selection. The
association between the selected tracks and the reconstructed
PVs is carried out by minimizing the longitudinal impact
parameter, which is defined as the z-distance between the
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Fig. 11 HT of additional soft track-jets with pT > 1 GeV in dielectron
(left) and dimuon (right) events with BDT > 0.92. Data are compared
to MC expectations with the pythia PS model (top row), or the her-
wig++ PS model (bottom row). The contributions from the different
background sources and the signal are shown stacked, with data points

superimposed. The expected signal-only contribution is also shown as
an unfilled histogram. The lower panels show the relative difference
between the data and expectations, as well as the uncertainty envelopes
for JES and μF,R scale uncertainties

PV and the point of closest approach of the track helix to the
PV, labelled dPV

z . The association is required to satisfy dPV
z <

2 mm and dPV
z < 3δdPV

z , where δdPV
z is the uncertainty in

dPV
z .

A collection of “soft track jets” is defined by clustering
the selected tracks using the anti-kT clustering algorithm [51]
with a distance parameter of R = 0.4. The use of track
jets represents a clean and well-understood method [72] to
reconstruct jets with energy as low as a few GeV. These jets

are not affected by pileup because of the association of the
constituent tracks with the hard-scattering vertex [73].

Track jets of low pT and within η
tag jet
min < η < η

tag jet
max

are considered for the study of the central hadronic activity
between the tagging jets. For each event, the scalar pT sum
of the soft-track jets with pT > 1 GeV is computed, and
referred to as “soft HT”. Figure 11 shows the distribution of
the soft HT in the signal-enriched region (BDT > 0.92), for
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statistical uncertainty

the dielectron and dimuon channels, compared to predictions
from pythia and herwig++ PS models.

Overall, a reasonable agreement is observed between data
and the simulation.

9.3 Study of gap activity vetoes

The efficiency of a gap activity veto corresponds to the frac-
tion of events with a measured gap activity below a given
threshold. This efficiency can be studied as a function of the

applied threshold, and for different gap activity observables.
The veto thresholds studied here start at 15 GeV for gap activ-
ities measured with standard PF jets, while they go down to
1 GeV for gap activities measured with soft track jets.

Figure 12 shows the gap activity veto efficiency of com-
bined dielectron and dimuon events in the signal-enriched
region when placing an upper threshold on the pT of the addi-
tional third jet, or on the total HT of all additional jets. The
observed efficiency in data is compared to expected efficien-
cies for background-only events, and efficiencies for back-
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ground plus signal events where the signal is modeled with
pythia or herwig++. Data points disfavour the background-
only predictions and are in reasonable agreement with the
presence of the signal for both PS predictions.

Figure 13 shows the gap activity veto efficiency of com-
bined dielectron and dimuon events in the signal-enriched
region when placing an upper threshold on the pT of the
leading soft jet, or on the total soft HT. The data points dis-
favour the background-only predictions and are in reason-
able agreement with the presence of the signal with both
PS predictions. Comparisons between the signal gap activity
predictions obtained with pythia PS model and the her-
wig++ PS model have been previously studied [13], and are
consistent with the predictions found here. Among the two
considered signal models, the data seem to prefer the signal
model with herwig++PS at low gap activity values, whereas
the pythia (v8.212) PS predictions seem to be preferred by
the data in the case of larger gap activities.

10 Summary

The cross section for the electroweak (EW) production of a
Z boson in association with two jets in the ��jj final state is
measured in proton-proton collisions at

√
s = 13 TeV in the

kinematic region defined by m�� > 50 GeV, mjj > 120 GeV,
and transverse momenta pTj > 25 GeV. The result

σ(EW ��jj) = 534 ± 20 (stat) ± 57 (syst) fb,

agrees with the standard model prediction.
The increased cross section and integrated luminosity

recorded at 13 TeV, as well as the more precise NLO mod-
elling of background processes, have led to a more precise
measurement of the EW Zjj process, relative to earlier CMS
and ATLAS results, where the relative precision was approx-
imately 20% [3,4,16,17].

No evidence for anomalous trilinear gauge couplings is
found. The following one-dimensional limits at 95% CL are
obtained: −2.6 < cWWW /Λ2 < 2.6 TeV−2 and −8.4 <

cW /Λ2 < 10.1 TeV−2. These results provide the most strin-
gent constraints on cWWW to date.

In events from a signal-enriched region, the additional
hadron activity is also studied, as well as the efficiencies for
a gap-activity veto, and generally good agreement is found
between data and quantum chromodynamics predictions with
either the pythiaor herwig++parton shower and hadroniza-
tion model.
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